ExprCXX.h revision bfdfb5a4119e1c2b173be5d0ca8a91d8c246698f
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/UnresolvedSet.h"
20#include "clang/AST/TemplateBase.h"
21
22namespace clang {
23
24class CXXConstructorDecl;
25class CXXDestructorDecl;
26class CXXMethodDecl;
27class CXXTemporary;
28class TemplateArgumentListInfo;
29
30//===--------------------------------------------------------------------===//
31// C++ Expressions.
32//===--------------------------------------------------------------------===//
33
34/// \brief A call to an overloaded operator written using operator
35/// syntax.
36///
37/// Represents a call to an overloaded operator written using operator
38/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
39/// normal call, this AST node provides better information about the
40/// syntactic representation of the call.
41///
42/// In a C++ template, this expression node kind will be used whenever
43/// any of the arguments are type-dependent. In this case, the
44/// function itself will be a (possibly empty) set of functions and
45/// function templates that were found by name lookup at template
46/// definition time.
47class CXXOperatorCallExpr : public CallExpr {
48  /// \brief The overloaded operator.
49  OverloadedOperatorKind Operator;
50
51public:
52  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
53                      Expr **args, unsigned numargs, QualType t,
54                      ExprValueKind VK, SourceLocation operatorloc)
55    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
56               operatorloc),
57      Operator(Op) {}
58  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
59    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
60
61
62  /// getOperator - Returns the kind of overloaded operator that this
63  /// expression refers to.
64  OverloadedOperatorKind getOperator() const { return Operator; }
65  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
66
67  /// getOperatorLoc - Returns the location of the operator symbol in
68  /// the expression. When @c getOperator()==OO_Call, this is the
69  /// location of the right parentheses; when @c
70  /// getOperator()==OO_Subscript, this is the location of the right
71  /// bracket.
72  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
73
74  SourceRange getSourceRange() const;
75
76  static bool classof(const Stmt *T) {
77    return T->getStmtClass() == CXXOperatorCallExprClass;
78  }
79  static bool classof(const CXXOperatorCallExpr *) { return true; }
80};
81
82/// CXXMemberCallExpr - Represents a call to a member function that
83/// may be written either with member call syntax (e.g., "obj.func()"
84/// or "objptr->func()") or with normal function-call syntax
85/// ("func()") within a member function that ends up calling a member
86/// function. The callee in either case is a MemberExpr that contains
87/// both the object argument and the member function, while the
88/// arguments are the arguments within the parentheses (not including
89/// the object argument).
90class CXXMemberCallExpr : public CallExpr {
91public:
92  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
93                    QualType t, ExprValueKind VK, SourceLocation RP)
94    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
95
96  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
97    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
98
99  /// getImplicitObjectArgument - Retrieves the implicit object
100  /// argument for the member call. For example, in "x.f(5)", this
101  /// operation would return "x".
102  Expr *getImplicitObjectArgument();
103
104  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
105  /// the implicit object argument. Note that this is may not be the same
106  /// declaration as that of the class context of the CXXMethodDecl which this
107  /// function is calling.
108  /// FIXME: Returns 0 for member pointer call exprs.
109  CXXRecordDecl *getRecordDecl();
110
111  static bool classof(const Stmt *T) {
112    return T->getStmtClass() == CXXMemberCallExprClass;
113  }
114  static bool classof(const CXXMemberCallExpr *) { return true; }
115};
116
117/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
118class CUDAKernelCallExpr : public CallExpr {
119private:
120  enum { CONFIG, END_PREARG };
121
122public:
123  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
124                     Expr **args, unsigned numargs, QualType t,
125                     ExprValueKind VK, SourceLocation RP)
126    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
127               RP) {
128    setConfig(Config);
129  }
130
131  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
132    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
133
134  const CallExpr *getConfig() const {
135    return cast_or_null<CallExpr>(getPreArg(CONFIG));
136  }
137  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
138  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
139
140  static bool classof(const Stmt *T) {
141    return T->getStmtClass() == CUDAKernelCallExprClass;
142  }
143  static bool classof(const CUDAKernelCallExpr *) { return true; }
144};
145
146/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
147/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
148/// const_cast.
149///
150/// This abstract class is inherited by all of the classes
151/// representing "named" casts, e.g., CXXStaticCastExpr,
152/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
153class CXXNamedCastExpr : public ExplicitCastExpr {
154private:
155  SourceLocation Loc; // the location of the casting op
156  SourceLocation RParenLoc; // the location of the right parenthesis
157
158protected:
159  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
160                   CastKind kind, Expr *op, unsigned PathSize,
161                   TypeSourceInfo *writtenTy, SourceLocation l,
162                   SourceLocation RParenLoc)
163    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
164      RParenLoc(RParenLoc) {}
165
166  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
167    : ExplicitCastExpr(SC, Shell, PathSize) { }
168
169  friend class ASTStmtReader;
170
171public:
172  const char *getCastName() const;
173
174  /// \brief Retrieve the location of the cast operator keyword, e.g.,
175  /// "static_cast".
176  SourceLocation getOperatorLoc() const { return Loc; }
177
178  /// \brief Retrieve the location of the closing parenthesis.
179  SourceLocation getRParenLoc() const { return RParenLoc; }
180
181  SourceRange getSourceRange() const {
182    return SourceRange(Loc, RParenLoc);
183  }
184  static bool classof(const Stmt *T) {
185    switch (T->getStmtClass()) {
186    case CXXStaticCastExprClass:
187    case CXXDynamicCastExprClass:
188    case CXXReinterpretCastExprClass:
189    case CXXConstCastExprClass:
190      return true;
191    default:
192      return false;
193    }
194  }
195  static bool classof(const CXXNamedCastExpr *) { return true; }
196};
197
198/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
199///
200/// This expression node represents a C++ static cast, e.g.,
201/// @c static_cast<int>(1.0).
202class CXXStaticCastExpr : public CXXNamedCastExpr {
203  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
204                    unsigned pathSize, TypeSourceInfo *writtenTy,
205                    SourceLocation l, SourceLocation RParenLoc)
206    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
207                       writtenTy, l, RParenLoc) {}
208
209  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
210    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
211
212public:
213  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
214                                   ExprValueKind VK, CastKind K, Expr *Op,
215                                   const CXXCastPath *Path,
216                                   TypeSourceInfo *Written, SourceLocation L,
217                                   SourceLocation RParenLoc);
218  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
219                                        unsigned PathSize);
220
221  static bool classof(const Stmt *T) {
222    return T->getStmtClass() == CXXStaticCastExprClass;
223  }
224  static bool classof(const CXXStaticCastExpr *) { return true; }
225};
226
227/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
228/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
229/// determine how to perform the type cast.
230///
231/// This expression node represents a dynamic cast, e.g.,
232/// @c dynamic_cast<Derived*>(BasePtr).
233class CXXDynamicCastExpr : public CXXNamedCastExpr {
234  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
235                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
236                     SourceLocation l, SourceLocation RParenLoc)
237    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
238                       writtenTy, l, RParenLoc) {}
239
240  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
241    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
242
243public:
244  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
245                                    ExprValueKind VK, CastKind Kind, Expr *Op,
246                                    const CXXCastPath *Path,
247                                    TypeSourceInfo *Written, SourceLocation L,
248                                    SourceLocation RParenLoc);
249
250  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
251                                         unsigned pathSize);
252
253  static bool classof(const Stmt *T) {
254    return T->getStmtClass() == CXXDynamicCastExprClass;
255  }
256  static bool classof(const CXXDynamicCastExpr *) { return true; }
257};
258
259/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
260/// [expr.reinterpret.cast]), which provides a differently-typed view
261/// of a value but performs no actual work at run time.
262///
263/// This expression node represents a reinterpret cast, e.g.,
264/// @c reinterpret_cast<int>(VoidPtr).
265class CXXReinterpretCastExpr : public CXXNamedCastExpr {
266  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
267                         Expr *op, unsigned pathSize,
268                         TypeSourceInfo *writtenTy, SourceLocation l,
269                         SourceLocation RParenLoc)
270    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
271                       pathSize, writtenTy, l, RParenLoc) {}
272
273  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
274    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
275
276public:
277  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
278                                        ExprValueKind VK, CastKind Kind,
279                                        Expr *Op, const CXXCastPath *Path,
280                                 TypeSourceInfo *WrittenTy, SourceLocation L,
281                                        SourceLocation RParenLoc);
282  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
283                                             unsigned pathSize);
284
285  static bool classof(const Stmt *T) {
286    return T->getStmtClass() == CXXReinterpretCastExprClass;
287  }
288  static bool classof(const CXXReinterpretCastExpr *) { return true; }
289};
290
291/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
292/// which can remove type qualifiers but does not change the underlying value.
293///
294/// This expression node represents a const cast, e.g.,
295/// @c const_cast<char*>(PtrToConstChar).
296class CXXConstCastExpr : public CXXNamedCastExpr {
297  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
298                   TypeSourceInfo *writtenTy, SourceLocation l,
299                   SourceLocation RParenLoc)
300    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
301                       0, writtenTy, l, RParenLoc) {}
302
303  explicit CXXConstCastExpr(EmptyShell Empty)
304    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
305
306public:
307  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
308                                  ExprValueKind VK, Expr *Op,
309                                  TypeSourceInfo *WrittenTy, SourceLocation L,
310                                  SourceLocation RParenLoc);
311  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
312
313  static bool classof(const Stmt *T) {
314    return T->getStmtClass() == CXXConstCastExprClass;
315  }
316  static bool classof(const CXXConstCastExpr *) { return true; }
317};
318
319/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
320///
321class CXXBoolLiteralExpr : public Expr {
322  bool Value;
323  SourceLocation Loc;
324public:
325  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
326    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
327         false),
328    Value(val), Loc(l) {}
329
330  explicit CXXBoolLiteralExpr(EmptyShell Empty)
331    : Expr(CXXBoolLiteralExprClass, Empty) { }
332
333  bool getValue() const { return Value; }
334  void setValue(bool V) { Value = V; }
335
336  SourceRange getSourceRange() const { return SourceRange(Loc); }
337
338  SourceLocation getLocation() const { return Loc; }
339  void setLocation(SourceLocation L) { Loc = L; }
340
341  static bool classof(const Stmt *T) {
342    return T->getStmtClass() == CXXBoolLiteralExprClass;
343  }
344  static bool classof(const CXXBoolLiteralExpr *) { return true; }
345
346  // Iterators
347  child_range children() { return child_range(); }
348};
349
350/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
351class CXXNullPtrLiteralExpr : public Expr {
352  SourceLocation Loc;
353public:
354  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
355    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
356         false),
357    Loc(l) {}
358
359  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
360    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
361
362  SourceRange getSourceRange() const { return SourceRange(Loc); }
363
364  SourceLocation getLocation() const { return Loc; }
365  void setLocation(SourceLocation L) { Loc = L; }
366
367  static bool classof(const Stmt *T) {
368    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
369  }
370  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
371
372  child_range children() { return child_range(); }
373};
374
375/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
376/// the type_info that corresponds to the supplied type, or the (possibly
377/// dynamic) type of the supplied expression.
378///
379/// This represents code like @c typeid(int) or @c typeid(*objPtr)
380class CXXTypeidExpr : public Expr {
381private:
382  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
383  SourceRange Range;
384
385public:
386  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
387    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
388           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
389           false,
390           // typeid is value-dependent if the type or expression are dependent
391           Operand->getType()->isDependentType(),
392           Operand->getType()->containsUnexpandedParameterPack()),
393      Operand(Operand), Range(R) { }
394
395  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
396    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
397        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
398           false,
399        // typeid is value-dependent if the type or expression are dependent
400           Operand->isTypeDependent() || Operand->isValueDependent(),
401           Operand->containsUnexpandedParameterPack()),
402      Operand(Operand), Range(R) { }
403
404  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
405    : Expr(CXXTypeidExprClass, Empty) {
406    if (isExpr)
407      Operand = (Expr*)0;
408    else
409      Operand = (TypeSourceInfo*)0;
410  }
411
412  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
413
414  /// \brief Retrieves the type operand of this typeid() expression after
415  /// various required adjustments (removing reference types, cv-qualifiers).
416  QualType getTypeOperand() const;
417
418  /// \brief Retrieve source information for the type operand.
419  TypeSourceInfo *getTypeOperandSourceInfo() const {
420    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
421    return Operand.get<TypeSourceInfo *>();
422  }
423
424  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
425    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
426    Operand = TSI;
427  }
428
429  Expr *getExprOperand() const {
430    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
431    return static_cast<Expr*>(Operand.get<Stmt *>());
432  }
433
434  void setExprOperand(Expr *E) {
435    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
436    Operand = E;
437  }
438
439  SourceRange getSourceRange() const { return Range; }
440  void setSourceRange(SourceRange R) { Range = R; }
441
442  static bool classof(const Stmt *T) {
443    return T->getStmtClass() == CXXTypeidExprClass;
444  }
445  static bool classof(const CXXTypeidExpr *) { return true; }
446
447  // Iterators
448  child_range children() {
449    if (isTypeOperand()) return child_range();
450    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
451    return child_range(begin, begin + 1);
452  }
453};
454
455/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
456/// the _GUID that corresponds to the supplied type or expression.
457///
458/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
459class CXXUuidofExpr : public Expr {
460private:
461  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
462  SourceRange Range;
463
464public:
465  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
466    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
467           false, Operand->getType()->isDependentType(),
468           Operand->getType()->containsUnexpandedParameterPack()),
469      Operand(Operand), Range(R) { }
470
471  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
472    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
473           false, Operand->isTypeDependent(),
474           Operand->containsUnexpandedParameterPack()),
475      Operand(Operand), Range(R) { }
476
477  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
478    : Expr(CXXUuidofExprClass, Empty) {
479    if (isExpr)
480      Operand = (Expr*)0;
481    else
482      Operand = (TypeSourceInfo*)0;
483  }
484
485  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
486
487  /// \brief Retrieves the type operand of this __uuidof() expression after
488  /// various required adjustments (removing reference types, cv-qualifiers).
489  QualType getTypeOperand() const;
490
491  /// \brief Retrieve source information for the type operand.
492  TypeSourceInfo *getTypeOperandSourceInfo() const {
493    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
494    return Operand.get<TypeSourceInfo *>();
495  }
496
497  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
498    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
499    Operand = TSI;
500  }
501
502  Expr *getExprOperand() const {
503    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
504    return static_cast<Expr*>(Operand.get<Stmt *>());
505  }
506
507  void setExprOperand(Expr *E) {
508    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
509    Operand = E;
510  }
511
512  SourceRange getSourceRange() const { return Range; }
513  void setSourceRange(SourceRange R) { Range = R; }
514
515  static bool classof(const Stmt *T) {
516    return T->getStmtClass() == CXXUuidofExprClass;
517  }
518  static bool classof(const CXXUuidofExpr *) { return true; }
519
520  // Iterators
521  child_range children() {
522    if (isTypeOperand()) return child_range();
523    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
524    return child_range(begin, begin + 1);
525  }
526};
527
528/// CXXThisExpr - Represents the "this" expression in C++, which is a
529/// pointer to the object on which the current member function is
530/// executing (C++ [expr.prim]p3). Example:
531///
532/// @code
533/// class Foo {
534/// public:
535///   void bar();
536///   void test() { this->bar(); }
537/// };
538/// @endcode
539class CXXThisExpr : public Expr {
540  SourceLocation Loc;
541  bool Implicit : 1;
542
543public:
544  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
545    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
546           // 'this' is type-dependent if the class type of the enclosing
547           // member function is dependent (C++ [temp.dep.expr]p2)
548           Type->isDependentType(), Type->isDependentType(),
549           /*ContainsUnexpandedParameterPack=*/false),
550      Loc(L), Implicit(isImplicit) { }
551
552  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
553
554  SourceLocation getLocation() const { return Loc; }
555  void setLocation(SourceLocation L) { Loc = L; }
556
557  SourceRange getSourceRange() const { return SourceRange(Loc); }
558
559  bool isImplicit() const { return Implicit; }
560  void setImplicit(bool I) { Implicit = I; }
561
562  static bool classof(const Stmt *T) {
563    return T->getStmtClass() == CXXThisExprClass;
564  }
565  static bool classof(const CXXThisExpr *) { return true; }
566
567  // Iterators
568  child_range children() { return child_range(); }
569};
570
571///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
572///  'throw' and 'throw' assignment-expression.  When
573///  assignment-expression isn't present, Op will be null.
574///
575class CXXThrowExpr : public Expr {
576  Stmt *Op;
577  SourceLocation ThrowLoc;
578public:
579  // Ty is the void type which is used as the result type of the
580  // exepression.  The l is the location of the throw keyword.  expr
581  // can by null, if the optional expression to throw isn't present.
582  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
583    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
584         expr && expr->containsUnexpandedParameterPack()),
585    Op(expr), ThrowLoc(l) {}
586  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
587
588  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
589  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
590  void setSubExpr(Expr *E) { Op = E; }
591
592  SourceLocation getThrowLoc() const { return ThrowLoc; }
593  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
594
595  SourceRange getSourceRange() const {
596    if (getSubExpr() == 0)
597      return SourceRange(ThrowLoc, ThrowLoc);
598    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
599  }
600
601  static bool classof(const Stmt *T) {
602    return T->getStmtClass() == CXXThrowExprClass;
603  }
604  static bool classof(const CXXThrowExpr *) { return true; }
605
606  // Iterators
607  child_range children() {
608    return child_range(&Op, Op ? &Op+1 : &Op);
609  }
610};
611
612/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
613/// function call argument that was created from the corresponding
614/// parameter's default argument, when the call did not explicitly
615/// supply arguments for all of the parameters.
616class CXXDefaultArgExpr : public Expr {
617  /// \brief The parameter whose default is being used.
618  ///
619  /// When the bit is set, the subexpression is stored after the
620  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
621  /// actual default expression is the subexpression.
622  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
623
624  /// \brief The location where the default argument expression was used.
625  SourceLocation Loc;
626
627  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
628    : Expr(SC,
629           param->hasUnparsedDefaultArg()
630             ? param->getType().getNonReferenceType()
631             : param->getDefaultArg()->getType(),
632           param->getDefaultArg()->getValueKind(),
633           param->getDefaultArg()->getObjectKind(), false, false, false),
634      Param(param, false), Loc(Loc) { }
635
636  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
637                    Expr *SubExpr)
638    : Expr(SC, SubExpr->getType(),
639           SubExpr->getValueKind(), SubExpr->getObjectKind(),
640           false, false, false),
641      Param(param, true), Loc(Loc) {
642    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
643  }
644
645public:
646  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
647
648
649  // Param is the parameter whose default argument is used by this
650  // expression.
651  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
652                                   ParmVarDecl *Param) {
653    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
654  }
655
656  // Param is the parameter whose default argument is used by this
657  // expression, and SubExpr is the expression that will actually be used.
658  static CXXDefaultArgExpr *Create(ASTContext &C,
659                                   SourceLocation Loc,
660                                   ParmVarDecl *Param,
661                                   Expr *SubExpr);
662
663  // Retrieve the parameter that the argument was created from.
664  const ParmVarDecl *getParam() const { return Param.getPointer(); }
665  ParmVarDecl *getParam() { return Param.getPointer(); }
666
667  // Retrieve the actual argument to the function call.
668  const Expr *getExpr() const {
669    if (Param.getInt())
670      return *reinterpret_cast<Expr const * const*> (this + 1);
671    return getParam()->getDefaultArg();
672  }
673  Expr *getExpr() {
674    if (Param.getInt())
675      return *reinterpret_cast<Expr **> (this + 1);
676    return getParam()->getDefaultArg();
677  }
678
679  /// \brief Retrieve the location where this default argument was actually
680  /// used.
681  SourceLocation getUsedLocation() const { return Loc; }
682
683  SourceRange getSourceRange() const {
684    // Default argument expressions have no representation in the
685    // source, so they have an empty source range.
686    return SourceRange();
687  }
688
689  static bool classof(const Stmt *T) {
690    return T->getStmtClass() == CXXDefaultArgExprClass;
691  }
692  static bool classof(const CXXDefaultArgExpr *) { return true; }
693
694  // Iterators
695  child_range children() { return child_range(); }
696
697  friend class ASTStmtReader;
698  friend class ASTStmtWriter;
699};
700
701/// CXXTemporary - Represents a C++ temporary.
702class CXXTemporary {
703  /// Destructor - The destructor that needs to be called.
704  const CXXDestructorDecl *Destructor;
705
706  CXXTemporary(const CXXDestructorDecl *destructor)
707    : Destructor(destructor) { }
708
709public:
710  static CXXTemporary *Create(ASTContext &C,
711                              const CXXDestructorDecl *Destructor);
712
713  const CXXDestructorDecl *getDestructor() const { return Destructor; }
714};
715
716/// \brief Represents binding an expression to a temporary.
717///
718/// This ensures the destructor is called for the temporary. It should only be
719/// needed for non-POD, non-trivially destructable class types. For example:
720///
721/// \code
722///   struct S {
723///     S() { }  // User defined constructor makes S non-POD.
724///     ~S() { } // User defined destructor makes it non-trivial.
725///   };
726///   void test() {
727///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
728///   }
729/// \endcode
730class CXXBindTemporaryExpr : public Expr {
731  CXXTemporary *Temp;
732
733  Stmt *SubExpr;
734
735  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
736   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
737          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
738          SubExpr->isValueDependent(),
739          SubExpr->containsUnexpandedParameterPack()),
740     Temp(temp), SubExpr(SubExpr) { }
741
742public:
743  CXXBindTemporaryExpr(EmptyShell Empty)
744    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
745
746  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
747                                      Expr* SubExpr);
748
749  CXXTemporary *getTemporary() { return Temp; }
750  const CXXTemporary *getTemporary() const { return Temp; }
751  void setTemporary(CXXTemporary *T) { Temp = T; }
752
753  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
754  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
755  void setSubExpr(Expr *E) { SubExpr = E; }
756
757  SourceRange getSourceRange() const {
758    return SubExpr->getSourceRange();
759  }
760
761  // Implement isa/cast/dyncast/etc.
762  static bool classof(const Stmt *T) {
763    return T->getStmtClass() == CXXBindTemporaryExprClass;
764  }
765  static bool classof(const CXXBindTemporaryExpr *) { return true; }
766
767  // Iterators
768  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
769};
770
771/// CXXConstructExpr - Represents a call to a C++ constructor.
772class CXXConstructExpr : public Expr {
773public:
774  enum ConstructionKind {
775    CK_Complete,
776    CK_NonVirtualBase,
777    CK_VirtualBase
778  };
779
780private:
781  CXXConstructorDecl *Constructor;
782
783  SourceLocation Loc;
784  SourceRange ParenRange;
785  bool Elidable : 1;
786  bool ZeroInitialization : 1;
787  unsigned ConstructKind : 2;
788  Stmt **Args;
789  unsigned NumArgs;
790
791protected:
792  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
793                   SourceLocation Loc,
794                   CXXConstructorDecl *d, bool elidable,
795                   Expr **args, unsigned numargs,
796                   bool ZeroInitialization = false,
797                   ConstructionKind ConstructKind = CK_Complete,
798                   SourceRange ParenRange = SourceRange());
799
800  /// \brief Construct an empty C++ construction expression.
801  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
802    : Expr(SC, Empty), Constructor(0), Elidable(0), ZeroInitialization(0),
803      ConstructKind(0), Args(0), NumArgs(0) { }
804
805public:
806  /// \brief Construct an empty C++ construction expression.
807  explicit CXXConstructExpr(EmptyShell Empty)
808    : Expr(CXXConstructExprClass, Empty), Constructor(0),
809      Elidable(0), ZeroInitialization(0),
810      ConstructKind(0), Args(0), NumArgs(0) { }
811
812  static CXXConstructExpr *Create(ASTContext &C, QualType T,
813                                  SourceLocation Loc,
814                                  CXXConstructorDecl *D, bool Elidable,
815                                  Expr **Args, unsigned NumArgs,
816                                  bool ZeroInitialization = false,
817                                  ConstructionKind ConstructKind = CK_Complete,
818                                  SourceRange ParenRange = SourceRange());
819
820
821  CXXConstructorDecl* getConstructor() const { return Constructor; }
822  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
823
824  SourceLocation getLocation() const { return Loc; }
825  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
826
827  /// \brief Whether this construction is elidable.
828  bool isElidable() const { return Elidable; }
829  void setElidable(bool E) { Elidable = E; }
830
831  /// \brief Whether this construction first requires
832  /// zero-initialization before the initializer is called.
833  bool requiresZeroInitialization() const { return ZeroInitialization; }
834  void setRequiresZeroInitialization(bool ZeroInit) {
835    ZeroInitialization = ZeroInit;
836  }
837
838  /// \brief Determines whether this constructor is actually constructing
839  /// a base class (rather than a complete object).
840  ConstructionKind getConstructionKind() const {
841    return (ConstructionKind)ConstructKind;
842  }
843  void setConstructionKind(ConstructionKind CK) {
844    ConstructKind = CK;
845  }
846
847  typedef ExprIterator arg_iterator;
848  typedef ConstExprIterator const_arg_iterator;
849
850  arg_iterator arg_begin() { return Args; }
851  arg_iterator arg_end() { return Args + NumArgs; }
852  const_arg_iterator arg_begin() const { return Args; }
853  const_arg_iterator arg_end() const { return Args + NumArgs; }
854
855  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
856  unsigned getNumArgs() const { return NumArgs; }
857
858  /// getArg - Return the specified argument.
859  Expr *getArg(unsigned Arg) {
860    assert(Arg < NumArgs && "Arg access out of range!");
861    return cast<Expr>(Args[Arg]);
862  }
863  const Expr *getArg(unsigned Arg) const {
864    assert(Arg < NumArgs && "Arg access out of range!");
865    return cast<Expr>(Args[Arg]);
866  }
867
868  /// setArg - Set the specified argument.
869  void setArg(unsigned Arg, Expr *ArgExpr) {
870    assert(Arg < NumArgs && "Arg access out of range!");
871    Args[Arg] = ArgExpr;
872  }
873
874  SourceRange getSourceRange() const;
875  SourceRange getParenRange() const { return ParenRange; }
876
877  static bool classof(const Stmt *T) {
878    return T->getStmtClass() == CXXConstructExprClass ||
879      T->getStmtClass() == CXXTemporaryObjectExprClass;
880  }
881  static bool classof(const CXXConstructExpr *) { return true; }
882
883  // Iterators
884  child_range children() {
885    return child_range(&Args[0], &Args[0]+NumArgs);
886  }
887
888  friend class ASTStmtReader;
889};
890
891/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
892/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
893/// x = int(0.5);
894class CXXFunctionalCastExpr : public ExplicitCastExpr {
895  SourceLocation TyBeginLoc;
896  SourceLocation RParenLoc;
897
898  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
899                        TypeSourceInfo *writtenTy,
900                        SourceLocation tyBeginLoc, CastKind kind,
901                        Expr *castExpr, unsigned pathSize,
902                        SourceLocation rParenLoc)
903    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
904                       castExpr, pathSize, writtenTy),
905      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
906
907  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
908    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
909
910public:
911  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
912                                       ExprValueKind VK,
913                                       TypeSourceInfo *Written,
914                                       SourceLocation TyBeginLoc,
915                                       CastKind Kind, Expr *Op,
916                                       const CXXCastPath *Path,
917                                       SourceLocation RPLoc);
918  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
919                                            unsigned PathSize);
920
921  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
922  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
923  SourceLocation getRParenLoc() const { return RParenLoc; }
924  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
925
926  SourceRange getSourceRange() const {
927    return SourceRange(TyBeginLoc, RParenLoc);
928  }
929  static bool classof(const Stmt *T) {
930    return T->getStmtClass() == CXXFunctionalCastExprClass;
931  }
932  static bool classof(const CXXFunctionalCastExpr *) { return true; }
933};
934
935/// @brief Represents a C++ functional cast expression that builds a
936/// temporary object.
937///
938/// This expression type represents a C++ "functional" cast
939/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
940/// constructor to build a temporary object. With N == 1 arguments the
941/// functional cast expression will be represented by CXXFunctionalCastExpr.
942/// Example:
943/// @code
944/// struct X { X(int, float); }
945///
946/// X create_X() {
947///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
948/// };
949/// @endcode
950class CXXTemporaryObjectExpr : public CXXConstructExpr {
951  TypeSourceInfo *Type;
952
953public:
954  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
955                         TypeSourceInfo *Type,
956                         Expr **Args,unsigned NumArgs,
957                         SourceRange parenRange,
958                         bool ZeroInitialization = false);
959  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
960    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
961
962  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
963
964  SourceRange getSourceRange() const;
965
966  static bool classof(const Stmt *T) {
967    return T->getStmtClass() == CXXTemporaryObjectExprClass;
968  }
969  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
970
971  friend class ASTStmtReader;
972};
973
974/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
975/// Expression "T()" which creates a value-initialized rvalue of type
976/// T, which is a non-class type.
977///
978class CXXScalarValueInitExpr : public Expr {
979  SourceLocation RParenLoc;
980  TypeSourceInfo *TypeInfo;
981
982  friend class ASTStmtReader;
983
984public:
985  /// \brief Create an explicitly-written scalar-value initialization
986  /// expression.
987  CXXScalarValueInitExpr(QualType Type,
988                         TypeSourceInfo *TypeInfo,
989                         SourceLocation rParenLoc ) :
990    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
991         false, false, false),
992    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
993
994  explicit CXXScalarValueInitExpr(EmptyShell Shell)
995    : Expr(CXXScalarValueInitExprClass, Shell) { }
996
997  TypeSourceInfo *getTypeSourceInfo() const {
998    return TypeInfo;
999  }
1000
1001  SourceLocation getRParenLoc() const { return RParenLoc; }
1002
1003  SourceRange getSourceRange() const;
1004
1005  static bool classof(const Stmt *T) {
1006    return T->getStmtClass() == CXXScalarValueInitExprClass;
1007  }
1008  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1009
1010  // Iterators
1011  child_range children() { return child_range(); }
1012};
1013
1014/// CXXNewExpr - A new expression for memory allocation and constructor calls,
1015/// e.g: "new CXXNewExpr(foo)".
1016class CXXNewExpr : public Expr {
1017  // Was the usage ::new, i.e. is the global new to be used?
1018  bool GlobalNew : 1;
1019  // Is there an initializer? If not, built-ins are uninitialized, else they're
1020  // value-initialized.
1021  bool Initializer : 1;
1022  // Do we allocate an array? If so, the first SubExpr is the size expression.
1023  bool Array : 1;
1024  // If this is an array allocation, does the usual deallocation
1025  // function for the allocated type want to know the allocated size?
1026  bool UsualArrayDeleteWantsSize : 1;
1027  // The number of placement new arguments.
1028  unsigned NumPlacementArgs : 14;
1029  // The number of constructor arguments. This may be 1 even for non-class
1030  // types; use the pseudo copy constructor.
1031  unsigned NumConstructorArgs : 14;
1032  // Contains an optional array size expression, any number of optional
1033  // placement arguments, and any number of optional constructor arguments,
1034  // in that order.
1035  Stmt **SubExprs;
1036  // Points to the allocation function used.
1037  FunctionDecl *OperatorNew;
1038  // Points to the deallocation function used in case of error. May be null.
1039  FunctionDecl *OperatorDelete;
1040  // Points to the constructor used. Cannot be null if AllocType is a record;
1041  // it would still point at the default constructor (even an implicit one).
1042  // Must be null for all other types.
1043  CXXConstructorDecl *Constructor;
1044
1045  /// \brief The allocated type-source information, as written in the source.
1046  TypeSourceInfo *AllocatedTypeInfo;
1047
1048  /// \brief If the allocated type was expressed as a parenthesized type-id,
1049  /// the source range covering the parenthesized type-id.
1050  SourceRange TypeIdParens;
1051
1052  SourceLocation StartLoc;
1053  SourceLocation EndLoc;
1054  SourceLocation ConstructorLParen;
1055  SourceLocation ConstructorRParen;
1056
1057  friend class ASTStmtReader;
1058public:
1059  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1060             Expr **placementArgs, unsigned numPlaceArgs,
1061             SourceRange TypeIdParens,
1062             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1063             Expr **constructorArgs, unsigned numConsArgs,
1064             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1065             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1066             SourceLocation startLoc, SourceLocation endLoc,
1067             SourceLocation constructorLParen,
1068             SourceLocation constructorRParen);
1069  explicit CXXNewExpr(EmptyShell Shell)
1070    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1071
1072  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1073                         unsigned numConsArgs);
1074
1075  QualType getAllocatedType() const {
1076    assert(getType()->isPointerType());
1077    return getType()->getAs<PointerType>()->getPointeeType();
1078  }
1079
1080  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1081    return AllocatedTypeInfo;
1082  }
1083
1084  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1085  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1086  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1087  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1088  CXXConstructorDecl *getConstructor() const { return Constructor; }
1089  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1090
1091  bool isArray() const { return Array; }
1092  Expr *getArraySize() {
1093    return Array ? cast<Expr>(SubExprs[0]) : 0;
1094  }
1095  const Expr *getArraySize() const {
1096    return Array ? cast<Expr>(SubExprs[0]) : 0;
1097  }
1098
1099  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1100  Expr **getPlacementArgs() {
1101    return reinterpret_cast<Expr **>(SubExprs + Array);
1102  }
1103
1104  Expr *getPlacementArg(unsigned i) {
1105    assert(i < NumPlacementArgs && "Index out of range");
1106    return cast<Expr>(SubExprs[Array + i]);
1107  }
1108  const Expr *getPlacementArg(unsigned i) const {
1109    assert(i < NumPlacementArgs && "Index out of range");
1110    return cast<Expr>(SubExprs[Array + i]);
1111  }
1112
1113  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1114  SourceRange getTypeIdParens() const { return TypeIdParens; }
1115
1116  bool isGlobalNew() const { return GlobalNew; }
1117  bool hasInitializer() const { return Initializer; }
1118
1119  /// Answers whether the usual array deallocation function for the
1120  /// allocated type expects the size of the allocation as a
1121  /// parameter.
1122  bool doesUsualArrayDeleteWantSize() const {
1123    return UsualArrayDeleteWantsSize;
1124  }
1125
1126  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1127
1128  Expr **getConstructorArgs() {
1129    return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
1130  }
1131
1132  Expr *getConstructorArg(unsigned i) {
1133    assert(i < NumConstructorArgs && "Index out of range");
1134    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1135  }
1136  const Expr *getConstructorArg(unsigned i) const {
1137    assert(i < NumConstructorArgs && "Index out of range");
1138    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1139  }
1140
1141  typedef ExprIterator arg_iterator;
1142  typedef ConstExprIterator const_arg_iterator;
1143
1144  arg_iterator placement_arg_begin() {
1145    return SubExprs + Array;
1146  }
1147  arg_iterator placement_arg_end() {
1148    return SubExprs + Array + getNumPlacementArgs();
1149  }
1150  const_arg_iterator placement_arg_begin() const {
1151    return SubExprs + Array;
1152  }
1153  const_arg_iterator placement_arg_end() const {
1154    return SubExprs + Array + getNumPlacementArgs();
1155  }
1156
1157  arg_iterator constructor_arg_begin() {
1158    return SubExprs + Array + getNumPlacementArgs();
1159  }
1160  arg_iterator constructor_arg_end() {
1161    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1162  }
1163  const_arg_iterator constructor_arg_begin() const {
1164    return SubExprs + Array + getNumPlacementArgs();
1165  }
1166  const_arg_iterator constructor_arg_end() const {
1167    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1168  }
1169
1170  typedef Stmt **raw_arg_iterator;
1171  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1172  raw_arg_iterator raw_arg_end() {
1173    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1174  }
1175  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1176  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1177
1178  SourceLocation getStartLoc() const { return StartLoc; }
1179  SourceLocation getEndLoc() const { return EndLoc; }
1180
1181  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1182  SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1183
1184  SourceRange getSourceRange() const {
1185    return SourceRange(StartLoc, EndLoc);
1186  }
1187
1188  static bool classof(const Stmt *T) {
1189    return T->getStmtClass() == CXXNewExprClass;
1190  }
1191  static bool classof(const CXXNewExpr *) { return true; }
1192
1193  // Iterators
1194  child_range children() {
1195    return child_range(&SubExprs[0],
1196                       &SubExprs[0] + Array + getNumPlacementArgs()
1197                         + getNumConstructorArgs());
1198  }
1199};
1200
1201/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1202/// calls, e.g. "delete[] pArray".
1203class CXXDeleteExpr : public Expr {
1204  // Is this a forced global delete, i.e. "::delete"?
1205  bool GlobalDelete : 1;
1206  // Is this the array form of delete, i.e. "delete[]"?
1207  bool ArrayForm : 1;
1208  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1209  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1210  // will be true).
1211  bool ArrayFormAsWritten : 1;
1212  // Does the usual deallocation function for the element type require
1213  // a size_t argument?
1214  bool UsualArrayDeleteWantsSize : 1;
1215  // Points to the operator delete overload that is used. Could be a member.
1216  FunctionDecl *OperatorDelete;
1217  // The pointer expression to be deleted.
1218  Stmt *Argument;
1219  // Location of the expression.
1220  SourceLocation Loc;
1221public:
1222  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1223                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1224                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1225    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1226           arg->containsUnexpandedParameterPack()),
1227      GlobalDelete(globalDelete),
1228      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1229      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1230      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1231  explicit CXXDeleteExpr(EmptyShell Shell)
1232    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1233
1234  bool isGlobalDelete() const { return GlobalDelete; }
1235  bool isArrayForm() const { return ArrayForm; }
1236  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1237
1238  /// Answers whether the usual array deallocation function for the
1239  /// allocated type expects the size of the allocation as a
1240  /// parameter.  This can be true even if the actual deallocation
1241  /// function that we're using doesn't want a size.
1242  bool doesUsualArrayDeleteWantSize() const {
1243    return UsualArrayDeleteWantsSize;
1244  }
1245
1246  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1247
1248  Expr *getArgument() { return cast<Expr>(Argument); }
1249  const Expr *getArgument() const { return cast<Expr>(Argument); }
1250
1251  /// \brief Retrieve the type being destroyed.  If the type being
1252  /// destroyed is a dependent type which may or may not be a pointer,
1253  /// return an invalid type.
1254  QualType getDestroyedType() const;
1255
1256  SourceRange getSourceRange() const {
1257    return SourceRange(Loc, Argument->getLocEnd());
1258  }
1259
1260  static bool classof(const Stmt *T) {
1261    return T->getStmtClass() == CXXDeleteExprClass;
1262  }
1263  static bool classof(const CXXDeleteExpr *) { return true; }
1264
1265  // Iterators
1266  child_range children() { return child_range(&Argument, &Argument+1); }
1267
1268  friend class ASTStmtReader;
1269};
1270
1271/// \brief Structure used to store the type being destroyed by a
1272/// pseudo-destructor expression.
1273class PseudoDestructorTypeStorage {
1274  /// \brief Either the type source information or the name of the type, if
1275  /// it couldn't be resolved due to type-dependence.
1276  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1277
1278  /// \brief The starting source location of the pseudo-destructor type.
1279  SourceLocation Location;
1280
1281public:
1282  PseudoDestructorTypeStorage() { }
1283
1284  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1285    : Type(II), Location(Loc) { }
1286
1287  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1288
1289  TypeSourceInfo *getTypeSourceInfo() const {
1290    return Type.dyn_cast<TypeSourceInfo *>();
1291  }
1292
1293  IdentifierInfo *getIdentifier() const {
1294    return Type.dyn_cast<IdentifierInfo *>();
1295  }
1296
1297  SourceLocation getLocation() const { return Location; }
1298};
1299
1300/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1301///
1302/// A pseudo-destructor is an expression that looks like a member access to a
1303/// destructor of a scalar type, except that scalar types don't have
1304/// destructors. For example:
1305///
1306/// \code
1307/// typedef int T;
1308/// void f(int *p) {
1309///   p->T::~T();
1310/// }
1311/// \endcode
1312///
1313/// Pseudo-destructors typically occur when instantiating templates such as:
1314///
1315/// \code
1316/// template<typename T>
1317/// void destroy(T* ptr) {
1318///   ptr->T::~T();
1319/// }
1320/// \endcode
1321///
1322/// for scalar types. A pseudo-destructor expression has no run-time semantics
1323/// beyond evaluating the base expression.
1324class CXXPseudoDestructorExpr : public Expr {
1325  /// \brief The base expression (that is being destroyed).
1326  Stmt *Base;
1327
1328  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1329  /// period ('.').
1330  bool IsArrow : 1;
1331
1332  /// \brief The location of the '.' or '->' operator.
1333  SourceLocation OperatorLoc;
1334
1335  /// \brief The nested-name-specifier that follows the operator, if present.
1336  NestedNameSpecifierLoc QualifierLoc;
1337
1338  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1339  /// expression.
1340  TypeSourceInfo *ScopeType;
1341
1342  /// \brief The location of the '::' in a qualified pseudo-destructor
1343  /// expression.
1344  SourceLocation ColonColonLoc;
1345
1346  /// \brief The location of the '~'.
1347  SourceLocation TildeLoc;
1348
1349  /// \brief The type being destroyed, or its name if we were unable to
1350  /// resolve the name.
1351  PseudoDestructorTypeStorage DestroyedType;
1352
1353  friend class ASTStmtReader;
1354
1355public:
1356  CXXPseudoDestructorExpr(ASTContext &Context,
1357                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1358                          NestedNameSpecifierLoc QualifierLoc,
1359                          TypeSourceInfo *ScopeType,
1360                          SourceLocation ColonColonLoc,
1361                          SourceLocation TildeLoc,
1362                          PseudoDestructorTypeStorage DestroyedType);
1363
1364  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1365    : Expr(CXXPseudoDestructorExprClass, Shell),
1366      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1367
1368  Expr *getBase() const { return cast<Expr>(Base); }
1369
1370  /// \brief Determines whether this member expression actually had
1371  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1372  /// x->Base::foo.
1373  bool hasQualifier() const { return QualifierLoc; }
1374
1375  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1376  /// with source-location information.
1377  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1378
1379  /// \brief If the member name was qualified, retrieves the
1380  /// nested-name-specifier that precedes the member name. Otherwise, returns
1381  /// NULL.
1382  NestedNameSpecifier *getQualifier() const {
1383    return QualifierLoc.getNestedNameSpecifier();
1384  }
1385
1386  /// \brief Determine whether this pseudo-destructor expression was written
1387  /// using an '->' (otherwise, it used a '.').
1388  bool isArrow() const { return IsArrow; }
1389
1390  /// \brief Retrieve the location of the '.' or '->' operator.
1391  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1392
1393  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1394  /// expression.
1395  ///
1396  /// Pseudo-destructor expressions can have extra qualification within them
1397  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1398  /// Here, if the object type of the expression is (or may be) a scalar type,
1399  /// \p T may also be a scalar type and, therefore, cannot be part of a
1400  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1401  /// destructor expression.
1402  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1403
1404  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1405  /// expression.
1406  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1407
1408  /// \brief Retrieve the location of the '~'.
1409  SourceLocation getTildeLoc() const { return TildeLoc; }
1410
1411  /// \brief Retrieve the source location information for the type
1412  /// being destroyed.
1413  ///
1414  /// This type-source information is available for non-dependent
1415  /// pseudo-destructor expressions and some dependent pseudo-destructor
1416  /// expressions. Returns NULL if we only have the identifier for a
1417  /// dependent pseudo-destructor expression.
1418  TypeSourceInfo *getDestroyedTypeInfo() const {
1419    return DestroyedType.getTypeSourceInfo();
1420  }
1421
1422  /// \brief In a dependent pseudo-destructor expression for which we do not
1423  /// have full type information on the destroyed type, provides the name
1424  /// of the destroyed type.
1425  IdentifierInfo *getDestroyedTypeIdentifier() const {
1426    return DestroyedType.getIdentifier();
1427  }
1428
1429  /// \brief Retrieve the type being destroyed.
1430  QualType getDestroyedType() const;
1431
1432  /// \brief Retrieve the starting location of the type being destroyed.
1433  SourceLocation getDestroyedTypeLoc() const {
1434    return DestroyedType.getLocation();
1435  }
1436
1437  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1438  /// expression.
1439  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1440    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1441  }
1442
1443  /// \brief Set the destroyed type.
1444  void setDestroyedType(TypeSourceInfo *Info) {
1445    DestroyedType = PseudoDestructorTypeStorage(Info);
1446  }
1447
1448  SourceRange getSourceRange() const;
1449
1450  static bool classof(const Stmt *T) {
1451    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1452  }
1453  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1454
1455  // Iterators
1456  child_range children() { return child_range(&Base, &Base + 1); }
1457};
1458
1459/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1460/// implementation of TR1/C++0x type trait templates.
1461/// Example:
1462/// __is_pod(int) == true
1463/// __is_enum(std::string) == false
1464class UnaryTypeTraitExpr : public Expr {
1465  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1466  unsigned UTT : 31;
1467  /// The value of the type trait. Unspecified if dependent.
1468  bool Value : 1;
1469
1470  /// Loc - The location of the type trait keyword.
1471  SourceLocation Loc;
1472
1473  /// RParen - The location of the closing paren.
1474  SourceLocation RParen;
1475
1476  /// The type being queried.
1477  TypeSourceInfo *QueriedType;
1478
1479public:
1480  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1481                     TypeSourceInfo *queried, bool value,
1482                     SourceLocation rparen, QualType ty)
1483    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1484           false,  queried->getType()->isDependentType(),
1485           queried->getType()->containsUnexpandedParameterPack()),
1486      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1487
1488  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1489    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1490      QueriedType() { }
1491
1492  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1493
1494  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1495
1496  QualType getQueriedType() const { return QueriedType->getType(); }
1497
1498  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1499
1500  bool getValue() const { return Value; }
1501
1502  static bool classof(const Stmt *T) {
1503    return T->getStmtClass() == UnaryTypeTraitExprClass;
1504  }
1505  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1506
1507  // Iterators
1508  child_range children() { return child_range(); }
1509
1510  friend class ASTStmtReader;
1511};
1512
1513/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1514/// implementation of TR1/C++0x type trait templates.
1515/// Example:
1516/// __is_base_of(Base, Derived) == true
1517class BinaryTypeTraitExpr : public Expr {
1518  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1519  unsigned BTT : 8;
1520
1521  /// The value of the type trait. Unspecified if dependent.
1522  bool Value : 1;
1523
1524  /// Loc - The location of the type trait keyword.
1525  SourceLocation Loc;
1526
1527  /// RParen - The location of the closing paren.
1528  SourceLocation RParen;
1529
1530  /// The lhs type being queried.
1531  TypeSourceInfo *LhsType;
1532
1533  /// The rhs type being queried.
1534  TypeSourceInfo *RhsType;
1535
1536public:
1537  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1538                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1539                     bool value, SourceLocation rparen, QualType ty)
1540    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1541           lhsType->getType()->isDependentType() ||
1542           rhsType->getType()->isDependentType(),
1543           (lhsType->getType()->containsUnexpandedParameterPack() ||
1544            rhsType->getType()->containsUnexpandedParameterPack())),
1545      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1546      LhsType(lhsType), RhsType(rhsType) { }
1547
1548
1549  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1550    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1551      LhsType(), RhsType() { }
1552
1553  SourceRange getSourceRange() const {
1554    return SourceRange(Loc, RParen);
1555  }
1556
1557  BinaryTypeTrait getTrait() const {
1558    return static_cast<BinaryTypeTrait>(BTT);
1559  }
1560
1561  QualType getLhsType() const { return LhsType->getType(); }
1562  QualType getRhsType() const { return RhsType->getType(); }
1563
1564  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1565  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1566
1567  bool getValue() const { assert(!isTypeDependent()); return Value; }
1568
1569  static bool classof(const Stmt *T) {
1570    return T->getStmtClass() == BinaryTypeTraitExprClass;
1571  }
1572  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1573
1574  // Iterators
1575  child_range children() { return child_range(); }
1576
1577  friend class ASTStmtReader;
1578};
1579
1580/// \brief A reference to an overloaded function set, either an
1581/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1582class OverloadExpr : public Expr {
1583  /// The results.  These are undesugared, which is to say, they may
1584  /// include UsingShadowDecls.  Access is relative to the naming
1585  /// class.
1586  // FIXME: Allocate this data after the OverloadExpr subclass.
1587  DeclAccessPair *Results;
1588  unsigned NumResults;
1589
1590  /// The common name of these declarations.
1591  DeclarationNameInfo NameInfo;
1592
1593  /// The scope specifier, if any.
1594  NestedNameSpecifier *Qualifier;
1595
1596  /// The source range of the scope specifier.
1597  SourceRange QualifierRange;
1598
1599protected:
1600  /// True if the name was a template-id.
1601  bool HasExplicitTemplateArgs;
1602
1603  OverloadExpr(StmtClass K, ASTContext &C,
1604               NestedNameSpecifier *Qualifier, SourceRange QRange,
1605               const DeclarationNameInfo &NameInfo,
1606               const TemplateArgumentListInfo *TemplateArgs,
1607               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1608               bool KnownDependent = false,
1609               bool KnownContainsUnexpandedParameterPack = false);
1610
1611  OverloadExpr(StmtClass K, EmptyShell Empty)
1612    : Expr(K, Empty), Results(0), NumResults(0),
1613      Qualifier(0), HasExplicitTemplateArgs(false) { }
1614
1615  void initializeResults(ASTContext &C,
1616                         UnresolvedSetIterator Begin,
1617                         UnresolvedSetIterator End);
1618
1619public:
1620  struct FindResult {
1621    OverloadExpr *Expression;
1622    bool IsAddressOfOperand;
1623    bool HasFormOfMemberPointer;
1624  };
1625
1626  /// Finds the overloaded expression in the given expression of
1627  /// OverloadTy.
1628  ///
1629  /// \return the expression (which must be there) and true if it has
1630  /// the particular form of a member pointer expression
1631  static FindResult find(Expr *E) {
1632    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1633
1634    FindResult Result;
1635
1636    E = E->IgnoreParens();
1637    if (isa<UnaryOperator>(E)) {
1638      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
1639      E = cast<UnaryOperator>(E)->getSubExpr();
1640      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
1641
1642      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
1643      Result.IsAddressOfOperand = true;
1644      Result.Expression = Ovl;
1645    } else {
1646      Result.HasFormOfMemberPointer = false;
1647      Result.IsAddressOfOperand = false;
1648      Result.Expression = cast<OverloadExpr>(E);
1649    }
1650
1651    return Result;
1652  }
1653
1654  /// Gets the naming class of this lookup, if any.
1655  CXXRecordDecl *getNamingClass() const;
1656
1657  typedef UnresolvedSetImpl::iterator decls_iterator;
1658  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1659  decls_iterator decls_end() const {
1660    return UnresolvedSetIterator(Results + NumResults);
1661  }
1662
1663  /// Gets the number of declarations in the unresolved set.
1664  unsigned getNumDecls() const { return NumResults; }
1665
1666  /// Gets the full name info.
1667  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1668  void setNameInfo(const DeclarationNameInfo &N) { NameInfo = N; }
1669
1670  /// Gets the name looked up.
1671  DeclarationName getName() const { return NameInfo.getName(); }
1672  void setName(DeclarationName N) { NameInfo.setName(N); }
1673
1674  /// Gets the location of the name.
1675  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
1676  void setNameLoc(SourceLocation Loc) { NameInfo.setLoc(Loc); }
1677
1678  /// Fetches the nested-name qualifier, if one was given.
1679  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1680  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1681
1682  /// Fetches the range of the nested-name qualifier.
1683  SourceRange getQualifierRange() const { return QualifierRange; }
1684  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1685
1686  /// \brief Determines whether this expression had an explicit
1687  /// template argument list, e.g. f<int>.
1688  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1689
1690  ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
1691
1692  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1693    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1694  }
1695
1696  /// \brief Retrieves the optional explicit template arguments.
1697  /// This points to the same data as getExplicitTemplateArgs(), but
1698  /// returns null if there are no explicit template arguments.
1699  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1700    if (!hasExplicitTemplateArgs()) return 0;
1701    return &getExplicitTemplateArgs();
1702  }
1703
1704  static bool classof(const Stmt *T) {
1705    return T->getStmtClass() == UnresolvedLookupExprClass ||
1706           T->getStmtClass() == UnresolvedMemberExprClass;
1707  }
1708  static bool classof(const OverloadExpr *) { return true; }
1709
1710  friend class ASTStmtReader;
1711  friend class ASTStmtWriter;
1712};
1713
1714/// \brief A reference to a name which we were able to look up during
1715/// parsing but could not resolve to a specific declaration.  This
1716/// arises in several ways:
1717///   * we might be waiting for argument-dependent lookup
1718///   * the name might resolve to an overloaded function
1719/// and eventually:
1720///   * the lookup might have included a function template
1721/// These never include UnresolvedUsingValueDecls, which are always
1722/// class members and therefore appear only in
1723/// UnresolvedMemberLookupExprs.
1724class UnresolvedLookupExpr : public OverloadExpr {
1725  /// True if these lookup results should be extended by
1726  /// argument-dependent lookup if this is the operand of a function
1727  /// call.
1728  bool RequiresADL;
1729
1730  /// True if these lookup results are overloaded.  This is pretty
1731  /// trivially rederivable if we urgently need to kill this field.
1732  bool Overloaded;
1733
1734  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1735  /// any.  This can generally be recalculated from the context chain,
1736  /// but that can be fairly expensive for unqualified lookups.  If we
1737  /// want to improve memory use here, this could go in a union
1738  /// against the qualified-lookup bits.
1739  CXXRecordDecl *NamingClass;
1740
1741  UnresolvedLookupExpr(ASTContext &C,
1742                       CXXRecordDecl *NamingClass,
1743                       NestedNameSpecifier *Qualifier, SourceRange QRange,
1744                       const DeclarationNameInfo &NameInfo,
1745                       bool RequiresADL, bool Overloaded,
1746                       const TemplateArgumentListInfo *TemplateArgs,
1747                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
1748    : OverloadExpr(UnresolvedLookupExprClass, C, Qualifier,  QRange, NameInfo,
1749                   TemplateArgs, Begin, End),
1750      RequiresADL(RequiresADL), Overloaded(Overloaded), NamingClass(NamingClass)
1751  {}
1752
1753  UnresolvedLookupExpr(EmptyShell Empty)
1754    : OverloadExpr(UnresolvedLookupExprClass, Empty),
1755      RequiresADL(false), Overloaded(false), NamingClass(0)
1756  {}
1757
1758public:
1759  static UnresolvedLookupExpr *Create(ASTContext &C,
1760                                      CXXRecordDecl *NamingClass,
1761                                      NestedNameSpecifier *Qualifier,
1762                                      SourceRange QualifierRange,
1763                                      const DeclarationNameInfo &NameInfo,
1764                                      bool ADL, bool Overloaded,
1765                                      UnresolvedSetIterator Begin,
1766                                      UnresolvedSetIterator End) {
1767    return new(C) UnresolvedLookupExpr(C, NamingClass, Qualifier,
1768                                       QualifierRange, NameInfo, ADL,
1769                                       Overloaded, 0, Begin, End);
1770  }
1771
1772  static UnresolvedLookupExpr *Create(ASTContext &C,
1773                                      CXXRecordDecl *NamingClass,
1774                                      NestedNameSpecifier *Qualifier,
1775                                      SourceRange QualifierRange,
1776                                      const DeclarationNameInfo &NameInfo,
1777                                      bool ADL,
1778                                      const TemplateArgumentListInfo &Args,
1779                                      UnresolvedSetIterator Begin,
1780                                      UnresolvedSetIterator End);
1781
1782  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1783                                           bool HasExplicitTemplateArgs,
1784                                           unsigned NumTemplateArgs);
1785
1786  /// True if this declaration should be extended by
1787  /// argument-dependent lookup.
1788  bool requiresADL() const { return RequiresADL; }
1789  void setRequiresADL(bool V) { RequiresADL = V; }
1790
1791  /// True if this lookup is overloaded.
1792  bool isOverloaded() const { return Overloaded; }
1793  void setOverloaded(bool V) { Overloaded = V; }
1794
1795  /// Gets the 'naming class' (in the sense of C++0x
1796  /// [class.access.base]p5) of the lookup.  This is the scope
1797  /// that was looked in to find these results.
1798  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1799  void setNamingClass(CXXRecordDecl *D) { NamingClass = D; }
1800
1801  // Note that, inconsistently with the explicit-template-argument AST
1802  // nodes, users are *forbidden* from calling these methods on objects
1803  // without explicit template arguments.
1804
1805  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1806    assert(hasExplicitTemplateArgs());
1807    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1808  }
1809
1810  /// Gets a reference to the explicit template argument list.
1811  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1812    assert(hasExplicitTemplateArgs());
1813    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1814  }
1815
1816  /// \brief Retrieves the optional explicit template arguments.
1817  /// This points to the same data as getExplicitTemplateArgs(), but
1818  /// returns null if there are no explicit template arguments.
1819  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1820    if (!hasExplicitTemplateArgs()) return 0;
1821    return &getExplicitTemplateArgs();
1822  }
1823
1824  /// \brief Copies the template arguments (if present) into the given
1825  /// structure.
1826  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1827    getExplicitTemplateArgs().copyInto(List);
1828  }
1829
1830  SourceLocation getLAngleLoc() const {
1831    return getExplicitTemplateArgs().LAngleLoc;
1832  }
1833
1834  SourceLocation getRAngleLoc() const {
1835    return getExplicitTemplateArgs().RAngleLoc;
1836  }
1837
1838  TemplateArgumentLoc const *getTemplateArgs() const {
1839    return getExplicitTemplateArgs().getTemplateArgs();
1840  }
1841
1842  unsigned getNumTemplateArgs() const {
1843    return getExplicitTemplateArgs().NumTemplateArgs;
1844  }
1845
1846  SourceRange getSourceRange() const {
1847    SourceRange Range(getNameInfo().getSourceRange());
1848    if (getQualifier()) Range.setBegin(getQualifierRange().getBegin());
1849    if (hasExplicitTemplateArgs()) Range.setEnd(getRAngleLoc());
1850    return Range;
1851  }
1852
1853  child_range children() { return child_range(); }
1854
1855  static bool classof(const Stmt *T) {
1856    return T->getStmtClass() == UnresolvedLookupExprClass;
1857  }
1858  static bool classof(const UnresolvedLookupExpr *) { return true; }
1859};
1860
1861/// \brief A qualified reference to a name whose declaration cannot
1862/// yet be resolved.
1863///
1864/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
1865/// it expresses a reference to a declaration such as
1866/// X<T>::value. The difference, however, is that an
1867/// DependentScopeDeclRefExpr node is used only within C++ templates when
1868/// the qualification (e.g., X<T>::) refers to a dependent type. In
1869/// this case, X<T>::value cannot resolve to a declaration because the
1870/// declaration will differ from on instantiation of X<T> to the
1871/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
1872/// qualifier (X<T>::) and the name of the entity being referenced
1873/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
1874/// declaration can be found.
1875class DependentScopeDeclRefExpr : public Expr {
1876  /// \brief The nested-name-specifier that qualifies this unresolved
1877  /// declaration name.
1878  NestedNameSpecifierLoc QualifierLoc;
1879
1880  /// The name of the entity we will be referencing.
1881  DeclarationNameInfo NameInfo;
1882
1883  /// \brief Whether the name includes explicit template arguments.
1884  bool HasExplicitTemplateArgs;
1885
1886  DependentScopeDeclRefExpr(QualType T,
1887                            NestedNameSpecifierLoc QualifierLoc,
1888                            const DeclarationNameInfo &NameInfo,
1889                            const TemplateArgumentListInfo *Args);
1890
1891public:
1892  static DependentScopeDeclRefExpr *Create(ASTContext &C,
1893                                           NestedNameSpecifierLoc QualifierLoc,
1894                                           const DeclarationNameInfo &NameInfo,
1895                              const TemplateArgumentListInfo *TemplateArgs = 0);
1896
1897  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
1898                                                bool HasExplicitTemplateArgs,
1899                                                unsigned NumTemplateArgs);
1900
1901  /// \brief Retrieve the name that this expression refers to.
1902  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1903
1904  /// \brief Retrieve the name that this expression refers to.
1905  DeclarationName getDeclName() const { return NameInfo.getName(); }
1906
1907  /// \brief Retrieve the location of the name within the expression.
1908  SourceLocation getLocation() const { return NameInfo.getLoc(); }
1909
1910  /// \brief Retrieve the nested-name-specifier that qualifies the
1911  /// name, with source location information.
1912  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1913
1914
1915  /// \brief Retrieve the nested-name-specifier that qualifies this
1916  /// declaration.
1917  NestedNameSpecifier *getQualifier() const {
1918    return QualifierLoc.getNestedNameSpecifier();
1919  }
1920
1921  /// Determines whether this lookup had explicit template arguments.
1922  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1923
1924  // Note that, inconsistently with the explicit-template-argument AST
1925  // nodes, users are *forbidden* from calling these methods on objects
1926  // without explicit template arguments.
1927
1928  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1929    assert(hasExplicitTemplateArgs());
1930    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1931  }
1932
1933  /// Gets a reference to the explicit template argument list.
1934  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1935    assert(hasExplicitTemplateArgs());
1936    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1937  }
1938
1939  /// \brief Retrieves the optional explicit template arguments.
1940  /// This points to the same data as getExplicitTemplateArgs(), but
1941  /// returns null if there are no explicit template arguments.
1942  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1943    if (!hasExplicitTemplateArgs()) return 0;
1944    return &getExplicitTemplateArgs();
1945  }
1946
1947  /// \brief Copies the template arguments (if present) into the given
1948  /// structure.
1949  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1950    getExplicitTemplateArgs().copyInto(List);
1951  }
1952
1953  SourceLocation getLAngleLoc() const {
1954    return getExplicitTemplateArgs().LAngleLoc;
1955  }
1956
1957  SourceLocation getRAngleLoc() const {
1958    return getExplicitTemplateArgs().RAngleLoc;
1959  }
1960
1961  TemplateArgumentLoc const *getTemplateArgs() const {
1962    return getExplicitTemplateArgs().getTemplateArgs();
1963  }
1964
1965  unsigned getNumTemplateArgs() const {
1966    return getExplicitTemplateArgs().NumTemplateArgs;
1967  }
1968
1969  SourceRange getSourceRange() const {
1970    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
1971    if (hasExplicitTemplateArgs())
1972      Range.setEnd(getRAngleLoc());
1973    return Range;
1974  }
1975
1976  static bool classof(const Stmt *T) {
1977    return T->getStmtClass() == DependentScopeDeclRefExprClass;
1978  }
1979  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
1980
1981  child_range children() { return child_range(); }
1982
1983  friend class ASTStmtReader;
1984  friend class ASTStmtWriter;
1985};
1986
1987/// Represents an expression --- generally a full-expression --- which
1988/// introduces cleanups to be run at the end of the sub-expression's
1989/// evaluation.  The most common source of expression-introduced
1990/// cleanups is temporary objects in C++, but several other C++
1991/// expressions can create cleanups.
1992class ExprWithCleanups : public Expr {
1993  Stmt *SubExpr;
1994
1995  CXXTemporary **Temps;
1996  unsigned NumTemps;
1997
1998  ExprWithCleanups(ASTContext &C, Expr *SubExpr,
1999                   CXXTemporary **Temps, unsigned NumTemps);
2000
2001public:
2002  ExprWithCleanups(EmptyShell Empty)
2003    : Expr(ExprWithCleanupsClass, Empty),
2004      SubExpr(0), Temps(0), NumTemps(0) {}
2005
2006  static ExprWithCleanups *Create(ASTContext &C, Expr *SubExpr,
2007                                        CXXTemporary **Temps,
2008                                        unsigned NumTemps);
2009
2010  unsigned getNumTemporaries() const { return NumTemps; }
2011  void setNumTemporaries(ASTContext &C, unsigned N);
2012
2013  CXXTemporary *getTemporary(unsigned i) {
2014    assert(i < NumTemps && "Index out of range");
2015    return Temps[i];
2016  }
2017  const CXXTemporary *getTemporary(unsigned i) const {
2018    return const_cast<ExprWithCleanups*>(this)->getTemporary(i);
2019  }
2020  void setTemporary(unsigned i, CXXTemporary *T) {
2021    assert(i < NumTemps && "Index out of range");
2022    Temps[i] = T;
2023  }
2024
2025  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2026  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2027  void setSubExpr(Expr *E) { SubExpr = E; }
2028
2029  SourceRange getSourceRange() const {
2030    return SubExpr->getSourceRange();
2031  }
2032
2033  // Implement isa/cast/dyncast/etc.
2034  static bool classof(const Stmt *T) {
2035    return T->getStmtClass() == ExprWithCleanupsClass;
2036  }
2037  static bool classof(const ExprWithCleanups *) { return true; }
2038
2039  // Iterators
2040  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2041};
2042
2043/// \brief Describes an explicit type conversion that uses functional
2044/// notion but could not be resolved because one or more arguments are
2045/// type-dependent.
2046///
2047/// The explicit type conversions expressed by
2048/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2049/// where \c T is some type and \c a1, a2, ..., aN are values, and
2050/// either \C T is a dependent type or one or more of the \c a's is
2051/// type-dependent. For example, this would occur in a template such
2052/// as:
2053///
2054/// \code
2055///   template<typename T, typename A1>
2056///   inline T make_a(const A1& a1) {
2057///     return T(a1);
2058///   }
2059/// \endcode
2060///
2061/// When the returned expression is instantiated, it may resolve to a
2062/// constructor call, conversion function call, or some kind of type
2063/// conversion.
2064class CXXUnresolvedConstructExpr : public Expr {
2065  /// \brief The type being constructed.
2066  TypeSourceInfo *Type;
2067
2068  /// \brief The location of the left parentheses ('(').
2069  SourceLocation LParenLoc;
2070
2071  /// \brief The location of the right parentheses (')').
2072  SourceLocation RParenLoc;
2073
2074  /// \brief The number of arguments used to construct the type.
2075  unsigned NumArgs;
2076
2077  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2078                             SourceLocation LParenLoc,
2079                             Expr **Args,
2080                             unsigned NumArgs,
2081                             SourceLocation RParenLoc);
2082
2083  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2084    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2085
2086  friend class ASTStmtReader;
2087
2088public:
2089  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2090                                            TypeSourceInfo *Type,
2091                                            SourceLocation LParenLoc,
2092                                            Expr **Args,
2093                                            unsigned NumArgs,
2094                                            SourceLocation RParenLoc);
2095
2096  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2097                                                 unsigned NumArgs);
2098
2099  /// \brief Retrieve the type that is being constructed, as specified
2100  /// in the source code.
2101  QualType getTypeAsWritten() const { return Type->getType(); }
2102
2103  /// \brief Retrieve the type source information for the type being
2104  /// constructed.
2105  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2106
2107  /// \brief Retrieve the location of the left parentheses ('(') that
2108  /// precedes the argument list.
2109  SourceLocation getLParenLoc() const { return LParenLoc; }
2110  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2111
2112  /// \brief Retrieve the location of the right parentheses (')') that
2113  /// follows the argument list.
2114  SourceLocation getRParenLoc() const { return RParenLoc; }
2115  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2116
2117  /// \brief Retrieve the number of arguments.
2118  unsigned arg_size() const { return NumArgs; }
2119
2120  typedef Expr** arg_iterator;
2121  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2122  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2123
2124  typedef const Expr* const * const_arg_iterator;
2125  const_arg_iterator arg_begin() const {
2126    return reinterpret_cast<const Expr* const *>(this + 1);
2127  }
2128  const_arg_iterator arg_end() const {
2129    return arg_begin() + NumArgs;
2130  }
2131
2132  Expr *getArg(unsigned I) {
2133    assert(I < NumArgs && "Argument index out-of-range");
2134    return *(arg_begin() + I);
2135  }
2136
2137  const Expr *getArg(unsigned I) const {
2138    assert(I < NumArgs && "Argument index out-of-range");
2139    return *(arg_begin() + I);
2140  }
2141
2142  void setArg(unsigned I, Expr *E) {
2143    assert(I < NumArgs && "Argument index out-of-range");
2144    *(arg_begin() + I) = E;
2145  }
2146
2147  SourceRange getSourceRange() const;
2148
2149  static bool classof(const Stmt *T) {
2150    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2151  }
2152  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2153
2154  // Iterators
2155  child_range children() {
2156    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2157    return child_range(begin, begin + NumArgs);
2158  }
2159};
2160
2161/// \brief Represents a C++ member access expression where the actual
2162/// member referenced could not be resolved because the base
2163/// expression or the member name was dependent.
2164///
2165/// Like UnresolvedMemberExprs, these can be either implicit or
2166/// explicit accesses.  It is only possible to get one of these with
2167/// an implicit access if a qualifier is provided.
2168class CXXDependentScopeMemberExpr : public Expr {
2169  /// \brief The expression for the base pointer or class reference,
2170  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2171  Stmt *Base;
2172
2173  /// \brief The type of the base expression.  Never null, even for
2174  /// implicit accesses.
2175  QualType BaseType;
2176
2177  /// \brief Whether this member expression used the '->' operator or
2178  /// the '.' operator.
2179  bool IsArrow : 1;
2180
2181  /// \brief Whether this member expression has explicitly-specified template
2182  /// arguments.
2183  bool HasExplicitTemplateArgs : 1;
2184
2185  /// \brief The location of the '->' or '.' operator.
2186  SourceLocation OperatorLoc;
2187
2188  /// \brief The nested-name-specifier that precedes the member name, if any.
2189  NestedNameSpecifier *Qualifier;
2190
2191  /// \brief The source range covering the nested name specifier.
2192  SourceRange QualifierRange;
2193
2194  /// \brief In a qualified member access expression such as t->Base::f, this
2195  /// member stores the resolves of name lookup in the context of the member
2196  /// access expression, to be used at instantiation time.
2197  ///
2198  /// FIXME: This member, along with the Qualifier and QualifierRange, could
2199  /// be stuck into a structure that is optionally allocated at the end of
2200  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2201  NamedDecl *FirstQualifierFoundInScope;
2202
2203  /// \brief The member to which this member expression refers, which
2204  /// can be name, overloaded operator, or destructor.
2205  /// FIXME: could also be a template-id
2206  DeclarationNameInfo MemberNameInfo;
2207
2208  CXXDependentScopeMemberExpr(ASTContext &C,
2209                          Expr *Base, QualType BaseType, bool IsArrow,
2210                          SourceLocation OperatorLoc,
2211                          NestedNameSpecifier *Qualifier,
2212                          SourceRange QualifierRange,
2213                          NamedDecl *FirstQualifierFoundInScope,
2214                          DeclarationNameInfo MemberNameInfo,
2215                          const TemplateArgumentListInfo *TemplateArgs);
2216
2217public:
2218  CXXDependentScopeMemberExpr(ASTContext &C,
2219                              Expr *Base, QualType BaseType,
2220                              bool IsArrow,
2221                              SourceLocation OperatorLoc,
2222                              NestedNameSpecifier *Qualifier,
2223                              SourceRange QualifierRange,
2224                              NamedDecl *FirstQualifierFoundInScope,
2225                              DeclarationNameInfo MemberNameInfo);
2226
2227  static CXXDependentScopeMemberExpr *
2228  Create(ASTContext &C,
2229         Expr *Base, QualType BaseType, bool IsArrow,
2230         SourceLocation OperatorLoc,
2231         NestedNameSpecifier *Qualifier,
2232         SourceRange QualifierRange,
2233         NamedDecl *FirstQualifierFoundInScope,
2234         DeclarationNameInfo MemberNameInfo,
2235         const TemplateArgumentListInfo *TemplateArgs);
2236
2237  static CXXDependentScopeMemberExpr *
2238  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2239              unsigned NumTemplateArgs);
2240
2241  /// \brief True if this is an implicit access, i.e. one in which the
2242  /// member being accessed was not written in the source.  The source
2243  /// location of the operator is invalid in this case.
2244  bool isImplicitAccess() const { return Base == 0; }
2245
2246  /// \brief Retrieve the base object of this member expressions,
2247  /// e.g., the \c x in \c x.m.
2248  Expr *getBase() const {
2249    assert(!isImplicitAccess());
2250    return cast<Expr>(Base);
2251  }
2252  void setBase(Expr *E) { Base = E; }
2253
2254  QualType getBaseType() const { return BaseType; }
2255  void setBaseType(QualType T) { BaseType = T; }
2256
2257  /// \brief Determine whether this member expression used the '->'
2258  /// operator; otherwise, it used the '.' operator.
2259  bool isArrow() const { return IsArrow; }
2260  void setArrow(bool A) { IsArrow = A; }
2261
2262  /// \brief Retrieve the location of the '->' or '.' operator.
2263  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2264  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2265
2266  /// \brief Retrieve the nested-name-specifier that qualifies the member
2267  /// name.
2268  NestedNameSpecifier *getQualifier() const { return Qualifier; }
2269  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
2270
2271  /// \brief Retrieve the source range covering the nested-name-specifier
2272  /// that qualifies the member name.
2273  SourceRange getQualifierRange() const { return QualifierRange; }
2274  void setQualifierRange(SourceRange R) { QualifierRange = R; }
2275
2276  /// \brief Retrieve the first part of the nested-name-specifier that was
2277  /// found in the scope of the member access expression when the member access
2278  /// was initially parsed.
2279  ///
2280  /// This function only returns a useful result when member access expression
2281  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2282  /// returned by this function describes what was found by unqualified name
2283  /// lookup for the identifier "Base" within the scope of the member access
2284  /// expression itself. At template instantiation time, this information is
2285  /// combined with the results of name lookup into the type of the object
2286  /// expression itself (the class type of x).
2287  NamedDecl *getFirstQualifierFoundInScope() const {
2288    return FirstQualifierFoundInScope;
2289  }
2290  void setFirstQualifierFoundInScope(NamedDecl *D) {
2291    FirstQualifierFoundInScope = D;
2292  }
2293
2294  /// \brief Retrieve the name of the member that this expression
2295  /// refers to.
2296  const DeclarationNameInfo &getMemberNameInfo() const {
2297    return MemberNameInfo;
2298  }
2299  void setMemberNameInfo(const DeclarationNameInfo &N) { MemberNameInfo = N; }
2300
2301  /// \brief Retrieve the name of the member that this expression
2302  /// refers to.
2303  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2304  void setMember(DeclarationName N) { MemberNameInfo.setName(N); }
2305
2306  // \brief Retrieve the location of the name of the member that this
2307  // expression refers to.
2308  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2309  void setMemberLoc(SourceLocation L) { MemberNameInfo.setLoc(L); }
2310
2311  /// \brief Determines whether this member expression actually had a C++
2312  /// template argument list explicitly specified, e.g., x.f<int>.
2313  bool hasExplicitTemplateArgs() const {
2314    return HasExplicitTemplateArgs;
2315  }
2316
2317  /// \brief Retrieve the explicit template argument list that followed the
2318  /// member template name, if any.
2319  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2320    assert(HasExplicitTemplateArgs);
2321    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2322  }
2323
2324  /// \brief Retrieve the explicit template argument list that followed the
2325  /// member template name, if any.
2326  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2327    return const_cast<CXXDependentScopeMemberExpr *>(this)
2328             ->getExplicitTemplateArgs();
2329  }
2330
2331  /// \brief Retrieves the optional explicit template arguments.
2332  /// This points to the same data as getExplicitTemplateArgs(), but
2333  /// returns null if there are no explicit template arguments.
2334  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2335    if (!hasExplicitTemplateArgs()) return 0;
2336    return &getExplicitTemplateArgs();
2337  }
2338
2339  /// \brief Copies the template arguments (if present) into the given
2340  /// structure.
2341  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2342    getExplicitTemplateArgs().copyInto(List);
2343  }
2344
2345  /// \brief Initializes the template arguments using the given structure.
2346  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2347    getExplicitTemplateArgs().initializeFrom(List);
2348  }
2349
2350  /// \brief Retrieve the location of the left angle bracket following the
2351  /// member name ('<'), if any.
2352  SourceLocation getLAngleLoc() const {
2353    return getExplicitTemplateArgs().LAngleLoc;
2354  }
2355
2356  /// \brief Retrieve the template arguments provided as part of this
2357  /// template-id.
2358  const TemplateArgumentLoc *getTemplateArgs() const {
2359    return getExplicitTemplateArgs().getTemplateArgs();
2360  }
2361
2362  /// \brief Retrieve the number of template arguments provided as part of this
2363  /// template-id.
2364  unsigned getNumTemplateArgs() const {
2365    return getExplicitTemplateArgs().NumTemplateArgs;
2366  }
2367
2368  /// \brief Retrieve the location of the right angle bracket following the
2369  /// template arguments ('>').
2370  SourceLocation getRAngleLoc() const {
2371    return getExplicitTemplateArgs().RAngleLoc;
2372  }
2373
2374  SourceRange getSourceRange() const {
2375    SourceRange Range;
2376    if (!isImplicitAccess())
2377      Range.setBegin(Base->getSourceRange().getBegin());
2378    else if (getQualifier())
2379      Range.setBegin(getQualifierRange().getBegin());
2380    else
2381      Range.setBegin(MemberNameInfo.getBeginLoc());
2382
2383    if (hasExplicitTemplateArgs())
2384      Range.setEnd(getRAngleLoc());
2385    else
2386      Range.setEnd(MemberNameInfo.getEndLoc());
2387    return Range;
2388  }
2389
2390  static bool classof(const Stmt *T) {
2391    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2392  }
2393  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2394
2395  // Iterators
2396  child_range children() {
2397    if (isImplicitAccess()) return child_range();
2398    return child_range(&Base, &Base + 1);
2399  }
2400
2401  friend class ASTStmtReader;
2402  friend class ASTStmtWriter;
2403};
2404
2405/// \brief Represents a C++ member access expression for which lookup
2406/// produced a set of overloaded functions.
2407///
2408/// The member access may be explicit or implicit:
2409///    struct A {
2410///      int a, b;
2411///      int explicitAccess() { return this->a + this->A::b; }
2412///      int implicitAccess() { return a + A::b; }
2413///    };
2414///
2415/// In the final AST, an explicit access always becomes a MemberExpr.
2416/// An implicit access may become either a MemberExpr or a
2417/// DeclRefExpr, depending on whether the member is static.
2418class UnresolvedMemberExpr : public OverloadExpr {
2419  /// \brief Whether this member expression used the '->' operator or
2420  /// the '.' operator.
2421  bool IsArrow : 1;
2422
2423  /// \brief Whether the lookup results contain an unresolved using
2424  /// declaration.
2425  bool HasUnresolvedUsing : 1;
2426
2427  /// \brief The expression for the base pointer or class reference,
2428  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2429  /// member expression
2430  Stmt *Base;
2431
2432  /// \brief The type of the base expression;  never null.
2433  QualType BaseType;
2434
2435  /// \brief The location of the '->' or '.' operator.
2436  SourceLocation OperatorLoc;
2437
2438  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2439                       Expr *Base, QualType BaseType, bool IsArrow,
2440                       SourceLocation OperatorLoc,
2441                       NestedNameSpecifier *Qualifier,
2442                       SourceRange QualifierRange,
2443                       const DeclarationNameInfo &MemberNameInfo,
2444                       const TemplateArgumentListInfo *TemplateArgs,
2445                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2446
2447  UnresolvedMemberExpr(EmptyShell Empty)
2448    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2449      HasUnresolvedUsing(false), Base(0) { }
2450
2451public:
2452  static UnresolvedMemberExpr *
2453  Create(ASTContext &C, bool HasUnresolvedUsing,
2454         Expr *Base, QualType BaseType, bool IsArrow,
2455         SourceLocation OperatorLoc,
2456         NestedNameSpecifier *Qualifier,
2457         SourceRange QualifierRange,
2458         const DeclarationNameInfo &MemberNameInfo,
2459         const TemplateArgumentListInfo *TemplateArgs,
2460         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2461
2462  static UnresolvedMemberExpr *
2463  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2464              unsigned NumTemplateArgs);
2465
2466  /// \brief True if this is an implicit access, i.e. one in which the
2467  /// member being accessed was not written in the source.  The source
2468  /// location of the operator is invalid in this case.
2469  bool isImplicitAccess() const { return Base == 0; }
2470
2471  /// \brief Retrieve the base object of this member expressions,
2472  /// e.g., the \c x in \c x.m.
2473  Expr *getBase() {
2474    assert(!isImplicitAccess());
2475    return cast<Expr>(Base);
2476  }
2477  const Expr *getBase() const {
2478    assert(!isImplicitAccess());
2479    return cast<Expr>(Base);
2480  }
2481  void setBase(Expr *E) { Base = E; }
2482
2483  QualType getBaseType() const { return BaseType; }
2484  void setBaseType(QualType T) { BaseType = T; }
2485
2486  /// \brief Determine whether the lookup results contain an unresolved using
2487  /// declaration.
2488  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2489  void setHasUnresolvedUsing(bool V) { HasUnresolvedUsing = V; }
2490
2491  /// \brief Determine whether this member expression used the '->'
2492  /// operator; otherwise, it used the '.' operator.
2493  bool isArrow() const { return IsArrow; }
2494  void setArrow(bool A) { IsArrow = A; }
2495
2496  /// \brief Retrieve the location of the '->' or '.' operator.
2497  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2498  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2499
2500  /// \brief Retrieves the naming class of this lookup.
2501  CXXRecordDecl *getNamingClass() const;
2502
2503  /// \brief Retrieve the full name info for the member that this expression
2504  /// refers to.
2505  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
2506  void setMemberNameInfo(const DeclarationNameInfo &N) { setNameInfo(N); }
2507
2508  /// \brief Retrieve the name of the member that this expression
2509  /// refers to.
2510  DeclarationName getMemberName() const { return getName(); }
2511  void setMemberName(DeclarationName N) { setName(N); }
2512
2513  // \brief Retrieve the location of the name of the member that this
2514  // expression refers to.
2515  SourceLocation getMemberLoc() const { return getNameLoc(); }
2516  void setMemberLoc(SourceLocation L) { setNameLoc(L); }
2517
2518  /// \brief Retrieve the explicit template argument list that followed the
2519  /// member template name.
2520  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2521    assert(hasExplicitTemplateArgs());
2522    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2523  }
2524
2525  /// \brief Retrieve the explicit template argument list that followed the
2526  /// member template name, if any.
2527  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2528    assert(hasExplicitTemplateArgs());
2529    return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
2530  }
2531
2532  /// \brief Retrieves the optional explicit template arguments.
2533  /// This points to the same data as getExplicitTemplateArgs(), but
2534  /// returns null if there are no explicit template arguments.
2535  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2536    if (!hasExplicitTemplateArgs()) return 0;
2537    return &getExplicitTemplateArgs();
2538  }
2539
2540  /// \brief Copies the template arguments into the given structure.
2541  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2542    getExplicitTemplateArgs().copyInto(List);
2543  }
2544
2545  /// \brief Retrieve the location of the left angle bracket following
2546  /// the member name ('<').
2547  SourceLocation getLAngleLoc() const {
2548    return getExplicitTemplateArgs().LAngleLoc;
2549  }
2550
2551  /// \brief Retrieve the template arguments provided as part of this
2552  /// template-id.
2553  const TemplateArgumentLoc *getTemplateArgs() const {
2554    return getExplicitTemplateArgs().getTemplateArgs();
2555  }
2556
2557  /// \brief Retrieve the number of template arguments provided as
2558  /// part of this template-id.
2559  unsigned getNumTemplateArgs() const {
2560    return getExplicitTemplateArgs().NumTemplateArgs;
2561  }
2562
2563  /// \brief Retrieve the location of the right angle bracket
2564  /// following the template arguments ('>').
2565  SourceLocation getRAngleLoc() const {
2566    return getExplicitTemplateArgs().RAngleLoc;
2567  }
2568
2569  SourceRange getSourceRange() const {
2570    SourceRange Range = getMemberNameInfo().getSourceRange();
2571    if (!isImplicitAccess())
2572      Range.setBegin(Base->getSourceRange().getBegin());
2573    else if (getQualifier())
2574      Range.setBegin(getQualifierRange().getBegin());
2575
2576    if (hasExplicitTemplateArgs())
2577      Range.setEnd(getRAngleLoc());
2578    return Range;
2579  }
2580
2581  static bool classof(const Stmt *T) {
2582    return T->getStmtClass() == UnresolvedMemberExprClass;
2583  }
2584  static bool classof(const UnresolvedMemberExpr *) { return true; }
2585
2586  // Iterators
2587  child_range children() {
2588    if (isImplicitAccess()) return child_range();
2589    return child_range(&Base, &Base + 1);
2590  }
2591};
2592
2593/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
2594///
2595/// The noexcept expression tests whether a given expression might throw. Its
2596/// result is a boolean constant.
2597class CXXNoexceptExpr : public Expr {
2598  bool Value : 1;
2599  Stmt *Operand;
2600  SourceRange Range;
2601
2602  friend class ASTStmtReader;
2603
2604public:
2605  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
2606                  SourceLocation Keyword, SourceLocation RParen)
2607    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
2608           /*TypeDependent*/false,
2609           /*ValueDependent*/Val == CT_Dependent,
2610           Operand->containsUnexpandedParameterPack()),
2611      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
2612  { }
2613
2614  CXXNoexceptExpr(EmptyShell Empty)
2615    : Expr(CXXNoexceptExprClass, Empty)
2616  { }
2617
2618  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
2619
2620  SourceRange getSourceRange() const { return Range; }
2621
2622  bool getValue() const { return Value; }
2623
2624  static bool classof(const Stmt *T) {
2625    return T->getStmtClass() == CXXNoexceptExprClass;
2626  }
2627  static bool classof(const CXXNoexceptExpr *) { return true; }
2628
2629  // Iterators
2630  child_range children() { return child_range(&Operand, &Operand + 1); }
2631};
2632
2633/// \brief Represents a C++0x pack expansion that produces a sequence of
2634/// expressions.
2635///
2636/// A pack expansion expression contains a pattern (which itself is an
2637/// expression) followed by an ellipsis. For example:
2638///
2639/// \code
2640/// template<typename F, typename ...Types>
2641/// void forward(F f, Types &&...args) {
2642///   f(static_cast<Types&&>(args)...);
2643/// }
2644/// \endcode
2645///
2646/// Here, the argument to the function object \c f is a pack expansion whose
2647/// pattern is \c static_cast<Types&&>(args). When the \c forward function
2648/// template is instantiated, the pack expansion will instantiate to zero or
2649/// or more function arguments to the function object \c f.
2650class PackExpansionExpr : public Expr {
2651  SourceLocation EllipsisLoc;
2652
2653  /// \brief The number of expansions that will be produced by this pack
2654  /// expansion expression, if known.
2655  ///
2656  /// When zero, the number of expansions is not known. Otherwise, this value
2657  /// is the number of expansions + 1.
2658  unsigned NumExpansions;
2659
2660  Stmt *Pattern;
2661
2662  friend class ASTStmtReader;
2663  friend class ASTStmtWriter;
2664
2665public:
2666  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
2667                    llvm::Optional<unsigned> NumExpansions)
2668    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
2669           Pattern->getObjectKind(), /*TypeDependent=*/true,
2670           /*ValueDependent=*/true, /*ContainsUnexpandedParameterPack=*/false),
2671      EllipsisLoc(EllipsisLoc),
2672      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
2673      Pattern(Pattern) { }
2674
2675  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
2676
2677  /// \brief Retrieve the pattern of the pack expansion.
2678  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
2679
2680  /// \brief Retrieve the pattern of the pack expansion.
2681  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
2682
2683  /// \brief Retrieve the location of the ellipsis that describes this pack
2684  /// expansion.
2685  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
2686
2687  /// \brief Determine the number of expansions that will be produced when
2688  /// this pack expansion is instantiated, if already known.
2689  llvm::Optional<unsigned> getNumExpansions() const {
2690    if (NumExpansions)
2691      return NumExpansions - 1;
2692
2693    return llvm::Optional<unsigned>();
2694  }
2695
2696  SourceRange getSourceRange() const {
2697    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
2698  }
2699
2700  static bool classof(const Stmt *T) {
2701    return T->getStmtClass() == PackExpansionExprClass;
2702  }
2703  static bool classof(const PackExpansionExpr *) { return true; }
2704
2705  // Iterators
2706  child_range children() {
2707    return child_range(&Pattern, &Pattern + 1);
2708  }
2709};
2710
2711inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
2712  if (isa<UnresolvedLookupExpr>(this))
2713    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2714  else
2715    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2716}
2717
2718/// \brief Represents an expression that computes the length of a parameter
2719/// pack.
2720///
2721/// \code
2722/// template<typename ...Types>
2723/// struct count {
2724///   static const unsigned value = sizeof...(Types);
2725/// };
2726/// \endcode
2727class SizeOfPackExpr : public Expr {
2728  /// \brief The location of the 'sizeof' keyword.
2729  SourceLocation OperatorLoc;
2730
2731  /// \brief The location of the name of the parameter pack.
2732  SourceLocation PackLoc;
2733
2734  /// \brief The location of the closing parenthesis.
2735  SourceLocation RParenLoc;
2736
2737  /// \brief The length of the parameter pack, if known.
2738  ///
2739  /// When this expression is value-dependent, the length of the parameter pack
2740  /// is unknown. When this expression is not value-dependent, the length is
2741  /// known.
2742  unsigned Length;
2743
2744  /// \brief The parameter pack itself.
2745  NamedDecl *Pack;
2746
2747  friend class ASTStmtReader;
2748  friend class ASTStmtWriter;
2749
2750public:
2751  /// \brief Creates a value-dependent expression that computes the length of
2752  /// the given parameter pack.
2753  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2754                 SourceLocation PackLoc, SourceLocation RParenLoc)
2755    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2756           /*TypeDependent=*/false, /*ValueDependent=*/true,
2757           /*ContainsUnexpandedParameterPack=*/false),
2758      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2759      Length(0), Pack(Pack) { }
2760
2761  /// \brief Creates an expression that computes the length of
2762  /// the given parameter pack, which is already known.
2763  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2764                 SourceLocation PackLoc, SourceLocation RParenLoc,
2765                 unsigned Length)
2766  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2767         /*TypeDependent=*/false, /*ValueDependent=*/false,
2768         /*ContainsUnexpandedParameterPack=*/false),
2769    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2770    Length(Length), Pack(Pack) { }
2771
2772  /// \brief Create an empty expression.
2773  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
2774
2775  /// \brief Determine the location of the 'sizeof' keyword.
2776  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2777
2778  /// \brief Determine the location of the parameter pack.
2779  SourceLocation getPackLoc() const { return PackLoc; }
2780
2781  /// \brief Determine the location of the right parenthesis.
2782  SourceLocation getRParenLoc() const { return RParenLoc; }
2783
2784  /// \brief Retrieve the parameter pack.
2785  NamedDecl *getPack() const { return Pack; }
2786
2787  /// \brief Retrieve the length of the parameter pack.
2788  ///
2789  /// This routine may only be invoked when the expression is not
2790  /// value-dependent.
2791  unsigned getPackLength() const {
2792    assert(!isValueDependent() &&
2793           "Cannot get the length of a value-dependent pack size expression");
2794    return Length;
2795  }
2796
2797  SourceRange getSourceRange() const {
2798    return SourceRange(OperatorLoc, RParenLoc);
2799  }
2800
2801  static bool classof(const Stmt *T) {
2802    return T->getStmtClass() == SizeOfPackExprClass;
2803  }
2804  static bool classof(const SizeOfPackExpr *) { return true; }
2805
2806  // Iterators
2807  child_range children() { return child_range(); }
2808};
2809
2810/// \brief Represents a reference to a non-type template parameter pack that
2811/// has been substituted with a non-template argument pack.
2812///
2813/// When a pack expansion in the source code contains multiple parameter packs
2814/// and those parameter packs correspond to different levels of template
2815/// parameter lists, this node node is used to represent a non-type template
2816/// parameter pack from an outer level, which has already had its argument pack
2817/// substituted but that still lives within a pack expansion that itself
2818/// could not be instantiated. When actually performing a substitution into
2819/// that pack expansion (e.g., when all template parameters have corresponding
2820/// arguments), this type will be replaced with the appropriate underlying
2821/// expression at the current pack substitution index.
2822class SubstNonTypeTemplateParmPackExpr : public Expr {
2823  /// \brief The non-type template parameter pack itself.
2824  NonTypeTemplateParmDecl *Param;
2825
2826  /// \brief A pointer to the set of template arguments that this
2827  /// parameter pack is instantiated with.
2828  const TemplateArgument *Arguments;
2829
2830  /// \brief The number of template arguments in \c Arguments.
2831  unsigned NumArguments;
2832
2833  /// \brief The location of the non-type template parameter pack reference.
2834  SourceLocation NameLoc;
2835
2836  friend class ASTStmtReader;
2837  friend class ASTStmtWriter;
2838
2839public:
2840  SubstNonTypeTemplateParmPackExpr(QualType T,
2841                                   NonTypeTemplateParmDecl *Param,
2842                                   SourceLocation NameLoc,
2843                                   const TemplateArgument &ArgPack);
2844
2845  SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
2846    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
2847
2848  /// \brief Retrieve the non-type template parameter pack being substituted.
2849  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
2850
2851  /// \brief Retrieve the location of the parameter pack name.
2852  SourceLocation getParameterPackLocation() const { return NameLoc; }
2853
2854  /// \brief Retrieve the template argument pack containing the substituted
2855  /// template arguments.
2856  TemplateArgument getArgumentPack() const;
2857
2858  SourceRange getSourceRange() const { return NameLoc; }
2859
2860  static bool classof(const Stmt *T) {
2861    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
2862  }
2863  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
2864    return true;
2865  }
2866
2867  // Iterators
2868  child_range children() { return child_range(); }
2869};
2870
2871}  // end namespace clang
2872
2873#endif
2874