ExprCXX.h revision c2f3e7f42c8bf9e8d4393a6e8c4762dafc4f28dd
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/UnresolvedSet.h"
20#include "clang/AST/TemplateBase.h"
21
22namespace clang {
23
24class CXXConstructorDecl;
25class CXXDestructorDecl;
26class CXXMethodDecl;
27class CXXTemporary;
28class TemplateArgumentListInfo;
29
30//===--------------------------------------------------------------------===//
31// C++ Expressions.
32//===--------------------------------------------------------------------===//
33
34/// \brief A call to an overloaded operator written using operator
35/// syntax.
36///
37/// Represents a call to an overloaded operator written using operator
38/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
39/// normal call, this AST node provides better information about the
40/// syntactic representation of the call.
41///
42/// In a C++ template, this expression node kind will be used whenever
43/// any of the arguments are type-dependent. In this case, the
44/// function itself will be a (possibly empty) set of functions and
45/// function templates that were found by name lookup at template
46/// definition time.
47class CXXOperatorCallExpr : public CallExpr {
48  /// \brief The overloaded operator.
49  OverloadedOperatorKind Operator;
50
51public:
52  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
53                      Expr **args, unsigned numargs, QualType t,
54                      ExprValueKind VK, SourceLocation operatorloc)
55    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
56               operatorloc),
57      Operator(Op) {}
58  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
59    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
60
61
62  /// getOperator - Returns the kind of overloaded operator that this
63  /// expression refers to.
64  OverloadedOperatorKind getOperator() const { return Operator; }
65  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
66
67  /// getOperatorLoc - Returns the location of the operator symbol in
68  /// the expression. When @c getOperator()==OO_Call, this is the
69  /// location of the right parentheses; when @c
70  /// getOperator()==OO_Subscript, this is the location of the right
71  /// bracket.
72  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
73
74  SourceRange getSourceRange() const;
75
76  static bool classof(const Stmt *T) {
77    return T->getStmtClass() == CXXOperatorCallExprClass;
78  }
79  static bool classof(const CXXOperatorCallExpr *) { return true; }
80};
81
82/// CXXMemberCallExpr - Represents a call to a member function that
83/// may be written either with member call syntax (e.g., "obj.func()"
84/// or "objptr->func()") or with normal function-call syntax
85/// ("func()") within a member function that ends up calling a member
86/// function. The callee in either case is a MemberExpr that contains
87/// both the object argument and the member function, while the
88/// arguments are the arguments within the parentheses (not including
89/// the object argument).
90class CXXMemberCallExpr : public CallExpr {
91public:
92  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
93                    QualType t, ExprValueKind VK, SourceLocation RP)
94    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
95
96  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
97    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
98
99  /// getImplicitObjectArgument - Retrieves the implicit object
100  /// argument for the member call. For example, in "x.f(5)", this
101  /// operation would return "x".
102  Expr *getImplicitObjectArgument();
103
104  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
105  /// the implicit object argument. Note that this is may not be the same
106  /// declaration as that of the class context of the CXXMethodDecl which this
107  /// function is calling.
108  /// FIXME: Returns 0 for member pointer call exprs.
109  CXXRecordDecl *getRecordDecl();
110
111  static bool classof(const Stmt *T) {
112    return T->getStmtClass() == CXXMemberCallExprClass;
113  }
114  static bool classof(const CXXMemberCallExpr *) { return true; }
115};
116
117/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
118class CUDAKernelCallExpr : public CallExpr {
119private:
120  enum { CONFIG, END_PREARG };
121
122public:
123  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
124                     Expr **args, unsigned numargs, QualType t,
125                     ExprValueKind VK, SourceLocation RP)
126    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
127               RP) {
128    setConfig(Config);
129  }
130
131  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
132    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
133
134  const CallExpr *getConfig() const {
135    return cast_or_null<CallExpr>(getPreArg(CONFIG));
136  }
137  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
138  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
139
140  static bool classof(const Stmt *T) {
141    return T->getStmtClass() == CUDAKernelCallExprClass;
142  }
143  static bool classof(const CUDAKernelCallExpr *) { return true; }
144};
145
146/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
147/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
148/// const_cast.
149///
150/// This abstract class is inherited by all of the classes
151/// representing "named" casts, e.g., CXXStaticCastExpr,
152/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
153class CXXNamedCastExpr : public ExplicitCastExpr {
154private:
155  SourceLocation Loc; // the location of the casting op
156  SourceLocation RParenLoc; // the location of the right parenthesis
157
158protected:
159  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
160                   CastKind kind, Expr *op, unsigned PathSize,
161                   TypeSourceInfo *writtenTy, SourceLocation l,
162                   SourceLocation RParenLoc)
163    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
164      RParenLoc(RParenLoc) {}
165
166  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
167    : ExplicitCastExpr(SC, Shell, PathSize) { }
168
169  friend class ASTStmtReader;
170
171public:
172  const char *getCastName() const;
173
174  /// \brief Retrieve the location of the cast operator keyword, e.g.,
175  /// "static_cast".
176  SourceLocation getOperatorLoc() const { return Loc; }
177
178  /// \brief Retrieve the location of the closing parenthesis.
179  SourceLocation getRParenLoc() const { return RParenLoc; }
180
181  SourceRange getSourceRange() const {
182    return SourceRange(Loc, RParenLoc);
183  }
184  static bool classof(const Stmt *T) {
185    switch (T->getStmtClass()) {
186    case CXXStaticCastExprClass:
187    case CXXDynamicCastExprClass:
188    case CXXReinterpretCastExprClass:
189    case CXXConstCastExprClass:
190      return true;
191    default:
192      return false;
193    }
194  }
195  static bool classof(const CXXNamedCastExpr *) { return true; }
196};
197
198/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
199///
200/// This expression node represents a C++ static cast, e.g.,
201/// @c static_cast<int>(1.0).
202class CXXStaticCastExpr : public CXXNamedCastExpr {
203  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
204                    unsigned pathSize, TypeSourceInfo *writtenTy,
205                    SourceLocation l, SourceLocation RParenLoc)
206    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
207                       writtenTy, l, RParenLoc) {}
208
209  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
210    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
211
212public:
213  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
214                                   ExprValueKind VK, CastKind K, Expr *Op,
215                                   const CXXCastPath *Path,
216                                   TypeSourceInfo *Written, SourceLocation L,
217                                   SourceLocation RParenLoc);
218  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
219                                        unsigned PathSize);
220
221  static bool classof(const Stmt *T) {
222    return T->getStmtClass() == CXXStaticCastExprClass;
223  }
224  static bool classof(const CXXStaticCastExpr *) { return true; }
225};
226
227/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
228/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
229/// determine how to perform the type cast.
230///
231/// This expression node represents a dynamic cast, e.g.,
232/// @c dynamic_cast<Derived*>(BasePtr).
233class CXXDynamicCastExpr : public CXXNamedCastExpr {
234  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
235                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
236                     SourceLocation l, SourceLocation RParenLoc)
237    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
238                       writtenTy, l, RParenLoc) {}
239
240  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
241    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
242
243public:
244  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
245                                    ExprValueKind VK, CastKind Kind, Expr *Op,
246                                    const CXXCastPath *Path,
247                                    TypeSourceInfo *Written, SourceLocation L,
248                                    SourceLocation RParenLoc);
249
250  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
251                                         unsigned pathSize);
252
253  static bool classof(const Stmt *T) {
254    return T->getStmtClass() == CXXDynamicCastExprClass;
255  }
256  static bool classof(const CXXDynamicCastExpr *) { return true; }
257};
258
259/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
260/// [expr.reinterpret.cast]), which provides a differently-typed view
261/// of a value but performs no actual work at run time.
262///
263/// This expression node represents a reinterpret cast, e.g.,
264/// @c reinterpret_cast<int>(VoidPtr).
265class CXXReinterpretCastExpr : public CXXNamedCastExpr {
266  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
267                         Expr *op, unsigned pathSize,
268                         TypeSourceInfo *writtenTy, SourceLocation l,
269                         SourceLocation RParenLoc)
270    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
271                       pathSize, writtenTy, l, RParenLoc) {}
272
273  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
274    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
275
276public:
277  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
278                                        ExprValueKind VK, CastKind Kind,
279                                        Expr *Op, const CXXCastPath *Path,
280                                 TypeSourceInfo *WrittenTy, SourceLocation L,
281                                        SourceLocation RParenLoc);
282  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
283                                             unsigned pathSize);
284
285  static bool classof(const Stmt *T) {
286    return T->getStmtClass() == CXXReinterpretCastExprClass;
287  }
288  static bool classof(const CXXReinterpretCastExpr *) { return true; }
289};
290
291/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
292/// which can remove type qualifiers but does not change the underlying value.
293///
294/// This expression node represents a const cast, e.g.,
295/// @c const_cast<char*>(PtrToConstChar).
296class CXXConstCastExpr : public CXXNamedCastExpr {
297  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
298                   TypeSourceInfo *writtenTy, SourceLocation l,
299                   SourceLocation RParenLoc)
300    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
301                       0, writtenTy, l, RParenLoc) {}
302
303  explicit CXXConstCastExpr(EmptyShell Empty)
304    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
305
306public:
307  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
308                                  ExprValueKind VK, Expr *Op,
309                                  TypeSourceInfo *WrittenTy, SourceLocation L,
310                                  SourceLocation RParenLoc);
311  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
312
313  static bool classof(const Stmt *T) {
314    return T->getStmtClass() == CXXConstCastExprClass;
315  }
316  static bool classof(const CXXConstCastExpr *) { return true; }
317};
318
319/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
320///
321class CXXBoolLiteralExpr : public Expr {
322  bool Value;
323  SourceLocation Loc;
324public:
325  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
326    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
327         false),
328    Value(val), Loc(l) {}
329
330  explicit CXXBoolLiteralExpr(EmptyShell Empty)
331    : Expr(CXXBoolLiteralExprClass, Empty) { }
332
333  bool getValue() const { return Value; }
334  void setValue(bool V) { Value = V; }
335
336  SourceRange getSourceRange() const { return SourceRange(Loc); }
337
338  SourceLocation getLocation() const { return Loc; }
339  void setLocation(SourceLocation L) { Loc = L; }
340
341  static bool classof(const Stmt *T) {
342    return T->getStmtClass() == CXXBoolLiteralExprClass;
343  }
344  static bool classof(const CXXBoolLiteralExpr *) { return true; }
345
346  // Iterators
347  child_range children() { return child_range(); }
348};
349
350/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
351class CXXNullPtrLiteralExpr : public Expr {
352  SourceLocation Loc;
353public:
354  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
355    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
356         false),
357    Loc(l) {}
358
359  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
360    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
361
362  SourceRange getSourceRange() const { return SourceRange(Loc); }
363
364  SourceLocation getLocation() const { return Loc; }
365  void setLocation(SourceLocation L) { Loc = L; }
366
367  static bool classof(const Stmt *T) {
368    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
369  }
370  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
371
372  child_range children() { return child_range(); }
373};
374
375/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
376/// the type_info that corresponds to the supplied type, or the (possibly
377/// dynamic) type of the supplied expression.
378///
379/// This represents code like @c typeid(int) or @c typeid(*objPtr)
380class CXXTypeidExpr : public Expr {
381private:
382  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
383  SourceRange Range;
384
385public:
386  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
387    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
388           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
389           false,
390           // typeid is value-dependent if the type or expression are dependent
391           Operand->getType()->isDependentType(),
392           Operand->getType()->containsUnexpandedParameterPack()),
393      Operand(Operand), Range(R) { }
394
395  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
396    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
397        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
398           false,
399        // typeid is value-dependent if the type or expression are dependent
400           Operand->isTypeDependent() || Operand->isValueDependent(),
401           Operand->containsUnexpandedParameterPack()),
402      Operand(Operand), Range(R) { }
403
404  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
405    : Expr(CXXTypeidExprClass, Empty) {
406    if (isExpr)
407      Operand = (Expr*)0;
408    else
409      Operand = (TypeSourceInfo*)0;
410  }
411
412  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
413
414  /// \brief Retrieves the type operand of this typeid() expression after
415  /// various required adjustments (removing reference types, cv-qualifiers).
416  QualType getTypeOperand() const;
417
418  /// \brief Retrieve source information for the type operand.
419  TypeSourceInfo *getTypeOperandSourceInfo() const {
420    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
421    return Operand.get<TypeSourceInfo *>();
422  }
423
424  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
425    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
426    Operand = TSI;
427  }
428
429  Expr *getExprOperand() const {
430    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
431    return static_cast<Expr*>(Operand.get<Stmt *>());
432  }
433
434  void setExprOperand(Expr *E) {
435    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
436    Operand = E;
437  }
438
439  SourceRange getSourceRange() const { return Range; }
440  void setSourceRange(SourceRange R) { Range = R; }
441
442  static bool classof(const Stmt *T) {
443    return T->getStmtClass() == CXXTypeidExprClass;
444  }
445  static bool classof(const CXXTypeidExpr *) { return true; }
446
447  // Iterators
448  child_range children() {
449    if (isTypeOperand()) return child_range();
450    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
451    return child_range(begin, begin + 1);
452  }
453};
454
455/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
456/// the _GUID that corresponds to the supplied type or expression.
457///
458/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
459class CXXUuidofExpr : public Expr {
460private:
461  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
462  SourceRange Range;
463
464public:
465  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
466    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
467           false, Operand->getType()->isDependentType(),
468           Operand->getType()->containsUnexpandedParameterPack()),
469      Operand(Operand), Range(R) { }
470
471  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
472    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
473           false, Operand->isTypeDependent(),
474           Operand->containsUnexpandedParameterPack()),
475      Operand(Operand), Range(R) { }
476
477  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
478    : Expr(CXXUuidofExprClass, Empty) {
479    if (isExpr)
480      Operand = (Expr*)0;
481    else
482      Operand = (TypeSourceInfo*)0;
483  }
484
485  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
486
487  /// \brief Retrieves the type operand of this __uuidof() expression after
488  /// various required adjustments (removing reference types, cv-qualifiers).
489  QualType getTypeOperand() const;
490
491  /// \brief Retrieve source information for the type operand.
492  TypeSourceInfo *getTypeOperandSourceInfo() const {
493    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
494    return Operand.get<TypeSourceInfo *>();
495  }
496
497  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
498    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
499    Operand = TSI;
500  }
501
502  Expr *getExprOperand() const {
503    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
504    return static_cast<Expr*>(Operand.get<Stmt *>());
505  }
506
507  void setExprOperand(Expr *E) {
508    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
509    Operand = E;
510  }
511
512  SourceRange getSourceRange() const { return Range; }
513  void setSourceRange(SourceRange R) { Range = R; }
514
515  static bool classof(const Stmt *T) {
516    return T->getStmtClass() == CXXUuidofExprClass;
517  }
518  static bool classof(const CXXUuidofExpr *) { return true; }
519
520  // Iterators
521  child_range children() {
522    if (isTypeOperand()) return child_range();
523    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
524    return child_range(begin, begin + 1);
525  }
526};
527
528/// CXXThisExpr - Represents the "this" expression in C++, which is a
529/// pointer to the object on which the current member function is
530/// executing (C++ [expr.prim]p3). Example:
531///
532/// @code
533/// class Foo {
534/// public:
535///   void bar();
536///   void test() { this->bar(); }
537/// };
538/// @endcode
539class CXXThisExpr : public Expr {
540  SourceLocation Loc;
541  bool Implicit : 1;
542
543public:
544  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
545    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
546           // 'this' is type-dependent if the class type of the enclosing
547           // member function is dependent (C++ [temp.dep.expr]p2)
548           Type->isDependentType(), Type->isDependentType(),
549           /*ContainsUnexpandedParameterPack=*/false),
550      Loc(L), Implicit(isImplicit) { }
551
552  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
553
554  SourceLocation getLocation() const { return Loc; }
555  void setLocation(SourceLocation L) { Loc = L; }
556
557  SourceRange getSourceRange() const { return SourceRange(Loc); }
558
559  bool isImplicit() const { return Implicit; }
560  void setImplicit(bool I) { Implicit = I; }
561
562  static bool classof(const Stmt *T) {
563    return T->getStmtClass() == CXXThisExprClass;
564  }
565  static bool classof(const CXXThisExpr *) { return true; }
566
567  // Iterators
568  child_range children() { return child_range(); }
569};
570
571///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
572///  'throw' and 'throw' assignment-expression.  When
573///  assignment-expression isn't present, Op will be null.
574///
575class CXXThrowExpr : public Expr {
576  Stmt *Op;
577  SourceLocation ThrowLoc;
578public:
579  // Ty is the void type which is used as the result type of the
580  // exepression.  The l is the location of the throw keyword.  expr
581  // can by null, if the optional expression to throw isn't present.
582  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
583    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
584         expr && expr->containsUnexpandedParameterPack()),
585    Op(expr), ThrowLoc(l) {}
586  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
587
588  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
589  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
590  void setSubExpr(Expr *E) { Op = E; }
591
592  SourceLocation getThrowLoc() const { return ThrowLoc; }
593  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
594
595  SourceRange getSourceRange() const {
596    if (getSubExpr() == 0)
597      return SourceRange(ThrowLoc, ThrowLoc);
598    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
599  }
600
601  static bool classof(const Stmt *T) {
602    return T->getStmtClass() == CXXThrowExprClass;
603  }
604  static bool classof(const CXXThrowExpr *) { return true; }
605
606  // Iterators
607  child_range children() {
608    return child_range(&Op, Op ? &Op+1 : &Op);
609  }
610};
611
612/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
613/// function call argument that was created from the corresponding
614/// parameter's default argument, when the call did not explicitly
615/// supply arguments for all of the parameters.
616class CXXDefaultArgExpr : public Expr {
617  /// \brief The parameter whose default is being used.
618  ///
619  /// When the bit is set, the subexpression is stored after the
620  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
621  /// actual default expression is the subexpression.
622  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
623
624  /// \brief The location where the default argument expression was used.
625  SourceLocation Loc;
626
627  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
628    : Expr(SC,
629           param->hasUnparsedDefaultArg()
630             ? param->getType().getNonReferenceType()
631             : param->getDefaultArg()->getType(),
632           param->getDefaultArg()->getValueKind(),
633           param->getDefaultArg()->getObjectKind(), false, false, false),
634      Param(param, false), Loc(Loc) { }
635
636  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
637                    Expr *SubExpr)
638    : Expr(SC, SubExpr->getType(),
639           SubExpr->getValueKind(), SubExpr->getObjectKind(),
640           false, false, false),
641      Param(param, true), Loc(Loc) {
642    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
643  }
644
645public:
646  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
647
648
649  // Param is the parameter whose default argument is used by this
650  // expression.
651  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
652                                   ParmVarDecl *Param) {
653    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
654  }
655
656  // Param is the parameter whose default argument is used by this
657  // expression, and SubExpr is the expression that will actually be used.
658  static CXXDefaultArgExpr *Create(ASTContext &C,
659                                   SourceLocation Loc,
660                                   ParmVarDecl *Param,
661                                   Expr *SubExpr);
662
663  // Retrieve the parameter that the argument was created from.
664  const ParmVarDecl *getParam() const { return Param.getPointer(); }
665  ParmVarDecl *getParam() { return Param.getPointer(); }
666
667  // Retrieve the actual argument to the function call.
668  const Expr *getExpr() const {
669    if (Param.getInt())
670      return *reinterpret_cast<Expr const * const*> (this + 1);
671    return getParam()->getDefaultArg();
672  }
673  Expr *getExpr() {
674    if (Param.getInt())
675      return *reinterpret_cast<Expr **> (this + 1);
676    return getParam()->getDefaultArg();
677  }
678
679  /// \brief Retrieve the location where this default argument was actually
680  /// used.
681  SourceLocation getUsedLocation() const { return Loc; }
682
683  SourceRange getSourceRange() const {
684    // Default argument expressions have no representation in the
685    // source, so they have an empty source range.
686    return SourceRange();
687  }
688
689  static bool classof(const Stmt *T) {
690    return T->getStmtClass() == CXXDefaultArgExprClass;
691  }
692  static bool classof(const CXXDefaultArgExpr *) { return true; }
693
694  // Iterators
695  child_range children() { return child_range(); }
696
697  friend class ASTStmtReader;
698  friend class ASTStmtWriter;
699};
700
701/// CXXTemporary - Represents a C++ temporary.
702class CXXTemporary {
703  /// Destructor - The destructor that needs to be called.
704  const CXXDestructorDecl *Destructor;
705
706  CXXTemporary(const CXXDestructorDecl *destructor)
707    : Destructor(destructor) { }
708
709public:
710  static CXXTemporary *Create(ASTContext &C,
711                              const CXXDestructorDecl *Destructor);
712
713  const CXXDestructorDecl *getDestructor() const { return Destructor; }
714};
715
716/// \brief Represents binding an expression to a temporary.
717///
718/// This ensures the destructor is called for the temporary. It should only be
719/// needed for non-POD, non-trivially destructable class types. For example:
720///
721/// \code
722///   struct S {
723///     S() { }  // User defined constructor makes S non-POD.
724///     ~S() { } // User defined destructor makes it non-trivial.
725///   };
726///   void test() {
727///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
728///   }
729/// \endcode
730class CXXBindTemporaryExpr : public Expr {
731  CXXTemporary *Temp;
732
733  Stmt *SubExpr;
734
735  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
736   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
737          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
738          SubExpr->isValueDependent(),
739          SubExpr->containsUnexpandedParameterPack()),
740     Temp(temp), SubExpr(SubExpr) { }
741
742public:
743  CXXBindTemporaryExpr(EmptyShell Empty)
744    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
745
746  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
747                                      Expr* SubExpr);
748
749  CXXTemporary *getTemporary() { return Temp; }
750  const CXXTemporary *getTemporary() const { return Temp; }
751  void setTemporary(CXXTemporary *T) { Temp = T; }
752
753  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
754  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
755  void setSubExpr(Expr *E) { SubExpr = E; }
756
757  SourceRange getSourceRange() const {
758    return SubExpr->getSourceRange();
759  }
760
761  // Implement isa/cast/dyncast/etc.
762  static bool classof(const Stmt *T) {
763    return T->getStmtClass() == CXXBindTemporaryExprClass;
764  }
765  static bool classof(const CXXBindTemporaryExpr *) { return true; }
766
767  // Iterators
768  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
769};
770
771/// CXXConstructExpr - Represents a call to a C++ constructor.
772class CXXConstructExpr : public Expr {
773public:
774  enum ConstructionKind {
775    CK_Complete,
776    CK_NonVirtualBase,
777    CK_VirtualBase
778  };
779
780private:
781  CXXConstructorDecl *Constructor;
782
783  SourceLocation Loc;
784  SourceRange ParenRange;
785  bool Elidable : 1;
786  bool ZeroInitialization : 1;
787  unsigned ConstructKind : 2;
788  Stmt **Args;
789  unsigned NumArgs;
790
791protected:
792  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
793                   SourceLocation Loc,
794                   CXXConstructorDecl *d, bool elidable,
795                   Expr **args, unsigned numargs,
796                   bool ZeroInitialization = false,
797                   ConstructionKind ConstructKind = CK_Complete,
798                   SourceRange ParenRange = SourceRange());
799
800  /// \brief Construct an empty C++ construction expression.
801  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
802    : Expr(SC, Empty), Constructor(0), Elidable(0), ZeroInitialization(0),
803      ConstructKind(0), Args(0), NumArgs(0) { }
804
805public:
806  /// \brief Construct an empty C++ construction expression.
807  explicit CXXConstructExpr(EmptyShell Empty)
808    : Expr(CXXConstructExprClass, Empty), Constructor(0),
809      Elidable(0), ZeroInitialization(0),
810      ConstructKind(0), Args(0), NumArgs(0) { }
811
812  static CXXConstructExpr *Create(ASTContext &C, QualType T,
813                                  SourceLocation Loc,
814                                  CXXConstructorDecl *D, bool Elidable,
815                                  Expr **Args, unsigned NumArgs,
816                                  bool ZeroInitialization = false,
817                                  ConstructionKind ConstructKind = CK_Complete,
818                                  SourceRange ParenRange = SourceRange());
819
820
821  CXXConstructorDecl* getConstructor() const { return Constructor; }
822  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
823
824  SourceLocation getLocation() const { return Loc; }
825  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
826
827  /// \brief Whether this construction is elidable.
828  bool isElidable() const { return Elidable; }
829  void setElidable(bool E) { Elidable = E; }
830
831  /// \brief Whether this construction first requires
832  /// zero-initialization before the initializer is called.
833  bool requiresZeroInitialization() const { return ZeroInitialization; }
834  void setRequiresZeroInitialization(bool ZeroInit) {
835    ZeroInitialization = ZeroInit;
836  }
837
838  /// \brief Determines whether this constructor is actually constructing
839  /// a base class (rather than a complete object).
840  ConstructionKind getConstructionKind() const {
841    return (ConstructionKind)ConstructKind;
842  }
843  void setConstructionKind(ConstructionKind CK) {
844    ConstructKind = CK;
845  }
846
847  typedef ExprIterator arg_iterator;
848  typedef ConstExprIterator const_arg_iterator;
849
850  arg_iterator arg_begin() { return Args; }
851  arg_iterator arg_end() { return Args + NumArgs; }
852  const_arg_iterator arg_begin() const { return Args; }
853  const_arg_iterator arg_end() const { return Args + NumArgs; }
854
855  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
856  unsigned getNumArgs() const { return NumArgs; }
857
858  /// getArg - Return the specified argument.
859  Expr *getArg(unsigned Arg) {
860    assert(Arg < NumArgs && "Arg access out of range!");
861    return cast<Expr>(Args[Arg]);
862  }
863  const Expr *getArg(unsigned Arg) const {
864    assert(Arg < NumArgs && "Arg access out of range!");
865    return cast<Expr>(Args[Arg]);
866  }
867
868  /// setArg - Set the specified argument.
869  void setArg(unsigned Arg, Expr *ArgExpr) {
870    assert(Arg < NumArgs && "Arg access out of range!");
871    Args[Arg] = ArgExpr;
872  }
873
874  SourceRange getSourceRange() const;
875  SourceRange getParenRange() const { return ParenRange; }
876
877  static bool classof(const Stmt *T) {
878    return T->getStmtClass() == CXXConstructExprClass ||
879      T->getStmtClass() == CXXTemporaryObjectExprClass;
880  }
881  static bool classof(const CXXConstructExpr *) { return true; }
882
883  // Iterators
884  child_range children() {
885    return child_range(&Args[0], &Args[0]+NumArgs);
886  }
887
888  friend class ASTStmtReader;
889};
890
891/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
892/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
893/// x = int(0.5);
894class CXXFunctionalCastExpr : public ExplicitCastExpr {
895  SourceLocation TyBeginLoc;
896  SourceLocation RParenLoc;
897
898  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
899                        TypeSourceInfo *writtenTy,
900                        SourceLocation tyBeginLoc, CastKind kind,
901                        Expr *castExpr, unsigned pathSize,
902                        SourceLocation rParenLoc)
903    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
904                       castExpr, pathSize, writtenTy),
905      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
906
907  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
908    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
909
910public:
911  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
912                                       ExprValueKind VK,
913                                       TypeSourceInfo *Written,
914                                       SourceLocation TyBeginLoc,
915                                       CastKind Kind, Expr *Op,
916                                       const CXXCastPath *Path,
917                                       SourceLocation RPLoc);
918  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
919                                            unsigned PathSize);
920
921  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
922  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
923  SourceLocation getRParenLoc() const { return RParenLoc; }
924  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
925
926  SourceRange getSourceRange() const {
927    return SourceRange(TyBeginLoc, RParenLoc);
928  }
929  static bool classof(const Stmt *T) {
930    return T->getStmtClass() == CXXFunctionalCastExprClass;
931  }
932  static bool classof(const CXXFunctionalCastExpr *) { return true; }
933};
934
935/// @brief Represents a C++ functional cast expression that builds a
936/// temporary object.
937///
938/// This expression type represents a C++ "functional" cast
939/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
940/// constructor to build a temporary object. With N == 1 arguments the
941/// functional cast expression will be represented by CXXFunctionalCastExpr.
942/// Example:
943/// @code
944/// struct X { X(int, float); }
945///
946/// X create_X() {
947///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
948/// };
949/// @endcode
950class CXXTemporaryObjectExpr : public CXXConstructExpr {
951  TypeSourceInfo *Type;
952
953public:
954  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
955                         TypeSourceInfo *Type,
956                         Expr **Args,unsigned NumArgs,
957                         SourceRange parenRange,
958                         bool ZeroInitialization = false);
959  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
960    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
961
962  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
963
964  SourceRange getSourceRange() const;
965
966  static bool classof(const Stmt *T) {
967    return T->getStmtClass() == CXXTemporaryObjectExprClass;
968  }
969  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
970
971  friend class ASTStmtReader;
972};
973
974/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
975/// Expression "T()" which creates a value-initialized rvalue of type
976/// T, which is a non-class type.
977///
978class CXXScalarValueInitExpr : public Expr {
979  SourceLocation RParenLoc;
980  TypeSourceInfo *TypeInfo;
981
982  friend class ASTStmtReader;
983
984public:
985  /// \brief Create an explicitly-written scalar-value initialization
986  /// expression.
987  CXXScalarValueInitExpr(QualType Type,
988                         TypeSourceInfo *TypeInfo,
989                         SourceLocation rParenLoc ) :
990    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
991         false, false, false),
992    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
993
994  explicit CXXScalarValueInitExpr(EmptyShell Shell)
995    : Expr(CXXScalarValueInitExprClass, Shell) { }
996
997  TypeSourceInfo *getTypeSourceInfo() const {
998    return TypeInfo;
999  }
1000
1001  SourceLocation getRParenLoc() const { return RParenLoc; }
1002
1003  SourceRange getSourceRange() const;
1004
1005  static bool classof(const Stmt *T) {
1006    return T->getStmtClass() == CXXScalarValueInitExprClass;
1007  }
1008  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1009
1010  // Iterators
1011  child_range children() { return child_range(); }
1012};
1013
1014/// CXXNewExpr - A new expression for memory allocation and constructor calls,
1015/// e.g: "new CXXNewExpr(foo)".
1016class CXXNewExpr : public Expr {
1017  // Was the usage ::new, i.e. is the global new to be used?
1018  bool GlobalNew : 1;
1019  // Is there an initializer? If not, built-ins are uninitialized, else they're
1020  // value-initialized.
1021  bool Initializer : 1;
1022  // Do we allocate an array? If so, the first SubExpr is the size expression.
1023  bool Array : 1;
1024  // If this is an array allocation, does the usual deallocation
1025  // function for the allocated type want to know the allocated size?
1026  bool UsualArrayDeleteWantsSize : 1;
1027  // The number of placement new arguments.
1028  unsigned NumPlacementArgs : 14;
1029  // The number of constructor arguments. This may be 1 even for non-class
1030  // types; use the pseudo copy constructor.
1031  unsigned NumConstructorArgs : 14;
1032  // Contains an optional array size expression, any number of optional
1033  // placement arguments, and any number of optional constructor arguments,
1034  // in that order.
1035  Stmt **SubExprs;
1036  // Points to the allocation function used.
1037  FunctionDecl *OperatorNew;
1038  // Points to the deallocation function used in case of error. May be null.
1039  FunctionDecl *OperatorDelete;
1040  // Points to the constructor used. Cannot be null if AllocType is a record;
1041  // it would still point at the default constructor (even an implicit one).
1042  // Must be null for all other types.
1043  CXXConstructorDecl *Constructor;
1044
1045  /// \brief The allocated type-source information, as written in the source.
1046  TypeSourceInfo *AllocatedTypeInfo;
1047
1048  /// \brief If the allocated type was expressed as a parenthesized type-id,
1049  /// the source range covering the parenthesized type-id.
1050  SourceRange TypeIdParens;
1051
1052  SourceLocation StartLoc;
1053  SourceLocation EndLoc;
1054  SourceLocation ConstructorLParen;
1055  SourceLocation ConstructorRParen;
1056
1057  friend class ASTStmtReader;
1058public:
1059  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1060             Expr **placementArgs, unsigned numPlaceArgs,
1061             SourceRange TypeIdParens,
1062             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1063             Expr **constructorArgs, unsigned numConsArgs,
1064             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1065             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1066             SourceLocation startLoc, SourceLocation endLoc,
1067             SourceLocation constructorLParen,
1068             SourceLocation constructorRParen);
1069  explicit CXXNewExpr(EmptyShell Shell)
1070    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1071
1072  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1073                         unsigned numConsArgs);
1074
1075  QualType getAllocatedType() const {
1076    assert(getType()->isPointerType());
1077    return getType()->getAs<PointerType>()->getPointeeType();
1078  }
1079
1080  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1081    return AllocatedTypeInfo;
1082  }
1083
1084  /// \brief True if the allocation result needs to be null-checked.
1085  /// C++0x [expr.new]p13:
1086  ///   If the allocation function returns null, initialization shall
1087  ///   not be done, the deallocation function shall not be called,
1088  ///   and the value of the new-expression shall be null.
1089  /// An allocation function is not allowed to return null unless it
1090  /// has a non-throwing exception-specification.  The '03 rule is
1091  /// identical except that the definition of a non-throwing
1092  /// exception specification is just "is it throw()?".
1093  bool shouldNullCheckAllocation() const;
1094
1095  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1096  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1097  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1098  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1099  CXXConstructorDecl *getConstructor() const { return Constructor; }
1100  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1101
1102  bool isArray() const { return Array; }
1103  Expr *getArraySize() {
1104    return Array ? cast<Expr>(SubExprs[0]) : 0;
1105  }
1106  const Expr *getArraySize() const {
1107    return Array ? cast<Expr>(SubExprs[0]) : 0;
1108  }
1109
1110  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1111  Expr **getPlacementArgs() {
1112    return reinterpret_cast<Expr **>(SubExprs + Array);
1113  }
1114
1115  Expr *getPlacementArg(unsigned i) {
1116    assert(i < NumPlacementArgs && "Index out of range");
1117    return cast<Expr>(SubExprs[Array + i]);
1118  }
1119  const Expr *getPlacementArg(unsigned i) const {
1120    assert(i < NumPlacementArgs && "Index out of range");
1121    return cast<Expr>(SubExprs[Array + i]);
1122  }
1123
1124  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1125  SourceRange getTypeIdParens() const { return TypeIdParens; }
1126
1127  bool isGlobalNew() const { return GlobalNew; }
1128  bool hasInitializer() const { return Initializer; }
1129
1130  /// Answers whether the usual array deallocation function for the
1131  /// allocated type expects the size of the allocation as a
1132  /// parameter.
1133  bool doesUsualArrayDeleteWantSize() const {
1134    return UsualArrayDeleteWantsSize;
1135  }
1136
1137  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1138
1139  Expr **getConstructorArgs() {
1140    return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
1141  }
1142
1143  Expr *getConstructorArg(unsigned i) {
1144    assert(i < NumConstructorArgs && "Index out of range");
1145    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1146  }
1147  const Expr *getConstructorArg(unsigned i) const {
1148    assert(i < NumConstructorArgs && "Index out of range");
1149    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1150  }
1151
1152  typedef ExprIterator arg_iterator;
1153  typedef ConstExprIterator const_arg_iterator;
1154
1155  arg_iterator placement_arg_begin() {
1156    return SubExprs + Array;
1157  }
1158  arg_iterator placement_arg_end() {
1159    return SubExprs + Array + getNumPlacementArgs();
1160  }
1161  const_arg_iterator placement_arg_begin() const {
1162    return SubExprs + Array;
1163  }
1164  const_arg_iterator placement_arg_end() const {
1165    return SubExprs + Array + getNumPlacementArgs();
1166  }
1167
1168  arg_iterator constructor_arg_begin() {
1169    return SubExprs + Array + getNumPlacementArgs();
1170  }
1171  arg_iterator constructor_arg_end() {
1172    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1173  }
1174  const_arg_iterator constructor_arg_begin() const {
1175    return SubExprs + Array + getNumPlacementArgs();
1176  }
1177  const_arg_iterator constructor_arg_end() const {
1178    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1179  }
1180
1181  typedef Stmt **raw_arg_iterator;
1182  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1183  raw_arg_iterator raw_arg_end() {
1184    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1185  }
1186  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1187  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1188
1189  SourceLocation getStartLoc() const { return StartLoc; }
1190  SourceLocation getEndLoc() const { return EndLoc; }
1191
1192  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1193  SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1194
1195  SourceRange getSourceRange() const {
1196    return SourceRange(StartLoc, EndLoc);
1197  }
1198
1199  static bool classof(const Stmt *T) {
1200    return T->getStmtClass() == CXXNewExprClass;
1201  }
1202  static bool classof(const CXXNewExpr *) { return true; }
1203
1204  // Iterators
1205  child_range children() {
1206    return child_range(&SubExprs[0],
1207                       &SubExprs[0] + Array + getNumPlacementArgs()
1208                         + getNumConstructorArgs());
1209  }
1210};
1211
1212/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1213/// calls, e.g. "delete[] pArray".
1214class CXXDeleteExpr : public Expr {
1215  // Is this a forced global delete, i.e. "::delete"?
1216  bool GlobalDelete : 1;
1217  // Is this the array form of delete, i.e. "delete[]"?
1218  bool ArrayForm : 1;
1219  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1220  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1221  // will be true).
1222  bool ArrayFormAsWritten : 1;
1223  // Does the usual deallocation function for the element type require
1224  // a size_t argument?
1225  bool UsualArrayDeleteWantsSize : 1;
1226  // Points to the operator delete overload that is used. Could be a member.
1227  FunctionDecl *OperatorDelete;
1228  // The pointer expression to be deleted.
1229  Stmt *Argument;
1230  // Location of the expression.
1231  SourceLocation Loc;
1232public:
1233  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1234                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1235                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1236    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1237           arg->containsUnexpandedParameterPack()),
1238      GlobalDelete(globalDelete),
1239      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1240      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1241      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1242  explicit CXXDeleteExpr(EmptyShell Shell)
1243    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1244
1245  bool isGlobalDelete() const { return GlobalDelete; }
1246  bool isArrayForm() const { return ArrayForm; }
1247  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1248
1249  /// Answers whether the usual array deallocation function for the
1250  /// allocated type expects the size of the allocation as a
1251  /// parameter.  This can be true even if the actual deallocation
1252  /// function that we're using doesn't want a size.
1253  bool doesUsualArrayDeleteWantSize() const {
1254    return UsualArrayDeleteWantsSize;
1255  }
1256
1257  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1258
1259  Expr *getArgument() { return cast<Expr>(Argument); }
1260  const Expr *getArgument() const { return cast<Expr>(Argument); }
1261
1262  /// \brief Retrieve the type being destroyed.  If the type being
1263  /// destroyed is a dependent type which may or may not be a pointer,
1264  /// return an invalid type.
1265  QualType getDestroyedType() const;
1266
1267  SourceRange getSourceRange() const {
1268    return SourceRange(Loc, Argument->getLocEnd());
1269  }
1270
1271  static bool classof(const Stmt *T) {
1272    return T->getStmtClass() == CXXDeleteExprClass;
1273  }
1274  static bool classof(const CXXDeleteExpr *) { return true; }
1275
1276  // Iterators
1277  child_range children() { return child_range(&Argument, &Argument+1); }
1278
1279  friend class ASTStmtReader;
1280};
1281
1282/// \brief Structure used to store the type being destroyed by a
1283/// pseudo-destructor expression.
1284class PseudoDestructorTypeStorage {
1285  /// \brief Either the type source information or the name of the type, if
1286  /// it couldn't be resolved due to type-dependence.
1287  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1288
1289  /// \brief The starting source location of the pseudo-destructor type.
1290  SourceLocation Location;
1291
1292public:
1293  PseudoDestructorTypeStorage() { }
1294
1295  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1296    : Type(II), Location(Loc) { }
1297
1298  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1299
1300  TypeSourceInfo *getTypeSourceInfo() const {
1301    return Type.dyn_cast<TypeSourceInfo *>();
1302  }
1303
1304  IdentifierInfo *getIdentifier() const {
1305    return Type.dyn_cast<IdentifierInfo *>();
1306  }
1307
1308  SourceLocation getLocation() const { return Location; }
1309};
1310
1311/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1312///
1313/// A pseudo-destructor is an expression that looks like a member access to a
1314/// destructor of a scalar type, except that scalar types don't have
1315/// destructors. For example:
1316///
1317/// \code
1318/// typedef int T;
1319/// void f(int *p) {
1320///   p->T::~T();
1321/// }
1322/// \endcode
1323///
1324/// Pseudo-destructors typically occur when instantiating templates such as:
1325///
1326/// \code
1327/// template<typename T>
1328/// void destroy(T* ptr) {
1329///   ptr->T::~T();
1330/// }
1331/// \endcode
1332///
1333/// for scalar types. A pseudo-destructor expression has no run-time semantics
1334/// beyond evaluating the base expression.
1335class CXXPseudoDestructorExpr : public Expr {
1336  /// \brief The base expression (that is being destroyed).
1337  Stmt *Base;
1338
1339  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1340  /// period ('.').
1341  bool IsArrow : 1;
1342
1343  /// \brief The location of the '.' or '->' operator.
1344  SourceLocation OperatorLoc;
1345
1346  /// \brief The nested-name-specifier that follows the operator, if present.
1347  NestedNameSpecifierLoc QualifierLoc;
1348
1349  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1350  /// expression.
1351  TypeSourceInfo *ScopeType;
1352
1353  /// \brief The location of the '::' in a qualified pseudo-destructor
1354  /// expression.
1355  SourceLocation ColonColonLoc;
1356
1357  /// \brief The location of the '~'.
1358  SourceLocation TildeLoc;
1359
1360  /// \brief The type being destroyed, or its name if we were unable to
1361  /// resolve the name.
1362  PseudoDestructorTypeStorage DestroyedType;
1363
1364  friend class ASTStmtReader;
1365
1366public:
1367  CXXPseudoDestructorExpr(ASTContext &Context,
1368                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1369                          NestedNameSpecifierLoc QualifierLoc,
1370                          TypeSourceInfo *ScopeType,
1371                          SourceLocation ColonColonLoc,
1372                          SourceLocation TildeLoc,
1373                          PseudoDestructorTypeStorage DestroyedType);
1374
1375  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1376    : Expr(CXXPseudoDestructorExprClass, Shell),
1377      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1378
1379  Expr *getBase() const { return cast<Expr>(Base); }
1380
1381  /// \brief Determines whether this member expression actually had
1382  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1383  /// x->Base::foo.
1384  bool hasQualifier() const { return QualifierLoc; }
1385
1386  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1387  /// with source-location information.
1388  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1389
1390  /// \brief If the member name was qualified, retrieves the
1391  /// nested-name-specifier that precedes the member name. Otherwise, returns
1392  /// NULL.
1393  NestedNameSpecifier *getQualifier() const {
1394    return QualifierLoc.getNestedNameSpecifier();
1395  }
1396
1397  /// \brief Determine whether this pseudo-destructor expression was written
1398  /// using an '->' (otherwise, it used a '.').
1399  bool isArrow() const { return IsArrow; }
1400
1401  /// \brief Retrieve the location of the '.' or '->' operator.
1402  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1403
1404  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1405  /// expression.
1406  ///
1407  /// Pseudo-destructor expressions can have extra qualification within them
1408  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1409  /// Here, if the object type of the expression is (or may be) a scalar type,
1410  /// \p T may also be a scalar type and, therefore, cannot be part of a
1411  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1412  /// destructor expression.
1413  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1414
1415  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1416  /// expression.
1417  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1418
1419  /// \brief Retrieve the location of the '~'.
1420  SourceLocation getTildeLoc() const { return TildeLoc; }
1421
1422  /// \brief Retrieve the source location information for the type
1423  /// being destroyed.
1424  ///
1425  /// This type-source information is available for non-dependent
1426  /// pseudo-destructor expressions and some dependent pseudo-destructor
1427  /// expressions. Returns NULL if we only have the identifier for a
1428  /// dependent pseudo-destructor expression.
1429  TypeSourceInfo *getDestroyedTypeInfo() const {
1430    return DestroyedType.getTypeSourceInfo();
1431  }
1432
1433  /// \brief In a dependent pseudo-destructor expression for which we do not
1434  /// have full type information on the destroyed type, provides the name
1435  /// of the destroyed type.
1436  IdentifierInfo *getDestroyedTypeIdentifier() const {
1437    return DestroyedType.getIdentifier();
1438  }
1439
1440  /// \brief Retrieve the type being destroyed.
1441  QualType getDestroyedType() const;
1442
1443  /// \brief Retrieve the starting location of the type being destroyed.
1444  SourceLocation getDestroyedTypeLoc() const {
1445    return DestroyedType.getLocation();
1446  }
1447
1448  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1449  /// expression.
1450  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1451    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1452  }
1453
1454  /// \brief Set the destroyed type.
1455  void setDestroyedType(TypeSourceInfo *Info) {
1456    DestroyedType = PseudoDestructorTypeStorage(Info);
1457  }
1458
1459  SourceRange getSourceRange() const;
1460
1461  static bool classof(const Stmt *T) {
1462    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1463  }
1464  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1465
1466  // Iterators
1467  child_range children() { return child_range(&Base, &Base + 1); }
1468};
1469
1470/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1471/// implementation of TR1/C++0x type trait templates.
1472/// Example:
1473/// __is_pod(int) == true
1474/// __is_enum(std::string) == false
1475class UnaryTypeTraitExpr : public Expr {
1476  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1477  unsigned UTT : 31;
1478  /// The value of the type trait. Unspecified if dependent.
1479  bool Value : 1;
1480
1481  /// Loc - The location of the type trait keyword.
1482  SourceLocation Loc;
1483
1484  /// RParen - The location of the closing paren.
1485  SourceLocation RParen;
1486
1487  /// The type being queried.
1488  TypeSourceInfo *QueriedType;
1489
1490public:
1491  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1492                     TypeSourceInfo *queried, bool value,
1493                     SourceLocation rparen, QualType ty)
1494    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1495           false,  queried->getType()->isDependentType(),
1496           queried->getType()->containsUnexpandedParameterPack()),
1497      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1498
1499  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1500    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1501      QueriedType() { }
1502
1503  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1504
1505  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1506
1507  QualType getQueriedType() const { return QueriedType->getType(); }
1508
1509  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1510
1511  bool getValue() const { return Value; }
1512
1513  static bool classof(const Stmt *T) {
1514    return T->getStmtClass() == UnaryTypeTraitExprClass;
1515  }
1516  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1517
1518  // Iterators
1519  child_range children() { return child_range(); }
1520
1521  friend class ASTStmtReader;
1522};
1523
1524/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1525/// implementation of TR1/C++0x type trait templates.
1526/// Example:
1527/// __is_base_of(Base, Derived) == true
1528class BinaryTypeTraitExpr : public Expr {
1529  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1530  unsigned BTT : 8;
1531
1532  /// The value of the type trait. Unspecified if dependent.
1533  bool Value : 1;
1534
1535  /// Loc - The location of the type trait keyword.
1536  SourceLocation Loc;
1537
1538  /// RParen - The location of the closing paren.
1539  SourceLocation RParen;
1540
1541  /// The lhs type being queried.
1542  TypeSourceInfo *LhsType;
1543
1544  /// The rhs type being queried.
1545  TypeSourceInfo *RhsType;
1546
1547public:
1548  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1549                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1550                     bool value, SourceLocation rparen, QualType ty)
1551    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1552           lhsType->getType()->isDependentType() ||
1553           rhsType->getType()->isDependentType(),
1554           (lhsType->getType()->containsUnexpandedParameterPack() ||
1555            rhsType->getType()->containsUnexpandedParameterPack())),
1556      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1557      LhsType(lhsType), RhsType(rhsType) { }
1558
1559
1560  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1561    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1562      LhsType(), RhsType() { }
1563
1564  SourceRange getSourceRange() const {
1565    return SourceRange(Loc, RParen);
1566  }
1567
1568  BinaryTypeTrait getTrait() const {
1569    return static_cast<BinaryTypeTrait>(BTT);
1570  }
1571
1572  QualType getLhsType() const { return LhsType->getType(); }
1573  QualType getRhsType() const { return RhsType->getType(); }
1574
1575  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1576  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1577
1578  bool getValue() const { assert(!isTypeDependent()); return Value; }
1579
1580  static bool classof(const Stmt *T) {
1581    return T->getStmtClass() == BinaryTypeTraitExprClass;
1582  }
1583  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1584
1585  // Iterators
1586  child_range children() { return child_range(); }
1587
1588  friend class ASTStmtReader;
1589};
1590
1591/// \brief A reference to an overloaded function set, either an
1592/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1593class OverloadExpr : public Expr {
1594  /// The results.  These are undesugared, which is to say, they may
1595  /// include UsingShadowDecls.  Access is relative to the naming
1596  /// class.
1597  // FIXME: Allocate this data after the OverloadExpr subclass.
1598  DeclAccessPair *Results;
1599  unsigned NumResults;
1600
1601  /// The common name of these declarations.
1602  DeclarationNameInfo NameInfo;
1603
1604  /// \brief The nested-name-specifier that qualifies the name, if any.
1605  NestedNameSpecifierLoc QualifierLoc;
1606
1607protected:
1608  /// True if the name was a template-id.
1609  bool HasExplicitTemplateArgs;
1610
1611  OverloadExpr(StmtClass K, ASTContext &C,
1612               NestedNameSpecifierLoc QualifierLoc,
1613               const DeclarationNameInfo &NameInfo,
1614               const TemplateArgumentListInfo *TemplateArgs,
1615               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1616               bool KnownDependent = false,
1617               bool KnownContainsUnexpandedParameterPack = false);
1618
1619  OverloadExpr(StmtClass K, EmptyShell Empty)
1620    : Expr(K, Empty), Results(0), NumResults(0),
1621      QualifierLoc(), HasExplicitTemplateArgs(false) { }
1622
1623  void initializeResults(ASTContext &C,
1624                         UnresolvedSetIterator Begin,
1625                         UnresolvedSetIterator End);
1626
1627public:
1628  struct FindResult {
1629    OverloadExpr *Expression;
1630    bool IsAddressOfOperand;
1631    bool HasFormOfMemberPointer;
1632  };
1633
1634  /// Finds the overloaded expression in the given expression of
1635  /// OverloadTy.
1636  ///
1637  /// \return the expression (which must be there) and true if it has
1638  /// the particular form of a member pointer expression
1639  static FindResult find(Expr *E) {
1640    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1641
1642    FindResult Result;
1643
1644    E = E->IgnoreParens();
1645    if (isa<UnaryOperator>(E)) {
1646      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
1647      E = cast<UnaryOperator>(E)->getSubExpr();
1648      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
1649
1650      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
1651      Result.IsAddressOfOperand = true;
1652      Result.Expression = Ovl;
1653    } else {
1654      Result.HasFormOfMemberPointer = false;
1655      Result.IsAddressOfOperand = false;
1656      Result.Expression = cast<OverloadExpr>(E);
1657    }
1658
1659    return Result;
1660  }
1661
1662  /// Gets the naming class of this lookup, if any.
1663  CXXRecordDecl *getNamingClass() const;
1664
1665  typedef UnresolvedSetImpl::iterator decls_iterator;
1666  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1667  decls_iterator decls_end() const {
1668    return UnresolvedSetIterator(Results + NumResults);
1669  }
1670
1671  /// Gets the number of declarations in the unresolved set.
1672  unsigned getNumDecls() const { return NumResults; }
1673
1674  /// Gets the full name info.
1675  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1676
1677  /// Gets the name looked up.
1678  DeclarationName getName() const { return NameInfo.getName(); }
1679
1680  /// Gets the location of the name.
1681  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
1682
1683  /// Fetches the nested-name qualifier, if one was given.
1684  NestedNameSpecifier *getQualifier() const {
1685    return QualifierLoc.getNestedNameSpecifier();
1686  }
1687
1688  /// Fetches the nested-name qualifier with source-location information, if
1689  /// one was given.
1690  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1691
1692  /// \brief Determines whether this expression had an explicit
1693  /// template argument list, e.g. f<int>.
1694  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1695
1696  ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
1697
1698  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1699    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1700  }
1701
1702  /// \brief Retrieves the optional explicit template arguments.
1703  /// This points to the same data as getExplicitTemplateArgs(), but
1704  /// returns null if there are no explicit template arguments.
1705  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1706    if (!hasExplicitTemplateArgs()) return 0;
1707    return &getExplicitTemplateArgs();
1708  }
1709
1710  static bool classof(const Stmt *T) {
1711    return T->getStmtClass() == UnresolvedLookupExprClass ||
1712           T->getStmtClass() == UnresolvedMemberExprClass;
1713  }
1714  static bool classof(const OverloadExpr *) { return true; }
1715
1716  friend class ASTStmtReader;
1717  friend class ASTStmtWriter;
1718};
1719
1720/// \brief A reference to a name which we were able to look up during
1721/// parsing but could not resolve to a specific declaration.  This
1722/// arises in several ways:
1723///   * we might be waiting for argument-dependent lookup
1724///   * the name might resolve to an overloaded function
1725/// and eventually:
1726///   * the lookup might have included a function template
1727/// These never include UnresolvedUsingValueDecls, which are always
1728/// class members and therefore appear only in
1729/// UnresolvedMemberLookupExprs.
1730class UnresolvedLookupExpr : public OverloadExpr {
1731  /// True if these lookup results should be extended by
1732  /// argument-dependent lookup if this is the operand of a function
1733  /// call.
1734  bool RequiresADL;
1735
1736  /// True if these lookup results are overloaded.  This is pretty
1737  /// trivially rederivable if we urgently need to kill this field.
1738  bool Overloaded;
1739
1740  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1741  /// any.  This can generally be recalculated from the context chain,
1742  /// but that can be fairly expensive for unqualified lookups.  If we
1743  /// want to improve memory use here, this could go in a union
1744  /// against the qualified-lookup bits.
1745  CXXRecordDecl *NamingClass;
1746
1747  UnresolvedLookupExpr(ASTContext &C,
1748                       CXXRecordDecl *NamingClass,
1749                       NestedNameSpecifierLoc QualifierLoc,
1750                       const DeclarationNameInfo &NameInfo,
1751                       bool RequiresADL, bool Overloaded,
1752                       const TemplateArgumentListInfo *TemplateArgs,
1753                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
1754    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, NameInfo,
1755                   TemplateArgs, Begin, End),
1756      RequiresADL(RequiresADL), Overloaded(Overloaded), NamingClass(NamingClass)
1757  {}
1758
1759  UnresolvedLookupExpr(EmptyShell Empty)
1760    : OverloadExpr(UnresolvedLookupExprClass, Empty),
1761      RequiresADL(false), Overloaded(false), NamingClass(0)
1762  {}
1763
1764  friend class ASTStmtReader;
1765
1766public:
1767  static UnresolvedLookupExpr *Create(ASTContext &C,
1768                                      CXXRecordDecl *NamingClass,
1769                                      NestedNameSpecifierLoc QualifierLoc,
1770                                      const DeclarationNameInfo &NameInfo,
1771                                      bool ADL, bool Overloaded,
1772                                      UnresolvedSetIterator Begin,
1773                                      UnresolvedSetIterator End) {
1774    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc, NameInfo,
1775                                       ADL, Overloaded, 0, Begin, End);
1776  }
1777
1778  static UnresolvedLookupExpr *Create(ASTContext &C,
1779                                      CXXRecordDecl *NamingClass,
1780                                      NestedNameSpecifierLoc QualifierLoc,
1781                                      const DeclarationNameInfo &NameInfo,
1782                                      bool ADL,
1783                                      const TemplateArgumentListInfo &Args,
1784                                      UnresolvedSetIterator Begin,
1785                                      UnresolvedSetIterator End);
1786
1787  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1788                                           bool HasExplicitTemplateArgs,
1789                                           unsigned NumTemplateArgs);
1790
1791  /// True if this declaration should be extended by
1792  /// argument-dependent lookup.
1793  bool requiresADL() const { return RequiresADL; }
1794
1795  /// True if this lookup is overloaded.
1796  bool isOverloaded() const { return Overloaded; }
1797
1798  /// Gets the 'naming class' (in the sense of C++0x
1799  /// [class.access.base]p5) of the lookup.  This is the scope
1800  /// that was looked in to find these results.
1801  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1802
1803  // Note that, inconsistently with the explicit-template-argument AST
1804  // nodes, users are *forbidden* from calling these methods on objects
1805  // without explicit template arguments.
1806
1807  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1808    assert(hasExplicitTemplateArgs());
1809    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1810  }
1811
1812  /// Gets a reference to the explicit template argument list.
1813  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1814    assert(hasExplicitTemplateArgs());
1815    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1816  }
1817
1818  /// \brief Retrieves the optional explicit template arguments.
1819  /// This points to the same data as getExplicitTemplateArgs(), but
1820  /// returns null if there are no explicit template arguments.
1821  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1822    if (!hasExplicitTemplateArgs()) return 0;
1823    return &getExplicitTemplateArgs();
1824  }
1825
1826  /// \brief Copies the template arguments (if present) into the given
1827  /// structure.
1828  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1829    getExplicitTemplateArgs().copyInto(List);
1830  }
1831
1832  SourceLocation getLAngleLoc() const {
1833    return getExplicitTemplateArgs().LAngleLoc;
1834  }
1835
1836  SourceLocation getRAngleLoc() const {
1837    return getExplicitTemplateArgs().RAngleLoc;
1838  }
1839
1840  TemplateArgumentLoc const *getTemplateArgs() const {
1841    return getExplicitTemplateArgs().getTemplateArgs();
1842  }
1843
1844  unsigned getNumTemplateArgs() const {
1845    return getExplicitTemplateArgs().NumTemplateArgs;
1846  }
1847
1848  SourceRange getSourceRange() const {
1849    SourceRange Range(getNameInfo().getSourceRange());
1850    if (getQualifierLoc())
1851      Range.setBegin(getQualifierLoc().getBeginLoc());
1852    if (hasExplicitTemplateArgs())
1853      Range.setEnd(getRAngleLoc());
1854    return Range;
1855  }
1856
1857  child_range children() { return child_range(); }
1858
1859  static bool classof(const Stmt *T) {
1860    return T->getStmtClass() == UnresolvedLookupExprClass;
1861  }
1862  static bool classof(const UnresolvedLookupExpr *) { return true; }
1863};
1864
1865/// \brief A qualified reference to a name whose declaration cannot
1866/// yet be resolved.
1867///
1868/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
1869/// it expresses a reference to a declaration such as
1870/// X<T>::value. The difference, however, is that an
1871/// DependentScopeDeclRefExpr node is used only within C++ templates when
1872/// the qualification (e.g., X<T>::) refers to a dependent type. In
1873/// this case, X<T>::value cannot resolve to a declaration because the
1874/// declaration will differ from on instantiation of X<T> to the
1875/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
1876/// qualifier (X<T>::) and the name of the entity being referenced
1877/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
1878/// declaration can be found.
1879class DependentScopeDeclRefExpr : public Expr {
1880  /// \brief The nested-name-specifier that qualifies this unresolved
1881  /// declaration name.
1882  NestedNameSpecifierLoc QualifierLoc;
1883
1884  /// The name of the entity we will be referencing.
1885  DeclarationNameInfo NameInfo;
1886
1887  /// \brief Whether the name includes explicit template arguments.
1888  bool HasExplicitTemplateArgs;
1889
1890  DependentScopeDeclRefExpr(QualType T,
1891                            NestedNameSpecifierLoc QualifierLoc,
1892                            const DeclarationNameInfo &NameInfo,
1893                            const TemplateArgumentListInfo *Args);
1894
1895public:
1896  static DependentScopeDeclRefExpr *Create(ASTContext &C,
1897                                           NestedNameSpecifierLoc QualifierLoc,
1898                                           const DeclarationNameInfo &NameInfo,
1899                              const TemplateArgumentListInfo *TemplateArgs = 0);
1900
1901  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
1902                                                bool HasExplicitTemplateArgs,
1903                                                unsigned NumTemplateArgs);
1904
1905  /// \brief Retrieve the name that this expression refers to.
1906  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1907
1908  /// \brief Retrieve the name that this expression refers to.
1909  DeclarationName getDeclName() const { return NameInfo.getName(); }
1910
1911  /// \brief Retrieve the location of the name within the expression.
1912  SourceLocation getLocation() const { return NameInfo.getLoc(); }
1913
1914  /// \brief Retrieve the nested-name-specifier that qualifies the
1915  /// name, with source location information.
1916  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1917
1918
1919  /// \brief Retrieve the nested-name-specifier that qualifies this
1920  /// declaration.
1921  NestedNameSpecifier *getQualifier() const {
1922    return QualifierLoc.getNestedNameSpecifier();
1923  }
1924
1925  /// Determines whether this lookup had explicit template arguments.
1926  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1927
1928  // Note that, inconsistently with the explicit-template-argument AST
1929  // nodes, users are *forbidden* from calling these methods on objects
1930  // without explicit template arguments.
1931
1932  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1933    assert(hasExplicitTemplateArgs());
1934    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1935  }
1936
1937  /// Gets a reference to the explicit template argument list.
1938  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1939    assert(hasExplicitTemplateArgs());
1940    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1941  }
1942
1943  /// \brief Retrieves the optional explicit template arguments.
1944  /// This points to the same data as getExplicitTemplateArgs(), but
1945  /// returns null if there are no explicit template arguments.
1946  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1947    if (!hasExplicitTemplateArgs()) return 0;
1948    return &getExplicitTemplateArgs();
1949  }
1950
1951  /// \brief Copies the template arguments (if present) into the given
1952  /// structure.
1953  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1954    getExplicitTemplateArgs().copyInto(List);
1955  }
1956
1957  SourceLocation getLAngleLoc() const {
1958    return getExplicitTemplateArgs().LAngleLoc;
1959  }
1960
1961  SourceLocation getRAngleLoc() const {
1962    return getExplicitTemplateArgs().RAngleLoc;
1963  }
1964
1965  TemplateArgumentLoc const *getTemplateArgs() const {
1966    return getExplicitTemplateArgs().getTemplateArgs();
1967  }
1968
1969  unsigned getNumTemplateArgs() const {
1970    return getExplicitTemplateArgs().NumTemplateArgs;
1971  }
1972
1973  SourceRange getSourceRange() const {
1974    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
1975    if (hasExplicitTemplateArgs())
1976      Range.setEnd(getRAngleLoc());
1977    return Range;
1978  }
1979
1980  static bool classof(const Stmt *T) {
1981    return T->getStmtClass() == DependentScopeDeclRefExprClass;
1982  }
1983  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
1984
1985  child_range children() { return child_range(); }
1986
1987  friend class ASTStmtReader;
1988  friend class ASTStmtWriter;
1989};
1990
1991/// Represents an expression --- generally a full-expression --- which
1992/// introduces cleanups to be run at the end of the sub-expression's
1993/// evaluation.  The most common source of expression-introduced
1994/// cleanups is temporary objects in C++, but several other C++
1995/// expressions can create cleanups.
1996class ExprWithCleanups : public Expr {
1997  Stmt *SubExpr;
1998
1999  CXXTemporary **Temps;
2000  unsigned NumTemps;
2001
2002  ExprWithCleanups(ASTContext &C, Expr *SubExpr,
2003                   CXXTemporary **Temps, unsigned NumTemps);
2004
2005public:
2006  ExprWithCleanups(EmptyShell Empty)
2007    : Expr(ExprWithCleanupsClass, Empty),
2008      SubExpr(0), Temps(0), NumTemps(0) {}
2009
2010  static ExprWithCleanups *Create(ASTContext &C, Expr *SubExpr,
2011                                        CXXTemporary **Temps,
2012                                        unsigned NumTemps);
2013
2014  unsigned getNumTemporaries() const { return NumTemps; }
2015  void setNumTemporaries(ASTContext &C, unsigned N);
2016
2017  CXXTemporary *getTemporary(unsigned i) {
2018    assert(i < NumTemps && "Index out of range");
2019    return Temps[i];
2020  }
2021  const CXXTemporary *getTemporary(unsigned i) const {
2022    return const_cast<ExprWithCleanups*>(this)->getTemporary(i);
2023  }
2024  void setTemporary(unsigned i, CXXTemporary *T) {
2025    assert(i < NumTemps && "Index out of range");
2026    Temps[i] = T;
2027  }
2028
2029  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2030  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2031  void setSubExpr(Expr *E) { SubExpr = E; }
2032
2033  SourceRange getSourceRange() const {
2034    return SubExpr->getSourceRange();
2035  }
2036
2037  // Implement isa/cast/dyncast/etc.
2038  static bool classof(const Stmt *T) {
2039    return T->getStmtClass() == ExprWithCleanupsClass;
2040  }
2041  static bool classof(const ExprWithCleanups *) { return true; }
2042
2043  // Iterators
2044  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2045};
2046
2047/// \brief Describes an explicit type conversion that uses functional
2048/// notion but could not be resolved because one or more arguments are
2049/// type-dependent.
2050///
2051/// The explicit type conversions expressed by
2052/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2053/// where \c T is some type and \c a1, a2, ..., aN are values, and
2054/// either \C T is a dependent type or one or more of the \c a's is
2055/// type-dependent. For example, this would occur in a template such
2056/// as:
2057///
2058/// \code
2059///   template<typename T, typename A1>
2060///   inline T make_a(const A1& a1) {
2061///     return T(a1);
2062///   }
2063/// \endcode
2064///
2065/// When the returned expression is instantiated, it may resolve to a
2066/// constructor call, conversion function call, or some kind of type
2067/// conversion.
2068class CXXUnresolvedConstructExpr : public Expr {
2069  /// \brief The type being constructed.
2070  TypeSourceInfo *Type;
2071
2072  /// \brief The location of the left parentheses ('(').
2073  SourceLocation LParenLoc;
2074
2075  /// \brief The location of the right parentheses (')').
2076  SourceLocation RParenLoc;
2077
2078  /// \brief The number of arguments used to construct the type.
2079  unsigned NumArgs;
2080
2081  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2082                             SourceLocation LParenLoc,
2083                             Expr **Args,
2084                             unsigned NumArgs,
2085                             SourceLocation RParenLoc);
2086
2087  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2088    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2089
2090  friend class ASTStmtReader;
2091
2092public:
2093  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2094                                            TypeSourceInfo *Type,
2095                                            SourceLocation LParenLoc,
2096                                            Expr **Args,
2097                                            unsigned NumArgs,
2098                                            SourceLocation RParenLoc);
2099
2100  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2101                                                 unsigned NumArgs);
2102
2103  /// \brief Retrieve the type that is being constructed, as specified
2104  /// in the source code.
2105  QualType getTypeAsWritten() const { return Type->getType(); }
2106
2107  /// \brief Retrieve the type source information for the type being
2108  /// constructed.
2109  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2110
2111  /// \brief Retrieve the location of the left parentheses ('(') that
2112  /// precedes the argument list.
2113  SourceLocation getLParenLoc() const { return LParenLoc; }
2114  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2115
2116  /// \brief Retrieve the location of the right parentheses (')') that
2117  /// follows the argument list.
2118  SourceLocation getRParenLoc() const { return RParenLoc; }
2119  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2120
2121  /// \brief Retrieve the number of arguments.
2122  unsigned arg_size() const { return NumArgs; }
2123
2124  typedef Expr** arg_iterator;
2125  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2126  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2127
2128  typedef const Expr* const * const_arg_iterator;
2129  const_arg_iterator arg_begin() const {
2130    return reinterpret_cast<const Expr* const *>(this + 1);
2131  }
2132  const_arg_iterator arg_end() const {
2133    return arg_begin() + NumArgs;
2134  }
2135
2136  Expr *getArg(unsigned I) {
2137    assert(I < NumArgs && "Argument index out-of-range");
2138    return *(arg_begin() + I);
2139  }
2140
2141  const Expr *getArg(unsigned I) const {
2142    assert(I < NumArgs && "Argument index out-of-range");
2143    return *(arg_begin() + I);
2144  }
2145
2146  void setArg(unsigned I, Expr *E) {
2147    assert(I < NumArgs && "Argument index out-of-range");
2148    *(arg_begin() + I) = E;
2149  }
2150
2151  SourceRange getSourceRange() const;
2152
2153  static bool classof(const Stmt *T) {
2154    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2155  }
2156  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2157
2158  // Iterators
2159  child_range children() {
2160    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2161    return child_range(begin, begin + NumArgs);
2162  }
2163};
2164
2165/// \brief Represents a C++ member access expression where the actual
2166/// member referenced could not be resolved because the base
2167/// expression or the member name was dependent.
2168///
2169/// Like UnresolvedMemberExprs, these can be either implicit or
2170/// explicit accesses.  It is only possible to get one of these with
2171/// an implicit access if a qualifier is provided.
2172class CXXDependentScopeMemberExpr : public Expr {
2173  /// \brief The expression for the base pointer or class reference,
2174  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2175  Stmt *Base;
2176
2177  /// \brief The type of the base expression.  Never null, even for
2178  /// implicit accesses.
2179  QualType BaseType;
2180
2181  /// \brief Whether this member expression used the '->' operator or
2182  /// the '.' operator.
2183  bool IsArrow : 1;
2184
2185  /// \brief Whether this member expression has explicitly-specified template
2186  /// arguments.
2187  bool HasExplicitTemplateArgs : 1;
2188
2189  /// \brief The location of the '->' or '.' operator.
2190  SourceLocation OperatorLoc;
2191
2192  /// \brief The nested-name-specifier that precedes the member name, if any.
2193  NestedNameSpecifierLoc QualifierLoc;
2194
2195  /// \brief In a qualified member access expression such as t->Base::f, this
2196  /// member stores the resolves of name lookup in the context of the member
2197  /// access expression, to be used at instantiation time.
2198  ///
2199  /// FIXME: This member, along with the QualifierLoc, could
2200  /// be stuck into a structure that is optionally allocated at the end of
2201  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2202  NamedDecl *FirstQualifierFoundInScope;
2203
2204  /// \brief The member to which this member expression refers, which
2205  /// can be name, overloaded operator, or destructor.
2206  /// FIXME: could also be a template-id
2207  DeclarationNameInfo MemberNameInfo;
2208
2209  CXXDependentScopeMemberExpr(ASTContext &C,
2210                          Expr *Base, QualType BaseType, bool IsArrow,
2211                          SourceLocation OperatorLoc,
2212                          NestedNameSpecifierLoc QualifierLoc,
2213                          NamedDecl *FirstQualifierFoundInScope,
2214                          DeclarationNameInfo MemberNameInfo,
2215                          const TemplateArgumentListInfo *TemplateArgs);
2216
2217public:
2218  CXXDependentScopeMemberExpr(ASTContext &C,
2219                              Expr *Base, QualType BaseType,
2220                              bool IsArrow,
2221                              SourceLocation OperatorLoc,
2222                              NestedNameSpecifierLoc QualifierLoc,
2223                              NamedDecl *FirstQualifierFoundInScope,
2224                              DeclarationNameInfo MemberNameInfo);
2225
2226  static CXXDependentScopeMemberExpr *
2227  Create(ASTContext &C,
2228         Expr *Base, QualType BaseType, bool IsArrow,
2229         SourceLocation OperatorLoc,
2230         NestedNameSpecifierLoc QualifierLoc,
2231         NamedDecl *FirstQualifierFoundInScope,
2232         DeclarationNameInfo MemberNameInfo,
2233         const TemplateArgumentListInfo *TemplateArgs);
2234
2235  static CXXDependentScopeMemberExpr *
2236  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2237              unsigned NumTemplateArgs);
2238
2239  /// \brief True if this is an implicit access, i.e. one in which the
2240  /// member being accessed was not written in the source.  The source
2241  /// location of the operator is invalid in this case.
2242  bool isImplicitAccess() const;
2243
2244  /// \brief Retrieve the base object of this member expressions,
2245  /// e.g., the \c x in \c x.m.
2246  Expr *getBase() const {
2247    assert(!isImplicitAccess());
2248    return cast<Expr>(Base);
2249  }
2250
2251  QualType getBaseType() const { return BaseType; }
2252
2253  /// \brief Determine whether this member expression used the '->'
2254  /// operator; otherwise, it used the '.' operator.
2255  bool isArrow() const { return IsArrow; }
2256
2257  /// \brief Retrieve the location of the '->' or '.' operator.
2258  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2259
2260  /// \brief Retrieve the nested-name-specifier that qualifies the member
2261  /// name.
2262  NestedNameSpecifier *getQualifier() const {
2263    return QualifierLoc.getNestedNameSpecifier();
2264  }
2265
2266  /// \brief Retrieve the nested-name-specifier that qualifies the member
2267  /// name, with source location information.
2268  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2269
2270
2271  /// \brief Retrieve the first part of the nested-name-specifier that was
2272  /// found in the scope of the member access expression when the member access
2273  /// was initially parsed.
2274  ///
2275  /// This function only returns a useful result when member access expression
2276  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2277  /// returned by this function describes what was found by unqualified name
2278  /// lookup for the identifier "Base" within the scope of the member access
2279  /// expression itself. At template instantiation time, this information is
2280  /// combined with the results of name lookup into the type of the object
2281  /// expression itself (the class type of x).
2282  NamedDecl *getFirstQualifierFoundInScope() const {
2283    return FirstQualifierFoundInScope;
2284  }
2285
2286  /// \brief Retrieve the name of the member that this expression
2287  /// refers to.
2288  const DeclarationNameInfo &getMemberNameInfo() const {
2289    return MemberNameInfo;
2290  }
2291
2292  /// \brief Retrieve the name of the member that this expression
2293  /// refers to.
2294  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2295
2296  // \brief Retrieve the location of the name of the member that this
2297  // expression refers to.
2298  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2299
2300  /// \brief Determines whether this member expression actually had a C++
2301  /// template argument list explicitly specified, e.g., x.f<int>.
2302  bool hasExplicitTemplateArgs() const {
2303    return HasExplicitTemplateArgs;
2304  }
2305
2306  /// \brief Retrieve the explicit template argument list that followed the
2307  /// member template name, if any.
2308  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2309    assert(HasExplicitTemplateArgs);
2310    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2311  }
2312
2313  /// \brief Retrieve the explicit template argument list that followed the
2314  /// member template name, if any.
2315  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2316    return const_cast<CXXDependentScopeMemberExpr *>(this)
2317             ->getExplicitTemplateArgs();
2318  }
2319
2320  /// \brief Retrieves the optional explicit template arguments.
2321  /// This points to the same data as getExplicitTemplateArgs(), but
2322  /// returns null if there are no explicit template arguments.
2323  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2324    if (!hasExplicitTemplateArgs()) return 0;
2325    return &getExplicitTemplateArgs();
2326  }
2327
2328  /// \brief Copies the template arguments (if present) into the given
2329  /// structure.
2330  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2331    getExplicitTemplateArgs().copyInto(List);
2332  }
2333
2334  /// \brief Initializes the template arguments using the given structure.
2335  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2336    getExplicitTemplateArgs().initializeFrom(List);
2337  }
2338
2339  /// \brief Retrieve the location of the left angle bracket following the
2340  /// member name ('<'), if any.
2341  SourceLocation getLAngleLoc() const {
2342    return getExplicitTemplateArgs().LAngleLoc;
2343  }
2344
2345  /// \brief Retrieve the template arguments provided as part of this
2346  /// template-id.
2347  const TemplateArgumentLoc *getTemplateArgs() const {
2348    return getExplicitTemplateArgs().getTemplateArgs();
2349  }
2350
2351  /// \brief Retrieve the number of template arguments provided as part of this
2352  /// template-id.
2353  unsigned getNumTemplateArgs() const {
2354    return getExplicitTemplateArgs().NumTemplateArgs;
2355  }
2356
2357  /// \brief Retrieve the location of the right angle bracket following the
2358  /// template arguments ('>').
2359  SourceLocation getRAngleLoc() const {
2360    return getExplicitTemplateArgs().RAngleLoc;
2361  }
2362
2363  SourceRange getSourceRange() const {
2364    SourceRange Range;
2365    if (!isImplicitAccess())
2366      Range.setBegin(Base->getSourceRange().getBegin());
2367    else if (getQualifier())
2368      Range.setBegin(getQualifierLoc().getBeginLoc());
2369    else
2370      Range.setBegin(MemberNameInfo.getBeginLoc());
2371
2372    if (hasExplicitTemplateArgs())
2373      Range.setEnd(getRAngleLoc());
2374    else
2375      Range.setEnd(MemberNameInfo.getEndLoc());
2376    return Range;
2377  }
2378
2379  static bool classof(const Stmt *T) {
2380    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2381  }
2382  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2383
2384  // Iterators
2385  child_range children() {
2386    if (isImplicitAccess()) return child_range();
2387    return child_range(&Base, &Base + 1);
2388  }
2389
2390  friend class ASTStmtReader;
2391  friend class ASTStmtWriter;
2392};
2393
2394/// \brief Represents a C++ member access expression for which lookup
2395/// produced a set of overloaded functions.
2396///
2397/// The member access may be explicit or implicit:
2398///    struct A {
2399///      int a, b;
2400///      int explicitAccess() { return this->a + this->A::b; }
2401///      int implicitAccess() { return a + A::b; }
2402///    };
2403///
2404/// In the final AST, an explicit access always becomes a MemberExpr.
2405/// An implicit access may become either a MemberExpr or a
2406/// DeclRefExpr, depending on whether the member is static.
2407class UnresolvedMemberExpr : public OverloadExpr {
2408  /// \brief Whether this member expression used the '->' operator or
2409  /// the '.' operator.
2410  bool IsArrow : 1;
2411
2412  /// \brief Whether the lookup results contain an unresolved using
2413  /// declaration.
2414  bool HasUnresolvedUsing : 1;
2415
2416  /// \brief The expression for the base pointer or class reference,
2417  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2418  /// member expression
2419  Stmt *Base;
2420
2421  /// \brief The type of the base expression;  never null.
2422  QualType BaseType;
2423
2424  /// \brief The location of the '->' or '.' operator.
2425  SourceLocation OperatorLoc;
2426
2427  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2428                       Expr *Base, QualType BaseType, bool IsArrow,
2429                       SourceLocation OperatorLoc,
2430                       NestedNameSpecifierLoc QualifierLoc,
2431                       const DeclarationNameInfo &MemberNameInfo,
2432                       const TemplateArgumentListInfo *TemplateArgs,
2433                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2434
2435  UnresolvedMemberExpr(EmptyShell Empty)
2436    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2437      HasUnresolvedUsing(false), Base(0) { }
2438
2439  friend class ASTStmtReader;
2440
2441public:
2442  static UnresolvedMemberExpr *
2443  Create(ASTContext &C, bool HasUnresolvedUsing,
2444         Expr *Base, QualType BaseType, bool IsArrow,
2445         SourceLocation OperatorLoc,
2446         NestedNameSpecifierLoc QualifierLoc,
2447         const DeclarationNameInfo &MemberNameInfo,
2448         const TemplateArgumentListInfo *TemplateArgs,
2449         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2450
2451  static UnresolvedMemberExpr *
2452  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2453              unsigned NumTemplateArgs);
2454
2455  /// \brief True if this is an implicit access, i.e. one in which the
2456  /// member being accessed was not written in the source.  The source
2457  /// location of the operator is invalid in this case.
2458  bool isImplicitAccess() const;
2459
2460  /// \brief Retrieve the base object of this member expressions,
2461  /// e.g., the \c x in \c x.m.
2462  Expr *getBase() {
2463    assert(!isImplicitAccess());
2464    return cast<Expr>(Base);
2465  }
2466  const Expr *getBase() const {
2467    assert(!isImplicitAccess());
2468    return cast<Expr>(Base);
2469  }
2470
2471  QualType getBaseType() const { return BaseType; }
2472
2473  /// \brief Determine whether the lookup results contain an unresolved using
2474  /// declaration.
2475  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2476
2477  /// \brief Determine whether this member expression used the '->'
2478  /// operator; otherwise, it used the '.' operator.
2479  bool isArrow() const { return IsArrow; }
2480
2481  /// \brief Retrieve the location of the '->' or '.' operator.
2482  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2483
2484  /// \brief Retrieves the naming class of this lookup.
2485  CXXRecordDecl *getNamingClass() const;
2486
2487  /// \brief Retrieve the full name info for the member that this expression
2488  /// refers to.
2489  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
2490
2491  /// \brief Retrieve the name of the member that this expression
2492  /// refers to.
2493  DeclarationName getMemberName() const { return getName(); }
2494
2495  // \brief Retrieve the location of the name of the member that this
2496  // expression refers to.
2497  SourceLocation getMemberLoc() const { return getNameLoc(); }
2498
2499  /// \brief Retrieve the explicit template argument list that followed the
2500  /// member template name.
2501  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2502    assert(hasExplicitTemplateArgs());
2503    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2504  }
2505
2506  /// \brief Retrieve the explicit template argument list that followed the
2507  /// member template name, if any.
2508  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2509    assert(hasExplicitTemplateArgs());
2510    return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
2511  }
2512
2513  /// \brief Retrieves the optional explicit template arguments.
2514  /// This points to the same data as getExplicitTemplateArgs(), but
2515  /// returns null if there are no explicit template arguments.
2516  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2517    if (!hasExplicitTemplateArgs()) return 0;
2518    return &getExplicitTemplateArgs();
2519  }
2520
2521  /// \brief Copies the template arguments into the given structure.
2522  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2523    getExplicitTemplateArgs().copyInto(List);
2524  }
2525
2526  /// \brief Retrieve the location of the left angle bracket following
2527  /// the member name ('<').
2528  SourceLocation getLAngleLoc() const {
2529    return getExplicitTemplateArgs().LAngleLoc;
2530  }
2531
2532  /// \brief Retrieve the template arguments provided as part of this
2533  /// template-id.
2534  const TemplateArgumentLoc *getTemplateArgs() const {
2535    return getExplicitTemplateArgs().getTemplateArgs();
2536  }
2537
2538  /// \brief Retrieve the number of template arguments provided as
2539  /// part of this template-id.
2540  unsigned getNumTemplateArgs() const {
2541    return getExplicitTemplateArgs().NumTemplateArgs;
2542  }
2543
2544  /// \brief Retrieve the location of the right angle bracket
2545  /// following the template arguments ('>').
2546  SourceLocation getRAngleLoc() const {
2547    return getExplicitTemplateArgs().RAngleLoc;
2548  }
2549
2550  SourceRange getSourceRange() const {
2551    SourceRange Range = getMemberNameInfo().getSourceRange();
2552    if (!isImplicitAccess())
2553      Range.setBegin(Base->getSourceRange().getBegin());
2554    else if (getQualifierLoc())
2555      Range.setBegin(getQualifierLoc().getBeginLoc());
2556
2557    if (hasExplicitTemplateArgs())
2558      Range.setEnd(getRAngleLoc());
2559    return Range;
2560  }
2561
2562  static bool classof(const Stmt *T) {
2563    return T->getStmtClass() == UnresolvedMemberExprClass;
2564  }
2565  static bool classof(const UnresolvedMemberExpr *) { return true; }
2566
2567  // Iterators
2568  child_range children() {
2569    if (isImplicitAccess()) return child_range();
2570    return child_range(&Base, &Base + 1);
2571  }
2572};
2573
2574/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
2575///
2576/// The noexcept expression tests whether a given expression might throw. Its
2577/// result is a boolean constant.
2578class CXXNoexceptExpr : public Expr {
2579  bool Value : 1;
2580  Stmt *Operand;
2581  SourceRange Range;
2582
2583  friend class ASTStmtReader;
2584
2585public:
2586  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
2587                  SourceLocation Keyword, SourceLocation RParen)
2588    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
2589           /*TypeDependent*/false,
2590           /*ValueDependent*/Val == CT_Dependent,
2591           Operand->containsUnexpandedParameterPack()),
2592      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
2593  { }
2594
2595  CXXNoexceptExpr(EmptyShell Empty)
2596    : Expr(CXXNoexceptExprClass, Empty)
2597  { }
2598
2599  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
2600
2601  SourceRange getSourceRange() const { return Range; }
2602
2603  bool getValue() const { return Value; }
2604
2605  static bool classof(const Stmt *T) {
2606    return T->getStmtClass() == CXXNoexceptExprClass;
2607  }
2608  static bool classof(const CXXNoexceptExpr *) { return true; }
2609
2610  // Iterators
2611  child_range children() { return child_range(&Operand, &Operand + 1); }
2612};
2613
2614/// \brief Represents a C++0x pack expansion that produces a sequence of
2615/// expressions.
2616///
2617/// A pack expansion expression contains a pattern (which itself is an
2618/// expression) followed by an ellipsis. For example:
2619///
2620/// \code
2621/// template<typename F, typename ...Types>
2622/// void forward(F f, Types &&...args) {
2623///   f(static_cast<Types&&>(args)...);
2624/// }
2625/// \endcode
2626///
2627/// Here, the argument to the function object \c f is a pack expansion whose
2628/// pattern is \c static_cast<Types&&>(args). When the \c forward function
2629/// template is instantiated, the pack expansion will instantiate to zero or
2630/// or more function arguments to the function object \c f.
2631class PackExpansionExpr : public Expr {
2632  SourceLocation EllipsisLoc;
2633
2634  /// \brief The number of expansions that will be produced by this pack
2635  /// expansion expression, if known.
2636  ///
2637  /// When zero, the number of expansions is not known. Otherwise, this value
2638  /// is the number of expansions + 1.
2639  unsigned NumExpansions;
2640
2641  Stmt *Pattern;
2642
2643  friend class ASTStmtReader;
2644  friend class ASTStmtWriter;
2645
2646public:
2647  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
2648                    llvm::Optional<unsigned> NumExpansions)
2649    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
2650           Pattern->getObjectKind(), /*TypeDependent=*/true,
2651           /*ValueDependent=*/true, /*ContainsUnexpandedParameterPack=*/false),
2652      EllipsisLoc(EllipsisLoc),
2653      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
2654      Pattern(Pattern) { }
2655
2656  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
2657
2658  /// \brief Retrieve the pattern of the pack expansion.
2659  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
2660
2661  /// \brief Retrieve the pattern of the pack expansion.
2662  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
2663
2664  /// \brief Retrieve the location of the ellipsis that describes this pack
2665  /// expansion.
2666  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
2667
2668  /// \brief Determine the number of expansions that will be produced when
2669  /// this pack expansion is instantiated, if already known.
2670  llvm::Optional<unsigned> getNumExpansions() const {
2671    if (NumExpansions)
2672      return NumExpansions - 1;
2673
2674    return llvm::Optional<unsigned>();
2675  }
2676
2677  SourceRange getSourceRange() const {
2678    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
2679  }
2680
2681  static bool classof(const Stmt *T) {
2682    return T->getStmtClass() == PackExpansionExprClass;
2683  }
2684  static bool classof(const PackExpansionExpr *) { return true; }
2685
2686  // Iterators
2687  child_range children() {
2688    return child_range(&Pattern, &Pattern + 1);
2689  }
2690};
2691
2692inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
2693  if (isa<UnresolvedLookupExpr>(this))
2694    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2695  else
2696    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2697}
2698
2699/// \brief Represents an expression that computes the length of a parameter
2700/// pack.
2701///
2702/// \code
2703/// template<typename ...Types>
2704/// struct count {
2705///   static const unsigned value = sizeof...(Types);
2706/// };
2707/// \endcode
2708class SizeOfPackExpr : public Expr {
2709  /// \brief The location of the 'sizeof' keyword.
2710  SourceLocation OperatorLoc;
2711
2712  /// \brief The location of the name of the parameter pack.
2713  SourceLocation PackLoc;
2714
2715  /// \brief The location of the closing parenthesis.
2716  SourceLocation RParenLoc;
2717
2718  /// \brief The length of the parameter pack, if known.
2719  ///
2720  /// When this expression is value-dependent, the length of the parameter pack
2721  /// is unknown. When this expression is not value-dependent, the length is
2722  /// known.
2723  unsigned Length;
2724
2725  /// \brief The parameter pack itself.
2726  NamedDecl *Pack;
2727
2728  friend class ASTStmtReader;
2729  friend class ASTStmtWriter;
2730
2731public:
2732  /// \brief Creates a value-dependent expression that computes the length of
2733  /// the given parameter pack.
2734  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2735                 SourceLocation PackLoc, SourceLocation RParenLoc)
2736    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2737           /*TypeDependent=*/false, /*ValueDependent=*/true,
2738           /*ContainsUnexpandedParameterPack=*/false),
2739      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2740      Length(0), Pack(Pack) { }
2741
2742  /// \brief Creates an expression that computes the length of
2743  /// the given parameter pack, which is already known.
2744  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2745                 SourceLocation PackLoc, SourceLocation RParenLoc,
2746                 unsigned Length)
2747  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2748         /*TypeDependent=*/false, /*ValueDependent=*/false,
2749         /*ContainsUnexpandedParameterPack=*/false),
2750    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2751    Length(Length), Pack(Pack) { }
2752
2753  /// \brief Create an empty expression.
2754  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
2755
2756  /// \brief Determine the location of the 'sizeof' keyword.
2757  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2758
2759  /// \brief Determine the location of the parameter pack.
2760  SourceLocation getPackLoc() const { return PackLoc; }
2761
2762  /// \brief Determine the location of the right parenthesis.
2763  SourceLocation getRParenLoc() const { return RParenLoc; }
2764
2765  /// \brief Retrieve the parameter pack.
2766  NamedDecl *getPack() const { return Pack; }
2767
2768  /// \brief Retrieve the length of the parameter pack.
2769  ///
2770  /// This routine may only be invoked when the expression is not
2771  /// value-dependent.
2772  unsigned getPackLength() const {
2773    assert(!isValueDependent() &&
2774           "Cannot get the length of a value-dependent pack size expression");
2775    return Length;
2776  }
2777
2778  SourceRange getSourceRange() const {
2779    return SourceRange(OperatorLoc, RParenLoc);
2780  }
2781
2782  static bool classof(const Stmt *T) {
2783    return T->getStmtClass() == SizeOfPackExprClass;
2784  }
2785  static bool classof(const SizeOfPackExpr *) { return true; }
2786
2787  // Iterators
2788  child_range children() { return child_range(); }
2789};
2790
2791/// \brief Represents a reference to a non-type template parameter pack that
2792/// has been substituted with a non-template argument pack.
2793///
2794/// When a pack expansion in the source code contains multiple parameter packs
2795/// and those parameter packs correspond to different levels of template
2796/// parameter lists, this node node is used to represent a non-type template
2797/// parameter pack from an outer level, which has already had its argument pack
2798/// substituted but that still lives within a pack expansion that itself
2799/// could not be instantiated. When actually performing a substitution into
2800/// that pack expansion (e.g., when all template parameters have corresponding
2801/// arguments), this type will be replaced with the appropriate underlying
2802/// expression at the current pack substitution index.
2803class SubstNonTypeTemplateParmPackExpr : public Expr {
2804  /// \brief The non-type template parameter pack itself.
2805  NonTypeTemplateParmDecl *Param;
2806
2807  /// \brief A pointer to the set of template arguments that this
2808  /// parameter pack is instantiated with.
2809  const TemplateArgument *Arguments;
2810
2811  /// \brief The number of template arguments in \c Arguments.
2812  unsigned NumArguments;
2813
2814  /// \brief The location of the non-type template parameter pack reference.
2815  SourceLocation NameLoc;
2816
2817  friend class ASTStmtReader;
2818  friend class ASTStmtWriter;
2819
2820public:
2821  SubstNonTypeTemplateParmPackExpr(QualType T,
2822                                   NonTypeTemplateParmDecl *Param,
2823                                   SourceLocation NameLoc,
2824                                   const TemplateArgument &ArgPack);
2825
2826  SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
2827    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
2828
2829  /// \brief Retrieve the non-type template parameter pack being substituted.
2830  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
2831
2832  /// \brief Retrieve the location of the parameter pack name.
2833  SourceLocation getParameterPackLocation() const { return NameLoc; }
2834
2835  /// \brief Retrieve the template argument pack containing the substituted
2836  /// template arguments.
2837  TemplateArgument getArgumentPack() const;
2838
2839  SourceRange getSourceRange() const { return NameLoc; }
2840
2841  static bool classof(const Stmt *T) {
2842    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
2843  }
2844  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
2845    return true;
2846  }
2847
2848  // Iterators
2849  child_range children() { return child_range(); }
2850};
2851
2852}  // end namespace clang
2853
2854#endif
2855