ExprCXX.h revision da8962a6198bc4bf09a38209db99551b2b0a41a0
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/AST/Expr.h"
18#include "clang/AST/UnresolvedSet.h"
19#include "clang/AST/TemplateBase.h"
20#include "clang/Basic/ExpressionTraits.h"
21#include "clang/Basic/Lambda.h"
22#include "clang/Basic/TypeTraits.h"
23
24namespace clang {
25
26class CXXConstructorDecl;
27class CXXDestructorDecl;
28class CXXMethodDecl;
29class CXXTemporary;
30class TemplateArgumentListInfo;
31
32//===--------------------------------------------------------------------===//
33// C++ Expressions.
34//===--------------------------------------------------------------------===//
35
36/// \brief A call to an overloaded operator written using operator
37/// syntax.
38///
39/// Represents a call to an overloaded operator written using operator
40/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
41/// normal call, this AST node provides better information about the
42/// syntactic representation of the call.
43///
44/// In a C++ template, this expression node kind will be used whenever
45/// any of the arguments are type-dependent. In this case, the
46/// function itself will be a (possibly empty) set of functions and
47/// function templates that were found by name lookup at template
48/// definition time.
49class CXXOperatorCallExpr : public CallExpr {
50  /// \brief The overloaded operator.
51  OverloadedOperatorKind Operator;
52
53public:
54  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
55                      Expr **args, unsigned numargs, QualType t,
56                      ExprValueKind VK, SourceLocation operatorloc)
57    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
58               operatorloc),
59      Operator(Op) {}
60  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
61    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
62
63
64  /// getOperator - Returns the kind of overloaded operator that this
65  /// expression refers to.
66  OverloadedOperatorKind getOperator() const { return Operator; }
67  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
68
69  /// getOperatorLoc - Returns the location of the operator symbol in
70  /// the expression. When @c getOperator()==OO_Call, this is the
71  /// location of the right parentheses; when @c
72  /// getOperator()==OO_Subscript, this is the location of the right
73  /// bracket.
74  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
75
76  SourceRange getSourceRange() const;
77
78  static bool classof(const Stmt *T) {
79    return T->getStmtClass() == CXXOperatorCallExprClass;
80  }
81  static bool classof(const CXXOperatorCallExpr *) { return true; }
82};
83
84/// CXXMemberCallExpr - Represents a call to a member function that
85/// may be written either with member call syntax (e.g., "obj.func()"
86/// or "objptr->func()") or with normal function-call syntax
87/// ("func()") within a member function that ends up calling a member
88/// function. The callee in either case is a MemberExpr that contains
89/// both the object argument and the member function, while the
90/// arguments are the arguments within the parentheses (not including
91/// the object argument).
92class CXXMemberCallExpr : public CallExpr {
93public:
94  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
95                    QualType t, ExprValueKind VK, SourceLocation RP)
96    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
97
98  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
99    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
100
101  /// getImplicitObjectArgument - Retrieves the implicit object
102  /// argument for the member call. For example, in "x.f(5)", this
103  /// operation would return "x".
104  Expr *getImplicitObjectArgument() const;
105
106  /// Retrieves the declaration of the called method.
107  CXXMethodDecl *getMethodDecl() const;
108
109  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
110  /// the implicit object argument. Note that this is may not be the same
111  /// declaration as that of the class context of the CXXMethodDecl which this
112  /// function is calling.
113  /// FIXME: Returns 0 for member pointer call exprs.
114  CXXRecordDecl *getRecordDecl();
115
116  static bool classof(const Stmt *T) {
117    return T->getStmtClass() == CXXMemberCallExprClass;
118  }
119  static bool classof(const CXXMemberCallExpr *) { return true; }
120};
121
122/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
123class CUDAKernelCallExpr : public CallExpr {
124private:
125  enum { CONFIG, END_PREARG };
126
127public:
128  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
129                     Expr **args, unsigned numargs, QualType t,
130                     ExprValueKind VK, SourceLocation RP)
131    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
132               RP) {
133    setConfig(Config);
134  }
135
136  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
137    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
138
139  const CallExpr *getConfig() const {
140    return cast_or_null<CallExpr>(getPreArg(CONFIG));
141  }
142  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
143  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
144
145  static bool classof(const Stmt *T) {
146    return T->getStmtClass() == CUDAKernelCallExprClass;
147  }
148  static bool classof(const CUDAKernelCallExpr *) { return true; }
149};
150
151/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
152/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
153/// const_cast.
154///
155/// This abstract class is inherited by all of the classes
156/// representing "named" casts, e.g., CXXStaticCastExpr,
157/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
158class CXXNamedCastExpr : public ExplicitCastExpr {
159private:
160  SourceLocation Loc; // the location of the casting op
161  SourceLocation RParenLoc; // the location of the right parenthesis
162
163protected:
164  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
165                   CastKind kind, Expr *op, unsigned PathSize,
166                   TypeSourceInfo *writtenTy, SourceLocation l,
167                   SourceLocation RParenLoc)
168    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
169      RParenLoc(RParenLoc) {}
170
171  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
172    : ExplicitCastExpr(SC, Shell, PathSize) { }
173
174  friend class ASTStmtReader;
175
176public:
177  const char *getCastName() const;
178
179  /// \brief Retrieve the location of the cast operator keyword, e.g.,
180  /// "static_cast".
181  SourceLocation getOperatorLoc() const { return Loc; }
182
183  /// \brief Retrieve the location of the closing parenthesis.
184  SourceLocation getRParenLoc() const { return RParenLoc; }
185
186  SourceRange getSourceRange() const {
187    return SourceRange(Loc, RParenLoc);
188  }
189  static bool classof(const Stmt *T) {
190    switch (T->getStmtClass()) {
191    case CXXStaticCastExprClass:
192    case CXXDynamicCastExprClass:
193    case CXXReinterpretCastExprClass:
194    case CXXConstCastExprClass:
195      return true;
196    default:
197      return false;
198    }
199  }
200  static bool classof(const CXXNamedCastExpr *) { return true; }
201};
202
203/// CXXStaticCastExpr - A C++ @c static_cast expression
204/// (C++ [expr.static.cast]).
205///
206/// This expression node represents a C++ static cast, e.g.,
207/// @c static_cast<int>(1.0).
208class CXXStaticCastExpr : public CXXNamedCastExpr {
209  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
210                    unsigned pathSize, TypeSourceInfo *writtenTy,
211                    SourceLocation l, SourceLocation RParenLoc)
212    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
213                       writtenTy, l, RParenLoc) {}
214
215  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
216    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
217
218public:
219  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
220                                   ExprValueKind VK, CastKind K, Expr *Op,
221                                   const CXXCastPath *Path,
222                                   TypeSourceInfo *Written, SourceLocation L,
223                                   SourceLocation RParenLoc);
224  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
225                                        unsigned PathSize);
226
227  static bool classof(const Stmt *T) {
228    return T->getStmtClass() == CXXStaticCastExprClass;
229  }
230  static bool classof(const CXXStaticCastExpr *) { return true; }
231};
232
233/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
234/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
235/// determine how to perform the type cast.
236///
237/// This expression node represents a dynamic cast, e.g.,
238/// @c dynamic_cast<Derived*>(BasePtr).
239class CXXDynamicCastExpr : public CXXNamedCastExpr {
240  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
241                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
242                     SourceLocation l, SourceLocation RParenLoc)
243    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
244                       writtenTy, l, RParenLoc) {}
245
246  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
247    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
248
249public:
250  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
251                                    ExprValueKind VK, CastKind Kind, Expr *Op,
252                                    const CXXCastPath *Path,
253                                    TypeSourceInfo *Written, SourceLocation L,
254                                    SourceLocation RParenLoc);
255
256  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
257                                         unsigned pathSize);
258
259  bool isAlwaysNull() const;
260
261  static bool classof(const Stmt *T) {
262    return T->getStmtClass() == CXXDynamicCastExprClass;
263  }
264  static bool classof(const CXXDynamicCastExpr *) { return true; }
265};
266
267/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
268/// [expr.reinterpret.cast]), which provides a differently-typed view
269/// of a value but performs no actual work at run time.
270///
271/// This expression node represents a reinterpret cast, e.g.,
272/// @c reinterpret_cast<int>(VoidPtr).
273class CXXReinterpretCastExpr : public CXXNamedCastExpr {
274  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
275                         Expr *op, unsigned pathSize,
276                         TypeSourceInfo *writtenTy, SourceLocation l,
277                         SourceLocation RParenLoc)
278    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
279                       pathSize, writtenTy, l, RParenLoc) {}
280
281  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
282    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
283
284public:
285  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
286                                        ExprValueKind VK, CastKind Kind,
287                                        Expr *Op, const CXXCastPath *Path,
288                                 TypeSourceInfo *WrittenTy, SourceLocation L,
289                                        SourceLocation RParenLoc);
290  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
291                                             unsigned pathSize);
292
293  static bool classof(const Stmt *T) {
294    return T->getStmtClass() == CXXReinterpretCastExprClass;
295  }
296  static bool classof(const CXXReinterpretCastExpr *) { return true; }
297};
298
299/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
300/// which can remove type qualifiers but does not change the underlying value.
301///
302/// This expression node represents a const cast, e.g.,
303/// @c const_cast<char*>(PtrToConstChar).
304class CXXConstCastExpr : public CXXNamedCastExpr {
305  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
306                   TypeSourceInfo *writtenTy, SourceLocation l,
307                   SourceLocation RParenLoc)
308    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
309                       0, writtenTy, l, RParenLoc) {}
310
311  explicit CXXConstCastExpr(EmptyShell Empty)
312    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
313
314public:
315  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
316                                  ExprValueKind VK, Expr *Op,
317                                  TypeSourceInfo *WrittenTy, SourceLocation L,
318                                  SourceLocation RParenLoc);
319  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
320
321  static bool classof(const Stmt *T) {
322    return T->getStmtClass() == CXXConstCastExprClass;
323  }
324  static bool classof(const CXXConstCastExpr *) { return true; }
325};
326
327/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
328///
329class CXXBoolLiteralExpr : public Expr {
330  bool Value;
331  SourceLocation Loc;
332public:
333  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
334    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
335         false, false),
336    Value(val), Loc(l) {}
337
338  explicit CXXBoolLiteralExpr(EmptyShell Empty)
339    : Expr(CXXBoolLiteralExprClass, Empty) { }
340
341  bool getValue() const { return Value; }
342  void setValue(bool V) { Value = V; }
343
344  SourceRange getSourceRange() const { return SourceRange(Loc); }
345
346  SourceLocation getLocation() const { return Loc; }
347  void setLocation(SourceLocation L) { Loc = L; }
348
349  static bool classof(const Stmt *T) {
350    return T->getStmtClass() == CXXBoolLiteralExprClass;
351  }
352  static bool classof(const CXXBoolLiteralExpr *) { return true; }
353
354  // Iterators
355  child_range children() { return child_range(); }
356};
357
358/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
359class CXXNullPtrLiteralExpr : public Expr {
360  SourceLocation Loc;
361public:
362  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
363    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
364         false, false),
365    Loc(l) {}
366
367  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
368    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
369
370  SourceRange getSourceRange() const { return SourceRange(Loc); }
371
372  SourceLocation getLocation() const { return Loc; }
373  void setLocation(SourceLocation L) { Loc = L; }
374
375  static bool classof(const Stmt *T) {
376    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
377  }
378  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
379
380  child_range children() { return child_range(); }
381};
382
383/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
384/// the type_info that corresponds to the supplied type, or the (possibly
385/// dynamic) type of the supplied expression.
386///
387/// This represents code like @c typeid(int) or @c typeid(*objPtr)
388class CXXTypeidExpr : public Expr {
389private:
390  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
391  SourceRange Range;
392
393public:
394  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
395    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
396           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
397           false,
398           // typeid is value-dependent if the type or expression are dependent
399           Operand->getType()->isDependentType(),
400           Operand->getType()->isInstantiationDependentType(),
401           Operand->getType()->containsUnexpandedParameterPack()),
402      Operand(Operand), Range(R) { }
403
404  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
405    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
406        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
407           false,
408        // typeid is value-dependent if the type or expression are dependent
409           Operand->isTypeDependent() || Operand->isValueDependent(),
410           Operand->isInstantiationDependent(),
411           Operand->containsUnexpandedParameterPack()),
412      Operand(Operand), Range(R) { }
413
414  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
415    : Expr(CXXTypeidExprClass, Empty) {
416    if (isExpr)
417      Operand = (Expr*)0;
418    else
419      Operand = (TypeSourceInfo*)0;
420  }
421
422  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
423
424  /// \brief Retrieves the type operand of this typeid() expression after
425  /// various required adjustments (removing reference types, cv-qualifiers).
426  QualType getTypeOperand() const;
427
428  /// \brief Retrieve source information for the type operand.
429  TypeSourceInfo *getTypeOperandSourceInfo() const {
430    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
431    return Operand.get<TypeSourceInfo *>();
432  }
433
434  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
435    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
436    Operand = TSI;
437  }
438
439  Expr *getExprOperand() const {
440    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
441    return static_cast<Expr*>(Operand.get<Stmt *>());
442  }
443
444  void setExprOperand(Expr *E) {
445    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
446    Operand = E;
447  }
448
449  SourceRange getSourceRange() const { return Range; }
450  void setSourceRange(SourceRange R) { Range = R; }
451
452  static bool classof(const Stmt *T) {
453    return T->getStmtClass() == CXXTypeidExprClass;
454  }
455  static bool classof(const CXXTypeidExpr *) { return true; }
456
457  // Iterators
458  child_range children() {
459    if (isTypeOperand()) return child_range();
460    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
461    return child_range(begin, begin + 1);
462  }
463};
464
465/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
466/// the _GUID that corresponds to the supplied type or expression.
467///
468/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
469class CXXUuidofExpr : public Expr {
470private:
471  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
472  SourceRange Range;
473
474public:
475  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
476    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
477           false, Operand->getType()->isDependentType(),
478           Operand->getType()->isInstantiationDependentType(),
479           Operand->getType()->containsUnexpandedParameterPack()),
480      Operand(Operand), Range(R) { }
481
482  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
483    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
484           false, Operand->isTypeDependent(),
485           Operand->isInstantiationDependent(),
486           Operand->containsUnexpandedParameterPack()),
487      Operand(Operand), Range(R) { }
488
489  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
490    : Expr(CXXUuidofExprClass, Empty) {
491    if (isExpr)
492      Operand = (Expr*)0;
493    else
494      Operand = (TypeSourceInfo*)0;
495  }
496
497  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
498
499  /// \brief Retrieves the type operand of this __uuidof() expression after
500  /// various required adjustments (removing reference types, cv-qualifiers).
501  QualType getTypeOperand() const;
502
503  /// \brief Retrieve source information for the type operand.
504  TypeSourceInfo *getTypeOperandSourceInfo() const {
505    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
506    return Operand.get<TypeSourceInfo *>();
507  }
508
509  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
510    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
511    Operand = TSI;
512  }
513
514  Expr *getExprOperand() const {
515    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
516    return static_cast<Expr*>(Operand.get<Stmt *>());
517  }
518
519  void setExprOperand(Expr *E) {
520    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
521    Operand = E;
522  }
523
524  SourceRange getSourceRange() const { return Range; }
525  void setSourceRange(SourceRange R) { Range = R; }
526
527  static bool classof(const Stmt *T) {
528    return T->getStmtClass() == CXXUuidofExprClass;
529  }
530  static bool classof(const CXXUuidofExpr *) { return true; }
531
532  // Iterators
533  child_range children() {
534    if (isTypeOperand()) return child_range();
535    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
536    return child_range(begin, begin + 1);
537  }
538};
539
540/// CXXThisExpr - Represents the "this" expression in C++, which is a
541/// pointer to the object on which the current member function is
542/// executing (C++ [expr.prim]p3). Example:
543///
544/// @code
545/// class Foo {
546/// public:
547///   void bar();
548///   void test() { this->bar(); }
549/// };
550/// @endcode
551class CXXThisExpr : public Expr {
552  SourceLocation Loc;
553  bool Implicit : 1;
554
555public:
556  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
557    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
558           // 'this' is type-dependent if the class type of the enclosing
559           // member function is dependent (C++ [temp.dep.expr]p2)
560           Type->isDependentType(), Type->isDependentType(),
561           Type->isInstantiationDependentType(),
562           /*ContainsUnexpandedParameterPack=*/false),
563      Loc(L), Implicit(isImplicit) { }
564
565  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
566
567  SourceLocation getLocation() const { return Loc; }
568  void setLocation(SourceLocation L) { Loc = L; }
569
570  SourceRange getSourceRange() const { return SourceRange(Loc); }
571
572  bool isImplicit() const { return Implicit; }
573  void setImplicit(bool I) { Implicit = I; }
574
575  static bool classof(const Stmt *T) {
576    return T->getStmtClass() == CXXThisExprClass;
577  }
578  static bool classof(const CXXThisExpr *) { return true; }
579
580  // Iterators
581  child_range children() { return child_range(); }
582};
583
584///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
585///  'throw' and 'throw' assignment-expression.  When
586///  assignment-expression isn't present, Op will be null.
587///
588class CXXThrowExpr : public Expr {
589  Stmt *Op;
590  SourceLocation ThrowLoc;
591  /// \brief Whether the thrown variable (if any) is in scope.
592  unsigned IsThrownVariableInScope : 1;
593
594  friend class ASTStmtReader;
595
596public:
597  // Ty is the void type which is used as the result type of the
598  // exepression.  The l is the location of the throw keyword.  expr
599  // can by null, if the optional expression to throw isn't present.
600  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
601               bool IsThrownVariableInScope) :
602    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
603         expr && expr->isInstantiationDependent(),
604         expr && expr->containsUnexpandedParameterPack()),
605    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
606  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
607
608  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
609  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
610
611  SourceLocation getThrowLoc() const { return ThrowLoc; }
612
613  /// \brief Determines whether the variable thrown by this expression (if any!)
614  /// is within the innermost try block.
615  ///
616  /// This information is required to determine whether the NRVO can apply to
617  /// this variable.
618  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
619
620  SourceRange getSourceRange() const {
621    if (getSubExpr() == 0)
622      return SourceRange(ThrowLoc, ThrowLoc);
623    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
624  }
625
626  static bool classof(const Stmt *T) {
627    return T->getStmtClass() == CXXThrowExprClass;
628  }
629  static bool classof(const CXXThrowExpr *) { return true; }
630
631  // Iterators
632  child_range children() {
633    return child_range(&Op, Op ? &Op+1 : &Op);
634  }
635};
636
637/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
638/// function call argument that was created from the corresponding
639/// parameter's default argument, when the call did not explicitly
640/// supply arguments for all of the parameters.
641class CXXDefaultArgExpr : public Expr {
642  /// \brief The parameter whose default is being used.
643  ///
644  /// When the bit is set, the subexpression is stored after the
645  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
646  /// actual default expression is the subexpression.
647  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
648
649  /// \brief The location where the default argument expression was used.
650  SourceLocation Loc;
651
652  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
653    : Expr(SC,
654           param->hasUnparsedDefaultArg()
655             ? param->getType().getNonReferenceType()
656             : param->getDefaultArg()->getType(),
657           param->getDefaultArg()->getValueKind(),
658           param->getDefaultArg()->getObjectKind(), false, false, false, false),
659      Param(param, false), Loc(Loc) { }
660
661  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
662                    Expr *SubExpr)
663    : Expr(SC, SubExpr->getType(),
664           SubExpr->getValueKind(), SubExpr->getObjectKind(),
665           false, false, false, false),
666      Param(param, true), Loc(Loc) {
667    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
668  }
669
670public:
671  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
672
673
674  // Param is the parameter whose default argument is used by this
675  // expression.
676  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
677                                   ParmVarDecl *Param) {
678    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
679  }
680
681  // Param is the parameter whose default argument is used by this
682  // expression, and SubExpr is the expression that will actually be used.
683  static CXXDefaultArgExpr *Create(ASTContext &C,
684                                   SourceLocation Loc,
685                                   ParmVarDecl *Param,
686                                   Expr *SubExpr);
687
688  // Retrieve the parameter that the argument was created from.
689  const ParmVarDecl *getParam() const { return Param.getPointer(); }
690  ParmVarDecl *getParam() { return Param.getPointer(); }
691
692  // Retrieve the actual argument to the function call.
693  const Expr *getExpr() const {
694    if (Param.getInt())
695      return *reinterpret_cast<Expr const * const*> (this + 1);
696    return getParam()->getDefaultArg();
697  }
698  Expr *getExpr() {
699    if (Param.getInt())
700      return *reinterpret_cast<Expr **> (this + 1);
701    return getParam()->getDefaultArg();
702  }
703
704  /// \brief Retrieve the location where this default argument was actually
705  /// used.
706  SourceLocation getUsedLocation() const { return Loc; }
707
708  SourceRange getSourceRange() const {
709    // Default argument expressions have no representation in the
710    // source, so they have an empty source range.
711    return SourceRange();
712  }
713
714  static bool classof(const Stmt *T) {
715    return T->getStmtClass() == CXXDefaultArgExprClass;
716  }
717  static bool classof(const CXXDefaultArgExpr *) { return true; }
718
719  // Iterators
720  child_range children() { return child_range(); }
721
722  friend class ASTStmtReader;
723  friend class ASTStmtWriter;
724};
725
726/// CXXTemporary - Represents a C++ temporary.
727class CXXTemporary {
728  /// Destructor - The destructor that needs to be called.
729  const CXXDestructorDecl *Destructor;
730
731  CXXTemporary(const CXXDestructorDecl *destructor)
732    : Destructor(destructor) { }
733
734public:
735  static CXXTemporary *Create(ASTContext &C,
736                              const CXXDestructorDecl *Destructor);
737
738  const CXXDestructorDecl *getDestructor() const { return Destructor; }
739};
740
741/// \brief Represents binding an expression to a temporary.
742///
743/// This ensures the destructor is called for the temporary. It should only be
744/// needed for non-POD, non-trivially destructable class types. For example:
745///
746/// \code
747///   struct S {
748///     S() { }  // User defined constructor makes S non-POD.
749///     ~S() { } // User defined destructor makes it non-trivial.
750///   };
751///   void test() {
752///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
753///   }
754/// \endcode
755class CXXBindTemporaryExpr : public Expr {
756  CXXTemporary *Temp;
757
758  Stmt *SubExpr;
759
760  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
761   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
762          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
763          SubExpr->isValueDependent(),
764          SubExpr->isInstantiationDependent(),
765          SubExpr->containsUnexpandedParameterPack()),
766     Temp(temp), SubExpr(SubExpr) { }
767
768public:
769  CXXBindTemporaryExpr(EmptyShell Empty)
770    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
771
772  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
773                                      Expr* SubExpr);
774
775  CXXTemporary *getTemporary() { return Temp; }
776  const CXXTemporary *getTemporary() const { return Temp; }
777  void setTemporary(CXXTemporary *T) { Temp = T; }
778
779  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
780  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
781  void setSubExpr(Expr *E) { SubExpr = E; }
782
783  SourceRange getSourceRange() const {
784    return SubExpr->getSourceRange();
785  }
786
787  // Implement isa/cast/dyncast/etc.
788  static bool classof(const Stmt *T) {
789    return T->getStmtClass() == CXXBindTemporaryExprClass;
790  }
791  static bool classof(const CXXBindTemporaryExpr *) { return true; }
792
793  // Iterators
794  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
795};
796
797/// CXXConstructExpr - Represents a call to a C++ constructor.
798class CXXConstructExpr : public Expr {
799public:
800  enum ConstructionKind {
801    CK_Complete,
802    CK_NonVirtualBase,
803    CK_VirtualBase,
804    CK_Delegating
805  };
806
807private:
808  CXXConstructorDecl *Constructor;
809
810  SourceLocation Loc;
811  SourceRange ParenRange;
812  unsigned NumArgs : 16;
813  bool Elidable : 1;
814  bool HadMultipleCandidates : 1;
815  bool ListInitialization : 1;
816  bool ZeroInitialization : 1;
817  unsigned ConstructKind : 2;
818  Stmt **Args;
819
820protected:
821  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
822                   SourceLocation Loc,
823                   CXXConstructorDecl *d, bool elidable,
824                   Expr **args, unsigned numargs,
825                   bool HadMultipleCandidates,
826                   bool ListInitialization,
827                   bool ZeroInitialization,
828                   ConstructionKind ConstructKind,
829                   SourceRange ParenRange);
830
831  /// \brief Construct an empty C++ construction expression.
832  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
833    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
834      HadMultipleCandidates(false), ListInitialization(false),
835      ZeroInitialization(false), ConstructKind(0), Args(0)
836  { }
837
838public:
839  /// \brief Construct an empty C++ construction expression.
840  explicit CXXConstructExpr(EmptyShell Empty)
841    : Expr(CXXConstructExprClass, Empty), Constructor(0),
842      NumArgs(0), Elidable(false), HadMultipleCandidates(false),
843      ListInitialization(false), ZeroInitialization(false),
844      ConstructKind(0), Args(0)
845  { }
846
847  static CXXConstructExpr *Create(ASTContext &C, QualType T,
848                                  SourceLocation Loc,
849                                  CXXConstructorDecl *D, bool Elidable,
850                                  Expr **Args, unsigned NumArgs,
851                                  bool HadMultipleCandidates,
852                                  bool ListInitialization,
853                                  bool ZeroInitialization,
854                                  ConstructionKind ConstructKind,
855                                  SourceRange ParenRange);
856
857  CXXConstructorDecl* getConstructor() const { return Constructor; }
858  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
859
860  SourceLocation getLocation() const { return Loc; }
861  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
862
863  /// \brief Whether this construction is elidable.
864  bool isElidable() const { return Elidable; }
865  void setElidable(bool E) { Elidable = E; }
866
867  /// \brief Whether the referred constructor was resolved from
868  /// an overloaded set having size greater than 1.
869  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
870  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
871
872  /// \brief Whether this constructor call was written as list-initialization.
873  bool isListInitialization() const { return ListInitialization; }
874  void setListInitialization(bool V) { ListInitialization = V; }
875
876  /// \brief Whether this construction first requires
877  /// zero-initialization before the initializer is called.
878  bool requiresZeroInitialization() const { return ZeroInitialization; }
879  void setRequiresZeroInitialization(bool ZeroInit) {
880    ZeroInitialization = ZeroInit;
881  }
882
883  /// \brief Determines whether this constructor is actually constructing
884  /// a base class (rather than a complete object).
885  ConstructionKind getConstructionKind() const {
886    return (ConstructionKind)ConstructKind;
887  }
888  void setConstructionKind(ConstructionKind CK) {
889    ConstructKind = CK;
890  }
891
892  typedef ExprIterator arg_iterator;
893  typedef ConstExprIterator const_arg_iterator;
894
895  arg_iterator arg_begin() { return Args; }
896  arg_iterator arg_end() { return Args + NumArgs; }
897  const_arg_iterator arg_begin() const { return Args; }
898  const_arg_iterator arg_end() const { return Args + NumArgs; }
899
900  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
901  unsigned getNumArgs() const { return NumArgs; }
902
903  /// getArg - Return the specified argument.
904  Expr *getArg(unsigned Arg) {
905    assert(Arg < NumArgs && "Arg access out of range!");
906    return cast<Expr>(Args[Arg]);
907  }
908  const Expr *getArg(unsigned Arg) const {
909    assert(Arg < NumArgs && "Arg access out of range!");
910    return cast<Expr>(Args[Arg]);
911  }
912
913  /// setArg - Set the specified argument.
914  void setArg(unsigned Arg, Expr *ArgExpr) {
915    assert(Arg < NumArgs && "Arg access out of range!");
916    Args[Arg] = ArgExpr;
917  }
918
919  SourceRange getSourceRange() const;
920  SourceRange getParenRange() const { return ParenRange; }
921
922  static bool classof(const Stmt *T) {
923    return T->getStmtClass() == CXXConstructExprClass ||
924      T->getStmtClass() == CXXTemporaryObjectExprClass;
925  }
926  static bool classof(const CXXConstructExpr *) { return true; }
927
928  // Iterators
929  child_range children() {
930    return child_range(&Args[0], &Args[0]+NumArgs);
931  }
932
933  friend class ASTStmtReader;
934};
935
936/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
937/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
938/// x = int(0.5);
939class CXXFunctionalCastExpr : public ExplicitCastExpr {
940  SourceLocation TyBeginLoc;
941  SourceLocation RParenLoc;
942
943  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
944                        TypeSourceInfo *writtenTy,
945                        SourceLocation tyBeginLoc, CastKind kind,
946                        Expr *castExpr, unsigned pathSize,
947                        SourceLocation rParenLoc)
948    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
949                       castExpr, pathSize, writtenTy),
950      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
951
952  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
953    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
954
955public:
956  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
957                                       ExprValueKind VK,
958                                       TypeSourceInfo *Written,
959                                       SourceLocation TyBeginLoc,
960                                       CastKind Kind, Expr *Op,
961                                       const CXXCastPath *Path,
962                                       SourceLocation RPLoc);
963  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
964                                            unsigned PathSize);
965
966  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
967  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
968  SourceLocation getRParenLoc() const { return RParenLoc; }
969  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
970
971  SourceRange getSourceRange() const {
972    return SourceRange(TyBeginLoc, RParenLoc);
973  }
974  static bool classof(const Stmt *T) {
975    return T->getStmtClass() == CXXFunctionalCastExprClass;
976  }
977  static bool classof(const CXXFunctionalCastExpr *) { return true; }
978};
979
980/// @brief Represents a C++ functional cast expression that builds a
981/// temporary object.
982///
983/// This expression type represents a C++ "functional" cast
984/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
985/// constructor to build a temporary object. With N == 1 arguments the
986/// functional cast expression will be represented by CXXFunctionalCastExpr.
987/// Example:
988/// @code
989/// struct X { X(int, float); }
990///
991/// X create_X() {
992///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
993/// };
994/// @endcode
995class CXXTemporaryObjectExpr : public CXXConstructExpr {
996  TypeSourceInfo *Type;
997
998public:
999  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
1000                         TypeSourceInfo *Type,
1001                         Expr **Args,unsigned NumArgs,
1002                         SourceRange parenRange,
1003                         bool HadMultipleCandidates,
1004                         bool ZeroInitialization = false);
1005  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1006    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1007
1008  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1009
1010  SourceRange getSourceRange() const;
1011
1012  static bool classof(const Stmt *T) {
1013    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1014  }
1015  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
1016
1017  friend class ASTStmtReader;
1018};
1019
1020/// \brief A C++ lambda expression, which produces a function object
1021/// (of unspecified type) that can be invoked later.
1022///
1023/// Example:
1024/// \code
1025/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1026///   values.erase(std::remove_if(values.begin(), values.end(),
1027//                                [=](double value) { return value > cutoff; });
1028/// }
1029/// \endcode
1030///
1031/// Lambda expressions can capture local variables, either by copying
1032/// the values of those local variables at the time the function
1033/// object is constructed (not when it is called!) or by holding a
1034/// reference to the local variable. These captures can occur either
1035/// implicitly or can be written explicitly between the square
1036/// brackets ([...]) that start the lambda expression.
1037class LambdaExpr : public Expr {
1038  enum {
1039    /// \brief Flag used by the Capture class to indicate that the given
1040    /// capture was implicit.
1041    Capture_Implicit = 0x01,
1042
1043    /// \brief Flag used by the Capture class to indciate that the
1044    /// given capture was by-copy.
1045    Capture_ByCopy = 0x02
1046  };
1047
1048  /// \brief The source range that covers the lambda introducer ([...]).
1049  SourceRange IntroducerRange;
1050
1051  /// \brief The default capture kind, which is a value of type
1052  /// LambdaCaptureDefault.
1053  unsigned CaptureDefault : 2;
1054
1055  /// \brief Whether this lambda had an explicit parameter list vs. an
1056  /// implicit (and empty) parameter list.
1057  unsigned ExplicitParams : 1;
1058
1059  /// \brief The location of the closing brace ('}') that completes
1060  /// the lambda.
1061  ///
1062  /// The location of the brace is also available by looking up the
1063  /// function call operator in the lambda class. However, it is
1064  /// stored here to improve the performance of getSourceRange(), and
1065  /// to avoid having to deserialize the function call operator from a
1066  /// module file just to determine the source range.
1067  SourceLocation ClosingBrace;
1068
1069  // Note: The Create method allocates storage after the LambdaExpr
1070  // object, which contains the captures, followed by the capture
1071  // initializers, and finally the body of the lambda. The capture
1072  // initializers and lambda body are placed next to each other so
1073  // that the children() function can visit all of them easily.
1074
1075public:
1076  /// \brief Describes the capture of either a variable or 'this'.
1077  class Capture {
1078    llvm::PointerIntPair<VarDecl *, 2> VarAndBits;
1079    SourceLocation Loc;
1080    SourceLocation EllipsisLoc;
1081
1082    friend class ASTStmtReader;
1083    friend class ASTStmtWriter;
1084
1085  public:
1086    /// \brief Create a new capture.
1087    ///
1088    /// \param Loc The source location associated with this capture.
1089    ///
1090    /// \param Kind The kind of capture (this, byref, bycopy).
1091    ///
1092    /// \param Implicit Whether the capture was implicit or explicit.
1093    ///
1094    /// \param Var The local variable being captured, or null if capturing this.
1095    ///
1096    /// \param EllipsisLoc The location of the ellipsis (...) for a
1097    /// capture that is a pack expansion, or an invalid source
1098    /// location to indicate that this is not a pack expansion.
1099    Capture(SourceLocation Loc, bool Implicit,
1100            LambdaCaptureKind Kind, VarDecl *Var = 0,
1101            SourceLocation EllipsisLoc = SourceLocation());
1102
1103    /// \brief Determine the kind of capture.
1104    LambdaCaptureKind getCaptureKind() const;
1105
1106    /// \brief Determine whether this capture handles the C++ 'this'
1107    /// pointer.
1108    bool capturesThis() const { return VarAndBits.getPointer() == 0; }
1109
1110    /// \brief Determine whether this capture handles a variable.
1111    bool capturesVariable() const { return VarAndBits.getPointer() != 0; }
1112
1113    /// \brief Retrieve the declaration of the local variable being
1114    /// captured.
1115    ///
1116    /// This operation is only valid if this capture does not capture
1117    /// 'this'.
1118    VarDecl *getCapturedVar() const {
1119      assert(!capturesThis() && "No variable available for 'this' capture");
1120      return VarAndBits.getPointer();
1121    }
1122
1123    /// \brief Determine whether this was an implicit capture (not
1124    /// written between the square brackets introducing the lambda).
1125    bool isImplicit() const { return VarAndBits.getInt() & Capture_Implicit; }
1126
1127    /// \brief Determine whether this was an explicit capture, written
1128    /// between the square brackets introducing the lambda.
1129    bool isExplicit() const { return !isImplicit(); }
1130
1131    /// \brief Retrieve the source location of the capture.
1132    ///
1133    /// For an explicit capture, this returns the location of the
1134    /// explicit capture in the source. For an implicit capture, this
1135    /// returns the location at which the variable or 'this' was first
1136    /// used.
1137    SourceLocation getLocation() const { return Loc; }
1138
1139    /// \brief Determine whether this capture is a pack expansion,
1140    /// which captures a function parameter pack.
1141    bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1142
1143    /// \brief Retrieve the location of the ellipsis for a capture
1144    /// that is a pack expansion.
1145    SourceLocation getEllipsisLoc() const {
1146      assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1147      return EllipsisLoc;
1148    }
1149  };
1150
1151private:
1152  /// \brief Construct a lambda expression.
1153  LambdaExpr(QualType T, SourceRange IntroducerRange,
1154             LambdaCaptureDefault CaptureDefault,
1155             ArrayRef<Capture> Captures,
1156             bool ExplicitParams,
1157             ArrayRef<Expr *> CaptureInits,
1158             SourceLocation ClosingBrace);
1159
1160public:
1161  /// \brief Construct a new lambda expression.
1162  static LambdaExpr *Create(ASTContext &C,
1163                            CXXRecordDecl *Class,
1164                            SourceRange IntroducerRange,
1165                            LambdaCaptureDefault CaptureDefault,
1166                            ArrayRef<Capture> Captures,
1167                            bool ExplicitParams,
1168                            ArrayRef<Expr *> CaptureInits,
1169                            SourceLocation ClosingBrace);
1170
1171  /// \brief Determine the default capture kind for this lambda.
1172  LambdaCaptureDefault getCaptureDefault() const {
1173    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1174  }
1175
1176  /// \brief An iterator that walks over the captures of the lambda,
1177  /// both implicit and explicit.
1178  typedef const Capture *capture_iterator;
1179
1180  /// \brief Retrieve an iterator pointing to the first lambda capture.
1181  capture_iterator capture_begin() const;
1182
1183  /// \brief Retrieve an iterator pointing past the end of the
1184  /// sequence of lambda captures.
1185  capture_iterator capture_end() const;
1186
1187  /// \brief Retrieve an iterator pointing to the first explicit
1188  /// lambda capture.
1189  capture_iterator explicit_capture_begin() const;
1190
1191  /// \brief Retrieve an iterator pointing past the end of the sequence of
1192  /// explicit lambda captures.
1193  capture_iterator explicit_capture_end() const;
1194
1195  /// \brief Retrieve an iterator pointing to the first implicit
1196  /// lambda capture.
1197  capture_iterator implicit_capture_begin() const;
1198
1199  /// \brief Retrieve an iterator pointing past the end of the sequence of
1200  /// implicit lambda captures.
1201  capture_iterator implicit_capture_end() const;
1202
1203  /// \brief Iterator that walks over the capture initialization
1204  /// arguments.
1205  typedef Expr **capture_init_iterator;
1206
1207  /// \brief Retrieve the first initialization argument for this
1208  /// lambda expression (which initializes the first capture field).
1209  capture_init_iterator capture_init_begin() const;
1210
1211  /// \brief Retrieve the iterator pointing one past the last
1212  /// initialization argument for this lambda expression.
1213  capture_init_iterator capture_init_end() const;
1214
1215  /// \brief Retrieve the source range covering the lambda introducer,
1216  /// which contains the explicit capture list surrounded by square
1217  /// brackets ([...]).
1218  SourceRange getIntroducerRange() const { return IntroducerRange; }
1219
1220  /// \brief Retrieve the class that corresponds to the lambda, which
1221  /// stores the captures in its fields and provides the various
1222  /// operations permitted on a lambda (copying, calling).
1223  CXXRecordDecl *getLambdaClass() const;
1224
1225  /// \brief Retrieve the function call operator associated with this
1226  /// lambda expression.
1227  CXXMethodDecl *getCallOperator() const;
1228
1229  /// \brief Retrieve the body of the lambda.
1230  CompoundStmt *getBody() const;
1231
1232  /// \brief Determine whether the lambda is mutable, meaning that any
1233  /// captures values can be modified.
1234  bool isMutable() const;
1235
1236  /// \brief Determine whether this lambda has an explicit parameter
1237  /// list vs. an implicit (empty) parameter list.
1238  bool hasExplicitParameters() const { return ExplicitParams; }
1239
1240  static bool classof(const Stmt *T) {
1241    return T->getStmtClass() == LambdaExprClass;
1242  }
1243  static bool classof(const LambdaExpr *) { return true; }
1244
1245  SourceRange getSourceRange() const {
1246    return SourceRange(IntroducerRange.getBegin(), ClosingBrace);
1247  }
1248
1249  child_range children();
1250
1251  friend class ASTStmtReader;
1252  friend class ASTStmtWriter;
1253};
1254
1255/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1256/// Expression "T()" which creates a value-initialized rvalue of type
1257/// T, which is a non-class type.
1258///
1259class CXXScalarValueInitExpr : public Expr {
1260  SourceLocation RParenLoc;
1261  TypeSourceInfo *TypeInfo;
1262
1263  friend class ASTStmtReader;
1264
1265public:
1266  /// \brief Create an explicitly-written scalar-value initialization
1267  /// expression.
1268  CXXScalarValueInitExpr(QualType Type,
1269                         TypeSourceInfo *TypeInfo,
1270                         SourceLocation rParenLoc ) :
1271    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1272         false, false, Type->isInstantiationDependentType(), false),
1273    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1274
1275  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1276    : Expr(CXXScalarValueInitExprClass, Shell) { }
1277
1278  TypeSourceInfo *getTypeSourceInfo() const {
1279    return TypeInfo;
1280  }
1281
1282  SourceLocation getRParenLoc() const { return RParenLoc; }
1283
1284  SourceRange getSourceRange() const;
1285
1286  static bool classof(const Stmt *T) {
1287    return T->getStmtClass() == CXXScalarValueInitExprClass;
1288  }
1289  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1290
1291  // Iterators
1292  child_range children() { return child_range(); }
1293};
1294
1295/// CXXNewExpr - A new expression for memory allocation and constructor calls,
1296/// e.g: "new CXXNewExpr(foo)".
1297class CXXNewExpr : public Expr {
1298  // Was the usage ::new, i.e. is the global new to be used?
1299  bool GlobalNew : 1;
1300  // Is there an initializer? If not, built-ins are uninitialized, else they're
1301  // value-initialized.
1302  bool Initializer : 1;
1303  // Do we allocate an array? If so, the first SubExpr is the size expression.
1304  bool Array : 1;
1305  // If this is an array allocation, does the usual deallocation
1306  // function for the allocated type want to know the allocated size?
1307  bool UsualArrayDeleteWantsSize : 1;
1308  // Whether the referred constructor (if any) was resolved from an
1309  // overload set having size greater than 1.
1310  bool HadMultipleCandidates : 1;
1311  // The number of placement new arguments.
1312  unsigned NumPlacementArgs : 13;
1313  // The number of constructor arguments. This may be 1 even for non-class
1314  // types; use the pseudo copy constructor.
1315  unsigned NumConstructorArgs : 14;
1316  // Contains an optional array size expression, any number of optional
1317  // placement arguments, and any number of optional constructor arguments,
1318  // in that order.
1319  Stmt **SubExprs;
1320  // Points to the allocation function used.
1321  FunctionDecl *OperatorNew;
1322  // Points to the deallocation function used in case of error. May be null.
1323  FunctionDecl *OperatorDelete;
1324  // Points to the constructor used. Cannot be null if AllocType is a record;
1325  // it would still point at the default constructor (even an implicit one).
1326  // Must be null for all other types.
1327  CXXConstructorDecl *Constructor;
1328
1329  /// \brief The allocated type-source information, as written in the source.
1330  TypeSourceInfo *AllocatedTypeInfo;
1331
1332  /// \brief If the allocated type was expressed as a parenthesized type-id,
1333  /// the source range covering the parenthesized type-id.
1334  SourceRange TypeIdParens;
1335
1336  SourceLocation StartLoc;
1337  SourceLocation EndLoc;
1338  SourceLocation ConstructorLParen;
1339  SourceLocation ConstructorRParen;
1340
1341  friend class ASTStmtReader;
1342public:
1343  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1344             Expr **placementArgs, unsigned numPlaceArgs,
1345             SourceRange TypeIdParens,
1346             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1347             Expr **constructorArgs, unsigned numConsArgs,
1348             bool HadMultipleCandidates,
1349             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1350             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1351             SourceLocation startLoc, SourceLocation endLoc,
1352             SourceLocation constructorLParen,
1353             SourceLocation constructorRParen);
1354  explicit CXXNewExpr(EmptyShell Shell)
1355    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1356
1357  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1358                         unsigned numConsArgs);
1359
1360  QualType getAllocatedType() const {
1361    assert(getType()->isPointerType());
1362    return getType()->getAs<PointerType>()->getPointeeType();
1363  }
1364
1365  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1366    return AllocatedTypeInfo;
1367  }
1368
1369  /// \brief True if the allocation result needs to be null-checked.
1370  /// C++0x [expr.new]p13:
1371  ///   If the allocation function returns null, initialization shall
1372  ///   not be done, the deallocation function shall not be called,
1373  ///   and the value of the new-expression shall be null.
1374  /// An allocation function is not allowed to return null unless it
1375  /// has a non-throwing exception-specification.  The '03 rule is
1376  /// identical except that the definition of a non-throwing
1377  /// exception specification is just "is it throw()?".
1378  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1379
1380  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1381  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1382  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1383  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1384  CXXConstructorDecl *getConstructor() const { return Constructor; }
1385  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1386
1387  bool isArray() const { return Array; }
1388  Expr *getArraySize() {
1389    return Array ? cast<Expr>(SubExprs[0]) : 0;
1390  }
1391  const Expr *getArraySize() const {
1392    return Array ? cast<Expr>(SubExprs[0]) : 0;
1393  }
1394
1395  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1396  Expr **getPlacementArgs() {
1397    return reinterpret_cast<Expr **>(SubExprs + Array);
1398  }
1399
1400  Expr *getPlacementArg(unsigned i) {
1401    assert(i < NumPlacementArgs && "Index out of range");
1402    return cast<Expr>(SubExprs[Array + i]);
1403  }
1404  const Expr *getPlacementArg(unsigned i) const {
1405    assert(i < NumPlacementArgs && "Index out of range");
1406    return cast<Expr>(SubExprs[Array + i]);
1407  }
1408
1409  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1410  SourceRange getTypeIdParens() const { return TypeIdParens; }
1411
1412  bool isGlobalNew() const { return GlobalNew; }
1413  bool hasInitializer() const { return Initializer; }
1414
1415  /// Answers whether the usual array deallocation function for the
1416  /// allocated type expects the size of the allocation as a
1417  /// parameter.
1418  bool doesUsualArrayDeleteWantSize() const {
1419    return UsualArrayDeleteWantsSize;
1420  }
1421
1422  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1423
1424  Expr **getConstructorArgs() {
1425    return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
1426  }
1427
1428  Expr *getConstructorArg(unsigned i) {
1429    assert(i < NumConstructorArgs && "Index out of range");
1430    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1431  }
1432  const Expr *getConstructorArg(unsigned i) const {
1433    assert(i < NumConstructorArgs && "Index out of range");
1434    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1435  }
1436
1437  /// \brief Whether the new expression refers a constructor that was
1438  /// resolved from an overloaded set having size greater than 1.
1439  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
1440  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
1441
1442  typedef ExprIterator arg_iterator;
1443  typedef ConstExprIterator const_arg_iterator;
1444
1445  arg_iterator placement_arg_begin() {
1446    return SubExprs + Array;
1447  }
1448  arg_iterator placement_arg_end() {
1449    return SubExprs + Array + getNumPlacementArgs();
1450  }
1451  const_arg_iterator placement_arg_begin() const {
1452    return SubExprs + Array;
1453  }
1454  const_arg_iterator placement_arg_end() const {
1455    return SubExprs + Array + getNumPlacementArgs();
1456  }
1457
1458  arg_iterator constructor_arg_begin() {
1459    return SubExprs + Array + getNumPlacementArgs();
1460  }
1461  arg_iterator constructor_arg_end() {
1462    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1463  }
1464  const_arg_iterator constructor_arg_begin() const {
1465    return SubExprs + Array + getNumPlacementArgs();
1466  }
1467  const_arg_iterator constructor_arg_end() const {
1468    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1469  }
1470
1471  typedef Stmt **raw_arg_iterator;
1472  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1473  raw_arg_iterator raw_arg_end() {
1474    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1475  }
1476  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1477  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1478
1479  SourceLocation getStartLoc() const { return StartLoc; }
1480  SourceLocation getEndLoc() const { return EndLoc; }
1481
1482  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1483  SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1484
1485  SourceRange getSourceRange() const {
1486    return SourceRange(StartLoc, EndLoc);
1487  }
1488
1489  static bool classof(const Stmt *T) {
1490    return T->getStmtClass() == CXXNewExprClass;
1491  }
1492  static bool classof(const CXXNewExpr *) { return true; }
1493
1494  // Iterators
1495  child_range children() {
1496    return child_range(&SubExprs[0],
1497                       &SubExprs[0] + Array + getNumPlacementArgs()
1498                         + getNumConstructorArgs());
1499  }
1500};
1501
1502/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1503/// calls, e.g. "delete[] pArray".
1504class CXXDeleteExpr : public Expr {
1505  // Is this a forced global delete, i.e. "::delete"?
1506  bool GlobalDelete : 1;
1507  // Is this the array form of delete, i.e. "delete[]"?
1508  bool ArrayForm : 1;
1509  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1510  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1511  // will be true).
1512  bool ArrayFormAsWritten : 1;
1513  // Does the usual deallocation function for the element type require
1514  // a size_t argument?
1515  bool UsualArrayDeleteWantsSize : 1;
1516  // Points to the operator delete overload that is used. Could be a member.
1517  FunctionDecl *OperatorDelete;
1518  // The pointer expression to be deleted.
1519  Stmt *Argument;
1520  // Location of the expression.
1521  SourceLocation Loc;
1522public:
1523  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1524                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1525                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1526    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1527           arg->isInstantiationDependent(),
1528           arg->containsUnexpandedParameterPack()),
1529      GlobalDelete(globalDelete),
1530      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1531      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1532      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1533  explicit CXXDeleteExpr(EmptyShell Shell)
1534    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1535
1536  bool isGlobalDelete() const { return GlobalDelete; }
1537  bool isArrayForm() const { return ArrayForm; }
1538  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1539
1540  /// Answers whether the usual array deallocation function for the
1541  /// allocated type expects the size of the allocation as a
1542  /// parameter.  This can be true even if the actual deallocation
1543  /// function that we're using doesn't want a size.
1544  bool doesUsualArrayDeleteWantSize() const {
1545    return UsualArrayDeleteWantsSize;
1546  }
1547
1548  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1549
1550  Expr *getArgument() { return cast<Expr>(Argument); }
1551  const Expr *getArgument() const { return cast<Expr>(Argument); }
1552
1553  /// \brief Retrieve the type being destroyed.  If the type being
1554  /// destroyed is a dependent type which may or may not be a pointer,
1555  /// return an invalid type.
1556  QualType getDestroyedType() const;
1557
1558  SourceRange getSourceRange() const {
1559    return SourceRange(Loc, Argument->getLocEnd());
1560  }
1561
1562  static bool classof(const Stmt *T) {
1563    return T->getStmtClass() == CXXDeleteExprClass;
1564  }
1565  static bool classof(const CXXDeleteExpr *) { return true; }
1566
1567  // Iterators
1568  child_range children() { return child_range(&Argument, &Argument+1); }
1569
1570  friend class ASTStmtReader;
1571};
1572
1573/// \brief Structure used to store the type being destroyed by a
1574/// pseudo-destructor expression.
1575class PseudoDestructorTypeStorage {
1576  /// \brief Either the type source information or the name of the type, if
1577  /// it couldn't be resolved due to type-dependence.
1578  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1579
1580  /// \brief The starting source location of the pseudo-destructor type.
1581  SourceLocation Location;
1582
1583public:
1584  PseudoDestructorTypeStorage() { }
1585
1586  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1587    : Type(II), Location(Loc) { }
1588
1589  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1590
1591  TypeSourceInfo *getTypeSourceInfo() const {
1592    return Type.dyn_cast<TypeSourceInfo *>();
1593  }
1594
1595  IdentifierInfo *getIdentifier() const {
1596    return Type.dyn_cast<IdentifierInfo *>();
1597  }
1598
1599  SourceLocation getLocation() const { return Location; }
1600};
1601
1602/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1603///
1604/// A pseudo-destructor is an expression that looks like a member access to a
1605/// destructor of a scalar type, except that scalar types don't have
1606/// destructors. For example:
1607///
1608/// \code
1609/// typedef int T;
1610/// void f(int *p) {
1611///   p->T::~T();
1612/// }
1613/// \endcode
1614///
1615/// Pseudo-destructors typically occur when instantiating templates such as:
1616///
1617/// \code
1618/// template<typename T>
1619/// void destroy(T* ptr) {
1620///   ptr->T::~T();
1621/// }
1622/// \endcode
1623///
1624/// for scalar types. A pseudo-destructor expression has no run-time semantics
1625/// beyond evaluating the base expression.
1626class CXXPseudoDestructorExpr : public Expr {
1627  /// \brief The base expression (that is being destroyed).
1628  Stmt *Base;
1629
1630  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1631  /// period ('.').
1632  bool IsArrow : 1;
1633
1634  /// \brief The location of the '.' or '->' operator.
1635  SourceLocation OperatorLoc;
1636
1637  /// \brief The nested-name-specifier that follows the operator, if present.
1638  NestedNameSpecifierLoc QualifierLoc;
1639
1640  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1641  /// expression.
1642  TypeSourceInfo *ScopeType;
1643
1644  /// \brief The location of the '::' in a qualified pseudo-destructor
1645  /// expression.
1646  SourceLocation ColonColonLoc;
1647
1648  /// \brief The location of the '~'.
1649  SourceLocation TildeLoc;
1650
1651  /// \brief The type being destroyed, or its name if we were unable to
1652  /// resolve the name.
1653  PseudoDestructorTypeStorage DestroyedType;
1654
1655  friend class ASTStmtReader;
1656
1657public:
1658  CXXPseudoDestructorExpr(ASTContext &Context,
1659                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1660                          NestedNameSpecifierLoc QualifierLoc,
1661                          TypeSourceInfo *ScopeType,
1662                          SourceLocation ColonColonLoc,
1663                          SourceLocation TildeLoc,
1664                          PseudoDestructorTypeStorage DestroyedType);
1665
1666  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1667    : Expr(CXXPseudoDestructorExprClass, Shell),
1668      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1669
1670  Expr *getBase() const { return cast<Expr>(Base); }
1671
1672  /// \brief Determines whether this member expression actually had
1673  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1674  /// x->Base::foo.
1675  bool hasQualifier() const { return QualifierLoc; }
1676
1677  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1678  /// with source-location information.
1679  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1680
1681  /// \brief If the member name was qualified, retrieves the
1682  /// nested-name-specifier that precedes the member name. Otherwise, returns
1683  /// NULL.
1684  NestedNameSpecifier *getQualifier() const {
1685    return QualifierLoc.getNestedNameSpecifier();
1686  }
1687
1688  /// \brief Determine whether this pseudo-destructor expression was written
1689  /// using an '->' (otherwise, it used a '.').
1690  bool isArrow() const { return IsArrow; }
1691
1692  /// \brief Retrieve the location of the '.' or '->' operator.
1693  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1694
1695  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1696  /// expression.
1697  ///
1698  /// Pseudo-destructor expressions can have extra qualification within them
1699  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1700  /// Here, if the object type of the expression is (or may be) a scalar type,
1701  /// \p T may also be a scalar type and, therefore, cannot be part of a
1702  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1703  /// destructor expression.
1704  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1705
1706  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1707  /// expression.
1708  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1709
1710  /// \brief Retrieve the location of the '~'.
1711  SourceLocation getTildeLoc() const { return TildeLoc; }
1712
1713  /// \brief Retrieve the source location information for the type
1714  /// being destroyed.
1715  ///
1716  /// This type-source information is available for non-dependent
1717  /// pseudo-destructor expressions and some dependent pseudo-destructor
1718  /// expressions. Returns NULL if we only have the identifier for a
1719  /// dependent pseudo-destructor expression.
1720  TypeSourceInfo *getDestroyedTypeInfo() const {
1721    return DestroyedType.getTypeSourceInfo();
1722  }
1723
1724  /// \brief In a dependent pseudo-destructor expression for which we do not
1725  /// have full type information on the destroyed type, provides the name
1726  /// of the destroyed type.
1727  IdentifierInfo *getDestroyedTypeIdentifier() const {
1728    return DestroyedType.getIdentifier();
1729  }
1730
1731  /// \brief Retrieve the type being destroyed.
1732  QualType getDestroyedType() const;
1733
1734  /// \brief Retrieve the starting location of the type being destroyed.
1735  SourceLocation getDestroyedTypeLoc() const {
1736    return DestroyedType.getLocation();
1737  }
1738
1739  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1740  /// expression.
1741  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1742    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1743  }
1744
1745  /// \brief Set the destroyed type.
1746  void setDestroyedType(TypeSourceInfo *Info) {
1747    DestroyedType = PseudoDestructorTypeStorage(Info);
1748  }
1749
1750  SourceRange getSourceRange() const;
1751
1752  static bool classof(const Stmt *T) {
1753    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1754  }
1755  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1756
1757  // Iterators
1758  child_range children() { return child_range(&Base, &Base + 1); }
1759};
1760
1761/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1762/// implementation of TR1/C++0x type trait templates.
1763/// Example:
1764/// __is_pod(int) == true
1765/// __is_enum(std::string) == false
1766class UnaryTypeTraitExpr : public Expr {
1767  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1768  unsigned UTT : 31;
1769  /// The value of the type trait. Unspecified if dependent.
1770  bool Value : 1;
1771
1772  /// Loc - The location of the type trait keyword.
1773  SourceLocation Loc;
1774
1775  /// RParen - The location of the closing paren.
1776  SourceLocation RParen;
1777
1778  /// The type being queried.
1779  TypeSourceInfo *QueriedType;
1780
1781public:
1782  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1783                     TypeSourceInfo *queried, bool value,
1784                     SourceLocation rparen, QualType ty)
1785    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1786           false,  queried->getType()->isDependentType(),
1787           queried->getType()->isInstantiationDependentType(),
1788           queried->getType()->containsUnexpandedParameterPack()),
1789      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1790
1791  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1792    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1793      QueriedType() { }
1794
1795  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1796
1797  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1798
1799  QualType getQueriedType() const { return QueriedType->getType(); }
1800
1801  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1802
1803  bool getValue() const { return Value; }
1804
1805  static bool classof(const Stmt *T) {
1806    return T->getStmtClass() == UnaryTypeTraitExprClass;
1807  }
1808  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1809
1810  // Iterators
1811  child_range children() { return child_range(); }
1812
1813  friend class ASTStmtReader;
1814};
1815
1816/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1817/// implementation of TR1/C++0x type trait templates.
1818/// Example:
1819/// __is_base_of(Base, Derived) == true
1820class BinaryTypeTraitExpr : public Expr {
1821  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1822  unsigned BTT : 8;
1823
1824  /// The value of the type trait. Unspecified if dependent.
1825  bool Value : 1;
1826
1827  /// Loc - The location of the type trait keyword.
1828  SourceLocation Loc;
1829
1830  /// RParen - The location of the closing paren.
1831  SourceLocation RParen;
1832
1833  /// The lhs type being queried.
1834  TypeSourceInfo *LhsType;
1835
1836  /// The rhs type being queried.
1837  TypeSourceInfo *RhsType;
1838
1839public:
1840  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1841                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1842                     bool value, SourceLocation rparen, QualType ty)
1843    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1844           lhsType->getType()->isDependentType() ||
1845           rhsType->getType()->isDependentType(),
1846           (lhsType->getType()->isInstantiationDependentType() ||
1847            rhsType->getType()->isInstantiationDependentType()),
1848           (lhsType->getType()->containsUnexpandedParameterPack() ||
1849            rhsType->getType()->containsUnexpandedParameterPack())),
1850      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1851      LhsType(lhsType), RhsType(rhsType) { }
1852
1853
1854  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1855    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1856      LhsType(), RhsType() { }
1857
1858  SourceRange getSourceRange() const {
1859    return SourceRange(Loc, RParen);
1860  }
1861
1862  BinaryTypeTrait getTrait() const {
1863    return static_cast<BinaryTypeTrait>(BTT);
1864  }
1865
1866  QualType getLhsType() const { return LhsType->getType(); }
1867  QualType getRhsType() const { return RhsType->getType(); }
1868
1869  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1870  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1871
1872  bool getValue() const { assert(!isTypeDependent()); return Value; }
1873
1874  static bool classof(const Stmt *T) {
1875    return T->getStmtClass() == BinaryTypeTraitExprClass;
1876  }
1877  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1878
1879  // Iterators
1880  child_range children() { return child_range(); }
1881
1882  friend class ASTStmtReader;
1883};
1884
1885/// ArrayTypeTraitExpr - An Embarcadero array type trait, as used in the
1886/// implementation of __array_rank and __array_extent.
1887/// Example:
1888/// __array_rank(int[10][20]) == 2
1889/// __array_extent(int, 1)    == 20
1890class ArrayTypeTraitExpr : public Expr {
1891  virtual void anchor();
1892
1893  /// ATT - The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
1894  unsigned ATT : 2;
1895
1896  /// The value of the type trait. Unspecified if dependent.
1897  uint64_t Value;
1898
1899  /// The array dimension being queried, or -1 if not used
1900  Expr *Dimension;
1901
1902  /// Loc - The location of the type trait keyword.
1903  SourceLocation Loc;
1904
1905  /// RParen - The location of the closing paren.
1906  SourceLocation RParen;
1907
1908  /// The type being queried.
1909  TypeSourceInfo *QueriedType;
1910
1911public:
1912  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
1913                     TypeSourceInfo *queried, uint64_t value,
1914                     Expr *dimension, SourceLocation rparen, QualType ty)
1915    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1916           false, queried->getType()->isDependentType(),
1917           (queried->getType()->isInstantiationDependentType() ||
1918            (dimension && dimension->isInstantiationDependent())),
1919           queried->getType()->containsUnexpandedParameterPack()),
1920      ATT(att), Value(value), Dimension(dimension),
1921      Loc(loc), RParen(rparen), QueriedType(queried) { }
1922
1923
1924  explicit ArrayTypeTraitExpr(EmptyShell Empty)
1925    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
1926      QueriedType() { }
1927
1928  virtual ~ArrayTypeTraitExpr() { }
1929
1930  virtual SourceRange getSourceRange() const {
1931    return SourceRange(Loc, RParen);
1932  }
1933
1934  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
1935
1936  QualType getQueriedType() const { return QueriedType->getType(); }
1937
1938  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1939
1940  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
1941
1942  Expr *getDimensionExpression() const { return Dimension; }
1943
1944  static bool classof(const Stmt *T) {
1945    return T->getStmtClass() == ArrayTypeTraitExprClass;
1946  }
1947  static bool classof(const ArrayTypeTraitExpr *) { return true; }
1948
1949  // Iterators
1950  child_range children() { return child_range(); }
1951
1952  friend class ASTStmtReader;
1953};
1954
1955/// ExpressionTraitExpr - An expression trait intrinsic
1956/// Example:
1957/// __is_lvalue_expr(std::cout) == true
1958/// __is_lvalue_expr(1) == false
1959class ExpressionTraitExpr : public Expr {
1960  /// ET - The trait. A ExpressionTrait enum in MSVC compat unsigned.
1961  unsigned ET : 31;
1962  /// The value of the type trait. Unspecified if dependent.
1963  bool Value : 1;
1964
1965  /// Loc - The location of the type trait keyword.
1966  SourceLocation Loc;
1967
1968  /// RParen - The location of the closing paren.
1969  SourceLocation RParen;
1970
1971  Expr* QueriedExpression;
1972public:
1973  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
1974                     Expr *queried, bool value,
1975                     SourceLocation rparen, QualType resultType)
1976    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1977           false, // Not type-dependent
1978           // Value-dependent if the argument is type-dependent.
1979           queried->isTypeDependent(),
1980           queried->isInstantiationDependent(),
1981           queried->containsUnexpandedParameterPack()),
1982      ET(et), Value(value), Loc(loc), RParen(rparen),
1983      QueriedExpression(queried) { }
1984
1985  explicit ExpressionTraitExpr(EmptyShell Empty)
1986    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
1987      QueriedExpression() { }
1988
1989  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1990
1991  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
1992
1993  Expr *getQueriedExpression() const { return QueriedExpression; }
1994
1995  bool getValue() const { return Value; }
1996
1997  static bool classof(const Stmt *T) {
1998    return T->getStmtClass() == ExpressionTraitExprClass;
1999  }
2000  static bool classof(const ExpressionTraitExpr *) { return true; }
2001
2002  // Iterators
2003  child_range children() { return child_range(); }
2004
2005  friend class ASTStmtReader;
2006};
2007
2008
2009/// \brief A reference to an overloaded function set, either an
2010/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
2011class OverloadExpr : public Expr {
2012  /// The results.  These are undesugared, which is to say, they may
2013  /// include UsingShadowDecls.  Access is relative to the naming
2014  /// class.
2015  // FIXME: Allocate this data after the OverloadExpr subclass.
2016  DeclAccessPair *Results;
2017  unsigned NumResults;
2018
2019  /// The common name of these declarations.
2020  DeclarationNameInfo NameInfo;
2021
2022  /// \brief The nested-name-specifier that qualifies the name, if any.
2023  NestedNameSpecifierLoc QualifierLoc;
2024
2025protected:
2026  /// \brief Whether the name includes info for explicit template
2027  /// keyword and arguments.
2028  bool HasTemplateKWAndArgsInfo;
2029
2030  /// \brief Return the optional template keyword and arguments info.
2031  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2032
2033  /// \brief Return the optional template keyword and arguments info.
2034  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2035    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2036  }
2037
2038  OverloadExpr(StmtClass K, ASTContext &C,
2039               NestedNameSpecifierLoc QualifierLoc,
2040               SourceLocation TemplateKWLoc,
2041               const DeclarationNameInfo &NameInfo,
2042               const TemplateArgumentListInfo *TemplateArgs,
2043               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2044               bool KnownDependent,
2045               bool KnownInstantiationDependent,
2046               bool KnownContainsUnexpandedParameterPack);
2047
2048  OverloadExpr(StmtClass K, EmptyShell Empty)
2049    : Expr(K, Empty), Results(0), NumResults(0),
2050      QualifierLoc(), HasTemplateKWAndArgsInfo(false) { }
2051
2052  void initializeResults(ASTContext &C,
2053                         UnresolvedSetIterator Begin,
2054                         UnresolvedSetIterator End);
2055
2056public:
2057  struct FindResult {
2058    OverloadExpr *Expression;
2059    bool IsAddressOfOperand;
2060    bool HasFormOfMemberPointer;
2061  };
2062
2063  /// Finds the overloaded expression in the given expression of
2064  /// OverloadTy.
2065  ///
2066  /// \return the expression (which must be there) and true if it has
2067  /// the particular form of a member pointer expression
2068  static FindResult find(Expr *E) {
2069    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2070
2071    FindResult Result;
2072
2073    E = E->IgnoreParens();
2074    if (isa<UnaryOperator>(E)) {
2075      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2076      E = cast<UnaryOperator>(E)->getSubExpr();
2077      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2078
2079      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2080      Result.IsAddressOfOperand = true;
2081      Result.Expression = Ovl;
2082    } else {
2083      Result.HasFormOfMemberPointer = false;
2084      Result.IsAddressOfOperand = false;
2085      Result.Expression = cast<OverloadExpr>(E);
2086    }
2087
2088    return Result;
2089  }
2090
2091  /// Gets the naming class of this lookup, if any.
2092  CXXRecordDecl *getNamingClass() const;
2093
2094  typedef UnresolvedSetImpl::iterator decls_iterator;
2095  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2096  decls_iterator decls_end() const {
2097    return UnresolvedSetIterator(Results + NumResults);
2098  }
2099
2100  /// Gets the number of declarations in the unresolved set.
2101  unsigned getNumDecls() const { return NumResults; }
2102
2103  /// Gets the full name info.
2104  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2105
2106  /// Gets the name looked up.
2107  DeclarationName getName() const { return NameInfo.getName(); }
2108
2109  /// Gets the location of the name.
2110  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2111
2112  /// Fetches the nested-name qualifier, if one was given.
2113  NestedNameSpecifier *getQualifier() const {
2114    return QualifierLoc.getNestedNameSpecifier();
2115  }
2116
2117  /// Fetches the nested-name qualifier with source-location information, if
2118  /// one was given.
2119  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2120
2121  /// \brief Retrieve the location of the template keyword preceding
2122  /// this name, if any.
2123  SourceLocation getTemplateKeywordLoc() const {
2124    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2125    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2126  }
2127
2128  /// \brief Retrieve the location of the left angle bracket starting the
2129  /// explicit template argument list following the name, if any.
2130  SourceLocation getLAngleLoc() const {
2131    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2132    return getTemplateKWAndArgsInfo()->LAngleLoc;
2133  }
2134
2135  /// \brief Retrieve the location of the right angle bracket ending the
2136  /// explicit template argument list following the name, if any.
2137  SourceLocation getRAngleLoc() const {
2138    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2139    return getTemplateKWAndArgsInfo()->RAngleLoc;
2140  }
2141
2142  /// Determines whether the name was preceded by the template keyword.
2143  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2144
2145  /// Determines whether this expression had explicit template arguments.
2146  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2147
2148  // Note that, inconsistently with the explicit-template-argument AST
2149  // nodes, users are *forbidden* from calling these methods on objects
2150  // without explicit template arguments.
2151
2152  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2153    assert(hasExplicitTemplateArgs());
2154    return *getTemplateKWAndArgsInfo();
2155  }
2156
2157  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2158    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2159  }
2160
2161  TemplateArgumentLoc const *getTemplateArgs() const {
2162    return getExplicitTemplateArgs().getTemplateArgs();
2163  }
2164
2165  unsigned getNumTemplateArgs() const {
2166    return getExplicitTemplateArgs().NumTemplateArgs;
2167  }
2168
2169  /// Copies the template arguments into the given structure.
2170  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2171    getExplicitTemplateArgs().copyInto(List);
2172  }
2173
2174  /// \brief Retrieves the optional explicit template arguments.
2175  /// This points to the same data as getExplicitTemplateArgs(), but
2176  /// returns null if there are no explicit template arguments.
2177  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2178    if (!hasExplicitTemplateArgs()) return 0;
2179    return &getExplicitTemplateArgs();
2180  }
2181
2182  static bool classof(const Stmt *T) {
2183    return T->getStmtClass() == UnresolvedLookupExprClass ||
2184           T->getStmtClass() == UnresolvedMemberExprClass;
2185  }
2186  static bool classof(const OverloadExpr *) { return true; }
2187
2188  friend class ASTStmtReader;
2189  friend class ASTStmtWriter;
2190};
2191
2192/// \brief A reference to a name which we were able to look up during
2193/// parsing but could not resolve to a specific declaration.  This
2194/// arises in several ways:
2195///   * we might be waiting for argument-dependent lookup
2196///   * the name might resolve to an overloaded function
2197/// and eventually:
2198///   * the lookup might have included a function template
2199/// These never include UnresolvedUsingValueDecls, which are always
2200/// class members and therefore appear only in
2201/// UnresolvedMemberLookupExprs.
2202class UnresolvedLookupExpr : public OverloadExpr {
2203  /// True if these lookup results should be extended by
2204  /// argument-dependent lookup if this is the operand of a function
2205  /// call.
2206  bool RequiresADL;
2207
2208  /// True if namespace ::std should be considered an associated namespace
2209  /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
2210  bool StdIsAssociatedNamespace;
2211
2212  /// True if these lookup results are overloaded.  This is pretty
2213  /// trivially rederivable if we urgently need to kill this field.
2214  bool Overloaded;
2215
2216  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2217  /// any.  This can generally be recalculated from the context chain,
2218  /// but that can be fairly expensive for unqualified lookups.  If we
2219  /// want to improve memory use here, this could go in a union
2220  /// against the qualified-lookup bits.
2221  CXXRecordDecl *NamingClass;
2222
2223  UnresolvedLookupExpr(ASTContext &C,
2224                       CXXRecordDecl *NamingClass,
2225                       NestedNameSpecifierLoc QualifierLoc,
2226                       SourceLocation TemplateKWLoc,
2227                       const DeclarationNameInfo &NameInfo,
2228                       bool RequiresADL, bool Overloaded,
2229                       const TemplateArgumentListInfo *TemplateArgs,
2230                       UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2231                       bool StdIsAssociatedNamespace)
2232    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2233                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2234      RequiresADL(RequiresADL),
2235      StdIsAssociatedNamespace(StdIsAssociatedNamespace),
2236      Overloaded(Overloaded), NamingClass(NamingClass)
2237  {}
2238
2239  UnresolvedLookupExpr(EmptyShell Empty)
2240    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2241      RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
2242      NamingClass(0)
2243  {}
2244
2245  friend class ASTStmtReader;
2246
2247public:
2248  static UnresolvedLookupExpr *Create(ASTContext &C,
2249                                      CXXRecordDecl *NamingClass,
2250                                      NestedNameSpecifierLoc QualifierLoc,
2251                                      const DeclarationNameInfo &NameInfo,
2252                                      bool ADL, bool Overloaded,
2253                                      UnresolvedSetIterator Begin,
2254                                      UnresolvedSetIterator End,
2255                                      bool StdIsAssociatedNamespace = false) {
2256    assert((ADL || !StdIsAssociatedNamespace) &&
2257           "std considered associated namespace when not performing ADL");
2258    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2259                                       SourceLocation(), NameInfo,
2260                                       ADL, Overloaded, 0, Begin, End,
2261                                       StdIsAssociatedNamespace);
2262  }
2263
2264  static UnresolvedLookupExpr *Create(ASTContext &C,
2265                                      CXXRecordDecl *NamingClass,
2266                                      NestedNameSpecifierLoc QualifierLoc,
2267                                      SourceLocation TemplateKWLoc,
2268                                      const DeclarationNameInfo &NameInfo,
2269                                      bool ADL,
2270                                      const TemplateArgumentListInfo *Args,
2271                                      UnresolvedSetIterator Begin,
2272                                      UnresolvedSetIterator End);
2273
2274  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
2275                                           bool HasTemplateKWAndArgsInfo,
2276                                           unsigned NumTemplateArgs);
2277
2278  /// True if this declaration should be extended by
2279  /// argument-dependent lookup.
2280  bool requiresADL() const { return RequiresADL; }
2281
2282  /// True if namespace ::std should be artificially added to the set of
2283  /// associated namespaecs for argument-dependent lookup purposes.
2284  bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
2285
2286  /// True if this lookup is overloaded.
2287  bool isOverloaded() const { return Overloaded; }
2288
2289  /// Gets the 'naming class' (in the sense of C++0x
2290  /// [class.access.base]p5) of the lookup.  This is the scope
2291  /// that was looked in to find these results.
2292  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2293
2294  SourceRange getSourceRange() const {
2295    SourceRange Range(getNameInfo().getSourceRange());
2296    if (getQualifierLoc())
2297      Range.setBegin(getQualifierLoc().getBeginLoc());
2298    if (hasExplicitTemplateArgs())
2299      Range.setEnd(getRAngleLoc());
2300    return Range;
2301  }
2302
2303  child_range children() { return child_range(); }
2304
2305  static bool classof(const Stmt *T) {
2306    return T->getStmtClass() == UnresolvedLookupExprClass;
2307  }
2308  static bool classof(const UnresolvedLookupExpr *) { return true; }
2309};
2310
2311/// \brief A qualified reference to a name whose declaration cannot
2312/// yet be resolved.
2313///
2314/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2315/// it expresses a reference to a declaration such as
2316/// X<T>::value. The difference, however, is that an
2317/// DependentScopeDeclRefExpr node is used only within C++ templates when
2318/// the qualification (e.g., X<T>::) refers to a dependent type. In
2319/// this case, X<T>::value cannot resolve to a declaration because the
2320/// declaration will differ from on instantiation of X<T> to the
2321/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2322/// qualifier (X<T>::) and the name of the entity being referenced
2323/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2324/// declaration can be found.
2325class DependentScopeDeclRefExpr : public Expr {
2326  /// \brief The nested-name-specifier that qualifies this unresolved
2327  /// declaration name.
2328  NestedNameSpecifierLoc QualifierLoc;
2329
2330  /// The name of the entity we will be referencing.
2331  DeclarationNameInfo NameInfo;
2332
2333  /// \brief Whether the name includes info for explicit template
2334  /// keyword and arguments.
2335  bool HasTemplateKWAndArgsInfo;
2336
2337  /// \brief Return the optional template keyword and arguments info.
2338  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2339    if (!HasTemplateKWAndArgsInfo) return 0;
2340    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2341  }
2342  /// \brief Return the optional template keyword and arguments info.
2343  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2344    return const_cast<DependentScopeDeclRefExpr*>(this)
2345      ->getTemplateKWAndArgsInfo();
2346  }
2347
2348  DependentScopeDeclRefExpr(QualType T,
2349                            NestedNameSpecifierLoc QualifierLoc,
2350                            SourceLocation TemplateKWLoc,
2351                            const DeclarationNameInfo &NameInfo,
2352                            const TemplateArgumentListInfo *Args);
2353
2354public:
2355  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2356                                           NestedNameSpecifierLoc QualifierLoc,
2357                                           SourceLocation TemplateKWLoc,
2358                                           const DeclarationNameInfo &NameInfo,
2359                              const TemplateArgumentListInfo *TemplateArgs);
2360
2361  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2362                                                bool HasTemplateKWAndArgsInfo,
2363                                                unsigned NumTemplateArgs);
2364
2365  /// \brief Retrieve the name that this expression refers to.
2366  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2367
2368  /// \brief Retrieve the name that this expression refers to.
2369  DeclarationName getDeclName() const { return NameInfo.getName(); }
2370
2371  /// \brief Retrieve the location of the name within the expression.
2372  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2373
2374  /// \brief Retrieve the nested-name-specifier that qualifies the
2375  /// name, with source location information.
2376  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2377
2378
2379  /// \brief Retrieve the nested-name-specifier that qualifies this
2380  /// declaration.
2381  NestedNameSpecifier *getQualifier() const {
2382    return QualifierLoc.getNestedNameSpecifier();
2383  }
2384
2385  /// \brief Retrieve the location of the template keyword preceding
2386  /// this name, if any.
2387  SourceLocation getTemplateKeywordLoc() const {
2388    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2389    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2390  }
2391
2392  /// \brief Retrieve the location of the left angle bracket starting the
2393  /// explicit template argument list following the name, if any.
2394  SourceLocation getLAngleLoc() const {
2395    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2396    return getTemplateKWAndArgsInfo()->LAngleLoc;
2397  }
2398
2399  /// \brief Retrieve the location of the right angle bracket ending the
2400  /// explicit template argument list following the name, if any.
2401  SourceLocation getRAngleLoc() const {
2402    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2403    return getTemplateKWAndArgsInfo()->RAngleLoc;
2404  }
2405
2406  /// Determines whether the name was preceded by the template keyword.
2407  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2408
2409  /// Determines whether this lookup had explicit template arguments.
2410  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2411
2412  // Note that, inconsistently with the explicit-template-argument AST
2413  // nodes, users are *forbidden* from calling these methods on objects
2414  // without explicit template arguments.
2415
2416  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2417    assert(hasExplicitTemplateArgs());
2418    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2419  }
2420
2421  /// Gets a reference to the explicit template argument list.
2422  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2423    assert(hasExplicitTemplateArgs());
2424    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2425  }
2426
2427  /// \brief Retrieves the optional explicit template arguments.
2428  /// This points to the same data as getExplicitTemplateArgs(), but
2429  /// returns null if there are no explicit template arguments.
2430  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2431    if (!hasExplicitTemplateArgs()) return 0;
2432    return &getExplicitTemplateArgs();
2433  }
2434
2435  /// \brief Copies the template arguments (if present) into the given
2436  /// structure.
2437  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2438    getExplicitTemplateArgs().copyInto(List);
2439  }
2440
2441  TemplateArgumentLoc const *getTemplateArgs() const {
2442    return getExplicitTemplateArgs().getTemplateArgs();
2443  }
2444
2445  unsigned getNumTemplateArgs() const {
2446    return getExplicitTemplateArgs().NumTemplateArgs;
2447  }
2448
2449  SourceRange getSourceRange() const {
2450    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2451    if (hasExplicitTemplateArgs())
2452      Range.setEnd(getRAngleLoc());
2453    return Range;
2454  }
2455
2456  static bool classof(const Stmt *T) {
2457    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2458  }
2459  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2460
2461  child_range children() { return child_range(); }
2462
2463  friend class ASTStmtReader;
2464  friend class ASTStmtWriter;
2465};
2466
2467/// Represents an expression --- generally a full-expression --- which
2468/// introduces cleanups to be run at the end of the sub-expression's
2469/// evaluation.  The most common source of expression-introduced
2470/// cleanups is temporary objects in C++, but several other kinds of
2471/// expressions can create cleanups, including basically every
2472/// call in ARC that returns an Objective-C pointer.
2473///
2474/// This expression also tracks whether the sub-expression contains a
2475/// potentially-evaluated block literal.  The lifetime of a block
2476/// literal is the extent of the enclosing scope.
2477class ExprWithCleanups : public Expr {
2478public:
2479  /// The type of objects that are kept in the cleanup.
2480  /// It's useful to remember the set of blocks;  we could also
2481  /// remember the set of temporaries, but there's currently
2482  /// no need.
2483  typedef BlockDecl *CleanupObject;
2484
2485private:
2486  Stmt *SubExpr;
2487
2488  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2489  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2490
2491  CleanupObject *getObjectsBuffer() {
2492    return reinterpret_cast<CleanupObject*>(this + 1);
2493  }
2494  const CleanupObject *getObjectsBuffer() const {
2495    return reinterpret_cast<const CleanupObject*>(this + 1);
2496  }
2497  friend class ASTStmtReader;
2498
2499public:
2500  static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2501                                  unsigned numObjects);
2502
2503  static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2504                                  ArrayRef<CleanupObject> objects);
2505
2506  ArrayRef<CleanupObject> getObjects() const {
2507    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2508  }
2509
2510  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2511
2512  CleanupObject getObject(unsigned i) const {
2513    assert(i < getNumObjects() && "Index out of range");
2514    return getObjects()[i];
2515  }
2516
2517  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2518  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2519
2520  /// setSubExpr - As with any mutator of the AST, be very careful
2521  /// when modifying an existing AST to preserve its invariants.
2522  void setSubExpr(Expr *E) { SubExpr = E; }
2523
2524  SourceRange getSourceRange() const {
2525    return SubExpr->getSourceRange();
2526  }
2527
2528  // Implement isa/cast/dyncast/etc.
2529  static bool classof(const Stmt *T) {
2530    return T->getStmtClass() == ExprWithCleanupsClass;
2531  }
2532  static bool classof(const ExprWithCleanups *) { return true; }
2533
2534  // Iterators
2535  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2536};
2537
2538/// \brief Describes an explicit type conversion that uses functional
2539/// notion but could not be resolved because one or more arguments are
2540/// type-dependent.
2541///
2542/// The explicit type conversions expressed by
2543/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2544/// where \c T is some type and \c a1, a2, ..., aN are values, and
2545/// either \C T is a dependent type or one or more of the \c a's is
2546/// type-dependent. For example, this would occur in a template such
2547/// as:
2548///
2549/// \code
2550///   template<typename T, typename A1>
2551///   inline T make_a(const A1& a1) {
2552///     return T(a1);
2553///   }
2554/// \endcode
2555///
2556/// When the returned expression is instantiated, it may resolve to a
2557/// constructor call, conversion function call, or some kind of type
2558/// conversion.
2559class CXXUnresolvedConstructExpr : public Expr {
2560  /// \brief The type being constructed.
2561  TypeSourceInfo *Type;
2562
2563  /// \brief The location of the left parentheses ('(').
2564  SourceLocation LParenLoc;
2565
2566  /// \brief The location of the right parentheses (')').
2567  SourceLocation RParenLoc;
2568
2569  /// \brief The number of arguments used to construct the type.
2570  unsigned NumArgs;
2571
2572  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2573                             SourceLocation LParenLoc,
2574                             Expr **Args,
2575                             unsigned NumArgs,
2576                             SourceLocation RParenLoc);
2577
2578  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2579    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2580
2581  friend class ASTStmtReader;
2582
2583public:
2584  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2585                                            TypeSourceInfo *Type,
2586                                            SourceLocation LParenLoc,
2587                                            Expr **Args,
2588                                            unsigned NumArgs,
2589                                            SourceLocation RParenLoc);
2590
2591  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2592                                                 unsigned NumArgs);
2593
2594  /// \brief Retrieve the type that is being constructed, as specified
2595  /// in the source code.
2596  QualType getTypeAsWritten() const { return Type->getType(); }
2597
2598  /// \brief Retrieve the type source information for the type being
2599  /// constructed.
2600  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2601
2602  /// \brief Retrieve the location of the left parentheses ('(') that
2603  /// precedes the argument list.
2604  SourceLocation getLParenLoc() const { return LParenLoc; }
2605  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2606
2607  /// \brief Retrieve the location of the right parentheses (')') that
2608  /// follows the argument list.
2609  SourceLocation getRParenLoc() const { return RParenLoc; }
2610  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2611
2612  /// \brief Retrieve the number of arguments.
2613  unsigned arg_size() const { return NumArgs; }
2614
2615  typedef Expr** arg_iterator;
2616  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2617  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2618
2619  typedef const Expr* const * const_arg_iterator;
2620  const_arg_iterator arg_begin() const {
2621    return reinterpret_cast<const Expr* const *>(this + 1);
2622  }
2623  const_arg_iterator arg_end() const {
2624    return arg_begin() + NumArgs;
2625  }
2626
2627  Expr *getArg(unsigned I) {
2628    assert(I < NumArgs && "Argument index out-of-range");
2629    return *(arg_begin() + I);
2630  }
2631
2632  const Expr *getArg(unsigned I) const {
2633    assert(I < NumArgs && "Argument index out-of-range");
2634    return *(arg_begin() + I);
2635  }
2636
2637  void setArg(unsigned I, Expr *E) {
2638    assert(I < NumArgs && "Argument index out-of-range");
2639    *(arg_begin() + I) = E;
2640  }
2641
2642  SourceRange getSourceRange() const;
2643
2644  static bool classof(const Stmt *T) {
2645    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2646  }
2647  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2648
2649  // Iterators
2650  child_range children() {
2651    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2652    return child_range(begin, begin + NumArgs);
2653  }
2654};
2655
2656/// \brief Represents a C++ member access expression where the actual
2657/// member referenced could not be resolved because the base
2658/// expression or the member name was dependent.
2659///
2660/// Like UnresolvedMemberExprs, these can be either implicit or
2661/// explicit accesses.  It is only possible to get one of these with
2662/// an implicit access if a qualifier is provided.
2663class CXXDependentScopeMemberExpr : public Expr {
2664  /// \brief The expression for the base pointer or class reference,
2665  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2666  Stmt *Base;
2667
2668  /// \brief The type of the base expression.  Never null, even for
2669  /// implicit accesses.
2670  QualType BaseType;
2671
2672  /// \brief Whether this member expression used the '->' operator or
2673  /// the '.' operator.
2674  bool IsArrow : 1;
2675
2676  /// \brief Whether this member expression has info for explicit template
2677  /// keyword and arguments.
2678  bool HasTemplateKWAndArgsInfo : 1;
2679
2680  /// \brief The location of the '->' or '.' operator.
2681  SourceLocation OperatorLoc;
2682
2683  /// \brief The nested-name-specifier that precedes the member name, if any.
2684  NestedNameSpecifierLoc QualifierLoc;
2685
2686  /// \brief In a qualified member access expression such as t->Base::f, this
2687  /// member stores the resolves of name lookup in the context of the member
2688  /// access expression, to be used at instantiation time.
2689  ///
2690  /// FIXME: This member, along with the QualifierLoc, could
2691  /// be stuck into a structure that is optionally allocated at the end of
2692  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2693  NamedDecl *FirstQualifierFoundInScope;
2694
2695  /// \brief The member to which this member expression refers, which
2696  /// can be name, overloaded operator, or destructor.
2697  /// FIXME: could also be a template-id
2698  DeclarationNameInfo MemberNameInfo;
2699
2700  /// \brief Return the optional template keyword and arguments info.
2701  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2702    if (!HasTemplateKWAndArgsInfo) return 0;
2703    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2704  }
2705  /// \brief Return the optional template keyword and arguments info.
2706  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2707    return const_cast<CXXDependentScopeMemberExpr*>(this)
2708      ->getTemplateKWAndArgsInfo();
2709  }
2710
2711  CXXDependentScopeMemberExpr(ASTContext &C,
2712                          Expr *Base, QualType BaseType, bool IsArrow,
2713                          SourceLocation OperatorLoc,
2714                          NestedNameSpecifierLoc QualifierLoc,
2715                          SourceLocation TemplateKWLoc,
2716                          NamedDecl *FirstQualifierFoundInScope,
2717                          DeclarationNameInfo MemberNameInfo,
2718                          const TemplateArgumentListInfo *TemplateArgs);
2719
2720public:
2721  CXXDependentScopeMemberExpr(ASTContext &C,
2722                              Expr *Base, QualType BaseType,
2723                              bool IsArrow,
2724                              SourceLocation OperatorLoc,
2725                              NestedNameSpecifierLoc QualifierLoc,
2726                              NamedDecl *FirstQualifierFoundInScope,
2727                              DeclarationNameInfo MemberNameInfo);
2728
2729  static CXXDependentScopeMemberExpr *
2730  Create(ASTContext &C,
2731         Expr *Base, QualType BaseType, bool IsArrow,
2732         SourceLocation OperatorLoc,
2733         NestedNameSpecifierLoc QualifierLoc,
2734         SourceLocation TemplateKWLoc,
2735         NamedDecl *FirstQualifierFoundInScope,
2736         DeclarationNameInfo MemberNameInfo,
2737         const TemplateArgumentListInfo *TemplateArgs);
2738
2739  static CXXDependentScopeMemberExpr *
2740  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2741              unsigned NumTemplateArgs);
2742
2743  /// \brief True if this is an implicit access, i.e. one in which the
2744  /// member being accessed was not written in the source.  The source
2745  /// location of the operator is invalid in this case.
2746  bool isImplicitAccess() const;
2747
2748  /// \brief Retrieve the base object of this member expressions,
2749  /// e.g., the \c x in \c x.m.
2750  Expr *getBase() const {
2751    assert(!isImplicitAccess());
2752    return cast<Expr>(Base);
2753  }
2754
2755  QualType getBaseType() const { return BaseType; }
2756
2757  /// \brief Determine whether this member expression used the '->'
2758  /// operator; otherwise, it used the '.' operator.
2759  bool isArrow() const { return IsArrow; }
2760
2761  /// \brief Retrieve the location of the '->' or '.' operator.
2762  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2763
2764  /// \brief Retrieve the nested-name-specifier that qualifies the member
2765  /// name.
2766  NestedNameSpecifier *getQualifier() const {
2767    return QualifierLoc.getNestedNameSpecifier();
2768  }
2769
2770  /// \brief Retrieve the nested-name-specifier that qualifies the member
2771  /// name, with source location information.
2772  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2773
2774
2775  /// \brief Retrieve the first part of the nested-name-specifier that was
2776  /// found in the scope of the member access expression when the member access
2777  /// was initially parsed.
2778  ///
2779  /// This function only returns a useful result when member access expression
2780  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2781  /// returned by this function describes what was found by unqualified name
2782  /// lookup for the identifier "Base" within the scope of the member access
2783  /// expression itself. At template instantiation time, this information is
2784  /// combined with the results of name lookup into the type of the object
2785  /// expression itself (the class type of x).
2786  NamedDecl *getFirstQualifierFoundInScope() const {
2787    return FirstQualifierFoundInScope;
2788  }
2789
2790  /// \brief Retrieve the name of the member that this expression
2791  /// refers to.
2792  const DeclarationNameInfo &getMemberNameInfo() const {
2793    return MemberNameInfo;
2794  }
2795
2796  /// \brief Retrieve the name of the member that this expression
2797  /// refers to.
2798  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2799
2800  // \brief Retrieve the location of the name of the member that this
2801  // expression refers to.
2802  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2803
2804  /// \brief Retrieve the location of the template keyword preceding the
2805  /// member name, if any.
2806  SourceLocation getTemplateKeywordLoc() const {
2807    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2808    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2809  }
2810
2811  /// \brief Retrieve the location of the left angle bracket starting the
2812  /// explicit template argument list following the member name, if any.
2813  SourceLocation getLAngleLoc() const {
2814    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2815    return getTemplateKWAndArgsInfo()->LAngleLoc;
2816  }
2817
2818  /// \brief Retrieve the location of the right angle bracket ending the
2819  /// explicit template argument list following the member name, if any.
2820  SourceLocation getRAngleLoc() const {
2821    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2822    return getTemplateKWAndArgsInfo()->RAngleLoc;
2823  }
2824
2825  /// Determines whether the member name was preceded by the template keyword.
2826  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2827
2828  /// \brief Determines whether this member expression actually had a C++
2829  /// template argument list explicitly specified, e.g., x.f<int>.
2830  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2831
2832  /// \brief Retrieve the explicit template argument list that followed the
2833  /// member template name, if any.
2834  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2835    assert(hasExplicitTemplateArgs());
2836    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2837  }
2838
2839  /// \brief Retrieve the explicit template argument list that followed the
2840  /// member template name, if any.
2841  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2842    return const_cast<CXXDependentScopeMemberExpr *>(this)
2843             ->getExplicitTemplateArgs();
2844  }
2845
2846  /// \brief Retrieves the optional explicit template arguments.
2847  /// This points to the same data as getExplicitTemplateArgs(), but
2848  /// returns null if there are no explicit template arguments.
2849  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2850    if (!hasExplicitTemplateArgs()) return 0;
2851    return &getExplicitTemplateArgs();
2852  }
2853
2854  /// \brief Copies the template arguments (if present) into the given
2855  /// structure.
2856  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2857    getExplicitTemplateArgs().copyInto(List);
2858  }
2859
2860  /// \brief Initializes the template arguments using the given structure.
2861  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2862    getExplicitTemplateArgs().initializeFrom(List);
2863  }
2864
2865  /// \brief Retrieve the template arguments provided as part of this
2866  /// template-id.
2867  const TemplateArgumentLoc *getTemplateArgs() const {
2868    return getExplicitTemplateArgs().getTemplateArgs();
2869  }
2870
2871  /// \brief Retrieve the number of template arguments provided as part of this
2872  /// template-id.
2873  unsigned getNumTemplateArgs() const {
2874    return getExplicitTemplateArgs().NumTemplateArgs;
2875  }
2876
2877  SourceRange getSourceRange() const {
2878    SourceRange Range;
2879    if (!isImplicitAccess())
2880      Range.setBegin(Base->getSourceRange().getBegin());
2881    else if (getQualifier())
2882      Range.setBegin(getQualifierLoc().getBeginLoc());
2883    else
2884      Range.setBegin(MemberNameInfo.getBeginLoc());
2885
2886    if (hasExplicitTemplateArgs())
2887      Range.setEnd(getRAngleLoc());
2888    else
2889      Range.setEnd(MemberNameInfo.getEndLoc());
2890    return Range;
2891  }
2892
2893  static bool classof(const Stmt *T) {
2894    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2895  }
2896  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2897
2898  // Iterators
2899  child_range children() {
2900    if (isImplicitAccess()) return child_range();
2901    return child_range(&Base, &Base + 1);
2902  }
2903
2904  friend class ASTStmtReader;
2905  friend class ASTStmtWriter;
2906};
2907
2908/// \brief Represents a C++ member access expression for which lookup
2909/// produced a set of overloaded functions.
2910///
2911/// The member access may be explicit or implicit:
2912///    struct A {
2913///      int a, b;
2914///      int explicitAccess() { return this->a + this->A::b; }
2915///      int implicitAccess() { return a + A::b; }
2916///    };
2917///
2918/// In the final AST, an explicit access always becomes a MemberExpr.
2919/// An implicit access may become either a MemberExpr or a
2920/// DeclRefExpr, depending on whether the member is static.
2921class UnresolvedMemberExpr : public OverloadExpr {
2922  /// \brief Whether this member expression used the '->' operator or
2923  /// the '.' operator.
2924  bool IsArrow : 1;
2925
2926  /// \brief Whether the lookup results contain an unresolved using
2927  /// declaration.
2928  bool HasUnresolvedUsing : 1;
2929
2930  /// \brief The expression for the base pointer or class reference,
2931  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2932  /// member expression
2933  Stmt *Base;
2934
2935  /// \brief The type of the base expression;  never null.
2936  QualType BaseType;
2937
2938  /// \brief The location of the '->' or '.' operator.
2939  SourceLocation OperatorLoc;
2940
2941  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2942                       Expr *Base, QualType BaseType, bool IsArrow,
2943                       SourceLocation OperatorLoc,
2944                       NestedNameSpecifierLoc QualifierLoc,
2945                       SourceLocation TemplateKWLoc,
2946                       const DeclarationNameInfo &MemberNameInfo,
2947                       const TemplateArgumentListInfo *TemplateArgs,
2948                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2949
2950  UnresolvedMemberExpr(EmptyShell Empty)
2951    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2952      HasUnresolvedUsing(false), Base(0) { }
2953
2954  friend class ASTStmtReader;
2955
2956public:
2957  static UnresolvedMemberExpr *
2958  Create(ASTContext &C, bool HasUnresolvedUsing,
2959         Expr *Base, QualType BaseType, bool IsArrow,
2960         SourceLocation OperatorLoc,
2961         NestedNameSpecifierLoc QualifierLoc,
2962         SourceLocation TemplateKWLoc,
2963         const DeclarationNameInfo &MemberNameInfo,
2964         const TemplateArgumentListInfo *TemplateArgs,
2965         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2966
2967  static UnresolvedMemberExpr *
2968  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2969              unsigned NumTemplateArgs);
2970
2971  /// \brief True if this is an implicit access, i.e. one in which the
2972  /// member being accessed was not written in the source.  The source
2973  /// location of the operator is invalid in this case.
2974  bool isImplicitAccess() const;
2975
2976  /// \brief Retrieve the base object of this member expressions,
2977  /// e.g., the \c x in \c x.m.
2978  Expr *getBase() {
2979    assert(!isImplicitAccess());
2980    return cast<Expr>(Base);
2981  }
2982  const Expr *getBase() const {
2983    assert(!isImplicitAccess());
2984    return cast<Expr>(Base);
2985  }
2986
2987  QualType getBaseType() const { return BaseType; }
2988
2989  /// \brief Determine whether the lookup results contain an unresolved using
2990  /// declaration.
2991  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2992
2993  /// \brief Determine whether this member expression used the '->'
2994  /// operator; otherwise, it used the '.' operator.
2995  bool isArrow() const { return IsArrow; }
2996
2997  /// \brief Retrieve the location of the '->' or '.' operator.
2998  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2999
3000  /// \brief Retrieves the naming class of this lookup.
3001  CXXRecordDecl *getNamingClass() const;
3002
3003  /// \brief Retrieve the full name info for the member that this expression
3004  /// refers to.
3005  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3006
3007  /// \brief Retrieve the name of the member that this expression
3008  /// refers to.
3009  DeclarationName getMemberName() const { return getName(); }
3010
3011  // \brief Retrieve the location of the name of the member that this
3012  // expression refers to.
3013  SourceLocation getMemberLoc() const { return getNameLoc(); }
3014
3015  SourceRange getSourceRange() const {
3016    SourceRange Range = getMemberNameInfo().getSourceRange();
3017    if (!isImplicitAccess())
3018      Range.setBegin(Base->getSourceRange().getBegin());
3019    else if (getQualifierLoc())
3020      Range.setBegin(getQualifierLoc().getBeginLoc());
3021
3022    if (hasExplicitTemplateArgs())
3023      Range.setEnd(getRAngleLoc());
3024    return Range;
3025  }
3026
3027  static bool classof(const Stmt *T) {
3028    return T->getStmtClass() == UnresolvedMemberExprClass;
3029  }
3030  static bool classof(const UnresolvedMemberExpr *) { return true; }
3031
3032  // Iterators
3033  child_range children() {
3034    if (isImplicitAccess()) return child_range();
3035    return child_range(&Base, &Base + 1);
3036  }
3037};
3038
3039/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
3040///
3041/// The noexcept expression tests whether a given expression might throw. Its
3042/// result is a boolean constant.
3043class CXXNoexceptExpr : public Expr {
3044  bool Value : 1;
3045  Stmt *Operand;
3046  SourceRange Range;
3047
3048  friend class ASTStmtReader;
3049
3050public:
3051  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3052                  SourceLocation Keyword, SourceLocation RParen)
3053    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3054           /*TypeDependent*/false,
3055           /*ValueDependent*/Val == CT_Dependent,
3056           Val == CT_Dependent || Operand->isInstantiationDependent(),
3057           Operand->containsUnexpandedParameterPack()),
3058      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3059  { }
3060
3061  CXXNoexceptExpr(EmptyShell Empty)
3062    : Expr(CXXNoexceptExprClass, Empty)
3063  { }
3064
3065  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3066
3067  SourceRange getSourceRange() const { return Range; }
3068
3069  bool getValue() const { return Value; }
3070
3071  static bool classof(const Stmt *T) {
3072    return T->getStmtClass() == CXXNoexceptExprClass;
3073  }
3074  static bool classof(const CXXNoexceptExpr *) { return true; }
3075
3076  // Iterators
3077  child_range children() { return child_range(&Operand, &Operand + 1); }
3078};
3079
3080/// \brief Represents a C++0x pack expansion that produces a sequence of
3081/// expressions.
3082///
3083/// A pack expansion expression contains a pattern (which itself is an
3084/// expression) followed by an ellipsis. For example:
3085///
3086/// \code
3087/// template<typename F, typename ...Types>
3088/// void forward(F f, Types &&...args) {
3089///   f(static_cast<Types&&>(args)...);
3090/// }
3091/// \endcode
3092///
3093/// Here, the argument to the function object \c f is a pack expansion whose
3094/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3095/// template is instantiated, the pack expansion will instantiate to zero or
3096/// or more function arguments to the function object \c f.
3097class PackExpansionExpr : public Expr {
3098  SourceLocation EllipsisLoc;
3099
3100  /// \brief The number of expansions that will be produced by this pack
3101  /// expansion expression, if known.
3102  ///
3103  /// When zero, the number of expansions is not known. Otherwise, this value
3104  /// is the number of expansions + 1.
3105  unsigned NumExpansions;
3106
3107  Stmt *Pattern;
3108
3109  friend class ASTStmtReader;
3110  friend class ASTStmtWriter;
3111
3112public:
3113  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3114                    llvm::Optional<unsigned> NumExpansions)
3115    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3116           Pattern->getObjectKind(), /*TypeDependent=*/true,
3117           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3118           /*ContainsUnexpandedParameterPack=*/false),
3119      EllipsisLoc(EllipsisLoc),
3120      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3121      Pattern(Pattern) { }
3122
3123  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3124
3125  /// \brief Retrieve the pattern of the pack expansion.
3126  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3127
3128  /// \brief Retrieve the pattern of the pack expansion.
3129  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3130
3131  /// \brief Retrieve the location of the ellipsis that describes this pack
3132  /// expansion.
3133  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3134
3135  /// \brief Determine the number of expansions that will be produced when
3136  /// this pack expansion is instantiated, if already known.
3137  llvm::Optional<unsigned> getNumExpansions() const {
3138    if (NumExpansions)
3139      return NumExpansions - 1;
3140
3141    return llvm::Optional<unsigned>();
3142  }
3143
3144  SourceRange getSourceRange() const {
3145    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
3146  }
3147
3148  static bool classof(const Stmt *T) {
3149    return T->getStmtClass() == PackExpansionExprClass;
3150  }
3151  static bool classof(const PackExpansionExpr *) { return true; }
3152
3153  // Iterators
3154  child_range children() {
3155    return child_range(&Pattern, &Pattern + 1);
3156  }
3157};
3158
3159inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3160  if (!HasTemplateKWAndArgsInfo) return 0;
3161  if (isa<UnresolvedLookupExpr>(this))
3162    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3163      (cast<UnresolvedLookupExpr>(this) + 1);
3164  else
3165    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3166      (cast<UnresolvedMemberExpr>(this) + 1);
3167}
3168
3169/// \brief Represents an expression that computes the length of a parameter
3170/// pack.
3171///
3172/// \code
3173/// template<typename ...Types>
3174/// struct count {
3175///   static const unsigned value = sizeof...(Types);
3176/// };
3177/// \endcode
3178class SizeOfPackExpr : public Expr {
3179  /// \brief The location of the 'sizeof' keyword.
3180  SourceLocation OperatorLoc;
3181
3182  /// \brief The location of the name of the parameter pack.
3183  SourceLocation PackLoc;
3184
3185  /// \brief The location of the closing parenthesis.
3186  SourceLocation RParenLoc;
3187
3188  /// \brief The length of the parameter pack, if known.
3189  ///
3190  /// When this expression is value-dependent, the length of the parameter pack
3191  /// is unknown. When this expression is not value-dependent, the length is
3192  /// known.
3193  unsigned Length;
3194
3195  /// \brief The parameter pack itself.
3196  NamedDecl *Pack;
3197
3198  friend class ASTStmtReader;
3199  friend class ASTStmtWriter;
3200
3201public:
3202  /// \brief Creates a value-dependent expression that computes the length of
3203  /// the given parameter pack.
3204  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3205                 SourceLocation PackLoc, SourceLocation RParenLoc)
3206    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3207           /*TypeDependent=*/false, /*ValueDependent=*/true,
3208           /*InstantiationDependent=*/true,
3209           /*ContainsUnexpandedParameterPack=*/false),
3210      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3211      Length(0), Pack(Pack) { }
3212
3213  /// \brief Creates an expression that computes the length of
3214  /// the given parameter pack, which is already known.
3215  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3216                 SourceLocation PackLoc, SourceLocation RParenLoc,
3217                 unsigned Length)
3218  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3219         /*TypeDependent=*/false, /*ValueDependent=*/false,
3220         /*InstantiationDependent=*/false,
3221         /*ContainsUnexpandedParameterPack=*/false),
3222    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3223    Length(Length), Pack(Pack) { }
3224
3225  /// \brief Create an empty expression.
3226  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3227
3228  /// \brief Determine the location of the 'sizeof' keyword.
3229  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3230
3231  /// \brief Determine the location of the parameter pack.
3232  SourceLocation getPackLoc() const { return PackLoc; }
3233
3234  /// \brief Determine the location of the right parenthesis.
3235  SourceLocation getRParenLoc() const { return RParenLoc; }
3236
3237  /// \brief Retrieve the parameter pack.
3238  NamedDecl *getPack() const { return Pack; }
3239
3240  /// \brief Retrieve the length of the parameter pack.
3241  ///
3242  /// This routine may only be invoked when the expression is not
3243  /// value-dependent.
3244  unsigned getPackLength() const {
3245    assert(!isValueDependent() &&
3246           "Cannot get the length of a value-dependent pack size expression");
3247    return Length;
3248  }
3249
3250  SourceRange getSourceRange() const {
3251    return SourceRange(OperatorLoc, RParenLoc);
3252  }
3253
3254  static bool classof(const Stmt *T) {
3255    return T->getStmtClass() == SizeOfPackExprClass;
3256  }
3257  static bool classof(const SizeOfPackExpr *) { return true; }
3258
3259  // Iterators
3260  child_range children() { return child_range(); }
3261};
3262
3263/// \brief Represents a reference to a non-type template parameter
3264/// that has been substituted with a template argument.
3265class SubstNonTypeTemplateParmExpr : public Expr {
3266  /// \brief The replaced parameter.
3267  NonTypeTemplateParmDecl *Param;
3268
3269  /// \brief The replacement expression.
3270  Stmt *Replacement;
3271
3272  /// \brief The location of the non-type template parameter reference.
3273  SourceLocation NameLoc;
3274
3275  friend class ASTReader;
3276  friend class ASTStmtReader;
3277  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3278    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3279
3280public:
3281  SubstNonTypeTemplateParmExpr(QualType type,
3282                               ExprValueKind valueKind,
3283                               SourceLocation loc,
3284                               NonTypeTemplateParmDecl *param,
3285                               Expr *replacement)
3286    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3287           replacement->isTypeDependent(), replacement->isValueDependent(),
3288           replacement->isInstantiationDependent(),
3289           replacement->containsUnexpandedParameterPack()),
3290      Param(param), Replacement(replacement), NameLoc(loc) {}
3291
3292  SourceLocation getNameLoc() const { return NameLoc; }
3293  SourceRange getSourceRange() const { return NameLoc; }
3294
3295  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3296
3297  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3298
3299  static bool classof(const Stmt *s) {
3300    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3301  }
3302  static bool classof(const SubstNonTypeTemplateParmExpr *) {
3303    return true;
3304  }
3305
3306  // Iterators
3307  child_range children() { return child_range(&Replacement, &Replacement+1); }
3308};
3309
3310/// \brief Represents a reference to a non-type template parameter pack that
3311/// has been substituted with a non-template argument pack.
3312///
3313/// When a pack expansion in the source code contains multiple parameter packs
3314/// and those parameter packs correspond to different levels of template
3315/// parameter lists, this node node is used to represent a non-type template
3316/// parameter pack from an outer level, which has already had its argument pack
3317/// substituted but that still lives within a pack expansion that itself
3318/// could not be instantiated. When actually performing a substitution into
3319/// that pack expansion (e.g., when all template parameters have corresponding
3320/// arguments), this type will be replaced with the appropriate underlying
3321/// expression at the current pack substitution index.
3322class SubstNonTypeTemplateParmPackExpr : public Expr {
3323  /// \brief The non-type template parameter pack itself.
3324  NonTypeTemplateParmDecl *Param;
3325
3326  /// \brief A pointer to the set of template arguments that this
3327  /// parameter pack is instantiated with.
3328  const TemplateArgument *Arguments;
3329
3330  /// \brief The number of template arguments in \c Arguments.
3331  unsigned NumArguments;
3332
3333  /// \brief The location of the non-type template parameter pack reference.
3334  SourceLocation NameLoc;
3335
3336  friend class ASTReader;
3337  friend class ASTStmtReader;
3338  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3339    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3340
3341public:
3342  SubstNonTypeTemplateParmPackExpr(QualType T,
3343                                   NonTypeTemplateParmDecl *Param,
3344                                   SourceLocation NameLoc,
3345                                   const TemplateArgument &ArgPack);
3346
3347  /// \brief Retrieve the non-type template parameter pack being substituted.
3348  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3349
3350  /// \brief Retrieve the location of the parameter pack name.
3351  SourceLocation getParameterPackLocation() const { return NameLoc; }
3352
3353  /// \brief Retrieve the template argument pack containing the substituted
3354  /// template arguments.
3355  TemplateArgument getArgumentPack() const;
3356
3357  SourceRange getSourceRange() const { return NameLoc; }
3358
3359  static bool classof(const Stmt *T) {
3360    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3361  }
3362  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
3363    return true;
3364  }
3365
3366  // Iterators
3367  child_range children() { return child_range(); }
3368};
3369
3370/// \brief Represents a prvalue temporary that written into memory so that
3371/// a reference can bind to it.
3372///
3373/// Prvalue expressions are materialized when they need to have an address
3374/// in memory for a reference to bind to. This happens when binding a
3375/// reference to the result of a conversion, e.g.,
3376///
3377/// \code
3378/// const int &r = 1.0;
3379/// \endcode
3380///
3381/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3382/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3383/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3384/// (either an lvalue or an xvalue, depending on the kind of reference binding
3385/// to it), maintaining the invariant that references always bind to glvalues.
3386class MaterializeTemporaryExpr : public Expr {
3387  /// \brief The temporary-generating expression whose value will be
3388  /// materialized.
3389 Stmt *Temporary;
3390
3391  friend class ASTStmtReader;
3392  friend class ASTStmtWriter;
3393
3394public:
3395  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3396                           bool BoundToLvalueReference)
3397    : Expr(MaterializeTemporaryExprClass, T,
3398           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3399           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3400           Temporary->isInstantiationDependent(),
3401           Temporary->containsUnexpandedParameterPack()),
3402      Temporary(Temporary) { }
3403
3404  MaterializeTemporaryExpr(EmptyShell Empty)
3405    : Expr(MaterializeTemporaryExprClass, Empty) { }
3406
3407  /// \brief Retrieve the temporary-generating subexpression whose value will
3408  /// be materialized into a glvalue.
3409  Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3410
3411  /// \brief Determine whether this materialized temporary is bound to an
3412  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3413  bool isBoundToLvalueReference() const {
3414    return getValueKind() == VK_LValue;
3415  }
3416
3417  SourceRange getSourceRange() const { return Temporary->getSourceRange(); }
3418
3419  static bool classof(const Stmt *T) {
3420    return T->getStmtClass() == MaterializeTemporaryExprClass;
3421  }
3422  static bool classof(const MaterializeTemporaryExpr *) {
3423    return true;
3424  }
3425
3426  // Iterators
3427  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3428};
3429
3430}  // end namespace clang
3431
3432#endif
3433