ExprCXX.h revision ccc1b5eebc6ca8a904c58c0468b9a71483b7c7cf
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/AST/Expr.h"
18#include "clang/AST/UnresolvedSet.h"
19#include "clang/AST/TemplateBase.h"
20#include "clang/Basic/ExpressionTraits.h"
21#include "clang/Basic/Lambda.h"
22#include "clang/Basic/TypeTraits.h"
23
24namespace clang {
25
26class CXXConstructorDecl;
27class CXXDestructorDecl;
28class CXXMethodDecl;
29class CXXTemporary;
30class TemplateArgumentListInfo;
31
32//===--------------------------------------------------------------------===//
33// C++ Expressions.
34//===--------------------------------------------------------------------===//
35
36/// \brief A call to an overloaded operator written using operator
37/// syntax.
38///
39/// Represents a call to an overloaded operator written using operator
40/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
41/// normal call, this AST node provides better information about the
42/// syntactic representation of the call.
43///
44/// In a C++ template, this expression node kind will be used whenever
45/// any of the arguments are type-dependent. In this case, the
46/// function itself will be a (possibly empty) set of functions and
47/// function templates that were found by name lookup at template
48/// definition time.
49class CXXOperatorCallExpr : public CallExpr {
50  /// \brief The overloaded operator.
51  OverloadedOperatorKind Operator;
52
53public:
54  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
55                      Expr **args, unsigned numargs, QualType t,
56                      ExprValueKind VK, SourceLocation operatorloc)
57    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
58               operatorloc),
59      Operator(Op) {}
60  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
61    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
62
63
64  /// getOperator - Returns the kind of overloaded operator that this
65  /// expression refers to.
66  OverloadedOperatorKind getOperator() const { return Operator; }
67  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
68
69  /// getOperatorLoc - Returns the location of the operator symbol in
70  /// the expression. When @c getOperator()==OO_Call, this is the
71  /// location of the right parentheses; when @c
72  /// getOperator()==OO_Subscript, this is the location of the right
73  /// bracket.
74  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
75
76  SourceRange getSourceRange() const;
77
78  static bool classof(const Stmt *T) {
79    return T->getStmtClass() == CXXOperatorCallExprClass;
80  }
81  static bool classof(const CXXOperatorCallExpr *) { return true; }
82};
83
84/// CXXMemberCallExpr - Represents a call to a member function that
85/// may be written either with member call syntax (e.g., "obj.func()"
86/// or "objptr->func()") or with normal function-call syntax
87/// ("func()") within a member function that ends up calling a member
88/// function. The callee in either case is a MemberExpr that contains
89/// both the object argument and the member function, while the
90/// arguments are the arguments within the parentheses (not including
91/// the object argument).
92class CXXMemberCallExpr : public CallExpr {
93public:
94  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
95                    QualType t, ExprValueKind VK, SourceLocation RP)
96    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
97
98  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
99    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
100
101  /// getImplicitObjectArgument - Retrieves the implicit object
102  /// argument for the member call. For example, in "x.f(5)", this
103  /// operation would return "x".
104  Expr *getImplicitObjectArgument() const;
105
106  /// Retrieves the declaration of the called method.
107  CXXMethodDecl *getMethodDecl() const;
108
109  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
110  /// the implicit object argument. Note that this is may not be the same
111  /// declaration as that of the class context of the CXXMethodDecl which this
112  /// function is calling.
113  /// FIXME: Returns 0 for member pointer call exprs.
114  CXXRecordDecl *getRecordDecl();
115
116  static bool classof(const Stmt *T) {
117    return T->getStmtClass() == CXXMemberCallExprClass;
118  }
119  static bool classof(const CXXMemberCallExpr *) { return true; }
120};
121
122/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
123class CUDAKernelCallExpr : public CallExpr {
124private:
125  enum { CONFIG, END_PREARG };
126
127public:
128  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
129                     Expr **args, unsigned numargs, QualType t,
130                     ExprValueKind VK, SourceLocation RP)
131    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
132               RP) {
133    setConfig(Config);
134  }
135
136  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
137    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
138
139  const CallExpr *getConfig() const {
140    return cast_or_null<CallExpr>(getPreArg(CONFIG));
141  }
142  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
143  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
144
145  static bool classof(const Stmt *T) {
146    return T->getStmtClass() == CUDAKernelCallExprClass;
147  }
148  static bool classof(const CUDAKernelCallExpr *) { return true; }
149};
150
151/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
152/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
153/// const_cast.
154///
155/// This abstract class is inherited by all of the classes
156/// representing "named" casts, e.g., CXXStaticCastExpr,
157/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
158class CXXNamedCastExpr : public ExplicitCastExpr {
159private:
160  SourceLocation Loc; // the location of the casting op
161  SourceLocation RParenLoc; // the location of the right parenthesis
162
163protected:
164  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
165                   CastKind kind, Expr *op, unsigned PathSize,
166                   TypeSourceInfo *writtenTy, SourceLocation l,
167                   SourceLocation RParenLoc)
168    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
169      RParenLoc(RParenLoc) {}
170
171  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
172    : ExplicitCastExpr(SC, Shell, PathSize) { }
173
174  friend class ASTStmtReader;
175
176public:
177  const char *getCastName() const;
178
179  /// \brief Retrieve the location of the cast operator keyword, e.g.,
180  /// "static_cast".
181  SourceLocation getOperatorLoc() const { return Loc; }
182
183  /// \brief Retrieve the location of the closing parenthesis.
184  SourceLocation getRParenLoc() const { return RParenLoc; }
185
186  SourceRange getSourceRange() const {
187    return SourceRange(Loc, RParenLoc);
188  }
189  static bool classof(const Stmt *T) {
190    switch (T->getStmtClass()) {
191    case CXXStaticCastExprClass:
192    case CXXDynamicCastExprClass:
193    case CXXReinterpretCastExprClass:
194    case CXXConstCastExprClass:
195      return true;
196    default:
197      return false;
198    }
199  }
200  static bool classof(const CXXNamedCastExpr *) { return true; }
201};
202
203/// CXXStaticCastExpr - A C++ @c static_cast expression
204/// (C++ [expr.static.cast]).
205///
206/// This expression node represents a C++ static cast, e.g.,
207/// @c static_cast<int>(1.0).
208class CXXStaticCastExpr : public CXXNamedCastExpr {
209  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
210                    unsigned pathSize, TypeSourceInfo *writtenTy,
211                    SourceLocation l, SourceLocation RParenLoc)
212    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
213                       writtenTy, l, RParenLoc) {}
214
215  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
216    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
217
218public:
219  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
220                                   ExprValueKind VK, CastKind K, Expr *Op,
221                                   const CXXCastPath *Path,
222                                   TypeSourceInfo *Written, SourceLocation L,
223                                   SourceLocation RParenLoc);
224  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
225                                        unsigned PathSize);
226
227  static bool classof(const Stmt *T) {
228    return T->getStmtClass() == CXXStaticCastExprClass;
229  }
230  static bool classof(const CXXStaticCastExpr *) { return true; }
231};
232
233/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
234/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
235/// determine how to perform the type cast.
236///
237/// This expression node represents a dynamic cast, e.g.,
238/// @c dynamic_cast<Derived*>(BasePtr).
239class CXXDynamicCastExpr : public CXXNamedCastExpr {
240  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
241                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
242                     SourceLocation l, SourceLocation RParenLoc)
243    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
244                       writtenTy, l, RParenLoc) {}
245
246  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
247    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
248
249public:
250  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
251                                    ExprValueKind VK, CastKind Kind, Expr *Op,
252                                    const CXXCastPath *Path,
253                                    TypeSourceInfo *Written, SourceLocation L,
254                                    SourceLocation RParenLoc);
255
256  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
257                                         unsigned pathSize);
258
259  bool isAlwaysNull() const;
260
261  static bool classof(const Stmt *T) {
262    return T->getStmtClass() == CXXDynamicCastExprClass;
263  }
264  static bool classof(const CXXDynamicCastExpr *) { return true; }
265};
266
267/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
268/// [expr.reinterpret.cast]), which provides a differently-typed view
269/// of a value but performs no actual work at run time.
270///
271/// This expression node represents a reinterpret cast, e.g.,
272/// @c reinterpret_cast<int>(VoidPtr).
273class CXXReinterpretCastExpr : public CXXNamedCastExpr {
274  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
275                         Expr *op, unsigned pathSize,
276                         TypeSourceInfo *writtenTy, SourceLocation l,
277                         SourceLocation RParenLoc)
278    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
279                       pathSize, writtenTy, l, RParenLoc) {}
280
281  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
282    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
283
284public:
285  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
286                                        ExprValueKind VK, CastKind Kind,
287                                        Expr *Op, const CXXCastPath *Path,
288                                 TypeSourceInfo *WrittenTy, SourceLocation L,
289                                        SourceLocation RParenLoc);
290  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
291                                             unsigned pathSize);
292
293  static bool classof(const Stmt *T) {
294    return T->getStmtClass() == CXXReinterpretCastExprClass;
295  }
296  static bool classof(const CXXReinterpretCastExpr *) { return true; }
297};
298
299/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
300/// which can remove type qualifiers but does not change the underlying value.
301///
302/// This expression node represents a const cast, e.g.,
303/// @c const_cast<char*>(PtrToConstChar).
304class CXXConstCastExpr : public CXXNamedCastExpr {
305  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
306                   TypeSourceInfo *writtenTy, SourceLocation l,
307                   SourceLocation RParenLoc)
308    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
309                       0, writtenTy, l, RParenLoc) {}
310
311  explicit CXXConstCastExpr(EmptyShell Empty)
312    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
313
314public:
315  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
316                                  ExprValueKind VK, Expr *Op,
317                                  TypeSourceInfo *WrittenTy, SourceLocation L,
318                                  SourceLocation RParenLoc);
319  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
320
321  static bool classof(const Stmt *T) {
322    return T->getStmtClass() == CXXConstCastExprClass;
323  }
324  static bool classof(const CXXConstCastExpr *) { return true; }
325};
326
327/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
328///
329class CXXBoolLiteralExpr : public Expr {
330  bool Value;
331  SourceLocation Loc;
332public:
333  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
334    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
335         false, false),
336    Value(val), Loc(l) {}
337
338  explicit CXXBoolLiteralExpr(EmptyShell Empty)
339    : Expr(CXXBoolLiteralExprClass, Empty) { }
340
341  bool getValue() const { return Value; }
342  void setValue(bool V) { Value = V; }
343
344  SourceRange getSourceRange() const { return SourceRange(Loc); }
345
346  SourceLocation getLocation() const { return Loc; }
347  void setLocation(SourceLocation L) { Loc = L; }
348
349  static bool classof(const Stmt *T) {
350    return T->getStmtClass() == CXXBoolLiteralExprClass;
351  }
352  static bool classof(const CXXBoolLiteralExpr *) { return true; }
353
354  // Iterators
355  child_range children() { return child_range(); }
356};
357
358/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
359class CXXNullPtrLiteralExpr : public Expr {
360  SourceLocation Loc;
361public:
362  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
363    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
364         false, false),
365    Loc(l) {}
366
367  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
368    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
369
370  SourceRange getSourceRange() const { return SourceRange(Loc); }
371
372  SourceLocation getLocation() const { return Loc; }
373  void setLocation(SourceLocation L) { Loc = L; }
374
375  static bool classof(const Stmt *T) {
376    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
377  }
378  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
379
380  child_range children() { return child_range(); }
381};
382
383/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
384/// the type_info that corresponds to the supplied type, or the (possibly
385/// dynamic) type of the supplied expression.
386///
387/// This represents code like @c typeid(int) or @c typeid(*objPtr)
388class CXXTypeidExpr : public Expr {
389private:
390  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
391  SourceRange Range;
392
393public:
394  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
395    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
396           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
397           false,
398           // typeid is value-dependent if the type or expression are dependent
399           Operand->getType()->isDependentType(),
400           Operand->getType()->isInstantiationDependentType(),
401           Operand->getType()->containsUnexpandedParameterPack()),
402      Operand(Operand), Range(R) { }
403
404  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
405    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
406        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
407           false,
408        // typeid is value-dependent if the type or expression are dependent
409           Operand->isTypeDependent() || Operand->isValueDependent(),
410           Operand->isInstantiationDependent(),
411           Operand->containsUnexpandedParameterPack()),
412      Operand(Operand), Range(R) { }
413
414  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
415    : Expr(CXXTypeidExprClass, Empty) {
416    if (isExpr)
417      Operand = (Expr*)0;
418    else
419      Operand = (TypeSourceInfo*)0;
420  }
421
422  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
423
424  /// \brief Retrieves the type operand of this typeid() expression after
425  /// various required adjustments (removing reference types, cv-qualifiers).
426  QualType getTypeOperand() const;
427
428  /// \brief Retrieve source information for the type operand.
429  TypeSourceInfo *getTypeOperandSourceInfo() const {
430    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
431    return Operand.get<TypeSourceInfo *>();
432  }
433
434  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
435    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
436    Operand = TSI;
437  }
438
439  Expr *getExprOperand() const {
440    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
441    return static_cast<Expr*>(Operand.get<Stmt *>());
442  }
443
444  void setExprOperand(Expr *E) {
445    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
446    Operand = E;
447  }
448
449  SourceRange getSourceRange() const { return Range; }
450  void setSourceRange(SourceRange R) { Range = R; }
451
452  static bool classof(const Stmt *T) {
453    return T->getStmtClass() == CXXTypeidExprClass;
454  }
455  static bool classof(const CXXTypeidExpr *) { return true; }
456
457  // Iterators
458  child_range children() {
459    if (isTypeOperand()) return child_range();
460    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
461    return child_range(begin, begin + 1);
462  }
463};
464
465/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
466/// the _GUID that corresponds to the supplied type or expression.
467///
468/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
469class CXXUuidofExpr : public Expr {
470private:
471  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
472  SourceRange Range;
473
474public:
475  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
476    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
477           false, Operand->getType()->isDependentType(),
478           Operand->getType()->isInstantiationDependentType(),
479           Operand->getType()->containsUnexpandedParameterPack()),
480      Operand(Operand), Range(R) { }
481
482  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
483    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
484           false, Operand->isTypeDependent(),
485           Operand->isInstantiationDependent(),
486           Operand->containsUnexpandedParameterPack()),
487      Operand(Operand), Range(R) { }
488
489  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
490    : Expr(CXXUuidofExprClass, Empty) {
491    if (isExpr)
492      Operand = (Expr*)0;
493    else
494      Operand = (TypeSourceInfo*)0;
495  }
496
497  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
498
499  /// \brief Retrieves the type operand of this __uuidof() expression after
500  /// various required adjustments (removing reference types, cv-qualifiers).
501  QualType getTypeOperand() const;
502
503  /// \brief Retrieve source information for the type operand.
504  TypeSourceInfo *getTypeOperandSourceInfo() const {
505    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
506    return Operand.get<TypeSourceInfo *>();
507  }
508
509  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
510    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
511    Operand = TSI;
512  }
513
514  Expr *getExprOperand() const {
515    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
516    return static_cast<Expr*>(Operand.get<Stmt *>());
517  }
518
519  void setExprOperand(Expr *E) {
520    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
521    Operand = E;
522  }
523
524  SourceRange getSourceRange() const { return Range; }
525  void setSourceRange(SourceRange R) { Range = R; }
526
527  static bool classof(const Stmt *T) {
528    return T->getStmtClass() == CXXUuidofExprClass;
529  }
530  static bool classof(const CXXUuidofExpr *) { return true; }
531
532  // Iterators
533  child_range children() {
534    if (isTypeOperand()) return child_range();
535    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
536    return child_range(begin, begin + 1);
537  }
538};
539
540/// CXXThisExpr - Represents the "this" expression in C++, which is a
541/// pointer to the object on which the current member function is
542/// executing (C++ [expr.prim]p3). Example:
543///
544/// @code
545/// class Foo {
546/// public:
547///   void bar();
548///   void test() { this->bar(); }
549/// };
550/// @endcode
551class CXXThisExpr : public Expr {
552  SourceLocation Loc;
553  bool Implicit : 1;
554
555public:
556  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
557    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
558           // 'this' is type-dependent if the class type of the enclosing
559           // member function is dependent (C++ [temp.dep.expr]p2)
560           Type->isDependentType(), Type->isDependentType(),
561           Type->isInstantiationDependentType(),
562           /*ContainsUnexpandedParameterPack=*/false),
563      Loc(L), Implicit(isImplicit) { }
564
565  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
566
567  SourceLocation getLocation() const { return Loc; }
568  void setLocation(SourceLocation L) { Loc = L; }
569
570  SourceRange getSourceRange() const { return SourceRange(Loc); }
571
572  bool isImplicit() const { return Implicit; }
573  void setImplicit(bool I) { Implicit = I; }
574
575  static bool classof(const Stmt *T) {
576    return T->getStmtClass() == CXXThisExprClass;
577  }
578  static bool classof(const CXXThisExpr *) { return true; }
579
580  // Iterators
581  child_range children() { return child_range(); }
582};
583
584///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
585///  'throw' and 'throw' assignment-expression.  When
586///  assignment-expression isn't present, Op will be null.
587///
588class CXXThrowExpr : public Expr {
589  Stmt *Op;
590  SourceLocation ThrowLoc;
591  /// \brief Whether the thrown variable (if any) is in scope.
592  unsigned IsThrownVariableInScope : 1;
593
594  friend class ASTStmtReader;
595
596public:
597  // Ty is the void type which is used as the result type of the
598  // exepression.  The l is the location of the throw keyword.  expr
599  // can by null, if the optional expression to throw isn't present.
600  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
601               bool IsThrownVariableInScope) :
602    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
603         expr && expr->isInstantiationDependent(),
604         expr && expr->containsUnexpandedParameterPack()),
605    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
606  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
607
608  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
609  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
610
611  SourceLocation getThrowLoc() const { return ThrowLoc; }
612
613  /// \brief Determines whether the variable thrown by this expression (if any!)
614  /// is within the innermost try block.
615  ///
616  /// This information is required to determine whether the NRVO can apply to
617  /// this variable.
618  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
619
620  SourceRange getSourceRange() const {
621    if (getSubExpr() == 0)
622      return SourceRange(ThrowLoc, ThrowLoc);
623    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
624  }
625
626  static bool classof(const Stmt *T) {
627    return T->getStmtClass() == CXXThrowExprClass;
628  }
629  static bool classof(const CXXThrowExpr *) { return true; }
630
631  // Iterators
632  child_range children() {
633    return child_range(&Op, Op ? &Op+1 : &Op);
634  }
635};
636
637/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
638/// function call argument that was created from the corresponding
639/// parameter's default argument, when the call did not explicitly
640/// supply arguments for all of the parameters.
641class CXXDefaultArgExpr : public Expr {
642  /// \brief The parameter whose default is being used.
643  ///
644  /// When the bit is set, the subexpression is stored after the
645  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
646  /// actual default expression is the subexpression.
647  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
648
649  /// \brief The location where the default argument expression was used.
650  SourceLocation Loc;
651
652  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
653    : Expr(SC,
654           param->hasUnparsedDefaultArg()
655             ? param->getType().getNonReferenceType()
656             : param->getDefaultArg()->getType(),
657           param->getDefaultArg()->getValueKind(),
658           param->getDefaultArg()->getObjectKind(), false, false, false, false),
659      Param(param, false), Loc(Loc) { }
660
661  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
662                    Expr *SubExpr)
663    : Expr(SC, SubExpr->getType(),
664           SubExpr->getValueKind(), SubExpr->getObjectKind(),
665           false, false, false, false),
666      Param(param, true), Loc(Loc) {
667    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
668  }
669
670public:
671  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
672
673
674  // Param is the parameter whose default argument is used by this
675  // expression.
676  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
677                                   ParmVarDecl *Param) {
678    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
679  }
680
681  // Param is the parameter whose default argument is used by this
682  // expression, and SubExpr is the expression that will actually be used.
683  static CXXDefaultArgExpr *Create(ASTContext &C,
684                                   SourceLocation Loc,
685                                   ParmVarDecl *Param,
686                                   Expr *SubExpr);
687
688  // Retrieve the parameter that the argument was created from.
689  const ParmVarDecl *getParam() const { return Param.getPointer(); }
690  ParmVarDecl *getParam() { return Param.getPointer(); }
691
692  // Retrieve the actual argument to the function call.
693  const Expr *getExpr() const {
694    if (Param.getInt())
695      return *reinterpret_cast<Expr const * const*> (this + 1);
696    return getParam()->getDefaultArg();
697  }
698  Expr *getExpr() {
699    if (Param.getInt())
700      return *reinterpret_cast<Expr **> (this + 1);
701    return getParam()->getDefaultArg();
702  }
703
704  /// \brief Retrieve the location where this default argument was actually
705  /// used.
706  SourceLocation getUsedLocation() const { return Loc; }
707
708  SourceRange getSourceRange() const {
709    // Default argument expressions have no representation in the
710    // source, so they have an empty source range.
711    return SourceRange();
712  }
713
714  static bool classof(const Stmt *T) {
715    return T->getStmtClass() == CXXDefaultArgExprClass;
716  }
717  static bool classof(const CXXDefaultArgExpr *) { return true; }
718
719  // Iterators
720  child_range children() { return child_range(); }
721
722  friend class ASTStmtReader;
723  friend class ASTStmtWriter;
724};
725
726/// CXXTemporary - Represents a C++ temporary.
727class CXXTemporary {
728  /// Destructor - The destructor that needs to be called.
729  const CXXDestructorDecl *Destructor;
730
731  CXXTemporary(const CXXDestructorDecl *destructor)
732    : Destructor(destructor) { }
733
734public:
735  static CXXTemporary *Create(ASTContext &C,
736                              const CXXDestructorDecl *Destructor);
737
738  const CXXDestructorDecl *getDestructor() const { return Destructor; }
739};
740
741/// \brief Represents binding an expression to a temporary.
742///
743/// This ensures the destructor is called for the temporary. It should only be
744/// needed for non-POD, non-trivially destructable class types. For example:
745///
746/// \code
747///   struct S {
748///     S() { }  // User defined constructor makes S non-POD.
749///     ~S() { } // User defined destructor makes it non-trivial.
750///   };
751///   void test() {
752///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
753///   }
754/// \endcode
755class CXXBindTemporaryExpr : public Expr {
756  CXXTemporary *Temp;
757
758  Stmt *SubExpr;
759
760  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
761   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
762          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
763          SubExpr->isValueDependent(),
764          SubExpr->isInstantiationDependent(),
765          SubExpr->containsUnexpandedParameterPack()),
766     Temp(temp), SubExpr(SubExpr) { }
767
768public:
769  CXXBindTemporaryExpr(EmptyShell Empty)
770    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
771
772  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
773                                      Expr* SubExpr);
774
775  CXXTemporary *getTemporary() { return Temp; }
776  const CXXTemporary *getTemporary() const { return Temp; }
777  void setTemporary(CXXTemporary *T) { Temp = T; }
778
779  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
780  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
781  void setSubExpr(Expr *E) { SubExpr = E; }
782
783  SourceRange getSourceRange() const {
784    return SubExpr->getSourceRange();
785  }
786
787  // Implement isa/cast/dyncast/etc.
788  static bool classof(const Stmt *T) {
789    return T->getStmtClass() == CXXBindTemporaryExprClass;
790  }
791  static bool classof(const CXXBindTemporaryExpr *) { return true; }
792
793  // Iterators
794  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
795};
796
797/// CXXConstructExpr - Represents a call to a C++ constructor.
798class CXXConstructExpr : public Expr {
799public:
800  enum ConstructionKind {
801    CK_Complete,
802    CK_NonVirtualBase,
803    CK_VirtualBase,
804    CK_Delegating
805  };
806
807private:
808  CXXConstructorDecl *Constructor;
809
810  SourceLocation Loc;
811  SourceRange ParenRange;
812  unsigned NumArgs : 16;
813  bool Elidable : 1;
814  bool HadMultipleCandidates : 1;
815  bool ListInitialization : 1;
816  bool ZeroInitialization : 1;
817  unsigned ConstructKind : 2;
818  Stmt **Args;
819
820protected:
821  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
822                   SourceLocation Loc,
823                   CXXConstructorDecl *d, bool elidable,
824                   Expr **args, unsigned numargs,
825                   bool HadMultipleCandidates,
826                   bool ListInitialization,
827                   bool ZeroInitialization,
828                   ConstructionKind ConstructKind,
829                   SourceRange ParenRange);
830
831  /// \brief Construct an empty C++ construction expression.
832  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
833    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
834      HadMultipleCandidates(false), ListInitialization(false),
835      ZeroInitialization(false), ConstructKind(0), Args(0)
836  { }
837
838public:
839  /// \brief Construct an empty C++ construction expression.
840  explicit CXXConstructExpr(EmptyShell Empty)
841    : Expr(CXXConstructExprClass, Empty), Constructor(0),
842      NumArgs(0), Elidable(false), HadMultipleCandidates(false),
843      ListInitialization(false), ZeroInitialization(false),
844      ConstructKind(0), Args(0)
845  { }
846
847  static CXXConstructExpr *Create(ASTContext &C, QualType T,
848                                  SourceLocation Loc,
849                                  CXXConstructorDecl *D, bool Elidable,
850                                  Expr **Args, unsigned NumArgs,
851                                  bool HadMultipleCandidates,
852                                  bool ListInitialization,
853                                  bool ZeroInitialization,
854                                  ConstructionKind ConstructKind,
855                                  SourceRange ParenRange);
856
857  CXXConstructorDecl* getConstructor() const { return Constructor; }
858  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
859
860  SourceLocation getLocation() const { return Loc; }
861  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
862
863  /// \brief Whether this construction is elidable.
864  bool isElidable() const { return Elidable; }
865  void setElidable(bool E) { Elidable = E; }
866
867  /// \brief Whether the referred constructor was resolved from
868  /// an overloaded set having size greater than 1.
869  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
870  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
871
872  /// \brief Whether this constructor call was written as list-initialization.
873  bool isListInitialization() const { return ListInitialization; }
874  void setListInitialization(bool V) { ListInitialization = V; }
875
876  /// \brief Whether this construction first requires
877  /// zero-initialization before the initializer is called.
878  bool requiresZeroInitialization() const { return ZeroInitialization; }
879  void setRequiresZeroInitialization(bool ZeroInit) {
880    ZeroInitialization = ZeroInit;
881  }
882
883  /// \brief Determines whether this constructor is actually constructing
884  /// a base class (rather than a complete object).
885  ConstructionKind getConstructionKind() const {
886    return (ConstructionKind)ConstructKind;
887  }
888  void setConstructionKind(ConstructionKind CK) {
889    ConstructKind = CK;
890  }
891
892  typedef ExprIterator arg_iterator;
893  typedef ConstExprIterator const_arg_iterator;
894
895  arg_iterator arg_begin() { return Args; }
896  arg_iterator arg_end() { return Args + NumArgs; }
897  const_arg_iterator arg_begin() const { return Args; }
898  const_arg_iterator arg_end() const { return Args + NumArgs; }
899
900  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
901  unsigned getNumArgs() const { return NumArgs; }
902
903  /// getArg - Return the specified argument.
904  Expr *getArg(unsigned Arg) {
905    assert(Arg < NumArgs && "Arg access out of range!");
906    return cast<Expr>(Args[Arg]);
907  }
908  const Expr *getArg(unsigned Arg) const {
909    assert(Arg < NumArgs && "Arg access out of range!");
910    return cast<Expr>(Args[Arg]);
911  }
912
913  /// setArg - Set the specified argument.
914  void setArg(unsigned Arg, Expr *ArgExpr) {
915    assert(Arg < NumArgs && "Arg access out of range!");
916    Args[Arg] = ArgExpr;
917  }
918
919  SourceRange getSourceRange() const;
920  SourceRange getParenRange() const { return ParenRange; }
921
922  static bool classof(const Stmt *T) {
923    return T->getStmtClass() == CXXConstructExprClass ||
924      T->getStmtClass() == CXXTemporaryObjectExprClass;
925  }
926  static bool classof(const CXXConstructExpr *) { return true; }
927
928  // Iterators
929  child_range children() {
930    return child_range(&Args[0], &Args[0]+NumArgs);
931  }
932
933  friend class ASTStmtReader;
934};
935
936/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
937/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
938/// x = int(0.5);
939class CXXFunctionalCastExpr : public ExplicitCastExpr {
940  SourceLocation TyBeginLoc;
941  SourceLocation RParenLoc;
942
943  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
944                        TypeSourceInfo *writtenTy,
945                        SourceLocation tyBeginLoc, CastKind kind,
946                        Expr *castExpr, unsigned pathSize,
947                        SourceLocation rParenLoc)
948    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
949                       castExpr, pathSize, writtenTy),
950      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
951
952  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
953    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
954
955public:
956  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
957                                       ExprValueKind VK,
958                                       TypeSourceInfo *Written,
959                                       SourceLocation TyBeginLoc,
960                                       CastKind Kind, Expr *Op,
961                                       const CXXCastPath *Path,
962                                       SourceLocation RPLoc);
963  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
964                                            unsigned PathSize);
965
966  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
967  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
968  SourceLocation getRParenLoc() const { return RParenLoc; }
969  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
970
971  SourceRange getSourceRange() const {
972    return SourceRange(TyBeginLoc, RParenLoc);
973  }
974  static bool classof(const Stmt *T) {
975    return T->getStmtClass() == CXXFunctionalCastExprClass;
976  }
977  static bool classof(const CXXFunctionalCastExpr *) { return true; }
978};
979
980/// @brief Represents a C++ functional cast expression that builds a
981/// temporary object.
982///
983/// This expression type represents a C++ "functional" cast
984/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
985/// constructor to build a temporary object. With N == 1 arguments the
986/// functional cast expression will be represented by CXXFunctionalCastExpr.
987/// Example:
988/// @code
989/// struct X { X(int, float); }
990///
991/// X create_X() {
992///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
993/// };
994/// @endcode
995class CXXTemporaryObjectExpr : public CXXConstructExpr {
996  TypeSourceInfo *Type;
997
998public:
999  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
1000                         TypeSourceInfo *Type,
1001                         Expr **Args,unsigned NumArgs,
1002                         SourceRange parenRange,
1003                         bool HadMultipleCandidates,
1004                         bool ZeroInitialization = false);
1005  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1006    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1007
1008  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1009
1010  SourceRange getSourceRange() const;
1011
1012  static bool classof(const Stmt *T) {
1013    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1014  }
1015  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
1016
1017  friend class ASTStmtReader;
1018};
1019
1020/// \brief A C++ lambda expression, which produces a function object
1021/// (of unspecified type) that can be invoked later.
1022///
1023/// Example:
1024/// \code
1025/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1026///   values.erase(std::remove_if(values.begin(), values.end(),
1027//                                [=](double value) { return value > cutoff; });
1028/// }
1029/// \endcode
1030///
1031/// Lambda expressions can capture local variables, either by copying
1032/// the values of those local variables at the time the function
1033/// object is constructed (not when it is called!) or by holding a
1034/// reference to the local variable. These captures can occur either
1035/// implicitly or can be written explicitly between the square
1036/// brackets ([...]) that start the lambda expression.
1037class LambdaExpr : public Expr {
1038  enum {
1039    /// \brief Flag used by the Capture class to indicate that the given
1040    /// capture was implicit.
1041    Capture_Implicit = 0x01,
1042
1043    /// \brief Flag used by the Capture class to indciate that the
1044    /// given capture was by-copy.
1045    Capture_ByCopy = 0x02
1046  };
1047
1048  /// \brief The source range that covers the lambda introducer ([...]).
1049  SourceRange IntroducerRange;
1050
1051  /// \brief The number of captures.
1052  unsigned NumCaptures : 16;
1053
1054  /// \brief The default capture kind, which is a value of type
1055  /// LambdaCaptureDefault.
1056  unsigned CaptureDefault : 2;
1057
1058  /// \brief Whether this lambda had an explicit parameter list vs. an
1059  /// implicit (and empty) parameter list.
1060  unsigned ExplicitParams : 1;
1061
1062  /// \brief Whether this lambda had the result type explicitly specified.
1063  unsigned ExplicitResultType : 1;
1064
1065  /// \brief Whether there are any array index variables stored at the end of
1066  /// this lambda expression.
1067  unsigned HasArrayIndexVars : 1;
1068
1069  /// \brief The location of the closing brace ('}') that completes
1070  /// the lambda.
1071  ///
1072  /// The location of the brace is also available by looking up the
1073  /// function call operator in the lambda class. However, it is
1074  /// stored here to improve the performance of getSourceRange(), and
1075  /// to avoid having to deserialize the function call operator from a
1076  /// module file just to determine the source range.
1077  SourceLocation ClosingBrace;
1078
1079  // Note: The capture initializers are stored directly after the lambda
1080  // expression, along with the index variables used to initialize by-copy
1081  // array captures.
1082
1083public:
1084  /// \brief Describes the capture of either a variable or 'this'.
1085  class Capture {
1086    llvm::PointerIntPair<VarDecl *, 2> VarAndBits;
1087    SourceLocation Loc;
1088    SourceLocation EllipsisLoc;
1089
1090    friend class ASTStmtReader;
1091    friend class ASTStmtWriter;
1092
1093  public:
1094    /// \brief Create a new capture.
1095    ///
1096    /// \param Loc The source location associated with this capture.
1097    ///
1098    /// \param Kind The kind of capture (this, byref, bycopy).
1099    ///
1100    /// \param Implicit Whether the capture was implicit or explicit.
1101    ///
1102    /// \param Var The local variable being captured, or null if capturing this.
1103    ///
1104    /// \param EllipsisLoc The location of the ellipsis (...) for a
1105    /// capture that is a pack expansion, or an invalid source
1106    /// location to indicate that this is not a pack expansion.
1107    Capture(SourceLocation Loc, bool Implicit,
1108            LambdaCaptureKind Kind, VarDecl *Var = 0,
1109            SourceLocation EllipsisLoc = SourceLocation());
1110
1111    /// \brief Determine the kind of capture.
1112    LambdaCaptureKind getCaptureKind() const;
1113
1114    /// \brief Determine whether this capture handles the C++ 'this'
1115    /// pointer.
1116    bool capturesThis() const { return VarAndBits.getPointer() == 0; }
1117
1118    /// \brief Determine whether this capture handles a variable.
1119    bool capturesVariable() const { return VarAndBits.getPointer() != 0; }
1120
1121    /// \brief Retrieve the declaration of the local variable being
1122    /// captured.
1123    ///
1124    /// This operation is only valid if this capture does not capture
1125    /// 'this'.
1126    VarDecl *getCapturedVar() const {
1127      assert(!capturesThis() && "No variable available for 'this' capture");
1128      return VarAndBits.getPointer();
1129    }
1130
1131    /// \brief Determine whether this was an implicit capture (not
1132    /// written between the square brackets introducing the lambda).
1133    bool isImplicit() const { return VarAndBits.getInt() & Capture_Implicit; }
1134
1135    /// \brief Determine whether this was an explicit capture, written
1136    /// between the square brackets introducing the lambda.
1137    bool isExplicit() const { return !isImplicit(); }
1138
1139    /// \brief Retrieve the source location of the capture.
1140    ///
1141    /// For an explicit capture, this returns the location of the
1142    /// explicit capture in the source. For an implicit capture, this
1143    /// returns the location at which the variable or 'this' was first
1144    /// used.
1145    SourceLocation getLocation() const { return Loc; }
1146
1147    /// \brief Determine whether this capture is a pack expansion,
1148    /// which captures a function parameter pack.
1149    bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1150
1151    /// \brief Retrieve the location of the ellipsis for a capture
1152    /// that is a pack expansion.
1153    SourceLocation getEllipsisLoc() const {
1154      assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1155      return EllipsisLoc;
1156    }
1157  };
1158
1159private:
1160  /// \brief Construct a lambda expression.
1161  LambdaExpr(QualType T, SourceRange IntroducerRange,
1162             LambdaCaptureDefault CaptureDefault,
1163             ArrayRef<Capture> Captures,
1164             bool ExplicitParams,
1165             bool ExplicitResultType,
1166             ArrayRef<Expr *> CaptureInits,
1167             ArrayRef<VarDecl *> ArrayIndexVars,
1168             ArrayRef<unsigned> ArrayIndexStarts,
1169             SourceLocation ClosingBrace,
1170             unsigned ManglingNumber,
1171             Decl *ContextDecl);
1172
1173  /// \brief Construct an empty lambda expression.
1174  LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1175    : Expr(LambdaExprClass, Empty),
1176      NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1177      ExplicitResultType(false), HasArrayIndexVars(true) {
1178    getStoredStmts()[NumCaptures] = 0;
1179  }
1180
1181  Stmt **getStoredStmts() const {
1182    return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1183  }
1184
1185  /// \brief Retrieve the mapping from captures to the first array index
1186  /// variable.
1187  unsigned *getArrayIndexStarts() const {
1188    return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1189  }
1190
1191  /// \brief Retrieve the complete set of array-index variables.
1192  VarDecl **getArrayIndexVars() const {
1193    return reinterpret_cast<VarDecl **>(
1194             getArrayIndexStarts() + NumCaptures + 1);
1195  }
1196
1197public:
1198  /// \brief Construct a new lambda expression.
1199  static LambdaExpr *Create(ASTContext &C,
1200                            CXXRecordDecl *Class,
1201                            SourceRange IntroducerRange,
1202                            LambdaCaptureDefault CaptureDefault,
1203                            ArrayRef<Capture> Captures,
1204                            bool ExplicitParams,
1205                            bool ExplicitResultType,
1206                            ArrayRef<Expr *> CaptureInits,
1207                            ArrayRef<VarDecl *> ArrayIndexVars,
1208                            ArrayRef<unsigned> ArrayIndexStarts,
1209                            SourceLocation ClosingBrace,
1210                            unsigned ManglingNumber,
1211                            Decl *ContextDecl);
1212
1213  /// \brief Construct a new lambda expression that will be deserialized from
1214  /// an external source.
1215  static LambdaExpr *CreateDeserialized(ASTContext &C, unsigned NumCaptures,
1216                                        unsigned NumArrayIndexVars);
1217
1218  /// \brief Determine the default capture kind for this lambda.
1219  LambdaCaptureDefault getCaptureDefault() const {
1220    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1221  }
1222
1223  /// \brief An iterator that walks over the captures of the lambda,
1224  /// both implicit and explicit.
1225  typedef const Capture *capture_iterator;
1226
1227  /// \brief Retrieve an iterator pointing to the first lambda capture.
1228  capture_iterator capture_begin() const;
1229
1230  /// \brief Retrieve an iterator pointing past the end of the
1231  /// sequence of lambda captures.
1232  capture_iterator capture_end() const;
1233
1234  /// \brief Determine the number of captures in this lambda.
1235  unsigned capture_size() const { return NumCaptures; }
1236
1237  /// \brief Retrieve an iterator pointing to the first explicit
1238  /// lambda capture.
1239  capture_iterator explicit_capture_begin() const;
1240
1241  /// \brief Retrieve an iterator pointing past the end of the sequence of
1242  /// explicit lambda captures.
1243  capture_iterator explicit_capture_end() const;
1244
1245  /// \brief Retrieve an iterator pointing to the first implicit
1246  /// lambda capture.
1247  capture_iterator implicit_capture_begin() const;
1248
1249  /// \brief Retrieve an iterator pointing past the end of the sequence of
1250  /// implicit lambda captures.
1251  capture_iterator implicit_capture_end() const;
1252
1253  /// \brief Iterator that walks over the capture initialization
1254  /// arguments.
1255  typedef Expr **capture_init_iterator;
1256
1257  /// \brief Retrieve the first initialization argument for this
1258  /// lambda expression (which initializes the first capture field).
1259  capture_init_iterator capture_init_begin() const {
1260    return reinterpret_cast<Expr **>(getStoredStmts());
1261  }
1262
1263  /// \brief Retrieve the iterator pointing one past the last
1264  /// initialization argument for this lambda expression.
1265  capture_init_iterator capture_init_end() const {
1266    return capture_init_begin() + NumCaptures;
1267  }
1268
1269  /// \brief Retrieve the set of index variables used in the capture
1270  /// initializer of an array captured by copy.
1271  ///
1272  /// \param Iter The iterator that points at the capture initializer for
1273  /// which we are extracting the corresponding index variables.
1274  ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1275
1276  /// \brief Retrieve the source range covering the lambda introducer,
1277  /// which contains the explicit capture list surrounded by square
1278  /// brackets ([...]).
1279  SourceRange getIntroducerRange() const { return IntroducerRange; }
1280
1281  /// \brief Retrieve the class that corresponds to the lambda, which
1282  /// stores the captures in its fields and provides the various
1283  /// operations permitted on a lambda (copying, calling).
1284  CXXRecordDecl *getLambdaClass() const;
1285
1286  /// \brief Retrieve the function call operator associated with this
1287  /// lambda expression.
1288  CXXMethodDecl *getCallOperator() const;
1289
1290  /// \brief Retrieve the body of the lambda.
1291  CompoundStmt *getBody() const;
1292
1293  /// \brief Determine whether the lambda is mutable, meaning that any
1294  /// captures values can be modified.
1295  bool isMutable() const;
1296
1297  /// \brief Determine whether this lambda has an explicit parameter
1298  /// list vs. an implicit (empty) parameter list.
1299  bool hasExplicitParameters() const { return ExplicitParams; }
1300
1301  /// \brief Whether this lambda had its result type explicitly specified.
1302  bool hasExplicitResultType() const { return ExplicitResultType; }
1303
1304  static bool classof(const Stmt *T) {
1305    return T->getStmtClass() == LambdaExprClass;
1306  }
1307  static bool classof(const LambdaExpr *) { return true; }
1308
1309  SourceRange getSourceRange() const {
1310    return SourceRange(IntroducerRange.getBegin(), ClosingBrace);
1311  }
1312
1313  child_range children() {
1314    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1315  }
1316
1317  friend class ASTStmtReader;
1318  friend class ASTStmtWriter;
1319};
1320
1321/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1322/// Expression "T()" which creates a value-initialized rvalue of type
1323/// T, which is a non-class type.
1324///
1325class CXXScalarValueInitExpr : public Expr {
1326  SourceLocation RParenLoc;
1327  TypeSourceInfo *TypeInfo;
1328
1329  friend class ASTStmtReader;
1330
1331public:
1332  /// \brief Create an explicitly-written scalar-value initialization
1333  /// expression.
1334  CXXScalarValueInitExpr(QualType Type,
1335                         TypeSourceInfo *TypeInfo,
1336                         SourceLocation rParenLoc ) :
1337    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1338         false, false, Type->isInstantiationDependentType(), false),
1339    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1340
1341  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1342    : Expr(CXXScalarValueInitExprClass, Shell) { }
1343
1344  TypeSourceInfo *getTypeSourceInfo() const {
1345    return TypeInfo;
1346  }
1347
1348  SourceLocation getRParenLoc() const { return RParenLoc; }
1349
1350  SourceRange getSourceRange() const;
1351
1352  static bool classof(const Stmt *T) {
1353    return T->getStmtClass() == CXXScalarValueInitExprClass;
1354  }
1355  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1356
1357  // Iterators
1358  child_range children() { return child_range(); }
1359};
1360
1361/// CXXNewExpr - A new expression for memory allocation and constructor calls,
1362/// e.g: "new CXXNewExpr(foo)".
1363class CXXNewExpr : public Expr {
1364  // Was the usage ::new, i.e. is the global new to be used?
1365  bool GlobalNew : 1;
1366  // Do we allocate an array? If so, the first SubExpr is the size expression.
1367  bool Array : 1;
1368  // If this is an array allocation, does the usual deallocation
1369  // function for the allocated type want to know the allocated size?
1370  bool UsualArrayDeleteWantsSize : 1;
1371  // The number of placement new arguments.
1372  unsigned NumPlacementArgs : 13;
1373  // What kind of initializer do we have? Could be none, parens, or braces.
1374  // In storage, we distinguish between "none, and no initializer expr", and
1375  // "none, but an implicit initializer expr".
1376  unsigned StoredInitializationStyle : 2;
1377  // Contains an optional array size expression, an optional initialization
1378  // expression, and any number of optional placement arguments, in that order.
1379  Stmt **SubExprs;
1380  // Points to the allocation function used.
1381  FunctionDecl *OperatorNew;
1382  // Points to the deallocation function used in case of error. May be null.
1383  FunctionDecl *OperatorDelete;
1384
1385  /// \brief The allocated type-source information, as written in the source.
1386  TypeSourceInfo *AllocatedTypeInfo;
1387
1388  /// \brief If the allocated type was expressed as a parenthesized type-id,
1389  /// the source range covering the parenthesized type-id.
1390  SourceRange TypeIdParens;
1391
1392  /// \brief Location of the first token.
1393  SourceLocation StartLoc;
1394
1395  /// \brief Source-range of a paren-delimited initializer.
1396  SourceRange DirectInitRange;
1397
1398  friend class ASTStmtReader;
1399  friend class ASTStmtWriter;
1400public:
1401  enum InitializationStyle {
1402    NoInit,   ///< New-expression has no initializer as written.
1403    CallInit, ///< New-expression has a C++98 paren-delimited initializer.
1404    ListInit  ///< New-expression has a C++11 list-initializer.
1405  };
1406
1407  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1408             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1409             Expr **placementArgs, unsigned numPlaceArgs,
1410             SourceRange typeIdParens, Expr *arraySize,
1411             InitializationStyle initializationStyle, Expr *initializer,
1412             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1413             SourceLocation startLoc, SourceRange directInitRange);
1414  explicit CXXNewExpr(EmptyShell Shell)
1415    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1416
1417  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1418                         bool hasInitializer);
1419
1420  QualType getAllocatedType() const {
1421    assert(getType()->isPointerType());
1422    return getType()->getAs<PointerType>()->getPointeeType();
1423  }
1424
1425  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1426    return AllocatedTypeInfo;
1427  }
1428
1429  /// \brief True if the allocation result needs to be null-checked.
1430  /// C++0x [expr.new]p13:
1431  ///   If the allocation function returns null, initialization shall
1432  ///   not be done, the deallocation function shall not be called,
1433  ///   and the value of the new-expression shall be null.
1434  /// An allocation function is not allowed to return null unless it
1435  /// has a non-throwing exception-specification.  The '03 rule is
1436  /// identical except that the definition of a non-throwing
1437  /// exception specification is just "is it throw()?".
1438  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1439
1440  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1441  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1442  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1443  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1444
1445  bool isArray() const { return Array; }
1446  Expr *getArraySize() {
1447    return Array ? cast<Expr>(SubExprs[0]) : 0;
1448  }
1449  const Expr *getArraySize() const {
1450    return Array ? cast<Expr>(SubExprs[0]) : 0;
1451  }
1452
1453  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1454  Expr **getPlacementArgs() {
1455    return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
1456  }
1457
1458  Expr *getPlacementArg(unsigned i) {
1459    assert(i < NumPlacementArgs && "Index out of range");
1460    return getPlacementArgs()[i];
1461  }
1462  const Expr *getPlacementArg(unsigned i) const {
1463    assert(i < NumPlacementArgs && "Index out of range");
1464    return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
1465  }
1466
1467  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1468  SourceRange getTypeIdParens() const { return TypeIdParens; }
1469
1470  bool isGlobalNew() const { return GlobalNew; }
1471
1472  /// \brief Whether this new-expression has any initializer at all.
1473  bool hasInitializer() const { return StoredInitializationStyle > 0; }
1474
1475  /// \brief The kind of initializer this new-expression has.
1476  InitializationStyle getInitializationStyle() const {
1477    if (StoredInitializationStyle == 0)
1478      return NoInit;
1479    return static_cast<InitializationStyle>(StoredInitializationStyle-1);
1480  }
1481
1482  /// \brief The initializer of this new-expression.
1483  Expr *getInitializer() {
1484    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1485  }
1486  const Expr *getInitializer() const {
1487    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1488  }
1489
1490  /// Answers whether the usual array deallocation function for the
1491  /// allocated type expects the size of the allocation as a
1492  /// parameter.
1493  bool doesUsualArrayDeleteWantSize() const {
1494    return UsualArrayDeleteWantsSize;
1495  }
1496
1497  typedef ExprIterator arg_iterator;
1498  typedef ConstExprIterator const_arg_iterator;
1499
1500  arg_iterator placement_arg_begin() {
1501    return SubExprs + Array + hasInitializer();
1502  }
1503  arg_iterator placement_arg_end() {
1504    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1505  }
1506  const_arg_iterator placement_arg_begin() const {
1507    return SubExprs + Array + hasInitializer();
1508  }
1509  const_arg_iterator placement_arg_end() const {
1510    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1511  }
1512
1513  typedef Stmt **raw_arg_iterator;
1514  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1515  raw_arg_iterator raw_arg_end() {
1516    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1517  }
1518  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1519  const_arg_iterator raw_arg_end() const {
1520    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1521  }
1522
1523  SourceLocation getStartLoc() const { return StartLoc; }
1524  SourceLocation getEndLoc() const;
1525
1526  SourceRange getDirectInitRange() const { return DirectInitRange; }
1527
1528  SourceRange getSourceRange() const {
1529    return SourceRange(getStartLoc(), getEndLoc());
1530  }
1531
1532  static bool classof(const Stmt *T) {
1533    return T->getStmtClass() == CXXNewExprClass;
1534  }
1535  static bool classof(const CXXNewExpr *) { return true; }
1536
1537  // Iterators
1538  child_range children() {
1539    return child_range(raw_arg_begin(), raw_arg_end());
1540  }
1541};
1542
1543/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1544/// calls, e.g. "delete[] pArray".
1545class CXXDeleteExpr : public Expr {
1546  // Is this a forced global delete, i.e. "::delete"?
1547  bool GlobalDelete : 1;
1548  // Is this the array form of delete, i.e. "delete[]"?
1549  bool ArrayForm : 1;
1550  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1551  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1552  // will be true).
1553  bool ArrayFormAsWritten : 1;
1554  // Does the usual deallocation function for the element type require
1555  // a size_t argument?
1556  bool UsualArrayDeleteWantsSize : 1;
1557  // Points to the operator delete overload that is used. Could be a member.
1558  FunctionDecl *OperatorDelete;
1559  // The pointer expression to be deleted.
1560  Stmt *Argument;
1561  // Location of the expression.
1562  SourceLocation Loc;
1563public:
1564  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1565                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1566                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1567    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1568           arg->isInstantiationDependent(),
1569           arg->containsUnexpandedParameterPack()),
1570      GlobalDelete(globalDelete),
1571      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1572      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1573      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1574  explicit CXXDeleteExpr(EmptyShell Shell)
1575    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1576
1577  bool isGlobalDelete() const { return GlobalDelete; }
1578  bool isArrayForm() const { return ArrayForm; }
1579  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1580
1581  /// Answers whether the usual array deallocation function for the
1582  /// allocated type expects the size of the allocation as a
1583  /// parameter.  This can be true even if the actual deallocation
1584  /// function that we're using doesn't want a size.
1585  bool doesUsualArrayDeleteWantSize() const {
1586    return UsualArrayDeleteWantsSize;
1587  }
1588
1589  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1590
1591  Expr *getArgument() { return cast<Expr>(Argument); }
1592  const Expr *getArgument() const { return cast<Expr>(Argument); }
1593
1594  /// \brief Retrieve the type being destroyed.  If the type being
1595  /// destroyed is a dependent type which may or may not be a pointer,
1596  /// return an invalid type.
1597  QualType getDestroyedType() const;
1598
1599  SourceRange getSourceRange() const {
1600    return SourceRange(Loc, Argument->getLocEnd());
1601  }
1602
1603  static bool classof(const Stmt *T) {
1604    return T->getStmtClass() == CXXDeleteExprClass;
1605  }
1606  static bool classof(const CXXDeleteExpr *) { return true; }
1607
1608  // Iterators
1609  child_range children() { return child_range(&Argument, &Argument+1); }
1610
1611  friend class ASTStmtReader;
1612};
1613
1614/// \brief Structure used to store the type being destroyed by a
1615/// pseudo-destructor expression.
1616class PseudoDestructorTypeStorage {
1617  /// \brief Either the type source information or the name of the type, if
1618  /// it couldn't be resolved due to type-dependence.
1619  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1620
1621  /// \brief The starting source location of the pseudo-destructor type.
1622  SourceLocation Location;
1623
1624public:
1625  PseudoDestructorTypeStorage() { }
1626
1627  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1628    : Type(II), Location(Loc) { }
1629
1630  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1631
1632  TypeSourceInfo *getTypeSourceInfo() const {
1633    return Type.dyn_cast<TypeSourceInfo *>();
1634  }
1635
1636  IdentifierInfo *getIdentifier() const {
1637    return Type.dyn_cast<IdentifierInfo *>();
1638  }
1639
1640  SourceLocation getLocation() const { return Location; }
1641};
1642
1643/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1644///
1645/// A pseudo-destructor is an expression that looks like a member access to a
1646/// destructor of a scalar type, except that scalar types don't have
1647/// destructors. For example:
1648///
1649/// \code
1650/// typedef int T;
1651/// void f(int *p) {
1652///   p->T::~T();
1653/// }
1654/// \endcode
1655///
1656/// Pseudo-destructors typically occur when instantiating templates such as:
1657///
1658/// \code
1659/// template<typename T>
1660/// void destroy(T* ptr) {
1661///   ptr->T::~T();
1662/// }
1663/// \endcode
1664///
1665/// for scalar types. A pseudo-destructor expression has no run-time semantics
1666/// beyond evaluating the base expression.
1667class CXXPseudoDestructorExpr : public Expr {
1668  /// \brief The base expression (that is being destroyed).
1669  Stmt *Base;
1670
1671  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1672  /// period ('.').
1673  bool IsArrow : 1;
1674
1675  /// \brief The location of the '.' or '->' operator.
1676  SourceLocation OperatorLoc;
1677
1678  /// \brief The nested-name-specifier that follows the operator, if present.
1679  NestedNameSpecifierLoc QualifierLoc;
1680
1681  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1682  /// expression.
1683  TypeSourceInfo *ScopeType;
1684
1685  /// \brief The location of the '::' in a qualified pseudo-destructor
1686  /// expression.
1687  SourceLocation ColonColonLoc;
1688
1689  /// \brief The location of the '~'.
1690  SourceLocation TildeLoc;
1691
1692  /// \brief The type being destroyed, or its name if we were unable to
1693  /// resolve the name.
1694  PseudoDestructorTypeStorage DestroyedType;
1695
1696  friend class ASTStmtReader;
1697
1698public:
1699  CXXPseudoDestructorExpr(ASTContext &Context,
1700                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1701                          NestedNameSpecifierLoc QualifierLoc,
1702                          TypeSourceInfo *ScopeType,
1703                          SourceLocation ColonColonLoc,
1704                          SourceLocation TildeLoc,
1705                          PseudoDestructorTypeStorage DestroyedType);
1706
1707  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1708    : Expr(CXXPseudoDestructorExprClass, Shell),
1709      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1710
1711  Expr *getBase() const { return cast<Expr>(Base); }
1712
1713  /// \brief Determines whether this member expression actually had
1714  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1715  /// x->Base::foo.
1716  bool hasQualifier() const { return QualifierLoc; }
1717
1718  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1719  /// with source-location information.
1720  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1721
1722  /// \brief If the member name was qualified, retrieves the
1723  /// nested-name-specifier that precedes the member name. Otherwise, returns
1724  /// NULL.
1725  NestedNameSpecifier *getQualifier() const {
1726    return QualifierLoc.getNestedNameSpecifier();
1727  }
1728
1729  /// \brief Determine whether this pseudo-destructor expression was written
1730  /// using an '->' (otherwise, it used a '.').
1731  bool isArrow() const { return IsArrow; }
1732
1733  /// \brief Retrieve the location of the '.' or '->' operator.
1734  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1735
1736  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1737  /// expression.
1738  ///
1739  /// Pseudo-destructor expressions can have extra qualification within them
1740  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1741  /// Here, if the object type of the expression is (or may be) a scalar type,
1742  /// \p T may also be a scalar type and, therefore, cannot be part of a
1743  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1744  /// destructor expression.
1745  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1746
1747  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1748  /// expression.
1749  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1750
1751  /// \brief Retrieve the location of the '~'.
1752  SourceLocation getTildeLoc() const { return TildeLoc; }
1753
1754  /// \brief Retrieve the source location information for the type
1755  /// being destroyed.
1756  ///
1757  /// This type-source information is available for non-dependent
1758  /// pseudo-destructor expressions and some dependent pseudo-destructor
1759  /// expressions. Returns NULL if we only have the identifier for a
1760  /// dependent pseudo-destructor expression.
1761  TypeSourceInfo *getDestroyedTypeInfo() const {
1762    return DestroyedType.getTypeSourceInfo();
1763  }
1764
1765  /// \brief In a dependent pseudo-destructor expression for which we do not
1766  /// have full type information on the destroyed type, provides the name
1767  /// of the destroyed type.
1768  IdentifierInfo *getDestroyedTypeIdentifier() const {
1769    return DestroyedType.getIdentifier();
1770  }
1771
1772  /// \brief Retrieve the type being destroyed.
1773  QualType getDestroyedType() const;
1774
1775  /// \brief Retrieve the starting location of the type being destroyed.
1776  SourceLocation getDestroyedTypeLoc() const {
1777    return DestroyedType.getLocation();
1778  }
1779
1780  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1781  /// expression.
1782  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1783    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1784  }
1785
1786  /// \brief Set the destroyed type.
1787  void setDestroyedType(TypeSourceInfo *Info) {
1788    DestroyedType = PseudoDestructorTypeStorage(Info);
1789  }
1790
1791  SourceRange getSourceRange() const;
1792
1793  static bool classof(const Stmt *T) {
1794    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1795  }
1796  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1797
1798  // Iterators
1799  child_range children() { return child_range(&Base, &Base + 1); }
1800};
1801
1802/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1803/// implementation of TR1/C++0x type trait templates.
1804/// Example:
1805/// __is_pod(int) == true
1806/// __is_enum(std::string) == false
1807class UnaryTypeTraitExpr : public Expr {
1808  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1809  unsigned UTT : 31;
1810  /// The value of the type trait. Unspecified if dependent.
1811  bool Value : 1;
1812
1813  /// Loc - The location of the type trait keyword.
1814  SourceLocation Loc;
1815
1816  /// RParen - The location of the closing paren.
1817  SourceLocation RParen;
1818
1819  /// The type being queried.
1820  TypeSourceInfo *QueriedType;
1821
1822public:
1823  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1824                     TypeSourceInfo *queried, bool value,
1825                     SourceLocation rparen, QualType ty)
1826    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1827           false,  queried->getType()->isDependentType(),
1828           queried->getType()->isInstantiationDependentType(),
1829           queried->getType()->containsUnexpandedParameterPack()),
1830      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1831
1832  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1833    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1834      QueriedType() { }
1835
1836  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1837
1838  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1839
1840  QualType getQueriedType() const { return QueriedType->getType(); }
1841
1842  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1843
1844  bool getValue() const { return Value; }
1845
1846  static bool classof(const Stmt *T) {
1847    return T->getStmtClass() == UnaryTypeTraitExprClass;
1848  }
1849  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1850
1851  // Iterators
1852  child_range children() { return child_range(); }
1853
1854  friend class ASTStmtReader;
1855};
1856
1857/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1858/// implementation of TR1/C++0x type trait templates.
1859/// Example:
1860/// __is_base_of(Base, Derived) == true
1861class BinaryTypeTraitExpr : public Expr {
1862  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1863  unsigned BTT : 8;
1864
1865  /// The value of the type trait. Unspecified if dependent.
1866  bool Value : 1;
1867
1868  /// Loc - The location of the type trait keyword.
1869  SourceLocation Loc;
1870
1871  /// RParen - The location of the closing paren.
1872  SourceLocation RParen;
1873
1874  /// The lhs type being queried.
1875  TypeSourceInfo *LhsType;
1876
1877  /// The rhs type being queried.
1878  TypeSourceInfo *RhsType;
1879
1880public:
1881  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1882                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1883                     bool value, SourceLocation rparen, QualType ty)
1884    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1885           lhsType->getType()->isDependentType() ||
1886           rhsType->getType()->isDependentType(),
1887           (lhsType->getType()->isInstantiationDependentType() ||
1888            rhsType->getType()->isInstantiationDependentType()),
1889           (lhsType->getType()->containsUnexpandedParameterPack() ||
1890            rhsType->getType()->containsUnexpandedParameterPack())),
1891      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1892      LhsType(lhsType), RhsType(rhsType) { }
1893
1894
1895  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1896    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1897      LhsType(), RhsType() { }
1898
1899  SourceRange getSourceRange() const {
1900    return SourceRange(Loc, RParen);
1901  }
1902
1903  BinaryTypeTrait getTrait() const {
1904    return static_cast<BinaryTypeTrait>(BTT);
1905  }
1906
1907  QualType getLhsType() const { return LhsType->getType(); }
1908  QualType getRhsType() const { return RhsType->getType(); }
1909
1910  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1911  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1912
1913  bool getValue() const { assert(!isTypeDependent()); return Value; }
1914
1915  static bool classof(const Stmt *T) {
1916    return T->getStmtClass() == BinaryTypeTraitExprClass;
1917  }
1918  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1919
1920  // Iterators
1921  child_range children() { return child_range(); }
1922
1923  friend class ASTStmtReader;
1924};
1925
1926/// ArrayTypeTraitExpr - An Embarcadero array type trait, as used in the
1927/// implementation of __array_rank and __array_extent.
1928/// Example:
1929/// __array_rank(int[10][20]) == 2
1930/// __array_extent(int, 1)    == 20
1931class ArrayTypeTraitExpr : public Expr {
1932  virtual void anchor();
1933
1934  /// ATT - The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
1935  unsigned ATT : 2;
1936
1937  /// The value of the type trait. Unspecified if dependent.
1938  uint64_t Value;
1939
1940  /// The array dimension being queried, or -1 if not used
1941  Expr *Dimension;
1942
1943  /// Loc - The location of the type trait keyword.
1944  SourceLocation Loc;
1945
1946  /// RParen - The location of the closing paren.
1947  SourceLocation RParen;
1948
1949  /// The type being queried.
1950  TypeSourceInfo *QueriedType;
1951
1952public:
1953  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
1954                     TypeSourceInfo *queried, uint64_t value,
1955                     Expr *dimension, SourceLocation rparen, QualType ty)
1956    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1957           false, queried->getType()->isDependentType(),
1958           (queried->getType()->isInstantiationDependentType() ||
1959            (dimension && dimension->isInstantiationDependent())),
1960           queried->getType()->containsUnexpandedParameterPack()),
1961      ATT(att), Value(value), Dimension(dimension),
1962      Loc(loc), RParen(rparen), QueriedType(queried) { }
1963
1964
1965  explicit ArrayTypeTraitExpr(EmptyShell Empty)
1966    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
1967      QueriedType() { }
1968
1969  virtual ~ArrayTypeTraitExpr() { }
1970
1971  virtual SourceRange getSourceRange() const {
1972    return SourceRange(Loc, RParen);
1973  }
1974
1975  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
1976
1977  QualType getQueriedType() const { return QueriedType->getType(); }
1978
1979  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1980
1981  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
1982
1983  Expr *getDimensionExpression() const { return Dimension; }
1984
1985  static bool classof(const Stmt *T) {
1986    return T->getStmtClass() == ArrayTypeTraitExprClass;
1987  }
1988  static bool classof(const ArrayTypeTraitExpr *) { return true; }
1989
1990  // Iterators
1991  child_range children() { return child_range(); }
1992
1993  friend class ASTStmtReader;
1994};
1995
1996/// ExpressionTraitExpr - An expression trait intrinsic
1997/// Example:
1998/// __is_lvalue_expr(std::cout) == true
1999/// __is_lvalue_expr(1) == false
2000class ExpressionTraitExpr : public Expr {
2001  /// ET - The trait. A ExpressionTrait enum in MSVC compat unsigned.
2002  unsigned ET : 31;
2003  /// The value of the type trait. Unspecified if dependent.
2004  bool Value : 1;
2005
2006  /// Loc - The location of the type trait keyword.
2007  SourceLocation Loc;
2008
2009  /// RParen - The location of the closing paren.
2010  SourceLocation RParen;
2011
2012  Expr* QueriedExpression;
2013public:
2014  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2015                     Expr *queried, bool value,
2016                     SourceLocation rparen, QualType resultType)
2017    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2018           false, // Not type-dependent
2019           // Value-dependent if the argument is type-dependent.
2020           queried->isTypeDependent(),
2021           queried->isInstantiationDependent(),
2022           queried->containsUnexpandedParameterPack()),
2023      ET(et), Value(value), Loc(loc), RParen(rparen),
2024      QueriedExpression(queried) { }
2025
2026  explicit ExpressionTraitExpr(EmptyShell Empty)
2027    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2028      QueriedExpression() { }
2029
2030  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
2031
2032  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2033
2034  Expr *getQueriedExpression() const { return QueriedExpression; }
2035
2036  bool getValue() const { return Value; }
2037
2038  static bool classof(const Stmt *T) {
2039    return T->getStmtClass() == ExpressionTraitExprClass;
2040  }
2041  static bool classof(const ExpressionTraitExpr *) { return true; }
2042
2043  // Iterators
2044  child_range children() { return child_range(); }
2045
2046  friend class ASTStmtReader;
2047};
2048
2049
2050/// \brief A reference to an overloaded function set, either an
2051/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
2052class OverloadExpr : public Expr {
2053  /// The results.  These are undesugared, which is to say, they may
2054  /// include UsingShadowDecls.  Access is relative to the naming
2055  /// class.
2056  // FIXME: Allocate this data after the OverloadExpr subclass.
2057  DeclAccessPair *Results;
2058  unsigned NumResults;
2059
2060  /// The common name of these declarations.
2061  DeclarationNameInfo NameInfo;
2062
2063  /// \brief The nested-name-specifier that qualifies the name, if any.
2064  NestedNameSpecifierLoc QualifierLoc;
2065
2066protected:
2067  /// \brief Whether the name includes info for explicit template
2068  /// keyword and arguments.
2069  bool HasTemplateKWAndArgsInfo;
2070
2071  /// \brief Return the optional template keyword and arguments info.
2072  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2073
2074  /// \brief Return the optional template keyword and arguments info.
2075  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2076    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2077  }
2078
2079  OverloadExpr(StmtClass K, ASTContext &C,
2080               NestedNameSpecifierLoc QualifierLoc,
2081               SourceLocation TemplateKWLoc,
2082               const DeclarationNameInfo &NameInfo,
2083               const TemplateArgumentListInfo *TemplateArgs,
2084               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2085               bool KnownDependent,
2086               bool KnownInstantiationDependent,
2087               bool KnownContainsUnexpandedParameterPack);
2088
2089  OverloadExpr(StmtClass K, EmptyShell Empty)
2090    : Expr(K, Empty), Results(0), NumResults(0),
2091      QualifierLoc(), HasTemplateKWAndArgsInfo(false) { }
2092
2093  void initializeResults(ASTContext &C,
2094                         UnresolvedSetIterator Begin,
2095                         UnresolvedSetIterator End);
2096
2097public:
2098  struct FindResult {
2099    OverloadExpr *Expression;
2100    bool IsAddressOfOperand;
2101    bool HasFormOfMemberPointer;
2102  };
2103
2104  /// Finds the overloaded expression in the given expression of
2105  /// OverloadTy.
2106  ///
2107  /// \return the expression (which must be there) and true if it has
2108  /// the particular form of a member pointer expression
2109  static FindResult find(Expr *E) {
2110    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2111
2112    FindResult Result;
2113
2114    E = E->IgnoreParens();
2115    if (isa<UnaryOperator>(E)) {
2116      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2117      E = cast<UnaryOperator>(E)->getSubExpr();
2118      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2119
2120      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2121      Result.IsAddressOfOperand = true;
2122      Result.Expression = Ovl;
2123    } else {
2124      Result.HasFormOfMemberPointer = false;
2125      Result.IsAddressOfOperand = false;
2126      Result.Expression = cast<OverloadExpr>(E);
2127    }
2128
2129    return Result;
2130  }
2131
2132  /// Gets the naming class of this lookup, if any.
2133  CXXRecordDecl *getNamingClass() const;
2134
2135  typedef UnresolvedSetImpl::iterator decls_iterator;
2136  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2137  decls_iterator decls_end() const {
2138    return UnresolvedSetIterator(Results + NumResults);
2139  }
2140
2141  /// Gets the number of declarations in the unresolved set.
2142  unsigned getNumDecls() const { return NumResults; }
2143
2144  /// Gets the full name info.
2145  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2146
2147  /// Gets the name looked up.
2148  DeclarationName getName() const { return NameInfo.getName(); }
2149
2150  /// Gets the location of the name.
2151  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2152
2153  /// Fetches the nested-name qualifier, if one was given.
2154  NestedNameSpecifier *getQualifier() const {
2155    return QualifierLoc.getNestedNameSpecifier();
2156  }
2157
2158  /// Fetches the nested-name qualifier with source-location information, if
2159  /// one was given.
2160  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2161
2162  /// \brief Retrieve the location of the template keyword preceding
2163  /// this name, if any.
2164  SourceLocation getTemplateKeywordLoc() const {
2165    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2166    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2167  }
2168
2169  /// \brief Retrieve the location of the left angle bracket starting the
2170  /// explicit template argument list following the name, if any.
2171  SourceLocation getLAngleLoc() const {
2172    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2173    return getTemplateKWAndArgsInfo()->LAngleLoc;
2174  }
2175
2176  /// \brief Retrieve the location of the right angle bracket ending the
2177  /// explicit template argument list following the name, if any.
2178  SourceLocation getRAngleLoc() const {
2179    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2180    return getTemplateKWAndArgsInfo()->RAngleLoc;
2181  }
2182
2183  /// Determines whether the name was preceded by the template keyword.
2184  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2185
2186  /// Determines whether this expression had explicit template arguments.
2187  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2188
2189  // Note that, inconsistently with the explicit-template-argument AST
2190  // nodes, users are *forbidden* from calling these methods on objects
2191  // without explicit template arguments.
2192
2193  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2194    assert(hasExplicitTemplateArgs());
2195    return *getTemplateKWAndArgsInfo();
2196  }
2197
2198  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2199    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2200  }
2201
2202  TemplateArgumentLoc const *getTemplateArgs() const {
2203    return getExplicitTemplateArgs().getTemplateArgs();
2204  }
2205
2206  unsigned getNumTemplateArgs() const {
2207    return getExplicitTemplateArgs().NumTemplateArgs;
2208  }
2209
2210  /// Copies the template arguments into the given structure.
2211  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2212    getExplicitTemplateArgs().copyInto(List);
2213  }
2214
2215  /// \brief Retrieves the optional explicit template arguments.
2216  /// This points to the same data as getExplicitTemplateArgs(), but
2217  /// returns null if there are no explicit template arguments.
2218  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2219    if (!hasExplicitTemplateArgs()) return 0;
2220    return &getExplicitTemplateArgs();
2221  }
2222
2223  static bool classof(const Stmt *T) {
2224    return T->getStmtClass() == UnresolvedLookupExprClass ||
2225           T->getStmtClass() == UnresolvedMemberExprClass;
2226  }
2227  static bool classof(const OverloadExpr *) { return true; }
2228
2229  friend class ASTStmtReader;
2230  friend class ASTStmtWriter;
2231};
2232
2233/// \brief A reference to a name which we were able to look up during
2234/// parsing but could not resolve to a specific declaration.  This
2235/// arises in several ways:
2236///   * we might be waiting for argument-dependent lookup
2237///   * the name might resolve to an overloaded function
2238/// and eventually:
2239///   * the lookup might have included a function template
2240/// These never include UnresolvedUsingValueDecls, which are always
2241/// class members and therefore appear only in
2242/// UnresolvedMemberLookupExprs.
2243class UnresolvedLookupExpr : public OverloadExpr {
2244  /// True if these lookup results should be extended by
2245  /// argument-dependent lookup if this is the operand of a function
2246  /// call.
2247  bool RequiresADL;
2248
2249  /// True if namespace ::std should be considered an associated namespace
2250  /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
2251  bool StdIsAssociatedNamespace;
2252
2253  /// True if these lookup results are overloaded.  This is pretty
2254  /// trivially rederivable if we urgently need to kill this field.
2255  bool Overloaded;
2256
2257  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2258  /// any.  This can generally be recalculated from the context chain,
2259  /// but that can be fairly expensive for unqualified lookups.  If we
2260  /// want to improve memory use here, this could go in a union
2261  /// against the qualified-lookup bits.
2262  CXXRecordDecl *NamingClass;
2263
2264  UnresolvedLookupExpr(ASTContext &C,
2265                       CXXRecordDecl *NamingClass,
2266                       NestedNameSpecifierLoc QualifierLoc,
2267                       SourceLocation TemplateKWLoc,
2268                       const DeclarationNameInfo &NameInfo,
2269                       bool RequiresADL, bool Overloaded,
2270                       const TemplateArgumentListInfo *TemplateArgs,
2271                       UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2272                       bool StdIsAssociatedNamespace)
2273    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2274                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2275      RequiresADL(RequiresADL),
2276      StdIsAssociatedNamespace(StdIsAssociatedNamespace),
2277      Overloaded(Overloaded), NamingClass(NamingClass)
2278  {}
2279
2280  UnresolvedLookupExpr(EmptyShell Empty)
2281    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2282      RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
2283      NamingClass(0)
2284  {}
2285
2286  friend class ASTStmtReader;
2287
2288public:
2289  static UnresolvedLookupExpr *Create(ASTContext &C,
2290                                      CXXRecordDecl *NamingClass,
2291                                      NestedNameSpecifierLoc QualifierLoc,
2292                                      const DeclarationNameInfo &NameInfo,
2293                                      bool ADL, bool Overloaded,
2294                                      UnresolvedSetIterator Begin,
2295                                      UnresolvedSetIterator End,
2296                                      bool StdIsAssociatedNamespace = false) {
2297    assert((ADL || !StdIsAssociatedNamespace) &&
2298           "std considered associated namespace when not performing ADL");
2299    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2300                                       SourceLocation(), NameInfo,
2301                                       ADL, Overloaded, 0, Begin, End,
2302                                       StdIsAssociatedNamespace);
2303  }
2304
2305  static UnresolvedLookupExpr *Create(ASTContext &C,
2306                                      CXXRecordDecl *NamingClass,
2307                                      NestedNameSpecifierLoc QualifierLoc,
2308                                      SourceLocation TemplateKWLoc,
2309                                      const DeclarationNameInfo &NameInfo,
2310                                      bool ADL,
2311                                      const TemplateArgumentListInfo *Args,
2312                                      UnresolvedSetIterator Begin,
2313                                      UnresolvedSetIterator End);
2314
2315  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
2316                                           bool HasTemplateKWAndArgsInfo,
2317                                           unsigned NumTemplateArgs);
2318
2319  /// True if this declaration should be extended by
2320  /// argument-dependent lookup.
2321  bool requiresADL() const { return RequiresADL; }
2322
2323  /// True if namespace ::std should be artificially added to the set of
2324  /// associated namespaecs for argument-dependent lookup purposes.
2325  bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
2326
2327  /// True if this lookup is overloaded.
2328  bool isOverloaded() const { return Overloaded; }
2329
2330  /// Gets the 'naming class' (in the sense of C++0x
2331  /// [class.access.base]p5) of the lookup.  This is the scope
2332  /// that was looked in to find these results.
2333  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2334
2335  SourceRange getSourceRange() const {
2336    SourceRange Range(getNameInfo().getSourceRange());
2337    if (getQualifierLoc())
2338      Range.setBegin(getQualifierLoc().getBeginLoc());
2339    if (hasExplicitTemplateArgs())
2340      Range.setEnd(getRAngleLoc());
2341    return Range;
2342  }
2343
2344  child_range children() { return child_range(); }
2345
2346  static bool classof(const Stmt *T) {
2347    return T->getStmtClass() == UnresolvedLookupExprClass;
2348  }
2349  static bool classof(const UnresolvedLookupExpr *) { return true; }
2350};
2351
2352/// \brief A qualified reference to a name whose declaration cannot
2353/// yet be resolved.
2354///
2355/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2356/// it expresses a reference to a declaration such as
2357/// X<T>::value. The difference, however, is that an
2358/// DependentScopeDeclRefExpr node is used only within C++ templates when
2359/// the qualification (e.g., X<T>::) refers to a dependent type. In
2360/// this case, X<T>::value cannot resolve to a declaration because the
2361/// declaration will differ from on instantiation of X<T> to the
2362/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2363/// qualifier (X<T>::) and the name of the entity being referenced
2364/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2365/// declaration can be found.
2366class DependentScopeDeclRefExpr : public Expr {
2367  /// \brief The nested-name-specifier that qualifies this unresolved
2368  /// declaration name.
2369  NestedNameSpecifierLoc QualifierLoc;
2370
2371  /// The name of the entity we will be referencing.
2372  DeclarationNameInfo NameInfo;
2373
2374  /// \brief Whether the name includes info for explicit template
2375  /// keyword and arguments.
2376  bool HasTemplateKWAndArgsInfo;
2377
2378  /// \brief Return the optional template keyword and arguments info.
2379  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2380    if (!HasTemplateKWAndArgsInfo) return 0;
2381    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2382  }
2383  /// \brief Return the optional template keyword and arguments info.
2384  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2385    return const_cast<DependentScopeDeclRefExpr*>(this)
2386      ->getTemplateKWAndArgsInfo();
2387  }
2388
2389  DependentScopeDeclRefExpr(QualType T,
2390                            NestedNameSpecifierLoc QualifierLoc,
2391                            SourceLocation TemplateKWLoc,
2392                            const DeclarationNameInfo &NameInfo,
2393                            const TemplateArgumentListInfo *Args);
2394
2395public:
2396  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2397                                           NestedNameSpecifierLoc QualifierLoc,
2398                                           SourceLocation TemplateKWLoc,
2399                                           const DeclarationNameInfo &NameInfo,
2400                              const TemplateArgumentListInfo *TemplateArgs);
2401
2402  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2403                                                bool HasTemplateKWAndArgsInfo,
2404                                                unsigned NumTemplateArgs);
2405
2406  /// \brief Retrieve the name that this expression refers to.
2407  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2408
2409  /// \brief Retrieve the name that this expression refers to.
2410  DeclarationName getDeclName() const { return NameInfo.getName(); }
2411
2412  /// \brief Retrieve the location of the name within the expression.
2413  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2414
2415  /// \brief Retrieve the nested-name-specifier that qualifies the
2416  /// name, with source location information.
2417  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2418
2419
2420  /// \brief Retrieve the nested-name-specifier that qualifies this
2421  /// declaration.
2422  NestedNameSpecifier *getQualifier() const {
2423    return QualifierLoc.getNestedNameSpecifier();
2424  }
2425
2426  /// \brief Retrieve the location of the template keyword preceding
2427  /// this name, if any.
2428  SourceLocation getTemplateKeywordLoc() const {
2429    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2430    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2431  }
2432
2433  /// \brief Retrieve the location of the left angle bracket starting the
2434  /// explicit template argument list following the name, if any.
2435  SourceLocation getLAngleLoc() const {
2436    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2437    return getTemplateKWAndArgsInfo()->LAngleLoc;
2438  }
2439
2440  /// \brief Retrieve the location of the right angle bracket ending the
2441  /// explicit template argument list following the name, if any.
2442  SourceLocation getRAngleLoc() const {
2443    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2444    return getTemplateKWAndArgsInfo()->RAngleLoc;
2445  }
2446
2447  /// Determines whether the name was preceded by the template keyword.
2448  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2449
2450  /// Determines whether this lookup had explicit template arguments.
2451  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2452
2453  // Note that, inconsistently with the explicit-template-argument AST
2454  // nodes, users are *forbidden* from calling these methods on objects
2455  // without explicit template arguments.
2456
2457  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2458    assert(hasExplicitTemplateArgs());
2459    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2460  }
2461
2462  /// Gets a reference to the explicit template argument list.
2463  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2464    assert(hasExplicitTemplateArgs());
2465    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2466  }
2467
2468  /// \brief Retrieves the optional explicit template arguments.
2469  /// This points to the same data as getExplicitTemplateArgs(), but
2470  /// returns null if there are no explicit template arguments.
2471  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2472    if (!hasExplicitTemplateArgs()) return 0;
2473    return &getExplicitTemplateArgs();
2474  }
2475
2476  /// \brief Copies the template arguments (if present) into the given
2477  /// structure.
2478  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2479    getExplicitTemplateArgs().copyInto(List);
2480  }
2481
2482  TemplateArgumentLoc const *getTemplateArgs() const {
2483    return getExplicitTemplateArgs().getTemplateArgs();
2484  }
2485
2486  unsigned getNumTemplateArgs() const {
2487    return getExplicitTemplateArgs().NumTemplateArgs;
2488  }
2489
2490  SourceRange getSourceRange() const {
2491    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2492    if (hasExplicitTemplateArgs())
2493      Range.setEnd(getRAngleLoc());
2494    return Range;
2495  }
2496
2497  static bool classof(const Stmt *T) {
2498    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2499  }
2500  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2501
2502  child_range children() { return child_range(); }
2503
2504  friend class ASTStmtReader;
2505  friend class ASTStmtWriter;
2506};
2507
2508/// Represents an expression --- generally a full-expression --- which
2509/// introduces cleanups to be run at the end of the sub-expression's
2510/// evaluation.  The most common source of expression-introduced
2511/// cleanups is temporary objects in C++, but several other kinds of
2512/// expressions can create cleanups, including basically every
2513/// call in ARC that returns an Objective-C pointer.
2514///
2515/// This expression also tracks whether the sub-expression contains a
2516/// potentially-evaluated block literal.  The lifetime of a block
2517/// literal is the extent of the enclosing scope.
2518class ExprWithCleanups : public Expr {
2519public:
2520  /// The type of objects that are kept in the cleanup.
2521  /// It's useful to remember the set of blocks;  we could also
2522  /// remember the set of temporaries, but there's currently
2523  /// no need.
2524  typedef BlockDecl *CleanupObject;
2525
2526private:
2527  Stmt *SubExpr;
2528
2529  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2530  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2531
2532  CleanupObject *getObjectsBuffer() {
2533    return reinterpret_cast<CleanupObject*>(this + 1);
2534  }
2535  const CleanupObject *getObjectsBuffer() const {
2536    return reinterpret_cast<const CleanupObject*>(this + 1);
2537  }
2538  friend class ASTStmtReader;
2539
2540public:
2541  static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2542                                  unsigned numObjects);
2543
2544  static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2545                                  ArrayRef<CleanupObject> objects);
2546
2547  ArrayRef<CleanupObject> getObjects() const {
2548    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2549  }
2550
2551  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2552
2553  CleanupObject getObject(unsigned i) const {
2554    assert(i < getNumObjects() && "Index out of range");
2555    return getObjects()[i];
2556  }
2557
2558  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2559  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2560
2561  /// setSubExpr - As with any mutator of the AST, be very careful
2562  /// when modifying an existing AST to preserve its invariants.
2563  void setSubExpr(Expr *E) { SubExpr = E; }
2564
2565  SourceRange getSourceRange() const {
2566    return SubExpr->getSourceRange();
2567  }
2568
2569  // Implement isa/cast/dyncast/etc.
2570  static bool classof(const Stmt *T) {
2571    return T->getStmtClass() == ExprWithCleanupsClass;
2572  }
2573  static bool classof(const ExprWithCleanups *) { return true; }
2574
2575  // Iterators
2576  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2577};
2578
2579/// \brief Describes an explicit type conversion that uses functional
2580/// notion but could not be resolved because one or more arguments are
2581/// type-dependent.
2582///
2583/// The explicit type conversions expressed by
2584/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2585/// where \c T is some type and \c a1, a2, ..., aN are values, and
2586/// either \C T is a dependent type or one or more of the \c a's is
2587/// type-dependent. For example, this would occur in a template such
2588/// as:
2589///
2590/// \code
2591///   template<typename T, typename A1>
2592///   inline T make_a(const A1& a1) {
2593///     return T(a1);
2594///   }
2595/// \endcode
2596///
2597/// When the returned expression is instantiated, it may resolve to a
2598/// constructor call, conversion function call, or some kind of type
2599/// conversion.
2600class CXXUnresolvedConstructExpr : public Expr {
2601  /// \brief The type being constructed.
2602  TypeSourceInfo *Type;
2603
2604  /// \brief The location of the left parentheses ('(').
2605  SourceLocation LParenLoc;
2606
2607  /// \brief The location of the right parentheses (')').
2608  SourceLocation RParenLoc;
2609
2610  /// \brief The number of arguments used to construct the type.
2611  unsigned NumArgs;
2612
2613  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2614                             SourceLocation LParenLoc,
2615                             Expr **Args,
2616                             unsigned NumArgs,
2617                             SourceLocation RParenLoc);
2618
2619  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2620    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2621
2622  friend class ASTStmtReader;
2623
2624public:
2625  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2626                                            TypeSourceInfo *Type,
2627                                            SourceLocation LParenLoc,
2628                                            Expr **Args,
2629                                            unsigned NumArgs,
2630                                            SourceLocation RParenLoc);
2631
2632  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2633                                                 unsigned NumArgs);
2634
2635  /// \brief Retrieve the type that is being constructed, as specified
2636  /// in the source code.
2637  QualType getTypeAsWritten() const { return Type->getType(); }
2638
2639  /// \brief Retrieve the type source information for the type being
2640  /// constructed.
2641  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2642
2643  /// \brief Retrieve the location of the left parentheses ('(') that
2644  /// precedes the argument list.
2645  SourceLocation getLParenLoc() const { return LParenLoc; }
2646  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2647
2648  /// \brief Retrieve the location of the right parentheses (')') that
2649  /// follows the argument list.
2650  SourceLocation getRParenLoc() const { return RParenLoc; }
2651  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2652
2653  /// \brief Retrieve the number of arguments.
2654  unsigned arg_size() const { return NumArgs; }
2655
2656  typedef Expr** arg_iterator;
2657  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2658  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2659
2660  typedef const Expr* const * const_arg_iterator;
2661  const_arg_iterator arg_begin() const {
2662    return reinterpret_cast<const Expr* const *>(this + 1);
2663  }
2664  const_arg_iterator arg_end() const {
2665    return arg_begin() + NumArgs;
2666  }
2667
2668  Expr *getArg(unsigned I) {
2669    assert(I < NumArgs && "Argument index out-of-range");
2670    return *(arg_begin() + I);
2671  }
2672
2673  const Expr *getArg(unsigned I) const {
2674    assert(I < NumArgs && "Argument index out-of-range");
2675    return *(arg_begin() + I);
2676  }
2677
2678  void setArg(unsigned I, Expr *E) {
2679    assert(I < NumArgs && "Argument index out-of-range");
2680    *(arg_begin() + I) = E;
2681  }
2682
2683  SourceRange getSourceRange() const;
2684
2685  static bool classof(const Stmt *T) {
2686    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2687  }
2688  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2689
2690  // Iterators
2691  child_range children() {
2692    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2693    return child_range(begin, begin + NumArgs);
2694  }
2695};
2696
2697/// \brief Represents a C++ member access expression where the actual
2698/// member referenced could not be resolved because the base
2699/// expression or the member name was dependent.
2700///
2701/// Like UnresolvedMemberExprs, these can be either implicit or
2702/// explicit accesses.  It is only possible to get one of these with
2703/// an implicit access if a qualifier is provided.
2704class CXXDependentScopeMemberExpr : public Expr {
2705  /// \brief The expression for the base pointer or class reference,
2706  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2707  Stmt *Base;
2708
2709  /// \brief The type of the base expression.  Never null, even for
2710  /// implicit accesses.
2711  QualType BaseType;
2712
2713  /// \brief Whether this member expression used the '->' operator or
2714  /// the '.' operator.
2715  bool IsArrow : 1;
2716
2717  /// \brief Whether this member expression has info for explicit template
2718  /// keyword and arguments.
2719  bool HasTemplateKWAndArgsInfo : 1;
2720
2721  /// \brief The location of the '->' or '.' operator.
2722  SourceLocation OperatorLoc;
2723
2724  /// \brief The nested-name-specifier that precedes the member name, if any.
2725  NestedNameSpecifierLoc QualifierLoc;
2726
2727  /// \brief In a qualified member access expression such as t->Base::f, this
2728  /// member stores the resolves of name lookup in the context of the member
2729  /// access expression, to be used at instantiation time.
2730  ///
2731  /// FIXME: This member, along with the QualifierLoc, could
2732  /// be stuck into a structure that is optionally allocated at the end of
2733  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2734  NamedDecl *FirstQualifierFoundInScope;
2735
2736  /// \brief The member to which this member expression refers, which
2737  /// can be name, overloaded operator, or destructor.
2738  /// FIXME: could also be a template-id
2739  DeclarationNameInfo MemberNameInfo;
2740
2741  /// \brief Return the optional template keyword and arguments info.
2742  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2743    if (!HasTemplateKWAndArgsInfo) return 0;
2744    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2745  }
2746  /// \brief Return the optional template keyword and arguments info.
2747  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2748    return const_cast<CXXDependentScopeMemberExpr*>(this)
2749      ->getTemplateKWAndArgsInfo();
2750  }
2751
2752  CXXDependentScopeMemberExpr(ASTContext &C,
2753                          Expr *Base, QualType BaseType, bool IsArrow,
2754                          SourceLocation OperatorLoc,
2755                          NestedNameSpecifierLoc QualifierLoc,
2756                          SourceLocation TemplateKWLoc,
2757                          NamedDecl *FirstQualifierFoundInScope,
2758                          DeclarationNameInfo MemberNameInfo,
2759                          const TemplateArgumentListInfo *TemplateArgs);
2760
2761public:
2762  CXXDependentScopeMemberExpr(ASTContext &C,
2763                              Expr *Base, QualType BaseType,
2764                              bool IsArrow,
2765                              SourceLocation OperatorLoc,
2766                              NestedNameSpecifierLoc QualifierLoc,
2767                              NamedDecl *FirstQualifierFoundInScope,
2768                              DeclarationNameInfo MemberNameInfo);
2769
2770  static CXXDependentScopeMemberExpr *
2771  Create(ASTContext &C,
2772         Expr *Base, QualType BaseType, bool IsArrow,
2773         SourceLocation OperatorLoc,
2774         NestedNameSpecifierLoc QualifierLoc,
2775         SourceLocation TemplateKWLoc,
2776         NamedDecl *FirstQualifierFoundInScope,
2777         DeclarationNameInfo MemberNameInfo,
2778         const TemplateArgumentListInfo *TemplateArgs);
2779
2780  static CXXDependentScopeMemberExpr *
2781  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2782              unsigned NumTemplateArgs);
2783
2784  /// \brief True if this is an implicit access, i.e. one in which the
2785  /// member being accessed was not written in the source.  The source
2786  /// location of the operator is invalid in this case.
2787  bool isImplicitAccess() const;
2788
2789  /// \brief Retrieve the base object of this member expressions,
2790  /// e.g., the \c x in \c x.m.
2791  Expr *getBase() const {
2792    assert(!isImplicitAccess());
2793    return cast<Expr>(Base);
2794  }
2795
2796  QualType getBaseType() const { return BaseType; }
2797
2798  /// \brief Determine whether this member expression used the '->'
2799  /// operator; otherwise, it used the '.' operator.
2800  bool isArrow() const { return IsArrow; }
2801
2802  /// \brief Retrieve the location of the '->' or '.' operator.
2803  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2804
2805  /// \brief Retrieve the nested-name-specifier that qualifies the member
2806  /// name.
2807  NestedNameSpecifier *getQualifier() const {
2808    return QualifierLoc.getNestedNameSpecifier();
2809  }
2810
2811  /// \brief Retrieve the nested-name-specifier that qualifies the member
2812  /// name, with source location information.
2813  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2814
2815
2816  /// \brief Retrieve the first part of the nested-name-specifier that was
2817  /// found in the scope of the member access expression when the member access
2818  /// was initially parsed.
2819  ///
2820  /// This function only returns a useful result when member access expression
2821  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2822  /// returned by this function describes what was found by unqualified name
2823  /// lookup for the identifier "Base" within the scope of the member access
2824  /// expression itself. At template instantiation time, this information is
2825  /// combined with the results of name lookup into the type of the object
2826  /// expression itself (the class type of x).
2827  NamedDecl *getFirstQualifierFoundInScope() const {
2828    return FirstQualifierFoundInScope;
2829  }
2830
2831  /// \brief Retrieve the name of the member that this expression
2832  /// refers to.
2833  const DeclarationNameInfo &getMemberNameInfo() const {
2834    return MemberNameInfo;
2835  }
2836
2837  /// \brief Retrieve the name of the member that this expression
2838  /// refers to.
2839  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2840
2841  // \brief Retrieve the location of the name of the member that this
2842  // expression refers to.
2843  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2844
2845  /// \brief Retrieve the location of the template keyword preceding the
2846  /// member name, if any.
2847  SourceLocation getTemplateKeywordLoc() const {
2848    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2849    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2850  }
2851
2852  /// \brief Retrieve the location of the left angle bracket starting the
2853  /// explicit template argument list following the member name, if any.
2854  SourceLocation getLAngleLoc() const {
2855    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2856    return getTemplateKWAndArgsInfo()->LAngleLoc;
2857  }
2858
2859  /// \brief Retrieve the location of the right angle bracket ending the
2860  /// explicit template argument list following the member name, if any.
2861  SourceLocation getRAngleLoc() const {
2862    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2863    return getTemplateKWAndArgsInfo()->RAngleLoc;
2864  }
2865
2866  /// Determines whether the member name was preceded by the template keyword.
2867  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2868
2869  /// \brief Determines whether this member expression actually had a C++
2870  /// template argument list explicitly specified, e.g., x.f<int>.
2871  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2872
2873  /// \brief Retrieve the explicit template argument list that followed the
2874  /// member template name, if any.
2875  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2876    assert(hasExplicitTemplateArgs());
2877    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2878  }
2879
2880  /// \brief Retrieve the explicit template argument list that followed the
2881  /// member template name, if any.
2882  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2883    return const_cast<CXXDependentScopeMemberExpr *>(this)
2884             ->getExplicitTemplateArgs();
2885  }
2886
2887  /// \brief Retrieves the optional explicit template arguments.
2888  /// This points to the same data as getExplicitTemplateArgs(), but
2889  /// returns null if there are no explicit template arguments.
2890  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2891    if (!hasExplicitTemplateArgs()) return 0;
2892    return &getExplicitTemplateArgs();
2893  }
2894
2895  /// \brief Copies the template arguments (if present) into the given
2896  /// structure.
2897  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2898    getExplicitTemplateArgs().copyInto(List);
2899  }
2900
2901  /// \brief Initializes the template arguments using the given structure.
2902  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2903    getExplicitTemplateArgs().initializeFrom(List);
2904  }
2905
2906  /// \brief Retrieve the template arguments provided as part of this
2907  /// template-id.
2908  const TemplateArgumentLoc *getTemplateArgs() const {
2909    return getExplicitTemplateArgs().getTemplateArgs();
2910  }
2911
2912  /// \brief Retrieve the number of template arguments provided as part of this
2913  /// template-id.
2914  unsigned getNumTemplateArgs() const {
2915    return getExplicitTemplateArgs().NumTemplateArgs;
2916  }
2917
2918  SourceRange getSourceRange() const {
2919    SourceRange Range;
2920    if (!isImplicitAccess())
2921      Range.setBegin(Base->getSourceRange().getBegin());
2922    else if (getQualifier())
2923      Range.setBegin(getQualifierLoc().getBeginLoc());
2924    else
2925      Range.setBegin(MemberNameInfo.getBeginLoc());
2926
2927    if (hasExplicitTemplateArgs())
2928      Range.setEnd(getRAngleLoc());
2929    else
2930      Range.setEnd(MemberNameInfo.getEndLoc());
2931    return Range;
2932  }
2933
2934  static bool classof(const Stmt *T) {
2935    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2936  }
2937  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2938
2939  // Iterators
2940  child_range children() {
2941    if (isImplicitAccess()) return child_range();
2942    return child_range(&Base, &Base + 1);
2943  }
2944
2945  friend class ASTStmtReader;
2946  friend class ASTStmtWriter;
2947};
2948
2949/// \brief Represents a C++ member access expression for which lookup
2950/// produced a set of overloaded functions.
2951///
2952/// The member access may be explicit or implicit:
2953///    struct A {
2954///      int a, b;
2955///      int explicitAccess() { return this->a + this->A::b; }
2956///      int implicitAccess() { return a + A::b; }
2957///    };
2958///
2959/// In the final AST, an explicit access always becomes a MemberExpr.
2960/// An implicit access may become either a MemberExpr or a
2961/// DeclRefExpr, depending on whether the member is static.
2962class UnresolvedMemberExpr : public OverloadExpr {
2963  /// \brief Whether this member expression used the '->' operator or
2964  /// the '.' operator.
2965  bool IsArrow : 1;
2966
2967  /// \brief Whether the lookup results contain an unresolved using
2968  /// declaration.
2969  bool HasUnresolvedUsing : 1;
2970
2971  /// \brief The expression for the base pointer or class reference,
2972  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2973  /// member expression
2974  Stmt *Base;
2975
2976  /// \brief The type of the base expression;  never null.
2977  QualType BaseType;
2978
2979  /// \brief The location of the '->' or '.' operator.
2980  SourceLocation OperatorLoc;
2981
2982  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2983                       Expr *Base, QualType BaseType, bool IsArrow,
2984                       SourceLocation OperatorLoc,
2985                       NestedNameSpecifierLoc QualifierLoc,
2986                       SourceLocation TemplateKWLoc,
2987                       const DeclarationNameInfo &MemberNameInfo,
2988                       const TemplateArgumentListInfo *TemplateArgs,
2989                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2990
2991  UnresolvedMemberExpr(EmptyShell Empty)
2992    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2993      HasUnresolvedUsing(false), Base(0) { }
2994
2995  friend class ASTStmtReader;
2996
2997public:
2998  static UnresolvedMemberExpr *
2999  Create(ASTContext &C, bool HasUnresolvedUsing,
3000         Expr *Base, QualType BaseType, bool IsArrow,
3001         SourceLocation OperatorLoc,
3002         NestedNameSpecifierLoc QualifierLoc,
3003         SourceLocation TemplateKWLoc,
3004         const DeclarationNameInfo &MemberNameInfo,
3005         const TemplateArgumentListInfo *TemplateArgs,
3006         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3007
3008  static UnresolvedMemberExpr *
3009  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
3010              unsigned NumTemplateArgs);
3011
3012  /// \brief True if this is an implicit access, i.e. one in which the
3013  /// member being accessed was not written in the source.  The source
3014  /// location of the operator is invalid in this case.
3015  bool isImplicitAccess() const;
3016
3017  /// \brief Retrieve the base object of this member expressions,
3018  /// e.g., the \c x in \c x.m.
3019  Expr *getBase() {
3020    assert(!isImplicitAccess());
3021    return cast<Expr>(Base);
3022  }
3023  const Expr *getBase() const {
3024    assert(!isImplicitAccess());
3025    return cast<Expr>(Base);
3026  }
3027
3028  QualType getBaseType() const { return BaseType; }
3029
3030  /// \brief Determine whether the lookup results contain an unresolved using
3031  /// declaration.
3032  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3033
3034  /// \brief Determine whether this member expression used the '->'
3035  /// operator; otherwise, it used the '.' operator.
3036  bool isArrow() const { return IsArrow; }
3037
3038  /// \brief Retrieve the location of the '->' or '.' operator.
3039  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3040
3041  /// \brief Retrieves the naming class of this lookup.
3042  CXXRecordDecl *getNamingClass() const;
3043
3044  /// \brief Retrieve the full name info for the member that this expression
3045  /// refers to.
3046  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3047
3048  /// \brief Retrieve the name of the member that this expression
3049  /// refers to.
3050  DeclarationName getMemberName() const { return getName(); }
3051
3052  // \brief Retrieve the location of the name of the member that this
3053  // expression refers to.
3054  SourceLocation getMemberLoc() const { return getNameLoc(); }
3055
3056  SourceRange getSourceRange() const {
3057    SourceRange Range = getMemberNameInfo().getSourceRange();
3058    if (!isImplicitAccess())
3059      Range.setBegin(Base->getSourceRange().getBegin());
3060    else if (getQualifierLoc())
3061      Range.setBegin(getQualifierLoc().getBeginLoc());
3062
3063    if (hasExplicitTemplateArgs())
3064      Range.setEnd(getRAngleLoc());
3065    return Range;
3066  }
3067
3068  static bool classof(const Stmt *T) {
3069    return T->getStmtClass() == UnresolvedMemberExprClass;
3070  }
3071  static bool classof(const UnresolvedMemberExpr *) { return true; }
3072
3073  // Iterators
3074  child_range children() {
3075    if (isImplicitAccess()) return child_range();
3076    return child_range(&Base, &Base + 1);
3077  }
3078};
3079
3080/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
3081///
3082/// The noexcept expression tests whether a given expression might throw. Its
3083/// result is a boolean constant.
3084class CXXNoexceptExpr : public Expr {
3085  bool Value : 1;
3086  Stmt *Operand;
3087  SourceRange Range;
3088
3089  friend class ASTStmtReader;
3090
3091public:
3092  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3093                  SourceLocation Keyword, SourceLocation RParen)
3094    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3095           /*TypeDependent*/false,
3096           /*ValueDependent*/Val == CT_Dependent,
3097           Val == CT_Dependent || Operand->isInstantiationDependent(),
3098           Operand->containsUnexpandedParameterPack()),
3099      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3100  { }
3101
3102  CXXNoexceptExpr(EmptyShell Empty)
3103    : Expr(CXXNoexceptExprClass, Empty)
3104  { }
3105
3106  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3107
3108  SourceRange getSourceRange() const { return Range; }
3109
3110  bool getValue() const { return Value; }
3111
3112  static bool classof(const Stmt *T) {
3113    return T->getStmtClass() == CXXNoexceptExprClass;
3114  }
3115  static bool classof(const CXXNoexceptExpr *) { return true; }
3116
3117  // Iterators
3118  child_range children() { return child_range(&Operand, &Operand + 1); }
3119};
3120
3121/// \brief Represents a C++0x pack expansion that produces a sequence of
3122/// expressions.
3123///
3124/// A pack expansion expression contains a pattern (which itself is an
3125/// expression) followed by an ellipsis. For example:
3126///
3127/// \code
3128/// template<typename F, typename ...Types>
3129/// void forward(F f, Types &&...args) {
3130///   f(static_cast<Types&&>(args)...);
3131/// }
3132/// \endcode
3133///
3134/// Here, the argument to the function object \c f is a pack expansion whose
3135/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3136/// template is instantiated, the pack expansion will instantiate to zero or
3137/// or more function arguments to the function object \c f.
3138class PackExpansionExpr : public Expr {
3139  SourceLocation EllipsisLoc;
3140
3141  /// \brief The number of expansions that will be produced by this pack
3142  /// expansion expression, if known.
3143  ///
3144  /// When zero, the number of expansions is not known. Otherwise, this value
3145  /// is the number of expansions + 1.
3146  unsigned NumExpansions;
3147
3148  Stmt *Pattern;
3149
3150  friend class ASTStmtReader;
3151  friend class ASTStmtWriter;
3152
3153public:
3154  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3155                    llvm::Optional<unsigned> NumExpansions)
3156    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3157           Pattern->getObjectKind(), /*TypeDependent=*/true,
3158           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3159           /*ContainsUnexpandedParameterPack=*/false),
3160      EllipsisLoc(EllipsisLoc),
3161      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3162      Pattern(Pattern) { }
3163
3164  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3165
3166  /// \brief Retrieve the pattern of the pack expansion.
3167  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3168
3169  /// \brief Retrieve the pattern of the pack expansion.
3170  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3171
3172  /// \brief Retrieve the location of the ellipsis that describes this pack
3173  /// expansion.
3174  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3175
3176  /// \brief Determine the number of expansions that will be produced when
3177  /// this pack expansion is instantiated, if already known.
3178  llvm::Optional<unsigned> getNumExpansions() const {
3179    if (NumExpansions)
3180      return NumExpansions - 1;
3181
3182    return llvm::Optional<unsigned>();
3183  }
3184
3185  SourceRange getSourceRange() const {
3186    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
3187  }
3188
3189  static bool classof(const Stmt *T) {
3190    return T->getStmtClass() == PackExpansionExprClass;
3191  }
3192  static bool classof(const PackExpansionExpr *) { return true; }
3193
3194  // Iterators
3195  child_range children() {
3196    return child_range(&Pattern, &Pattern + 1);
3197  }
3198};
3199
3200inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3201  if (!HasTemplateKWAndArgsInfo) return 0;
3202  if (isa<UnresolvedLookupExpr>(this))
3203    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3204      (cast<UnresolvedLookupExpr>(this) + 1);
3205  else
3206    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3207      (cast<UnresolvedMemberExpr>(this) + 1);
3208}
3209
3210/// \brief Represents an expression that computes the length of a parameter
3211/// pack.
3212///
3213/// \code
3214/// template<typename ...Types>
3215/// struct count {
3216///   static const unsigned value = sizeof...(Types);
3217/// };
3218/// \endcode
3219class SizeOfPackExpr : public Expr {
3220  /// \brief The location of the 'sizeof' keyword.
3221  SourceLocation OperatorLoc;
3222
3223  /// \brief The location of the name of the parameter pack.
3224  SourceLocation PackLoc;
3225
3226  /// \brief The location of the closing parenthesis.
3227  SourceLocation RParenLoc;
3228
3229  /// \brief The length of the parameter pack, if known.
3230  ///
3231  /// When this expression is value-dependent, the length of the parameter pack
3232  /// is unknown. When this expression is not value-dependent, the length is
3233  /// known.
3234  unsigned Length;
3235
3236  /// \brief The parameter pack itself.
3237  NamedDecl *Pack;
3238
3239  friend class ASTStmtReader;
3240  friend class ASTStmtWriter;
3241
3242public:
3243  /// \brief Creates a value-dependent expression that computes the length of
3244  /// the given parameter pack.
3245  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3246                 SourceLocation PackLoc, SourceLocation RParenLoc)
3247    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3248           /*TypeDependent=*/false, /*ValueDependent=*/true,
3249           /*InstantiationDependent=*/true,
3250           /*ContainsUnexpandedParameterPack=*/false),
3251      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3252      Length(0), Pack(Pack) { }
3253
3254  /// \brief Creates an expression that computes the length of
3255  /// the given parameter pack, which is already known.
3256  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3257                 SourceLocation PackLoc, SourceLocation RParenLoc,
3258                 unsigned Length)
3259  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3260         /*TypeDependent=*/false, /*ValueDependent=*/false,
3261         /*InstantiationDependent=*/false,
3262         /*ContainsUnexpandedParameterPack=*/false),
3263    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3264    Length(Length), Pack(Pack) { }
3265
3266  /// \brief Create an empty expression.
3267  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3268
3269  /// \brief Determine the location of the 'sizeof' keyword.
3270  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3271
3272  /// \brief Determine the location of the parameter pack.
3273  SourceLocation getPackLoc() const { return PackLoc; }
3274
3275  /// \brief Determine the location of the right parenthesis.
3276  SourceLocation getRParenLoc() const { return RParenLoc; }
3277
3278  /// \brief Retrieve the parameter pack.
3279  NamedDecl *getPack() const { return Pack; }
3280
3281  /// \brief Retrieve the length of the parameter pack.
3282  ///
3283  /// This routine may only be invoked when the expression is not
3284  /// value-dependent.
3285  unsigned getPackLength() const {
3286    assert(!isValueDependent() &&
3287           "Cannot get the length of a value-dependent pack size expression");
3288    return Length;
3289  }
3290
3291  SourceRange getSourceRange() const {
3292    return SourceRange(OperatorLoc, RParenLoc);
3293  }
3294
3295  static bool classof(const Stmt *T) {
3296    return T->getStmtClass() == SizeOfPackExprClass;
3297  }
3298  static bool classof(const SizeOfPackExpr *) { return true; }
3299
3300  // Iterators
3301  child_range children() { return child_range(); }
3302};
3303
3304/// \brief Represents a reference to a non-type template parameter
3305/// that has been substituted with a template argument.
3306class SubstNonTypeTemplateParmExpr : public Expr {
3307  /// \brief The replaced parameter.
3308  NonTypeTemplateParmDecl *Param;
3309
3310  /// \brief The replacement expression.
3311  Stmt *Replacement;
3312
3313  /// \brief The location of the non-type template parameter reference.
3314  SourceLocation NameLoc;
3315
3316  friend class ASTReader;
3317  friend class ASTStmtReader;
3318  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3319    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3320
3321public:
3322  SubstNonTypeTemplateParmExpr(QualType type,
3323                               ExprValueKind valueKind,
3324                               SourceLocation loc,
3325                               NonTypeTemplateParmDecl *param,
3326                               Expr *replacement)
3327    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3328           replacement->isTypeDependent(), replacement->isValueDependent(),
3329           replacement->isInstantiationDependent(),
3330           replacement->containsUnexpandedParameterPack()),
3331      Param(param), Replacement(replacement), NameLoc(loc) {}
3332
3333  SourceLocation getNameLoc() const { return NameLoc; }
3334  SourceRange getSourceRange() const { return NameLoc; }
3335
3336  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3337
3338  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3339
3340  static bool classof(const Stmt *s) {
3341    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3342  }
3343  static bool classof(const SubstNonTypeTemplateParmExpr *) {
3344    return true;
3345  }
3346
3347  // Iterators
3348  child_range children() { return child_range(&Replacement, &Replacement+1); }
3349};
3350
3351/// \brief Represents a reference to a non-type template parameter pack that
3352/// has been substituted with a non-template argument pack.
3353///
3354/// When a pack expansion in the source code contains multiple parameter packs
3355/// and those parameter packs correspond to different levels of template
3356/// parameter lists, this node node is used to represent a non-type template
3357/// parameter pack from an outer level, which has already had its argument pack
3358/// substituted but that still lives within a pack expansion that itself
3359/// could not be instantiated. When actually performing a substitution into
3360/// that pack expansion (e.g., when all template parameters have corresponding
3361/// arguments), this type will be replaced with the appropriate underlying
3362/// expression at the current pack substitution index.
3363class SubstNonTypeTemplateParmPackExpr : public Expr {
3364  /// \brief The non-type template parameter pack itself.
3365  NonTypeTemplateParmDecl *Param;
3366
3367  /// \brief A pointer to the set of template arguments that this
3368  /// parameter pack is instantiated with.
3369  const TemplateArgument *Arguments;
3370
3371  /// \brief The number of template arguments in \c Arguments.
3372  unsigned NumArguments;
3373
3374  /// \brief The location of the non-type template parameter pack reference.
3375  SourceLocation NameLoc;
3376
3377  friend class ASTReader;
3378  friend class ASTStmtReader;
3379  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3380    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3381
3382public:
3383  SubstNonTypeTemplateParmPackExpr(QualType T,
3384                                   NonTypeTemplateParmDecl *Param,
3385                                   SourceLocation NameLoc,
3386                                   const TemplateArgument &ArgPack);
3387
3388  /// \brief Retrieve the non-type template parameter pack being substituted.
3389  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3390
3391  /// \brief Retrieve the location of the parameter pack name.
3392  SourceLocation getParameterPackLocation() const { return NameLoc; }
3393
3394  /// \brief Retrieve the template argument pack containing the substituted
3395  /// template arguments.
3396  TemplateArgument getArgumentPack() const;
3397
3398  SourceRange getSourceRange() const { return NameLoc; }
3399
3400  static bool classof(const Stmt *T) {
3401    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3402  }
3403  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
3404    return true;
3405  }
3406
3407  // Iterators
3408  child_range children() { return child_range(); }
3409};
3410
3411/// \brief Represents a prvalue temporary that written into memory so that
3412/// a reference can bind to it.
3413///
3414/// Prvalue expressions are materialized when they need to have an address
3415/// in memory for a reference to bind to. This happens when binding a
3416/// reference to the result of a conversion, e.g.,
3417///
3418/// \code
3419/// const int &r = 1.0;
3420/// \endcode
3421///
3422/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3423/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3424/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3425/// (either an lvalue or an xvalue, depending on the kind of reference binding
3426/// to it), maintaining the invariant that references always bind to glvalues.
3427class MaterializeTemporaryExpr : public Expr {
3428  /// \brief The temporary-generating expression whose value will be
3429  /// materialized.
3430 Stmt *Temporary;
3431
3432  friend class ASTStmtReader;
3433  friend class ASTStmtWriter;
3434
3435public:
3436  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3437                           bool BoundToLvalueReference)
3438    : Expr(MaterializeTemporaryExprClass, T,
3439           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3440           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3441           Temporary->isInstantiationDependent(),
3442           Temporary->containsUnexpandedParameterPack()),
3443      Temporary(Temporary) { }
3444
3445  MaterializeTemporaryExpr(EmptyShell Empty)
3446    : Expr(MaterializeTemporaryExprClass, Empty) { }
3447
3448  /// \brief Retrieve the temporary-generating subexpression whose value will
3449  /// be materialized into a glvalue.
3450  Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3451
3452  /// \brief Determine whether this materialized temporary is bound to an
3453  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3454  bool isBoundToLvalueReference() const {
3455    return getValueKind() == VK_LValue;
3456  }
3457
3458  SourceRange getSourceRange() const { return Temporary->getSourceRange(); }
3459
3460  static bool classof(const Stmt *T) {
3461    return T->getStmtClass() == MaterializeTemporaryExprClass;
3462  }
3463  static bool classof(const MaterializeTemporaryExpr *) {
3464    return true;
3465  }
3466
3467  // Iterators
3468  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3469};
3470
3471}  // end namespace clang
3472
3473#endif
3474