ExprCXX.h revision c83c2300e1946fea78ecd3c2e93d9c2dd2638a2b
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/AST/Decl.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/TemplateBase.h"
20#include "clang/AST/UnresolvedSet.h"
21#include "clang/Basic/ExpressionTraits.h"
22#include "clang/Basic/Lambda.h"
23#include "clang/Basic/TypeTraits.h"
24#include "llvm/Support/Compiler.h"
25
26namespace clang {
27
28class CXXConstructorDecl;
29class CXXDestructorDecl;
30class CXXMethodDecl;
31class CXXTemporary;
32class TemplateArgumentListInfo;
33class UuidAttr;
34
35//===--------------------------------------------------------------------===//
36// C++ Expressions.
37//===--------------------------------------------------------------------===//
38
39/// \brief A call to an overloaded operator written using operator
40/// syntax.
41///
42/// Represents a call to an overloaded operator written using operator
43/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
44/// normal call, this AST node provides better information about the
45/// syntactic representation of the call.
46///
47/// In a C++ template, this expression node kind will be used whenever
48/// any of the arguments are type-dependent. In this case, the
49/// function itself will be a (possibly empty) set of functions and
50/// function templates that were found by name lookup at template
51/// definition time.
52class CXXOperatorCallExpr : public CallExpr {
53  /// \brief The overloaded operator.
54  OverloadedOperatorKind Operator;
55  SourceRange Range;
56
57  // Record the FP_CONTRACT state that applies to this operator call. Only
58  // meaningful for floating point types. For other types this value can be
59  // set to false.
60  unsigned FPContractable : 1;
61
62  SourceRange getSourceRangeImpl() const LLVM_READONLY;
63public:
64  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
65                      ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
66                      SourceLocation operatorloc, bool fpContractable)
67    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, t, VK,
68               operatorloc),
69      Operator(Op), FPContractable(fpContractable) {
70    Range = getSourceRangeImpl();
71  }
72  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
73    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
74
75
76  /// getOperator - Returns the kind of overloaded operator that this
77  /// expression refers to.
78  OverloadedOperatorKind getOperator() const { return Operator; }
79
80  /// getOperatorLoc - Returns the location of the operator symbol in
81  /// the expression. When @c getOperator()==OO_Call, this is the
82  /// location of the right parentheses; when @c
83  /// getOperator()==OO_Subscript, this is the location of the right
84  /// bracket.
85  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
86
87  SourceRange getSourceRange() const { return Range; }
88
89  static bool classof(const Stmt *T) {
90    return T->getStmtClass() == CXXOperatorCallExprClass;
91  }
92
93  // Set the FP contractability status of this operator. Only meaningful for
94  // operations on floating point types.
95  void setFPContractable(bool FPC) { FPContractable = FPC; }
96
97  // Get the FP contractability status of this operator. Only meaningful for
98  // operations on floating point types.
99  bool isFPContractable() const { return FPContractable; }
100
101  friend class ASTStmtReader;
102  friend class ASTStmtWriter;
103};
104
105/// CXXMemberCallExpr - Represents a call to a member function that
106/// may be written either with member call syntax (e.g., "obj.func()"
107/// or "objptr->func()") or with normal function-call syntax
108/// ("func()") within a member function that ends up calling a member
109/// function. The callee in either case is a MemberExpr that contains
110/// both the object argument and the member function, while the
111/// arguments are the arguments within the parentheses (not including
112/// the object argument).
113class CXXMemberCallExpr : public CallExpr {
114public:
115  CXXMemberCallExpr(ASTContext &C, Expr *fn, ArrayRef<Expr*> args,
116                    QualType t, ExprValueKind VK, SourceLocation RP)
117    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, t, VK, RP) {}
118
119  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
120    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
121
122  /// getImplicitObjectArgument - Retrieves the implicit object
123  /// argument for the member call. For example, in "x.f(5)", this
124  /// operation would return "x".
125  Expr *getImplicitObjectArgument() const;
126
127  /// Retrieves the declaration of the called method.
128  CXXMethodDecl *getMethodDecl() const;
129
130  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
131  /// the implicit object argument. Note that this is may not be the same
132  /// declaration as that of the class context of the CXXMethodDecl which this
133  /// function is calling.
134  /// FIXME: Returns 0 for member pointer call exprs.
135  CXXRecordDecl *getRecordDecl() const;
136
137  static bool classof(const Stmt *T) {
138    return T->getStmtClass() == CXXMemberCallExprClass;
139  }
140};
141
142/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
143class CUDAKernelCallExpr : public CallExpr {
144private:
145  enum { CONFIG, END_PREARG };
146
147public:
148  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
149                     ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
150                     SourceLocation RP)
151    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, t, VK, RP) {
152    setConfig(Config);
153  }
154
155  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
156    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
157
158  const CallExpr *getConfig() const {
159    return cast_or_null<CallExpr>(getPreArg(CONFIG));
160  }
161  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
162  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
163
164  static bool classof(const Stmt *T) {
165    return T->getStmtClass() == CUDAKernelCallExprClass;
166  }
167};
168
169/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
170/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
171/// const_cast.
172///
173/// This abstract class is inherited by all of the classes
174/// representing "named" casts, e.g., CXXStaticCastExpr,
175/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
176class CXXNamedCastExpr : public ExplicitCastExpr {
177private:
178  SourceLocation Loc; // the location of the casting op
179  SourceLocation RParenLoc; // the location of the right parenthesis
180
181protected:
182  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
183                   CastKind kind, Expr *op, unsigned PathSize,
184                   TypeSourceInfo *writtenTy, SourceLocation l,
185                   SourceLocation RParenLoc)
186    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
187      RParenLoc(RParenLoc) {}
188
189  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
190    : ExplicitCastExpr(SC, Shell, PathSize) { }
191
192  friend class ASTStmtReader;
193
194public:
195  const char *getCastName() const;
196
197  /// \brief Retrieve the location of the cast operator keyword, e.g.,
198  /// "static_cast".
199  SourceLocation getOperatorLoc() const { return Loc; }
200
201  /// \brief Retrieve the location of the closing parenthesis.
202  SourceLocation getRParenLoc() const { return RParenLoc; }
203
204  SourceRange getSourceRange() const LLVM_READONLY {
205    return SourceRange(Loc, RParenLoc);
206  }
207  static bool classof(const Stmt *T) {
208    switch (T->getStmtClass()) {
209    case CXXStaticCastExprClass:
210    case CXXDynamicCastExprClass:
211    case CXXReinterpretCastExprClass:
212    case CXXConstCastExprClass:
213      return true;
214    default:
215      return false;
216    }
217  }
218};
219
220/// CXXStaticCastExpr - A C++ @c static_cast expression
221/// (C++ [expr.static.cast]).
222///
223/// This expression node represents a C++ static cast, e.g.,
224/// @c static_cast<int>(1.0).
225class CXXStaticCastExpr : public CXXNamedCastExpr {
226  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
227                    unsigned pathSize, TypeSourceInfo *writtenTy,
228                    SourceLocation l, SourceLocation RParenLoc)
229    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
230                       writtenTy, l, RParenLoc) {}
231
232  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
233    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
234
235public:
236  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
237                                   ExprValueKind VK, CastKind K, Expr *Op,
238                                   const CXXCastPath *Path,
239                                   TypeSourceInfo *Written, SourceLocation L,
240                                   SourceLocation RParenLoc);
241  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
242                                        unsigned PathSize);
243
244  static bool classof(const Stmt *T) {
245    return T->getStmtClass() == CXXStaticCastExprClass;
246  }
247};
248
249/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
250/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
251/// determine how to perform the type cast.
252///
253/// This expression node represents a dynamic cast, e.g.,
254/// @c dynamic_cast<Derived*>(BasePtr).
255class CXXDynamicCastExpr : public CXXNamedCastExpr {
256  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
257                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
258                     SourceLocation l, SourceLocation RParenLoc)
259    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
260                       writtenTy, l, RParenLoc) {}
261
262  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
263    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
264
265public:
266  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
267                                    ExprValueKind VK, CastKind Kind, Expr *Op,
268                                    const CXXCastPath *Path,
269                                    TypeSourceInfo *Written, SourceLocation L,
270                                    SourceLocation RParenLoc);
271
272  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
273                                         unsigned pathSize);
274
275  bool isAlwaysNull() const;
276
277  static bool classof(const Stmt *T) {
278    return T->getStmtClass() == CXXDynamicCastExprClass;
279  }
280};
281
282/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
283/// [expr.reinterpret.cast]), which provides a differently-typed view
284/// of a value but performs no actual work at run time.
285///
286/// This expression node represents a reinterpret cast, e.g.,
287/// @c reinterpret_cast<int>(VoidPtr).
288class CXXReinterpretCastExpr : public CXXNamedCastExpr {
289  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
290                         Expr *op, unsigned pathSize,
291                         TypeSourceInfo *writtenTy, SourceLocation l,
292                         SourceLocation RParenLoc)
293    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
294                       pathSize, writtenTy, l, RParenLoc) {}
295
296  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
297    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
298
299public:
300  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
301                                        ExprValueKind VK, CastKind Kind,
302                                        Expr *Op, const CXXCastPath *Path,
303                                 TypeSourceInfo *WrittenTy, SourceLocation L,
304                                        SourceLocation RParenLoc);
305  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
306                                             unsigned pathSize);
307
308  static bool classof(const Stmt *T) {
309    return T->getStmtClass() == CXXReinterpretCastExprClass;
310  }
311};
312
313/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
314/// which can remove type qualifiers but does not change the underlying value.
315///
316/// This expression node represents a const cast, e.g.,
317/// @c const_cast<char*>(PtrToConstChar).
318class CXXConstCastExpr : public CXXNamedCastExpr {
319  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
320                   TypeSourceInfo *writtenTy, SourceLocation l,
321                   SourceLocation RParenLoc)
322    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
323                       0, writtenTy, l, RParenLoc) {}
324
325  explicit CXXConstCastExpr(EmptyShell Empty)
326    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
327
328public:
329  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
330                                  ExprValueKind VK, Expr *Op,
331                                  TypeSourceInfo *WrittenTy, SourceLocation L,
332                                  SourceLocation RParenLoc);
333  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
334
335  static bool classof(const Stmt *T) {
336    return T->getStmtClass() == CXXConstCastExprClass;
337  }
338};
339
340/// UserDefinedLiteral - A call to a literal operator (C++11 [over.literal])
341/// written as a user-defined literal (C++11 [lit.ext]).
342///
343/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
344/// is semantically equivalent to a normal call, this AST node provides better
345/// information about the syntactic representation of the literal.
346///
347/// Since literal operators are never found by ADL and can only be declared at
348/// namespace scope, a user-defined literal is never dependent.
349class UserDefinedLiteral : public CallExpr {
350  /// \brief The location of a ud-suffix within the literal.
351  SourceLocation UDSuffixLoc;
352
353public:
354  UserDefinedLiteral(ASTContext &C, Expr *Fn, ArrayRef<Expr*> Args,
355                     QualType T, ExprValueKind VK, SourceLocation LitEndLoc,
356                     SourceLocation SuffixLoc)
357    : CallExpr(C, UserDefinedLiteralClass, Fn, 0, Args, T, VK, LitEndLoc),
358      UDSuffixLoc(SuffixLoc) {}
359  explicit UserDefinedLiteral(ASTContext &C, EmptyShell Empty)
360    : CallExpr(C, UserDefinedLiteralClass, Empty) {}
361
362  /// The kind of literal operator which is invoked.
363  enum LiteralOperatorKind {
364    LOK_Raw,      ///< Raw form: operator "" X (const char *)
365    LOK_Template, ///< Raw form: operator "" X<cs...> ()
366    LOK_Integer,  ///< operator "" X (unsigned long long)
367    LOK_Floating, ///< operator "" X (long double)
368    LOK_String,   ///< operator "" X (const CharT *, size_t)
369    LOK_Character ///< operator "" X (CharT)
370  };
371
372  /// getLiteralOperatorKind - Returns the kind of literal operator invocation
373  /// which this expression represents.
374  LiteralOperatorKind getLiteralOperatorKind() const;
375
376  /// getCookedLiteral - If this is not a raw user-defined literal, get the
377  /// underlying cooked literal (representing the literal with the suffix
378  /// removed).
379  Expr *getCookedLiteral();
380  const Expr *getCookedLiteral() const {
381    return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
382  }
383
384  SourceLocation getLocStart() const {
385    if (getLiteralOperatorKind() == LOK_Template)
386      return getRParenLoc();
387    return getArg(0)->getLocStart();
388  }
389  SourceLocation getLocEnd() const { return getRParenLoc(); }
390  SourceRange getSourceRange() const {
391    return SourceRange(getLocStart(), getLocEnd());
392  }
393
394
395  /// getUDSuffixLoc - Returns the location of a ud-suffix in the expression.
396  /// For a string literal, there may be multiple identical suffixes. This
397  /// returns the first.
398  SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
399
400  /// getUDSuffix - Returns the ud-suffix specified for this literal.
401  const IdentifierInfo *getUDSuffix() const;
402
403  static bool classof(const Stmt *S) {
404    return S->getStmtClass() == UserDefinedLiteralClass;
405  }
406
407  friend class ASTStmtReader;
408  friend class ASTStmtWriter;
409};
410
411/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
412///
413class CXXBoolLiteralExpr : public Expr {
414  bool Value;
415  SourceLocation Loc;
416public:
417  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
418    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
419         false, false),
420    Value(val), Loc(l) {}
421
422  explicit CXXBoolLiteralExpr(EmptyShell Empty)
423    : Expr(CXXBoolLiteralExprClass, Empty) { }
424
425  bool getValue() const { return Value; }
426  void setValue(bool V) { Value = V; }
427
428  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
429
430  SourceLocation getLocation() const { return Loc; }
431  void setLocation(SourceLocation L) { Loc = L; }
432
433  static bool classof(const Stmt *T) {
434    return T->getStmtClass() == CXXBoolLiteralExprClass;
435  }
436
437  // Iterators
438  child_range children() { return child_range(); }
439};
440
441/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
442class CXXNullPtrLiteralExpr : public Expr {
443  SourceLocation Loc;
444public:
445  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
446    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
447         false, false),
448    Loc(l) {}
449
450  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
451    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
452
453  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
454
455  SourceLocation getLocation() const { return Loc; }
456  void setLocation(SourceLocation L) { Loc = L; }
457
458  static bool classof(const Stmt *T) {
459    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
460  }
461
462  child_range children() { return child_range(); }
463};
464
465/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
466/// the type_info that corresponds to the supplied type, or the (possibly
467/// dynamic) type of the supplied expression.
468///
469/// This represents code like @c typeid(int) or @c typeid(*objPtr)
470class CXXTypeidExpr : public Expr {
471private:
472  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
473  SourceRange Range;
474
475public:
476  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
477    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
478           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
479           false,
480           // typeid is value-dependent if the type or expression are dependent
481           Operand->getType()->isDependentType(),
482           Operand->getType()->isInstantiationDependentType(),
483           Operand->getType()->containsUnexpandedParameterPack()),
484      Operand(Operand), Range(R) { }
485
486  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
487    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
488        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
489           false,
490        // typeid is value-dependent if the type or expression are dependent
491           Operand->isTypeDependent() || Operand->isValueDependent(),
492           Operand->isInstantiationDependent(),
493           Operand->containsUnexpandedParameterPack()),
494      Operand(Operand), Range(R) { }
495
496  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
497    : Expr(CXXTypeidExprClass, Empty) {
498    if (isExpr)
499      Operand = (Expr*)0;
500    else
501      Operand = (TypeSourceInfo*)0;
502  }
503
504  /// Determine whether this typeid has a type operand which is potentially
505  /// evaluated, per C++11 [expr.typeid]p3.
506  bool isPotentiallyEvaluated() const;
507
508  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
509
510  /// \brief Retrieves the type operand of this typeid() expression after
511  /// various required adjustments (removing reference types, cv-qualifiers).
512  QualType getTypeOperand() const;
513
514  /// \brief Retrieve source information for the type operand.
515  TypeSourceInfo *getTypeOperandSourceInfo() const {
516    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
517    return Operand.get<TypeSourceInfo *>();
518  }
519
520  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
521    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
522    Operand = TSI;
523  }
524
525  Expr *getExprOperand() const {
526    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
527    return static_cast<Expr*>(Operand.get<Stmt *>());
528  }
529
530  void setExprOperand(Expr *E) {
531    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
532    Operand = E;
533  }
534
535  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
536  void setSourceRange(SourceRange R) { Range = R; }
537
538  static bool classof(const Stmt *T) {
539    return T->getStmtClass() == CXXTypeidExprClass;
540  }
541
542  // Iterators
543  child_range children() {
544    if (isTypeOperand()) return child_range();
545    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
546    return child_range(begin, begin + 1);
547  }
548};
549
550/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
551/// the _GUID that corresponds to the supplied type or expression.
552///
553/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
554class CXXUuidofExpr : public Expr {
555private:
556  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
557  SourceRange Range;
558
559public:
560  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
561    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
562           false, Operand->getType()->isDependentType(),
563           Operand->getType()->isInstantiationDependentType(),
564           Operand->getType()->containsUnexpandedParameterPack()),
565      Operand(Operand), Range(R) { }
566
567  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
568    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
569           false, Operand->isTypeDependent(),
570           Operand->isInstantiationDependent(),
571           Operand->containsUnexpandedParameterPack()),
572      Operand(Operand), Range(R) { }
573
574  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
575    : Expr(CXXUuidofExprClass, Empty) {
576    if (isExpr)
577      Operand = (Expr*)0;
578    else
579      Operand = (TypeSourceInfo*)0;
580  }
581
582  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
583
584  /// \brief Retrieves the type operand of this __uuidof() expression after
585  /// various required adjustments (removing reference types, cv-qualifiers).
586  QualType getTypeOperand() const;
587
588  /// \brief Retrieve source information for the type operand.
589  TypeSourceInfo *getTypeOperandSourceInfo() const {
590    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
591    return Operand.get<TypeSourceInfo *>();
592  }
593
594  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
595    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
596    Operand = TSI;
597  }
598
599  Expr *getExprOperand() const {
600    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
601    return static_cast<Expr*>(Operand.get<Stmt *>());
602  }
603
604  void setExprOperand(Expr *E) {
605    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
606    Operand = E;
607  }
608
609  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
610  void setSourceRange(SourceRange R) { Range = R; }
611
612  static bool classof(const Stmt *T) {
613    return T->getStmtClass() == CXXUuidofExprClass;
614  }
615
616  /// Grabs __declspec(uuid()) off a type, or returns 0 if there is none.
617  static UuidAttr *GetUuidAttrOfType(QualType QT);
618
619  // Iterators
620  child_range children() {
621    if (isTypeOperand()) return child_range();
622    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
623    return child_range(begin, begin + 1);
624  }
625};
626
627/// CXXThisExpr - Represents the "this" expression in C++, which is a
628/// pointer to the object on which the current member function is
629/// executing (C++ [expr.prim]p3). Example:
630///
631/// @code
632/// class Foo {
633/// public:
634///   void bar();
635///   void test() { this->bar(); }
636/// };
637/// @endcode
638class CXXThisExpr : public Expr {
639  SourceLocation Loc;
640  bool Implicit : 1;
641
642public:
643  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
644    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
645           // 'this' is type-dependent if the class type of the enclosing
646           // member function is dependent (C++ [temp.dep.expr]p2)
647           Type->isDependentType(), Type->isDependentType(),
648           Type->isInstantiationDependentType(),
649           /*ContainsUnexpandedParameterPack=*/false),
650      Loc(L), Implicit(isImplicit) { }
651
652  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
653
654  SourceLocation getLocation() const { return Loc; }
655  void setLocation(SourceLocation L) { Loc = L; }
656
657  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
658
659  bool isImplicit() const { return Implicit; }
660  void setImplicit(bool I) { Implicit = I; }
661
662  static bool classof(const Stmt *T) {
663    return T->getStmtClass() == CXXThisExprClass;
664  }
665
666  // Iterators
667  child_range children() { return child_range(); }
668};
669
670///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
671///  'throw' and 'throw' assignment-expression.  When
672///  assignment-expression isn't present, Op will be null.
673///
674class CXXThrowExpr : public Expr {
675  Stmt *Op;
676  SourceLocation ThrowLoc;
677  /// \brief Whether the thrown variable (if any) is in scope.
678  unsigned IsThrownVariableInScope : 1;
679
680  friend class ASTStmtReader;
681
682public:
683  // Ty is the void type which is used as the result type of the
684  // exepression.  The l is the location of the throw keyword.  expr
685  // can by null, if the optional expression to throw isn't present.
686  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
687               bool IsThrownVariableInScope) :
688    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
689         expr && expr->isInstantiationDependent(),
690         expr && expr->containsUnexpandedParameterPack()),
691    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
692  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
693
694  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
695  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
696
697  SourceLocation getThrowLoc() const { return ThrowLoc; }
698
699  /// \brief Determines whether the variable thrown by this expression (if any!)
700  /// is within the innermost try block.
701  ///
702  /// This information is required to determine whether the NRVO can apply to
703  /// this variable.
704  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
705
706  SourceRange getSourceRange() const LLVM_READONLY {
707    if (getSubExpr() == 0)
708      return SourceRange(ThrowLoc, ThrowLoc);
709    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
710  }
711
712  static bool classof(const Stmt *T) {
713    return T->getStmtClass() == CXXThrowExprClass;
714  }
715
716  // Iterators
717  child_range children() {
718    return child_range(&Op, Op ? &Op+1 : &Op);
719  }
720};
721
722/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
723/// function call argument that was created from the corresponding
724/// parameter's default argument, when the call did not explicitly
725/// supply arguments for all of the parameters.
726class CXXDefaultArgExpr : public Expr {
727  /// \brief The parameter whose default is being used.
728  ///
729  /// When the bit is set, the subexpression is stored after the
730  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
731  /// actual default expression is the subexpression.
732  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
733
734  /// \brief The location where the default argument expression was used.
735  SourceLocation Loc;
736
737  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
738    : Expr(SC,
739           param->hasUnparsedDefaultArg()
740             ? param->getType().getNonReferenceType()
741             : param->getDefaultArg()->getType(),
742           param->getDefaultArg()->getValueKind(),
743           param->getDefaultArg()->getObjectKind(), false, false, false, false),
744      Param(param, false), Loc(Loc) { }
745
746  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
747                    Expr *SubExpr)
748    : Expr(SC, SubExpr->getType(),
749           SubExpr->getValueKind(), SubExpr->getObjectKind(),
750           false, false, false, false),
751      Param(param, true), Loc(Loc) {
752    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
753  }
754
755public:
756  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
757
758
759  // Param is the parameter whose default argument is used by this
760  // expression.
761  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
762                                   ParmVarDecl *Param) {
763    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
764  }
765
766  // Param is the parameter whose default argument is used by this
767  // expression, and SubExpr is the expression that will actually be used.
768  static CXXDefaultArgExpr *Create(ASTContext &C,
769                                   SourceLocation Loc,
770                                   ParmVarDecl *Param,
771                                   Expr *SubExpr);
772
773  // Retrieve the parameter that the argument was created from.
774  const ParmVarDecl *getParam() const { return Param.getPointer(); }
775  ParmVarDecl *getParam() { return Param.getPointer(); }
776
777  // Retrieve the actual argument to the function call.
778  const Expr *getExpr() const {
779    if (Param.getInt())
780      return *reinterpret_cast<Expr const * const*> (this + 1);
781    return getParam()->getDefaultArg();
782  }
783  Expr *getExpr() {
784    if (Param.getInt())
785      return *reinterpret_cast<Expr **> (this + 1);
786    return getParam()->getDefaultArg();
787  }
788
789  /// \brief Retrieve the location where this default argument was actually
790  /// used.
791  SourceLocation getUsedLocation() const { return Loc; }
792
793  SourceRange getSourceRange() const LLVM_READONLY {
794    // Default argument expressions have no representation in the
795    // source, so they have an empty source range.
796    return SourceRange();
797  }
798
799  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
800
801  static bool classof(const Stmt *T) {
802    return T->getStmtClass() == CXXDefaultArgExprClass;
803  }
804
805  // Iterators
806  child_range children() { return child_range(); }
807
808  friend class ASTStmtReader;
809  friend class ASTStmtWriter;
810};
811
812/// CXXTemporary - Represents a C++ temporary.
813class CXXTemporary {
814  /// Destructor - The destructor that needs to be called.
815  const CXXDestructorDecl *Destructor;
816
817  CXXTemporary(const CXXDestructorDecl *destructor)
818    : Destructor(destructor) { }
819
820public:
821  static CXXTemporary *Create(ASTContext &C,
822                              const CXXDestructorDecl *Destructor);
823
824  const CXXDestructorDecl *getDestructor() const { return Destructor; }
825  void setDestructor(const CXXDestructorDecl *Dtor) {
826    Destructor = Dtor;
827  }
828};
829
830/// \brief Represents binding an expression to a temporary.
831///
832/// This ensures the destructor is called for the temporary. It should only be
833/// needed for non-POD, non-trivially destructable class types. For example:
834///
835/// \code
836///   struct S {
837///     S() { }  // User defined constructor makes S non-POD.
838///     ~S() { } // User defined destructor makes it non-trivial.
839///   };
840///   void test() {
841///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
842///   }
843/// \endcode
844class CXXBindTemporaryExpr : public Expr {
845  CXXTemporary *Temp;
846
847  Stmt *SubExpr;
848
849  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
850   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
851          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
852          SubExpr->isValueDependent(),
853          SubExpr->isInstantiationDependent(),
854          SubExpr->containsUnexpandedParameterPack()),
855     Temp(temp), SubExpr(SubExpr) { }
856
857public:
858  CXXBindTemporaryExpr(EmptyShell Empty)
859    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
860
861  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
862                                      Expr* SubExpr);
863
864  CXXTemporary *getTemporary() { return Temp; }
865  const CXXTemporary *getTemporary() const { return Temp; }
866  void setTemporary(CXXTemporary *T) { Temp = T; }
867
868  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
869  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
870  void setSubExpr(Expr *E) { SubExpr = E; }
871
872  SourceRange getSourceRange() const LLVM_READONLY {
873    return SubExpr->getSourceRange();
874  }
875
876  // Implement isa/cast/dyncast/etc.
877  static bool classof(const Stmt *T) {
878    return T->getStmtClass() == CXXBindTemporaryExprClass;
879  }
880
881  // Iterators
882  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
883};
884
885/// \brief Represents a call to a C++ constructor.
886class CXXConstructExpr : public Expr {
887public:
888  enum ConstructionKind {
889    CK_Complete,
890    CK_NonVirtualBase,
891    CK_VirtualBase,
892    CK_Delegating
893  };
894
895private:
896  CXXConstructorDecl *Constructor;
897
898  SourceLocation Loc;
899  SourceRange ParenRange;
900  unsigned NumArgs : 16;
901  bool Elidable : 1;
902  bool HadMultipleCandidates : 1;
903  bool ListInitialization : 1;
904  bool ZeroInitialization : 1;
905  unsigned ConstructKind : 2;
906  Stmt **Args;
907
908protected:
909  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
910                   SourceLocation Loc,
911                   CXXConstructorDecl *d, bool elidable,
912                   ArrayRef<Expr *> Args,
913                   bool HadMultipleCandidates,
914                   bool ListInitialization,
915                   bool ZeroInitialization,
916                   ConstructionKind ConstructKind,
917                   SourceRange ParenRange);
918
919  /// \brief Construct an empty C++ construction expression.
920  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
921    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
922      HadMultipleCandidates(false), ListInitialization(false),
923      ZeroInitialization(false), ConstructKind(0), Args(0)
924  { }
925
926public:
927  /// \brief Construct an empty C++ construction expression.
928  explicit CXXConstructExpr(EmptyShell Empty)
929    : Expr(CXXConstructExprClass, Empty), Constructor(0),
930      NumArgs(0), Elidable(false), HadMultipleCandidates(false),
931      ListInitialization(false), ZeroInitialization(false),
932      ConstructKind(0), Args(0)
933  { }
934
935  static CXXConstructExpr *Create(ASTContext &C, QualType T,
936                                  SourceLocation Loc,
937                                  CXXConstructorDecl *D, bool Elidable,
938                                  ArrayRef<Expr *> Args,
939                                  bool HadMultipleCandidates,
940                                  bool ListInitialization,
941                                  bool ZeroInitialization,
942                                  ConstructionKind ConstructKind,
943                                  SourceRange ParenRange);
944
945  CXXConstructorDecl* getConstructor() const { return Constructor; }
946  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
947
948  SourceLocation getLocation() const { return Loc; }
949  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
950
951  /// \brief Whether this construction is elidable.
952  bool isElidable() const { return Elidable; }
953  void setElidable(bool E) { Elidable = E; }
954
955  /// \brief Whether the referred constructor was resolved from
956  /// an overloaded set having size greater than 1.
957  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
958  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
959
960  /// \brief Whether this constructor call was written as list-initialization.
961  bool isListInitialization() const { return ListInitialization; }
962  void setListInitialization(bool V) { ListInitialization = V; }
963
964  /// \brief Whether this construction first requires
965  /// zero-initialization before the initializer is called.
966  bool requiresZeroInitialization() const { return ZeroInitialization; }
967  void setRequiresZeroInitialization(bool ZeroInit) {
968    ZeroInitialization = ZeroInit;
969  }
970
971  /// \brief Determines whether this constructor is actually constructing
972  /// a base class (rather than a complete object).
973  ConstructionKind getConstructionKind() const {
974    return (ConstructionKind)ConstructKind;
975  }
976  void setConstructionKind(ConstructionKind CK) {
977    ConstructKind = CK;
978  }
979
980  typedef ExprIterator arg_iterator;
981  typedef ConstExprIterator const_arg_iterator;
982
983  arg_iterator arg_begin() { return Args; }
984  arg_iterator arg_end() { return Args + NumArgs; }
985  const_arg_iterator arg_begin() const { return Args; }
986  const_arg_iterator arg_end() const { return Args + NumArgs; }
987
988  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
989  unsigned getNumArgs() const { return NumArgs; }
990
991  /// getArg - Return the specified argument.
992  Expr *getArg(unsigned Arg) {
993    assert(Arg < NumArgs && "Arg access out of range!");
994    return cast<Expr>(Args[Arg]);
995  }
996  const Expr *getArg(unsigned Arg) const {
997    assert(Arg < NumArgs && "Arg access out of range!");
998    return cast<Expr>(Args[Arg]);
999  }
1000
1001  /// setArg - Set the specified argument.
1002  void setArg(unsigned Arg, Expr *ArgExpr) {
1003    assert(Arg < NumArgs && "Arg access out of range!");
1004    Args[Arg] = ArgExpr;
1005  }
1006
1007  SourceRange getSourceRange() const LLVM_READONLY;
1008  SourceRange getParenRange() const { return ParenRange; }
1009  void setParenRange(SourceRange Range) { ParenRange = Range; }
1010
1011  static bool classof(const Stmt *T) {
1012    return T->getStmtClass() == CXXConstructExprClass ||
1013      T->getStmtClass() == CXXTemporaryObjectExprClass;
1014  }
1015
1016  // Iterators
1017  child_range children() {
1018    return child_range(&Args[0], &Args[0]+NumArgs);
1019  }
1020
1021  friend class ASTStmtReader;
1022};
1023
1024/// \brief Represents an explicit C++ type conversion that uses "functional"
1025/// notation (C++ [expr.type.conv]).
1026///
1027/// Example:
1028/// @code
1029///   x = int(0.5);
1030/// @endcode
1031class CXXFunctionalCastExpr : public ExplicitCastExpr {
1032  SourceLocation TyBeginLoc;
1033  SourceLocation RParenLoc;
1034
1035  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1036                        TypeSourceInfo *writtenTy,
1037                        SourceLocation tyBeginLoc, CastKind kind,
1038                        Expr *castExpr, unsigned pathSize,
1039                        SourceLocation rParenLoc)
1040    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
1041                       castExpr, pathSize, writtenTy),
1042      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
1043
1044  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
1045    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
1046
1047public:
1048  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
1049                                       ExprValueKind VK,
1050                                       TypeSourceInfo *Written,
1051                                       SourceLocation TyBeginLoc,
1052                                       CastKind Kind, Expr *Op,
1053                                       const CXXCastPath *Path,
1054                                       SourceLocation RPLoc);
1055  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
1056                                            unsigned PathSize);
1057
1058  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
1059  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
1060  SourceLocation getRParenLoc() const { return RParenLoc; }
1061  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1062
1063  SourceRange getSourceRange() const LLVM_READONLY {
1064    return SourceRange(TyBeginLoc, RParenLoc);
1065  }
1066  static bool classof(const Stmt *T) {
1067    return T->getStmtClass() == CXXFunctionalCastExprClass;
1068  }
1069};
1070
1071/// @brief Represents a C++ functional cast expression that builds a
1072/// temporary object.
1073///
1074/// This expression type represents a C++ "functional" cast
1075/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1076/// constructor to build a temporary object. With N == 1 arguments the
1077/// functional cast expression will be represented by CXXFunctionalCastExpr.
1078/// Example:
1079/// @code
1080/// struct X { X(int, float); }
1081///
1082/// X create_X() {
1083///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1084/// };
1085/// @endcode
1086class CXXTemporaryObjectExpr : public CXXConstructExpr {
1087  TypeSourceInfo *Type;
1088
1089public:
1090  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
1091                         TypeSourceInfo *Type,
1092                         ArrayRef<Expr *> Args,
1093                         SourceRange parenRange,
1094                         bool HadMultipleCandidates,
1095                         bool ListInitialization,
1096                         bool ZeroInitialization);
1097  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1098    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1099
1100  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1101
1102  SourceRange getSourceRange() const LLVM_READONLY;
1103
1104  static bool classof(const Stmt *T) {
1105    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1106  }
1107
1108  friend class ASTStmtReader;
1109};
1110
1111/// \brief A C++ lambda expression, which produces a function object
1112/// (of unspecified type) that can be invoked later.
1113///
1114/// Example:
1115/// \code
1116/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1117///   values.erase(std::remove_if(values.begin(), values.end(),
1118///                               [=](double value) { return value > cutoff; });
1119/// }
1120/// \endcode
1121///
1122/// Lambda expressions can capture local variables, either by copying
1123/// the values of those local variables at the time the function
1124/// object is constructed (not when it is called!) or by holding a
1125/// reference to the local variable. These captures can occur either
1126/// implicitly or can be written explicitly between the square
1127/// brackets ([...]) that start the lambda expression.
1128class LambdaExpr : public Expr {
1129  enum {
1130    /// \brief Flag used by the Capture class to indicate that the given
1131    /// capture was implicit.
1132    Capture_Implicit = 0x01,
1133
1134    /// \brief Flag used by the Capture class to indciate that the
1135    /// given capture was by-copy.
1136    Capture_ByCopy = 0x02
1137  };
1138
1139  /// \brief The source range that covers the lambda introducer ([...]).
1140  SourceRange IntroducerRange;
1141
1142  /// \brief The number of captures.
1143  unsigned NumCaptures : 16;
1144
1145  /// \brief The default capture kind, which is a value of type
1146  /// LambdaCaptureDefault.
1147  unsigned CaptureDefault : 2;
1148
1149  /// \brief Whether this lambda had an explicit parameter list vs. an
1150  /// implicit (and empty) parameter list.
1151  unsigned ExplicitParams : 1;
1152
1153  /// \brief Whether this lambda had the result type explicitly specified.
1154  unsigned ExplicitResultType : 1;
1155
1156  /// \brief Whether there are any array index variables stored at the end of
1157  /// this lambda expression.
1158  unsigned HasArrayIndexVars : 1;
1159
1160  /// \brief The location of the closing brace ('}') that completes
1161  /// the lambda.
1162  ///
1163  /// The location of the brace is also available by looking up the
1164  /// function call operator in the lambda class. However, it is
1165  /// stored here to improve the performance of getSourceRange(), and
1166  /// to avoid having to deserialize the function call operator from a
1167  /// module file just to determine the source range.
1168  SourceLocation ClosingBrace;
1169
1170  // Note: The capture initializers are stored directly after the lambda
1171  // expression, along with the index variables used to initialize by-copy
1172  // array captures.
1173
1174public:
1175  /// \brief Describes the capture of either a variable or 'this'.
1176  class Capture {
1177    llvm::PointerIntPair<VarDecl *, 2> VarAndBits;
1178    SourceLocation Loc;
1179    SourceLocation EllipsisLoc;
1180
1181    friend class ASTStmtReader;
1182    friend class ASTStmtWriter;
1183
1184  public:
1185    /// \brief Create a new capture.
1186    ///
1187    /// \param Loc The source location associated with this capture.
1188    ///
1189    /// \param Kind The kind of capture (this, byref, bycopy).
1190    ///
1191    /// \param Implicit Whether the capture was implicit or explicit.
1192    ///
1193    /// \param Var The local variable being captured, or null if capturing this.
1194    ///
1195    /// \param EllipsisLoc The location of the ellipsis (...) for a
1196    /// capture that is a pack expansion, or an invalid source
1197    /// location to indicate that this is not a pack expansion.
1198    Capture(SourceLocation Loc, bool Implicit,
1199            LambdaCaptureKind Kind, VarDecl *Var = 0,
1200            SourceLocation EllipsisLoc = SourceLocation());
1201
1202    /// \brief Determine the kind of capture.
1203    LambdaCaptureKind getCaptureKind() const;
1204
1205    /// \brief Determine whether this capture handles the C++ 'this'
1206    /// pointer.
1207    bool capturesThis() const { return VarAndBits.getPointer() == 0; }
1208
1209    /// \brief Determine whether this capture handles a variable.
1210    bool capturesVariable() const { return VarAndBits.getPointer() != 0; }
1211
1212    /// \brief Retrieve the declaration of the local variable being
1213    /// captured.
1214    ///
1215    /// This operation is only valid if this capture does not capture
1216    /// 'this'.
1217    VarDecl *getCapturedVar() const {
1218      assert(!capturesThis() && "No variable available for 'this' capture");
1219      return VarAndBits.getPointer();
1220    }
1221
1222    /// \brief Determine whether this was an implicit capture (not
1223    /// written between the square brackets introducing the lambda).
1224    bool isImplicit() const { return VarAndBits.getInt() & Capture_Implicit; }
1225
1226    /// \brief Determine whether this was an explicit capture, written
1227    /// between the square brackets introducing the lambda.
1228    bool isExplicit() const { return !isImplicit(); }
1229
1230    /// \brief Retrieve the source location of the capture.
1231    ///
1232    /// For an explicit capture, this returns the location of the
1233    /// explicit capture in the source. For an implicit capture, this
1234    /// returns the location at which the variable or 'this' was first
1235    /// used.
1236    SourceLocation getLocation() const { return Loc; }
1237
1238    /// \brief Determine whether this capture is a pack expansion,
1239    /// which captures a function parameter pack.
1240    bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1241
1242    /// \brief Retrieve the location of the ellipsis for a capture
1243    /// that is a pack expansion.
1244    SourceLocation getEllipsisLoc() const {
1245      assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1246      return EllipsisLoc;
1247    }
1248  };
1249
1250private:
1251  /// \brief Construct a lambda expression.
1252  LambdaExpr(QualType T, SourceRange IntroducerRange,
1253             LambdaCaptureDefault CaptureDefault,
1254             ArrayRef<Capture> Captures,
1255             bool ExplicitParams,
1256             bool ExplicitResultType,
1257             ArrayRef<Expr *> CaptureInits,
1258             ArrayRef<VarDecl *> ArrayIndexVars,
1259             ArrayRef<unsigned> ArrayIndexStarts,
1260             SourceLocation ClosingBrace,
1261             bool ContainsUnexpandedParameterPack);
1262
1263  /// \brief Construct an empty lambda expression.
1264  LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1265    : Expr(LambdaExprClass, Empty),
1266      NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1267      ExplicitResultType(false), HasArrayIndexVars(true) {
1268    getStoredStmts()[NumCaptures] = 0;
1269  }
1270
1271  Stmt **getStoredStmts() const {
1272    return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1273  }
1274
1275  /// \brief Retrieve the mapping from captures to the first array index
1276  /// variable.
1277  unsigned *getArrayIndexStarts() const {
1278    return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1279  }
1280
1281  /// \brief Retrieve the complete set of array-index variables.
1282  VarDecl **getArrayIndexVars() const {
1283    unsigned ArrayIndexSize =
1284        llvm::RoundUpToAlignment(sizeof(unsigned) * (NumCaptures + 1),
1285                                 llvm::alignOf<VarDecl*>());
1286    return reinterpret_cast<VarDecl **>(
1287        reinterpret_cast<char*>(getArrayIndexStarts()) + ArrayIndexSize);
1288  }
1289
1290public:
1291  /// \brief Construct a new lambda expression.
1292  static LambdaExpr *Create(ASTContext &C,
1293                            CXXRecordDecl *Class,
1294                            SourceRange IntroducerRange,
1295                            LambdaCaptureDefault CaptureDefault,
1296                            ArrayRef<Capture> Captures,
1297                            bool ExplicitParams,
1298                            bool ExplicitResultType,
1299                            ArrayRef<Expr *> CaptureInits,
1300                            ArrayRef<VarDecl *> ArrayIndexVars,
1301                            ArrayRef<unsigned> ArrayIndexStarts,
1302                            SourceLocation ClosingBrace,
1303                            bool ContainsUnexpandedParameterPack);
1304
1305  /// \brief Construct a new lambda expression that will be deserialized from
1306  /// an external source.
1307  static LambdaExpr *CreateDeserialized(ASTContext &C, unsigned NumCaptures,
1308                                        unsigned NumArrayIndexVars);
1309
1310  /// \brief Determine the default capture kind for this lambda.
1311  LambdaCaptureDefault getCaptureDefault() const {
1312    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1313  }
1314
1315  /// \brief An iterator that walks over the captures of the lambda,
1316  /// both implicit and explicit.
1317  typedef const Capture *capture_iterator;
1318
1319  /// \brief Retrieve an iterator pointing to the first lambda capture.
1320  capture_iterator capture_begin() const;
1321
1322  /// \brief Retrieve an iterator pointing past the end of the
1323  /// sequence of lambda captures.
1324  capture_iterator capture_end() const;
1325
1326  /// \brief Determine the number of captures in this lambda.
1327  unsigned capture_size() const { return NumCaptures; }
1328
1329  /// \brief Retrieve an iterator pointing to the first explicit
1330  /// lambda capture.
1331  capture_iterator explicit_capture_begin() const;
1332
1333  /// \brief Retrieve an iterator pointing past the end of the sequence of
1334  /// explicit lambda captures.
1335  capture_iterator explicit_capture_end() const;
1336
1337  /// \brief Retrieve an iterator pointing to the first implicit
1338  /// lambda capture.
1339  capture_iterator implicit_capture_begin() const;
1340
1341  /// \brief Retrieve an iterator pointing past the end of the sequence of
1342  /// implicit lambda captures.
1343  capture_iterator implicit_capture_end() const;
1344
1345  /// \brief Iterator that walks over the capture initialization
1346  /// arguments.
1347  typedef Expr **capture_init_iterator;
1348
1349  /// \brief Retrieve the first initialization argument for this
1350  /// lambda expression (which initializes the first capture field).
1351  capture_init_iterator capture_init_begin() const {
1352    return reinterpret_cast<Expr **>(getStoredStmts());
1353  }
1354
1355  /// \brief Retrieve the iterator pointing one past the last
1356  /// initialization argument for this lambda expression.
1357  capture_init_iterator capture_init_end() const {
1358    return capture_init_begin() + NumCaptures;
1359  }
1360
1361  /// \brief Retrieve the set of index variables used in the capture
1362  /// initializer of an array captured by copy.
1363  ///
1364  /// \param Iter The iterator that points at the capture initializer for
1365  /// which we are extracting the corresponding index variables.
1366  ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1367
1368  /// \brief Retrieve the source range covering the lambda introducer,
1369  /// which contains the explicit capture list surrounded by square
1370  /// brackets ([...]).
1371  SourceRange getIntroducerRange() const { return IntroducerRange; }
1372
1373  /// \brief Retrieve the class that corresponds to the lambda, which
1374  /// stores the captures in its fields and provides the various
1375  /// operations permitted on a lambda (copying, calling).
1376  CXXRecordDecl *getLambdaClass() const;
1377
1378  /// \brief Retrieve the function call operator associated with this
1379  /// lambda expression.
1380  CXXMethodDecl *getCallOperator() const;
1381
1382  /// \brief Retrieve the body of the lambda.
1383  CompoundStmt *getBody() const;
1384
1385  /// \brief Determine whether the lambda is mutable, meaning that any
1386  /// captures values can be modified.
1387  bool isMutable() const;
1388
1389  /// \brief Determine whether this lambda has an explicit parameter
1390  /// list vs. an implicit (empty) parameter list.
1391  bool hasExplicitParameters() const { return ExplicitParams; }
1392
1393  /// \brief Whether this lambda had its result type explicitly specified.
1394  bool hasExplicitResultType() const { return ExplicitResultType; }
1395
1396  static bool classof(const Stmt *T) {
1397    return T->getStmtClass() == LambdaExprClass;
1398  }
1399
1400  SourceRange getSourceRange() const LLVM_READONLY {
1401    return SourceRange(IntroducerRange.getBegin(), ClosingBrace);
1402  }
1403
1404  child_range children() {
1405    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1406  }
1407
1408  friend class ASTStmtReader;
1409  friend class ASTStmtWriter;
1410};
1411
1412/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1413/// Expression "T()" which creates a value-initialized rvalue of type
1414/// T, which is a non-class type.
1415///
1416class CXXScalarValueInitExpr : public Expr {
1417  SourceLocation RParenLoc;
1418  TypeSourceInfo *TypeInfo;
1419
1420  friend class ASTStmtReader;
1421
1422public:
1423  /// \brief Create an explicitly-written scalar-value initialization
1424  /// expression.
1425  CXXScalarValueInitExpr(QualType Type,
1426                         TypeSourceInfo *TypeInfo,
1427                         SourceLocation rParenLoc ) :
1428    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1429         false, false, Type->isInstantiationDependentType(), false),
1430    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1431
1432  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1433    : Expr(CXXScalarValueInitExprClass, Shell) { }
1434
1435  TypeSourceInfo *getTypeSourceInfo() const {
1436    return TypeInfo;
1437  }
1438
1439  SourceLocation getRParenLoc() const { return RParenLoc; }
1440
1441  SourceRange getSourceRange() const LLVM_READONLY;
1442
1443  static bool classof(const Stmt *T) {
1444    return T->getStmtClass() == CXXScalarValueInitExprClass;
1445  }
1446
1447  // Iterators
1448  child_range children() { return child_range(); }
1449};
1450
1451/// @brief Represents a new-expression for memory allocation and constructor
1452// calls, e.g: "new CXXNewExpr(foo)".
1453class CXXNewExpr : public Expr {
1454  // Contains an optional array size expression, an optional initialization
1455  // expression, and any number of optional placement arguments, in that order.
1456  Stmt **SubExprs;
1457  /// \brief Points to the allocation function used.
1458  FunctionDecl *OperatorNew;
1459  /// \brief Points to the deallocation function used in case of error. May be
1460  /// null.
1461  FunctionDecl *OperatorDelete;
1462
1463  /// \brief The allocated type-source information, as written in the source.
1464  TypeSourceInfo *AllocatedTypeInfo;
1465
1466  /// \brief If the allocated type was expressed as a parenthesized type-id,
1467  /// the source range covering the parenthesized type-id.
1468  SourceRange TypeIdParens;
1469
1470  /// \brief Range of the entire new expression.
1471  SourceRange Range;
1472
1473  /// \brief Source-range of a paren-delimited initializer.
1474  SourceRange DirectInitRange;
1475
1476  // Was the usage ::new, i.e. is the global new to be used?
1477  bool GlobalNew : 1;
1478  // Do we allocate an array? If so, the first SubExpr is the size expression.
1479  bool Array : 1;
1480  // If this is an array allocation, does the usual deallocation
1481  // function for the allocated type want to know the allocated size?
1482  bool UsualArrayDeleteWantsSize : 1;
1483  // The number of placement new arguments.
1484  unsigned NumPlacementArgs : 13;
1485  // What kind of initializer do we have? Could be none, parens, or braces.
1486  // In storage, we distinguish between "none, and no initializer expr", and
1487  // "none, but an implicit initializer expr".
1488  unsigned StoredInitializationStyle : 2;
1489
1490  friend class ASTStmtReader;
1491  friend class ASTStmtWriter;
1492public:
1493  enum InitializationStyle {
1494    NoInit,   ///< New-expression has no initializer as written.
1495    CallInit, ///< New-expression has a C++98 paren-delimited initializer.
1496    ListInit  ///< New-expression has a C++11 list-initializer.
1497  };
1498
1499  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1500             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1501             ArrayRef<Expr*> placementArgs,
1502             SourceRange typeIdParens, Expr *arraySize,
1503             InitializationStyle initializationStyle, Expr *initializer,
1504             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1505             SourceRange Range, SourceRange directInitRange);
1506  explicit CXXNewExpr(EmptyShell Shell)
1507    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1508
1509  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1510                         bool hasInitializer);
1511
1512  QualType getAllocatedType() const {
1513    assert(getType()->isPointerType());
1514    return getType()->getAs<PointerType>()->getPointeeType();
1515  }
1516
1517  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1518    return AllocatedTypeInfo;
1519  }
1520
1521  /// \brief True if the allocation result needs to be null-checked.
1522  /// C++0x [expr.new]p13:
1523  ///   If the allocation function returns null, initialization shall
1524  ///   not be done, the deallocation function shall not be called,
1525  ///   and the value of the new-expression shall be null.
1526  /// An allocation function is not allowed to return null unless it
1527  /// has a non-throwing exception-specification.  The '03 rule is
1528  /// identical except that the definition of a non-throwing
1529  /// exception specification is just "is it throw()?".
1530  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1531
1532  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1533  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1534  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1535  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1536
1537  bool isArray() const { return Array; }
1538  Expr *getArraySize() {
1539    return Array ? cast<Expr>(SubExprs[0]) : 0;
1540  }
1541  const Expr *getArraySize() const {
1542    return Array ? cast<Expr>(SubExprs[0]) : 0;
1543  }
1544
1545  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1546  Expr **getPlacementArgs() {
1547    return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
1548  }
1549
1550  Expr *getPlacementArg(unsigned i) {
1551    assert(i < NumPlacementArgs && "Index out of range");
1552    return getPlacementArgs()[i];
1553  }
1554  const Expr *getPlacementArg(unsigned i) const {
1555    assert(i < NumPlacementArgs && "Index out of range");
1556    return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
1557  }
1558
1559  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1560  SourceRange getTypeIdParens() const { return TypeIdParens; }
1561
1562  bool isGlobalNew() const { return GlobalNew; }
1563
1564  /// \brief Whether this new-expression has any initializer at all.
1565  bool hasInitializer() const { return StoredInitializationStyle > 0; }
1566
1567  /// \brief The kind of initializer this new-expression has.
1568  InitializationStyle getInitializationStyle() const {
1569    if (StoredInitializationStyle == 0)
1570      return NoInit;
1571    return static_cast<InitializationStyle>(StoredInitializationStyle-1);
1572  }
1573
1574  /// \brief The initializer of this new-expression.
1575  Expr *getInitializer() {
1576    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1577  }
1578  const Expr *getInitializer() const {
1579    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1580  }
1581
1582  /// \brief Returns the CXXConstructExpr from this new-expression, or NULL.
1583  const CXXConstructExpr* getConstructExpr() const {
1584    return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
1585  }
1586
1587  /// Answers whether the usual array deallocation function for the
1588  /// allocated type expects the size of the allocation as a
1589  /// parameter.
1590  bool doesUsualArrayDeleteWantSize() const {
1591    return UsualArrayDeleteWantsSize;
1592  }
1593
1594  typedef ExprIterator arg_iterator;
1595  typedef ConstExprIterator const_arg_iterator;
1596
1597  arg_iterator placement_arg_begin() {
1598    return SubExprs + Array + hasInitializer();
1599  }
1600  arg_iterator placement_arg_end() {
1601    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1602  }
1603  const_arg_iterator placement_arg_begin() const {
1604    return SubExprs + Array + hasInitializer();
1605  }
1606  const_arg_iterator placement_arg_end() const {
1607    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1608  }
1609
1610  typedef Stmt **raw_arg_iterator;
1611  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1612  raw_arg_iterator raw_arg_end() {
1613    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1614  }
1615  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1616  const_arg_iterator raw_arg_end() const {
1617    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1618  }
1619
1620  SourceLocation getStartLoc() const { return Range.getBegin(); }
1621  SourceLocation getEndLoc() const { return Range.getEnd(); }
1622
1623  SourceRange getDirectInitRange() const { return DirectInitRange; }
1624
1625  SourceRange getSourceRange() const LLVM_READONLY {
1626    return Range;
1627  }
1628
1629  static bool classof(const Stmt *T) {
1630    return T->getStmtClass() == CXXNewExprClass;
1631  }
1632
1633  // Iterators
1634  child_range children() {
1635    return child_range(raw_arg_begin(), raw_arg_end());
1636  }
1637};
1638
1639/// \brief Represents a \c delete expression for memory deallocation and
1640/// destructor calls, e.g. "delete[] pArray".
1641class CXXDeleteExpr : public Expr {
1642  // Points to the operator delete overload that is used. Could be a member.
1643  FunctionDecl *OperatorDelete;
1644  // The pointer expression to be deleted.
1645  Stmt *Argument;
1646  // Location of the expression.
1647  SourceLocation Loc;
1648  // Is this a forced global delete, i.e. "::delete"?
1649  bool GlobalDelete : 1;
1650  // Is this the array form of delete, i.e. "delete[]"?
1651  bool ArrayForm : 1;
1652  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1653  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1654  // will be true).
1655  bool ArrayFormAsWritten : 1;
1656  // Does the usual deallocation function for the element type require
1657  // a size_t argument?
1658  bool UsualArrayDeleteWantsSize : 1;
1659public:
1660  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1661                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1662                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1663    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1664           arg->isInstantiationDependent(),
1665           arg->containsUnexpandedParameterPack()),
1666      OperatorDelete(operatorDelete), Argument(arg), Loc(loc),
1667      GlobalDelete(globalDelete),
1668      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1669      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) { }
1670  explicit CXXDeleteExpr(EmptyShell Shell)
1671    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1672
1673  bool isGlobalDelete() const { return GlobalDelete; }
1674  bool isArrayForm() const { return ArrayForm; }
1675  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1676
1677  /// Answers whether the usual array deallocation function for the
1678  /// allocated type expects the size of the allocation as a
1679  /// parameter.  This can be true even if the actual deallocation
1680  /// function that we're using doesn't want a size.
1681  bool doesUsualArrayDeleteWantSize() const {
1682    return UsualArrayDeleteWantsSize;
1683  }
1684
1685  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1686
1687  Expr *getArgument() { return cast<Expr>(Argument); }
1688  const Expr *getArgument() const { return cast<Expr>(Argument); }
1689
1690  /// \brief Retrieve the type being destroyed.  If the type being
1691  /// destroyed is a dependent type which may or may not be a pointer,
1692  /// return an invalid type.
1693  QualType getDestroyedType() const;
1694
1695  SourceRange getSourceRange() const LLVM_READONLY {
1696    return SourceRange(Loc, Argument->getLocEnd());
1697  }
1698
1699  static bool classof(const Stmt *T) {
1700    return T->getStmtClass() == CXXDeleteExprClass;
1701  }
1702
1703  // Iterators
1704  child_range children() { return child_range(&Argument, &Argument+1); }
1705
1706  friend class ASTStmtReader;
1707};
1708
1709/// \brief Stores the type being destroyed by a pseudo-destructor expression.
1710class PseudoDestructorTypeStorage {
1711  /// \brief Either the type source information or the name of the type, if
1712  /// it couldn't be resolved due to type-dependence.
1713  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1714
1715  /// \brief The starting source location of the pseudo-destructor type.
1716  SourceLocation Location;
1717
1718public:
1719  PseudoDestructorTypeStorage() { }
1720
1721  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1722    : Type(II), Location(Loc) { }
1723
1724  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1725
1726  TypeSourceInfo *getTypeSourceInfo() const {
1727    return Type.dyn_cast<TypeSourceInfo *>();
1728  }
1729
1730  IdentifierInfo *getIdentifier() const {
1731    return Type.dyn_cast<IdentifierInfo *>();
1732  }
1733
1734  SourceLocation getLocation() const { return Location; }
1735};
1736
1737/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1738///
1739/// A pseudo-destructor is an expression that looks like a member access to a
1740/// destructor of a scalar type, except that scalar types don't have
1741/// destructors. For example:
1742///
1743/// \code
1744/// typedef int T;
1745/// void f(int *p) {
1746///   p->T::~T();
1747/// }
1748/// \endcode
1749///
1750/// Pseudo-destructors typically occur when instantiating templates such as:
1751///
1752/// \code
1753/// template<typename T>
1754/// void destroy(T* ptr) {
1755///   ptr->T::~T();
1756/// }
1757/// \endcode
1758///
1759/// for scalar types. A pseudo-destructor expression has no run-time semantics
1760/// beyond evaluating the base expression.
1761class CXXPseudoDestructorExpr : public Expr {
1762  /// \brief The base expression (that is being destroyed).
1763  Stmt *Base;
1764
1765  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1766  /// period ('.').
1767  bool IsArrow : 1;
1768
1769  /// \brief The location of the '.' or '->' operator.
1770  SourceLocation OperatorLoc;
1771
1772  /// \brief The nested-name-specifier that follows the operator, if present.
1773  NestedNameSpecifierLoc QualifierLoc;
1774
1775  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1776  /// expression.
1777  TypeSourceInfo *ScopeType;
1778
1779  /// \brief The location of the '::' in a qualified pseudo-destructor
1780  /// expression.
1781  SourceLocation ColonColonLoc;
1782
1783  /// \brief The location of the '~'.
1784  SourceLocation TildeLoc;
1785
1786  /// \brief The type being destroyed, or its name if we were unable to
1787  /// resolve the name.
1788  PseudoDestructorTypeStorage DestroyedType;
1789
1790  friend class ASTStmtReader;
1791
1792public:
1793  CXXPseudoDestructorExpr(ASTContext &Context,
1794                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1795                          NestedNameSpecifierLoc QualifierLoc,
1796                          TypeSourceInfo *ScopeType,
1797                          SourceLocation ColonColonLoc,
1798                          SourceLocation TildeLoc,
1799                          PseudoDestructorTypeStorage DestroyedType);
1800
1801  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1802    : Expr(CXXPseudoDestructorExprClass, Shell),
1803      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1804
1805  Expr *getBase() const { return cast<Expr>(Base); }
1806
1807  /// \brief Determines whether this member expression actually had
1808  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1809  /// x->Base::foo.
1810  bool hasQualifier() const { return QualifierLoc; }
1811
1812  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1813  /// with source-location information.
1814  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1815
1816  /// \brief If the member name was qualified, retrieves the
1817  /// nested-name-specifier that precedes the member name. Otherwise, returns
1818  /// NULL.
1819  NestedNameSpecifier *getQualifier() const {
1820    return QualifierLoc.getNestedNameSpecifier();
1821  }
1822
1823  /// \brief Determine whether this pseudo-destructor expression was written
1824  /// using an '->' (otherwise, it used a '.').
1825  bool isArrow() const { return IsArrow; }
1826
1827  /// \brief Retrieve the location of the '.' or '->' operator.
1828  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1829
1830  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1831  /// expression.
1832  ///
1833  /// Pseudo-destructor expressions can have extra qualification within them
1834  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1835  /// Here, if the object type of the expression is (or may be) a scalar type,
1836  /// \p T may also be a scalar type and, therefore, cannot be part of a
1837  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1838  /// destructor expression.
1839  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1840
1841  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1842  /// expression.
1843  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1844
1845  /// \brief Retrieve the location of the '~'.
1846  SourceLocation getTildeLoc() const { return TildeLoc; }
1847
1848  /// \brief Retrieve the source location information for the type
1849  /// being destroyed.
1850  ///
1851  /// This type-source information is available for non-dependent
1852  /// pseudo-destructor expressions and some dependent pseudo-destructor
1853  /// expressions. Returns NULL if we only have the identifier for a
1854  /// dependent pseudo-destructor expression.
1855  TypeSourceInfo *getDestroyedTypeInfo() const {
1856    return DestroyedType.getTypeSourceInfo();
1857  }
1858
1859  /// \brief In a dependent pseudo-destructor expression for which we do not
1860  /// have full type information on the destroyed type, provides the name
1861  /// of the destroyed type.
1862  IdentifierInfo *getDestroyedTypeIdentifier() const {
1863    return DestroyedType.getIdentifier();
1864  }
1865
1866  /// \brief Retrieve the type being destroyed.
1867  QualType getDestroyedType() const;
1868
1869  /// \brief Retrieve the starting location of the type being destroyed.
1870  SourceLocation getDestroyedTypeLoc() const {
1871    return DestroyedType.getLocation();
1872  }
1873
1874  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1875  /// expression.
1876  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1877    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1878  }
1879
1880  /// \brief Set the destroyed type.
1881  void setDestroyedType(TypeSourceInfo *Info) {
1882    DestroyedType = PseudoDestructorTypeStorage(Info);
1883  }
1884
1885  SourceRange getSourceRange() const LLVM_READONLY;
1886
1887  static bool classof(const Stmt *T) {
1888    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1889  }
1890
1891  // Iterators
1892  child_range children() { return child_range(&Base, &Base + 1); }
1893};
1894
1895/// \brief Represents a GCC or MS unary type trait, as used in the
1896/// implementation of TR1/C++11 type trait templates.
1897///
1898/// Example:
1899/// @code
1900///   __is_pod(int) == true
1901///   __is_enum(std::string) == false
1902/// @endcode
1903class UnaryTypeTraitExpr : public Expr {
1904  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1905  unsigned UTT : 31;
1906  /// The value of the type trait. Unspecified if dependent.
1907  bool Value : 1;
1908
1909  /// Loc - The location of the type trait keyword.
1910  SourceLocation Loc;
1911
1912  /// RParen - The location of the closing paren.
1913  SourceLocation RParen;
1914
1915  /// The type being queried.
1916  TypeSourceInfo *QueriedType;
1917
1918public:
1919  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1920                     TypeSourceInfo *queried, bool value,
1921                     SourceLocation rparen, QualType ty)
1922    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1923           false,  queried->getType()->isDependentType(),
1924           queried->getType()->isInstantiationDependentType(),
1925           queried->getType()->containsUnexpandedParameterPack()),
1926      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1927
1928  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1929    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1930      QueriedType() { }
1931
1932  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc, RParen);}
1933
1934  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1935
1936  QualType getQueriedType() const { return QueriedType->getType(); }
1937
1938  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1939
1940  bool getValue() const { return Value; }
1941
1942  static bool classof(const Stmt *T) {
1943    return T->getStmtClass() == UnaryTypeTraitExprClass;
1944  }
1945
1946  // Iterators
1947  child_range children() { return child_range(); }
1948
1949  friend class ASTStmtReader;
1950};
1951
1952/// \brief Represents a GCC or MS binary type trait, as used in the
1953/// implementation of TR1/C++11 type trait templates.
1954///
1955/// Example:
1956/// @code
1957///   __is_base_of(Base, Derived) == true
1958/// @endcode
1959class BinaryTypeTraitExpr : public Expr {
1960  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1961  unsigned BTT : 8;
1962
1963  /// The value of the type trait. Unspecified if dependent.
1964  bool Value : 1;
1965
1966  /// Loc - The location of the type trait keyword.
1967  SourceLocation Loc;
1968
1969  /// RParen - The location of the closing paren.
1970  SourceLocation RParen;
1971
1972  /// The lhs type being queried.
1973  TypeSourceInfo *LhsType;
1974
1975  /// The rhs type being queried.
1976  TypeSourceInfo *RhsType;
1977
1978public:
1979  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1980                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1981                     bool value, SourceLocation rparen, QualType ty)
1982    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1983           lhsType->getType()->isDependentType() ||
1984           rhsType->getType()->isDependentType(),
1985           (lhsType->getType()->isInstantiationDependentType() ||
1986            rhsType->getType()->isInstantiationDependentType()),
1987           (lhsType->getType()->containsUnexpandedParameterPack() ||
1988            rhsType->getType()->containsUnexpandedParameterPack())),
1989      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1990      LhsType(lhsType), RhsType(rhsType) { }
1991
1992
1993  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1994    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1995      LhsType(), RhsType() { }
1996
1997  SourceRange getSourceRange() const LLVM_READONLY {
1998    return SourceRange(Loc, RParen);
1999  }
2000
2001  BinaryTypeTrait getTrait() const {
2002    return static_cast<BinaryTypeTrait>(BTT);
2003  }
2004
2005  QualType getLhsType() const { return LhsType->getType(); }
2006  QualType getRhsType() const { return RhsType->getType(); }
2007
2008  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
2009  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
2010
2011  bool getValue() const { assert(!isTypeDependent()); return Value; }
2012
2013  static bool classof(const Stmt *T) {
2014    return T->getStmtClass() == BinaryTypeTraitExprClass;
2015  }
2016
2017  // Iterators
2018  child_range children() { return child_range(); }
2019
2020  friend class ASTStmtReader;
2021};
2022
2023/// \brief A type trait used in the implementation of various C++11 and
2024/// Library TR1 trait templates.
2025///
2026/// \code
2027///   __is_trivially_constructible(vector<int>, int*, int*)
2028/// \endcode
2029class TypeTraitExpr : public Expr {
2030  /// \brief The location of the type trait keyword.
2031  SourceLocation Loc;
2032
2033  /// \brief  The location of the closing parenthesis.
2034  SourceLocation RParenLoc;
2035
2036  // Note: The TypeSourceInfos for the arguments are allocated after the
2037  // TypeTraitExpr.
2038
2039  TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2040                ArrayRef<TypeSourceInfo *> Args,
2041                SourceLocation RParenLoc,
2042                bool Value);
2043
2044  TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) { }
2045
2046  /// \brief Retrieve the argument types.
2047  TypeSourceInfo **getTypeSourceInfos() {
2048    return reinterpret_cast<TypeSourceInfo **>(this+1);
2049  }
2050
2051  /// \brief Retrieve the argument types.
2052  TypeSourceInfo * const *getTypeSourceInfos() const {
2053    return reinterpret_cast<TypeSourceInfo * const*>(this+1);
2054  }
2055
2056public:
2057  /// \brief Create a new type trait expression.
2058  static TypeTraitExpr *Create(ASTContext &C, QualType T, SourceLocation Loc,
2059                               TypeTrait Kind,
2060                               ArrayRef<TypeSourceInfo *> Args,
2061                               SourceLocation RParenLoc,
2062                               bool Value);
2063
2064  static TypeTraitExpr *CreateDeserialized(ASTContext &C, unsigned NumArgs);
2065
2066  /// \brief Determine which type trait this expression uses.
2067  TypeTrait getTrait() const {
2068    return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2069  }
2070
2071  bool getValue() const {
2072    assert(!isValueDependent());
2073    return TypeTraitExprBits.Value;
2074  }
2075
2076  /// \brief Determine the number of arguments to this type trait.
2077  unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2078
2079  /// \brief Retrieve the Ith argument.
2080  TypeSourceInfo *getArg(unsigned I) const {
2081    assert(I < getNumArgs() && "Argument out-of-range");
2082    return getArgs()[I];
2083  }
2084
2085  /// \brief Retrieve the argument types.
2086  ArrayRef<TypeSourceInfo *> getArgs() const {
2087    return ArrayRef<TypeSourceInfo *>(getTypeSourceInfos(), getNumArgs());
2088  }
2089
2090  typedef TypeSourceInfo **arg_iterator;
2091  arg_iterator arg_begin() {
2092    return getTypeSourceInfos();
2093  }
2094  arg_iterator arg_end() {
2095    return getTypeSourceInfos() + getNumArgs();
2096  }
2097
2098  typedef TypeSourceInfo const * const *arg_const_iterator;
2099  arg_const_iterator arg_begin() const { return getTypeSourceInfos(); }
2100  arg_const_iterator arg_end() const {
2101    return getTypeSourceInfos() + getNumArgs();
2102  }
2103
2104  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc, RParenLoc); }
2105
2106  static bool classof(const Stmt *T) {
2107    return T->getStmtClass() == TypeTraitExprClass;
2108  }
2109
2110  // Iterators
2111  child_range children() { return child_range(); }
2112
2113  friend class ASTStmtReader;
2114  friend class ASTStmtWriter;
2115
2116};
2117
2118/// \brief An Embarcadero array type trait, as used in the implementation of
2119/// __array_rank and __array_extent.
2120///
2121/// Example:
2122/// @code
2123///   __array_rank(int[10][20]) == 2
2124///   __array_extent(int, 1)    == 20
2125/// @endcode
2126class ArrayTypeTraitExpr : public Expr {
2127  virtual void anchor();
2128
2129  /// \brief The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2130  unsigned ATT : 2;
2131
2132  /// \brief The value of the type trait. Unspecified if dependent.
2133  uint64_t Value;
2134
2135  /// \brief The array dimension being queried, or -1 if not used.
2136  Expr *Dimension;
2137
2138  /// \brief The location of the type trait keyword.
2139  SourceLocation Loc;
2140
2141  /// \brief The location of the closing paren.
2142  SourceLocation RParen;
2143
2144  /// \brief The type being queried.
2145  TypeSourceInfo *QueriedType;
2146
2147public:
2148  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2149                     TypeSourceInfo *queried, uint64_t value,
2150                     Expr *dimension, SourceLocation rparen, QualType ty)
2151    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2152           false, queried->getType()->isDependentType(),
2153           (queried->getType()->isInstantiationDependentType() ||
2154            (dimension && dimension->isInstantiationDependent())),
2155           queried->getType()->containsUnexpandedParameterPack()),
2156      ATT(att), Value(value), Dimension(dimension),
2157      Loc(loc), RParen(rparen), QueriedType(queried) { }
2158
2159
2160  explicit ArrayTypeTraitExpr(EmptyShell Empty)
2161    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
2162      QueriedType() { }
2163
2164  virtual ~ArrayTypeTraitExpr() { }
2165
2166  virtual SourceRange getSourceRange() const LLVM_READONLY {
2167    return SourceRange(Loc, RParen);
2168  }
2169
2170  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2171
2172  QualType getQueriedType() const { return QueriedType->getType(); }
2173
2174  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2175
2176  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
2177
2178  Expr *getDimensionExpression() const { return Dimension; }
2179
2180  static bool classof(const Stmt *T) {
2181    return T->getStmtClass() == ArrayTypeTraitExprClass;
2182  }
2183
2184  // Iterators
2185  child_range children() { return child_range(); }
2186
2187  friend class ASTStmtReader;
2188};
2189
2190/// \brief An expression trait intrinsic.
2191///
2192/// Example:
2193/// @code
2194///   __is_lvalue_expr(std::cout) == true
2195///   __is_lvalue_expr(1) == false
2196/// @endcode
2197class ExpressionTraitExpr : public Expr {
2198  /// \brief The trait. A ExpressionTrait enum in MSVC compat unsigned.
2199  unsigned ET : 31;
2200  /// \brief The value of the type trait. Unspecified if dependent.
2201  bool Value : 1;
2202
2203  /// \brief The location of the type trait keyword.
2204  SourceLocation Loc;
2205
2206  /// \brief The location of the closing paren.
2207  SourceLocation RParen;
2208
2209  /// \brief The expression being queried.
2210  Expr* QueriedExpression;
2211public:
2212  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2213                     Expr *queried, bool value,
2214                     SourceLocation rparen, QualType resultType)
2215    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2216           false, // Not type-dependent
2217           // Value-dependent if the argument is type-dependent.
2218           queried->isTypeDependent(),
2219           queried->isInstantiationDependent(),
2220           queried->containsUnexpandedParameterPack()),
2221      ET(et), Value(value), Loc(loc), RParen(rparen),
2222      QueriedExpression(queried) { }
2223
2224  explicit ExpressionTraitExpr(EmptyShell Empty)
2225    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2226      QueriedExpression() { }
2227
2228  SourceRange getSourceRange() const LLVM_READONLY {
2229    return SourceRange(Loc, RParen);
2230  }
2231
2232  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2233
2234  Expr *getQueriedExpression() const { return QueriedExpression; }
2235
2236  bool getValue() const { return Value; }
2237
2238  static bool classof(const Stmt *T) {
2239    return T->getStmtClass() == ExpressionTraitExprClass;
2240  }
2241
2242  // Iterators
2243  child_range children() { return child_range(); }
2244
2245  friend class ASTStmtReader;
2246};
2247
2248
2249/// \brief A reference to an overloaded function set, either an
2250/// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
2251class OverloadExpr : public Expr {
2252  /// \brief The common name of these declarations.
2253  DeclarationNameInfo NameInfo;
2254
2255  /// \brief The nested-name-specifier that qualifies the name, if any.
2256  NestedNameSpecifierLoc QualifierLoc;
2257
2258  /// The results.  These are undesugared, which is to say, they may
2259  /// include UsingShadowDecls.  Access is relative to the naming
2260  /// class.
2261  // FIXME: Allocate this data after the OverloadExpr subclass.
2262  DeclAccessPair *Results;
2263  unsigned NumResults;
2264
2265protected:
2266  /// \brief Whether the name includes info for explicit template
2267  /// keyword and arguments.
2268  bool HasTemplateKWAndArgsInfo;
2269
2270  /// \brief Return the optional template keyword and arguments info.
2271  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2272
2273  /// \brief Return the optional template keyword and arguments info.
2274  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2275    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2276  }
2277
2278  OverloadExpr(StmtClass K, ASTContext &C,
2279               NestedNameSpecifierLoc QualifierLoc,
2280               SourceLocation TemplateKWLoc,
2281               const DeclarationNameInfo &NameInfo,
2282               const TemplateArgumentListInfo *TemplateArgs,
2283               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2284               bool KnownDependent,
2285               bool KnownInstantiationDependent,
2286               bool KnownContainsUnexpandedParameterPack);
2287
2288  OverloadExpr(StmtClass K, EmptyShell Empty)
2289    : Expr(K, Empty), QualifierLoc(), Results(0), NumResults(0),
2290      HasTemplateKWAndArgsInfo(false) { }
2291
2292  void initializeResults(ASTContext &C,
2293                         UnresolvedSetIterator Begin,
2294                         UnresolvedSetIterator End);
2295
2296public:
2297  struct FindResult {
2298    OverloadExpr *Expression;
2299    bool IsAddressOfOperand;
2300    bool HasFormOfMemberPointer;
2301  };
2302
2303  /// Finds the overloaded expression in the given expression of
2304  /// OverloadTy.
2305  ///
2306  /// \return the expression (which must be there) and true if it has
2307  /// the particular form of a member pointer expression
2308  static FindResult find(Expr *E) {
2309    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2310
2311    FindResult Result;
2312
2313    E = E->IgnoreParens();
2314    if (isa<UnaryOperator>(E)) {
2315      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2316      E = cast<UnaryOperator>(E)->getSubExpr();
2317      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2318
2319      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2320      Result.IsAddressOfOperand = true;
2321      Result.Expression = Ovl;
2322    } else {
2323      Result.HasFormOfMemberPointer = false;
2324      Result.IsAddressOfOperand = false;
2325      Result.Expression = cast<OverloadExpr>(E);
2326    }
2327
2328    return Result;
2329  }
2330
2331  /// \brief Gets the naming class of this lookup, if any.
2332  CXXRecordDecl *getNamingClass() const;
2333
2334  typedef UnresolvedSetImpl::iterator decls_iterator;
2335  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2336  decls_iterator decls_end() const {
2337    return UnresolvedSetIterator(Results + NumResults);
2338  }
2339
2340  /// \brief Gets the number of declarations in the unresolved set.
2341  unsigned getNumDecls() const { return NumResults; }
2342
2343  /// \brief Gets the full name info.
2344  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2345
2346  /// \brief Gets the name looked up.
2347  DeclarationName getName() const { return NameInfo.getName(); }
2348
2349  /// \brief Gets the location of the name.
2350  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2351
2352  /// \brief Fetches the nested-name qualifier, if one was given.
2353  NestedNameSpecifier *getQualifier() const {
2354    return QualifierLoc.getNestedNameSpecifier();
2355  }
2356
2357  /// \brief Fetches the nested-name qualifier with source-location
2358  /// information, if one was given.
2359  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2360
2361  /// \brief Retrieve the location of the template keyword preceding
2362  /// this name, if any.
2363  SourceLocation getTemplateKeywordLoc() const {
2364    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2365    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2366  }
2367
2368  /// \brief Retrieve the location of the left angle bracket starting the
2369  /// explicit template argument list following the name, if any.
2370  SourceLocation getLAngleLoc() const {
2371    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2372    return getTemplateKWAndArgsInfo()->LAngleLoc;
2373  }
2374
2375  /// \brief Retrieve the location of the right angle bracket ending the
2376  /// explicit template argument list following the name, if any.
2377  SourceLocation getRAngleLoc() const {
2378    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2379    return getTemplateKWAndArgsInfo()->RAngleLoc;
2380  }
2381
2382  /// \brief Determines whether the name was preceded by the template keyword.
2383  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2384
2385  /// \brief Determines whether this expression had explicit template arguments.
2386  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2387
2388  // Note that, inconsistently with the explicit-template-argument AST
2389  // nodes, users are *forbidden* from calling these methods on objects
2390  // without explicit template arguments.
2391
2392  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2393    assert(hasExplicitTemplateArgs());
2394    return *getTemplateKWAndArgsInfo();
2395  }
2396
2397  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2398    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2399  }
2400
2401  TemplateArgumentLoc const *getTemplateArgs() const {
2402    return getExplicitTemplateArgs().getTemplateArgs();
2403  }
2404
2405  unsigned getNumTemplateArgs() const {
2406    return getExplicitTemplateArgs().NumTemplateArgs;
2407  }
2408
2409  /// \brief Copies the template arguments into the given structure.
2410  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2411    getExplicitTemplateArgs().copyInto(List);
2412  }
2413
2414  /// \brief Retrieves the optional explicit template arguments.
2415  ///
2416  /// This points to the same data as getExplicitTemplateArgs(), but
2417  /// returns null if there are no explicit template arguments.
2418  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2419    if (!hasExplicitTemplateArgs()) return 0;
2420    return &getExplicitTemplateArgs();
2421  }
2422
2423  static bool classof(const Stmt *T) {
2424    return T->getStmtClass() == UnresolvedLookupExprClass ||
2425           T->getStmtClass() == UnresolvedMemberExprClass;
2426  }
2427
2428  friend class ASTStmtReader;
2429  friend class ASTStmtWriter;
2430};
2431
2432/// \brief A reference to a name which we were able to look up during
2433/// parsing but could not resolve to a specific declaration.
2434///
2435/// This arises in several ways:
2436///   * we might be waiting for argument-dependent lookup
2437///   * the name might resolve to an overloaded function
2438/// and eventually:
2439///   * the lookup might have included a function template
2440/// These never include UnresolvedUsingValueDecls, which are always class
2441/// members and therefore appear only in UnresolvedMemberLookupExprs.
2442class UnresolvedLookupExpr : public OverloadExpr {
2443  /// True if these lookup results should be extended by
2444  /// argument-dependent lookup if this is the operand of a function
2445  /// call.
2446  bool RequiresADL;
2447
2448  /// True if these lookup results are overloaded.  This is pretty
2449  /// trivially rederivable if we urgently need to kill this field.
2450  bool Overloaded;
2451
2452  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2453  /// any.  This can generally be recalculated from the context chain,
2454  /// but that can be fairly expensive for unqualified lookups.  If we
2455  /// want to improve memory use here, this could go in a union
2456  /// against the qualified-lookup bits.
2457  CXXRecordDecl *NamingClass;
2458
2459  UnresolvedLookupExpr(ASTContext &C,
2460                       CXXRecordDecl *NamingClass,
2461                       NestedNameSpecifierLoc QualifierLoc,
2462                       SourceLocation TemplateKWLoc,
2463                       const DeclarationNameInfo &NameInfo,
2464                       bool RequiresADL, bool Overloaded,
2465                       const TemplateArgumentListInfo *TemplateArgs,
2466                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
2467    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2468                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2469      RequiresADL(RequiresADL),
2470      Overloaded(Overloaded), NamingClass(NamingClass)
2471  {}
2472
2473  UnresolvedLookupExpr(EmptyShell Empty)
2474    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2475      RequiresADL(false), Overloaded(false), NamingClass(0)
2476  {}
2477
2478  friend class ASTStmtReader;
2479
2480public:
2481  static UnresolvedLookupExpr *Create(ASTContext &C,
2482                                      CXXRecordDecl *NamingClass,
2483                                      NestedNameSpecifierLoc QualifierLoc,
2484                                      const DeclarationNameInfo &NameInfo,
2485                                      bool ADL, bool Overloaded,
2486                                      UnresolvedSetIterator Begin,
2487                                      UnresolvedSetIterator End) {
2488    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2489                                       SourceLocation(), NameInfo,
2490                                       ADL, Overloaded, 0, Begin, End);
2491  }
2492
2493  static UnresolvedLookupExpr *Create(ASTContext &C,
2494                                      CXXRecordDecl *NamingClass,
2495                                      NestedNameSpecifierLoc QualifierLoc,
2496                                      SourceLocation TemplateKWLoc,
2497                                      const DeclarationNameInfo &NameInfo,
2498                                      bool ADL,
2499                                      const TemplateArgumentListInfo *Args,
2500                                      UnresolvedSetIterator Begin,
2501                                      UnresolvedSetIterator End);
2502
2503  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
2504                                           bool HasTemplateKWAndArgsInfo,
2505                                           unsigned NumTemplateArgs);
2506
2507  /// True if this declaration should be extended by
2508  /// argument-dependent lookup.
2509  bool requiresADL() const { return RequiresADL; }
2510
2511  /// True if this lookup is overloaded.
2512  bool isOverloaded() const { return Overloaded; }
2513
2514  /// Gets the 'naming class' (in the sense of C++0x
2515  /// [class.access.base]p5) of the lookup.  This is the scope
2516  /// that was looked in to find these results.
2517  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2518
2519  SourceRange getSourceRange() const LLVM_READONLY {
2520    SourceRange Range(getNameInfo().getSourceRange());
2521    if (getQualifierLoc())
2522      Range.setBegin(getQualifierLoc().getBeginLoc());
2523    if (hasExplicitTemplateArgs())
2524      Range.setEnd(getRAngleLoc());
2525    return Range;
2526  }
2527
2528  child_range children() { return child_range(); }
2529
2530  static bool classof(const Stmt *T) {
2531    return T->getStmtClass() == UnresolvedLookupExprClass;
2532  }
2533};
2534
2535/// \brief A qualified reference to a name whose declaration cannot
2536/// yet be resolved.
2537///
2538/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2539/// it expresses a reference to a declaration such as
2540/// X<T>::value. The difference, however, is that an
2541/// DependentScopeDeclRefExpr node is used only within C++ templates when
2542/// the qualification (e.g., X<T>::) refers to a dependent type. In
2543/// this case, X<T>::value cannot resolve to a declaration because the
2544/// declaration will differ from on instantiation of X<T> to the
2545/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2546/// qualifier (X<T>::) and the name of the entity being referenced
2547/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2548/// declaration can be found.
2549class DependentScopeDeclRefExpr : public Expr {
2550  /// \brief The nested-name-specifier that qualifies this unresolved
2551  /// declaration name.
2552  NestedNameSpecifierLoc QualifierLoc;
2553
2554  /// The name of the entity we will be referencing.
2555  DeclarationNameInfo NameInfo;
2556
2557  /// \brief Whether the name includes info for explicit template
2558  /// keyword and arguments.
2559  bool HasTemplateKWAndArgsInfo;
2560
2561  /// \brief Return the optional template keyword and arguments info.
2562  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2563    if (!HasTemplateKWAndArgsInfo) return 0;
2564    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2565  }
2566  /// \brief Return the optional template keyword and arguments info.
2567  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2568    return const_cast<DependentScopeDeclRefExpr*>(this)
2569      ->getTemplateKWAndArgsInfo();
2570  }
2571
2572  DependentScopeDeclRefExpr(QualType T,
2573                            NestedNameSpecifierLoc QualifierLoc,
2574                            SourceLocation TemplateKWLoc,
2575                            const DeclarationNameInfo &NameInfo,
2576                            const TemplateArgumentListInfo *Args);
2577
2578public:
2579  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2580                                           NestedNameSpecifierLoc QualifierLoc,
2581                                           SourceLocation TemplateKWLoc,
2582                                           const DeclarationNameInfo &NameInfo,
2583                              const TemplateArgumentListInfo *TemplateArgs);
2584
2585  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2586                                                bool HasTemplateKWAndArgsInfo,
2587                                                unsigned NumTemplateArgs);
2588
2589  /// \brief Retrieve the name that this expression refers to.
2590  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2591
2592  /// \brief Retrieve the name that this expression refers to.
2593  DeclarationName getDeclName() const { return NameInfo.getName(); }
2594
2595  /// \brief Retrieve the location of the name within the expression.
2596  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2597
2598  /// \brief Retrieve the nested-name-specifier that qualifies the
2599  /// name, with source location information.
2600  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2601
2602
2603  /// \brief Retrieve the nested-name-specifier that qualifies this
2604  /// declaration.
2605  NestedNameSpecifier *getQualifier() const {
2606    return QualifierLoc.getNestedNameSpecifier();
2607  }
2608
2609  /// \brief Retrieve the location of the template keyword preceding
2610  /// this name, if any.
2611  SourceLocation getTemplateKeywordLoc() const {
2612    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2613    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2614  }
2615
2616  /// \brief Retrieve the location of the left angle bracket starting the
2617  /// explicit template argument list following the name, if any.
2618  SourceLocation getLAngleLoc() const {
2619    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2620    return getTemplateKWAndArgsInfo()->LAngleLoc;
2621  }
2622
2623  /// \brief Retrieve the location of the right angle bracket ending the
2624  /// explicit template argument list following the name, if any.
2625  SourceLocation getRAngleLoc() const {
2626    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2627    return getTemplateKWAndArgsInfo()->RAngleLoc;
2628  }
2629
2630  /// Determines whether the name was preceded by the template keyword.
2631  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2632
2633  /// Determines whether this lookup had explicit template arguments.
2634  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2635
2636  // Note that, inconsistently with the explicit-template-argument AST
2637  // nodes, users are *forbidden* from calling these methods on objects
2638  // without explicit template arguments.
2639
2640  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2641    assert(hasExplicitTemplateArgs());
2642    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2643  }
2644
2645  /// Gets a reference to the explicit template argument list.
2646  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2647    assert(hasExplicitTemplateArgs());
2648    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2649  }
2650
2651  /// \brief Retrieves the optional explicit template arguments.
2652  /// This points to the same data as getExplicitTemplateArgs(), but
2653  /// returns null if there are no explicit template arguments.
2654  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2655    if (!hasExplicitTemplateArgs()) return 0;
2656    return &getExplicitTemplateArgs();
2657  }
2658
2659  /// \brief Copies the template arguments (if present) into the given
2660  /// structure.
2661  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2662    getExplicitTemplateArgs().copyInto(List);
2663  }
2664
2665  TemplateArgumentLoc const *getTemplateArgs() const {
2666    return getExplicitTemplateArgs().getTemplateArgs();
2667  }
2668
2669  unsigned getNumTemplateArgs() const {
2670    return getExplicitTemplateArgs().NumTemplateArgs;
2671  }
2672
2673  SourceRange getSourceRange() const LLVM_READONLY {
2674    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2675    if (hasExplicitTemplateArgs())
2676      Range.setEnd(getRAngleLoc());
2677    return Range;
2678  }
2679
2680  static bool classof(const Stmt *T) {
2681    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2682  }
2683
2684  child_range children() { return child_range(); }
2685
2686  friend class ASTStmtReader;
2687  friend class ASTStmtWriter;
2688};
2689
2690/// Represents an expression --- generally a full-expression --- which
2691/// introduces cleanups to be run at the end of the sub-expression's
2692/// evaluation.  The most common source of expression-introduced
2693/// cleanups is temporary objects in C++, but several other kinds of
2694/// expressions can create cleanups, including basically every
2695/// call in ARC that returns an Objective-C pointer.
2696///
2697/// This expression also tracks whether the sub-expression contains a
2698/// potentially-evaluated block literal.  The lifetime of a block
2699/// literal is the extent of the enclosing scope.
2700class ExprWithCleanups : public Expr {
2701public:
2702  /// The type of objects that are kept in the cleanup.
2703  /// It's useful to remember the set of blocks;  we could also
2704  /// remember the set of temporaries, but there's currently
2705  /// no need.
2706  typedef BlockDecl *CleanupObject;
2707
2708private:
2709  Stmt *SubExpr;
2710
2711  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2712  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2713
2714  CleanupObject *getObjectsBuffer() {
2715    return reinterpret_cast<CleanupObject*>(this + 1);
2716  }
2717  const CleanupObject *getObjectsBuffer() const {
2718    return reinterpret_cast<const CleanupObject*>(this + 1);
2719  }
2720  friend class ASTStmtReader;
2721
2722public:
2723  static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2724                                  unsigned numObjects);
2725
2726  static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2727                                  ArrayRef<CleanupObject> objects);
2728
2729  ArrayRef<CleanupObject> getObjects() const {
2730    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2731  }
2732
2733  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2734
2735  CleanupObject getObject(unsigned i) const {
2736    assert(i < getNumObjects() && "Index out of range");
2737    return getObjects()[i];
2738  }
2739
2740  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2741  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2742
2743  /// setSubExpr - As with any mutator of the AST, be very careful
2744  /// when modifying an existing AST to preserve its invariants.
2745  void setSubExpr(Expr *E) { SubExpr = E; }
2746
2747  SourceRange getSourceRange() const LLVM_READONLY {
2748    return SubExpr->getSourceRange();
2749  }
2750
2751  // Implement isa/cast/dyncast/etc.
2752  static bool classof(const Stmt *T) {
2753    return T->getStmtClass() == ExprWithCleanupsClass;
2754  }
2755
2756  // Iterators
2757  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2758};
2759
2760/// \brief Describes an explicit type conversion that uses functional
2761/// notion but could not be resolved because one or more arguments are
2762/// type-dependent.
2763///
2764/// The explicit type conversions expressed by
2765/// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
2766/// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
2767/// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
2768/// type-dependent. For example, this would occur in a template such
2769/// as:
2770///
2771/// \code
2772///   template<typename T, typename A1>
2773///   inline T make_a(const A1& a1) {
2774///     return T(a1);
2775///   }
2776/// \endcode
2777///
2778/// When the returned expression is instantiated, it may resolve to a
2779/// constructor call, conversion function call, or some kind of type
2780/// conversion.
2781class CXXUnresolvedConstructExpr : public Expr {
2782  /// \brief The type being constructed.
2783  TypeSourceInfo *Type;
2784
2785  /// \brief The location of the left parentheses ('(').
2786  SourceLocation LParenLoc;
2787
2788  /// \brief The location of the right parentheses (')').
2789  SourceLocation RParenLoc;
2790
2791  /// \brief The number of arguments used to construct the type.
2792  unsigned NumArgs;
2793
2794  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2795                             SourceLocation LParenLoc,
2796                             ArrayRef<Expr*> Args,
2797                             SourceLocation RParenLoc);
2798
2799  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2800    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2801
2802  friend class ASTStmtReader;
2803
2804public:
2805  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2806                                            TypeSourceInfo *Type,
2807                                            SourceLocation LParenLoc,
2808                                            ArrayRef<Expr*> Args,
2809                                            SourceLocation RParenLoc);
2810
2811  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2812                                                 unsigned NumArgs);
2813
2814  /// \brief Retrieve the type that is being constructed, as specified
2815  /// in the source code.
2816  QualType getTypeAsWritten() const { return Type->getType(); }
2817
2818  /// \brief Retrieve the type source information for the type being
2819  /// constructed.
2820  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2821
2822  /// \brief Retrieve the location of the left parentheses ('(') that
2823  /// precedes the argument list.
2824  SourceLocation getLParenLoc() const { return LParenLoc; }
2825  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2826
2827  /// \brief Retrieve the location of the right parentheses (')') that
2828  /// follows the argument list.
2829  SourceLocation getRParenLoc() const { return RParenLoc; }
2830  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2831
2832  /// \brief Retrieve the number of arguments.
2833  unsigned arg_size() const { return NumArgs; }
2834
2835  typedef Expr** arg_iterator;
2836  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2837  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2838
2839  typedef const Expr* const * const_arg_iterator;
2840  const_arg_iterator arg_begin() const {
2841    return reinterpret_cast<const Expr* const *>(this + 1);
2842  }
2843  const_arg_iterator arg_end() const {
2844    return arg_begin() + NumArgs;
2845  }
2846
2847  Expr *getArg(unsigned I) {
2848    assert(I < NumArgs && "Argument index out-of-range");
2849    return *(arg_begin() + I);
2850  }
2851
2852  const Expr *getArg(unsigned I) const {
2853    assert(I < NumArgs && "Argument index out-of-range");
2854    return *(arg_begin() + I);
2855  }
2856
2857  void setArg(unsigned I, Expr *E) {
2858    assert(I < NumArgs && "Argument index out-of-range");
2859    *(arg_begin() + I) = E;
2860  }
2861
2862  SourceRange getSourceRange() const LLVM_READONLY;
2863
2864  static bool classof(const Stmt *T) {
2865    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2866  }
2867
2868  // Iterators
2869  child_range children() {
2870    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2871    return child_range(begin, begin + NumArgs);
2872  }
2873};
2874
2875/// \brief Represents a C++ member access expression where the actual
2876/// member referenced could not be resolved because the base
2877/// expression or the member name was dependent.
2878///
2879/// Like UnresolvedMemberExprs, these can be either implicit or
2880/// explicit accesses.  It is only possible to get one of these with
2881/// an implicit access if a qualifier is provided.
2882class CXXDependentScopeMemberExpr : public Expr {
2883  /// \brief The expression for the base pointer or class reference,
2884  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2885  Stmt *Base;
2886
2887  /// \brief The type of the base expression.  Never null, even for
2888  /// implicit accesses.
2889  QualType BaseType;
2890
2891  /// \brief Whether this member expression used the '->' operator or
2892  /// the '.' operator.
2893  bool IsArrow : 1;
2894
2895  /// \brief Whether this member expression has info for explicit template
2896  /// keyword and arguments.
2897  bool HasTemplateKWAndArgsInfo : 1;
2898
2899  /// \brief The location of the '->' or '.' operator.
2900  SourceLocation OperatorLoc;
2901
2902  /// \brief The nested-name-specifier that precedes the member name, if any.
2903  NestedNameSpecifierLoc QualifierLoc;
2904
2905  /// \brief In a qualified member access expression such as t->Base::f, this
2906  /// member stores the resolves of name lookup in the context of the member
2907  /// access expression, to be used at instantiation time.
2908  ///
2909  /// FIXME: This member, along with the QualifierLoc, could
2910  /// be stuck into a structure that is optionally allocated at the end of
2911  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2912  NamedDecl *FirstQualifierFoundInScope;
2913
2914  /// \brief The member to which this member expression refers, which
2915  /// can be name, overloaded operator, or destructor.
2916  /// FIXME: could also be a template-id
2917  DeclarationNameInfo MemberNameInfo;
2918
2919  /// \brief Return the optional template keyword and arguments info.
2920  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2921    if (!HasTemplateKWAndArgsInfo) return 0;
2922    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2923  }
2924  /// \brief Return the optional template keyword and arguments info.
2925  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2926    return const_cast<CXXDependentScopeMemberExpr*>(this)
2927      ->getTemplateKWAndArgsInfo();
2928  }
2929
2930  CXXDependentScopeMemberExpr(ASTContext &C,
2931                          Expr *Base, QualType BaseType, bool IsArrow,
2932                          SourceLocation OperatorLoc,
2933                          NestedNameSpecifierLoc QualifierLoc,
2934                          SourceLocation TemplateKWLoc,
2935                          NamedDecl *FirstQualifierFoundInScope,
2936                          DeclarationNameInfo MemberNameInfo,
2937                          const TemplateArgumentListInfo *TemplateArgs);
2938
2939public:
2940  CXXDependentScopeMemberExpr(ASTContext &C,
2941                              Expr *Base, QualType BaseType,
2942                              bool IsArrow,
2943                              SourceLocation OperatorLoc,
2944                              NestedNameSpecifierLoc QualifierLoc,
2945                              NamedDecl *FirstQualifierFoundInScope,
2946                              DeclarationNameInfo MemberNameInfo);
2947
2948  static CXXDependentScopeMemberExpr *
2949  Create(ASTContext &C,
2950         Expr *Base, QualType BaseType, bool IsArrow,
2951         SourceLocation OperatorLoc,
2952         NestedNameSpecifierLoc QualifierLoc,
2953         SourceLocation TemplateKWLoc,
2954         NamedDecl *FirstQualifierFoundInScope,
2955         DeclarationNameInfo MemberNameInfo,
2956         const TemplateArgumentListInfo *TemplateArgs);
2957
2958  static CXXDependentScopeMemberExpr *
2959  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2960              unsigned NumTemplateArgs);
2961
2962  /// \brief True if this is an implicit access, i.e. one in which the
2963  /// member being accessed was not written in the source.  The source
2964  /// location of the operator is invalid in this case.
2965  bool isImplicitAccess() const;
2966
2967  /// \brief Retrieve the base object of this member expressions,
2968  /// e.g., the \c x in \c x.m.
2969  Expr *getBase() const {
2970    assert(!isImplicitAccess());
2971    return cast<Expr>(Base);
2972  }
2973
2974  QualType getBaseType() const { return BaseType; }
2975
2976  /// \brief Determine whether this member expression used the '->'
2977  /// operator; otherwise, it used the '.' operator.
2978  bool isArrow() const { return IsArrow; }
2979
2980  /// \brief Retrieve the location of the '->' or '.' operator.
2981  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2982
2983  /// \brief Retrieve the nested-name-specifier that qualifies the member
2984  /// name.
2985  NestedNameSpecifier *getQualifier() const {
2986    return QualifierLoc.getNestedNameSpecifier();
2987  }
2988
2989  /// \brief Retrieve the nested-name-specifier that qualifies the member
2990  /// name, with source location information.
2991  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2992
2993
2994  /// \brief Retrieve the first part of the nested-name-specifier that was
2995  /// found in the scope of the member access expression when the member access
2996  /// was initially parsed.
2997  ///
2998  /// This function only returns a useful result when member access expression
2999  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
3000  /// returned by this function describes what was found by unqualified name
3001  /// lookup for the identifier "Base" within the scope of the member access
3002  /// expression itself. At template instantiation time, this information is
3003  /// combined with the results of name lookup into the type of the object
3004  /// expression itself (the class type of x).
3005  NamedDecl *getFirstQualifierFoundInScope() const {
3006    return FirstQualifierFoundInScope;
3007  }
3008
3009  /// \brief Retrieve the name of the member that this expression
3010  /// refers to.
3011  const DeclarationNameInfo &getMemberNameInfo() const {
3012    return MemberNameInfo;
3013  }
3014
3015  /// \brief Retrieve the name of the member that this expression
3016  /// refers to.
3017  DeclarationName getMember() const { return MemberNameInfo.getName(); }
3018
3019  // \brief Retrieve the location of the name of the member that this
3020  // expression refers to.
3021  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
3022
3023  /// \brief Retrieve the location of the template keyword preceding the
3024  /// member name, if any.
3025  SourceLocation getTemplateKeywordLoc() const {
3026    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3027    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
3028  }
3029
3030  /// \brief Retrieve the location of the left angle bracket starting the
3031  /// explicit template argument list following the member name, if any.
3032  SourceLocation getLAngleLoc() const {
3033    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3034    return getTemplateKWAndArgsInfo()->LAngleLoc;
3035  }
3036
3037  /// \brief Retrieve the location of the right angle bracket ending the
3038  /// explicit template argument list following the member name, if any.
3039  SourceLocation getRAngleLoc() const {
3040    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3041    return getTemplateKWAndArgsInfo()->RAngleLoc;
3042  }
3043
3044  /// Determines whether the member name was preceded by the template keyword.
3045  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3046
3047  /// \brief Determines whether this member expression actually had a C++
3048  /// template argument list explicitly specified, e.g., x.f<int>.
3049  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3050
3051  /// \brief Retrieve the explicit template argument list that followed the
3052  /// member template name, if any.
3053  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
3054    assert(hasExplicitTemplateArgs());
3055    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
3056  }
3057
3058  /// \brief Retrieve the explicit template argument list that followed the
3059  /// member template name, if any.
3060  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
3061    return const_cast<CXXDependentScopeMemberExpr *>(this)
3062             ->getExplicitTemplateArgs();
3063  }
3064
3065  /// \brief Retrieves the optional explicit template arguments.
3066  /// This points to the same data as getExplicitTemplateArgs(), but
3067  /// returns null if there are no explicit template arguments.
3068  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
3069    if (!hasExplicitTemplateArgs()) return 0;
3070    return &getExplicitTemplateArgs();
3071  }
3072
3073  /// \brief Copies the template arguments (if present) into the given
3074  /// structure.
3075  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3076    getExplicitTemplateArgs().copyInto(List);
3077  }
3078
3079  /// \brief Initializes the template arguments using the given structure.
3080  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
3081    getExplicitTemplateArgs().initializeFrom(List);
3082  }
3083
3084  /// \brief Retrieve the template arguments provided as part of this
3085  /// template-id.
3086  const TemplateArgumentLoc *getTemplateArgs() const {
3087    return getExplicitTemplateArgs().getTemplateArgs();
3088  }
3089
3090  /// \brief Retrieve the number of template arguments provided as part of this
3091  /// template-id.
3092  unsigned getNumTemplateArgs() const {
3093    return getExplicitTemplateArgs().NumTemplateArgs;
3094  }
3095
3096  SourceRange getSourceRange() const LLVM_READONLY {
3097    SourceRange Range;
3098    if (!isImplicitAccess())
3099      Range.setBegin(Base->getSourceRange().getBegin());
3100    else if (getQualifier())
3101      Range.setBegin(getQualifierLoc().getBeginLoc());
3102    else
3103      Range.setBegin(MemberNameInfo.getBeginLoc());
3104
3105    if (hasExplicitTemplateArgs())
3106      Range.setEnd(getRAngleLoc());
3107    else
3108      Range.setEnd(MemberNameInfo.getEndLoc());
3109    return Range;
3110  }
3111
3112  static bool classof(const Stmt *T) {
3113    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
3114  }
3115
3116  // Iterators
3117  child_range children() {
3118    if (isImplicitAccess()) return child_range();
3119    return child_range(&Base, &Base + 1);
3120  }
3121
3122  friend class ASTStmtReader;
3123  friend class ASTStmtWriter;
3124};
3125
3126/// \brief Represents a C++ member access expression for which lookup
3127/// produced a set of overloaded functions.
3128///
3129/// The member access may be explicit or implicit:
3130///    struct A {
3131///      int a, b;
3132///      int explicitAccess() { return this->a + this->A::b; }
3133///      int implicitAccess() { return a + A::b; }
3134///    };
3135///
3136/// In the final AST, an explicit access always becomes a MemberExpr.
3137/// An implicit access may become either a MemberExpr or a
3138/// DeclRefExpr, depending on whether the member is static.
3139class UnresolvedMemberExpr : public OverloadExpr {
3140  /// \brief Whether this member expression used the '->' operator or
3141  /// the '.' operator.
3142  bool IsArrow : 1;
3143
3144  /// \brief Whether the lookup results contain an unresolved using
3145  /// declaration.
3146  bool HasUnresolvedUsing : 1;
3147
3148  /// \brief The expression for the base pointer or class reference,
3149  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
3150  /// member expression
3151  Stmt *Base;
3152
3153  /// \brief The type of the base expression;  never null.
3154  QualType BaseType;
3155
3156  /// \brief The location of the '->' or '.' operator.
3157  SourceLocation OperatorLoc;
3158
3159  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
3160                       Expr *Base, QualType BaseType, bool IsArrow,
3161                       SourceLocation OperatorLoc,
3162                       NestedNameSpecifierLoc QualifierLoc,
3163                       SourceLocation TemplateKWLoc,
3164                       const DeclarationNameInfo &MemberNameInfo,
3165                       const TemplateArgumentListInfo *TemplateArgs,
3166                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3167
3168  UnresolvedMemberExpr(EmptyShell Empty)
3169    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
3170      HasUnresolvedUsing(false), Base(0) { }
3171
3172  friend class ASTStmtReader;
3173
3174public:
3175  static UnresolvedMemberExpr *
3176  Create(ASTContext &C, bool HasUnresolvedUsing,
3177         Expr *Base, QualType BaseType, bool IsArrow,
3178         SourceLocation OperatorLoc,
3179         NestedNameSpecifierLoc QualifierLoc,
3180         SourceLocation TemplateKWLoc,
3181         const DeclarationNameInfo &MemberNameInfo,
3182         const TemplateArgumentListInfo *TemplateArgs,
3183         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3184
3185  static UnresolvedMemberExpr *
3186  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
3187              unsigned NumTemplateArgs);
3188
3189  /// \brief True if this is an implicit access, i.e. one in which the
3190  /// member being accessed was not written in the source.  The source
3191  /// location of the operator is invalid in this case.
3192  bool isImplicitAccess() const;
3193
3194  /// \brief Retrieve the base object of this member expressions,
3195  /// e.g., the \c x in \c x.m.
3196  Expr *getBase() {
3197    assert(!isImplicitAccess());
3198    return cast<Expr>(Base);
3199  }
3200  const Expr *getBase() const {
3201    assert(!isImplicitAccess());
3202    return cast<Expr>(Base);
3203  }
3204
3205  QualType getBaseType() const { return BaseType; }
3206
3207  /// \brief Determine whether the lookup results contain an unresolved using
3208  /// declaration.
3209  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3210
3211  /// \brief Determine whether this member expression used the '->'
3212  /// operator; otherwise, it used the '.' operator.
3213  bool isArrow() const { return IsArrow; }
3214
3215  /// \brief Retrieve the location of the '->' or '.' operator.
3216  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3217
3218  /// \brief Retrieves the naming class of this lookup.
3219  CXXRecordDecl *getNamingClass() const;
3220
3221  /// \brief Retrieve the full name info for the member that this expression
3222  /// refers to.
3223  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3224
3225  /// \brief Retrieve the name of the member that this expression
3226  /// refers to.
3227  DeclarationName getMemberName() const { return getName(); }
3228
3229  // \brief Retrieve the location of the name of the member that this
3230  // expression refers to.
3231  SourceLocation getMemberLoc() const { return getNameLoc(); }
3232
3233  SourceRange getSourceRange() const LLVM_READONLY {
3234    SourceRange Range = getMemberNameInfo().getSourceRange();
3235    if (!isImplicitAccess())
3236      Range.setBegin(Base->getSourceRange().getBegin());
3237    else if (getQualifierLoc())
3238      Range.setBegin(getQualifierLoc().getBeginLoc());
3239
3240    if (hasExplicitTemplateArgs())
3241      Range.setEnd(getRAngleLoc());
3242    return Range;
3243  }
3244
3245  static bool classof(const Stmt *T) {
3246    return T->getStmtClass() == UnresolvedMemberExprClass;
3247  }
3248
3249  // Iterators
3250  child_range children() {
3251    if (isImplicitAccess()) return child_range();
3252    return child_range(&Base, &Base + 1);
3253  }
3254};
3255
3256/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
3257///
3258/// The noexcept expression tests whether a given expression might throw. Its
3259/// result is a boolean constant.
3260class CXXNoexceptExpr : public Expr {
3261  bool Value : 1;
3262  Stmt *Operand;
3263  SourceRange Range;
3264
3265  friend class ASTStmtReader;
3266
3267public:
3268  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3269                  SourceLocation Keyword, SourceLocation RParen)
3270    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3271           /*TypeDependent*/false,
3272           /*ValueDependent*/Val == CT_Dependent,
3273           Val == CT_Dependent || Operand->isInstantiationDependent(),
3274           Operand->containsUnexpandedParameterPack()),
3275      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3276  { }
3277
3278  CXXNoexceptExpr(EmptyShell Empty)
3279    : Expr(CXXNoexceptExprClass, Empty)
3280  { }
3281
3282  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3283
3284  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
3285
3286  bool getValue() const { return Value; }
3287
3288  static bool classof(const Stmt *T) {
3289    return T->getStmtClass() == CXXNoexceptExprClass;
3290  }
3291
3292  // Iterators
3293  child_range children() { return child_range(&Operand, &Operand + 1); }
3294};
3295
3296/// \brief Represents a C++0x pack expansion that produces a sequence of
3297/// expressions.
3298///
3299/// A pack expansion expression contains a pattern (which itself is an
3300/// expression) followed by an ellipsis. For example:
3301///
3302/// \code
3303/// template<typename F, typename ...Types>
3304/// void forward(F f, Types &&...args) {
3305///   f(static_cast<Types&&>(args)...);
3306/// }
3307/// \endcode
3308///
3309/// Here, the argument to the function object \c f is a pack expansion whose
3310/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3311/// template is instantiated, the pack expansion will instantiate to zero or
3312/// or more function arguments to the function object \c f.
3313class PackExpansionExpr : public Expr {
3314  SourceLocation EllipsisLoc;
3315
3316  /// \brief The number of expansions that will be produced by this pack
3317  /// expansion expression, if known.
3318  ///
3319  /// When zero, the number of expansions is not known. Otherwise, this value
3320  /// is the number of expansions + 1.
3321  unsigned NumExpansions;
3322
3323  Stmt *Pattern;
3324
3325  friend class ASTStmtReader;
3326  friend class ASTStmtWriter;
3327
3328public:
3329  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3330                    llvm::Optional<unsigned> NumExpansions)
3331    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3332           Pattern->getObjectKind(), /*TypeDependent=*/true,
3333           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3334           /*ContainsUnexpandedParameterPack=*/false),
3335      EllipsisLoc(EllipsisLoc),
3336      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3337      Pattern(Pattern) { }
3338
3339  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3340
3341  /// \brief Retrieve the pattern of the pack expansion.
3342  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3343
3344  /// \brief Retrieve the pattern of the pack expansion.
3345  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3346
3347  /// \brief Retrieve the location of the ellipsis that describes this pack
3348  /// expansion.
3349  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3350
3351  /// \brief Determine the number of expansions that will be produced when
3352  /// this pack expansion is instantiated, if already known.
3353  llvm::Optional<unsigned> getNumExpansions() const {
3354    if (NumExpansions)
3355      return NumExpansions - 1;
3356
3357    return llvm::Optional<unsigned>();
3358  }
3359
3360  SourceRange getSourceRange() const LLVM_READONLY {
3361    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
3362  }
3363
3364  static bool classof(const Stmt *T) {
3365    return T->getStmtClass() == PackExpansionExprClass;
3366  }
3367
3368  // Iterators
3369  child_range children() {
3370    return child_range(&Pattern, &Pattern + 1);
3371  }
3372};
3373
3374inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3375  if (!HasTemplateKWAndArgsInfo) return 0;
3376  if (isa<UnresolvedLookupExpr>(this))
3377    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3378      (cast<UnresolvedLookupExpr>(this) + 1);
3379  else
3380    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3381      (cast<UnresolvedMemberExpr>(this) + 1);
3382}
3383
3384/// \brief Represents an expression that computes the length of a parameter
3385/// pack.
3386///
3387/// \code
3388/// template<typename ...Types>
3389/// struct count {
3390///   static const unsigned value = sizeof...(Types);
3391/// };
3392/// \endcode
3393class SizeOfPackExpr : public Expr {
3394  /// \brief The location of the 'sizeof' keyword.
3395  SourceLocation OperatorLoc;
3396
3397  /// \brief The location of the name of the parameter pack.
3398  SourceLocation PackLoc;
3399
3400  /// \brief The location of the closing parenthesis.
3401  SourceLocation RParenLoc;
3402
3403  /// \brief The length of the parameter pack, if known.
3404  ///
3405  /// When this expression is value-dependent, the length of the parameter pack
3406  /// is unknown. When this expression is not value-dependent, the length is
3407  /// known.
3408  unsigned Length;
3409
3410  /// \brief The parameter pack itself.
3411  NamedDecl *Pack;
3412
3413  friend class ASTStmtReader;
3414  friend class ASTStmtWriter;
3415
3416public:
3417  /// \brief Creates a value-dependent expression that computes the length of
3418  /// the given parameter pack.
3419  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3420                 SourceLocation PackLoc, SourceLocation RParenLoc)
3421    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3422           /*TypeDependent=*/false, /*ValueDependent=*/true,
3423           /*InstantiationDependent=*/true,
3424           /*ContainsUnexpandedParameterPack=*/false),
3425      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3426      Length(0), Pack(Pack) { }
3427
3428  /// \brief Creates an expression that computes the length of
3429  /// the given parameter pack, which is already known.
3430  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3431                 SourceLocation PackLoc, SourceLocation RParenLoc,
3432                 unsigned Length)
3433  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3434         /*TypeDependent=*/false, /*ValueDependent=*/false,
3435         /*InstantiationDependent=*/false,
3436         /*ContainsUnexpandedParameterPack=*/false),
3437    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3438    Length(Length), Pack(Pack) { }
3439
3440  /// \brief Create an empty expression.
3441  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3442
3443  /// \brief Determine the location of the 'sizeof' keyword.
3444  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3445
3446  /// \brief Determine the location of the parameter pack.
3447  SourceLocation getPackLoc() const { return PackLoc; }
3448
3449  /// \brief Determine the location of the right parenthesis.
3450  SourceLocation getRParenLoc() const { return RParenLoc; }
3451
3452  /// \brief Retrieve the parameter pack.
3453  NamedDecl *getPack() const { return Pack; }
3454
3455  /// \brief Retrieve the length of the parameter pack.
3456  ///
3457  /// This routine may only be invoked when the expression is not
3458  /// value-dependent.
3459  unsigned getPackLength() const {
3460    assert(!isValueDependent() &&
3461           "Cannot get the length of a value-dependent pack size expression");
3462    return Length;
3463  }
3464
3465  SourceRange getSourceRange() const LLVM_READONLY {
3466    return SourceRange(OperatorLoc, RParenLoc);
3467  }
3468
3469  static bool classof(const Stmt *T) {
3470    return T->getStmtClass() == SizeOfPackExprClass;
3471  }
3472
3473  // Iterators
3474  child_range children() { return child_range(); }
3475};
3476
3477/// \brief Represents a reference to a non-type template parameter
3478/// that has been substituted with a template argument.
3479class SubstNonTypeTemplateParmExpr : public Expr {
3480  /// \brief The replaced parameter.
3481  NonTypeTemplateParmDecl *Param;
3482
3483  /// \brief The replacement expression.
3484  Stmt *Replacement;
3485
3486  /// \brief The location of the non-type template parameter reference.
3487  SourceLocation NameLoc;
3488
3489  friend class ASTReader;
3490  friend class ASTStmtReader;
3491  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3492    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3493
3494public:
3495  SubstNonTypeTemplateParmExpr(QualType type,
3496                               ExprValueKind valueKind,
3497                               SourceLocation loc,
3498                               NonTypeTemplateParmDecl *param,
3499                               Expr *replacement)
3500    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3501           replacement->isTypeDependent(), replacement->isValueDependent(),
3502           replacement->isInstantiationDependent(),
3503           replacement->containsUnexpandedParameterPack()),
3504      Param(param), Replacement(replacement), NameLoc(loc) {}
3505
3506  SourceLocation getNameLoc() const { return NameLoc; }
3507  SourceRange getSourceRange() const LLVM_READONLY { return NameLoc; }
3508
3509  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3510
3511  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3512
3513  static bool classof(const Stmt *s) {
3514    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3515  }
3516
3517  // Iterators
3518  child_range children() { return child_range(&Replacement, &Replacement+1); }
3519};
3520
3521/// \brief Represents a reference to a non-type template parameter pack that
3522/// has been substituted with a non-template argument pack.
3523///
3524/// When a pack expansion in the source code contains multiple parameter packs
3525/// and those parameter packs correspond to different levels of template
3526/// parameter lists, this node is used to represent a non-type template
3527/// parameter pack from an outer level, which has already had its argument pack
3528/// substituted but that still lives within a pack expansion that itself
3529/// could not be instantiated. When actually performing a substitution into
3530/// that pack expansion (e.g., when all template parameters have corresponding
3531/// arguments), this type will be replaced with the appropriate underlying
3532/// expression at the current pack substitution index.
3533class SubstNonTypeTemplateParmPackExpr : public Expr {
3534  /// \brief The non-type template parameter pack itself.
3535  NonTypeTemplateParmDecl *Param;
3536
3537  /// \brief A pointer to the set of template arguments that this
3538  /// parameter pack is instantiated with.
3539  const TemplateArgument *Arguments;
3540
3541  /// \brief The number of template arguments in \c Arguments.
3542  unsigned NumArguments;
3543
3544  /// \brief The location of the non-type template parameter pack reference.
3545  SourceLocation NameLoc;
3546
3547  friend class ASTReader;
3548  friend class ASTStmtReader;
3549  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3550    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3551
3552public:
3553  SubstNonTypeTemplateParmPackExpr(QualType T,
3554                                   NonTypeTemplateParmDecl *Param,
3555                                   SourceLocation NameLoc,
3556                                   const TemplateArgument &ArgPack);
3557
3558  /// \brief Retrieve the non-type template parameter pack being substituted.
3559  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3560
3561  /// \brief Retrieve the location of the parameter pack name.
3562  SourceLocation getParameterPackLocation() const { return NameLoc; }
3563
3564  /// \brief Retrieve the template argument pack containing the substituted
3565  /// template arguments.
3566  TemplateArgument getArgumentPack() const;
3567
3568  SourceRange getSourceRange() const LLVM_READONLY { return NameLoc; }
3569
3570  static bool classof(const Stmt *T) {
3571    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3572  }
3573
3574  // Iterators
3575  child_range children() { return child_range(); }
3576};
3577
3578/// \brief Represents a reference to a function parameter pack that has been
3579/// substituted but not yet expanded.
3580///
3581/// When a pack expansion contains multiple parameter packs at different levels,
3582/// this node is used to represent a function parameter pack at an outer level
3583/// which we have already substituted to refer to expanded parameters, but where
3584/// the containing pack expansion cannot yet be expanded.
3585///
3586/// \code
3587/// template<typename...Ts> struct S {
3588///   template<typename...Us> auto f(Ts ...ts) -> decltype(g(Us(ts)...));
3589/// };
3590/// template struct S<int, int>;
3591/// \endcode
3592class FunctionParmPackExpr : public Expr {
3593  /// \brief The function parameter pack which was referenced.
3594  ParmVarDecl *ParamPack;
3595
3596  /// \brief The location of the function parameter pack reference.
3597  SourceLocation NameLoc;
3598
3599  /// \brief The number of expansions of this pack.
3600  unsigned NumParameters;
3601
3602  FunctionParmPackExpr(QualType T, ParmVarDecl *ParamPack,
3603                       SourceLocation NameLoc, unsigned NumParams,
3604                       Decl * const *Params);
3605
3606  friend class ASTReader;
3607  friend class ASTStmtReader;
3608
3609public:
3610  static FunctionParmPackExpr *Create(ASTContext &Context, QualType T,
3611                                      ParmVarDecl *ParamPack,
3612                                      SourceLocation NameLoc,
3613                                      llvm::ArrayRef<Decl*> Params);
3614  static FunctionParmPackExpr *CreateEmpty(ASTContext &Context,
3615                                           unsigned NumParams);
3616
3617  /// \brief Get the parameter pack which this expression refers to.
3618  ParmVarDecl *getParameterPack() const { return ParamPack; }
3619
3620  /// \brief Get the location of the parameter pack.
3621  SourceLocation getParameterPackLocation() const { return NameLoc; }
3622
3623  /// \brief Iterators over the parameters which the parameter pack expanded
3624  /// into.
3625  typedef ParmVarDecl * const *iterator;
3626  iterator begin() const { return reinterpret_cast<iterator>(this+1); }
3627  iterator end() const { return begin() + NumParameters; }
3628
3629  /// \brief Get the number of parameters in this parameter pack.
3630  unsigned getNumExpansions() const { return NumParameters; }
3631
3632  /// \brief Get an expansion of the parameter pack by index.
3633  ParmVarDecl *getExpansion(unsigned I) const { return begin()[I]; }
3634
3635  SourceRange getSourceRange() const LLVM_READONLY { return NameLoc; }
3636
3637  static bool classof(const Stmt *T) {
3638    return T->getStmtClass() == FunctionParmPackExprClass;
3639  }
3640
3641  child_range children() { return child_range(); }
3642};
3643
3644/// \brief Represents a prvalue temporary that written into memory so that
3645/// a reference can bind to it.
3646///
3647/// Prvalue expressions are materialized when they need to have an address
3648/// in memory for a reference to bind to. This happens when binding a
3649/// reference to the result of a conversion, e.g.,
3650///
3651/// \code
3652/// const int &r = 1.0;
3653/// \endcode
3654///
3655/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3656/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3657/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3658/// (either an lvalue or an xvalue, depending on the kind of reference binding
3659/// to it), maintaining the invariant that references always bind to glvalues.
3660class MaterializeTemporaryExpr : public Expr {
3661  /// \brief The temporary-generating expression whose value will be
3662  /// materialized.
3663  Stmt *Temporary;
3664
3665  friend class ASTStmtReader;
3666  friend class ASTStmtWriter;
3667
3668public:
3669  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3670                           bool BoundToLvalueReference)
3671    : Expr(MaterializeTemporaryExprClass, T,
3672           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3673           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3674           Temporary->isInstantiationDependent(),
3675           Temporary->containsUnexpandedParameterPack()),
3676      Temporary(Temporary) { }
3677
3678  MaterializeTemporaryExpr(EmptyShell Empty)
3679    : Expr(MaterializeTemporaryExprClass, Empty) { }
3680
3681  /// \brief Retrieve the temporary-generating subexpression whose value will
3682  /// be materialized into a glvalue.
3683  Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3684
3685  /// \brief Determine whether this materialized temporary is bound to an
3686  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3687  bool isBoundToLvalueReference() const {
3688    return getValueKind() == VK_LValue;
3689  }
3690
3691  SourceRange getSourceRange() const LLVM_READONLY {
3692    return Temporary->getSourceRange();
3693  }
3694
3695  static bool classof(const Stmt *T) {
3696    return T->getStmtClass() == MaterializeTemporaryExprClass;
3697  }
3698
3699  // Iterators
3700  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3701};
3702
3703}  // end namespace clang
3704
3705#endif
3706