ExprCXX.h revision cdd4b78583120222b82148626119b3e80ae1d291
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::Expr interface and subclasses for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_EXPRCXX_H
16#define LLVM_CLANG_AST_EXPRCXX_H
17
18#include "clang/AST/Decl.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/TemplateBase.h"
21#include "clang/AST/UnresolvedSet.h"
22#include "clang/Basic/ExpressionTraits.h"
23#include "clang/Basic/Lambda.h"
24#include "clang/Basic/TypeTraits.h"
25#include "llvm/Support/Compiler.h"
26
27namespace clang {
28
29class CXXConstructorDecl;
30class CXXDestructorDecl;
31class CXXMethodDecl;
32class CXXTemporary;
33class MSPropertyDecl;
34class TemplateArgumentListInfo;
35class UuidAttr;
36
37//===--------------------------------------------------------------------===//
38// C++ Expressions.
39//===--------------------------------------------------------------------===//
40
41/// \brief A call to an overloaded operator written using operator
42/// syntax.
43///
44/// Represents a call to an overloaded operator written using operator
45/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
46/// normal call, this AST node provides better information about the
47/// syntactic representation of the call.
48///
49/// In a C++ template, this expression node kind will be used whenever
50/// any of the arguments are type-dependent. In this case, the
51/// function itself will be a (possibly empty) set of functions and
52/// function templates that were found by name lookup at template
53/// definition time.
54class CXXOperatorCallExpr : public CallExpr {
55  /// \brief The overloaded operator.
56  OverloadedOperatorKind Operator;
57  SourceRange Range;
58
59  // Record the FP_CONTRACT state that applies to this operator call. Only
60  // meaningful for floating point types. For other types this value can be
61  // set to false.
62  unsigned FPContractable : 1;
63
64  SourceRange getSourceRangeImpl() const LLVM_READONLY;
65public:
66  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
67                      ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
68                      SourceLocation operatorloc, bool fpContractable)
69    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, t, VK,
70               operatorloc),
71      Operator(Op), FPContractable(fpContractable) {
72    Range = getSourceRangeImpl();
73  }
74  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
75    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
76
77
78  /// \brief Returns the kind of overloaded operator that this
79  /// expression refers to.
80  OverloadedOperatorKind getOperator() const { return Operator; }
81
82  /// \brief Returns the location of the operator symbol in the expression.
83  ///
84  /// When \c getOperator()==OO_Call, this is the location of the right
85  /// parentheses; when \c getOperator()==OO_Subscript, this is the location
86  /// of the right bracket.
87  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
88
89  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
90  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
91  SourceRange getSourceRange() const { return Range; }
92
93  static bool classof(const Stmt *T) {
94    return T->getStmtClass() == CXXOperatorCallExprClass;
95  }
96
97  // Set the FP contractability status of this operator. Only meaningful for
98  // operations on floating point types.
99  void setFPContractable(bool FPC) { FPContractable = FPC; }
100
101  // Get the FP contractability status of this operator. Only meaningful for
102  // operations on floating point types.
103  bool isFPContractable() const { return FPContractable; }
104
105  friend class ASTStmtReader;
106  friend class ASTStmtWriter;
107};
108
109/// Represents a call to a member function that
110/// may be written either with member call syntax (e.g., "obj.func()"
111/// or "objptr->func()") or with normal function-call syntax
112/// ("func()") within a member function that ends up calling a member
113/// function. The callee in either case is a MemberExpr that contains
114/// both the object argument and the member function, while the
115/// arguments are the arguments within the parentheses (not including
116/// the object argument).
117class CXXMemberCallExpr : public CallExpr {
118public:
119  CXXMemberCallExpr(ASTContext &C, Expr *fn, ArrayRef<Expr*> args,
120                    QualType t, ExprValueKind VK, SourceLocation RP)
121    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, t, VK, RP) {}
122
123  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
124    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
125
126  /// \brief Retrieves the implicit object argument for the member call.
127  ///
128  /// For example, in "x.f(5)", this returns the sub-expression "x".
129  Expr *getImplicitObjectArgument() const;
130
131  /// \brief Retrieves the declaration of the called method.
132  CXXMethodDecl *getMethodDecl() const;
133
134  /// \brief Retrieves the CXXRecordDecl for the underlying type of
135  /// the implicit object argument.
136  ///
137  /// Note that this is may not be the same declaration as that of the class
138  /// context of the CXXMethodDecl which this function is calling.
139  /// FIXME: Returns 0 for member pointer call exprs.
140  CXXRecordDecl *getRecordDecl() const;
141
142  static bool classof(const Stmt *T) {
143    return T->getStmtClass() == CXXMemberCallExprClass;
144  }
145};
146
147/// \brief Represents a call to a CUDA kernel function.
148class CUDAKernelCallExpr : public CallExpr {
149private:
150  enum { CONFIG, END_PREARG };
151
152public:
153  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
154                     ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
155                     SourceLocation RP)
156    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, t, VK, RP) {
157    setConfig(Config);
158  }
159
160  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
161    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
162
163  const CallExpr *getConfig() const {
164    return cast_or_null<CallExpr>(getPreArg(CONFIG));
165  }
166  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
167  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
168
169  static bool classof(const Stmt *T) {
170    return T->getStmtClass() == CUDAKernelCallExprClass;
171  }
172};
173
174/// \brief Abstract class common to all of the C++ "named"/"keyword" casts.
175///
176/// This abstract class is inherited by all of the classes
177/// representing "named" casts: CXXStaticCastExpr for \c static_cast,
178/// CXXDynamicCastExpr for \c dynamic_cast, CXXReinterpretCastExpr for
179/// reinterpret_cast, and CXXConstCastExpr for \c const_cast.
180class CXXNamedCastExpr : public ExplicitCastExpr {
181private:
182  SourceLocation Loc; // the location of the casting op
183  SourceLocation RParenLoc; // the location of the right parenthesis
184  SourceRange AngleBrackets; // range for '<' '>'
185
186protected:
187  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
188                   CastKind kind, Expr *op, unsigned PathSize,
189                   TypeSourceInfo *writtenTy, SourceLocation l,
190                   SourceLocation RParenLoc,
191                   SourceRange AngleBrackets)
192    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
193      RParenLoc(RParenLoc), AngleBrackets(AngleBrackets) {}
194
195  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
196    : ExplicitCastExpr(SC, Shell, PathSize) { }
197
198  friend class ASTStmtReader;
199
200public:
201  const char *getCastName() const;
202
203  /// \brief Retrieve the location of the cast operator keyword, e.g.,
204  /// \c static_cast.
205  SourceLocation getOperatorLoc() const { return Loc; }
206
207  /// \brief Retrieve the location of the closing parenthesis.
208  SourceLocation getRParenLoc() const { return RParenLoc; }
209
210  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
211  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
212  SourceRange getAngleBrackets() const LLVM_READONLY { return AngleBrackets; }
213
214  static bool classof(const Stmt *T) {
215    switch (T->getStmtClass()) {
216    case CXXStaticCastExprClass:
217    case CXXDynamicCastExprClass:
218    case CXXReinterpretCastExprClass:
219    case CXXConstCastExprClass:
220      return true;
221    default:
222      return false;
223    }
224  }
225};
226
227/// \brief A C++ \c static_cast expression (C++ [expr.static.cast]).
228///
229/// This expression node represents a C++ static cast, e.g.,
230/// \c static_cast<int>(1.0).
231class CXXStaticCastExpr : public CXXNamedCastExpr {
232  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
233                    unsigned pathSize, TypeSourceInfo *writtenTy,
234                    SourceLocation l, SourceLocation RParenLoc,
235                    SourceRange AngleBrackets)
236    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
237                       writtenTy, l, RParenLoc, AngleBrackets) {}
238
239  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
240    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
241
242public:
243  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
244                                   ExprValueKind VK, CastKind K, Expr *Op,
245                                   const CXXCastPath *Path,
246                                   TypeSourceInfo *Written, SourceLocation L,
247                                   SourceLocation RParenLoc,
248                                   SourceRange AngleBrackets);
249  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
250                                        unsigned PathSize);
251
252  static bool classof(const Stmt *T) {
253    return T->getStmtClass() == CXXStaticCastExprClass;
254  }
255};
256
257/// \brief A C++ @c dynamic_cast expression (C++ [expr.dynamic.cast]).
258///
259/// This expression node represents a dynamic cast, e.g.,
260/// \c dynamic_cast<Derived*>(BasePtr). Such a cast may perform a run-time
261/// check to determine how to perform the type conversion.
262class CXXDynamicCastExpr : public CXXNamedCastExpr {
263  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
264                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
265                     SourceLocation l, SourceLocation RParenLoc,
266                     SourceRange AngleBrackets)
267    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
268                       writtenTy, l, RParenLoc, AngleBrackets) {}
269
270  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
271    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
272
273public:
274  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
275                                    ExprValueKind VK, CastKind Kind, Expr *Op,
276                                    const CXXCastPath *Path,
277                                    TypeSourceInfo *Written, SourceLocation L,
278                                    SourceLocation RParenLoc,
279                                    SourceRange AngleBrackets);
280
281  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
282                                         unsigned pathSize);
283
284  bool isAlwaysNull() const;
285
286  static bool classof(const Stmt *T) {
287    return T->getStmtClass() == CXXDynamicCastExprClass;
288  }
289};
290
291/// \brief A C++ @c reinterpret_cast expression (C++ [expr.reinterpret.cast]).
292///
293/// This expression node represents a reinterpret cast, e.g.,
294/// @c reinterpret_cast<int>(VoidPtr).
295///
296/// A reinterpret_cast provides a differently-typed view of a value but
297/// (in Clang, as in most C++ implementations) performs no actual work at
298/// run time.
299class CXXReinterpretCastExpr : public CXXNamedCastExpr {
300  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
301                         Expr *op, unsigned pathSize,
302                         TypeSourceInfo *writtenTy, SourceLocation l,
303                         SourceLocation RParenLoc,
304                         SourceRange AngleBrackets)
305    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
306                       pathSize, writtenTy, l, RParenLoc, AngleBrackets) {}
307
308  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
309    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
310
311public:
312  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
313                                        ExprValueKind VK, CastKind Kind,
314                                        Expr *Op, const CXXCastPath *Path,
315                                 TypeSourceInfo *WrittenTy, SourceLocation L,
316                                        SourceLocation RParenLoc,
317                                        SourceRange AngleBrackets);
318  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
319                                             unsigned pathSize);
320
321  static bool classof(const Stmt *T) {
322    return T->getStmtClass() == CXXReinterpretCastExprClass;
323  }
324};
325
326/// \brief A C++ \c const_cast expression (C++ [expr.const.cast]).
327///
328/// This expression node represents a const cast, e.g.,
329/// \c const_cast<char*>(PtrToConstChar).
330///
331/// A const_cast can remove type qualifiers but does not change the underlying
332/// value.
333class CXXConstCastExpr : public CXXNamedCastExpr {
334  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
335                   TypeSourceInfo *writtenTy, SourceLocation l,
336                   SourceLocation RParenLoc, SourceRange AngleBrackets)
337    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
338                       0, writtenTy, l, RParenLoc, AngleBrackets) {}
339
340  explicit CXXConstCastExpr(EmptyShell Empty)
341    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
342
343public:
344  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
345                                  ExprValueKind VK, Expr *Op,
346                                  TypeSourceInfo *WrittenTy, SourceLocation L,
347                                  SourceLocation RParenLoc,
348                                  SourceRange AngleBrackets);
349  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
350
351  static bool classof(const Stmt *T) {
352    return T->getStmtClass() == CXXConstCastExprClass;
353  }
354};
355
356/// \brief A call to a literal operator (C++11 [over.literal])
357/// written as a user-defined literal (C++11 [lit.ext]).
358///
359/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
360/// is semantically equivalent to a normal call, this AST node provides better
361/// information about the syntactic representation of the literal.
362///
363/// Since literal operators are never found by ADL and can only be declared at
364/// namespace scope, a user-defined literal is never dependent.
365class UserDefinedLiteral : public CallExpr {
366  /// \brief The location of a ud-suffix within the literal.
367  SourceLocation UDSuffixLoc;
368
369public:
370  UserDefinedLiteral(ASTContext &C, Expr *Fn, ArrayRef<Expr*> Args,
371                     QualType T, ExprValueKind VK, SourceLocation LitEndLoc,
372                     SourceLocation SuffixLoc)
373    : CallExpr(C, UserDefinedLiteralClass, Fn, 0, Args, T, VK, LitEndLoc),
374      UDSuffixLoc(SuffixLoc) {}
375  explicit UserDefinedLiteral(ASTContext &C, EmptyShell Empty)
376    : CallExpr(C, UserDefinedLiteralClass, Empty) {}
377
378  /// The kind of literal operator which is invoked.
379  enum LiteralOperatorKind {
380    LOK_Raw,      ///< Raw form: operator "" X (const char *)
381    LOK_Template, ///< Raw form: operator "" X<cs...> ()
382    LOK_Integer,  ///< operator "" X (unsigned long long)
383    LOK_Floating, ///< operator "" X (long double)
384    LOK_String,   ///< operator "" X (const CharT *, size_t)
385    LOK_Character ///< operator "" X (CharT)
386  };
387
388  /// \brief Returns the kind of literal operator invocation
389  /// which this expression represents.
390  LiteralOperatorKind getLiteralOperatorKind() const;
391
392  /// \brief If this is not a raw user-defined literal, get the
393  /// underlying cooked literal (representing the literal with the suffix
394  /// removed).
395  Expr *getCookedLiteral();
396  const Expr *getCookedLiteral() const {
397    return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
398  }
399
400  SourceLocation getLocStart() const {
401    if (getLiteralOperatorKind() == LOK_Template)
402      return getRParenLoc();
403    return getArg(0)->getLocStart();
404  }
405  SourceLocation getLocEnd() const { return getRParenLoc(); }
406
407
408  /// \brief Returns the location of a ud-suffix in the expression.
409  ///
410  /// For a string literal, there may be multiple identical suffixes. This
411  /// returns the first.
412  SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
413
414  /// \brief Returns the ud-suffix specified for this literal.
415  const IdentifierInfo *getUDSuffix() const;
416
417  static bool classof(const Stmt *S) {
418    return S->getStmtClass() == UserDefinedLiteralClass;
419  }
420
421  friend class ASTStmtReader;
422  friend class ASTStmtWriter;
423};
424
425/// \brief A boolean literal, per ([C++ lex.bool] Boolean literals).
426///
427class CXXBoolLiteralExpr : public Expr {
428  bool Value;
429  SourceLocation Loc;
430public:
431  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
432    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
433         false, false),
434    Value(val), Loc(l) {}
435
436  explicit CXXBoolLiteralExpr(EmptyShell Empty)
437    : Expr(CXXBoolLiteralExprClass, Empty) { }
438
439  bool getValue() const { return Value; }
440  void setValue(bool V) { Value = V; }
441
442  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
443  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
444
445  SourceLocation getLocation() const { return Loc; }
446  void setLocation(SourceLocation L) { Loc = L; }
447
448  static bool classof(const Stmt *T) {
449    return T->getStmtClass() == CXXBoolLiteralExprClass;
450  }
451
452  // Iterators
453  child_range children() { return child_range(); }
454};
455
456/// \brief The null pointer literal (C++11 [lex.nullptr])
457///
458/// Introduced in C++11, the only literal of type \c nullptr_t is \c nullptr.
459class CXXNullPtrLiteralExpr : public Expr {
460  SourceLocation Loc;
461public:
462  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
463    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
464         false, false),
465    Loc(l) {}
466
467  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
468    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
469
470  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
471  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
472
473  SourceLocation getLocation() const { return Loc; }
474  void setLocation(SourceLocation L) { Loc = L; }
475
476  static bool classof(const Stmt *T) {
477    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
478  }
479
480  child_range children() { return child_range(); }
481};
482
483/// \brief Implicit construction of a std::initializer_list<T> object from an
484/// array temporary within list-initialization (C++11 [dcl.init.list]p5).
485class CXXStdInitializerListExpr : public Expr {
486  Stmt *SubExpr;
487
488  CXXStdInitializerListExpr(EmptyShell Empty)
489    : Expr(CXXStdInitializerListExprClass, Empty), SubExpr(0) {}
490
491public:
492  CXXStdInitializerListExpr(QualType Ty, Expr *SubExpr)
493    : Expr(CXXStdInitializerListExprClass, Ty, VK_RValue, OK_Ordinary,
494           Ty->isDependentType(), SubExpr->isValueDependent(),
495           SubExpr->isInstantiationDependent(),
496           SubExpr->containsUnexpandedParameterPack()),
497      SubExpr(SubExpr) {}
498
499  Expr *getSubExpr() { return static_cast<Expr*>(SubExpr); }
500  const Expr *getSubExpr() const { return static_cast<const Expr*>(SubExpr); }
501
502  SourceLocation getLocStart() const LLVM_READONLY {
503    return SubExpr->getLocStart();
504  }
505  SourceLocation getLocEnd() const LLVM_READONLY {
506    return SubExpr->getLocEnd();
507  }
508  SourceRange getSourceRange() const LLVM_READONLY {
509    return SubExpr->getSourceRange();
510  }
511
512  static bool classof(const Stmt *S) {
513    return S->getStmtClass() == CXXStdInitializerListExprClass;
514  }
515
516  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
517
518  friend class ASTReader;
519  friend class ASTStmtReader;
520};
521
522/// A C++ \c typeid expression (C++ [expr.typeid]), which gets
523/// the \c type_info that corresponds to the supplied type, or the (possibly
524/// dynamic) type of the supplied expression.
525///
526/// This represents code like \c typeid(int) or \c typeid(*objPtr)
527class CXXTypeidExpr : public Expr {
528private:
529  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
530  SourceRange Range;
531
532public:
533  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
534    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
535           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
536           false,
537           // typeid is value-dependent if the type or expression are dependent
538           Operand->getType()->isDependentType(),
539           Operand->getType()->isInstantiationDependentType(),
540           Operand->getType()->containsUnexpandedParameterPack()),
541      Operand(Operand), Range(R) { }
542
543  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
544    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
545        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
546           false,
547        // typeid is value-dependent if the type or expression are dependent
548           Operand->isTypeDependent() || Operand->isValueDependent(),
549           Operand->isInstantiationDependent(),
550           Operand->containsUnexpandedParameterPack()),
551      Operand(Operand), Range(R) { }
552
553  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
554    : Expr(CXXTypeidExprClass, Empty) {
555    if (isExpr)
556      Operand = (Expr*)0;
557    else
558      Operand = (TypeSourceInfo*)0;
559  }
560
561  /// Determine whether this typeid has a type operand which is potentially
562  /// evaluated, per C++11 [expr.typeid]p3.
563  bool isPotentiallyEvaluated() const;
564
565  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
566
567  /// \brief Retrieves the type operand of this typeid() expression after
568  /// various required adjustments (removing reference types, cv-qualifiers).
569  QualType getTypeOperand() const;
570
571  /// \brief Retrieve source information for the type operand.
572  TypeSourceInfo *getTypeOperandSourceInfo() const {
573    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
574    return Operand.get<TypeSourceInfo *>();
575  }
576
577  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
578    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
579    Operand = TSI;
580  }
581
582  Expr *getExprOperand() const {
583    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
584    return static_cast<Expr*>(Operand.get<Stmt *>());
585  }
586
587  void setExprOperand(Expr *E) {
588    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
589    Operand = E;
590  }
591
592  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
593  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
594  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
595  void setSourceRange(SourceRange R) { Range = R; }
596
597  static bool classof(const Stmt *T) {
598    return T->getStmtClass() == CXXTypeidExprClass;
599  }
600
601  // Iterators
602  child_range children() {
603    if (isTypeOperand()) return child_range();
604    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
605    return child_range(begin, begin + 1);
606  }
607};
608
609/// \brief A member reference to an MSPropertyDecl.
610///
611/// This expression always has pseudo-object type, and therefore it is
612/// typically not encountered in a fully-typechecked expression except
613/// within the syntactic form of a PseudoObjectExpr.
614class MSPropertyRefExpr : public Expr {
615  Expr *BaseExpr;
616  MSPropertyDecl *TheDecl;
617  SourceLocation MemberLoc;
618  bool IsArrow;
619  NestedNameSpecifierLoc QualifierLoc;
620
621public:
622  MSPropertyRefExpr(Expr *baseExpr, MSPropertyDecl *decl, bool isArrow,
623                    QualType ty, ExprValueKind VK,
624                    NestedNameSpecifierLoc qualifierLoc,
625                    SourceLocation nameLoc)
626  : Expr(MSPropertyRefExprClass, ty, VK, OK_Ordinary,
627         /*type-dependent*/ false, baseExpr->isValueDependent(),
628         baseExpr->isInstantiationDependent(),
629         baseExpr->containsUnexpandedParameterPack()),
630    BaseExpr(baseExpr), TheDecl(decl),
631    MemberLoc(nameLoc), IsArrow(isArrow),
632    QualifierLoc(qualifierLoc) {}
633
634  MSPropertyRefExpr(EmptyShell Empty) : Expr(MSPropertyRefExprClass, Empty) {}
635
636  SourceRange getSourceRange() const LLVM_READONLY {
637    return SourceRange(getLocStart(), getLocEnd());
638  }
639  bool isImplicitAccess() const {
640    return getBaseExpr() && getBaseExpr()->isImplicitCXXThis();
641  }
642  SourceLocation getLocStart() const {
643    if (!isImplicitAccess())
644      return BaseExpr->getLocStart();
645    else if (QualifierLoc)
646      return QualifierLoc.getBeginLoc();
647    else
648        return MemberLoc;
649  }
650  SourceLocation getLocEnd() const { return getMemberLoc(); }
651
652  child_range children() {
653    return child_range((Stmt**)&BaseExpr, (Stmt**)&BaseExpr + 1);
654  }
655  static bool classof(const Stmt *T) {
656    return T->getStmtClass() == MSPropertyRefExprClass;
657  }
658
659  Expr *getBaseExpr() const { return BaseExpr; }
660  MSPropertyDecl *getPropertyDecl() const { return TheDecl; }
661  bool isArrow() const { return IsArrow; }
662  SourceLocation getMemberLoc() const { return MemberLoc; }
663  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
664
665  friend class ASTStmtReader;
666};
667
668/// A Microsoft C++ @c __uuidof expression, which gets
669/// the _GUID that corresponds to the supplied type or expression.
670///
671/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
672class CXXUuidofExpr : public Expr {
673private:
674  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
675  SourceRange Range;
676
677public:
678  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
679    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
680           false, Operand->getType()->isDependentType(),
681           Operand->getType()->isInstantiationDependentType(),
682           Operand->getType()->containsUnexpandedParameterPack()),
683      Operand(Operand), Range(R) { }
684
685  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
686    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
687           false, Operand->isTypeDependent(),
688           Operand->isInstantiationDependent(),
689           Operand->containsUnexpandedParameterPack()),
690      Operand(Operand), Range(R) { }
691
692  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
693    : Expr(CXXUuidofExprClass, Empty) {
694    if (isExpr)
695      Operand = (Expr*)0;
696    else
697      Operand = (TypeSourceInfo*)0;
698  }
699
700  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
701
702  /// \brief Retrieves the type operand of this __uuidof() expression after
703  /// various required adjustments (removing reference types, cv-qualifiers).
704  QualType getTypeOperand() const;
705
706  /// \brief Retrieve source information for the type operand.
707  TypeSourceInfo *getTypeOperandSourceInfo() const {
708    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
709    return Operand.get<TypeSourceInfo *>();
710  }
711
712  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
713    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
714    Operand = TSI;
715  }
716
717  Expr *getExprOperand() const {
718    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
719    return static_cast<Expr*>(Operand.get<Stmt *>());
720  }
721
722  void setExprOperand(Expr *E) {
723    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
724    Operand = E;
725  }
726
727  StringRef getUuidAsStringRef(ASTContext &Context) const;
728
729  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
730  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
731  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
732  void setSourceRange(SourceRange R) { Range = R; }
733
734  static bool classof(const Stmt *T) {
735    return T->getStmtClass() == CXXUuidofExprClass;
736  }
737
738  /// Grabs __declspec(uuid()) off a type, or returns 0 if there is none.
739  static UuidAttr *GetUuidAttrOfType(QualType QT);
740
741  // Iterators
742  child_range children() {
743    if (isTypeOperand()) return child_range();
744    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
745    return child_range(begin, begin + 1);
746  }
747};
748
749/// \brief Represents the \c this expression in C++.
750///
751/// This is a pointer to the object on which the current member function is
752/// executing (C++ [expr.prim]p3). Example:
753///
754/// \code
755/// class Foo {
756/// public:
757///   void bar();
758///   void test() { this->bar(); }
759/// };
760/// \endcode
761class CXXThisExpr : public Expr {
762  SourceLocation Loc;
763  bool Implicit : 1;
764
765public:
766  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
767    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
768           // 'this' is type-dependent if the class type of the enclosing
769           // member function is dependent (C++ [temp.dep.expr]p2)
770           Type->isDependentType(), Type->isDependentType(),
771           Type->isInstantiationDependentType(),
772           /*ContainsUnexpandedParameterPack=*/false),
773      Loc(L), Implicit(isImplicit) { }
774
775  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
776
777  SourceLocation getLocation() const { return Loc; }
778  void setLocation(SourceLocation L) { Loc = L; }
779
780  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
781  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
782
783  bool isImplicit() const { return Implicit; }
784  void setImplicit(bool I) { Implicit = I; }
785
786  static bool classof(const Stmt *T) {
787    return T->getStmtClass() == CXXThisExprClass;
788  }
789
790  // Iterators
791  child_range children() { return child_range(); }
792};
793
794/// \brief A C++ throw-expression (C++ [except.throw]).
795///
796/// This handles 'throw' (for re-throwing the current exception) and
797/// 'throw' assignment-expression.  When assignment-expression isn't
798/// present, Op will be null.
799class CXXThrowExpr : public Expr {
800  Stmt *Op;
801  SourceLocation ThrowLoc;
802  /// \brief Whether the thrown variable (if any) is in scope.
803  unsigned IsThrownVariableInScope : 1;
804
805  friend class ASTStmtReader;
806
807public:
808  // \p Ty is the void type which is used as the result type of the
809  // expression.  The \p l is the location of the throw keyword.  \p expr
810  // can by null, if the optional expression to throw isn't present.
811  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
812               bool IsThrownVariableInScope) :
813    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
814         expr && expr->isInstantiationDependent(),
815         expr && expr->containsUnexpandedParameterPack()),
816    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
817  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
818
819  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
820  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
821
822  SourceLocation getThrowLoc() const { return ThrowLoc; }
823
824  /// \brief Determines whether the variable thrown by this expression (if any!)
825  /// is within the innermost try block.
826  ///
827  /// This information is required to determine whether the NRVO can apply to
828  /// this variable.
829  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
830
831  SourceLocation getLocStart() const LLVM_READONLY { return ThrowLoc; }
832  SourceLocation getLocEnd() const LLVM_READONLY {
833    if (getSubExpr() == 0)
834      return ThrowLoc;
835    return getSubExpr()->getLocEnd();
836  }
837
838  static bool classof(const Stmt *T) {
839    return T->getStmtClass() == CXXThrowExprClass;
840  }
841
842  // Iterators
843  child_range children() {
844    return child_range(&Op, Op ? &Op+1 : &Op);
845  }
846};
847
848/// \brief A default argument (C++ [dcl.fct.default]).
849///
850/// This wraps up a function call argument that was created from the
851/// corresponding parameter's default argument, when the call did not
852/// explicitly supply arguments for all of the parameters.
853class CXXDefaultArgExpr : public Expr {
854  /// \brief The parameter whose default is being used.
855  ///
856  /// When the bit is set, the subexpression is stored after the
857  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
858  /// actual default expression is the subexpression.
859  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
860
861  /// \brief The location where the default argument expression was used.
862  SourceLocation Loc;
863
864  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
865    : Expr(SC,
866           param->hasUnparsedDefaultArg()
867             ? param->getType().getNonReferenceType()
868             : param->getDefaultArg()->getType(),
869           param->getDefaultArg()->getValueKind(),
870           param->getDefaultArg()->getObjectKind(), false, false, false, false),
871      Param(param, false), Loc(Loc) { }
872
873  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
874                    Expr *SubExpr)
875    : Expr(SC, SubExpr->getType(),
876           SubExpr->getValueKind(), SubExpr->getObjectKind(),
877           false, false, false, false),
878      Param(param, true), Loc(Loc) {
879    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
880  }
881
882public:
883  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
884
885  // \p Param is the parameter whose default argument is used by this
886  // expression.
887  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
888                                   ParmVarDecl *Param) {
889    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
890  }
891
892  // \p Param is the parameter whose default argument is used by this
893  // expression, and \p SubExpr is the expression that will actually be used.
894  static CXXDefaultArgExpr *Create(ASTContext &C,
895                                   SourceLocation Loc,
896                                   ParmVarDecl *Param,
897                                   Expr *SubExpr);
898
899  // Retrieve the parameter that the argument was created from.
900  const ParmVarDecl *getParam() const { return Param.getPointer(); }
901  ParmVarDecl *getParam() { return Param.getPointer(); }
902
903  // Retrieve the actual argument to the function call.
904  const Expr *getExpr() const {
905    if (Param.getInt())
906      return *reinterpret_cast<Expr const * const*> (this + 1);
907    return getParam()->getDefaultArg();
908  }
909  Expr *getExpr() {
910    if (Param.getInt())
911      return *reinterpret_cast<Expr **> (this + 1);
912    return getParam()->getDefaultArg();
913  }
914
915  /// \brief Retrieve the location where this default argument was actually
916  /// used.
917  SourceLocation getUsedLocation() const { return Loc; }
918
919  /// Default argument expressions have no representation in the
920  /// source, so they have an empty source range.
921  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
922  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
923
924  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
925
926  static bool classof(const Stmt *T) {
927    return T->getStmtClass() == CXXDefaultArgExprClass;
928  }
929
930  // Iterators
931  child_range children() { return child_range(); }
932
933  friend class ASTStmtReader;
934  friend class ASTStmtWriter;
935};
936
937/// \brief A use of a default initializer in a constructor or in aggregate
938/// initialization.
939///
940/// This wraps a use of a C++ default initializer (technically,
941/// a brace-or-equal-initializer for a non-static data member) when it
942/// is implicitly used in a mem-initializer-list in a constructor
943/// (C++11 [class.base.init]p8) or in aggregate initialization
944/// (C++1y [dcl.init.aggr]p7).
945class CXXDefaultInitExpr : public Expr {
946  /// \brief The field whose default is being used.
947  FieldDecl *Field;
948
949  /// \brief The location where the default initializer expression was used.
950  SourceLocation Loc;
951
952  CXXDefaultInitExpr(ASTContext &C, SourceLocation Loc, FieldDecl *Field,
953                     QualType T);
954
955  CXXDefaultInitExpr(EmptyShell Empty) : Expr(CXXDefaultInitExprClass, Empty) {}
956
957public:
958  /// \p Field is the non-static data member whose default initializer is used
959  /// by this expression.
960  static CXXDefaultInitExpr *Create(ASTContext &C, SourceLocation Loc,
961                                    FieldDecl *Field) {
962    return new (C) CXXDefaultInitExpr(C, Loc, Field, Field->getType());
963  }
964
965  /// \brief Get the field whose initializer will be used.
966  FieldDecl *getField() { return Field; }
967  const FieldDecl *getField() const { return Field; }
968
969  /// \brief Get the initialization expression that will be used.
970  const Expr *getExpr() const { return Field->getInClassInitializer(); }
971  Expr *getExpr() { return Field->getInClassInitializer(); }
972
973  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
974  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
975
976  static bool classof(const Stmt *T) {
977    return T->getStmtClass() == CXXDefaultInitExprClass;
978  }
979
980  // Iterators
981  child_range children() { return child_range(); }
982
983  friend class ASTReader;
984  friend class ASTStmtReader;
985};
986
987/// \brief Represents a C++ temporary.
988class CXXTemporary {
989  /// \brief The destructor that needs to be called.
990  const CXXDestructorDecl *Destructor;
991
992  explicit CXXTemporary(const CXXDestructorDecl *destructor)
993    : Destructor(destructor) { }
994
995public:
996  static CXXTemporary *Create(ASTContext &C,
997                              const CXXDestructorDecl *Destructor);
998
999  const CXXDestructorDecl *getDestructor() const { return Destructor; }
1000  void setDestructor(const CXXDestructorDecl *Dtor) {
1001    Destructor = Dtor;
1002  }
1003};
1004
1005/// \brief Represents binding an expression to a temporary.
1006///
1007/// This ensures the destructor is called for the temporary. It should only be
1008/// needed for non-POD, non-trivially destructable class types. For example:
1009///
1010/// \code
1011///   struct S {
1012///     S() { }  // User defined constructor makes S non-POD.
1013///     ~S() { } // User defined destructor makes it non-trivial.
1014///   };
1015///   void test() {
1016///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
1017///   }
1018/// \endcode
1019class CXXBindTemporaryExpr : public Expr {
1020  CXXTemporary *Temp;
1021
1022  Stmt *SubExpr;
1023
1024  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
1025   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
1026          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
1027          SubExpr->isValueDependent(),
1028          SubExpr->isInstantiationDependent(),
1029          SubExpr->containsUnexpandedParameterPack()),
1030     Temp(temp), SubExpr(SubExpr) { }
1031
1032public:
1033  CXXBindTemporaryExpr(EmptyShell Empty)
1034    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
1035
1036  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
1037                                      Expr* SubExpr);
1038
1039  CXXTemporary *getTemporary() { return Temp; }
1040  const CXXTemporary *getTemporary() const { return Temp; }
1041  void setTemporary(CXXTemporary *T) { Temp = T; }
1042
1043  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1044  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1045  void setSubExpr(Expr *E) { SubExpr = E; }
1046
1047  SourceLocation getLocStart() const LLVM_READONLY {
1048    return SubExpr->getLocStart();
1049  }
1050  SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}
1051
1052  // Implement isa/cast/dyncast/etc.
1053  static bool classof(const Stmt *T) {
1054    return T->getStmtClass() == CXXBindTemporaryExprClass;
1055  }
1056
1057  // Iterators
1058  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
1059};
1060
1061/// \brief Represents a call to a C++ constructor.
1062class CXXConstructExpr : public Expr {
1063public:
1064  enum ConstructionKind {
1065    CK_Complete,
1066    CK_NonVirtualBase,
1067    CK_VirtualBase,
1068    CK_Delegating
1069  };
1070
1071private:
1072  CXXConstructorDecl *Constructor;
1073
1074  SourceLocation Loc;
1075  SourceRange ParenRange;
1076  unsigned NumArgs : 16;
1077  bool Elidable : 1;
1078  bool HadMultipleCandidates : 1;
1079  bool ListInitialization : 1;
1080  bool ZeroInitialization : 1;
1081  unsigned ConstructKind : 2;
1082  Stmt **Args;
1083
1084protected:
1085  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
1086                   SourceLocation Loc,
1087                   CXXConstructorDecl *d, bool elidable,
1088                   ArrayRef<Expr *> Args,
1089                   bool HadMultipleCandidates,
1090                   bool ListInitialization,
1091                   bool ZeroInitialization,
1092                   ConstructionKind ConstructKind,
1093                   SourceRange ParenRange);
1094
1095  /// \brief Construct an empty C++ construction expression.
1096  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
1097    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
1098      HadMultipleCandidates(false), ListInitialization(false),
1099      ZeroInitialization(false), ConstructKind(0), Args(0)
1100  { }
1101
1102public:
1103  /// \brief Construct an empty C++ construction expression.
1104  explicit CXXConstructExpr(EmptyShell Empty)
1105    : Expr(CXXConstructExprClass, Empty), Constructor(0),
1106      NumArgs(0), Elidable(false), HadMultipleCandidates(false),
1107      ListInitialization(false), ZeroInitialization(false),
1108      ConstructKind(0), Args(0)
1109  { }
1110
1111  static CXXConstructExpr *Create(ASTContext &C, QualType T,
1112                                  SourceLocation Loc,
1113                                  CXXConstructorDecl *D, bool Elidable,
1114                                  ArrayRef<Expr *> Args,
1115                                  bool HadMultipleCandidates,
1116                                  bool ListInitialization,
1117                                  bool ZeroInitialization,
1118                                  ConstructionKind ConstructKind,
1119                                  SourceRange ParenRange);
1120
1121  CXXConstructorDecl* getConstructor() const { return Constructor; }
1122  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
1123
1124  SourceLocation getLocation() const { return Loc; }
1125  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
1126
1127  /// \brief Whether this construction is elidable.
1128  bool isElidable() const { return Elidable; }
1129  void setElidable(bool E) { Elidable = E; }
1130
1131  /// \brief Whether the referred constructor was resolved from
1132  /// an overloaded set having size greater than 1.
1133  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
1134  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
1135
1136  /// \brief Whether this constructor call was written as list-initialization.
1137  bool isListInitialization() const { return ListInitialization; }
1138  void setListInitialization(bool V) { ListInitialization = V; }
1139
1140  /// \brief Whether this construction first requires
1141  /// zero-initialization before the initializer is called.
1142  bool requiresZeroInitialization() const { return ZeroInitialization; }
1143  void setRequiresZeroInitialization(bool ZeroInit) {
1144    ZeroInitialization = ZeroInit;
1145  }
1146
1147  /// \brief Determine whether this constructor is actually constructing
1148  /// a base class (rather than a complete object).
1149  ConstructionKind getConstructionKind() const {
1150    return (ConstructionKind)ConstructKind;
1151  }
1152  void setConstructionKind(ConstructionKind CK) {
1153    ConstructKind = CK;
1154  }
1155
1156  typedef ExprIterator arg_iterator;
1157  typedef ConstExprIterator const_arg_iterator;
1158
1159  arg_iterator arg_begin() { return Args; }
1160  arg_iterator arg_end() { return Args + NumArgs; }
1161  const_arg_iterator arg_begin() const { return Args; }
1162  const_arg_iterator arg_end() const { return Args + NumArgs; }
1163
1164  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
1165  unsigned getNumArgs() const { return NumArgs; }
1166
1167  /// \brief Return the specified argument.
1168  Expr *getArg(unsigned Arg) {
1169    assert(Arg < NumArgs && "Arg access out of range!");
1170    return cast<Expr>(Args[Arg]);
1171  }
1172  const Expr *getArg(unsigned Arg) const {
1173    assert(Arg < NumArgs && "Arg access out of range!");
1174    return cast<Expr>(Args[Arg]);
1175  }
1176
1177  /// \brief Set the specified argument.
1178  void setArg(unsigned Arg, Expr *ArgExpr) {
1179    assert(Arg < NumArgs && "Arg access out of range!");
1180    Args[Arg] = ArgExpr;
1181  }
1182
1183  SourceLocation getLocStart() const LLVM_READONLY;
1184  SourceLocation getLocEnd() const LLVM_READONLY;
1185  SourceRange getParenRange() const { return ParenRange; }
1186  void setParenRange(SourceRange Range) { ParenRange = Range; }
1187
1188  static bool classof(const Stmt *T) {
1189    return T->getStmtClass() == CXXConstructExprClass ||
1190      T->getStmtClass() == CXXTemporaryObjectExprClass;
1191  }
1192
1193  // Iterators
1194  child_range children() {
1195    return child_range(&Args[0], &Args[0]+NumArgs);
1196  }
1197
1198  friend class ASTStmtReader;
1199};
1200
1201/// \brief Represents an explicit C++ type conversion that uses "functional"
1202/// notation (C++ [expr.type.conv]).
1203///
1204/// Example:
1205/// \code
1206///   x = int(0.5);
1207/// \endcode
1208class CXXFunctionalCastExpr : public ExplicitCastExpr {
1209  SourceLocation LParenLoc;
1210  SourceLocation RParenLoc;
1211
1212  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1213                        TypeSourceInfo *writtenTy,
1214                        CastKind kind, Expr *castExpr, unsigned pathSize,
1215                        SourceLocation lParenLoc, SourceLocation rParenLoc)
1216    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
1217                       castExpr, pathSize, writtenTy),
1218      LParenLoc(lParenLoc), RParenLoc(rParenLoc) {}
1219
1220  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
1221    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
1222
1223public:
1224  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
1225                                       ExprValueKind VK,
1226                                       TypeSourceInfo *Written,
1227                                       CastKind Kind, Expr *Op,
1228                                       const CXXCastPath *Path,
1229                                       SourceLocation LPLoc,
1230                                       SourceLocation RPLoc);
1231  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
1232                                            unsigned PathSize);
1233
1234  SourceLocation getLParenLoc() const { return LParenLoc; }
1235  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1236  SourceLocation getRParenLoc() const { return RParenLoc; }
1237  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1238
1239  SourceLocation getLocStart() const LLVM_READONLY;
1240  SourceLocation getLocEnd() const LLVM_READONLY;
1241
1242  static bool classof(const Stmt *T) {
1243    return T->getStmtClass() == CXXFunctionalCastExprClass;
1244  }
1245};
1246
1247/// @brief Represents a C++ functional cast expression that builds a
1248/// temporary object.
1249///
1250/// This expression type represents a C++ "functional" cast
1251/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1252/// constructor to build a temporary object. With N == 1 arguments the
1253/// functional cast expression will be represented by CXXFunctionalCastExpr.
1254/// Example:
1255/// \code
1256/// struct X { X(int, float); }
1257///
1258/// X create_X() {
1259///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1260/// };
1261/// \endcode
1262class CXXTemporaryObjectExpr : public CXXConstructExpr {
1263  TypeSourceInfo *Type;
1264
1265public:
1266  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
1267                         TypeSourceInfo *Type,
1268                         ArrayRef<Expr *> Args,
1269                         SourceRange parenRange,
1270                         bool HadMultipleCandidates,
1271                         bool ListInitialization,
1272                         bool ZeroInitialization);
1273  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1274    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1275
1276  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1277
1278  SourceLocation getLocStart() const LLVM_READONLY;
1279  SourceLocation getLocEnd() const LLVM_READONLY;
1280
1281  static bool classof(const Stmt *T) {
1282    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1283  }
1284
1285  friend class ASTStmtReader;
1286};
1287
1288/// \brief A C++ lambda expression, which produces a function object
1289/// (of unspecified type) that can be invoked later.
1290///
1291/// Example:
1292/// \code
1293/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1294///   values.erase(std::remove_if(values.begin(), values.end(),
1295///                               [=](double value) { return value > cutoff; });
1296/// }
1297/// \endcode
1298///
1299/// C++11 lambda expressions can capture local variables, either by copying
1300/// the values of those local variables at the time the function
1301/// object is constructed (not when it is called!) or by holding a
1302/// reference to the local variable. These captures can occur either
1303/// implicitly or can be written explicitly between the square
1304/// brackets ([...]) that start the lambda expression.
1305///
1306/// C++1y introduces a new form of "capture" called an init-capture that
1307/// includes an initializing expression (rather than capturing a variable),
1308/// and which can never occur implicitly.
1309class LambdaExpr : public Expr {
1310  enum {
1311    /// \brief Flag used by the Capture class to indicate that the given
1312    /// capture was implicit.
1313    Capture_Implicit = 0x01,
1314
1315    /// \brief Flag used by the Capture class to indicate that the
1316    /// given capture was by-copy.
1317    ///
1318    /// This includes the case of a non-reference init-capture.
1319    Capture_ByCopy = 0x02
1320  };
1321
1322  /// \brief The source range that covers the lambda introducer ([...]).
1323  SourceRange IntroducerRange;
1324
1325  /// \brief The source location of this lambda's capture-default ('=' or '&').
1326  SourceLocation CaptureDefaultLoc;
1327
1328  /// \brief The number of captures.
1329  unsigned NumCaptures : 16;
1330
1331  /// \brief The default capture kind, which is a value of type
1332  /// LambdaCaptureDefault.
1333  unsigned CaptureDefault : 2;
1334
1335  /// \brief Whether this lambda had an explicit parameter list vs. an
1336  /// implicit (and empty) parameter list.
1337  unsigned ExplicitParams : 1;
1338
1339  /// \brief Whether this lambda had the result type explicitly specified.
1340  unsigned ExplicitResultType : 1;
1341
1342  /// \brief Whether there are any array index variables stored at the end of
1343  /// this lambda expression.
1344  unsigned HasArrayIndexVars : 1;
1345
1346  /// \brief The location of the closing brace ('}') that completes
1347  /// the lambda.
1348  ///
1349  /// The location of the brace is also available by looking up the
1350  /// function call operator in the lambda class. However, it is
1351  /// stored here to improve the performance of getSourceRange(), and
1352  /// to avoid having to deserialize the function call operator from a
1353  /// module file just to determine the source range.
1354  SourceLocation ClosingBrace;
1355
1356  // Note: The capture initializers are stored directly after the lambda
1357  // expression, along with the index variables used to initialize by-copy
1358  // array captures.
1359
1360public:
1361  /// \brief Describes the capture of a variable or of \c this, or of a
1362  /// C++1y init-capture.
1363  class Capture {
1364    llvm::PointerIntPair<Decl *, 2> DeclAndBits;
1365    SourceLocation Loc;
1366    SourceLocation EllipsisLoc;
1367
1368    friend class ASTStmtReader;
1369    friend class ASTStmtWriter;
1370
1371  public:
1372    /// \brief Create a new capture of a variable or of \c this.
1373    ///
1374    /// \param Loc The source location associated with this capture.
1375    ///
1376    /// \param Kind The kind of capture (this, byref, bycopy), which must
1377    /// not be init-capture.
1378    ///
1379    /// \param Implicit Whether the capture was implicit or explicit.
1380    ///
1381    /// \param Var The local variable being captured, or null if capturing
1382    /// \c this.
1383    ///
1384    /// \param EllipsisLoc The location of the ellipsis (...) for a
1385    /// capture that is a pack expansion, or an invalid source
1386    /// location to indicate that this is not a pack expansion.
1387    Capture(SourceLocation Loc, bool Implicit,
1388            LambdaCaptureKind Kind, VarDecl *Var = 0,
1389            SourceLocation EllipsisLoc = SourceLocation());
1390
1391    /// \brief Create a new init-capture.
1392    Capture(FieldDecl *Field);
1393
1394    /// \brief Determine the kind of capture.
1395    LambdaCaptureKind getCaptureKind() const;
1396
1397    /// \brief Determine whether this capture handles the C++ \c this
1398    /// pointer.
1399    bool capturesThis() const { return DeclAndBits.getPointer() == 0; }
1400
1401    /// \brief Determine whether this capture handles a variable.
1402    bool capturesVariable() const {
1403      return dyn_cast_or_null<VarDecl>(DeclAndBits.getPointer());
1404    }
1405
1406    /// \brief Determine whether this is an init-capture.
1407    bool isInitCapture() const { return getCaptureKind() == LCK_Init; }
1408
1409    /// \brief Retrieve the declaration of the local variable being
1410    /// captured.
1411    ///
1412    /// This operation is only valid if this capture is a variable capture
1413    /// (other than a capture of \c this).
1414    VarDecl *getCapturedVar() const {
1415      assert(capturesVariable() && "No variable available for 'this' capture");
1416      return cast<VarDecl>(DeclAndBits.getPointer());
1417    }
1418
1419    /// \brief Retrieve the field for an init-capture.
1420    ///
1421    /// This works only for an init-capture.  To retrieve the FieldDecl for
1422    /// a captured variable or for a capture of \c this, use
1423    /// LambdaExpr::getLambdaClass and CXXRecordDecl::getCaptureFields.
1424    FieldDecl *getInitCaptureField() const {
1425      assert(getCaptureKind() == LCK_Init && "no field for non-init-capture");
1426      return cast<FieldDecl>(DeclAndBits.getPointer());
1427    }
1428
1429    /// \brief Determine whether this was an implicit capture (not
1430    /// written between the square brackets introducing the lambda).
1431    bool isImplicit() const { return DeclAndBits.getInt() & Capture_Implicit; }
1432
1433    /// \brief Determine whether this was an explicit capture (written
1434    /// between the square brackets introducing the lambda).
1435    bool isExplicit() const { return !isImplicit(); }
1436
1437    /// \brief Retrieve the source location of the capture.
1438    ///
1439    /// For an explicit capture, this returns the location of the
1440    /// explicit capture in the source. For an implicit capture, this
1441    /// returns the location at which the variable or \c this was first
1442    /// used.
1443    SourceLocation getLocation() const { return Loc; }
1444
1445    /// \brief Determine whether this capture is a pack expansion,
1446    /// which captures a function parameter pack.
1447    bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1448
1449    /// \brief Retrieve the location of the ellipsis for a capture
1450    /// that is a pack expansion.
1451    SourceLocation getEllipsisLoc() const {
1452      assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1453      return EllipsisLoc;
1454    }
1455  };
1456
1457private:
1458  /// \brief Construct a lambda expression.
1459  LambdaExpr(QualType T, SourceRange IntroducerRange,
1460             LambdaCaptureDefault CaptureDefault,
1461             SourceLocation CaptureDefaultLoc,
1462             ArrayRef<Capture> Captures,
1463             bool ExplicitParams,
1464             bool ExplicitResultType,
1465             ArrayRef<Expr *> CaptureInits,
1466             ArrayRef<VarDecl *> ArrayIndexVars,
1467             ArrayRef<unsigned> ArrayIndexStarts,
1468             SourceLocation ClosingBrace,
1469             bool ContainsUnexpandedParameterPack);
1470
1471  /// \brief Construct an empty lambda expression.
1472  LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1473    : Expr(LambdaExprClass, Empty),
1474      NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1475      ExplicitResultType(false), HasArrayIndexVars(true) {
1476    getStoredStmts()[NumCaptures] = 0;
1477  }
1478
1479  Stmt **getStoredStmts() const {
1480    return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1481  }
1482
1483  /// \brief Retrieve the mapping from captures to the first array index
1484  /// variable.
1485  unsigned *getArrayIndexStarts() const {
1486    return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1487  }
1488
1489  /// \brief Retrieve the complete set of array-index variables.
1490  VarDecl **getArrayIndexVars() const {
1491    unsigned ArrayIndexSize =
1492        llvm::RoundUpToAlignment(sizeof(unsigned) * (NumCaptures + 1),
1493                                 llvm::alignOf<VarDecl*>());
1494    return reinterpret_cast<VarDecl **>(
1495        reinterpret_cast<char*>(getArrayIndexStarts()) + ArrayIndexSize);
1496  }
1497
1498public:
1499  /// \brief Construct a new lambda expression.
1500  static LambdaExpr *Create(ASTContext &C,
1501                            CXXRecordDecl *Class,
1502                            SourceRange IntroducerRange,
1503                            LambdaCaptureDefault CaptureDefault,
1504                            SourceLocation CaptureDefaultLoc,
1505                            ArrayRef<Capture> Captures,
1506                            bool ExplicitParams,
1507                            bool ExplicitResultType,
1508                            ArrayRef<Expr *> CaptureInits,
1509                            ArrayRef<VarDecl *> ArrayIndexVars,
1510                            ArrayRef<unsigned> ArrayIndexStarts,
1511                            SourceLocation ClosingBrace,
1512                            bool ContainsUnexpandedParameterPack);
1513
1514  /// \brief Construct a new lambda expression that will be deserialized from
1515  /// an external source.
1516  static LambdaExpr *CreateDeserialized(ASTContext &C, unsigned NumCaptures,
1517                                        unsigned NumArrayIndexVars);
1518
1519  /// \brief Determine the default capture kind for this lambda.
1520  LambdaCaptureDefault getCaptureDefault() const {
1521    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1522  }
1523
1524  /// \brief Retrieve the location of this lambda's capture-default, if any.
1525  SourceLocation getCaptureDefaultLoc() const {
1526    return CaptureDefaultLoc;
1527  }
1528
1529  /// \brief An iterator that walks over the captures of the lambda,
1530  /// both implicit and explicit.
1531  typedef const Capture *capture_iterator;
1532
1533  /// \brief Retrieve an iterator pointing to the first lambda capture.
1534  capture_iterator capture_begin() const;
1535
1536  /// \brief Retrieve an iterator pointing past the end of the
1537  /// sequence of lambda captures.
1538  capture_iterator capture_end() const;
1539
1540  /// \brief Determine the number of captures in this lambda.
1541  unsigned capture_size() const { return NumCaptures; }
1542
1543  /// \brief Retrieve an iterator pointing to the first explicit
1544  /// lambda capture.
1545  capture_iterator explicit_capture_begin() const;
1546
1547  /// \brief Retrieve an iterator pointing past the end of the sequence of
1548  /// explicit lambda captures.
1549  capture_iterator explicit_capture_end() const;
1550
1551  /// \brief Retrieve an iterator pointing to the first implicit
1552  /// lambda capture.
1553  capture_iterator implicit_capture_begin() const;
1554
1555  /// \brief Retrieve an iterator pointing past the end of the sequence of
1556  /// implicit lambda captures.
1557  capture_iterator implicit_capture_end() const;
1558
1559  /// \brief Iterator that walks over the capture initialization
1560  /// arguments.
1561  typedef Expr **capture_init_iterator;
1562
1563  /// \brief Retrieve the first initialization argument for this
1564  /// lambda expression (which initializes the first capture field).
1565  capture_init_iterator capture_init_begin() const {
1566    return reinterpret_cast<Expr **>(getStoredStmts());
1567  }
1568
1569  /// \brief Retrieve the iterator pointing one past the last
1570  /// initialization argument for this lambda expression.
1571  capture_init_iterator capture_init_end() const {
1572    return capture_init_begin() + NumCaptures;
1573  }
1574
1575  /// \brief Retrieve the initializer for an init-capture.
1576  Expr *getInitCaptureInit(capture_iterator Capture) {
1577    assert(Capture >= explicit_capture_begin() &&
1578           Capture <= explicit_capture_end() && Capture->isInitCapture());
1579    return capture_init_begin()[Capture - capture_begin()];
1580  }
1581  const Expr *getInitCaptureInit(capture_iterator Capture) const {
1582    return const_cast<LambdaExpr*>(this)->getInitCaptureInit(Capture);
1583  }
1584
1585  /// \brief Retrieve the set of index variables used in the capture
1586  /// initializer of an array captured by copy.
1587  ///
1588  /// \param Iter The iterator that points at the capture initializer for
1589  /// which we are extracting the corresponding index variables.
1590  ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1591
1592  /// \brief Retrieve the source range covering the lambda introducer,
1593  /// which contains the explicit capture list surrounded by square
1594  /// brackets ([...]).
1595  SourceRange getIntroducerRange() const { return IntroducerRange; }
1596
1597  /// \brief Retrieve the class that corresponds to the lambda.
1598  ///
1599  /// This is the "closure type" (C++1y [expr.prim.lambda]), and stores the
1600  /// captures in its fields and provides the various operations permitted
1601  /// on a lambda (copying, calling).
1602  CXXRecordDecl *getLambdaClass() const;
1603
1604  /// \brief Retrieve the function call operator associated with this
1605  /// lambda expression.
1606  CXXMethodDecl *getCallOperator() const;
1607
1608  /// \brief Retrieve the body of the lambda.
1609  CompoundStmt *getBody() const;
1610
1611  /// \brief Determine whether the lambda is mutable, meaning that any
1612  /// captures values can be modified.
1613  bool isMutable() const;
1614
1615  /// \brief Determine whether this lambda has an explicit parameter
1616  /// list vs. an implicit (empty) parameter list.
1617  bool hasExplicitParameters() const { return ExplicitParams; }
1618
1619  /// \brief Whether this lambda had its result type explicitly specified.
1620  bool hasExplicitResultType() const { return ExplicitResultType; }
1621
1622  static bool classof(const Stmt *T) {
1623    return T->getStmtClass() == LambdaExprClass;
1624  }
1625
1626  SourceLocation getLocStart() const LLVM_READONLY {
1627    return IntroducerRange.getBegin();
1628  }
1629  SourceLocation getLocEnd() const LLVM_READONLY { return ClosingBrace; }
1630
1631  child_range children() {
1632    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1633  }
1634
1635  friend class ASTStmtReader;
1636  friend class ASTStmtWriter;
1637};
1638
1639/// An expression "T()" which creates a value-initialized rvalue of type
1640/// T, which is a non-class type.  See (C++98 [5.2.3p2]).
1641class CXXScalarValueInitExpr : public Expr {
1642  SourceLocation RParenLoc;
1643  TypeSourceInfo *TypeInfo;
1644
1645  friend class ASTStmtReader;
1646
1647public:
1648  /// \brief Create an explicitly-written scalar-value initialization
1649  /// expression.
1650  CXXScalarValueInitExpr(QualType Type,
1651                         TypeSourceInfo *TypeInfo,
1652                         SourceLocation rParenLoc ) :
1653    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1654         false, false, Type->isInstantiationDependentType(), false),
1655    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1656
1657  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1658    : Expr(CXXScalarValueInitExprClass, Shell) { }
1659
1660  TypeSourceInfo *getTypeSourceInfo() const {
1661    return TypeInfo;
1662  }
1663
1664  SourceLocation getRParenLoc() const { return RParenLoc; }
1665
1666  SourceLocation getLocStart() const LLVM_READONLY;
1667  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1668
1669  static bool classof(const Stmt *T) {
1670    return T->getStmtClass() == CXXScalarValueInitExprClass;
1671  }
1672
1673  // Iterators
1674  child_range children() { return child_range(); }
1675};
1676
1677/// \brief Represents a new-expression for memory allocation and constructor
1678/// calls, e.g: "new CXXNewExpr(foo)".
1679class CXXNewExpr : public Expr {
1680  /// Contains an optional array size expression, an optional initialization
1681  /// expression, and any number of optional placement arguments, in that order.
1682  Stmt **SubExprs;
1683  /// \brief Points to the allocation function used.
1684  FunctionDecl *OperatorNew;
1685  /// \brief Points to the deallocation function used in case of error. May be
1686  /// null.
1687  FunctionDecl *OperatorDelete;
1688
1689  /// \brief The allocated type-source information, as written in the source.
1690  TypeSourceInfo *AllocatedTypeInfo;
1691
1692  /// \brief If the allocated type was expressed as a parenthesized type-id,
1693  /// the source range covering the parenthesized type-id.
1694  SourceRange TypeIdParens;
1695
1696  /// \brief Range of the entire new expression.
1697  SourceRange Range;
1698
1699  /// \brief Source-range of a paren-delimited initializer.
1700  SourceRange DirectInitRange;
1701
1702  /// Was the usage ::new, i.e. is the global new to be used?
1703  bool GlobalNew : 1;
1704  /// Do we allocate an array? If so, the first SubExpr is the size expression.
1705  bool Array : 1;
1706  /// If this is an array allocation, does the usual deallocation
1707  /// function for the allocated type want to know the allocated size?
1708  bool UsualArrayDeleteWantsSize : 1;
1709  /// The number of placement new arguments.
1710  unsigned NumPlacementArgs : 13;
1711  /// What kind of initializer do we have? Could be none, parens, or braces.
1712  /// In storage, we distinguish between "none, and no initializer expr", and
1713  /// "none, but an implicit initializer expr".
1714  unsigned StoredInitializationStyle : 2;
1715
1716  friend class ASTStmtReader;
1717  friend class ASTStmtWriter;
1718public:
1719  enum InitializationStyle {
1720    NoInit,   ///< New-expression has no initializer as written.
1721    CallInit, ///< New-expression has a C++98 paren-delimited initializer.
1722    ListInit  ///< New-expression has a C++11 list-initializer.
1723  };
1724
1725  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1726             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1727             ArrayRef<Expr*> placementArgs,
1728             SourceRange typeIdParens, Expr *arraySize,
1729             InitializationStyle initializationStyle, Expr *initializer,
1730             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1731             SourceRange Range, SourceRange directInitRange);
1732  explicit CXXNewExpr(EmptyShell Shell)
1733    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1734
1735  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1736                         bool hasInitializer);
1737
1738  QualType getAllocatedType() const {
1739    assert(getType()->isPointerType());
1740    return getType()->getAs<PointerType>()->getPointeeType();
1741  }
1742
1743  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1744    return AllocatedTypeInfo;
1745  }
1746
1747  /// \brief True if the allocation result needs to be null-checked.
1748  ///
1749  /// C++11 [expr.new]p13:
1750  ///   If the allocation function returns null, initialization shall
1751  ///   not be done, the deallocation function shall not be called,
1752  ///   and the value of the new-expression shall be null.
1753  ///
1754  /// An allocation function is not allowed to return null unless it
1755  /// has a non-throwing exception-specification.  The '03 rule is
1756  /// identical except that the definition of a non-throwing
1757  /// exception specification is just "is it throw()?".
1758  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1759
1760  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1761  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1762  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1763  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1764
1765  bool isArray() const { return Array; }
1766  Expr *getArraySize() {
1767    return Array ? cast<Expr>(SubExprs[0]) : 0;
1768  }
1769  const Expr *getArraySize() const {
1770    return Array ? cast<Expr>(SubExprs[0]) : 0;
1771  }
1772
1773  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1774  Expr **getPlacementArgs() {
1775    return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
1776  }
1777
1778  Expr *getPlacementArg(unsigned i) {
1779    assert(i < NumPlacementArgs && "Index out of range");
1780    return getPlacementArgs()[i];
1781  }
1782  const Expr *getPlacementArg(unsigned i) const {
1783    assert(i < NumPlacementArgs && "Index out of range");
1784    return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
1785  }
1786
1787  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1788  SourceRange getTypeIdParens() const { return TypeIdParens; }
1789
1790  bool isGlobalNew() const { return GlobalNew; }
1791
1792  /// \brief Whether this new-expression has any initializer at all.
1793  bool hasInitializer() const { return StoredInitializationStyle > 0; }
1794
1795  /// \brief The kind of initializer this new-expression has.
1796  InitializationStyle getInitializationStyle() const {
1797    if (StoredInitializationStyle == 0)
1798      return NoInit;
1799    return static_cast<InitializationStyle>(StoredInitializationStyle-1);
1800  }
1801
1802  /// \brief The initializer of this new-expression.
1803  Expr *getInitializer() {
1804    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1805  }
1806  const Expr *getInitializer() const {
1807    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1808  }
1809
1810  /// \brief Returns the CXXConstructExpr from this new-expression, or null.
1811  const CXXConstructExpr* getConstructExpr() const {
1812    return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
1813  }
1814
1815  /// Answers whether the usual array deallocation function for the
1816  /// allocated type expects the size of the allocation as a
1817  /// parameter.
1818  bool doesUsualArrayDeleteWantSize() const {
1819    return UsualArrayDeleteWantsSize;
1820  }
1821
1822  typedef ExprIterator arg_iterator;
1823  typedef ConstExprIterator const_arg_iterator;
1824
1825  arg_iterator placement_arg_begin() {
1826    return SubExprs + Array + hasInitializer();
1827  }
1828  arg_iterator placement_arg_end() {
1829    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1830  }
1831  const_arg_iterator placement_arg_begin() const {
1832    return SubExprs + Array + hasInitializer();
1833  }
1834  const_arg_iterator placement_arg_end() const {
1835    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1836  }
1837
1838  typedef Stmt **raw_arg_iterator;
1839  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1840  raw_arg_iterator raw_arg_end() {
1841    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1842  }
1843  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1844  const_arg_iterator raw_arg_end() const {
1845    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1846  }
1847
1848  SourceLocation getStartLoc() const { return Range.getBegin(); }
1849  SourceLocation getEndLoc() const { return Range.getEnd(); }
1850
1851  SourceRange getDirectInitRange() const { return DirectInitRange; }
1852
1853  SourceRange getSourceRange() const LLVM_READONLY {
1854    return Range;
1855  }
1856  SourceLocation getLocStart() const LLVM_READONLY { return getStartLoc(); }
1857  SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
1858
1859  static bool classof(const Stmt *T) {
1860    return T->getStmtClass() == CXXNewExprClass;
1861  }
1862
1863  // Iterators
1864  child_range children() {
1865    return child_range(raw_arg_begin(), raw_arg_end());
1866  }
1867};
1868
1869/// \brief Represents a \c delete expression for memory deallocation and
1870/// destructor calls, e.g. "delete[] pArray".
1871class CXXDeleteExpr : public Expr {
1872  /// Points to the operator delete overload that is used. Could be a member.
1873  FunctionDecl *OperatorDelete;
1874  /// The pointer expression to be deleted.
1875  Stmt *Argument;
1876  /// Location of the expression.
1877  SourceLocation Loc;
1878  /// Is this a forced global delete, i.e. "::delete"?
1879  bool GlobalDelete : 1;
1880  /// Is this the array form of delete, i.e. "delete[]"?
1881  bool ArrayForm : 1;
1882  /// ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1883  /// to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1884  /// will be true).
1885  bool ArrayFormAsWritten : 1;
1886  /// Does the usual deallocation function for the element type require
1887  /// a size_t argument?
1888  bool UsualArrayDeleteWantsSize : 1;
1889public:
1890  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1891                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1892                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1893    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1894           arg->isInstantiationDependent(),
1895           arg->containsUnexpandedParameterPack()),
1896      OperatorDelete(operatorDelete), Argument(arg), Loc(loc),
1897      GlobalDelete(globalDelete),
1898      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1899      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) { }
1900  explicit CXXDeleteExpr(EmptyShell Shell)
1901    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1902
1903  bool isGlobalDelete() const { return GlobalDelete; }
1904  bool isArrayForm() const { return ArrayForm; }
1905  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1906
1907  /// Answers whether the usual array deallocation function for the
1908  /// allocated type expects the size of the allocation as a
1909  /// parameter.  This can be true even if the actual deallocation
1910  /// function that we're using doesn't want a size.
1911  bool doesUsualArrayDeleteWantSize() const {
1912    return UsualArrayDeleteWantsSize;
1913  }
1914
1915  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1916
1917  Expr *getArgument() { return cast<Expr>(Argument); }
1918  const Expr *getArgument() const { return cast<Expr>(Argument); }
1919
1920  /// \brief Retrieve the type being destroyed.
1921  ///
1922  /// If the type being destroyed is a dependent type which may or may not
1923  /// be a pointer, return an invalid type.
1924  QualType getDestroyedType() const;
1925
1926  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1927  SourceLocation getLocEnd() const LLVM_READONLY {return Argument->getLocEnd();}
1928
1929  static bool classof(const Stmt *T) {
1930    return T->getStmtClass() == CXXDeleteExprClass;
1931  }
1932
1933  // Iterators
1934  child_range children() { return child_range(&Argument, &Argument+1); }
1935
1936  friend class ASTStmtReader;
1937};
1938
1939/// \brief Stores the type being destroyed by a pseudo-destructor expression.
1940class PseudoDestructorTypeStorage {
1941  /// \brief Either the type source information or the name of the type, if
1942  /// it couldn't be resolved due to type-dependence.
1943  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1944
1945  /// \brief The starting source location of the pseudo-destructor type.
1946  SourceLocation Location;
1947
1948public:
1949  PseudoDestructorTypeStorage() { }
1950
1951  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1952    : Type(II), Location(Loc) { }
1953
1954  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1955
1956  TypeSourceInfo *getTypeSourceInfo() const {
1957    return Type.dyn_cast<TypeSourceInfo *>();
1958  }
1959
1960  IdentifierInfo *getIdentifier() const {
1961    return Type.dyn_cast<IdentifierInfo *>();
1962  }
1963
1964  SourceLocation getLocation() const { return Location; }
1965};
1966
1967/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1968///
1969/// A pseudo-destructor is an expression that looks like a member access to a
1970/// destructor of a scalar type, except that scalar types don't have
1971/// destructors. For example:
1972///
1973/// \code
1974/// typedef int T;
1975/// void f(int *p) {
1976///   p->T::~T();
1977/// }
1978/// \endcode
1979///
1980/// Pseudo-destructors typically occur when instantiating templates such as:
1981///
1982/// \code
1983/// template<typename T>
1984/// void destroy(T* ptr) {
1985///   ptr->T::~T();
1986/// }
1987/// \endcode
1988///
1989/// for scalar types. A pseudo-destructor expression has no run-time semantics
1990/// beyond evaluating the base expression.
1991class CXXPseudoDestructorExpr : public Expr {
1992  /// \brief The base expression (that is being destroyed).
1993  Stmt *Base;
1994
1995  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1996  /// period ('.').
1997  bool IsArrow : 1;
1998
1999  /// \brief The location of the '.' or '->' operator.
2000  SourceLocation OperatorLoc;
2001
2002  /// \brief The nested-name-specifier that follows the operator, if present.
2003  NestedNameSpecifierLoc QualifierLoc;
2004
2005  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
2006  /// expression.
2007  TypeSourceInfo *ScopeType;
2008
2009  /// \brief The location of the '::' in a qualified pseudo-destructor
2010  /// expression.
2011  SourceLocation ColonColonLoc;
2012
2013  /// \brief The location of the '~'.
2014  SourceLocation TildeLoc;
2015
2016  /// \brief The type being destroyed, or its name if we were unable to
2017  /// resolve the name.
2018  PseudoDestructorTypeStorage DestroyedType;
2019
2020  friend class ASTStmtReader;
2021
2022public:
2023  CXXPseudoDestructorExpr(ASTContext &Context,
2024                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
2025                          NestedNameSpecifierLoc QualifierLoc,
2026                          TypeSourceInfo *ScopeType,
2027                          SourceLocation ColonColonLoc,
2028                          SourceLocation TildeLoc,
2029                          PseudoDestructorTypeStorage DestroyedType);
2030
2031  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
2032    : Expr(CXXPseudoDestructorExprClass, Shell),
2033      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
2034
2035  Expr *getBase() const { return cast<Expr>(Base); }
2036
2037  /// \brief Determines whether this member expression actually had
2038  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2039  /// x->Base::foo.
2040  bool hasQualifier() const { return QualifierLoc.hasQualifier(); }
2041
2042  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
2043  /// with source-location information.
2044  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2045
2046  /// \brief If the member name was qualified, retrieves the
2047  /// nested-name-specifier that precedes the member name. Otherwise, returns
2048  /// null.
2049  NestedNameSpecifier *getQualifier() const {
2050    return QualifierLoc.getNestedNameSpecifier();
2051  }
2052
2053  /// \brief Determine whether this pseudo-destructor expression was written
2054  /// using an '->' (otherwise, it used a '.').
2055  bool isArrow() const { return IsArrow; }
2056
2057  /// \brief Retrieve the location of the '.' or '->' operator.
2058  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2059
2060  /// \brief Retrieve the scope type in a qualified pseudo-destructor
2061  /// expression.
2062  ///
2063  /// Pseudo-destructor expressions can have extra qualification within them
2064  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
2065  /// Here, if the object type of the expression is (or may be) a scalar type,
2066  /// \p T may also be a scalar type and, therefore, cannot be part of a
2067  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
2068  /// destructor expression.
2069  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
2070
2071  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
2072  /// expression.
2073  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
2074
2075  /// \brief Retrieve the location of the '~'.
2076  SourceLocation getTildeLoc() const { return TildeLoc; }
2077
2078  /// \brief Retrieve the source location information for the type
2079  /// being destroyed.
2080  ///
2081  /// This type-source information is available for non-dependent
2082  /// pseudo-destructor expressions and some dependent pseudo-destructor
2083  /// expressions. Returns null if we only have the identifier for a
2084  /// dependent pseudo-destructor expression.
2085  TypeSourceInfo *getDestroyedTypeInfo() const {
2086    return DestroyedType.getTypeSourceInfo();
2087  }
2088
2089  /// \brief In a dependent pseudo-destructor expression for which we do not
2090  /// have full type information on the destroyed type, provides the name
2091  /// of the destroyed type.
2092  IdentifierInfo *getDestroyedTypeIdentifier() const {
2093    return DestroyedType.getIdentifier();
2094  }
2095
2096  /// \brief Retrieve the type being destroyed.
2097  QualType getDestroyedType() const;
2098
2099  /// \brief Retrieve the starting location of the type being destroyed.
2100  SourceLocation getDestroyedTypeLoc() const {
2101    return DestroyedType.getLocation();
2102  }
2103
2104  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
2105  /// expression.
2106  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
2107    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
2108  }
2109
2110  /// \brief Set the destroyed type.
2111  void setDestroyedType(TypeSourceInfo *Info) {
2112    DestroyedType = PseudoDestructorTypeStorage(Info);
2113  }
2114
2115  SourceLocation getLocStart() const LLVM_READONLY {return Base->getLocStart();}
2116  SourceLocation getLocEnd() const LLVM_READONLY;
2117
2118  static bool classof(const Stmt *T) {
2119    return T->getStmtClass() == CXXPseudoDestructorExprClass;
2120  }
2121
2122  // Iterators
2123  child_range children() { return child_range(&Base, &Base + 1); }
2124};
2125
2126/// \brief Represents a GCC or MS unary type trait, as used in the
2127/// implementation of TR1/C++11 type trait templates.
2128///
2129/// Example:
2130/// \code
2131///   __is_pod(int) == true
2132///   __is_enum(std::string) == false
2133/// \endcode
2134class UnaryTypeTraitExpr : public Expr {
2135  /// \brief The trait. A UnaryTypeTrait enum in MSVC compatible unsigned.
2136  unsigned UTT : 31;
2137  /// The value of the type trait. Unspecified if dependent.
2138  bool Value : 1;
2139
2140  /// \brief The location of the type trait keyword.
2141  SourceLocation Loc;
2142
2143  /// \brief The location of the closing paren.
2144  SourceLocation RParen;
2145
2146  /// \brief The type being queried.
2147  TypeSourceInfo *QueriedType;
2148
2149public:
2150  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
2151                     TypeSourceInfo *queried, bool value,
2152                     SourceLocation rparen, QualType ty)
2153    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2154           false,  queried->getType()->isDependentType(),
2155           queried->getType()->isInstantiationDependentType(),
2156           queried->getType()->containsUnexpandedParameterPack()),
2157      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
2158
2159  explicit UnaryTypeTraitExpr(EmptyShell Empty)
2160    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
2161      QueriedType() { }
2162
2163  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2164  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2165
2166  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
2167
2168  QualType getQueriedType() const { return QueriedType->getType(); }
2169
2170  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2171
2172  bool getValue() const { return Value; }
2173
2174  static bool classof(const Stmt *T) {
2175    return T->getStmtClass() == UnaryTypeTraitExprClass;
2176  }
2177
2178  // Iterators
2179  child_range children() { return child_range(); }
2180
2181  friend class ASTStmtReader;
2182};
2183
2184/// \brief Represents a GCC or MS binary type trait, as used in the
2185/// implementation of TR1/C++11 type trait templates.
2186///
2187/// Example:
2188/// \code
2189///   __is_base_of(Base, Derived) == true
2190/// \endcode
2191class BinaryTypeTraitExpr : public Expr {
2192  /// \brief The trait. A BinaryTypeTrait enum in MSVC compatible unsigned.
2193  unsigned BTT : 8;
2194
2195  /// The value of the type trait. Unspecified if dependent.
2196  bool Value : 1;
2197
2198  /// \brief The location of the type trait keyword.
2199  SourceLocation Loc;
2200
2201  /// \brief The location of the closing paren.
2202  SourceLocation RParen;
2203
2204  /// \brief The lhs type being queried.
2205  TypeSourceInfo *LhsType;
2206
2207  /// \brief The rhs type being queried.
2208  TypeSourceInfo *RhsType;
2209
2210public:
2211  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
2212                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
2213                     bool value, SourceLocation rparen, QualType ty)
2214    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
2215           lhsType->getType()->isDependentType() ||
2216           rhsType->getType()->isDependentType(),
2217           (lhsType->getType()->isInstantiationDependentType() ||
2218            rhsType->getType()->isInstantiationDependentType()),
2219           (lhsType->getType()->containsUnexpandedParameterPack() ||
2220            rhsType->getType()->containsUnexpandedParameterPack())),
2221      BTT(btt), Value(value), Loc(loc), RParen(rparen),
2222      LhsType(lhsType), RhsType(rhsType) { }
2223
2224
2225  explicit BinaryTypeTraitExpr(EmptyShell Empty)
2226    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
2227      LhsType(), RhsType() { }
2228
2229  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2230  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2231
2232  BinaryTypeTrait getTrait() const {
2233    return static_cast<BinaryTypeTrait>(BTT);
2234  }
2235
2236  QualType getLhsType() const { return LhsType->getType(); }
2237  QualType getRhsType() const { return RhsType->getType(); }
2238
2239  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
2240  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
2241
2242  bool getValue() const { assert(!isTypeDependent()); return Value; }
2243
2244  static bool classof(const Stmt *T) {
2245    return T->getStmtClass() == BinaryTypeTraitExprClass;
2246  }
2247
2248  // Iterators
2249  child_range children() { return child_range(); }
2250
2251  friend class ASTStmtReader;
2252};
2253
2254/// \brief A type trait used in the implementation of various C++11 and
2255/// Library TR1 trait templates.
2256///
2257/// \code
2258///   __is_trivially_constructible(vector<int>, int*, int*)
2259/// \endcode
2260class TypeTraitExpr : public Expr {
2261  /// \brief The location of the type trait keyword.
2262  SourceLocation Loc;
2263
2264  /// \brief  The location of the closing parenthesis.
2265  SourceLocation RParenLoc;
2266
2267  // Note: The TypeSourceInfos for the arguments are allocated after the
2268  // TypeTraitExpr.
2269
2270  TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2271                ArrayRef<TypeSourceInfo *> Args,
2272                SourceLocation RParenLoc,
2273                bool Value);
2274
2275  TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) { }
2276
2277  /// \brief Retrieve the argument types.
2278  TypeSourceInfo **getTypeSourceInfos() {
2279    return reinterpret_cast<TypeSourceInfo **>(this+1);
2280  }
2281
2282  /// \brief Retrieve the argument types.
2283  TypeSourceInfo * const *getTypeSourceInfos() const {
2284    return reinterpret_cast<TypeSourceInfo * const*>(this+1);
2285  }
2286
2287public:
2288  /// \brief Create a new type trait expression.
2289  static TypeTraitExpr *Create(ASTContext &C, QualType T, SourceLocation Loc,
2290                               TypeTrait Kind,
2291                               ArrayRef<TypeSourceInfo *> Args,
2292                               SourceLocation RParenLoc,
2293                               bool Value);
2294
2295  static TypeTraitExpr *CreateDeserialized(ASTContext &C, unsigned NumArgs);
2296
2297  /// \brief Determine which type trait this expression uses.
2298  TypeTrait getTrait() const {
2299    return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2300  }
2301
2302  bool getValue() const {
2303    assert(!isValueDependent());
2304    return TypeTraitExprBits.Value;
2305  }
2306
2307  /// \brief Determine the number of arguments to this type trait.
2308  unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2309
2310  /// \brief Retrieve the Ith argument.
2311  TypeSourceInfo *getArg(unsigned I) const {
2312    assert(I < getNumArgs() && "Argument out-of-range");
2313    return getArgs()[I];
2314  }
2315
2316  /// \brief Retrieve the argument types.
2317  ArrayRef<TypeSourceInfo *> getArgs() const {
2318    return ArrayRef<TypeSourceInfo *>(getTypeSourceInfos(), getNumArgs());
2319  }
2320
2321  typedef TypeSourceInfo **arg_iterator;
2322  arg_iterator arg_begin() {
2323    return getTypeSourceInfos();
2324  }
2325  arg_iterator arg_end() {
2326    return getTypeSourceInfos() + getNumArgs();
2327  }
2328
2329  typedef TypeSourceInfo const * const *arg_const_iterator;
2330  arg_const_iterator arg_begin() const { return getTypeSourceInfos(); }
2331  arg_const_iterator arg_end() const {
2332    return getTypeSourceInfos() + getNumArgs();
2333  }
2334
2335  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2336  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2337
2338  static bool classof(const Stmt *T) {
2339    return T->getStmtClass() == TypeTraitExprClass;
2340  }
2341
2342  // Iterators
2343  child_range children() { return child_range(); }
2344
2345  friend class ASTStmtReader;
2346  friend class ASTStmtWriter;
2347
2348};
2349
2350/// \brief An Embarcadero array type trait, as used in the implementation of
2351/// __array_rank and __array_extent.
2352///
2353/// Example:
2354/// \code
2355///   __array_rank(int[10][20]) == 2
2356///   __array_extent(int, 1)    == 20
2357/// \endcode
2358class ArrayTypeTraitExpr : public Expr {
2359  virtual void anchor();
2360
2361  /// \brief The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2362  unsigned ATT : 2;
2363
2364  /// \brief The value of the type trait. Unspecified if dependent.
2365  uint64_t Value;
2366
2367  /// \brief The array dimension being queried, or -1 if not used.
2368  Expr *Dimension;
2369
2370  /// \brief The location of the type trait keyword.
2371  SourceLocation Loc;
2372
2373  /// \brief The location of the closing paren.
2374  SourceLocation RParen;
2375
2376  /// \brief The type being queried.
2377  TypeSourceInfo *QueriedType;
2378
2379public:
2380  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2381                     TypeSourceInfo *queried, uint64_t value,
2382                     Expr *dimension, SourceLocation rparen, QualType ty)
2383    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2384           false, queried->getType()->isDependentType(),
2385           (queried->getType()->isInstantiationDependentType() ||
2386            (dimension && dimension->isInstantiationDependent())),
2387           queried->getType()->containsUnexpandedParameterPack()),
2388      ATT(att), Value(value), Dimension(dimension),
2389      Loc(loc), RParen(rparen), QueriedType(queried) { }
2390
2391
2392  explicit ArrayTypeTraitExpr(EmptyShell Empty)
2393    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
2394      QueriedType() { }
2395
2396  virtual ~ArrayTypeTraitExpr() { }
2397
2398  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2399  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2400
2401  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2402
2403  QualType getQueriedType() const { return QueriedType->getType(); }
2404
2405  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2406
2407  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
2408
2409  Expr *getDimensionExpression() const { return Dimension; }
2410
2411  static bool classof(const Stmt *T) {
2412    return T->getStmtClass() == ArrayTypeTraitExprClass;
2413  }
2414
2415  // Iterators
2416  child_range children() { return child_range(); }
2417
2418  friend class ASTStmtReader;
2419};
2420
2421/// \brief An expression trait intrinsic.
2422///
2423/// Example:
2424/// \code
2425///   __is_lvalue_expr(std::cout) == true
2426///   __is_lvalue_expr(1) == false
2427/// \endcode
2428class ExpressionTraitExpr : public Expr {
2429  /// \brief The trait. A ExpressionTrait enum in MSVC compatible unsigned.
2430  unsigned ET : 31;
2431  /// \brief The value of the type trait. Unspecified if dependent.
2432  bool Value : 1;
2433
2434  /// \brief The location of the type trait keyword.
2435  SourceLocation Loc;
2436
2437  /// \brief The location of the closing paren.
2438  SourceLocation RParen;
2439
2440  /// \brief The expression being queried.
2441  Expr* QueriedExpression;
2442public:
2443  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2444                     Expr *queried, bool value,
2445                     SourceLocation rparen, QualType resultType)
2446    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2447           false, // Not type-dependent
2448           // Value-dependent if the argument is type-dependent.
2449           queried->isTypeDependent(),
2450           queried->isInstantiationDependent(),
2451           queried->containsUnexpandedParameterPack()),
2452      ET(et), Value(value), Loc(loc), RParen(rparen),
2453      QueriedExpression(queried) { }
2454
2455  explicit ExpressionTraitExpr(EmptyShell Empty)
2456    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2457      QueriedExpression() { }
2458
2459  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2460  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2461
2462  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2463
2464  Expr *getQueriedExpression() const { return QueriedExpression; }
2465
2466  bool getValue() const { return Value; }
2467
2468  static bool classof(const Stmt *T) {
2469    return T->getStmtClass() == ExpressionTraitExprClass;
2470  }
2471
2472  // Iterators
2473  child_range children() { return child_range(); }
2474
2475  friend class ASTStmtReader;
2476};
2477
2478
2479/// \brief A reference to an overloaded function set, either an
2480/// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
2481class OverloadExpr : public Expr {
2482  /// \brief The common name of these declarations.
2483  DeclarationNameInfo NameInfo;
2484
2485  /// \brief The nested-name-specifier that qualifies the name, if any.
2486  NestedNameSpecifierLoc QualifierLoc;
2487
2488  /// The results.  These are undesugared, which is to say, they may
2489  /// include UsingShadowDecls.  Access is relative to the naming
2490  /// class.
2491  // FIXME: Allocate this data after the OverloadExpr subclass.
2492  DeclAccessPair *Results;
2493  unsigned NumResults;
2494
2495protected:
2496  /// \brief Whether the name includes info for explicit template
2497  /// keyword and arguments.
2498  bool HasTemplateKWAndArgsInfo;
2499
2500  /// \brief Return the optional template keyword and arguments info.
2501  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2502
2503  /// \brief Return the optional template keyword and arguments info.
2504  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2505    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2506  }
2507
2508  OverloadExpr(StmtClass K, ASTContext &C,
2509               NestedNameSpecifierLoc QualifierLoc,
2510               SourceLocation TemplateKWLoc,
2511               const DeclarationNameInfo &NameInfo,
2512               const TemplateArgumentListInfo *TemplateArgs,
2513               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2514               bool KnownDependent,
2515               bool KnownInstantiationDependent,
2516               bool KnownContainsUnexpandedParameterPack);
2517
2518  OverloadExpr(StmtClass K, EmptyShell Empty)
2519    : Expr(K, Empty), QualifierLoc(), Results(0), NumResults(0),
2520      HasTemplateKWAndArgsInfo(false) { }
2521
2522  void initializeResults(ASTContext &C,
2523                         UnresolvedSetIterator Begin,
2524                         UnresolvedSetIterator End);
2525
2526public:
2527  struct FindResult {
2528    OverloadExpr *Expression;
2529    bool IsAddressOfOperand;
2530    bool HasFormOfMemberPointer;
2531  };
2532
2533  /// \brief Finds the overloaded expression in the given expression \p E of
2534  /// OverloadTy.
2535  ///
2536  /// \return the expression (which must be there) and true if it has
2537  /// the particular form of a member pointer expression
2538  static FindResult find(Expr *E) {
2539    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2540
2541    FindResult Result;
2542
2543    E = E->IgnoreParens();
2544    if (isa<UnaryOperator>(E)) {
2545      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2546      E = cast<UnaryOperator>(E)->getSubExpr();
2547      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2548
2549      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2550      Result.IsAddressOfOperand = true;
2551      Result.Expression = Ovl;
2552    } else {
2553      Result.HasFormOfMemberPointer = false;
2554      Result.IsAddressOfOperand = false;
2555      Result.Expression = cast<OverloadExpr>(E);
2556    }
2557
2558    return Result;
2559  }
2560
2561  /// \brief Gets the naming class of this lookup, if any.
2562  CXXRecordDecl *getNamingClass() const;
2563
2564  typedef UnresolvedSetImpl::iterator decls_iterator;
2565  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2566  decls_iterator decls_end() const {
2567    return UnresolvedSetIterator(Results + NumResults);
2568  }
2569
2570  /// \brief Gets the number of declarations in the unresolved set.
2571  unsigned getNumDecls() const { return NumResults; }
2572
2573  /// \brief Gets the full name info.
2574  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2575
2576  /// \brief Gets the name looked up.
2577  DeclarationName getName() const { return NameInfo.getName(); }
2578
2579  /// \brief Gets the location of the name.
2580  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2581
2582  /// \brief Fetches the nested-name qualifier, if one was given.
2583  NestedNameSpecifier *getQualifier() const {
2584    return QualifierLoc.getNestedNameSpecifier();
2585  }
2586
2587  /// \brief Fetches the nested-name qualifier with source-location
2588  /// information, if one was given.
2589  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2590
2591  /// \brief Retrieve the location of the template keyword preceding
2592  /// this name, if any.
2593  SourceLocation getTemplateKeywordLoc() const {
2594    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2595    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2596  }
2597
2598  /// \brief Retrieve the location of the left angle bracket starting the
2599  /// explicit template argument list following the name, if any.
2600  SourceLocation getLAngleLoc() const {
2601    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2602    return getTemplateKWAndArgsInfo()->LAngleLoc;
2603  }
2604
2605  /// \brief Retrieve the location of the right angle bracket ending the
2606  /// explicit template argument list following the name, if any.
2607  SourceLocation getRAngleLoc() const {
2608    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2609    return getTemplateKWAndArgsInfo()->RAngleLoc;
2610  }
2611
2612  /// \brief Determines whether the name was preceded by the template keyword.
2613  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2614
2615  /// \brief Determines whether this expression had explicit template arguments.
2616  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2617
2618  // Note that, inconsistently with the explicit-template-argument AST
2619  // nodes, users are *forbidden* from calling these methods on objects
2620  // without explicit template arguments.
2621
2622  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2623    assert(hasExplicitTemplateArgs());
2624    return *getTemplateKWAndArgsInfo();
2625  }
2626
2627  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2628    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2629  }
2630
2631  TemplateArgumentLoc const *getTemplateArgs() const {
2632    return getExplicitTemplateArgs().getTemplateArgs();
2633  }
2634
2635  unsigned getNumTemplateArgs() const {
2636    return getExplicitTemplateArgs().NumTemplateArgs;
2637  }
2638
2639  /// \brief Copies the template arguments into the given structure.
2640  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2641    getExplicitTemplateArgs().copyInto(List);
2642  }
2643
2644  /// \brief Retrieves the optional explicit template arguments.
2645  ///
2646  /// This points to the same data as getExplicitTemplateArgs(), but
2647  /// returns null if there are no explicit template arguments.
2648  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2649    if (!hasExplicitTemplateArgs()) return 0;
2650    return &getExplicitTemplateArgs();
2651  }
2652
2653  static bool classof(const Stmt *T) {
2654    return T->getStmtClass() == UnresolvedLookupExprClass ||
2655           T->getStmtClass() == UnresolvedMemberExprClass;
2656  }
2657
2658  friend class ASTStmtReader;
2659  friend class ASTStmtWriter;
2660};
2661
2662/// \brief A reference to a name which we were able to look up during
2663/// parsing but could not resolve to a specific declaration.
2664///
2665/// This arises in several ways:
2666///   * we might be waiting for argument-dependent lookup;
2667///   * the name might resolve to an overloaded function;
2668/// and eventually:
2669///   * the lookup might have included a function template.
2670///
2671/// These never include UnresolvedUsingValueDecls, which are always class
2672/// members and therefore appear only in UnresolvedMemberLookupExprs.
2673class UnresolvedLookupExpr : public OverloadExpr {
2674  /// True if these lookup results should be extended by
2675  /// argument-dependent lookup if this is the operand of a function
2676  /// call.
2677  bool RequiresADL;
2678
2679  /// True if these lookup results are overloaded.  This is pretty
2680  /// trivially rederivable if we urgently need to kill this field.
2681  bool Overloaded;
2682
2683  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2684  /// any.  This can generally be recalculated from the context chain,
2685  /// but that can be fairly expensive for unqualified lookups.  If we
2686  /// want to improve memory use here, this could go in a union
2687  /// against the qualified-lookup bits.
2688  CXXRecordDecl *NamingClass;
2689
2690  UnresolvedLookupExpr(ASTContext &C,
2691                       CXXRecordDecl *NamingClass,
2692                       NestedNameSpecifierLoc QualifierLoc,
2693                       SourceLocation TemplateKWLoc,
2694                       const DeclarationNameInfo &NameInfo,
2695                       bool RequiresADL, bool Overloaded,
2696                       const TemplateArgumentListInfo *TemplateArgs,
2697                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
2698    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2699                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2700      RequiresADL(RequiresADL),
2701      Overloaded(Overloaded), NamingClass(NamingClass)
2702  {}
2703
2704  UnresolvedLookupExpr(EmptyShell Empty)
2705    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2706      RequiresADL(false), Overloaded(false), NamingClass(0)
2707  {}
2708
2709  friend class ASTStmtReader;
2710
2711public:
2712  static UnresolvedLookupExpr *Create(ASTContext &C,
2713                                      CXXRecordDecl *NamingClass,
2714                                      NestedNameSpecifierLoc QualifierLoc,
2715                                      const DeclarationNameInfo &NameInfo,
2716                                      bool ADL, bool Overloaded,
2717                                      UnresolvedSetIterator Begin,
2718                                      UnresolvedSetIterator End) {
2719    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2720                                       SourceLocation(), NameInfo,
2721                                       ADL, Overloaded, 0, Begin, End);
2722  }
2723
2724  static UnresolvedLookupExpr *Create(ASTContext &C,
2725                                      CXXRecordDecl *NamingClass,
2726                                      NestedNameSpecifierLoc QualifierLoc,
2727                                      SourceLocation TemplateKWLoc,
2728                                      const DeclarationNameInfo &NameInfo,
2729                                      bool ADL,
2730                                      const TemplateArgumentListInfo *Args,
2731                                      UnresolvedSetIterator Begin,
2732                                      UnresolvedSetIterator End);
2733
2734  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
2735                                           bool HasTemplateKWAndArgsInfo,
2736                                           unsigned NumTemplateArgs);
2737
2738  /// True if this declaration should be extended by
2739  /// argument-dependent lookup.
2740  bool requiresADL() const { return RequiresADL; }
2741
2742  /// True if this lookup is overloaded.
2743  bool isOverloaded() const { return Overloaded; }
2744
2745  /// Gets the 'naming class' (in the sense of C++0x
2746  /// [class.access.base]p5) of the lookup.  This is the scope
2747  /// that was looked in to find these results.
2748  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2749
2750  SourceLocation getLocStart() const LLVM_READONLY {
2751    if (NestedNameSpecifierLoc l = getQualifierLoc())
2752      return l.getBeginLoc();
2753    return getNameInfo().getLocStart();
2754  }
2755  SourceLocation getLocEnd() const LLVM_READONLY {
2756    if (hasExplicitTemplateArgs())
2757      return getRAngleLoc();
2758    return getNameInfo().getLocEnd();
2759  }
2760
2761  child_range children() { return child_range(); }
2762
2763  static bool classof(const Stmt *T) {
2764    return T->getStmtClass() == UnresolvedLookupExprClass;
2765  }
2766};
2767
2768/// \brief A qualified reference to a name whose declaration cannot
2769/// yet be resolved.
2770///
2771/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2772/// it expresses a reference to a declaration such as
2773/// X<T>::value. The difference, however, is that an
2774/// DependentScopeDeclRefExpr node is used only within C++ templates when
2775/// the qualification (e.g., X<T>::) refers to a dependent type. In
2776/// this case, X<T>::value cannot resolve to a declaration because the
2777/// declaration will differ from on instantiation of X<T> to the
2778/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2779/// qualifier (X<T>::) and the name of the entity being referenced
2780/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2781/// declaration can be found.
2782class DependentScopeDeclRefExpr : public Expr {
2783  /// \brief The nested-name-specifier that qualifies this unresolved
2784  /// declaration name.
2785  NestedNameSpecifierLoc QualifierLoc;
2786
2787  /// \brief The name of the entity we will be referencing.
2788  DeclarationNameInfo NameInfo;
2789
2790  /// \brief Whether the name includes info for explicit template
2791  /// keyword and arguments.
2792  bool HasTemplateKWAndArgsInfo;
2793
2794  /// \brief Return the optional template keyword and arguments info.
2795  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2796    if (!HasTemplateKWAndArgsInfo) return 0;
2797    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2798  }
2799  /// \brief Return the optional template keyword and arguments info.
2800  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2801    return const_cast<DependentScopeDeclRefExpr*>(this)
2802      ->getTemplateKWAndArgsInfo();
2803  }
2804
2805  DependentScopeDeclRefExpr(QualType T,
2806                            NestedNameSpecifierLoc QualifierLoc,
2807                            SourceLocation TemplateKWLoc,
2808                            const DeclarationNameInfo &NameInfo,
2809                            const TemplateArgumentListInfo *Args);
2810
2811public:
2812  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2813                                           NestedNameSpecifierLoc QualifierLoc,
2814                                           SourceLocation TemplateKWLoc,
2815                                           const DeclarationNameInfo &NameInfo,
2816                              const TemplateArgumentListInfo *TemplateArgs);
2817
2818  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2819                                                bool HasTemplateKWAndArgsInfo,
2820                                                unsigned NumTemplateArgs);
2821
2822  /// \brief Retrieve the name that this expression refers to.
2823  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2824
2825  /// \brief Retrieve the name that this expression refers to.
2826  DeclarationName getDeclName() const { return NameInfo.getName(); }
2827
2828  /// \brief Retrieve the location of the name within the expression.
2829  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2830
2831  /// \brief Retrieve the nested-name-specifier that qualifies the
2832  /// name, with source location information.
2833  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2834
2835
2836  /// \brief Retrieve the nested-name-specifier that qualifies this
2837  /// declaration.
2838  NestedNameSpecifier *getQualifier() const {
2839    return QualifierLoc.getNestedNameSpecifier();
2840  }
2841
2842  /// \brief Retrieve the location of the template keyword preceding
2843  /// this name, if any.
2844  SourceLocation getTemplateKeywordLoc() const {
2845    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2846    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2847  }
2848
2849  /// \brief Retrieve the location of the left angle bracket starting the
2850  /// explicit template argument list following the name, if any.
2851  SourceLocation getLAngleLoc() const {
2852    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2853    return getTemplateKWAndArgsInfo()->LAngleLoc;
2854  }
2855
2856  /// \brief Retrieve the location of the right angle bracket ending the
2857  /// explicit template argument list following the name, if any.
2858  SourceLocation getRAngleLoc() const {
2859    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2860    return getTemplateKWAndArgsInfo()->RAngleLoc;
2861  }
2862
2863  /// Determines whether the name was preceded by the template keyword.
2864  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2865
2866  /// Determines whether this lookup had explicit template arguments.
2867  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2868
2869  // Note that, inconsistently with the explicit-template-argument AST
2870  // nodes, users are *forbidden* from calling these methods on objects
2871  // without explicit template arguments.
2872
2873  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2874    assert(hasExplicitTemplateArgs());
2875    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2876  }
2877
2878  /// Gets a reference to the explicit template argument list.
2879  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2880    assert(hasExplicitTemplateArgs());
2881    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2882  }
2883
2884  /// \brief Retrieves the optional explicit template arguments.
2885  ///
2886  /// This points to the same data as getExplicitTemplateArgs(), but
2887  /// returns null if there are no explicit template arguments.
2888  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2889    if (!hasExplicitTemplateArgs()) return 0;
2890    return &getExplicitTemplateArgs();
2891  }
2892
2893  /// \brief Copies the template arguments (if present) into the given
2894  /// structure.
2895  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2896    getExplicitTemplateArgs().copyInto(List);
2897  }
2898
2899  TemplateArgumentLoc const *getTemplateArgs() const {
2900    return getExplicitTemplateArgs().getTemplateArgs();
2901  }
2902
2903  unsigned getNumTemplateArgs() const {
2904    return getExplicitTemplateArgs().NumTemplateArgs;
2905  }
2906
2907  SourceLocation getLocStart() const LLVM_READONLY {
2908    return QualifierLoc.getBeginLoc();
2909  }
2910  SourceLocation getLocEnd() const LLVM_READONLY {
2911    if (hasExplicitTemplateArgs())
2912      return getRAngleLoc();
2913    return getLocation();
2914  }
2915
2916  static bool classof(const Stmt *T) {
2917    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2918  }
2919
2920  child_range children() { return child_range(); }
2921
2922  friend class ASTStmtReader;
2923  friend class ASTStmtWriter;
2924};
2925
2926/// Represents an expression -- generally a full-expression -- that
2927/// introduces cleanups to be run at the end of the sub-expression's
2928/// evaluation.  The most common source of expression-introduced
2929/// cleanups is temporary objects in C++, but several other kinds of
2930/// expressions can create cleanups, including basically every
2931/// call in ARC that returns an Objective-C pointer.
2932///
2933/// This expression also tracks whether the sub-expression contains a
2934/// potentially-evaluated block literal.  The lifetime of a block
2935/// literal is the extent of the enclosing scope.
2936class ExprWithCleanups : public Expr {
2937public:
2938  /// The type of objects that are kept in the cleanup.
2939  /// It's useful to remember the set of blocks;  we could also
2940  /// remember the set of temporaries, but there's currently
2941  /// no need.
2942  typedef BlockDecl *CleanupObject;
2943
2944private:
2945  Stmt *SubExpr;
2946
2947  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2948  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2949
2950  CleanupObject *getObjectsBuffer() {
2951    return reinterpret_cast<CleanupObject*>(this + 1);
2952  }
2953  const CleanupObject *getObjectsBuffer() const {
2954    return reinterpret_cast<const CleanupObject*>(this + 1);
2955  }
2956  friend class ASTStmtReader;
2957
2958public:
2959  static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2960                                  unsigned numObjects);
2961
2962  static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2963                                  ArrayRef<CleanupObject> objects);
2964
2965  ArrayRef<CleanupObject> getObjects() const {
2966    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2967  }
2968
2969  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2970
2971  CleanupObject getObject(unsigned i) const {
2972    assert(i < getNumObjects() && "Index out of range");
2973    return getObjects()[i];
2974  }
2975
2976  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2977  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2978
2979  /// As with any mutator of the AST, be very careful
2980  /// when modifying an existing AST to preserve its invariants.
2981  void setSubExpr(Expr *E) { SubExpr = E; }
2982
2983  SourceLocation getLocStart() const LLVM_READONLY {
2984    return SubExpr->getLocStart();
2985  }
2986  SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}
2987
2988  // Implement isa/cast/dyncast/etc.
2989  static bool classof(const Stmt *T) {
2990    return T->getStmtClass() == ExprWithCleanupsClass;
2991  }
2992
2993  // Iterators
2994  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2995};
2996
2997/// \brief Describes an explicit type conversion that uses functional
2998/// notion but could not be resolved because one or more arguments are
2999/// type-dependent.
3000///
3001/// The explicit type conversions expressed by
3002/// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
3003/// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
3004/// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
3005/// type-dependent. For example, this would occur in a template such
3006/// as:
3007///
3008/// \code
3009///   template<typename T, typename A1>
3010///   inline T make_a(const A1& a1) {
3011///     return T(a1);
3012///   }
3013/// \endcode
3014///
3015/// When the returned expression is instantiated, it may resolve to a
3016/// constructor call, conversion function call, or some kind of type
3017/// conversion.
3018class CXXUnresolvedConstructExpr : public Expr {
3019  /// \brief The type being constructed.
3020  TypeSourceInfo *Type;
3021
3022  /// \brief The location of the left parentheses ('(').
3023  SourceLocation LParenLoc;
3024
3025  /// \brief The location of the right parentheses (')').
3026  SourceLocation RParenLoc;
3027
3028  /// \brief The number of arguments used to construct the type.
3029  unsigned NumArgs;
3030
3031  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
3032                             SourceLocation LParenLoc,
3033                             ArrayRef<Expr*> Args,
3034                             SourceLocation RParenLoc);
3035
3036  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
3037    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
3038
3039  friend class ASTStmtReader;
3040
3041public:
3042  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
3043                                            TypeSourceInfo *Type,
3044                                            SourceLocation LParenLoc,
3045                                            ArrayRef<Expr*> Args,
3046                                            SourceLocation RParenLoc);
3047
3048  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
3049                                                 unsigned NumArgs);
3050
3051  /// \brief Retrieve the type that is being constructed, as specified
3052  /// in the source code.
3053  QualType getTypeAsWritten() const { return Type->getType(); }
3054
3055  /// \brief Retrieve the type source information for the type being
3056  /// constructed.
3057  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
3058
3059  /// \brief Retrieve the location of the left parentheses ('(') that
3060  /// precedes the argument list.
3061  SourceLocation getLParenLoc() const { return LParenLoc; }
3062  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3063
3064  /// \brief Retrieve the location of the right parentheses (')') that
3065  /// follows the argument list.
3066  SourceLocation getRParenLoc() const { return RParenLoc; }
3067  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3068
3069  /// \brief Retrieve the number of arguments.
3070  unsigned arg_size() const { return NumArgs; }
3071
3072  typedef Expr** arg_iterator;
3073  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
3074  arg_iterator arg_end() { return arg_begin() + NumArgs; }
3075
3076  typedef const Expr* const * const_arg_iterator;
3077  const_arg_iterator arg_begin() const {
3078    return reinterpret_cast<const Expr* const *>(this + 1);
3079  }
3080  const_arg_iterator arg_end() const {
3081    return arg_begin() + NumArgs;
3082  }
3083
3084  Expr *getArg(unsigned I) {
3085    assert(I < NumArgs && "Argument index out-of-range");
3086    return *(arg_begin() + I);
3087  }
3088
3089  const Expr *getArg(unsigned I) const {
3090    assert(I < NumArgs && "Argument index out-of-range");
3091    return *(arg_begin() + I);
3092  }
3093
3094  void setArg(unsigned I, Expr *E) {
3095    assert(I < NumArgs && "Argument index out-of-range");
3096    *(arg_begin() + I) = E;
3097  }
3098
3099  SourceLocation getLocStart() const LLVM_READONLY;
3100  SourceLocation getLocEnd() const LLVM_READONLY {
3101    assert(RParenLoc.isValid() || NumArgs == 1);
3102    return RParenLoc.isValid() ? RParenLoc : getArg(0)->getLocEnd();
3103  }
3104
3105  static bool classof(const Stmt *T) {
3106    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
3107  }
3108
3109  // Iterators
3110  child_range children() {
3111    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
3112    return child_range(begin, begin + NumArgs);
3113  }
3114};
3115
3116/// \brief Represents a C++ member access expression where the actual
3117/// member referenced could not be resolved because the base
3118/// expression or the member name was dependent.
3119///
3120/// Like UnresolvedMemberExprs, these can be either implicit or
3121/// explicit accesses.  It is only possible to get one of these with
3122/// an implicit access if a qualifier is provided.
3123class CXXDependentScopeMemberExpr : public Expr {
3124  /// \brief The expression for the base pointer or class reference,
3125  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
3126  Stmt *Base;
3127
3128  /// \brief The type of the base expression.  Never null, even for
3129  /// implicit accesses.
3130  QualType BaseType;
3131
3132  /// \brief Whether this member expression used the '->' operator or
3133  /// the '.' operator.
3134  bool IsArrow : 1;
3135
3136  /// \brief Whether this member expression has info for explicit template
3137  /// keyword and arguments.
3138  bool HasTemplateKWAndArgsInfo : 1;
3139
3140  /// \brief The location of the '->' or '.' operator.
3141  SourceLocation OperatorLoc;
3142
3143  /// \brief The nested-name-specifier that precedes the member name, if any.
3144  NestedNameSpecifierLoc QualifierLoc;
3145
3146  /// \brief In a qualified member access expression such as t->Base::f, this
3147  /// member stores the resolves of name lookup in the context of the member
3148  /// access expression, to be used at instantiation time.
3149  ///
3150  /// FIXME: This member, along with the QualifierLoc, could
3151  /// be stuck into a structure that is optionally allocated at the end of
3152  /// the CXXDependentScopeMemberExpr, to save space in the common case.
3153  NamedDecl *FirstQualifierFoundInScope;
3154
3155  /// \brief The member to which this member expression refers, which
3156  /// can be name, overloaded operator, or destructor.
3157  ///
3158  /// FIXME: could also be a template-id
3159  DeclarationNameInfo MemberNameInfo;
3160
3161  /// \brief Return the optional template keyword and arguments info.
3162  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
3163    if (!HasTemplateKWAndArgsInfo) return 0;
3164    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
3165  }
3166  /// \brief Return the optional template keyword and arguments info.
3167  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
3168    return const_cast<CXXDependentScopeMemberExpr*>(this)
3169      ->getTemplateKWAndArgsInfo();
3170  }
3171
3172  CXXDependentScopeMemberExpr(ASTContext &C,
3173                          Expr *Base, QualType BaseType, bool IsArrow,
3174                          SourceLocation OperatorLoc,
3175                          NestedNameSpecifierLoc QualifierLoc,
3176                          SourceLocation TemplateKWLoc,
3177                          NamedDecl *FirstQualifierFoundInScope,
3178                          DeclarationNameInfo MemberNameInfo,
3179                          const TemplateArgumentListInfo *TemplateArgs);
3180
3181public:
3182  CXXDependentScopeMemberExpr(ASTContext &C,
3183                              Expr *Base, QualType BaseType,
3184                              bool IsArrow,
3185                              SourceLocation OperatorLoc,
3186                              NestedNameSpecifierLoc QualifierLoc,
3187                              NamedDecl *FirstQualifierFoundInScope,
3188                              DeclarationNameInfo MemberNameInfo);
3189
3190  static CXXDependentScopeMemberExpr *
3191  Create(ASTContext &C,
3192         Expr *Base, QualType BaseType, bool IsArrow,
3193         SourceLocation OperatorLoc,
3194         NestedNameSpecifierLoc QualifierLoc,
3195         SourceLocation TemplateKWLoc,
3196         NamedDecl *FirstQualifierFoundInScope,
3197         DeclarationNameInfo MemberNameInfo,
3198         const TemplateArgumentListInfo *TemplateArgs);
3199
3200  static CXXDependentScopeMemberExpr *
3201  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
3202              unsigned NumTemplateArgs);
3203
3204  /// \brief True if this is an implicit access, i.e. one in which the
3205  /// member being accessed was not written in the source.  The source
3206  /// location of the operator is invalid in this case.
3207  bool isImplicitAccess() const;
3208
3209  /// \brief Retrieve the base object of this member expressions,
3210  /// e.g., the \c x in \c x.m.
3211  Expr *getBase() const {
3212    assert(!isImplicitAccess());
3213    return cast<Expr>(Base);
3214  }
3215
3216  QualType getBaseType() const { return BaseType; }
3217
3218  /// \brief Determine whether this member expression used the '->'
3219  /// operator; otherwise, it used the '.' operator.
3220  bool isArrow() const { return IsArrow; }
3221
3222  /// \brief Retrieve the location of the '->' or '.' operator.
3223  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3224
3225  /// \brief Retrieve the nested-name-specifier that qualifies the member
3226  /// name.
3227  NestedNameSpecifier *getQualifier() const {
3228    return QualifierLoc.getNestedNameSpecifier();
3229  }
3230
3231  /// \brief Retrieve the nested-name-specifier that qualifies the member
3232  /// name, with source location information.
3233  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3234
3235
3236  /// \brief Retrieve the first part of the nested-name-specifier that was
3237  /// found in the scope of the member access expression when the member access
3238  /// was initially parsed.
3239  ///
3240  /// This function only returns a useful result when member access expression
3241  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
3242  /// returned by this function describes what was found by unqualified name
3243  /// lookup for the identifier "Base" within the scope of the member access
3244  /// expression itself. At template instantiation time, this information is
3245  /// combined with the results of name lookup into the type of the object
3246  /// expression itself (the class type of x).
3247  NamedDecl *getFirstQualifierFoundInScope() const {
3248    return FirstQualifierFoundInScope;
3249  }
3250
3251  /// \brief Retrieve the name of the member that this expression
3252  /// refers to.
3253  const DeclarationNameInfo &getMemberNameInfo() const {
3254    return MemberNameInfo;
3255  }
3256
3257  /// \brief Retrieve the name of the member that this expression
3258  /// refers to.
3259  DeclarationName getMember() const { return MemberNameInfo.getName(); }
3260
3261  // \brief Retrieve the location of the name of the member that this
3262  // expression refers to.
3263  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
3264
3265  /// \brief Retrieve the location of the template keyword preceding the
3266  /// member name, if any.
3267  SourceLocation getTemplateKeywordLoc() const {
3268    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3269    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
3270  }
3271
3272  /// \brief Retrieve the location of the left angle bracket starting the
3273  /// explicit template argument list following the member name, if any.
3274  SourceLocation getLAngleLoc() const {
3275    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3276    return getTemplateKWAndArgsInfo()->LAngleLoc;
3277  }
3278
3279  /// \brief Retrieve the location of the right angle bracket ending the
3280  /// explicit template argument list following the member name, if any.
3281  SourceLocation getRAngleLoc() const {
3282    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3283    return getTemplateKWAndArgsInfo()->RAngleLoc;
3284  }
3285
3286  /// Determines whether the member name was preceded by the template keyword.
3287  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3288
3289  /// \brief Determines whether this member expression actually had a C++
3290  /// template argument list explicitly specified, e.g., x.f<int>.
3291  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3292
3293  /// \brief Retrieve the explicit template argument list that followed the
3294  /// member template name, if any.
3295  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
3296    assert(hasExplicitTemplateArgs());
3297    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
3298  }
3299
3300  /// \brief Retrieve the explicit template argument list that followed the
3301  /// member template name, if any.
3302  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
3303    return const_cast<CXXDependentScopeMemberExpr *>(this)
3304             ->getExplicitTemplateArgs();
3305  }
3306
3307  /// \brief Retrieves the optional explicit template arguments.
3308  ///
3309  /// This points to the same data as getExplicitTemplateArgs(), but
3310  /// returns null if there are no explicit template arguments.
3311  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
3312    if (!hasExplicitTemplateArgs()) return 0;
3313    return &getExplicitTemplateArgs();
3314  }
3315
3316  /// \brief Copies the template arguments (if present) into the given
3317  /// structure.
3318  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3319    getExplicitTemplateArgs().copyInto(List);
3320  }
3321
3322  /// \brief Initializes the template arguments using the given structure.
3323  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
3324    getExplicitTemplateArgs().initializeFrom(List);
3325  }
3326
3327  /// \brief Retrieve the template arguments provided as part of this
3328  /// template-id.
3329  const TemplateArgumentLoc *getTemplateArgs() const {
3330    return getExplicitTemplateArgs().getTemplateArgs();
3331  }
3332
3333  /// \brief Retrieve the number of template arguments provided as part of this
3334  /// template-id.
3335  unsigned getNumTemplateArgs() const {
3336    return getExplicitTemplateArgs().NumTemplateArgs;
3337  }
3338
3339  SourceLocation getLocStart() const LLVM_READONLY {
3340    if (!isImplicitAccess())
3341      return Base->getLocStart();
3342    if (getQualifier())
3343      return getQualifierLoc().getBeginLoc();
3344    return MemberNameInfo.getBeginLoc();
3345
3346  }
3347  SourceLocation getLocEnd() const LLVM_READONLY {
3348    if (hasExplicitTemplateArgs())
3349      return getRAngleLoc();
3350    return MemberNameInfo.getEndLoc();
3351  }
3352
3353  static bool classof(const Stmt *T) {
3354    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
3355  }
3356
3357  // Iterators
3358  child_range children() {
3359    if (isImplicitAccess()) return child_range();
3360    return child_range(&Base, &Base + 1);
3361  }
3362
3363  friend class ASTStmtReader;
3364  friend class ASTStmtWriter;
3365};
3366
3367/// \brief Represents a C++ member access expression for which lookup
3368/// produced a set of overloaded functions.
3369///
3370/// The member access may be explicit or implicit:
3371/// \code
3372///    struct A {
3373///      int a, b;
3374///      int explicitAccess() { return this->a + this->A::b; }
3375///      int implicitAccess() { return a + A::b; }
3376///    };
3377/// \endcode
3378///
3379/// In the final AST, an explicit access always becomes a MemberExpr.
3380/// An implicit access may become either a MemberExpr or a
3381/// DeclRefExpr, depending on whether the member is static.
3382class UnresolvedMemberExpr : public OverloadExpr {
3383  /// \brief Whether this member expression used the '->' operator or
3384  /// the '.' operator.
3385  bool IsArrow : 1;
3386
3387  /// \brief Whether the lookup results contain an unresolved using
3388  /// declaration.
3389  bool HasUnresolvedUsing : 1;
3390
3391  /// \brief The expression for the base pointer or class reference,
3392  /// e.g., the \c x in x.f.
3393  ///
3394  /// This can be null if this is an 'unbased' member expression.
3395  Stmt *Base;
3396
3397  /// \brief The type of the base expression; never null.
3398  QualType BaseType;
3399
3400  /// \brief The location of the '->' or '.' operator.
3401  SourceLocation OperatorLoc;
3402
3403  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
3404                       Expr *Base, QualType BaseType, bool IsArrow,
3405                       SourceLocation OperatorLoc,
3406                       NestedNameSpecifierLoc QualifierLoc,
3407                       SourceLocation TemplateKWLoc,
3408                       const DeclarationNameInfo &MemberNameInfo,
3409                       const TemplateArgumentListInfo *TemplateArgs,
3410                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3411
3412  UnresolvedMemberExpr(EmptyShell Empty)
3413    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
3414      HasUnresolvedUsing(false), Base(0) { }
3415
3416  friend class ASTStmtReader;
3417
3418public:
3419  static UnresolvedMemberExpr *
3420  Create(ASTContext &C, bool HasUnresolvedUsing,
3421         Expr *Base, QualType BaseType, bool IsArrow,
3422         SourceLocation OperatorLoc,
3423         NestedNameSpecifierLoc QualifierLoc,
3424         SourceLocation TemplateKWLoc,
3425         const DeclarationNameInfo &MemberNameInfo,
3426         const TemplateArgumentListInfo *TemplateArgs,
3427         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3428
3429  static UnresolvedMemberExpr *
3430  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
3431              unsigned NumTemplateArgs);
3432
3433  /// \brief True if this is an implicit access, i.e., one in which the
3434  /// member being accessed was not written in the source.
3435  ///
3436  /// The source location of the operator is invalid in this case.
3437  bool isImplicitAccess() const;
3438
3439  /// \brief Retrieve the base object of this member expressions,
3440  /// e.g., the \c x in \c x.m.
3441  Expr *getBase() {
3442    assert(!isImplicitAccess());
3443    return cast<Expr>(Base);
3444  }
3445  const Expr *getBase() const {
3446    assert(!isImplicitAccess());
3447    return cast<Expr>(Base);
3448  }
3449
3450  QualType getBaseType() const { return BaseType; }
3451
3452  /// \brief Determine whether the lookup results contain an unresolved using
3453  /// declaration.
3454  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3455
3456  /// \brief Determine whether this member expression used the '->'
3457  /// operator; otherwise, it used the '.' operator.
3458  bool isArrow() const { return IsArrow; }
3459
3460  /// \brief Retrieve the location of the '->' or '.' operator.
3461  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3462
3463  /// \brief Retrieve the naming class of this lookup.
3464  CXXRecordDecl *getNamingClass() const;
3465
3466  /// \brief Retrieve the full name info for the member that this expression
3467  /// refers to.
3468  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3469
3470  /// \brief Retrieve the name of the member that this expression
3471  /// refers to.
3472  DeclarationName getMemberName() const { return getName(); }
3473
3474  // \brief Retrieve the location of the name of the member that this
3475  // expression refers to.
3476  SourceLocation getMemberLoc() const { return getNameLoc(); }
3477
3478  // \brief Return the preferred location (the member name) for the arrow when
3479  // diagnosing a problem with this expression.
3480  SourceLocation getExprLoc() const LLVM_READONLY { return getMemberLoc(); }
3481
3482  SourceLocation getLocStart() const LLVM_READONLY {
3483    if (!isImplicitAccess())
3484      return Base->getLocStart();
3485    if (NestedNameSpecifierLoc l = getQualifierLoc())
3486      return l.getBeginLoc();
3487    return getMemberNameInfo().getLocStart();
3488  }
3489  SourceLocation getLocEnd() const LLVM_READONLY {
3490    if (hasExplicitTemplateArgs())
3491      return getRAngleLoc();
3492    return getMemberNameInfo().getLocEnd();
3493  }
3494
3495  static bool classof(const Stmt *T) {
3496    return T->getStmtClass() == UnresolvedMemberExprClass;
3497  }
3498
3499  // Iterators
3500  child_range children() {
3501    if (isImplicitAccess()) return child_range();
3502    return child_range(&Base, &Base + 1);
3503  }
3504};
3505
3506/// \brief Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
3507///
3508/// The noexcept expression tests whether a given expression might throw. Its
3509/// result is a boolean constant.
3510class CXXNoexceptExpr : public Expr {
3511  bool Value : 1;
3512  Stmt *Operand;
3513  SourceRange Range;
3514
3515  friend class ASTStmtReader;
3516
3517public:
3518  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3519                  SourceLocation Keyword, SourceLocation RParen)
3520    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3521           /*TypeDependent*/false,
3522           /*ValueDependent*/Val == CT_Dependent,
3523           Val == CT_Dependent || Operand->isInstantiationDependent(),
3524           Operand->containsUnexpandedParameterPack()),
3525      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3526  { }
3527
3528  CXXNoexceptExpr(EmptyShell Empty)
3529    : Expr(CXXNoexceptExprClass, Empty)
3530  { }
3531
3532  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3533
3534  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
3535  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
3536  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
3537
3538  bool getValue() const { return Value; }
3539
3540  static bool classof(const Stmt *T) {
3541    return T->getStmtClass() == CXXNoexceptExprClass;
3542  }
3543
3544  // Iterators
3545  child_range children() { return child_range(&Operand, &Operand + 1); }
3546};
3547
3548/// \brief Represents a C++11 pack expansion that produces a sequence of
3549/// expressions.
3550///
3551/// A pack expansion expression contains a pattern (which itself is an
3552/// expression) followed by an ellipsis. For example:
3553///
3554/// \code
3555/// template<typename F, typename ...Types>
3556/// void forward(F f, Types &&...args) {
3557///   f(static_cast<Types&&>(args)...);
3558/// }
3559/// \endcode
3560///
3561/// Here, the argument to the function object \c f is a pack expansion whose
3562/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3563/// template is instantiated, the pack expansion will instantiate to zero or
3564/// or more function arguments to the function object \c f.
3565class PackExpansionExpr : public Expr {
3566  SourceLocation EllipsisLoc;
3567
3568  /// \brief The number of expansions that will be produced by this pack
3569  /// expansion expression, if known.
3570  ///
3571  /// When zero, the number of expansions is not known. Otherwise, this value
3572  /// is the number of expansions + 1.
3573  unsigned NumExpansions;
3574
3575  Stmt *Pattern;
3576
3577  friend class ASTStmtReader;
3578  friend class ASTStmtWriter;
3579
3580public:
3581  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3582                    Optional<unsigned> NumExpansions)
3583    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3584           Pattern->getObjectKind(), /*TypeDependent=*/true,
3585           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3586           /*ContainsUnexpandedParameterPack=*/false),
3587      EllipsisLoc(EllipsisLoc),
3588      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3589      Pattern(Pattern) { }
3590
3591  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3592
3593  /// \brief Retrieve the pattern of the pack expansion.
3594  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3595
3596  /// \brief Retrieve the pattern of the pack expansion.
3597  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3598
3599  /// \brief Retrieve the location of the ellipsis that describes this pack
3600  /// expansion.
3601  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3602
3603  /// \brief Determine the number of expansions that will be produced when
3604  /// this pack expansion is instantiated, if already known.
3605  Optional<unsigned> getNumExpansions() const {
3606    if (NumExpansions)
3607      return NumExpansions - 1;
3608
3609    return None;
3610  }
3611
3612  SourceLocation getLocStart() const LLVM_READONLY {
3613    return Pattern->getLocStart();
3614  }
3615  SourceLocation getLocEnd() const LLVM_READONLY { return EllipsisLoc; }
3616
3617  static bool classof(const Stmt *T) {
3618    return T->getStmtClass() == PackExpansionExprClass;
3619  }
3620
3621  // Iterators
3622  child_range children() {
3623    return child_range(&Pattern, &Pattern + 1);
3624  }
3625};
3626
3627inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3628  if (!HasTemplateKWAndArgsInfo) return 0;
3629  if (isa<UnresolvedLookupExpr>(this))
3630    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3631      (cast<UnresolvedLookupExpr>(this) + 1);
3632  else
3633    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3634      (cast<UnresolvedMemberExpr>(this) + 1);
3635}
3636
3637/// \brief Represents an expression that computes the length of a parameter
3638/// pack.
3639///
3640/// \code
3641/// template<typename ...Types>
3642/// struct count {
3643///   static const unsigned value = sizeof...(Types);
3644/// };
3645/// \endcode
3646class SizeOfPackExpr : public Expr {
3647  /// \brief The location of the \c sizeof keyword.
3648  SourceLocation OperatorLoc;
3649
3650  /// \brief The location of the name of the parameter pack.
3651  SourceLocation PackLoc;
3652
3653  /// \brief The location of the closing parenthesis.
3654  SourceLocation RParenLoc;
3655
3656  /// \brief The length of the parameter pack, if known.
3657  ///
3658  /// When this expression is value-dependent, the length of the parameter pack
3659  /// is unknown. When this expression is not value-dependent, the length is
3660  /// known.
3661  unsigned Length;
3662
3663  /// \brief The parameter pack itself.
3664  NamedDecl *Pack;
3665
3666  friend class ASTStmtReader;
3667  friend class ASTStmtWriter;
3668
3669public:
3670  /// \brief Create a value-dependent expression that computes the length of
3671  /// the given parameter pack.
3672  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3673                 SourceLocation PackLoc, SourceLocation RParenLoc)
3674    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3675           /*TypeDependent=*/false, /*ValueDependent=*/true,
3676           /*InstantiationDependent=*/true,
3677           /*ContainsUnexpandedParameterPack=*/false),
3678      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3679      Length(0), Pack(Pack) { }
3680
3681  /// \brief Create an expression that computes the length of
3682  /// the given parameter pack, which is already known.
3683  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3684                 SourceLocation PackLoc, SourceLocation RParenLoc,
3685                 unsigned Length)
3686  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3687         /*TypeDependent=*/false, /*ValueDependent=*/false,
3688         /*InstantiationDependent=*/false,
3689         /*ContainsUnexpandedParameterPack=*/false),
3690    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3691    Length(Length), Pack(Pack) { }
3692
3693  /// \brief Create an empty expression.
3694  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3695
3696  /// \brief Determine the location of the 'sizeof' keyword.
3697  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3698
3699  /// \brief Determine the location of the parameter pack.
3700  SourceLocation getPackLoc() const { return PackLoc; }
3701
3702  /// \brief Determine the location of the right parenthesis.
3703  SourceLocation getRParenLoc() const { return RParenLoc; }
3704
3705  /// \brief Retrieve the parameter pack.
3706  NamedDecl *getPack() const { return Pack; }
3707
3708  /// \brief Retrieve the length of the parameter pack.
3709  ///
3710  /// This routine may only be invoked when the expression is not
3711  /// value-dependent.
3712  unsigned getPackLength() const {
3713    assert(!isValueDependent() &&
3714           "Cannot get the length of a value-dependent pack size expression");
3715    return Length;
3716  }
3717
3718  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
3719  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3720
3721  static bool classof(const Stmt *T) {
3722    return T->getStmtClass() == SizeOfPackExprClass;
3723  }
3724
3725  // Iterators
3726  child_range children() { return child_range(); }
3727};
3728
3729/// \brief Represents a reference to a non-type template parameter
3730/// that has been substituted with a template argument.
3731class SubstNonTypeTemplateParmExpr : public Expr {
3732  /// \brief The replaced parameter.
3733  NonTypeTemplateParmDecl *Param;
3734
3735  /// \brief The replacement expression.
3736  Stmt *Replacement;
3737
3738  /// \brief The location of the non-type template parameter reference.
3739  SourceLocation NameLoc;
3740
3741  friend class ASTReader;
3742  friend class ASTStmtReader;
3743  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3744    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3745
3746public:
3747  SubstNonTypeTemplateParmExpr(QualType type,
3748                               ExprValueKind valueKind,
3749                               SourceLocation loc,
3750                               NonTypeTemplateParmDecl *param,
3751                               Expr *replacement)
3752    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3753           replacement->isTypeDependent(), replacement->isValueDependent(),
3754           replacement->isInstantiationDependent(),
3755           replacement->containsUnexpandedParameterPack()),
3756      Param(param), Replacement(replacement), NameLoc(loc) {}
3757
3758  SourceLocation getNameLoc() const { return NameLoc; }
3759  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3760  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3761
3762  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3763
3764  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3765
3766  static bool classof(const Stmt *s) {
3767    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3768  }
3769
3770  // Iterators
3771  child_range children() { return child_range(&Replacement, &Replacement+1); }
3772};
3773
3774/// \brief Represents a reference to a non-type template parameter pack that
3775/// has been substituted with a non-template argument pack.
3776///
3777/// When a pack expansion in the source code contains multiple parameter packs
3778/// and those parameter packs correspond to different levels of template
3779/// parameter lists, this node is used to represent a non-type template
3780/// parameter pack from an outer level, which has already had its argument pack
3781/// substituted but that still lives within a pack expansion that itself
3782/// could not be instantiated. When actually performing a substitution into
3783/// that pack expansion (e.g., when all template parameters have corresponding
3784/// arguments), this type will be replaced with the appropriate underlying
3785/// expression at the current pack substitution index.
3786class SubstNonTypeTemplateParmPackExpr : public Expr {
3787  /// \brief The non-type template parameter pack itself.
3788  NonTypeTemplateParmDecl *Param;
3789
3790  /// \brief A pointer to the set of template arguments that this
3791  /// parameter pack is instantiated with.
3792  const TemplateArgument *Arguments;
3793
3794  /// \brief The number of template arguments in \c Arguments.
3795  unsigned NumArguments;
3796
3797  /// \brief The location of the non-type template parameter pack reference.
3798  SourceLocation NameLoc;
3799
3800  friend class ASTReader;
3801  friend class ASTStmtReader;
3802  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3803    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3804
3805public:
3806  SubstNonTypeTemplateParmPackExpr(QualType T,
3807                                   NonTypeTemplateParmDecl *Param,
3808                                   SourceLocation NameLoc,
3809                                   const TemplateArgument &ArgPack);
3810
3811  /// \brief Retrieve the non-type template parameter pack being substituted.
3812  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3813
3814  /// \brief Retrieve the location of the parameter pack name.
3815  SourceLocation getParameterPackLocation() const { return NameLoc; }
3816
3817  /// \brief Retrieve the template argument pack containing the substituted
3818  /// template arguments.
3819  TemplateArgument getArgumentPack() const;
3820
3821  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3822  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3823
3824  static bool classof(const Stmt *T) {
3825    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3826  }
3827
3828  // Iterators
3829  child_range children() { return child_range(); }
3830};
3831
3832/// \brief Represents a reference to a function parameter pack that has been
3833/// substituted but not yet expanded.
3834///
3835/// When a pack expansion contains multiple parameter packs at different levels,
3836/// this node is used to represent a function parameter pack at an outer level
3837/// which we have already substituted to refer to expanded parameters, but where
3838/// the containing pack expansion cannot yet be expanded.
3839///
3840/// \code
3841/// template<typename...Ts> struct S {
3842///   template<typename...Us> auto f(Ts ...ts) -> decltype(g(Us(ts)...));
3843/// };
3844/// template struct S<int, int>;
3845/// \endcode
3846class FunctionParmPackExpr : public Expr {
3847  /// \brief The function parameter pack which was referenced.
3848  ParmVarDecl *ParamPack;
3849
3850  /// \brief The location of the function parameter pack reference.
3851  SourceLocation NameLoc;
3852
3853  /// \brief The number of expansions of this pack.
3854  unsigned NumParameters;
3855
3856  FunctionParmPackExpr(QualType T, ParmVarDecl *ParamPack,
3857                       SourceLocation NameLoc, unsigned NumParams,
3858                       Decl * const *Params);
3859
3860  friend class ASTReader;
3861  friend class ASTStmtReader;
3862
3863public:
3864  static FunctionParmPackExpr *Create(ASTContext &Context, QualType T,
3865                                      ParmVarDecl *ParamPack,
3866                                      SourceLocation NameLoc,
3867                                      ArrayRef<Decl *> Params);
3868  static FunctionParmPackExpr *CreateEmpty(ASTContext &Context,
3869                                           unsigned NumParams);
3870
3871  /// \brief Get the parameter pack which this expression refers to.
3872  ParmVarDecl *getParameterPack() const { return ParamPack; }
3873
3874  /// \brief Get the location of the parameter pack.
3875  SourceLocation getParameterPackLocation() const { return NameLoc; }
3876
3877  /// \brief Iterators over the parameters which the parameter pack expanded
3878  /// into.
3879  typedef ParmVarDecl * const *iterator;
3880  iterator begin() const { return reinterpret_cast<iterator>(this+1); }
3881  iterator end() const { return begin() + NumParameters; }
3882
3883  /// \brief Get the number of parameters in this parameter pack.
3884  unsigned getNumExpansions() const { return NumParameters; }
3885
3886  /// \brief Get an expansion of the parameter pack by index.
3887  ParmVarDecl *getExpansion(unsigned I) const { return begin()[I]; }
3888
3889  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3890  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3891
3892  static bool classof(const Stmt *T) {
3893    return T->getStmtClass() == FunctionParmPackExprClass;
3894  }
3895
3896  child_range children() { return child_range(); }
3897};
3898
3899/// \brief Represents a prvalue temporary that is written into memory so that
3900/// a reference can bind to it.
3901///
3902/// Prvalue expressions are materialized when they need to have an address
3903/// in memory for a reference to bind to. This happens when binding a
3904/// reference to the result of a conversion, e.g.,
3905///
3906/// \code
3907/// const int &r = 1.0;
3908/// \endcode
3909///
3910/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3911/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3912/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3913/// (either an lvalue or an xvalue, depending on the kind of reference binding
3914/// to it), maintaining the invariant that references always bind to glvalues.
3915///
3916/// Reference binding and copy-elision can both extend the lifetime of a
3917/// temporary. When either happens, the expression will also track the
3918/// declaration which is responsible for the lifetime extension.
3919class MaterializeTemporaryExpr : public Expr {
3920public:
3921  /// \brief The temporary-generating expression whose value will be
3922  /// materialized.
3923  Stmt *Temporary;
3924
3925  /// \brief The declaration which lifetime-extended this reference, if any.
3926  /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
3927  const ValueDecl *ExtendingDecl;
3928
3929  friend class ASTStmtReader;
3930  friend class ASTStmtWriter;
3931
3932public:
3933  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3934                           bool BoundToLvalueReference,
3935                           const ValueDecl *ExtendedBy)
3936    : Expr(MaterializeTemporaryExprClass, T,
3937           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3938           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3939           Temporary->isInstantiationDependent(),
3940           Temporary->containsUnexpandedParameterPack()),
3941      Temporary(Temporary), ExtendingDecl(ExtendedBy) {
3942  }
3943
3944  MaterializeTemporaryExpr(EmptyShell Empty)
3945    : Expr(MaterializeTemporaryExprClass, Empty) { }
3946
3947  /// \brief Retrieve the temporary-generating subexpression whose value will
3948  /// be materialized into a glvalue.
3949  Expr *GetTemporaryExpr() const { return static_cast<Expr *>(Temporary); }
3950
3951  /// \brief Retrieve the storage duration for the materialized temporary.
3952  StorageDuration getStorageDuration() const {
3953    if (!ExtendingDecl)
3954      return SD_FullExpression;
3955    // FIXME: This is not necessarily correct for a temporary materialized
3956    // within a default initializer.
3957    if (isa<FieldDecl>(ExtendingDecl))
3958      return SD_Automatic;
3959    return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
3960  }
3961
3962  /// \brief Get the declaration which triggered the lifetime-extension of this
3963  /// temporary, if any.
3964  const ValueDecl *getExtendingDecl() const { return ExtendingDecl; }
3965
3966  void setExtendingDecl(const ValueDecl *ExtendedBy) {
3967    ExtendingDecl = ExtendedBy;
3968  }
3969
3970  /// \brief Determine whether this materialized temporary is bound to an
3971  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3972  bool isBoundToLvalueReference() const {
3973    return getValueKind() == VK_LValue;
3974  }
3975
3976  SourceLocation getLocStart() const LLVM_READONLY {
3977    return Temporary->getLocStart();
3978  }
3979  SourceLocation getLocEnd() const LLVM_READONLY {
3980    return Temporary->getLocEnd();
3981  }
3982
3983  static bool classof(const Stmt *T) {
3984    return T->getStmtClass() == MaterializeTemporaryExprClass;
3985  }
3986
3987  // Iterators
3988  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3989};
3990
3991}  // end namespace clang
3992
3993#endif
3994