ExprCXX.h revision be230c36e32142cbdcdbe9c97511d097beeecbab
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/UnresolvedSet.h"
20#include "clang/AST/TemplateBase.h"
21
22namespace clang {
23
24  class CXXConstructorDecl;
25  class CXXDestructorDecl;
26  class CXXMethodDecl;
27  class CXXTemporary;
28  class TemplateArgumentListInfo;
29
30//===--------------------------------------------------------------------===//
31// C++ Expressions.
32//===--------------------------------------------------------------------===//
33
34/// \brief A call to an overloaded operator written using operator
35/// syntax.
36///
37/// Represents a call to an overloaded operator written using operator
38/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
39/// normal call, this AST node provides better information about the
40/// syntactic representation of the call.
41///
42/// In a C++ template, this expression node kind will be used whenever
43/// any of the arguments are type-dependent. In this case, the
44/// function itself will be a (possibly empty) set of functions and
45/// function templates that were found by name lookup at template
46/// definition time.
47class CXXOperatorCallExpr : public CallExpr {
48  /// \brief The overloaded operator.
49  OverloadedOperatorKind Operator;
50
51public:
52  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
53                      Expr **args, unsigned numargs, QualType t,
54                      ExprValueKind VK, SourceLocation operatorloc)
55    : CallExpr(C, CXXOperatorCallExprClass, fn, args, numargs, t, VK,
56               operatorloc),
57      Operator(Op) {}
58  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
59    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
60
61
62  /// getOperator - Returns the kind of overloaded operator that this
63  /// expression refers to.
64  OverloadedOperatorKind getOperator() const { return Operator; }
65  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
66
67  /// getOperatorLoc - Returns the location of the operator symbol in
68  /// the expression. When @c getOperator()==OO_Call, this is the
69  /// location of the right parentheses; when @c
70  /// getOperator()==OO_Subscript, this is the location of the right
71  /// bracket.
72  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
73
74  virtual SourceRange getSourceRange() const;
75
76  static bool classof(const Stmt *T) {
77    return T->getStmtClass() == CXXOperatorCallExprClass;
78  }
79  static bool classof(const CXXOperatorCallExpr *) { return true; }
80};
81
82/// CXXMemberCallExpr - Represents a call to a member function that
83/// may be written either with member call syntax (e.g., "obj.func()"
84/// or "objptr->func()") or with normal function-call syntax
85/// ("func()") within a member function that ends up calling a member
86/// function. The callee in either case is a MemberExpr that contains
87/// both the object argument and the member function, while the
88/// arguments are the arguments within the parentheses (not including
89/// the object argument).
90class CXXMemberCallExpr : public CallExpr {
91public:
92  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
93                    QualType t, ExprValueKind VK, SourceLocation RP)
94    : CallExpr(C, CXXMemberCallExprClass, fn, args, numargs, t, VK, RP) {}
95
96  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
97    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
98
99  /// getImplicitObjectArgument - Retrieves the implicit object
100  /// argument for the member call. For example, in "x.f(5)", this
101  /// operation would return "x".
102  Expr *getImplicitObjectArgument();
103
104  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
105  /// the implicit object argument. Note that this is may not be the same
106  /// declaration as that of the class context of the CXXMethodDecl which this
107  /// function is calling.
108  /// FIXME: Returns 0 for member pointer call exprs.
109  CXXRecordDecl *getRecordDecl();
110
111  virtual SourceRange getSourceRange() const;
112
113  static bool classof(const Stmt *T) {
114    return T->getStmtClass() == CXXMemberCallExprClass;
115  }
116  static bool classof(const CXXMemberCallExpr *) { return true; }
117};
118
119/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
120/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
121/// const_cast.
122///
123/// This abstract class is inherited by all of the classes
124/// representing "named" casts, e.g., CXXStaticCastExpr,
125/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
126class CXXNamedCastExpr : public ExplicitCastExpr {
127private:
128  SourceLocation Loc; // the location of the casting op
129
130protected:
131  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
132                   CastKind kind, Expr *op, unsigned PathSize,
133                   TypeSourceInfo *writtenTy, SourceLocation l)
134    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l) {}
135
136  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
137    : ExplicitCastExpr(SC, Shell, PathSize) { }
138
139public:
140  const char *getCastName() const;
141
142  /// \brief Retrieve the location of the cast operator keyword, e.g.,
143  /// "static_cast".
144  SourceLocation getOperatorLoc() const { return Loc; }
145  void setOperatorLoc(SourceLocation L) { Loc = L; }
146
147  virtual SourceRange getSourceRange() const {
148    return SourceRange(Loc, getSubExpr()->getSourceRange().getEnd());
149  }
150  static bool classof(const Stmt *T) {
151    switch (T->getStmtClass()) {
152    case CXXStaticCastExprClass:
153    case CXXDynamicCastExprClass:
154    case CXXReinterpretCastExprClass:
155    case CXXConstCastExprClass:
156      return true;
157    default:
158      return false;
159    }
160  }
161  static bool classof(const CXXNamedCastExpr *) { return true; }
162};
163
164/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
165///
166/// This expression node represents a C++ static cast, e.g.,
167/// @c static_cast<int>(1.0).
168class CXXStaticCastExpr : public CXXNamedCastExpr {
169  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
170                    unsigned pathSize, TypeSourceInfo *writtenTy,
171                    SourceLocation l)
172    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
173                       writtenTy, l) {}
174
175  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
176    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
177
178public:
179  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
180                                   ExprValueKind VK, CastKind K, Expr *Op,
181                                   const CXXCastPath *Path,
182                                   TypeSourceInfo *Written, SourceLocation L);
183  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
184                                        unsigned PathSize);
185
186  static bool classof(const Stmt *T) {
187    return T->getStmtClass() == CXXStaticCastExprClass;
188  }
189  static bool classof(const CXXStaticCastExpr *) { return true; }
190};
191
192/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
193/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
194/// determine how to perform the type cast.
195///
196/// This expression node represents a dynamic cast, e.g.,
197/// @c dynamic_cast<Derived*>(BasePtr).
198class CXXDynamicCastExpr : public CXXNamedCastExpr {
199  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
200                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
201                     SourceLocation l)
202    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
203                       writtenTy, l) {}
204
205  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
206    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
207
208public:
209  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
210                                    ExprValueKind VK, CastKind Kind, Expr *Op,
211                                    const CXXCastPath *Path,
212                                    TypeSourceInfo *Written, SourceLocation L);
213
214  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
215                                         unsigned pathSize);
216
217  static bool classof(const Stmt *T) {
218    return T->getStmtClass() == CXXDynamicCastExprClass;
219  }
220  static bool classof(const CXXDynamicCastExpr *) { return true; }
221};
222
223/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
224/// [expr.reinterpret.cast]), which provides a differently-typed view
225/// of a value but performs no actual work at run time.
226///
227/// This expression node represents a reinterpret cast, e.g.,
228/// @c reinterpret_cast<int>(VoidPtr).
229class CXXReinterpretCastExpr : public CXXNamedCastExpr {
230  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
231                         Expr *op, unsigned pathSize,
232                         TypeSourceInfo *writtenTy, SourceLocation l)
233    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
234                       pathSize, writtenTy, l) {}
235
236  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
237    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
238
239public:
240  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
241                                        ExprValueKind VK, CastKind Kind,
242                                        Expr *Op, const CXXCastPath *Path,
243                                 TypeSourceInfo *WrittenTy, SourceLocation L);
244  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
245                                             unsigned pathSize);
246
247  static bool classof(const Stmt *T) {
248    return T->getStmtClass() == CXXReinterpretCastExprClass;
249  }
250  static bool classof(const CXXReinterpretCastExpr *) { return true; }
251};
252
253/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
254/// which can remove type qualifiers but does not change the underlying value.
255///
256/// This expression node represents a const cast, e.g.,
257/// @c const_cast<char*>(PtrToConstChar).
258class CXXConstCastExpr : public CXXNamedCastExpr {
259  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
260                   TypeSourceInfo *writtenTy, SourceLocation l)
261    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
262                       0, writtenTy, l) {}
263
264  explicit CXXConstCastExpr(EmptyShell Empty)
265    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
266
267public:
268  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
269                                  ExprValueKind VK, Expr *Op,
270                                  TypeSourceInfo *WrittenTy, SourceLocation L);
271  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
272
273  static bool classof(const Stmt *T) {
274    return T->getStmtClass() == CXXConstCastExprClass;
275  }
276  static bool classof(const CXXConstCastExpr *) { return true; }
277};
278
279/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
280///
281class CXXBoolLiteralExpr : public Expr {
282  bool Value;
283  SourceLocation Loc;
284public:
285  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
286    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
287         false),
288    Value(val), Loc(l) {}
289
290  explicit CXXBoolLiteralExpr(EmptyShell Empty)
291    : Expr(CXXBoolLiteralExprClass, Empty) { }
292
293  bool getValue() const { return Value; }
294  void setValue(bool V) { Value = V; }
295
296  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
297
298  SourceLocation getLocation() const { return Loc; }
299  void setLocation(SourceLocation L) { Loc = L; }
300
301  static bool classof(const Stmt *T) {
302    return T->getStmtClass() == CXXBoolLiteralExprClass;
303  }
304  static bool classof(const CXXBoolLiteralExpr *) { return true; }
305
306  // Iterators
307  virtual child_iterator child_begin();
308  virtual child_iterator child_end();
309};
310
311/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
312class CXXNullPtrLiteralExpr : public Expr {
313  SourceLocation Loc;
314public:
315  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
316    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
317         false),
318    Loc(l) {}
319
320  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
321    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
322
323  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
324
325  SourceLocation getLocation() const { return Loc; }
326  void setLocation(SourceLocation L) { Loc = L; }
327
328  static bool classof(const Stmt *T) {
329    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
330  }
331  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
332
333  virtual child_iterator child_begin();
334  virtual child_iterator child_end();
335};
336
337/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
338/// the type_info that corresponds to the supplied type, or the (possibly
339/// dynamic) type of the supplied expression.
340///
341/// This represents code like @c typeid(int) or @c typeid(*objPtr)
342class CXXTypeidExpr : public Expr {
343private:
344  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
345  SourceRange Range;
346
347public:
348  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
349    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
350           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
351           false,
352           // typeid is value-dependent if the type or expression are dependent
353           Operand->getType()->isDependentType(),
354           Operand->getType()->containsUnexpandedParameterPack()),
355      Operand(Operand), Range(R) { }
356
357  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
358    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
359        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
360           false,
361        // typeid is value-dependent if the type or expression are dependent
362           Operand->isTypeDependent() || Operand->isValueDependent(),
363           Operand->containsUnexpandedParameterPack()),
364      Operand(Operand), Range(R) { }
365
366  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
367    : Expr(CXXTypeidExprClass, Empty) {
368    if (isExpr)
369      Operand = (Expr*)0;
370    else
371      Operand = (TypeSourceInfo*)0;
372  }
373
374  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
375
376  /// \brief Retrieves the type operand of this typeid() expression after
377  /// various required adjustments (removing reference types, cv-qualifiers).
378  QualType getTypeOperand() const;
379
380  /// \brief Retrieve source information for the type operand.
381  TypeSourceInfo *getTypeOperandSourceInfo() const {
382    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
383    return Operand.get<TypeSourceInfo *>();
384  }
385
386  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
387    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
388    Operand = TSI;
389  }
390
391  Expr *getExprOperand() const {
392    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
393    return static_cast<Expr*>(Operand.get<Stmt *>());
394  }
395
396  void setExprOperand(Expr *E) {
397    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
398    Operand = E;
399  }
400
401  virtual SourceRange getSourceRange() const { return Range; }
402  void setSourceRange(SourceRange R) { Range = R; }
403
404  static bool classof(const Stmt *T) {
405    return T->getStmtClass() == CXXTypeidExprClass;
406  }
407  static bool classof(const CXXTypeidExpr *) { return true; }
408
409  // Iterators
410  virtual child_iterator child_begin();
411  virtual child_iterator child_end();
412};
413
414/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
415/// the _GUID that corresponds to the supplied type or expression.
416///
417/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
418class CXXUuidofExpr : public Expr {
419private:
420  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
421  SourceRange Range;
422
423public:
424  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
425    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
426           false, Operand->getType()->isDependentType(),
427           Operand->getType()->containsUnexpandedParameterPack()),
428      Operand(Operand), Range(R) { }
429
430  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
431    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
432           false, Operand->isTypeDependent(),
433           Operand->containsUnexpandedParameterPack()),
434      Operand(Operand), Range(R) { }
435
436  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
437    : Expr(CXXUuidofExprClass, Empty) {
438    if (isExpr)
439      Operand = (Expr*)0;
440    else
441      Operand = (TypeSourceInfo*)0;
442  }
443
444  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
445
446  /// \brief Retrieves the type operand of this __uuidof() expression after
447  /// various required adjustments (removing reference types, cv-qualifiers).
448  QualType getTypeOperand() const;
449
450  /// \brief Retrieve source information for the type operand.
451  TypeSourceInfo *getTypeOperandSourceInfo() const {
452    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
453    return Operand.get<TypeSourceInfo *>();
454  }
455
456  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
457    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
458    Operand = TSI;
459  }
460
461  Expr *getExprOperand() const {
462    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
463    return static_cast<Expr*>(Operand.get<Stmt *>());
464  }
465
466  void setExprOperand(Expr *E) {
467    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
468    Operand = E;
469  }
470
471  virtual SourceRange getSourceRange() const { return Range; }
472  void setSourceRange(SourceRange R) { Range = R; }
473
474  static bool classof(const Stmt *T) {
475    return T->getStmtClass() == CXXUuidofExprClass;
476  }
477  static bool classof(const CXXUuidofExpr *) { return true; }
478
479  // Iterators
480  virtual child_iterator child_begin();
481  virtual child_iterator child_end();
482};
483
484/// CXXThisExpr - Represents the "this" expression in C++, which is a
485/// pointer to the object on which the current member function is
486/// executing (C++ [expr.prim]p3). Example:
487///
488/// @code
489/// class Foo {
490/// public:
491///   void bar();
492///   void test() { this->bar(); }
493/// };
494/// @endcode
495class CXXThisExpr : public Expr {
496  SourceLocation Loc;
497  bool Implicit : 1;
498
499public:
500  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
501    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
502           // 'this' is type-dependent if the class type of the enclosing
503           // member function is dependent (C++ [temp.dep.expr]p2)
504           Type->isDependentType(), Type->isDependentType(),
505           /*ContainsUnexpandedParameterPack=*/false),
506      Loc(L), Implicit(isImplicit) { }
507
508  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
509
510  SourceLocation getLocation() const { return Loc; }
511  void setLocation(SourceLocation L) { Loc = L; }
512
513  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
514
515  bool isImplicit() const { return Implicit; }
516  void setImplicit(bool I) { Implicit = I; }
517
518  static bool classof(const Stmt *T) {
519    return T->getStmtClass() == CXXThisExprClass;
520  }
521  static bool classof(const CXXThisExpr *) { return true; }
522
523  // Iterators
524  virtual child_iterator child_begin();
525  virtual child_iterator child_end();
526};
527
528///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
529///  'throw' and 'throw' assignment-expression.  When
530///  assignment-expression isn't present, Op will be null.
531///
532class CXXThrowExpr : public Expr {
533  Stmt *Op;
534  SourceLocation ThrowLoc;
535public:
536  // Ty is the void type which is used as the result type of the
537  // exepression.  The l is the location of the throw keyword.  expr
538  // can by null, if the optional expression to throw isn't present.
539  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
540    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
541         expr && expr->containsUnexpandedParameterPack()),
542    Op(expr), ThrowLoc(l) {}
543  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
544
545  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
546  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
547  void setSubExpr(Expr *E) { Op = E; }
548
549  SourceLocation getThrowLoc() const { return ThrowLoc; }
550  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
551
552  virtual SourceRange getSourceRange() const {
553    if (getSubExpr() == 0)
554      return SourceRange(ThrowLoc, ThrowLoc);
555    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
556  }
557
558  static bool classof(const Stmt *T) {
559    return T->getStmtClass() == CXXThrowExprClass;
560  }
561  static bool classof(const CXXThrowExpr *) { return true; }
562
563  // Iterators
564  virtual child_iterator child_begin();
565  virtual child_iterator child_end();
566};
567
568/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
569/// function call argument that was created from the corresponding
570/// parameter's default argument, when the call did not explicitly
571/// supply arguments for all of the parameters.
572class CXXDefaultArgExpr : public Expr {
573  /// \brief The parameter whose default is being used.
574  ///
575  /// When the bit is set, the subexpression is stored after the
576  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
577  /// actual default expression is the subexpression.
578  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
579
580  /// \brief The location where the default argument expression was used.
581  SourceLocation Loc;
582
583  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
584    : Expr(SC,
585           param->hasUnparsedDefaultArg()
586             ? param->getType().getNonReferenceType()
587             : param->getDefaultArg()->getType(),
588           param->getDefaultArg()->getValueKind(),
589           param->getDefaultArg()->getObjectKind(), false, false, false),
590      Param(param, false), Loc(Loc) { }
591
592  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
593                    Expr *SubExpr)
594    : Expr(SC, SubExpr->getType(),
595           SubExpr->getValueKind(), SubExpr->getObjectKind(),
596           false, false, false),
597      Param(param, true), Loc(Loc) {
598    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
599  }
600
601public:
602  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
603
604
605  // Param is the parameter whose default argument is used by this
606  // expression.
607  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
608                                   ParmVarDecl *Param) {
609    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
610  }
611
612  // Param is the parameter whose default argument is used by this
613  // expression, and SubExpr is the expression that will actually be used.
614  static CXXDefaultArgExpr *Create(ASTContext &C,
615                                   SourceLocation Loc,
616                                   ParmVarDecl *Param,
617                                   Expr *SubExpr);
618
619  // Retrieve the parameter that the argument was created from.
620  const ParmVarDecl *getParam() const { return Param.getPointer(); }
621  ParmVarDecl *getParam() { return Param.getPointer(); }
622
623  // Retrieve the actual argument to the function call.
624  const Expr *getExpr() const {
625    if (Param.getInt())
626      return *reinterpret_cast<Expr const * const*> (this + 1);
627    return getParam()->getDefaultArg();
628  }
629  Expr *getExpr() {
630    if (Param.getInt())
631      return *reinterpret_cast<Expr **> (this + 1);
632    return getParam()->getDefaultArg();
633  }
634
635  /// \brief Retrieve the location where this default argument was actually
636  /// used.
637  SourceLocation getUsedLocation() const { return Loc; }
638
639  virtual SourceRange getSourceRange() const {
640    // Default argument expressions have no representation in the
641    // source, so they have an empty source range.
642    return SourceRange();
643  }
644
645  static bool classof(const Stmt *T) {
646    return T->getStmtClass() == CXXDefaultArgExprClass;
647  }
648  static bool classof(const CXXDefaultArgExpr *) { return true; }
649
650  // Iterators
651  virtual child_iterator child_begin();
652  virtual child_iterator child_end();
653
654  friend class ASTStmtReader;
655  friend class ASTStmtWriter;
656};
657
658/// CXXTemporary - Represents a C++ temporary.
659class CXXTemporary {
660  /// Destructor - The destructor that needs to be called.
661  const CXXDestructorDecl *Destructor;
662
663  CXXTemporary(const CXXDestructorDecl *destructor)
664    : Destructor(destructor) { }
665
666public:
667  static CXXTemporary *Create(ASTContext &C,
668                              const CXXDestructorDecl *Destructor);
669
670  const CXXDestructorDecl *getDestructor() const { return Destructor; }
671};
672
673/// \brief Represents binding an expression to a temporary.
674///
675/// This ensures the destructor is called for the temporary. It should only be
676/// needed for non-POD, non-trivially destructable class types. For example:
677///
678/// \code
679///   struct S {
680///     S() { }  // User defined constructor makes S non-POD.
681///     ~S() { } // User defined destructor makes it non-trivial.
682///   };
683///   void test() {
684///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
685///   }
686/// \endcode
687class CXXBindTemporaryExpr : public Expr {
688  CXXTemporary *Temp;
689
690  Stmt *SubExpr;
691
692  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
693   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
694          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
695          SubExpr->isValueDependent(),
696          SubExpr->containsUnexpandedParameterPack()),
697     Temp(temp), SubExpr(SubExpr) { }
698
699public:
700  CXXBindTemporaryExpr(EmptyShell Empty)
701    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
702
703  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
704                                      Expr* SubExpr);
705
706  CXXTemporary *getTemporary() { return Temp; }
707  const CXXTemporary *getTemporary() const { return Temp; }
708  void setTemporary(CXXTemporary *T) { Temp = T; }
709
710  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
711  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
712  void setSubExpr(Expr *E) { SubExpr = E; }
713
714  virtual SourceRange getSourceRange() const {
715    return SubExpr->getSourceRange();
716  }
717
718  // Implement isa/cast/dyncast/etc.
719  static bool classof(const Stmt *T) {
720    return T->getStmtClass() == CXXBindTemporaryExprClass;
721  }
722  static bool classof(const CXXBindTemporaryExpr *) { return true; }
723
724  // Iterators
725  virtual child_iterator child_begin();
726  virtual child_iterator child_end();
727};
728
729/// CXXConstructExpr - Represents a call to a C++ constructor.
730class CXXConstructExpr : public Expr {
731public:
732  enum ConstructionKind {
733    CK_Complete,
734    CK_NonVirtualBase,
735    CK_VirtualBase
736  };
737
738private:
739  CXXConstructorDecl *Constructor;
740
741  SourceLocation Loc;
742  SourceRange ParenRange;
743  bool Elidable : 1;
744  bool ZeroInitialization : 1;
745  unsigned ConstructKind : 2;
746  Stmt **Args;
747  unsigned NumArgs;
748
749protected:
750  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
751                   SourceLocation Loc,
752                   CXXConstructorDecl *d, bool elidable,
753                   Expr **args, unsigned numargs,
754                   bool ZeroInitialization = false,
755                   ConstructionKind ConstructKind = CK_Complete,
756                   SourceRange ParenRange = SourceRange());
757
758  /// \brief Construct an empty C++ construction expression.
759  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
760    : Expr(SC, Empty), Constructor(0), Elidable(0), ZeroInitialization(0),
761      ConstructKind(0), Args(0), NumArgs(0) { }
762
763public:
764  /// \brief Construct an empty C++ construction expression.
765  explicit CXXConstructExpr(EmptyShell Empty)
766    : Expr(CXXConstructExprClass, Empty), Constructor(0),
767      Elidable(0), ZeroInitialization(0),
768      ConstructKind(0), Args(0), NumArgs(0) { }
769
770  static CXXConstructExpr *Create(ASTContext &C, QualType T,
771                                  SourceLocation Loc,
772                                  CXXConstructorDecl *D, bool Elidable,
773                                  Expr **Args, unsigned NumArgs,
774                                  bool ZeroInitialization = false,
775                                  ConstructionKind ConstructKind = CK_Complete,
776                                  SourceRange ParenRange = SourceRange());
777
778
779  CXXConstructorDecl* getConstructor() const { return Constructor; }
780  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
781
782  SourceLocation getLocation() const { return Loc; }
783  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
784
785  /// \brief Whether this construction is elidable.
786  bool isElidable() const { return Elidable; }
787  void setElidable(bool E) { Elidable = E; }
788
789  /// \brief Whether this construction first requires
790  /// zero-initialization before the initializer is called.
791  bool requiresZeroInitialization() const { return ZeroInitialization; }
792  void setRequiresZeroInitialization(bool ZeroInit) {
793    ZeroInitialization = ZeroInit;
794  }
795
796  /// \brief Determines whether this constructor is actually constructing
797  /// a base class (rather than a complete object).
798  ConstructionKind getConstructionKind() const {
799    return (ConstructionKind)ConstructKind;
800  }
801  void setConstructionKind(ConstructionKind CK) {
802    ConstructKind = CK;
803  }
804
805  typedef ExprIterator arg_iterator;
806  typedef ConstExprIterator const_arg_iterator;
807
808  arg_iterator arg_begin() { return Args; }
809  arg_iterator arg_end() { return Args + NumArgs; }
810  const_arg_iterator arg_begin() const { return Args; }
811  const_arg_iterator arg_end() const { return Args + NumArgs; }
812
813  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
814  unsigned getNumArgs() const { return NumArgs; }
815
816  /// getArg - Return the specified argument.
817  Expr *getArg(unsigned Arg) {
818    assert(Arg < NumArgs && "Arg access out of range!");
819    return cast<Expr>(Args[Arg]);
820  }
821  const Expr *getArg(unsigned Arg) const {
822    assert(Arg < NumArgs && "Arg access out of range!");
823    return cast<Expr>(Args[Arg]);
824  }
825
826  /// setArg - Set the specified argument.
827  void setArg(unsigned Arg, Expr *ArgExpr) {
828    assert(Arg < NumArgs && "Arg access out of range!");
829    Args[Arg] = ArgExpr;
830  }
831
832  virtual SourceRange getSourceRange() const;
833  SourceRange getParenRange() const { return ParenRange; }
834
835  static bool classof(const Stmt *T) {
836    return T->getStmtClass() == CXXConstructExprClass ||
837      T->getStmtClass() == CXXTemporaryObjectExprClass;
838  }
839  static bool classof(const CXXConstructExpr *) { return true; }
840
841  // Iterators
842  virtual child_iterator child_begin();
843  virtual child_iterator child_end();
844
845  friend class ASTStmtReader;
846};
847
848/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
849/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
850/// x = int(0.5);
851class CXXFunctionalCastExpr : public ExplicitCastExpr {
852  SourceLocation TyBeginLoc;
853  SourceLocation RParenLoc;
854
855  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
856                        TypeSourceInfo *writtenTy,
857                        SourceLocation tyBeginLoc, CastKind kind,
858                        Expr *castExpr, unsigned pathSize,
859                        SourceLocation rParenLoc)
860    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
861                       castExpr, pathSize, writtenTy),
862      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
863
864  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
865    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
866
867public:
868  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
869                                       ExprValueKind VK,
870                                       TypeSourceInfo *Written,
871                                       SourceLocation TyBeginLoc,
872                                       CastKind Kind, Expr *Op,
873                                       const CXXCastPath *Path,
874                                       SourceLocation RPLoc);
875  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
876                                            unsigned PathSize);
877
878  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
879  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
880  SourceLocation getRParenLoc() const { return RParenLoc; }
881  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
882
883  virtual SourceRange getSourceRange() const {
884    return SourceRange(TyBeginLoc, RParenLoc);
885  }
886  static bool classof(const Stmt *T) {
887    return T->getStmtClass() == CXXFunctionalCastExprClass;
888  }
889  static bool classof(const CXXFunctionalCastExpr *) { return true; }
890};
891
892/// @brief Represents a C++ functional cast expression that builds a
893/// temporary object.
894///
895/// This expression type represents a C++ "functional" cast
896/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
897/// constructor to build a temporary object. With N == 1 arguments the
898/// functional cast expression will be represented by CXXFunctionalCastExpr.
899/// Example:
900/// @code
901/// struct X { X(int, float); }
902///
903/// X create_X() {
904///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
905/// };
906/// @endcode
907class CXXTemporaryObjectExpr : public CXXConstructExpr {
908  TypeSourceInfo *Type;
909
910public:
911  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
912                         TypeSourceInfo *Type,
913                         Expr **Args,unsigned NumArgs,
914                         SourceRange parenRange,
915                         bool ZeroInitialization = false);
916  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
917    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
918
919  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
920
921  virtual SourceRange getSourceRange() const;
922
923  static bool classof(const Stmt *T) {
924    return T->getStmtClass() == CXXTemporaryObjectExprClass;
925  }
926  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
927
928  friend class ASTStmtReader;
929};
930
931/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
932/// Expression "T()" which creates a value-initialized rvalue of type
933/// T, which is a non-class type.
934///
935class CXXScalarValueInitExpr : public Expr {
936  SourceLocation RParenLoc;
937  TypeSourceInfo *TypeInfo;
938
939  friend class ASTStmtReader;
940
941public:
942  /// \brief Create an explicitly-written scalar-value initialization
943  /// expression.
944  CXXScalarValueInitExpr(QualType Type,
945                         TypeSourceInfo *TypeInfo,
946                         SourceLocation rParenLoc ) :
947    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
948         false, false, false),
949    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
950
951  explicit CXXScalarValueInitExpr(EmptyShell Shell)
952    : Expr(CXXScalarValueInitExprClass, Shell) { }
953
954  TypeSourceInfo *getTypeSourceInfo() const {
955    return TypeInfo;
956  }
957
958  SourceLocation getRParenLoc() const { return RParenLoc; }
959
960  virtual SourceRange getSourceRange() const;
961
962  static bool classof(const Stmt *T) {
963    return T->getStmtClass() == CXXScalarValueInitExprClass;
964  }
965  static bool classof(const CXXScalarValueInitExpr *) { return true; }
966
967  // Iterators
968  virtual child_iterator child_begin();
969  virtual child_iterator child_end();
970};
971
972/// CXXNewExpr - A new expression for memory allocation and constructor calls,
973/// e.g: "new CXXNewExpr(foo)".
974class CXXNewExpr : public Expr {
975  // Was the usage ::new, i.e. is the global new to be used?
976  bool GlobalNew : 1;
977  // Is there an initializer? If not, built-ins are uninitialized, else they're
978  // value-initialized.
979  bool Initializer : 1;
980  // Do we allocate an array? If so, the first SubExpr is the size expression.
981  bool Array : 1;
982  // The number of placement new arguments.
983  unsigned NumPlacementArgs : 15;
984  // The number of constructor arguments. This may be 1 even for non-class
985  // types; use the pseudo copy constructor.
986  unsigned NumConstructorArgs : 14;
987  // Contains an optional array size expression, any number of optional
988  // placement arguments, and any number of optional constructor arguments,
989  // in that order.
990  Stmt **SubExprs;
991  // Points to the allocation function used.
992  FunctionDecl *OperatorNew;
993  // Points to the deallocation function used in case of error. May be null.
994  FunctionDecl *OperatorDelete;
995  // Points to the constructor used. Cannot be null if AllocType is a record;
996  // it would still point at the default constructor (even an implicit one).
997  // Must be null for all other types.
998  CXXConstructorDecl *Constructor;
999
1000  /// \brief The allocated type-source information, as written in the source.
1001  TypeSourceInfo *AllocatedTypeInfo;
1002
1003  /// \brief If the allocated type was expressed as a parenthesized type-id,
1004  /// the source range covering the parenthesized type-id.
1005  SourceRange TypeIdParens;
1006
1007  SourceLocation StartLoc;
1008  SourceLocation EndLoc;
1009  SourceLocation ConstructorLParen;
1010  SourceLocation ConstructorRParen;
1011
1012  friend class ASTStmtReader;
1013public:
1014  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1015             Expr **placementArgs, unsigned numPlaceArgs,
1016             SourceRange TypeIdParens,
1017             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1018             Expr **constructorArgs, unsigned numConsArgs,
1019             FunctionDecl *operatorDelete, QualType ty,
1020             TypeSourceInfo *AllocatedTypeInfo,
1021             SourceLocation startLoc, SourceLocation endLoc,
1022             SourceLocation constructorLParen,
1023             SourceLocation constructorRParen);
1024  explicit CXXNewExpr(EmptyShell Shell)
1025    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1026
1027  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1028                         unsigned numConsArgs);
1029
1030  QualType getAllocatedType() const {
1031    assert(getType()->isPointerType());
1032    return getType()->getAs<PointerType>()->getPointeeType();
1033  }
1034
1035  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1036    return AllocatedTypeInfo;
1037  }
1038
1039  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1040  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1041  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1042  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1043  CXXConstructorDecl *getConstructor() const { return Constructor; }
1044  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1045
1046  bool isArray() const { return Array; }
1047  Expr *getArraySize() {
1048    return Array ? cast<Expr>(SubExprs[0]) : 0;
1049  }
1050  const Expr *getArraySize() const {
1051    return Array ? cast<Expr>(SubExprs[0]) : 0;
1052  }
1053
1054  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1055  Expr *getPlacementArg(unsigned i) {
1056    assert(i < NumPlacementArgs && "Index out of range");
1057    return cast<Expr>(SubExprs[Array + i]);
1058  }
1059  const Expr *getPlacementArg(unsigned i) const {
1060    assert(i < NumPlacementArgs && "Index out of range");
1061    return cast<Expr>(SubExprs[Array + i]);
1062  }
1063
1064  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1065  SourceRange getTypeIdParens() const { return TypeIdParens; }
1066
1067  bool isGlobalNew() const { return GlobalNew; }
1068  void setGlobalNew(bool V) { GlobalNew = V; }
1069  bool hasInitializer() const { return Initializer; }
1070  void setHasInitializer(bool V) { Initializer = V; }
1071
1072  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1073  Expr *getConstructorArg(unsigned i) {
1074    assert(i < NumConstructorArgs && "Index out of range");
1075    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1076  }
1077  const Expr *getConstructorArg(unsigned i) const {
1078    assert(i < NumConstructorArgs && "Index out of range");
1079    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1080  }
1081
1082  typedef ExprIterator arg_iterator;
1083  typedef ConstExprIterator const_arg_iterator;
1084
1085  arg_iterator placement_arg_begin() {
1086    return SubExprs + Array;
1087  }
1088  arg_iterator placement_arg_end() {
1089    return SubExprs + Array + getNumPlacementArgs();
1090  }
1091  const_arg_iterator placement_arg_begin() const {
1092    return SubExprs + Array;
1093  }
1094  const_arg_iterator placement_arg_end() const {
1095    return SubExprs + Array + getNumPlacementArgs();
1096  }
1097
1098  arg_iterator constructor_arg_begin() {
1099    return SubExprs + Array + getNumPlacementArgs();
1100  }
1101  arg_iterator constructor_arg_end() {
1102    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1103  }
1104  const_arg_iterator constructor_arg_begin() const {
1105    return SubExprs + Array + getNumPlacementArgs();
1106  }
1107  const_arg_iterator constructor_arg_end() const {
1108    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1109  }
1110
1111  typedef Stmt **raw_arg_iterator;
1112  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1113  raw_arg_iterator raw_arg_end() {
1114    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1115  }
1116  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1117  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1118
1119  SourceLocation getStartLoc() const { return StartLoc; }
1120  SourceLocation getEndLoc() const { return EndLoc; }
1121
1122  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1123  SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1124
1125  virtual SourceRange getSourceRange() const {
1126    return SourceRange(StartLoc, EndLoc);
1127  }
1128
1129  static bool classof(const Stmt *T) {
1130    return T->getStmtClass() == CXXNewExprClass;
1131  }
1132  static bool classof(const CXXNewExpr *) { return true; }
1133
1134  // Iterators
1135  virtual child_iterator child_begin();
1136  virtual child_iterator child_end();
1137};
1138
1139/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1140/// calls, e.g. "delete[] pArray".
1141class CXXDeleteExpr : public Expr {
1142  // Is this a forced global delete, i.e. "::delete"?
1143  bool GlobalDelete : 1;
1144  // Is this the array form of delete, i.e. "delete[]"?
1145  bool ArrayForm : 1;
1146  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1147  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1148  // will be true).
1149  bool ArrayFormAsWritten : 1;
1150  // Points to the operator delete overload that is used. Could be a member.
1151  FunctionDecl *OperatorDelete;
1152  // The pointer expression to be deleted.
1153  Stmt *Argument;
1154  // Location of the expression.
1155  SourceLocation Loc;
1156public:
1157  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1158                bool arrayFormAsWritten, FunctionDecl *operatorDelete,
1159                Expr *arg, SourceLocation loc)
1160    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1161           arg->containsUnexpandedParameterPack()),
1162      GlobalDelete(globalDelete),
1163      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1164      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1165  explicit CXXDeleteExpr(EmptyShell Shell)
1166    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1167
1168  bool isGlobalDelete() const { return GlobalDelete; }
1169  bool isArrayForm() const { return ArrayForm; }
1170  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1171
1172  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1173
1174  Expr *getArgument() { return cast<Expr>(Argument); }
1175  const Expr *getArgument() const { return cast<Expr>(Argument); }
1176
1177  /// \brief Retrieve the type being destroyed.  If the type being
1178  /// destroyed is a dependent type which may or may not be a pointer,
1179  /// return an invalid type.
1180  QualType getDestroyedType() const;
1181
1182  virtual SourceRange getSourceRange() const {
1183    return SourceRange(Loc, Argument->getLocEnd());
1184  }
1185
1186  static bool classof(const Stmt *T) {
1187    return T->getStmtClass() == CXXDeleteExprClass;
1188  }
1189  static bool classof(const CXXDeleteExpr *) { return true; }
1190
1191  // Iterators
1192  virtual child_iterator child_begin();
1193  virtual child_iterator child_end();
1194
1195  friend class ASTStmtReader;
1196};
1197
1198/// \brief Structure used to store the type being destroyed by a
1199/// pseudo-destructor expression.
1200class PseudoDestructorTypeStorage {
1201  /// \brief Either the type source information or the name of the type, if
1202  /// it couldn't be resolved due to type-dependence.
1203  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1204
1205  /// \brief The starting source location of the pseudo-destructor type.
1206  SourceLocation Location;
1207
1208public:
1209  PseudoDestructorTypeStorage() { }
1210
1211  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1212    : Type(II), Location(Loc) { }
1213
1214  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1215
1216  TypeSourceInfo *getTypeSourceInfo() const {
1217    return Type.dyn_cast<TypeSourceInfo *>();
1218  }
1219
1220  IdentifierInfo *getIdentifier() const {
1221    return Type.dyn_cast<IdentifierInfo *>();
1222  }
1223
1224  SourceLocation getLocation() const { return Location; }
1225};
1226
1227/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1228///
1229/// A pseudo-destructor is an expression that looks like a member access to a
1230/// destructor of a scalar type, except that scalar types don't have
1231/// destructors. For example:
1232///
1233/// \code
1234/// typedef int T;
1235/// void f(int *p) {
1236///   p->T::~T();
1237/// }
1238/// \endcode
1239///
1240/// Pseudo-destructors typically occur when instantiating templates such as:
1241///
1242/// \code
1243/// template<typename T>
1244/// void destroy(T* ptr) {
1245///   ptr->T::~T();
1246/// }
1247/// \endcode
1248///
1249/// for scalar types. A pseudo-destructor expression has no run-time semantics
1250/// beyond evaluating the base expression.
1251class CXXPseudoDestructorExpr : public Expr {
1252  /// \brief The base expression (that is being destroyed).
1253  Stmt *Base;
1254
1255  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1256  /// period ('.').
1257  bool IsArrow : 1;
1258
1259  /// \brief The location of the '.' or '->' operator.
1260  SourceLocation OperatorLoc;
1261
1262  /// \brief The nested-name-specifier that follows the operator, if present.
1263  NestedNameSpecifier *Qualifier;
1264
1265  /// \brief The source range that covers the nested-name-specifier, if
1266  /// present.
1267  SourceRange QualifierRange;
1268
1269  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1270  /// expression.
1271  TypeSourceInfo *ScopeType;
1272
1273  /// \brief The location of the '::' in a qualified pseudo-destructor
1274  /// expression.
1275  SourceLocation ColonColonLoc;
1276
1277  /// \brief The location of the '~'.
1278  SourceLocation TildeLoc;
1279
1280  /// \brief The type being destroyed, or its name if we were unable to
1281  /// resolve the name.
1282  PseudoDestructorTypeStorage DestroyedType;
1283
1284public:
1285  CXXPseudoDestructorExpr(ASTContext &Context,
1286                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1287                          NestedNameSpecifier *Qualifier,
1288                          SourceRange QualifierRange,
1289                          TypeSourceInfo *ScopeType,
1290                          SourceLocation ColonColonLoc,
1291                          SourceLocation TildeLoc,
1292                          PseudoDestructorTypeStorage DestroyedType);
1293
1294  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1295    : Expr(CXXPseudoDestructorExprClass, Shell),
1296      Base(0), IsArrow(false), Qualifier(0), ScopeType(0) { }
1297
1298  void setBase(Expr *E) { Base = E; }
1299  Expr *getBase() const { return cast<Expr>(Base); }
1300
1301  /// \brief Determines whether this member expression actually had
1302  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1303  /// x->Base::foo.
1304  bool hasQualifier() const { return Qualifier != 0; }
1305
1306  /// \brief If the member name was qualified, retrieves the source range of
1307  /// the nested-name-specifier that precedes the member name. Otherwise,
1308  /// returns an empty source range.
1309  SourceRange getQualifierRange() const { return QualifierRange; }
1310  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1311
1312  /// \brief If the member name was qualified, retrieves the
1313  /// nested-name-specifier that precedes the member name. Otherwise, returns
1314  /// NULL.
1315  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1316  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1317
1318  /// \brief Determine whether this pseudo-destructor expression was written
1319  /// using an '->' (otherwise, it used a '.').
1320  bool isArrow() const { return IsArrow; }
1321  void setArrow(bool A) { IsArrow = A; }
1322
1323  /// \brief Retrieve the location of the '.' or '->' operator.
1324  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1325  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1326
1327  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1328  /// expression.
1329  ///
1330  /// Pseudo-destructor expressions can have extra qualification within them
1331  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1332  /// Here, if the object type of the expression is (or may be) a scalar type,
1333  /// \p T may also be a scalar type and, therefore, cannot be part of a
1334  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1335  /// destructor expression.
1336  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1337  void setScopeTypeInfo(TypeSourceInfo *Info) { ScopeType = Info; }
1338
1339  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1340  /// expression.
1341  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1342  void setColonColonLoc(SourceLocation L) { ColonColonLoc = L; }
1343
1344  /// \brief Retrieve the location of the '~'.
1345  SourceLocation getTildeLoc() const { return TildeLoc; }
1346  void setTildeLoc(SourceLocation L) { TildeLoc = L; }
1347
1348  /// \brief Retrieve the source location information for the type
1349  /// being destroyed.
1350  ///
1351  /// This type-source information is available for non-dependent
1352  /// pseudo-destructor expressions and some dependent pseudo-destructor
1353  /// expressions. Returns NULL if we only have the identifier for a
1354  /// dependent pseudo-destructor expression.
1355  TypeSourceInfo *getDestroyedTypeInfo() const {
1356    return DestroyedType.getTypeSourceInfo();
1357  }
1358
1359  /// \brief In a dependent pseudo-destructor expression for which we do not
1360  /// have full type information on the destroyed type, provides the name
1361  /// of the destroyed type.
1362  IdentifierInfo *getDestroyedTypeIdentifier() const {
1363    return DestroyedType.getIdentifier();
1364  }
1365
1366  /// \brief Retrieve the type being destroyed.
1367  QualType getDestroyedType() const;
1368
1369  /// \brief Retrieve the starting location of the type being destroyed.
1370  SourceLocation getDestroyedTypeLoc() const {
1371    return DestroyedType.getLocation();
1372  }
1373
1374  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1375  /// expression.
1376  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1377    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1378  }
1379
1380  /// \brief Set the destroyed type.
1381  void setDestroyedType(TypeSourceInfo *Info) {
1382    DestroyedType = PseudoDestructorTypeStorage(Info);
1383  }
1384
1385  virtual SourceRange getSourceRange() const;
1386
1387  static bool classof(const Stmt *T) {
1388    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1389  }
1390  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1391
1392  // Iterators
1393  virtual child_iterator child_begin();
1394  virtual child_iterator child_end();
1395};
1396
1397/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1398/// implementation of TR1/C++0x type trait templates.
1399/// Example:
1400/// __is_pod(int) == true
1401/// __is_enum(std::string) == false
1402class UnaryTypeTraitExpr : public Expr {
1403  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1404  unsigned UTT : 31;
1405  /// The value of the type trait. Unspecified if dependent.
1406  bool Value : 1;
1407
1408  /// Loc - The location of the type trait keyword.
1409  SourceLocation Loc;
1410
1411  /// RParen - The location of the closing paren.
1412  SourceLocation RParen;
1413
1414  /// The type being queried.
1415  TypeSourceInfo *QueriedType;
1416
1417public:
1418  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1419                     TypeSourceInfo *queried, bool value,
1420                     SourceLocation rparen, QualType ty)
1421    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1422           false,  queried->getType()->isDependentType(),
1423           queried->getType()->containsUnexpandedParameterPack()),
1424      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1425
1426  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1427    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1428      QueriedType() { }
1429
1430  virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1431
1432  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1433
1434  QualType getQueriedType() const { return QueriedType->getType(); }
1435
1436  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1437
1438  bool getValue() const { return Value; }
1439
1440  static bool classof(const Stmt *T) {
1441    return T->getStmtClass() == UnaryTypeTraitExprClass;
1442  }
1443  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1444
1445  // Iterators
1446  virtual child_iterator child_begin();
1447  virtual child_iterator child_end();
1448
1449  friend class ASTStmtReader;
1450};
1451
1452/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1453/// implementation of TR1/C++0x type trait templates.
1454/// Example:
1455/// __is_base_of(Base, Derived) == true
1456class BinaryTypeTraitExpr : public Expr {
1457  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1458  unsigned BTT : 8;
1459
1460  /// The value of the type trait. Unspecified if dependent.
1461  bool Value : 1;
1462
1463  /// Loc - The location of the type trait keyword.
1464  SourceLocation Loc;
1465
1466  /// RParen - The location of the closing paren.
1467  SourceLocation RParen;
1468
1469  /// The lhs type being queried.
1470  TypeSourceInfo *LhsType;
1471
1472  /// The rhs type being queried.
1473  TypeSourceInfo *RhsType;
1474
1475public:
1476  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1477                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1478                     bool value, SourceLocation rparen, QualType ty)
1479    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1480           lhsType->getType()->isDependentType() ||
1481           rhsType->getType()->isDependentType(),
1482           (lhsType->getType()->containsUnexpandedParameterPack() ||
1483            rhsType->getType()->containsUnexpandedParameterPack())),
1484      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1485      LhsType(lhsType), RhsType(rhsType) { }
1486
1487
1488  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1489    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1490      LhsType(), RhsType() { }
1491
1492  virtual SourceRange getSourceRange() const {
1493    return SourceRange(Loc, RParen);
1494  }
1495
1496  BinaryTypeTrait getTrait() const {
1497    return static_cast<BinaryTypeTrait>(BTT);
1498  }
1499
1500  QualType getLhsType() const { return LhsType->getType(); }
1501  QualType getRhsType() const { return RhsType->getType(); }
1502
1503  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1504  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1505
1506  bool getValue() const { assert(!isTypeDependent()); return Value; }
1507
1508  static bool classof(const Stmt *T) {
1509    return T->getStmtClass() == BinaryTypeTraitExprClass;
1510  }
1511  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1512
1513  // Iterators
1514  virtual child_iterator child_begin();
1515  virtual child_iterator child_end();
1516
1517  friend class ASTStmtReader;
1518};
1519
1520/// \brief A reference to an overloaded function set, either an
1521/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1522class OverloadExpr : public Expr {
1523  /// The results.  These are undesugared, which is to say, they may
1524  /// include UsingShadowDecls.  Access is relative to the naming
1525  /// class.
1526  // FIXME: Allocate this data after the OverloadExpr subclass.
1527  DeclAccessPair *Results;
1528  unsigned NumResults;
1529
1530  /// The common name of these declarations.
1531  DeclarationNameInfo NameInfo;
1532
1533  /// The scope specifier, if any.
1534  NestedNameSpecifier *Qualifier;
1535
1536  /// The source range of the scope specifier.
1537  SourceRange QualifierRange;
1538
1539protected:
1540  /// True if the name was a template-id.
1541  bool HasExplicitTemplateArgs;
1542
1543  OverloadExpr(StmtClass K, ASTContext &C,
1544               NestedNameSpecifier *Qualifier, SourceRange QRange,
1545               const DeclarationNameInfo &NameInfo,
1546               const TemplateArgumentListInfo *TemplateArgs,
1547               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1548               bool KnownDependent = false,
1549               bool KnownContainsUnexpandedParameterPack = false);
1550
1551  OverloadExpr(StmtClass K, EmptyShell Empty)
1552    : Expr(K, Empty), Results(0), NumResults(0),
1553      Qualifier(0), HasExplicitTemplateArgs(false) { }
1554
1555  void initializeResults(ASTContext &C,
1556                         UnresolvedSetIterator Begin,
1557                         UnresolvedSetIterator End);
1558
1559public:
1560  struct FindResult {
1561    OverloadExpr *Expression;
1562    bool IsAddressOfOperand;
1563    bool HasFormOfMemberPointer;
1564  };
1565
1566  /// Finds the overloaded expression in the given expression of
1567  /// OverloadTy.
1568  ///
1569  /// \return the expression (which must be there) and true if it has
1570  /// the particular form of a member pointer expression
1571  static FindResult find(Expr *E) {
1572    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1573
1574    FindResult Result;
1575
1576    E = E->IgnoreParens();
1577    if (isa<UnaryOperator>(E)) {
1578      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
1579      E = cast<UnaryOperator>(E)->getSubExpr();
1580      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
1581
1582      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
1583      Result.IsAddressOfOperand = true;
1584      Result.Expression = Ovl;
1585    } else {
1586      Result.HasFormOfMemberPointer = false;
1587      Result.IsAddressOfOperand = false;
1588      Result.Expression = cast<OverloadExpr>(E);
1589    }
1590
1591    return Result;
1592  }
1593
1594  /// Gets the naming class of this lookup, if any.
1595  CXXRecordDecl *getNamingClass() const;
1596
1597  typedef UnresolvedSetImpl::iterator decls_iterator;
1598  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1599  decls_iterator decls_end() const {
1600    return UnresolvedSetIterator(Results + NumResults);
1601  }
1602
1603  /// Gets the number of declarations in the unresolved set.
1604  unsigned getNumDecls() const { return NumResults; }
1605
1606  /// Gets the full name info.
1607  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1608  void setNameInfo(const DeclarationNameInfo &N) { NameInfo = N; }
1609
1610  /// Gets the name looked up.
1611  DeclarationName getName() const { return NameInfo.getName(); }
1612  void setName(DeclarationName N) { NameInfo.setName(N); }
1613
1614  /// Gets the location of the name.
1615  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
1616  void setNameLoc(SourceLocation Loc) { NameInfo.setLoc(Loc); }
1617
1618  /// Fetches the nested-name qualifier, if one was given.
1619  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1620  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1621
1622  /// Fetches the range of the nested-name qualifier.
1623  SourceRange getQualifierRange() const { return QualifierRange; }
1624  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1625
1626  /// \brief Determines whether this expression had an explicit
1627  /// template argument list, e.g. f<int>.
1628  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1629
1630  ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
1631
1632  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1633    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1634  }
1635
1636  /// \brief Retrieves the optional explicit template arguments.
1637  /// This points to the same data as getExplicitTemplateArgs(), but
1638  /// returns null if there are no explicit template arguments.
1639  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1640    if (!hasExplicitTemplateArgs()) return 0;
1641    return &getExplicitTemplateArgs();
1642  }
1643
1644  static bool classof(const Stmt *T) {
1645    return T->getStmtClass() == UnresolvedLookupExprClass ||
1646           T->getStmtClass() == UnresolvedMemberExprClass;
1647  }
1648  static bool classof(const OverloadExpr *) { return true; }
1649
1650  friend class ASTStmtReader;
1651  friend class ASTStmtWriter;
1652};
1653
1654/// \brief A reference to a name which we were able to look up during
1655/// parsing but could not resolve to a specific declaration.  This
1656/// arises in several ways:
1657///   * we might be waiting for argument-dependent lookup
1658///   * the name might resolve to an overloaded function
1659/// and eventually:
1660///   * the lookup might have included a function template
1661/// These never include UnresolvedUsingValueDecls, which are always
1662/// class members and therefore appear only in
1663/// UnresolvedMemberLookupExprs.
1664class UnresolvedLookupExpr : public OverloadExpr {
1665  /// True if these lookup results should be extended by
1666  /// argument-dependent lookup if this is the operand of a function
1667  /// call.
1668  bool RequiresADL;
1669
1670  /// True if these lookup results are overloaded.  This is pretty
1671  /// trivially rederivable if we urgently need to kill this field.
1672  bool Overloaded;
1673
1674  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1675  /// any.  This can generally be recalculated from the context chain,
1676  /// but that can be fairly expensive for unqualified lookups.  If we
1677  /// want to improve memory use here, this could go in a union
1678  /// against the qualified-lookup bits.
1679  CXXRecordDecl *NamingClass;
1680
1681  UnresolvedLookupExpr(ASTContext &C,
1682                       CXXRecordDecl *NamingClass,
1683                       NestedNameSpecifier *Qualifier, SourceRange QRange,
1684                       const DeclarationNameInfo &NameInfo,
1685                       bool RequiresADL, bool Overloaded,
1686                       const TemplateArgumentListInfo *TemplateArgs,
1687                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
1688    : OverloadExpr(UnresolvedLookupExprClass, C, Qualifier,  QRange, NameInfo,
1689                   TemplateArgs, Begin, End),
1690      RequiresADL(RequiresADL), Overloaded(Overloaded), NamingClass(NamingClass)
1691  {}
1692
1693  UnresolvedLookupExpr(EmptyShell Empty)
1694    : OverloadExpr(UnresolvedLookupExprClass, Empty),
1695      RequiresADL(false), Overloaded(false), NamingClass(0)
1696  {}
1697
1698public:
1699  static UnresolvedLookupExpr *Create(ASTContext &C,
1700                                      CXXRecordDecl *NamingClass,
1701                                      NestedNameSpecifier *Qualifier,
1702                                      SourceRange QualifierRange,
1703                                      const DeclarationNameInfo &NameInfo,
1704                                      bool ADL, bool Overloaded,
1705                                      UnresolvedSetIterator Begin,
1706                                      UnresolvedSetIterator End) {
1707    return new(C) UnresolvedLookupExpr(C, NamingClass, Qualifier,
1708                                       QualifierRange, NameInfo, ADL,
1709                                       Overloaded, 0, Begin, End);
1710  }
1711
1712  static UnresolvedLookupExpr *Create(ASTContext &C,
1713                                      CXXRecordDecl *NamingClass,
1714                                      NestedNameSpecifier *Qualifier,
1715                                      SourceRange QualifierRange,
1716                                      const DeclarationNameInfo &NameInfo,
1717                                      bool ADL,
1718                                      const TemplateArgumentListInfo &Args,
1719                                      UnresolvedSetIterator Begin,
1720                                      UnresolvedSetIterator End);
1721
1722  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1723                                           unsigned NumTemplateArgs);
1724
1725  /// True if this declaration should be extended by
1726  /// argument-dependent lookup.
1727  bool requiresADL() const { return RequiresADL; }
1728  void setRequiresADL(bool V) { RequiresADL = V; }
1729
1730  /// True if this lookup is overloaded.
1731  bool isOverloaded() const { return Overloaded; }
1732  void setOverloaded(bool V) { Overloaded = V; }
1733
1734  /// Gets the 'naming class' (in the sense of C++0x
1735  /// [class.access.base]p5) of the lookup.  This is the scope
1736  /// that was looked in to find these results.
1737  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1738  void setNamingClass(CXXRecordDecl *D) { NamingClass = D; }
1739
1740  // Note that, inconsistently with the explicit-template-argument AST
1741  // nodes, users are *forbidden* from calling these methods on objects
1742  // without explicit template arguments.
1743
1744  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1745    assert(hasExplicitTemplateArgs());
1746    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1747  }
1748
1749  /// Gets a reference to the explicit template argument list.
1750  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1751    assert(hasExplicitTemplateArgs());
1752    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1753  }
1754
1755  /// \brief Retrieves the optional explicit template arguments.
1756  /// This points to the same data as getExplicitTemplateArgs(), but
1757  /// returns null if there are no explicit template arguments.
1758  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1759    if (!hasExplicitTemplateArgs()) return 0;
1760    return &getExplicitTemplateArgs();
1761  }
1762
1763  /// \brief Copies the template arguments (if present) into the given
1764  /// structure.
1765  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1766    getExplicitTemplateArgs().copyInto(List);
1767  }
1768
1769  SourceLocation getLAngleLoc() const {
1770    return getExplicitTemplateArgs().LAngleLoc;
1771  }
1772
1773  SourceLocation getRAngleLoc() const {
1774    return getExplicitTemplateArgs().RAngleLoc;
1775  }
1776
1777  TemplateArgumentLoc const *getTemplateArgs() const {
1778    return getExplicitTemplateArgs().getTemplateArgs();
1779  }
1780
1781  unsigned getNumTemplateArgs() const {
1782    return getExplicitTemplateArgs().NumTemplateArgs;
1783  }
1784
1785  virtual SourceRange getSourceRange() const {
1786    SourceRange Range(getNameInfo().getSourceRange());
1787    if (getQualifier()) Range.setBegin(getQualifierRange().getBegin());
1788    if (hasExplicitTemplateArgs()) Range.setEnd(getRAngleLoc());
1789    return Range;
1790  }
1791
1792  virtual StmtIterator child_begin();
1793  virtual StmtIterator child_end();
1794
1795  static bool classof(const Stmt *T) {
1796    return T->getStmtClass() == UnresolvedLookupExprClass;
1797  }
1798  static bool classof(const UnresolvedLookupExpr *) { return true; }
1799};
1800
1801/// \brief A qualified reference to a name whose declaration cannot
1802/// yet be resolved.
1803///
1804/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
1805/// it expresses a reference to a declaration such as
1806/// X<T>::value. The difference, however, is that an
1807/// DependentScopeDeclRefExpr node is used only within C++ templates when
1808/// the qualification (e.g., X<T>::) refers to a dependent type. In
1809/// this case, X<T>::value cannot resolve to a declaration because the
1810/// declaration will differ from on instantiation of X<T> to the
1811/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
1812/// qualifier (X<T>::) and the name of the entity being referenced
1813/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
1814/// declaration can be found.
1815class DependentScopeDeclRefExpr : public Expr {
1816  /// The name of the entity we will be referencing.
1817  DeclarationNameInfo NameInfo;
1818
1819  /// QualifierRange - The source range that covers the
1820  /// nested-name-specifier.
1821  SourceRange QualifierRange;
1822
1823  /// \brief The nested-name-specifier that qualifies this unresolved
1824  /// declaration name.
1825  NestedNameSpecifier *Qualifier;
1826
1827  /// \brief Whether the name includes explicit template arguments.
1828  bool HasExplicitTemplateArgs;
1829
1830  DependentScopeDeclRefExpr(QualType T,
1831                            NestedNameSpecifier *Qualifier,
1832                            SourceRange QualifierRange,
1833                            const DeclarationNameInfo &NameInfo,
1834                            const TemplateArgumentListInfo *Args);
1835
1836public:
1837  static DependentScopeDeclRefExpr *Create(ASTContext &C,
1838                                           NestedNameSpecifier *Qualifier,
1839                                           SourceRange QualifierRange,
1840                                           const DeclarationNameInfo &NameInfo,
1841                              const TemplateArgumentListInfo *TemplateArgs = 0);
1842
1843  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
1844                                                unsigned NumTemplateArgs);
1845
1846  /// \brief Retrieve the name that this expression refers to.
1847  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1848  void setNameInfo(const DeclarationNameInfo &N) { NameInfo =  N; }
1849
1850  /// \brief Retrieve the name that this expression refers to.
1851  DeclarationName getDeclName() const { return NameInfo.getName(); }
1852  void setDeclName(DeclarationName N) { NameInfo.setName(N); }
1853
1854  /// \brief Retrieve the location of the name within the expression.
1855  SourceLocation getLocation() const { return NameInfo.getLoc(); }
1856  void setLocation(SourceLocation L) { NameInfo.setLoc(L); }
1857
1858  /// \brief Retrieve the source range of the nested-name-specifier.
1859  SourceRange getQualifierRange() const { return QualifierRange; }
1860  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1861
1862  /// \brief Retrieve the nested-name-specifier that qualifies this
1863  /// declaration.
1864  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1865  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1866
1867  /// Determines whether this lookup had explicit template arguments.
1868  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1869
1870  // Note that, inconsistently with the explicit-template-argument AST
1871  // nodes, users are *forbidden* from calling these methods on objects
1872  // without explicit template arguments.
1873
1874  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1875    assert(hasExplicitTemplateArgs());
1876    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1877  }
1878
1879  /// Gets a reference to the explicit template argument list.
1880  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1881    assert(hasExplicitTemplateArgs());
1882    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1883  }
1884
1885  /// \brief Retrieves the optional explicit template arguments.
1886  /// This points to the same data as getExplicitTemplateArgs(), but
1887  /// returns null if there are no explicit template arguments.
1888  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1889    if (!hasExplicitTemplateArgs()) return 0;
1890    return &getExplicitTemplateArgs();
1891  }
1892
1893  /// \brief Copies the template arguments (if present) into the given
1894  /// structure.
1895  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1896    getExplicitTemplateArgs().copyInto(List);
1897  }
1898
1899  SourceLocation getLAngleLoc() const {
1900    return getExplicitTemplateArgs().LAngleLoc;
1901  }
1902
1903  SourceLocation getRAngleLoc() const {
1904    return getExplicitTemplateArgs().RAngleLoc;
1905  }
1906
1907  TemplateArgumentLoc const *getTemplateArgs() const {
1908    return getExplicitTemplateArgs().getTemplateArgs();
1909  }
1910
1911  unsigned getNumTemplateArgs() const {
1912    return getExplicitTemplateArgs().NumTemplateArgs;
1913  }
1914
1915  virtual SourceRange getSourceRange() const {
1916    SourceRange Range(QualifierRange.getBegin(), getLocation());
1917    if (hasExplicitTemplateArgs())
1918      Range.setEnd(getRAngleLoc());
1919    return Range;
1920  }
1921
1922  static bool classof(const Stmt *T) {
1923    return T->getStmtClass() == DependentScopeDeclRefExprClass;
1924  }
1925  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
1926
1927  virtual StmtIterator child_begin();
1928  virtual StmtIterator child_end();
1929
1930  friend class ASTStmtReader;
1931  friend class ASTStmtWriter;
1932};
1933
1934/// Represents an expression --- generally a full-expression --- which
1935/// introduces cleanups to be run at the end of the sub-expression's
1936/// evaluation.  The most common source of expression-introduced
1937/// cleanups is temporary objects in C++, but several other C++
1938/// expressions can create cleanups.
1939class ExprWithCleanups : public Expr {
1940  Stmt *SubExpr;
1941
1942  CXXTemporary **Temps;
1943  unsigned NumTemps;
1944
1945  ExprWithCleanups(ASTContext &C, Expr *SubExpr,
1946                   CXXTemporary **Temps, unsigned NumTemps);
1947
1948public:
1949  ExprWithCleanups(EmptyShell Empty)
1950    : Expr(ExprWithCleanupsClass, Empty),
1951      SubExpr(0), Temps(0), NumTemps(0) {}
1952
1953  static ExprWithCleanups *Create(ASTContext &C, Expr *SubExpr,
1954                                        CXXTemporary **Temps,
1955                                        unsigned NumTemps);
1956
1957  unsigned getNumTemporaries() const { return NumTemps; }
1958  void setNumTemporaries(ASTContext &C, unsigned N);
1959
1960  CXXTemporary *getTemporary(unsigned i) {
1961    assert(i < NumTemps && "Index out of range");
1962    return Temps[i];
1963  }
1964  const CXXTemporary *getTemporary(unsigned i) const {
1965    return const_cast<ExprWithCleanups*>(this)->getTemporary(i);
1966  }
1967  void setTemporary(unsigned i, CXXTemporary *T) {
1968    assert(i < NumTemps && "Index out of range");
1969    Temps[i] = T;
1970  }
1971
1972  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1973  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1974  void setSubExpr(Expr *E) { SubExpr = E; }
1975
1976  virtual SourceRange getSourceRange() const {
1977    return SubExpr->getSourceRange();
1978  }
1979
1980  // Implement isa/cast/dyncast/etc.
1981  static bool classof(const Stmt *T) {
1982    return T->getStmtClass() == ExprWithCleanupsClass;
1983  }
1984  static bool classof(const ExprWithCleanups *) { return true; }
1985
1986  // Iterators
1987  virtual child_iterator child_begin();
1988  virtual child_iterator child_end();
1989};
1990
1991/// \brief Describes an explicit type conversion that uses functional
1992/// notion but could not be resolved because one or more arguments are
1993/// type-dependent.
1994///
1995/// The explicit type conversions expressed by
1996/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
1997/// where \c T is some type and \c a1, a2, ..., aN are values, and
1998/// either \C T is a dependent type or one or more of the \c a's is
1999/// type-dependent. For example, this would occur in a template such
2000/// as:
2001///
2002/// \code
2003///   template<typename T, typename A1>
2004///   inline T make_a(const A1& a1) {
2005///     return T(a1);
2006///   }
2007/// \endcode
2008///
2009/// When the returned expression is instantiated, it may resolve to a
2010/// constructor call, conversion function call, or some kind of type
2011/// conversion.
2012class CXXUnresolvedConstructExpr : public Expr {
2013  /// \brief The type being constructed.
2014  TypeSourceInfo *Type;
2015
2016  /// \brief The location of the left parentheses ('(').
2017  SourceLocation LParenLoc;
2018
2019  /// \brief The location of the right parentheses (')').
2020  SourceLocation RParenLoc;
2021
2022  /// \brief The number of arguments used to construct the type.
2023  unsigned NumArgs;
2024
2025  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2026                             SourceLocation LParenLoc,
2027                             Expr **Args,
2028                             unsigned NumArgs,
2029                             SourceLocation RParenLoc);
2030
2031  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2032    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2033
2034  friend class ASTStmtReader;
2035
2036public:
2037  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2038                                            TypeSourceInfo *Type,
2039                                            SourceLocation LParenLoc,
2040                                            Expr **Args,
2041                                            unsigned NumArgs,
2042                                            SourceLocation RParenLoc);
2043
2044  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2045                                                 unsigned NumArgs);
2046
2047  /// \brief Retrieve the type that is being constructed, as specified
2048  /// in the source code.
2049  QualType getTypeAsWritten() const { return Type->getType(); }
2050
2051  /// \brief Retrieve the type source information for the type being
2052  /// constructed.
2053  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2054
2055  /// \brief Retrieve the location of the left parentheses ('(') that
2056  /// precedes the argument list.
2057  SourceLocation getLParenLoc() const { return LParenLoc; }
2058  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2059
2060  /// \brief Retrieve the location of the right parentheses (')') that
2061  /// follows the argument list.
2062  SourceLocation getRParenLoc() const { return RParenLoc; }
2063  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2064
2065  /// \brief Retrieve the number of arguments.
2066  unsigned arg_size() const { return NumArgs; }
2067
2068  typedef Expr** arg_iterator;
2069  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2070  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2071
2072  typedef const Expr* const * const_arg_iterator;
2073  const_arg_iterator arg_begin() const {
2074    return reinterpret_cast<const Expr* const *>(this + 1);
2075  }
2076  const_arg_iterator arg_end() const {
2077    return arg_begin() + NumArgs;
2078  }
2079
2080  Expr *getArg(unsigned I) {
2081    assert(I < NumArgs && "Argument index out-of-range");
2082    return *(arg_begin() + I);
2083  }
2084
2085  const Expr *getArg(unsigned I) const {
2086    assert(I < NumArgs && "Argument index out-of-range");
2087    return *(arg_begin() + I);
2088  }
2089
2090  void setArg(unsigned I, Expr *E) {
2091    assert(I < NumArgs && "Argument index out-of-range");
2092    *(arg_begin() + I) = E;
2093  }
2094
2095  virtual SourceRange getSourceRange() const;
2096
2097  static bool classof(const Stmt *T) {
2098    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2099  }
2100  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2101
2102  // Iterators
2103  virtual child_iterator child_begin();
2104  virtual child_iterator child_end();
2105};
2106
2107/// \brief Represents a C++ member access expression where the actual
2108/// member referenced could not be resolved because the base
2109/// expression or the member name was dependent.
2110///
2111/// Like UnresolvedMemberExprs, these can be either implicit or
2112/// explicit accesses.  It is only possible to get one of these with
2113/// an implicit access if a qualifier is provided.
2114class CXXDependentScopeMemberExpr : public Expr {
2115  /// \brief The expression for the base pointer or class reference,
2116  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2117  Stmt *Base;
2118
2119  /// \brief The type of the base expression.  Never null, even for
2120  /// implicit accesses.
2121  QualType BaseType;
2122
2123  /// \brief Whether this member expression used the '->' operator or
2124  /// the '.' operator.
2125  bool IsArrow : 1;
2126
2127  /// \brief Whether this member expression has explicitly-specified template
2128  /// arguments.
2129  bool HasExplicitTemplateArgs : 1;
2130
2131  /// \brief The location of the '->' or '.' operator.
2132  SourceLocation OperatorLoc;
2133
2134  /// \brief The nested-name-specifier that precedes the member name, if any.
2135  NestedNameSpecifier *Qualifier;
2136
2137  /// \brief The source range covering the nested name specifier.
2138  SourceRange QualifierRange;
2139
2140  /// \brief In a qualified member access expression such as t->Base::f, this
2141  /// member stores the resolves of name lookup in the context of the member
2142  /// access expression, to be used at instantiation time.
2143  ///
2144  /// FIXME: This member, along with the Qualifier and QualifierRange, could
2145  /// be stuck into a structure that is optionally allocated at the end of
2146  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2147  NamedDecl *FirstQualifierFoundInScope;
2148
2149  /// \brief The member to which this member expression refers, which
2150  /// can be name, overloaded operator, or destructor.
2151  /// FIXME: could also be a template-id
2152  DeclarationNameInfo MemberNameInfo;
2153
2154  CXXDependentScopeMemberExpr(ASTContext &C,
2155                          Expr *Base, QualType BaseType, bool IsArrow,
2156                          SourceLocation OperatorLoc,
2157                          NestedNameSpecifier *Qualifier,
2158                          SourceRange QualifierRange,
2159                          NamedDecl *FirstQualifierFoundInScope,
2160                          DeclarationNameInfo MemberNameInfo,
2161                          const TemplateArgumentListInfo *TemplateArgs);
2162
2163public:
2164  CXXDependentScopeMemberExpr(ASTContext &C,
2165                              Expr *Base, QualType BaseType,
2166                              bool IsArrow,
2167                              SourceLocation OperatorLoc,
2168                              NestedNameSpecifier *Qualifier,
2169                              SourceRange QualifierRange,
2170                              NamedDecl *FirstQualifierFoundInScope,
2171                              DeclarationNameInfo MemberNameInfo);
2172
2173  static CXXDependentScopeMemberExpr *
2174  Create(ASTContext &C,
2175         Expr *Base, QualType BaseType, bool IsArrow,
2176         SourceLocation OperatorLoc,
2177         NestedNameSpecifier *Qualifier,
2178         SourceRange QualifierRange,
2179         NamedDecl *FirstQualifierFoundInScope,
2180         DeclarationNameInfo MemberNameInfo,
2181         const TemplateArgumentListInfo *TemplateArgs);
2182
2183  static CXXDependentScopeMemberExpr *
2184  CreateEmpty(ASTContext &C, unsigned NumTemplateArgs);
2185
2186  /// \brief True if this is an implicit access, i.e. one in which the
2187  /// member being accessed was not written in the source.  The source
2188  /// location of the operator is invalid in this case.
2189  bool isImplicitAccess() const { return Base == 0; }
2190
2191  /// \brief Retrieve the base object of this member expressions,
2192  /// e.g., the \c x in \c x.m.
2193  Expr *getBase() const {
2194    assert(!isImplicitAccess());
2195    return cast<Expr>(Base);
2196  }
2197  void setBase(Expr *E) { Base = E; }
2198
2199  QualType getBaseType() const { return BaseType; }
2200  void setBaseType(QualType T) { BaseType = T; }
2201
2202  /// \brief Determine whether this member expression used the '->'
2203  /// operator; otherwise, it used the '.' operator.
2204  bool isArrow() const { return IsArrow; }
2205  void setArrow(bool A) { IsArrow = A; }
2206
2207  /// \brief Retrieve the location of the '->' or '.' operator.
2208  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2209  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2210
2211  /// \brief Retrieve the nested-name-specifier that qualifies the member
2212  /// name.
2213  NestedNameSpecifier *getQualifier() const { return Qualifier; }
2214  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
2215
2216  /// \brief Retrieve the source range covering the nested-name-specifier
2217  /// that qualifies the member name.
2218  SourceRange getQualifierRange() const { return QualifierRange; }
2219  void setQualifierRange(SourceRange R) { QualifierRange = R; }
2220
2221  /// \brief Retrieve the first part of the nested-name-specifier that was
2222  /// found in the scope of the member access expression when the member access
2223  /// was initially parsed.
2224  ///
2225  /// This function only returns a useful result when member access expression
2226  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2227  /// returned by this function describes what was found by unqualified name
2228  /// lookup for the identifier "Base" within the scope of the member access
2229  /// expression itself. At template instantiation time, this information is
2230  /// combined with the results of name lookup into the type of the object
2231  /// expression itself (the class type of x).
2232  NamedDecl *getFirstQualifierFoundInScope() const {
2233    return FirstQualifierFoundInScope;
2234  }
2235  void setFirstQualifierFoundInScope(NamedDecl *D) {
2236    FirstQualifierFoundInScope = D;
2237  }
2238
2239  /// \brief Retrieve the name of the member that this expression
2240  /// refers to.
2241  const DeclarationNameInfo &getMemberNameInfo() const {
2242    return MemberNameInfo;
2243  }
2244  void setMemberNameInfo(const DeclarationNameInfo &N) { MemberNameInfo = N; }
2245
2246  /// \brief Retrieve the name of the member that this expression
2247  /// refers to.
2248  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2249  void setMember(DeclarationName N) { MemberNameInfo.setName(N); }
2250
2251  // \brief Retrieve the location of the name of the member that this
2252  // expression refers to.
2253  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2254  void setMemberLoc(SourceLocation L) { MemberNameInfo.setLoc(L); }
2255
2256  /// \brief Determines whether this member expression actually had a C++
2257  /// template argument list explicitly specified, e.g., x.f<int>.
2258  bool hasExplicitTemplateArgs() const {
2259    return HasExplicitTemplateArgs;
2260  }
2261
2262  /// \brief Retrieve the explicit template argument list that followed the
2263  /// member template name, if any.
2264  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2265    assert(HasExplicitTemplateArgs);
2266    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2267  }
2268
2269  /// \brief Retrieve the explicit template argument list that followed the
2270  /// member template name, if any.
2271  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2272    return const_cast<CXXDependentScopeMemberExpr *>(this)
2273             ->getExplicitTemplateArgs();
2274  }
2275
2276  /// \brief Retrieves the optional explicit template arguments.
2277  /// This points to the same data as getExplicitTemplateArgs(), but
2278  /// returns null if there are no explicit template arguments.
2279  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2280    if (!hasExplicitTemplateArgs()) return 0;
2281    return &getExplicitTemplateArgs();
2282  }
2283
2284  /// \brief Copies the template arguments (if present) into the given
2285  /// structure.
2286  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2287    getExplicitTemplateArgs().copyInto(List);
2288  }
2289
2290  /// \brief Initializes the template arguments using the given structure.
2291  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2292    getExplicitTemplateArgs().initializeFrom(List);
2293  }
2294
2295  /// \brief Retrieve the location of the left angle bracket following the
2296  /// member name ('<'), if any.
2297  SourceLocation getLAngleLoc() const {
2298    return getExplicitTemplateArgs().LAngleLoc;
2299  }
2300
2301  /// \brief Retrieve the template arguments provided as part of this
2302  /// template-id.
2303  const TemplateArgumentLoc *getTemplateArgs() const {
2304    return getExplicitTemplateArgs().getTemplateArgs();
2305  }
2306
2307  /// \brief Retrieve the number of template arguments provided as part of this
2308  /// template-id.
2309  unsigned getNumTemplateArgs() const {
2310    return getExplicitTemplateArgs().NumTemplateArgs;
2311  }
2312
2313  /// \brief Retrieve the location of the right angle bracket following the
2314  /// template arguments ('>').
2315  SourceLocation getRAngleLoc() const {
2316    return getExplicitTemplateArgs().RAngleLoc;
2317  }
2318
2319  virtual SourceRange getSourceRange() const {
2320    SourceRange Range;
2321    if (!isImplicitAccess())
2322      Range.setBegin(Base->getSourceRange().getBegin());
2323    else if (getQualifier())
2324      Range.setBegin(getQualifierRange().getBegin());
2325    else
2326      Range.setBegin(MemberNameInfo.getBeginLoc());
2327
2328    if (hasExplicitTemplateArgs())
2329      Range.setEnd(getRAngleLoc());
2330    else
2331      Range.setEnd(MemberNameInfo.getEndLoc());
2332    return Range;
2333  }
2334
2335  static bool classof(const Stmt *T) {
2336    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2337  }
2338  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2339
2340  // Iterators
2341  virtual child_iterator child_begin();
2342  virtual child_iterator child_end();
2343
2344  friend class ASTStmtReader;
2345  friend class ASTStmtWriter;
2346};
2347
2348/// \brief Represents a C++ member access expression for which lookup
2349/// produced a set of overloaded functions.
2350///
2351/// The member access may be explicit or implicit:
2352///    struct A {
2353///      int a, b;
2354///      int explicitAccess() { return this->a + this->A::b; }
2355///      int implicitAccess() { return a + A::b; }
2356///    };
2357///
2358/// In the final AST, an explicit access always becomes a MemberExpr.
2359/// An implicit access may become either a MemberExpr or a
2360/// DeclRefExpr, depending on whether the member is static.
2361class UnresolvedMemberExpr : public OverloadExpr {
2362  /// \brief Whether this member expression used the '->' operator or
2363  /// the '.' operator.
2364  bool IsArrow : 1;
2365
2366  /// \brief Whether the lookup results contain an unresolved using
2367  /// declaration.
2368  bool HasUnresolvedUsing : 1;
2369
2370  /// \brief The expression for the base pointer or class reference,
2371  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2372  /// member expression
2373  Stmt *Base;
2374
2375  /// \brief The type of the base expression;  never null.
2376  QualType BaseType;
2377
2378  /// \brief The location of the '->' or '.' operator.
2379  SourceLocation OperatorLoc;
2380
2381  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2382                       Expr *Base, QualType BaseType, bool IsArrow,
2383                       SourceLocation OperatorLoc,
2384                       NestedNameSpecifier *Qualifier,
2385                       SourceRange QualifierRange,
2386                       const DeclarationNameInfo &MemberNameInfo,
2387                       const TemplateArgumentListInfo *TemplateArgs,
2388                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2389
2390  UnresolvedMemberExpr(EmptyShell Empty)
2391    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2392      HasUnresolvedUsing(false), Base(0) { }
2393
2394public:
2395  static UnresolvedMemberExpr *
2396  Create(ASTContext &C, bool HasUnresolvedUsing,
2397         Expr *Base, QualType BaseType, bool IsArrow,
2398         SourceLocation OperatorLoc,
2399         NestedNameSpecifier *Qualifier,
2400         SourceRange QualifierRange,
2401         const DeclarationNameInfo &MemberNameInfo,
2402         const TemplateArgumentListInfo *TemplateArgs,
2403         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2404
2405  static UnresolvedMemberExpr *
2406  CreateEmpty(ASTContext &C, unsigned NumTemplateArgs);
2407
2408  /// \brief True if this is an implicit access, i.e. one in which the
2409  /// member being accessed was not written in the source.  The source
2410  /// location of the operator is invalid in this case.
2411  bool isImplicitAccess() const { return Base == 0; }
2412
2413  /// \brief Retrieve the base object of this member expressions,
2414  /// e.g., the \c x in \c x.m.
2415  Expr *getBase() {
2416    assert(!isImplicitAccess());
2417    return cast<Expr>(Base);
2418  }
2419  const Expr *getBase() const {
2420    assert(!isImplicitAccess());
2421    return cast<Expr>(Base);
2422  }
2423  void setBase(Expr *E) { Base = E; }
2424
2425  QualType getBaseType() const { return BaseType; }
2426  void setBaseType(QualType T) { BaseType = T; }
2427
2428  /// \brief Determine whether the lookup results contain an unresolved using
2429  /// declaration.
2430  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2431  void setHasUnresolvedUsing(bool V) { HasUnresolvedUsing = V; }
2432
2433  /// \brief Determine whether this member expression used the '->'
2434  /// operator; otherwise, it used the '.' operator.
2435  bool isArrow() const { return IsArrow; }
2436  void setArrow(bool A) { IsArrow = A; }
2437
2438  /// \brief Retrieve the location of the '->' or '.' operator.
2439  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2440  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2441
2442  /// \brief Retrieves the naming class of this lookup.
2443  CXXRecordDecl *getNamingClass() const;
2444
2445  /// \brief Retrieve the full name info for the member that this expression
2446  /// refers to.
2447  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
2448  void setMemberNameInfo(const DeclarationNameInfo &N) { setNameInfo(N); }
2449
2450  /// \brief Retrieve the name of the member that this expression
2451  /// refers to.
2452  DeclarationName getMemberName() const { return getName(); }
2453  void setMemberName(DeclarationName N) { setName(N); }
2454
2455  // \brief Retrieve the location of the name of the member that this
2456  // expression refers to.
2457  SourceLocation getMemberLoc() const { return getNameLoc(); }
2458  void setMemberLoc(SourceLocation L) { setNameLoc(L); }
2459
2460  /// \brief Retrieve the explicit template argument list that followed the
2461  /// member template name.
2462  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2463    assert(hasExplicitTemplateArgs());
2464    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2465  }
2466
2467  /// \brief Retrieve the explicit template argument list that followed the
2468  /// member template name, if any.
2469  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2470    assert(hasExplicitTemplateArgs());
2471    return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
2472  }
2473
2474  /// \brief Retrieves the optional explicit template arguments.
2475  /// This points to the same data as getExplicitTemplateArgs(), but
2476  /// returns null if there are no explicit template arguments.
2477  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2478    if (!hasExplicitTemplateArgs()) return 0;
2479    return &getExplicitTemplateArgs();
2480  }
2481
2482  /// \brief Copies the template arguments into the given structure.
2483  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2484    getExplicitTemplateArgs().copyInto(List);
2485  }
2486
2487  /// \brief Retrieve the location of the left angle bracket following
2488  /// the member name ('<').
2489  SourceLocation getLAngleLoc() const {
2490    return getExplicitTemplateArgs().LAngleLoc;
2491  }
2492
2493  /// \brief Retrieve the template arguments provided as part of this
2494  /// template-id.
2495  const TemplateArgumentLoc *getTemplateArgs() const {
2496    return getExplicitTemplateArgs().getTemplateArgs();
2497  }
2498
2499  /// \brief Retrieve the number of template arguments provided as
2500  /// part of this template-id.
2501  unsigned getNumTemplateArgs() const {
2502    return getExplicitTemplateArgs().NumTemplateArgs;
2503  }
2504
2505  /// \brief Retrieve the location of the right angle bracket
2506  /// following the template arguments ('>').
2507  SourceLocation getRAngleLoc() const {
2508    return getExplicitTemplateArgs().RAngleLoc;
2509  }
2510
2511  virtual SourceRange getSourceRange() const {
2512    SourceRange Range = getMemberNameInfo().getSourceRange();
2513    if (!isImplicitAccess())
2514      Range.setBegin(Base->getSourceRange().getBegin());
2515    else if (getQualifier())
2516      Range.setBegin(getQualifierRange().getBegin());
2517
2518    if (hasExplicitTemplateArgs())
2519      Range.setEnd(getRAngleLoc());
2520    return Range;
2521  }
2522
2523  static bool classof(const Stmt *T) {
2524    return T->getStmtClass() == UnresolvedMemberExprClass;
2525  }
2526  static bool classof(const UnresolvedMemberExpr *) { return true; }
2527
2528  // Iterators
2529  virtual child_iterator child_begin();
2530  virtual child_iterator child_end();
2531};
2532
2533/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
2534///
2535/// The noexcept expression tests whether a given expression might throw. Its
2536/// result is a boolean constant.
2537class CXXNoexceptExpr : public Expr {
2538  bool Value : 1;
2539  Stmt *Operand;
2540  SourceRange Range;
2541
2542  friend class ASTStmtReader;
2543
2544public:
2545  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
2546                  SourceLocation Keyword, SourceLocation RParen)
2547    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
2548           /*TypeDependent*/false,
2549           /*ValueDependent*/Val == CT_Dependent,
2550           Operand->containsUnexpandedParameterPack()),
2551      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
2552  { }
2553
2554  CXXNoexceptExpr(EmptyShell Empty)
2555    : Expr(CXXNoexceptExprClass, Empty)
2556  { }
2557
2558  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
2559
2560  virtual SourceRange getSourceRange() const { return Range; }
2561
2562  bool getValue() const { return Value; }
2563
2564  static bool classof(const Stmt *T) {
2565    return T->getStmtClass() == CXXNoexceptExprClass;
2566  }
2567  static bool classof(const CXXNoexceptExpr *) { return true; }
2568
2569  // Iterators
2570  virtual child_iterator child_begin();
2571  virtual child_iterator child_end();
2572};
2573
2574/// \brief Represents a C++0x pack expansion that produces a sequence of
2575/// expressions.
2576///
2577/// A pack expansion expression contains a pattern (which itself is an
2578/// expression) followed by an ellipsis. For example:
2579///
2580/// \code
2581/// template<typename F, typename ...Types>
2582/// void forward(F f, Types &&...args) {
2583///   f(static_cast<Types&&>(args)...);
2584/// }
2585/// \endcode
2586///
2587/// Here, the argument to the function object \c f is a pack expansion whose
2588/// pattern is \c static_cast<Types&&>(args). When the \c forward function
2589/// template is instantiated, the pack expansion will instantiate to zero or
2590/// or more function arguments to the function object \c f.
2591class PackExpansionExpr : public Expr {
2592  SourceLocation EllipsisLoc;
2593  Stmt *Pattern;
2594
2595  friend class ASTStmtReader;
2596
2597public:
2598  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc)
2599    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
2600           Pattern->getObjectKind(), /*TypeDependent=*/true,
2601           /*ValueDependent=*/true, /*ContainsUnexpandedParameterPack=*/false),
2602      EllipsisLoc(EllipsisLoc),
2603      Pattern(Pattern) { }
2604
2605  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
2606
2607  /// \brief Retrieve the pattern of the pack expansion.
2608  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
2609
2610  /// \brief Retrieve the pattern of the pack expansion.
2611  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
2612
2613  /// \brief Retrieve the location of the ellipsis that describes this pack
2614  /// expansion.
2615  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
2616
2617  virtual SourceRange getSourceRange() const;
2618
2619  static bool classof(const Stmt *T) {
2620    return T->getStmtClass() == PackExpansionExprClass;
2621  }
2622  static bool classof(const PackExpansionExpr *) { return true; }
2623
2624  // Iterators
2625  virtual child_iterator child_begin();
2626  virtual child_iterator child_end();
2627};
2628
2629inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
2630  if (isa<UnresolvedLookupExpr>(this))
2631    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2632  else
2633    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2634}
2635
2636}  // end namespace clang
2637
2638#endif
2639