ExprCXX.h revision e08ce650a2b02410eddd1f60a4aa6b3d4be71e73
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/UnresolvedSet.h"
20#include "clang/AST/TemplateBase.h"
21
22namespace clang {
23
24class CXXConstructorDecl;
25class CXXDestructorDecl;
26class CXXMethodDecl;
27class CXXTemporary;
28class TemplateArgumentListInfo;
29
30//===--------------------------------------------------------------------===//
31// C++ Expressions.
32//===--------------------------------------------------------------------===//
33
34/// \brief A call to an overloaded operator written using operator
35/// syntax.
36///
37/// Represents a call to an overloaded operator written using operator
38/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
39/// normal call, this AST node provides better information about the
40/// syntactic representation of the call.
41///
42/// In a C++ template, this expression node kind will be used whenever
43/// any of the arguments are type-dependent. In this case, the
44/// function itself will be a (possibly empty) set of functions and
45/// function templates that were found by name lookup at template
46/// definition time.
47class CXXOperatorCallExpr : public CallExpr {
48  /// \brief The overloaded operator.
49  OverloadedOperatorKind Operator;
50
51public:
52  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
53                      Expr **args, unsigned numargs, QualType t,
54                      ExprValueKind VK, SourceLocation operatorloc)
55    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
56               operatorloc),
57      Operator(Op) {}
58  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
59    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
60
61
62  /// getOperator - Returns the kind of overloaded operator that this
63  /// expression refers to.
64  OverloadedOperatorKind getOperator() const { return Operator; }
65  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
66
67  /// getOperatorLoc - Returns the location of the operator symbol in
68  /// the expression. When @c getOperator()==OO_Call, this is the
69  /// location of the right parentheses; when @c
70  /// getOperator()==OO_Subscript, this is the location of the right
71  /// bracket.
72  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
73
74  SourceRange getSourceRange() const;
75
76  static bool classof(const Stmt *T) {
77    return T->getStmtClass() == CXXOperatorCallExprClass;
78  }
79  static bool classof(const CXXOperatorCallExpr *) { return true; }
80};
81
82/// CXXMemberCallExpr - Represents a call to a member function that
83/// may be written either with member call syntax (e.g., "obj.func()"
84/// or "objptr->func()") or with normal function-call syntax
85/// ("func()") within a member function that ends up calling a member
86/// function. The callee in either case is a MemberExpr that contains
87/// both the object argument and the member function, while the
88/// arguments are the arguments within the parentheses (not including
89/// the object argument).
90class CXXMemberCallExpr : public CallExpr {
91public:
92  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
93                    QualType t, ExprValueKind VK, SourceLocation RP)
94    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
95
96  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
97    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
98
99  /// getImplicitObjectArgument - Retrieves the implicit object
100  /// argument for the member call. For example, in "x.f(5)", this
101  /// operation would return "x".
102  Expr *getImplicitObjectArgument();
103
104  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
105  /// the implicit object argument. Note that this is may not be the same
106  /// declaration as that of the class context of the CXXMethodDecl which this
107  /// function is calling.
108  /// FIXME: Returns 0 for member pointer call exprs.
109  CXXRecordDecl *getRecordDecl();
110
111  SourceRange getSourceRange() const;
112
113  static bool classof(const Stmt *T) {
114    return T->getStmtClass() == CXXMemberCallExprClass;
115  }
116  static bool classof(const CXXMemberCallExpr *) { return true; }
117};
118
119/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
120class CUDAKernelCallExpr : public CallExpr {
121private:
122  enum { CONFIG, END_PREARG };
123
124public:
125  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
126                     Expr **args, unsigned numargs, QualType t,
127                     ExprValueKind VK, SourceLocation RP)
128    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
129               RP) {
130    setConfig(Config);
131  }
132
133  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
134    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
135
136  const CallExpr *getConfig() const {
137    return cast_or_null<CallExpr>(getPreArg(CONFIG));
138  }
139  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
140  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
141
142  static bool classof(const Stmt *T) {
143    return T->getStmtClass() == CUDAKernelCallExprClass;
144  }
145  static bool classof(const CUDAKernelCallExpr *) { return true; }
146};
147
148/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
149/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
150/// const_cast.
151///
152/// This abstract class is inherited by all of the classes
153/// representing "named" casts, e.g., CXXStaticCastExpr,
154/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
155class CXXNamedCastExpr : public ExplicitCastExpr {
156private:
157  SourceLocation Loc; // the location of the casting op
158  SourceLocation RParenLoc; // the location of the right parenthesis
159
160protected:
161  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
162                   CastKind kind, Expr *op, unsigned PathSize,
163                   TypeSourceInfo *writtenTy, SourceLocation l,
164                   SourceLocation RParenLoc)
165    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
166      RParenLoc(RParenLoc) {}
167
168  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
169    : ExplicitCastExpr(SC, Shell, PathSize) { }
170
171  friend class ASTStmtReader;
172
173public:
174  const char *getCastName() const;
175
176  /// \brief Retrieve the location of the cast operator keyword, e.g.,
177  /// "static_cast".
178  SourceLocation getOperatorLoc() const { return Loc; }
179
180  /// \brief Retrieve the location of the closing parenthesis.
181  SourceLocation getRParenLoc() const { return RParenLoc; }
182
183  SourceRange getSourceRange() const {
184    return SourceRange(Loc, RParenLoc);
185  }
186  static bool classof(const Stmt *T) {
187    switch (T->getStmtClass()) {
188    case CXXStaticCastExprClass:
189    case CXXDynamicCastExprClass:
190    case CXXReinterpretCastExprClass:
191    case CXXConstCastExprClass:
192      return true;
193    default:
194      return false;
195    }
196  }
197  static bool classof(const CXXNamedCastExpr *) { return true; }
198};
199
200/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
201///
202/// This expression node represents a C++ static cast, e.g.,
203/// @c static_cast<int>(1.0).
204class CXXStaticCastExpr : public CXXNamedCastExpr {
205  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
206                    unsigned pathSize, TypeSourceInfo *writtenTy,
207                    SourceLocation l, SourceLocation RParenLoc)
208    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
209                       writtenTy, l, RParenLoc) {}
210
211  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
212    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
213
214public:
215  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
216                                   ExprValueKind VK, CastKind K, Expr *Op,
217                                   const CXXCastPath *Path,
218                                   TypeSourceInfo *Written, SourceLocation L,
219                                   SourceLocation RParenLoc);
220  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
221                                        unsigned PathSize);
222
223  static bool classof(const Stmt *T) {
224    return T->getStmtClass() == CXXStaticCastExprClass;
225  }
226  static bool classof(const CXXStaticCastExpr *) { return true; }
227};
228
229/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
230/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
231/// determine how to perform the type cast.
232///
233/// This expression node represents a dynamic cast, e.g.,
234/// @c dynamic_cast<Derived*>(BasePtr).
235class CXXDynamicCastExpr : public CXXNamedCastExpr {
236  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
237                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
238                     SourceLocation l, SourceLocation RParenLoc)
239    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
240                       writtenTy, l, RParenLoc) {}
241
242  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
243    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
244
245public:
246  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
247                                    ExprValueKind VK, CastKind Kind, Expr *Op,
248                                    const CXXCastPath *Path,
249                                    TypeSourceInfo *Written, SourceLocation L,
250                                    SourceLocation RParenLoc);
251
252  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
253                                         unsigned pathSize);
254
255  static bool classof(const Stmt *T) {
256    return T->getStmtClass() == CXXDynamicCastExprClass;
257  }
258  static bool classof(const CXXDynamicCastExpr *) { return true; }
259};
260
261/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
262/// [expr.reinterpret.cast]), which provides a differently-typed view
263/// of a value but performs no actual work at run time.
264///
265/// This expression node represents a reinterpret cast, e.g.,
266/// @c reinterpret_cast<int>(VoidPtr).
267class CXXReinterpretCastExpr : public CXXNamedCastExpr {
268  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
269                         Expr *op, unsigned pathSize,
270                         TypeSourceInfo *writtenTy, SourceLocation l,
271                         SourceLocation RParenLoc)
272    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
273                       pathSize, writtenTy, l, RParenLoc) {}
274
275  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
276    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
277
278public:
279  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
280                                        ExprValueKind VK, CastKind Kind,
281                                        Expr *Op, const CXXCastPath *Path,
282                                 TypeSourceInfo *WrittenTy, SourceLocation L,
283                                        SourceLocation RParenLoc);
284  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
285                                             unsigned pathSize);
286
287  static bool classof(const Stmt *T) {
288    return T->getStmtClass() == CXXReinterpretCastExprClass;
289  }
290  static bool classof(const CXXReinterpretCastExpr *) { return true; }
291};
292
293/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
294/// which can remove type qualifiers but does not change the underlying value.
295///
296/// This expression node represents a const cast, e.g.,
297/// @c const_cast<char*>(PtrToConstChar).
298class CXXConstCastExpr : public CXXNamedCastExpr {
299  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
300                   TypeSourceInfo *writtenTy, SourceLocation l,
301                   SourceLocation RParenLoc)
302    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
303                       0, writtenTy, l, RParenLoc) {}
304
305  explicit CXXConstCastExpr(EmptyShell Empty)
306    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
307
308public:
309  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
310                                  ExprValueKind VK, Expr *Op,
311                                  TypeSourceInfo *WrittenTy, SourceLocation L,
312                                  SourceLocation RParenLoc);
313  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
314
315  static bool classof(const Stmt *T) {
316    return T->getStmtClass() == CXXConstCastExprClass;
317  }
318  static bool classof(const CXXConstCastExpr *) { return true; }
319};
320
321/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
322///
323class CXXBoolLiteralExpr : public Expr {
324  bool Value;
325  SourceLocation Loc;
326public:
327  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
328    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
329         false),
330    Value(val), Loc(l) {}
331
332  explicit CXXBoolLiteralExpr(EmptyShell Empty)
333    : Expr(CXXBoolLiteralExprClass, Empty) { }
334
335  bool getValue() const { return Value; }
336  void setValue(bool V) { Value = V; }
337
338  SourceRange getSourceRange() const { return SourceRange(Loc); }
339
340  SourceLocation getLocation() const { return Loc; }
341  void setLocation(SourceLocation L) { Loc = L; }
342
343  static bool classof(const Stmt *T) {
344    return T->getStmtClass() == CXXBoolLiteralExprClass;
345  }
346  static bool classof(const CXXBoolLiteralExpr *) { return true; }
347
348  // Iterators
349  child_range children() { return child_range(); }
350};
351
352/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
353class CXXNullPtrLiteralExpr : public Expr {
354  SourceLocation Loc;
355public:
356  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
357    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
358         false),
359    Loc(l) {}
360
361  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
362    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
363
364  SourceRange getSourceRange() const { return SourceRange(Loc); }
365
366  SourceLocation getLocation() const { return Loc; }
367  void setLocation(SourceLocation L) { Loc = L; }
368
369  static bool classof(const Stmt *T) {
370    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
371  }
372  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
373
374  child_range children() { return child_range(); }
375};
376
377/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
378/// the type_info that corresponds to the supplied type, or the (possibly
379/// dynamic) type of the supplied expression.
380///
381/// This represents code like @c typeid(int) or @c typeid(*objPtr)
382class CXXTypeidExpr : public Expr {
383private:
384  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
385  SourceRange Range;
386
387public:
388  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
389    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
390           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
391           false,
392           // typeid is value-dependent if the type or expression are dependent
393           Operand->getType()->isDependentType(),
394           Operand->getType()->containsUnexpandedParameterPack()),
395      Operand(Operand), Range(R) { }
396
397  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
398    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
399        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
400           false,
401        // typeid is value-dependent if the type or expression are dependent
402           Operand->isTypeDependent() || Operand->isValueDependent(),
403           Operand->containsUnexpandedParameterPack()),
404      Operand(Operand), Range(R) { }
405
406  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
407    : Expr(CXXTypeidExprClass, Empty) {
408    if (isExpr)
409      Operand = (Expr*)0;
410    else
411      Operand = (TypeSourceInfo*)0;
412  }
413
414  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
415
416  /// \brief Retrieves the type operand of this typeid() expression after
417  /// various required adjustments (removing reference types, cv-qualifiers).
418  QualType getTypeOperand() const;
419
420  /// \brief Retrieve source information for the type operand.
421  TypeSourceInfo *getTypeOperandSourceInfo() const {
422    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
423    return Operand.get<TypeSourceInfo *>();
424  }
425
426  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
427    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
428    Operand = TSI;
429  }
430
431  Expr *getExprOperand() const {
432    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
433    return static_cast<Expr*>(Operand.get<Stmt *>());
434  }
435
436  void setExprOperand(Expr *E) {
437    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
438    Operand = E;
439  }
440
441  SourceRange getSourceRange() const { return Range; }
442  void setSourceRange(SourceRange R) { Range = R; }
443
444  static bool classof(const Stmt *T) {
445    return T->getStmtClass() == CXXTypeidExprClass;
446  }
447  static bool classof(const CXXTypeidExpr *) { return true; }
448
449  // Iterators
450  child_range children() {
451    if (isTypeOperand()) return child_range();
452    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
453    return child_range(begin, begin + 1);
454  }
455};
456
457/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
458/// the _GUID that corresponds to the supplied type or expression.
459///
460/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
461class CXXUuidofExpr : public Expr {
462private:
463  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
464  SourceRange Range;
465
466public:
467  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
468    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
469           false, Operand->getType()->isDependentType(),
470           Operand->getType()->containsUnexpandedParameterPack()),
471      Operand(Operand), Range(R) { }
472
473  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
474    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
475           false, Operand->isTypeDependent(),
476           Operand->containsUnexpandedParameterPack()),
477      Operand(Operand), Range(R) { }
478
479  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
480    : Expr(CXXUuidofExprClass, Empty) {
481    if (isExpr)
482      Operand = (Expr*)0;
483    else
484      Operand = (TypeSourceInfo*)0;
485  }
486
487  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
488
489  /// \brief Retrieves the type operand of this __uuidof() expression after
490  /// various required adjustments (removing reference types, cv-qualifiers).
491  QualType getTypeOperand() const;
492
493  /// \brief Retrieve source information for the type operand.
494  TypeSourceInfo *getTypeOperandSourceInfo() const {
495    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
496    return Operand.get<TypeSourceInfo *>();
497  }
498
499  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
500    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
501    Operand = TSI;
502  }
503
504  Expr *getExprOperand() const {
505    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
506    return static_cast<Expr*>(Operand.get<Stmt *>());
507  }
508
509  void setExprOperand(Expr *E) {
510    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
511    Operand = E;
512  }
513
514  SourceRange getSourceRange() const { return Range; }
515  void setSourceRange(SourceRange R) { Range = R; }
516
517  static bool classof(const Stmt *T) {
518    return T->getStmtClass() == CXXUuidofExprClass;
519  }
520  static bool classof(const CXXUuidofExpr *) { return true; }
521
522  // Iterators
523  child_range children() {
524    if (isTypeOperand()) return child_range();
525    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
526    return child_range(begin, begin + 1);
527  }
528};
529
530/// CXXThisExpr - Represents the "this" expression in C++, which is a
531/// pointer to the object on which the current member function is
532/// executing (C++ [expr.prim]p3). Example:
533///
534/// @code
535/// class Foo {
536/// public:
537///   void bar();
538///   void test() { this->bar(); }
539/// };
540/// @endcode
541class CXXThisExpr : public Expr {
542  SourceLocation Loc;
543  bool Implicit : 1;
544
545public:
546  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
547    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
548           // 'this' is type-dependent if the class type of the enclosing
549           // member function is dependent (C++ [temp.dep.expr]p2)
550           Type->isDependentType(), Type->isDependentType(),
551           /*ContainsUnexpandedParameterPack=*/false),
552      Loc(L), Implicit(isImplicit) { }
553
554  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
555
556  SourceLocation getLocation() const { return Loc; }
557  void setLocation(SourceLocation L) { Loc = L; }
558
559  SourceRange getSourceRange() const { return SourceRange(Loc); }
560
561  bool isImplicit() const { return Implicit; }
562  void setImplicit(bool I) { Implicit = I; }
563
564  static bool classof(const Stmt *T) {
565    return T->getStmtClass() == CXXThisExprClass;
566  }
567  static bool classof(const CXXThisExpr *) { return true; }
568
569  // Iterators
570  child_range children() { return child_range(); }
571};
572
573///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
574///  'throw' and 'throw' assignment-expression.  When
575///  assignment-expression isn't present, Op will be null.
576///
577class CXXThrowExpr : public Expr {
578  Stmt *Op;
579  SourceLocation ThrowLoc;
580public:
581  // Ty is the void type which is used as the result type of the
582  // exepression.  The l is the location of the throw keyword.  expr
583  // can by null, if the optional expression to throw isn't present.
584  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
585    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
586         expr && expr->containsUnexpandedParameterPack()),
587    Op(expr), ThrowLoc(l) {}
588  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
589
590  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
591  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
592  void setSubExpr(Expr *E) { Op = E; }
593
594  SourceLocation getThrowLoc() const { return ThrowLoc; }
595  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
596
597  SourceRange getSourceRange() const {
598    if (getSubExpr() == 0)
599      return SourceRange(ThrowLoc, ThrowLoc);
600    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
601  }
602
603  static bool classof(const Stmt *T) {
604    return T->getStmtClass() == CXXThrowExprClass;
605  }
606  static bool classof(const CXXThrowExpr *) { return true; }
607
608  // Iterators
609  child_range children() {
610    return child_range(&Op, Op ? &Op+1 : &Op);
611  }
612};
613
614/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
615/// function call argument that was created from the corresponding
616/// parameter's default argument, when the call did not explicitly
617/// supply arguments for all of the parameters.
618class CXXDefaultArgExpr : public Expr {
619  /// \brief The parameter whose default is being used.
620  ///
621  /// When the bit is set, the subexpression is stored after the
622  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
623  /// actual default expression is the subexpression.
624  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
625
626  /// \brief The location where the default argument expression was used.
627  SourceLocation Loc;
628
629  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
630    : Expr(SC,
631           param->hasUnparsedDefaultArg()
632             ? param->getType().getNonReferenceType()
633             : param->getDefaultArg()->getType(),
634           param->getDefaultArg()->getValueKind(),
635           param->getDefaultArg()->getObjectKind(), false, false, false),
636      Param(param, false), Loc(Loc) { }
637
638  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
639                    Expr *SubExpr)
640    : Expr(SC, SubExpr->getType(),
641           SubExpr->getValueKind(), SubExpr->getObjectKind(),
642           false, false, false),
643      Param(param, true), Loc(Loc) {
644    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
645  }
646
647public:
648  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
649
650
651  // Param is the parameter whose default argument is used by this
652  // expression.
653  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
654                                   ParmVarDecl *Param) {
655    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
656  }
657
658  // Param is the parameter whose default argument is used by this
659  // expression, and SubExpr is the expression that will actually be used.
660  static CXXDefaultArgExpr *Create(ASTContext &C,
661                                   SourceLocation Loc,
662                                   ParmVarDecl *Param,
663                                   Expr *SubExpr);
664
665  // Retrieve the parameter that the argument was created from.
666  const ParmVarDecl *getParam() const { return Param.getPointer(); }
667  ParmVarDecl *getParam() { return Param.getPointer(); }
668
669  // Retrieve the actual argument to the function call.
670  const Expr *getExpr() const {
671    if (Param.getInt())
672      return *reinterpret_cast<Expr const * const*> (this + 1);
673    return getParam()->getDefaultArg();
674  }
675  Expr *getExpr() {
676    if (Param.getInt())
677      return *reinterpret_cast<Expr **> (this + 1);
678    return getParam()->getDefaultArg();
679  }
680
681  /// \brief Retrieve the location where this default argument was actually
682  /// used.
683  SourceLocation getUsedLocation() const { return Loc; }
684
685  SourceRange getSourceRange() const {
686    // Default argument expressions have no representation in the
687    // source, so they have an empty source range.
688    return SourceRange();
689  }
690
691  static bool classof(const Stmt *T) {
692    return T->getStmtClass() == CXXDefaultArgExprClass;
693  }
694  static bool classof(const CXXDefaultArgExpr *) { return true; }
695
696  // Iterators
697  child_range children() { return child_range(); }
698
699  friend class ASTStmtReader;
700  friend class ASTStmtWriter;
701};
702
703/// CXXTemporary - Represents a C++ temporary.
704class CXXTemporary {
705  /// Destructor - The destructor that needs to be called.
706  const CXXDestructorDecl *Destructor;
707
708  CXXTemporary(const CXXDestructorDecl *destructor)
709    : Destructor(destructor) { }
710
711public:
712  static CXXTemporary *Create(ASTContext &C,
713                              const CXXDestructorDecl *Destructor);
714
715  const CXXDestructorDecl *getDestructor() const { return Destructor; }
716};
717
718/// \brief Represents binding an expression to a temporary.
719///
720/// This ensures the destructor is called for the temporary. It should only be
721/// needed for non-POD, non-trivially destructable class types. For example:
722///
723/// \code
724///   struct S {
725///     S() { }  // User defined constructor makes S non-POD.
726///     ~S() { } // User defined destructor makes it non-trivial.
727///   };
728///   void test() {
729///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
730///   }
731/// \endcode
732class CXXBindTemporaryExpr : public Expr {
733  CXXTemporary *Temp;
734
735  Stmt *SubExpr;
736
737  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
738   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
739          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
740          SubExpr->isValueDependent(),
741          SubExpr->containsUnexpandedParameterPack()),
742     Temp(temp), SubExpr(SubExpr) { }
743
744public:
745  CXXBindTemporaryExpr(EmptyShell Empty)
746    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
747
748  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
749                                      Expr* SubExpr);
750
751  CXXTemporary *getTemporary() { return Temp; }
752  const CXXTemporary *getTemporary() const { return Temp; }
753  void setTemporary(CXXTemporary *T) { Temp = T; }
754
755  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
756  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
757  void setSubExpr(Expr *E) { SubExpr = E; }
758
759  SourceRange getSourceRange() const {
760    return SubExpr->getSourceRange();
761  }
762
763  // Implement isa/cast/dyncast/etc.
764  static bool classof(const Stmt *T) {
765    return T->getStmtClass() == CXXBindTemporaryExprClass;
766  }
767  static bool classof(const CXXBindTemporaryExpr *) { return true; }
768
769  // Iterators
770  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
771};
772
773/// CXXConstructExpr - Represents a call to a C++ constructor.
774class CXXConstructExpr : public Expr {
775public:
776  enum ConstructionKind {
777    CK_Complete,
778    CK_NonVirtualBase,
779    CK_VirtualBase
780  };
781
782private:
783  CXXConstructorDecl *Constructor;
784
785  SourceLocation Loc;
786  SourceRange ParenRange;
787  bool Elidable : 1;
788  bool ZeroInitialization : 1;
789  unsigned ConstructKind : 2;
790  Stmt **Args;
791  unsigned NumArgs;
792
793protected:
794  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
795                   SourceLocation Loc,
796                   CXXConstructorDecl *d, bool elidable,
797                   Expr **args, unsigned numargs,
798                   bool ZeroInitialization = false,
799                   ConstructionKind ConstructKind = CK_Complete,
800                   SourceRange ParenRange = SourceRange());
801
802  /// \brief Construct an empty C++ construction expression.
803  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
804    : Expr(SC, Empty), Constructor(0), Elidable(0), ZeroInitialization(0),
805      ConstructKind(0), Args(0), NumArgs(0) { }
806
807public:
808  /// \brief Construct an empty C++ construction expression.
809  explicit CXXConstructExpr(EmptyShell Empty)
810    : Expr(CXXConstructExprClass, Empty), Constructor(0),
811      Elidable(0), ZeroInitialization(0),
812      ConstructKind(0), Args(0), NumArgs(0) { }
813
814  static CXXConstructExpr *Create(ASTContext &C, QualType T,
815                                  SourceLocation Loc,
816                                  CXXConstructorDecl *D, bool Elidable,
817                                  Expr **Args, unsigned NumArgs,
818                                  bool ZeroInitialization = false,
819                                  ConstructionKind ConstructKind = CK_Complete,
820                                  SourceRange ParenRange = SourceRange());
821
822
823  CXXConstructorDecl* getConstructor() const { return Constructor; }
824  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
825
826  SourceLocation getLocation() const { return Loc; }
827  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
828
829  /// \brief Whether this construction is elidable.
830  bool isElidable() const { return Elidable; }
831  void setElidable(bool E) { Elidable = E; }
832
833  /// \brief Whether this construction first requires
834  /// zero-initialization before the initializer is called.
835  bool requiresZeroInitialization() const { return ZeroInitialization; }
836  void setRequiresZeroInitialization(bool ZeroInit) {
837    ZeroInitialization = ZeroInit;
838  }
839
840  /// \brief Determines whether this constructor is actually constructing
841  /// a base class (rather than a complete object).
842  ConstructionKind getConstructionKind() const {
843    return (ConstructionKind)ConstructKind;
844  }
845  void setConstructionKind(ConstructionKind CK) {
846    ConstructKind = CK;
847  }
848
849  typedef ExprIterator arg_iterator;
850  typedef ConstExprIterator const_arg_iterator;
851
852  arg_iterator arg_begin() { return Args; }
853  arg_iterator arg_end() { return Args + NumArgs; }
854  const_arg_iterator arg_begin() const { return Args; }
855  const_arg_iterator arg_end() const { return Args + NumArgs; }
856
857  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
858  unsigned getNumArgs() const { return NumArgs; }
859
860  /// getArg - Return the specified argument.
861  Expr *getArg(unsigned Arg) {
862    assert(Arg < NumArgs && "Arg access out of range!");
863    return cast<Expr>(Args[Arg]);
864  }
865  const Expr *getArg(unsigned Arg) const {
866    assert(Arg < NumArgs && "Arg access out of range!");
867    return cast<Expr>(Args[Arg]);
868  }
869
870  /// setArg - Set the specified argument.
871  void setArg(unsigned Arg, Expr *ArgExpr) {
872    assert(Arg < NumArgs && "Arg access out of range!");
873    Args[Arg] = ArgExpr;
874  }
875
876  SourceRange getSourceRange() const;
877  SourceRange getParenRange() const { return ParenRange; }
878
879  static bool classof(const Stmt *T) {
880    return T->getStmtClass() == CXXConstructExprClass ||
881      T->getStmtClass() == CXXTemporaryObjectExprClass;
882  }
883  static bool classof(const CXXConstructExpr *) { return true; }
884
885  // Iterators
886  child_range children() {
887    return child_range(&Args[0], &Args[0]+NumArgs);
888  }
889
890  friend class ASTStmtReader;
891};
892
893/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
894/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
895/// x = int(0.5);
896class CXXFunctionalCastExpr : public ExplicitCastExpr {
897  SourceLocation TyBeginLoc;
898  SourceLocation RParenLoc;
899
900  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
901                        TypeSourceInfo *writtenTy,
902                        SourceLocation tyBeginLoc, CastKind kind,
903                        Expr *castExpr, unsigned pathSize,
904                        SourceLocation rParenLoc)
905    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
906                       castExpr, pathSize, writtenTy),
907      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
908
909  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
910    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
911
912public:
913  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
914                                       ExprValueKind VK,
915                                       TypeSourceInfo *Written,
916                                       SourceLocation TyBeginLoc,
917                                       CastKind Kind, Expr *Op,
918                                       const CXXCastPath *Path,
919                                       SourceLocation RPLoc);
920  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
921                                            unsigned PathSize);
922
923  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
924  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
925  SourceLocation getRParenLoc() const { return RParenLoc; }
926  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
927
928  SourceRange getSourceRange() const {
929    return SourceRange(TyBeginLoc, RParenLoc);
930  }
931  static bool classof(const Stmt *T) {
932    return T->getStmtClass() == CXXFunctionalCastExprClass;
933  }
934  static bool classof(const CXXFunctionalCastExpr *) { return true; }
935};
936
937/// @brief Represents a C++ functional cast expression that builds a
938/// temporary object.
939///
940/// This expression type represents a C++ "functional" cast
941/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
942/// constructor to build a temporary object. With N == 1 arguments the
943/// functional cast expression will be represented by CXXFunctionalCastExpr.
944/// Example:
945/// @code
946/// struct X { X(int, float); }
947///
948/// X create_X() {
949///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
950/// };
951/// @endcode
952class CXXTemporaryObjectExpr : public CXXConstructExpr {
953  TypeSourceInfo *Type;
954
955public:
956  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
957                         TypeSourceInfo *Type,
958                         Expr **Args,unsigned NumArgs,
959                         SourceRange parenRange,
960                         bool ZeroInitialization = false);
961  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
962    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
963
964  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
965
966  SourceRange getSourceRange() const;
967
968  static bool classof(const Stmt *T) {
969    return T->getStmtClass() == CXXTemporaryObjectExprClass;
970  }
971  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
972
973  friend class ASTStmtReader;
974};
975
976/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
977/// Expression "T()" which creates a value-initialized rvalue of type
978/// T, which is a non-class type.
979///
980class CXXScalarValueInitExpr : public Expr {
981  SourceLocation RParenLoc;
982  TypeSourceInfo *TypeInfo;
983
984  friend class ASTStmtReader;
985
986public:
987  /// \brief Create an explicitly-written scalar-value initialization
988  /// expression.
989  CXXScalarValueInitExpr(QualType Type,
990                         TypeSourceInfo *TypeInfo,
991                         SourceLocation rParenLoc ) :
992    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
993         false, false, false),
994    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
995
996  explicit CXXScalarValueInitExpr(EmptyShell Shell)
997    : Expr(CXXScalarValueInitExprClass, Shell) { }
998
999  TypeSourceInfo *getTypeSourceInfo() const {
1000    return TypeInfo;
1001  }
1002
1003  SourceLocation getRParenLoc() const { return RParenLoc; }
1004
1005  SourceRange getSourceRange() const;
1006
1007  static bool classof(const Stmt *T) {
1008    return T->getStmtClass() == CXXScalarValueInitExprClass;
1009  }
1010  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1011
1012  // Iterators
1013  child_range children() { return child_range(); }
1014};
1015
1016/// CXXNewExpr - A new expression for memory allocation and constructor calls,
1017/// e.g: "new CXXNewExpr(foo)".
1018class CXXNewExpr : public Expr {
1019  // Was the usage ::new, i.e. is the global new to be used?
1020  bool GlobalNew : 1;
1021  // Is there an initializer? If not, built-ins are uninitialized, else they're
1022  // value-initialized.
1023  bool Initializer : 1;
1024  // Do we allocate an array? If so, the first SubExpr is the size expression.
1025  bool Array : 1;
1026  // If this is an array allocation, does the usual deallocation
1027  // function for the allocated type want to know the allocated size?
1028  bool UsualArrayDeleteWantsSize : 1;
1029  // The number of placement new arguments.
1030  unsigned NumPlacementArgs : 14;
1031  // The number of constructor arguments. This may be 1 even for non-class
1032  // types; use the pseudo copy constructor.
1033  unsigned NumConstructorArgs : 14;
1034  // Contains an optional array size expression, any number of optional
1035  // placement arguments, and any number of optional constructor arguments,
1036  // in that order.
1037  Stmt **SubExprs;
1038  // Points to the allocation function used.
1039  FunctionDecl *OperatorNew;
1040  // Points to the deallocation function used in case of error. May be null.
1041  FunctionDecl *OperatorDelete;
1042  // Points to the constructor used. Cannot be null if AllocType is a record;
1043  // it would still point at the default constructor (even an implicit one).
1044  // Must be null for all other types.
1045  CXXConstructorDecl *Constructor;
1046
1047  /// \brief The allocated type-source information, as written in the source.
1048  TypeSourceInfo *AllocatedTypeInfo;
1049
1050  /// \brief If the allocated type was expressed as a parenthesized type-id,
1051  /// the source range covering the parenthesized type-id.
1052  SourceRange TypeIdParens;
1053
1054  SourceLocation StartLoc;
1055  SourceLocation EndLoc;
1056  SourceLocation ConstructorLParen;
1057  SourceLocation ConstructorRParen;
1058
1059  friend class ASTStmtReader;
1060public:
1061  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1062             Expr **placementArgs, unsigned numPlaceArgs,
1063             SourceRange TypeIdParens,
1064             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1065             Expr **constructorArgs, unsigned numConsArgs,
1066             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1067             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1068             SourceLocation startLoc, SourceLocation endLoc,
1069             SourceLocation constructorLParen,
1070             SourceLocation constructorRParen);
1071  explicit CXXNewExpr(EmptyShell Shell)
1072    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1073
1074  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1075                         unsigned numConsArgs);
1076
1077  QualType getAllocatedType() const {
1078    assert(getType()->isPointerType());
1079    return getType()->getAs<PointerType>()->getPointeeType();
1080  }
1081
1082  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1083    return AllocatedTypeInfo;
1084  }
1085
1086  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1087  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1088  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1089  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1090  CXXConstructorDecl *getConstructor() const { return Constructor; }
1091  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1092
1093  bool isArray() const { return Array; }
1094  Expr *getArraySize() {
1095    return Array ? cast<Expr>(SubExprs[0]) : 0;
1096  }
1097  const Expr *getArraySize() const {
1098    return Array ? cast<Expr>(SubExprs[0]) : 0;
1099  }
1100
1101  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1102  Expr **getPlacementArgs() {
1103    return reinterpret_cast<Expr **>(SubExprs + Array);
1104  }
1105
1106  Expr *getPlacementArg(unsigned i) {
1107    assert(i < NumPlacementArgs && "Index out of range");
1108    return cast<Expr>(SubExprs[Array + i]);
1109  }
1110  const Expr *getPlacementArg(unsigned i) const {
1111    assert(i < NumPlacementArgs && "Index out of range");
1112    return cast<Expr>(SubExprs[Array + i]);
1113  }
1114
1115  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1116  SourceRange getTypeIdParens() const { return TypeIdParens; }
1117
1118  bool isGlobalNew() const { return GlobalNew; }
1119  bool hasInitializer() const { return Initializer; }
1120
1121  /// Answers whether the usual array deallocation function for the
1122  /// allocated type expects the size of the allocation as a
1123  /// parameter.
1124  bool doesUsualArrayDeleteWantSize() const {
1125    return UsualArrayDeleteWantsSize;
1126  }
1127
1128  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1129
1130  Expr **getConstructorArgs() {
1131    return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
1132  }
1133
1134  Expr *getConstructorArg(unsigned i) {
1135    assert(i < NumConstructorArgs && "Index out of range");
1136    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1137  }
1138  const Expr *getConstructorArg(unsigned i) const {
1139    assert(i < NumConstructorArgs && "Index out of range");
1140    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1141  }
1142
1143  typedef ExprIterator arg_iterator;
1144  typedef ConstExprIterator const_arg_iterator;
1145
1146  arg_iterator placement_arg_begin() {
1147    return SubExprs + Array;
1148  }
1149  arg_iterator placement_arg_end() {
1150    return SubExprs + Array + getNumPlacementArgs();
1151  }
1152  const_arg_iterator placement_arg_begin() const {
1153    return SubExprs + Array;
1154  }
1155  const_arg_iterator placement_arg_end() const {
1156    return SubExprs + Array + getNumPlacementArgs();
1157  }
1158
1159  arg_iterator constructor_arg_begin() {
1160    return SubExprs + Array + getNumPlacementArgs();
1161  }
1162  arg_iterator constructor_arg_end() {
1163    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1164  }
1165  const_arg_iterator constructor_arg_begin() const {
1166    return SubExprs + Array + getNumPlacementArgs();
1167  }
1168  const_arg_iterator constructor_arg_end() const {
1169    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1170  }
1171
1172  typedef Stmt **raw_arg_iterator;
1173  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1174  raw_arg_iterator raw_arg_end() {
1175    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1176  }
1177  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1178  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1179
1180  SourceLocation getStartLoc() const { return StartLoc; }
1181  SourceLocation getEndLoc() const { return EndLoc; }
1182
1183  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1184  SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1185
1186  SourceRange getSourceRange() const {
1187    return SourceRange(StartLoc, EndLoc);
1188  }
1189
1190  static bool classof(const Stmt *T) {
1191    return T->getStmtClass() == CXXNewExprClass;
1192  }
1193  static bool classof(const CXXNewExpr *) { return true; }
1194
1195  // Iterators
1196  child_range children() {
1197    return child_range(&SubExprs[0],
1198                       &SubExprs[0] + Array + getNumPlacementArgs()
1199                         + getNumConstructorArgs());
1200  }
1201};
1202
1203/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1204/// calls, e.g. "delete[] pArray".
1205class CXXDeleteExpr : public Expr {
1206  // Is this a forced global delete, i.e. "::delete"?
1207  bool GlobalDelete : 1;
1208  // Is this the array form of delete, i.e. "delete[]"?
1209  bool ArrayForm : 1;
1210  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1211  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1212  // will be true).
1213  bool ArrayFormAsWritten : 1;
1214  // Does the usual deallocation function for the element type require
1215  // a size_t argument?
1216  bool UsualArrayDeleteWantsSize : 1;
1217  // Points to the operator delete overload that is used. Could be a member.
1218  FunctionDecl *OperatorDelete;
1219  // The pointer expression to be deleted.
1220  Stmt *Argument;
1221  // Location of the expression.
1222  SourceLocation Loc;
1223public:
1224  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1225                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1226                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1227    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1228           arg->containsUnexpandedParameterPack()),
1229      GlobalDelete(globalDelete),
1230      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1231      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1232      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1233  explicit CXXDeleteExpr(EmptyShell Shell)
1234    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1235
1236  bool isGlobalDelete() const { return GlobalDelete; }
1237  bool isArrayForm() const { return ArrayForm; }
1238  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1239
1240  /// Answers whether the usual array deallocation function for the
1241  /// allocated type expects the size of the allocation as a
1242  /// parameter.  This can be true even if the actual deallocation
1243  /// function that we're using doesn't want a size.
1244  bool doesUsualArrayDeleteWantSize() const {
1245    return UsualArrayDeleteWantsSize;
1246  }
1247
1248  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1249
1250  Expr *getArgument() { return cast<Expr>(Argument); }
1251  const Expr *getArgument() const { return cast<Expr>(Argument); }
1252
1253  /// \brief Retrieve the type being destroyed.  If the type being
1254  /// destroyed is a dependent type which may or may not be a pointer,
1255  /// return an invalid type.
1256  QualType getDestroyedType() const;
1257
1258  SourceRange getSourceRange() const {
1259    return SourceRange(Loc, Argument->getLocEnd());
1260  }
1261
1262  static bool classof(const Stmt *T) {
1263    return T->getStmtClass() == CXXDeleteExprClass;
1264  }
1265  static bool classof(const CXXDeleteExpr *) { return true; }
1266
1267  // Iterators
1268  child_range children() { return child_range(&Argument, &Argument+1); }
1269
1270  friend class ASTStmtReader;
1271};
1272
1273/// \brief Structure used to store the type being destroyed by a
1274/// pseudo-destructor expression.
1275class PseudoDestructorTypeStorage {
1276  /// \brief Either the type source information or the name of the type, if
1277  /// it couldn't be resolved due to type-dependence.
1278  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1279
1280  /// \brief The starting source location of the pseudo-destructor type.
1281  SourceLocation Location;
1282
1283public:
1284  PseudoDestructorTypeStorage() { }
1285
1286  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1287    : Type(II), Location(Loc) { }
1288
1289  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1290
1291  TypeSourceInfo *getTypeSourceInfo() const {
1292    return Type.dyn_cast<TypeSourceInfo *>();
1293  }
1294
1295  IdentifierInfo *getIdentifier() const {
1296    return Type.dyn_cast<IdentifierInfo *>();
1297  }
1298
1299  SourceLocation getLocation() const { return Location; }
1300};
1301
1302/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1303///
1304/// A pseudo-destructor is an expression that looks like a member access to a
1305/// destructor of a scalar type, except that scalar types don't have
1306/// destructors. For example:
1307///
1308/// \code
1309/// typedef int T;
1310/// void f(int *p) {
1311///   p->T::~T();
1312/// }
1313/// \endcode
1314///
1315/// Pseudo-destructors typically occur when instantiating templates such as:
1316///
1317/// \code
1318/// template<typename T>
1319/// void destroy(T* ptr) {
1320///   ptr->T::~T();
1321/// }
1322/// \endcode
1323///
1324/// for scalar types. A pseudo-destructor expression has no run-time semantics
1325/// beyond evaluating the base expression.
1326class CXXPseudoDestructorExpr : public Expr {
1327  /// \brief The base expression (that is being destroyed).
1328  Stmt *Base;
1329
1330  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1331  /// period ('.').
1332  bool IsArrow : 1;
1333
1334  /// \brief The location of the '.' or '->' operator.
1335  SourceLocation OperatorLoc;
1336
1337  /// \brief The nested-name-specifier that follows the operator, if present.
1338  NestedNameSpecifier *Qualifier;
1339
1340  /// \brief The source range that covers the nested-name-specifier, if
1341  /// present.
1342  SourceRange QualifierRange;
1343
1344  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1345  /// expression.
1346  TypeSourceInfo *ScopeType;
1347
1348  /// \brief The location of the '::' in a qualified pseudo-destructor
1349  /// expression.
1350  SourceLocation ColonColonLoc;
1351
1352  /// \brief The location of the '~'.
1353  SourceLocation TildeLoc;
1354
1355  /// \brief The type being destroyed, or its name if we were unable to
1356  /// resolve the name.
1357  PseudoDestructorTypeStorage DestroyedType;
1358
1359public:
1360  CXXPseudoDestructorExpr(ASTContext &Context,
1361                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1362                          NestedNameSpecifier *Qualifier,
1363                          SourceRange QualifierRange,
1364                          TypeSourceInfo *ScopeType,
1365                          SourceLocation ColonColonLoc,
1366                          SourceLocation TildeLoc,
1367                          PseudoDestructorTypeStorage DestroyedType);
1368
1369  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1370    : Expr(CXXPseudoDestructorExprClass, Shell),
1371      Base(0), IsArrow(false), Qualifier(0), ScopeType(0) { }
1372
1373  void setBase(Expr *E) { Base = E; }
1374  Expr *getBase() const { return cast<Expr>(Base); }
1375
1376  /// \brief Determines whether this member expression actually had
1377  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1378  /// x->Base::foo.
1379  bool hasQualifier() const { return Qualifier != 0; }
1380
1381  /// \brief If the member name was qualified, retrieves the source range of
1382  /// the nested-name-specifier that precedes the member name. Otherwise,
1383  /// returns an empty source range.
1384  SourceRange getQualifierRange() const { return QualifierRange; }
1385  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1386
1387  /// \brief If the member name was qualified, retrieves the
1388  /// nested-name-specifier that precedes the member name. Otherwise, returns
1389  /// NULL.
1390  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1391  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1392
1393  /// \brief Determine whether this pseudo-destructor expression was written
1394  /// using an '->' (otherwise, it used a '.').
1395  bool isArrow() const { return IsArrow; }
1396  void setArrow(bool A) { IsArrow = A; }
1397
1398  /// \brief Retrieve the location of the '.' or '->' operator.
1399  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1400  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1401
1402  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1403  /// expression.
1404  ///
1405  /// Pseudo-destructor expressions can have extra qualification within them
1406  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1407  /// Here, if the object type of the expression is (or may be) a scalar type,
1408  /// \p T may also be a scalar type and, therefore, cannot be part of a
1409  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1410  /// destructor expression.
1411  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1412  void setScopeTypeInfo(TypeSourceInfo *Info) { ScopeType = Info; }
1413
1414  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1415  /// expression.
1416  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1417  void setColonColonLoc(SourceLocation L) { ColonColonLoc = L; }
1418
1419  /// \brief Retrieve the location of the '~'.
1420  SourceLocation getTildeLoc() const { return TildeLoc; }
1421  void setTildeLoc(SourceLocation L) { TildeLoc = L; }
1422
1423  /// \brief Retrieve the source location information for the type
1424  /// being destroyed.
1425  ///
1426  /// This type-source information is available for non-dependent
1427  /// pseudo-destructor expressions and some dependent pseudo-destructor
1428  /// expressions. Returns NULL if we only have the identifier for a
1429  /// dependent pseudo-destructor expression.
1430  TypeSourceInfo *getDestroyedTypeInfo() const {
1431    return DestroyedType.getTypeSourceInfo();
1432  }
1433
1434  /// \brief In a dependent pseudo-destructor expression for which we do not
1435  /// have full type information on the destroyed type, provides the name
1436  /// of the destroyed type.
1437  IdentifierInfo *getDestroyedTypeIdentifier() const {
1438    return DestroyedType.getIdentifier();
1439  }
1440
1441  /// \brief Retrieve the type being destroyed.
1442  QualType getDestroyedType() const;
1443
1444  /// \brief Retrieve the starting location of the type being destroyed.
1445  SourceLocation getDestroyedTypeLoc() const {
1446    return DestroyedType.getLocation();
1447  }
1448
1449  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1450  /// expression.
1451  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1452    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1453  }
1454
1455  /// \brief Set the destroyed type.
1456  void setDestroyedType(TypeSourceInfo *Info) {
1457    DestroyedType = PseudoDestructorTypeStorage(Info);
1458  }
1459
1460  SourceRange getSourceRange() const;
1461
1462  static bool classof(const Stmt *T) {
1463    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1464  }
1465  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1466
1467  // Iterators
1468  child_range children() { return child_range(&Base, &Base + 1); }
1469};
1470
1471/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1472/// implementation of TR1/C++0x type trait templates.
1473/// Example:
1474/// __is_pod(int) == true
1475/// __is_enum(std::string) == false
1476class UnaryTypeTraitExpr : public Expr {
1477  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1478  unsigned UTT : 31;
1479  /// The value of the type trait. Unspecified if dependent.
1480  bool Value : 1;
1481
1482  /// Loc - The location of the type trait keyword.
1483  SourceLocation Loc;
1484
1485  /// RParen - The location of the closing paren.
1486  SourceLocation RParen;
1487
1488  /// The type being queried.
1489  TypeSourceInfo *QueriedType;
1490
1491public:
1492  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1493                     TypeSourceInfo *queried, bool value,
1494                     SourceLocation rparen, QualType ty)
1495    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1496           false,  queried->getType()->isDependentType(),
1497           queried->getType()->containsUnexpandedParameterPack()),
1498      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1499
1500  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1501    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1502      QueriedType() { }
1503
1504  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1505
1506  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1507
1508  QualType getQueriedType() const { return QueriedType->getType(); }
1509
1510  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1511
1512  bool getValue() const { return Value; }
1513
1514  static bool classof(const Stmt *T) {
1515    return T->getStmtClass() == UnaryTypeTraitExprClass;
1516  }
1517  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1518
1519  // Iterators
1520  child_range children() { return child_range(); }
1521
1522  friend class ASTStmtReader;
1523};
1524
1525/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1526/// implementation of TR1/C++0x type trait templates.
1527/// Example:
1528/// __is_base_of(Base, Derived) == true
1529class BinaryTypeTraitExpr : public Expr {
1530  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1531  unsigned BTT : 8;
1532
1533  /// The value of the type trait. Unspecified if dependent.
1534  bool Value : 1;
1535
1536  /// Loc - The location of the type trait keyword.
1537  SourceLocation Loc;
1538
1539  /// RParen - The location of the closing paren.
1540  SourceLocation RParen;
1541
1542  /// The lhs type being queried.
1543  TypeSourceInfo *LhsType;
1544
1545  /// The rhs type being queried.
1546  TypeSourceInfo *RhsType;
1547
1548public:
1549  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1550                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1551                     bool value, SourceLocation rparen, QualType ty)
1552    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1553           lhsType->getType()->isDependentType() ||
1554           rhsType->getType()->isDependentType(),
1555           (lhsType->getType()->containsUnexpandedParameterPack() ||
1556            rhsType->getType()->containsUnexpandedParameterPack())),
1557      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1558      LhsType(lhsType), RhsType(rhsType) { }
1559
1560
1561  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1562    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1563      LhsType(), RhsType() { }
1564
1565  SourceRange getSourceRange() const {
1566    return SourceRange(Loc, RParen);
1567  }
1568
1569  BinaryTypeTrait getTrait() const {
1570    return static_cast<BinaryTypeTrait>(BTT);
1571  }
1572
1573  QualType getLhsType() const { return LhsType->getType(); }
1574  QualType getRhsType() const { return RhsType->getType(); }
1575
1576  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1577  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1578
1579  bool getValue() const { assert(!isTypeDependent()); return Value; }
1580
1581  static bool classof(const Stmt *T) {
1582    return T->getStmtClass() == BinaryTypeTraitExprClass;
1583  }
1584  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1585
1586  // Iterators
1587  child_range children() { return child_range(); }
1588
1589  friend class ASTStmtReader;
1590};
1591
1592/// \brief A reference to an overloaded function set, either an
1593/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1594class OverloadExpr : public Expr {
1595  /// The results.  These are undesugared, which is to say, they may
1596  /// include UsingShadowDecls.  Access is relative to the naming
1597  /// class.
1598  // FIXME: Allocate this data after the OverloadExpr subclass.
1599  DeclAccessPair *Results;
1600  unsigned NumResults;
1601
1602  /// The common name of these declarations.
1603  DeclarationNameInfo NameInfo;
1604
1605  /// The scope specifier, if any.
1606  NestedNameSpecifier *Qualifier;
1607
1608  /// The source range of the scope specifier.
1609  SourceRange QualifierRange;
1610
1611protected:
1612  /// True if the name was a template-id.
1613  bool HasExplicitTemplateArgs;
1614
1615  OverloadExpr(StmtClass K, ASTContext &C,
1616               NestedNameSpecifier *Qualifier, SourceRange QRange,
1617               const DeclarationNameInfo &NameInfo,
1618               const TemplateArgumentListInfo *TemplateArgs,
1619               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1620               bool KnownDependent = false,
1621               bool KnownContainsUnexpandedParameterPack = false);
1622
1623  OverloadExpr(StmtClass K, EmptyShell Empty)
1624    : Expr(K, Empty), Results(0), NumResults(0),
1625      Qualifier(0), HasExplicitTemplateArgs(false) { }
1626
1627  void initializeResults(ASTContext &C,
1628                         UnresolvedSetIterator Begin,
1629                         UnresolvedSetIterator End);
1630
1631public:
1632  struct FindResult {
1633    OverloadExpr *Expression;
1634    bool IsAddressOfOperand;
1635    bool HasFormOfMemberPointer;
1636  };
1637
1638  /// Finds the overloaded expression in the given expression of
1639  /// OverloadTy.
1640  ///
1641  /// \return the expression (which must be there) and true if it has
1642  /// the particular form of a member pointer expression
1643  static FindResult find(Expr *E) {
1644    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1645
1646    FindResult Result;
1647
1648    E = E->IgnoreParens();
1649    if (isa<UnaryOperator>(E)) {
1650      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
1651      E = cast<UnaryOperator>(E)->getSubExpr();
1652      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
1653
1654      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
1655      Result.IsAddressOfOperand = true;
1656      Result.Expression = Ovl;
1657    } else {
1658      Result.HasFormOfMemberPointer = false;
1659      Result.IsAddressOfOperand = false;
1660      Result.Expression = cast<OverloadExpr>(E);
1661    }
1662
1663    return Result;
1664  }
1665
1666  /// Gets the naming class of this lookup, if any.
1667  CXXRecordDecl *getNamingClass() const;
1668
1669  typedef UnresolvedSetImpl::iterator decls_iterator;
1670  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1671  decls_iterator decls_end() const {
1672    return UnresolvedSetIterator(Results + NumResults);
1673  }
1674
1675  /// Gets the number of declarations in the unresolved set.
1676  unsigned getNumDecls() const { return NumResults; }
1677
1678  /// Gets the full name info.
1679  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1680  void setNameInfo(const DeclarationNameInfo &N) { NameInfo = N; }
1681
1682  /// Gets the name looked up.
1683  DeclarationName getName() const { return NameInfo.getName(); }
1684  void setName(DeclarationName N) { NameInfo.setName(N); }
1685
1686  /// Gets the location of the name.
1687  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
1688  void setNameLoc(SourceLocation Loc) { NameInfo.setLoc(Loc); }
1689
1690  /// Fetches the nested-name qualifier, if one was given.
1691  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1692  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1693
1694  /// Fetches the range of the nested-name qualifier.
1695  SourceRange getQualifierRange() const { return QualifierRange; }
1696  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1697
1698  /// \brief Determines whether this expression had an explicit
1699  /// template argument list, e.g. f<int>.
1700  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1701
1702  ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
1703
1704  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1705    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1706  }
1707
1708  /// \brief Retrieves the optional explicit template arguments.
1709  /// This points to the same data as getExplicitTemplateArgs(), but
1710  /// returns null if there are no explicit template arguments.
1711  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1712    if (!hasExplicitTemplateArgs()) return 0;
1713    return &getExplicitTemplateArgs();
1714  }
1715
1716  static bool classof(const Stmt *T) {
1717    return T->getStmtClass() == UnresolvedLookupExprClass ||
1718           T->getStmtClass() == UnresolvedMemberExprClass;
1719  }
1720  static bool classof(const OverloadExpr *) { return true; }
1721
1722  friend class ASTStmtReader;
1723  friend class ASTStmtWriter;
1724};
1725
1726/// \brief A reference to a name which we were able to look up during
1727/// parsing but could not resolve to a specific declaration.  This
1728/// arises in several ways:
1729///   * we might be waiting for argument-dependent lookup
1730///   * the name might resolve to an overloaded function
1731/// and eventually:
1732///   * the lookup might have included a function template
1733/// These never include UnresolvedUsingValueDecls, which are always
1734/// class members and therefore appear only in
1735/// UnresolvedMemberLookupExprs.
1736class UnresolvedLookupExpr : public OverloadExpr {
1737  /// True if these lookup results should be extended by
1738  /// argument-dependent lookup if this is the operand of a function
1739  /// call.
1740  bool RequiresADL;
1741
1742  /// True if these lookup results are overloaded.  This is pretty
1743  /// trivially rederivable if we urgently need to kill this field.
1744  bool Overloaded;
1745
1746  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1747  /// any.  This can generally be recalculated from the context chain,
1748  /// but that can be fairly expensive for unqualified lookups.  If we
1749  /// want to improve memory use here, this could go in a union
1750  /// against the qualified-lookup bits.
1751  CXXRecordDecl *NamingClass;
1752
1753  UnresolvedLookupExpr(ASTContext &C,
1754                       CXXRecordDecl *NamingClass,
1755                       NestedNameSpecifier *Qualifier, SourceRange QRange,
1756                       const DeclarationNameInfo &NameInfo,
1757                       bool RequiresADL, bool Overloaded,
1758                       const TemplateArgumentListInfo *TemplateArgs,
1759                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
1760    : OverloadExpr(UnresolvedLookupExprClass, C, Qualifier,  QRange, NameInfo,
1761                   TemplateArgs, Begin, End),
1762      RequiresADL(RequiresADL), Overloaded(Overloaded), NamingClass(NamingClass)
1763  {}
1764
1765  UnresolvedLookupExpr(EmptyShell Empty)
1766    : OverloadExpr(UnresolvedLookupExprClass, Empty),
1767      RequiresADL(false), Overloaded(false), NamingClass(0)
1768  {}
1769
1770public:
1771  static UnresolvedLookupExpr *Create(ASTContext &C,
1772                                      CXXRecordDecl *NamingClass,
1773                                      NestedNameSpecifier *Qualifier,
1774                                      SourceRange QualifierRange,
1775                                      const DeclarationNameInfo &NameInfo,
1776                                      bool ADL, bool Overloaded,
1777                                      UnresolvedSetIterator Begin,
1778                                      UnresolvedSetIterator End) {
1779    return new(C) UnresolvedLookupExpr(C, NamingClass, Qualifier,
1780                                       QualifierRange, NameInfo, ADL,
1781                                       Overloaded, 0, Begin, End);
1782  }
1783
1784  static UnresolvedLookupExpr *Create(ASTContext &C,
1785                                      CXXRecordDecl *NamingClass,
1786                                      NestedNameSpecifier *Qualifier,
1787                                      SourceRange QualifierRange,
1788                                      const DeclarationNameInfo &NameInfo,
1789                                      bool ADL,
1790                                      const TemplateArgumentListInfo &Args,
1791                                      UnresolvedSetIterator Begin,
1792                                      UnresolvedSetIterator End);
1793
1794  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1795                                           bool HasExplicitTemplateArgs,
1796                                           unsigned NumTemplateArgs);
1797
1798  /// True if this declaration should be extended by
1799  /// argument-dependent lookup.
1800  bool requiresADL() const { return RequiresADL; }
1801  void setRequiresADL(bool V) { RequiresADL = V; }
1802
1803  /// True if this lookup is overloaded.
1804  bool isOverloaded() const { return Overloaded; }
1805  void setOverloaded(bool V) { Overloaded = V; }
1806
1807  /// Gets the 'naming class' (in the sense of C++0x
1808  /// [class.access.base]p5) of the lookup.  This is the scope
1809  /// that was looked in to find these results.
1810  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1811  void setNamingClass(CXXRecordDecl *D) { NamingClass = D; }
1812
1813  // Note that, inconsistently with the explicit-template-argument AST
1814  // nodes, users are *forbidden* from calling these methods on objects
1815  // without explicit template arguments.
1816
1817  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1818    assert(hasExplicitTemplateArgs());
1819    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1820  }
1821
1822  /// Gets a reference to the explicit template argument list.
1823  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1824    assert(hasExplicitTemplateArgs());
1825    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1826  }
1827
1828  /// \brief Retrieves the optional explicit template arguments.
1829  /// This points to the same data as getExplicitTemplateArgs(), but
1830  /// returns null if there are no explicit template arguments.
1831  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1832    if (!hasExplicitTemplateArgs()) return 0;
1833    return &getExplicitTemplateArgs();
1834  }
1835
1836  /// \brief Copies the template arguments (if present) into the given
1837  /// structure.
1838  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1839    getExplicitTemplateArgs().copyInto(List);
1840  }
1841
1842  SourceLocation getLAngleLoc() const {
1843    return getExplicitTemplateArgs().LAngleLoc;
1844  }
1845
1846  SourceLocation getRAngleLoc() const {
1847    return getExplicitTemplateArgs().RAngleLoc;
1848  }
1849
1850  TemplateArgumentLoc const *getTemplateArgs() const {
1851    return getExplicitTemplateArgs().getTemplateArgs();
1852  }
1853
1854  unsigned getNumTemplateArgs() const {
1855    return getExplicitTemplateArgs().NumTemplateArgs;
1856  }
1857
1858  SourceRange getSourceRange() const {
1859    SourceRange Range(getNameInfo().getSourceRange());
1860    if (getQualifier()) Range.setBegin(getQualifierRange().getBegin());
1861    if (hasExplicitTemplateArgs()) Range.setEnd(getRAngleLoc());
1862    return Range;
1863  }
1864
1865  child_range children() { return child_range(); }
1866
1867  static bool classof(const Stmt *T) {
1868    return T->getStmtClass() == UnresolvedLookupExprClass;
1869  }
1870  static bool classof(const UnresolvedLookupExpr *) { return true; }
1871};
1872
1873/// \brief A qualified reference to a name whose declaration cannot
1874/// yet be resolved.
1875///
1876/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
1877/// it expresses a reference to a declaration such as
1878/// X<T>::value. The difference, however, is that an
1879/// DependentScopeDeclRefExpr node is used only within C++ templates when
1880/// the qualification (e.g., X<T>::) refers to a dependent type. In
1881/// this case, X<T>::value cannot resolve to a declaration because the
1882/// declaration will differ from on instantiation of X<T> to the
1883/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
1884/// qualifier (X<T>::) and the name of the entity being referenced
1885/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
1886/// declaration can be found.
1887class DependentScopeDeclRefExpr : public Expr {
1888  /// The name of the entity we will be referencing.
1889  DeclarationNameInfo NameInfo;
1890
1891  /// QualifierRange - The source range that covers the
1892  /// nested-name-specifier.
1893  SourceRange QualifierRange;
1894
1895  /// \brief The nested-name-specifier that qualifies this unresolved
1896  /// declaration name.
1897  NestedNameSpecifier *Qualifier;
1898
1899  /// \brief Whether the name includes explicit template arguments.
1900  bool HasExplicitTemplateArgs;
1901
1902  DependentScopeDeclRefExpr(QualType T,
1903                            NestedNameSpecifier *Qualifier,
1904                            SourceRange QualifierRange,
1905                            const DeclarationNameInfo &NameInfo,
1906                            const TemplateArgumentListInfo *Args);
1907
1908public:
1909  static DependentScopeDeclRefExpr *Create(ASTContext &C,
1910                                           NestedNameSpecifier *Qualifier,
1911                                           SourceRange QualifierRange,
1912                                           const DeclarationNameInfo &NameInfo,
1913                              const TemplateArgumentListInfo *TemplateArgs = 0);
1914
1915  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
1916                                                bool HasExplicitTemplateArgs,
1917                                                unsigned NumTemplateArgs);
1918
1919  /// \brief Retrieve the name that this expression refers to.
1920  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1921  void setNameInfo(const DeclarationNameInfo &N) { NameInfo =  N; }
1922
1923  /// \brief Retrieve the name that this expression refers to.
1924  DeclarationName getDeclName() const { return NameInfo.getName(); }
1925  void setDeclName(DeclarationName N) { NameInfo.setName(N); }
1926
1927  /// \brief Retrieve the location of the name within the expression.
1928  SourceLocation getLocation() const { return NameInfo.getLoc(); }
1929  void setLocation(SourceLocation L) { NameInfo.setLoc(L); }
1930
1931  /// \brief Retrieve the source range of the nested-name-specifier.
1932  SourceRange getQualifierRange() const { return QualifierRange; }
1933  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1934
1935  /// \brief Retrieve the nested-name-specifier that qualifies this
1936  /// declaration.
1937  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1938  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1939
1940  /// Determines whether this lookup had explicit template arguments.
1941  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1942
1943  // Note that, inconsistently with the explicit-template-argument AST
1944  // nodes, users are *forbidden* from calling these methods on objects
1945  // without explicit template arguments.
1946
1947  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1948    assert(hasExplicitTemplateArgs());
1949    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1950  }
1951
1952  /// Gets a reference to the explicit template argument list.
1953  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1954    assert(hasExplicitTemplateArgs());
1955    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1956  }
1957
1958  /// \brief Retrieves the optional explicit template arguments.
1959  /// This points to the same data as getExplicitTemplateArgs(), but
1960  /// returns null if there are no explicit template arguments.
1961  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1962    if (!hasExplicitTemplateArgs()) return 0;
1963    return &getExplicitTemplateArgs();
1964  }
1965
1966  /// \brief Copies the template arguments (if present) into the given
1967  /// structure.
1968  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1969    getExplicitTemplateArgs().copyInto(List);
1970  }
1971
1972  SourceLocation getLAngleLoc() const {
1973    return getExplicitTemplateArgs().LAngleLoc;
1974  }
1975
1976  SourceLocation getRAngleLoc() const {
1977    return getExplicitTemplateArgs().RAngleLoc;
1978  }
1979
1980  TemplateArgumentLoc const *getTemplateArgs() const {
1981    return getExplicitTemplateArgs().getTemplateArgs();
1982  }
1983
1984  unsigned getNumTemplateArgs() const {
1985    return getExplicitTemplateArgs().NumTemplateArgs;
1986  }
1987
1988  SourceRange getSourceRange() const {
1989    SourceRange Range(QualifierRange.getBegin(), getLocation());
1990    if (hasExplicitTemplateArgs())
1991      Range.setEnd(getRAngleLoc());
1992    return Range;
1993  }
1994
1995  static bool classof(const Stmt *T) {
1996    return T->getStmtClass() == DependentScopeDeclRefExprClass;
1997  }
1998  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
1999
2000  child_range children() { return child_range(); }
2001
2002  friend class ASTStmtReader;
2003  friend class ASTStmtWriter;
2004};
2005
2006/// Represents an expression --- generally a full-expression --- which
2007/// introduces cleanups to be run at the end of the sub-expression's
2008/// evaluation.  The most common source of expression-introduced
2009/// cleanups is temporary objects in C++, but several other C++
2010/// expressions can create cleanups.
2011class ExprWithCleanups : public Expr {
2012  Stmt *SubExpr;
2013
2014  CXXTemporary **Temps;
2015  unsigned NumTemps;
2016
2017  ExprWithCleanups(ASTContext &C, Expr *SubExpr,
2018                   CXXTemporary **Temps, unsigned NumTemps);
2019
2020public:
2021  ExprWithCleanups(EmptyShell Empty)
2022    : Expr(ExprWithCleanupsClass, Empty),
2023      SubExpr(0), Temps(0), NumTemps(0) {}
2024
2025  static ExprWithCleanups *Create(ASTContext &C, Expr *SubExpr,
2026                                        CXXTemporary **Temps,
2027                                        unsigned NumTemps);
2028
2029  unsigned getNumTemporaries() const { return NumTemps; }
2030  void setNumTemporaries(ASTContext &C, unsigned N);
2031
2032  CXXTemporary *getTemporary(unsigned i) {
2033    assert(i < NumTemps && "Index out of range");
2034    return Temps[i];
2035  }
2036  const CXXTemporary *getTemporary(unsigned i) const {
2037    return const_cast<ExprWithCleanups*>(this)->getTemporary(i);
2038  }
2039  void setTemporary(unsigned i, CXXTemporary *T) {
2040    assert(i < NumTemps && "Index out of range");
2041    Temps[i] = T;
2042  }
2043
2044  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2045  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2046  void setSubExpr(Expr *E) { SubExpr = E; }
2047
2048  SourceRange getSourceRange() const {
2049    return SubExpr->getSourceRange();
2050  }
2051
2052  // Implement isa/cast/dyncast/etc.
2053  static bool classof(const Stmt *T) {
2054    return T->getStmtClass() == ExprWithCleanupsClass;
2055  }
2056  static bool classof(const ExprWithCleanups *) { return true; }
2057
2058  // Iterators
2059  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2060};
2061
2062/// \brief Describes an explicit type conversion that uses functional
2063/// notion but could not be resolved because one or more arguments are
2064/// type-dependent.
2065///
2066/// The explicit type conversions expressed by
2067/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2068/// where \c T is some type and \c a1, a2, ..., aN are values, and
2069/// either \C T is a dependent type or one or more of the \c a's is
2070/// type-dependent. For example, this would occur in a template such
2071/// as:
2072///
2073/// \code
2074///   template<typename T, typename A1>
2075///   inline T make_a(const A1& a1) {
2076///     return T(a1);
2077///   }
2078/// \endcode
2079///
2080/// When the returned expression is instantiated, it may resolve to a
2081/// constructor call, conversion function call, or some kind of type
2082/// conversion.
2083class CXXUnresolvedConstructExpr : public Expr {
2084  /// \brief The type being constructed.
2085  TypeSourceInfo *Type;
2086
2087  /// \brief The location of the left parentheses ('(').
2088  SourceLocation LParenLoc;
2089
2090  /// \brief The location of the right parentheses (')').
2091  SourceLocation RParenLoc;
2092
2093  /// \brief The number of arguments used to construct the type.
2094  unsigned NumArgs;
2095
2096  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2097                             SourceLocation LParenLoc,
2098                             Expr **Args,
2099                             unsigned NumArgs,
2100                             SourceLocation RParenLoc);
2101
2102  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2103    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2104
2105  friend class ASTStmtReader;
2106
2107public:
2108  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2109                                            TypeSourceInfo *Type,
2110                                            SourceLocation LParenLoc,
2111                                            Expr **Args,
2112                                            unsigned NumArgs,
2113                                            SourceLocation RParenLoc);
2114
2115  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2116                                                 unsigned NumArgs);
2117
2118  /// \brief Retrieve the type that is being constructed, as specified
2119  /// in the source code.
2120  QualType getTypeAsWritten() const { return Type->getType(); }
2121
2122  /// \brief Retrieve the type source information for the type being
2123  /// constructed.
2124  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2125
2126  /// \brief Retrieve the location of the left parentheses ('(') that
2127  /// precedes the argument list.
2128  SourceLocation getLParenLoc() const { return LParenLoc; }
2129  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2130
2131  /// \brief Retrieve the location of the right parentheses (')') that
2132  /// follows the argument list.
2133  SourceLocation getRParenLoc() const { return RParenLoc; }
2134  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2135
2136  /// \brief Retrieve the number of arguments.
2137  unsigned arg_size() const { return NumArgs; }
2138
2139  typedef Expr** arg_iterator;
2140  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2141  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2142
2143  typedef const Expr* const * const_arg_iterator;
2144  const_arg_iterator arg_begin() const {
2145    return reinterpret_cast<const Expr* const *>(this + 1);
2146  }
2147  const_arg_iterator arg_end() const {
2148    return arg_begin() + NumArgs;
2149  }
2150
2151  Expr *getArg(unsigned I) {
2152    assert(I < NumArgs && "Argument index out-of-range");
2153    return *(arg_begin() + I);
2154  }
2155
2156  const Expr *getArg(unsigned I) const {
2157    assert(I < NumArgs && "Argument index out-of-range");
2158    return *(arg_begin() + I);
2159  }
2160
2161  void setArg(unsigned I, Expr *E) {
2162    assert(I < NumArgs && "Argument index out-of-range");
2163    *(arg_begin() + I) = E;
2164  }
2165
2166  SourceRange getSourceRange() const;
2167
2168  static bool classof(const Stmt *T) {
2169    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2170  }
2171  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2172
2173  // Iterators
2174  child_range children() {
2175    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2176    return child_range(begin, begin + NumArgs);
2177  }
2178};
2179
2180/// \brief Represents a C++ member access expression where the actual
2181/// member referenced could not be resolved because the base
2182/// expression or the member name was dependent.
2183///
2184/// Like UnresolvedMemberExprs, these can be either implicit or
2185/// explicit accesses.  It is only possible to get one of these with
2186/// an implicit access if a qualifier is provided.
2187class CXXDependentScopeMemberExpr : public Expr {
2188  /// \brief The expression for the base pointer or class reference,
2189  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2190  Stmt *Base;
2191
2192  /// \brief The type of the base expression.  Never null, even for
2193  /// implicit accesses.
2194  QualType BaseType;
2195
2196  /// \brief Whether this member expression used the '->' operator or
2197  /// the '.' operator.
2198  bool IsArrow : 1;
2199
2200  /// \brief Whether this member expression has explicitly-specified template
2201  /// arguments.
2202  bool HasExplicitTemplateArgs : 1;
2203
2204  /// \brief The location of the '->' or '.' operator.
2205  SourceLocation OperatorLoc;
2206
2207  /// \brief The nested-name-specifier that precedes the member name, if any.
2208  NestedNameSpecifier *Qualifier;
2209
2210  /// \brief The source range covering the nested name specifier.
2211  SourceRange QualifierRange;
2212
2213  /// \brief In a qualified member access expression such as t->Base::f, this
2214  /// member stores the resolves of name lookup in the context of the member
2215  /// access expression, to be used at instantiation time.
2216  ///
2217  /// FIXME: This member, along with the Qualifier and QualifierRange, could
2218  /// be stuck into a structure that is optionally allocated at the end of
2219  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2220  NamedDecl *FirstQualifierFoundInScope;
2221
2222  /// \brief The member to which this member expression refers, which
2223  /// can be name, overloaded operator, or destructor.
2224  /// FIXME: could also be a template-id
2225  DeclarationNameInfo MemberNameInfo;
2226
2227  CXXDependentScopeMemberExpr(ASTContext &C,
2228                          Expr *Base, QualType BaseType, bool IsArrow,
2229                          SourceLocation OperatorLoc,
2230                          NestedNameSpecifier *Qualifier,
2231                          SourceRange QualifierRange,
2232                          NamedDecl *FirstQualifierFoundInScope,
2233                          DeclarationNameInfo MemberNameInfo,
2234                          const TemplateArgumentListInfo *TemplateArgs);
2235
2236public:
2237  CXXDependentScopeMemberExpr(ASTContext &C,
2238                              Expr *Base, QualType BaseType,
2239                              bool IsArrow,
2240                              SourceLocation OperatorLoc,
2241                              NestedNameSpecifier *Qualifier,
2242                              SourceRange QualifierRange,
2243                              NamedDecl *FirstQualifierFoundInScope,
2244                              DeclarationNameInfo MemberNameInfo);
2245
2246  static CXXDependentScopeMemberExpr *
2247  Create(ASTContext &C,
2248         Expr *Base, QualType BaseType, bool IsArrow,
2249         SourceLocation OperatorLoc,
2250         NestedNameSpecifier *Qualifier,
2251         SourceRange QualifierRange,
2252         NamedDecl *FirstQualifierFoundInScope,
2253         DeclarationNameInfo MemberNameInfo,
2254         const TemplateArgumentListInfo *TemplateArgs);
2255
2256  static CXXDependentScopeMemberExpr *
2257  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2258              unsigned NumTemplateArgs);
2259
2260  /// \brief True if this is an implicit access, i.e. one in which the
2261  /// member being accessed was not written in the source.  The source
2262  /// location of the operator is invalid in this case.
2263  bool isImplicitAccess() const { return Base == 0; }
2264
2265  /// \brief Retrieve the base object of this member expressions,
2266  /// e.g., the \c x in \c x.m.
2267  Expr *getBase() const {
2268    assert(!isImplicitAccess());
2269    return cast<Expr>(Base);
2270  }
2271  void setBase(Expr *E) { Base = E; }
2272
2273  QualType getBaseType() const { return BaseType; }
2274  void setBaseType(QualType T) { BaseType = T; }
2275
2276  /// \brief Determine whether this member expression used the '->'
2277  /// operator; otherwise, it used the '.' operator.
2278  bool isArrow() const { return IsArrow; }
2279  void setArrow(bool A) { IsArrow = A; }
2280
2281  /// \brief Retrieve the location of the '->' or '.' operator.
2282  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2283  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2284
2285  /// \brief Retrieve the nested-name-specifier that qualifies the member
2286  /// name.
2287  NestedNameSpecifier *getQualifier() const { return Qualifier; }
2288  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
2289
2290  /// \brief Retrieve the source range covering the nested-name-specifier
2291  /// that qualifies the member name.
2292  SourceRange getQualifierRange() const { return QualifierRange; }
2293  void setQualifierRange(SourceRange R) { QualifierRange = R; }
2294
2295  /// \brief Retrieve the first part of the nested-name-specifier that was
2296  /// found in the scope of the member access expression when the member access
2297  /// was initially parsed.
2298  ///
2299  /// This function only returns a useful result when member access expression
2300  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2301  /// returned by this function describes what was found by unqualified name
2302  /// lookup for the identifier "Base" within the scope of the member access
2303  /// expression itself. At template instantiation time, this information is
2304  /// combined with the results of name lookup into the type of the object
2305  /// expression itself (the class type of x).
2306  NamedDecl *getFirstQualifierFoundInScope() const {
2307    return FirstQualifierFoundInScope;
2308  }
2309  void setFirstQualifierFoundInScope(NamedDecl *D) {
2310    FirstQualifierFoundInScope = D;
2311  }
2312
2313  /// \brief Retrieve the name of the member that this expression
2314  /// refers to.
2315  const DeclarationNameInfo &getMemberNameInfo() const {
2316    return MemberNameInfo;
2317  }
2318  void setMemberNameInfo(const DeclarationNameInfo &N) { MemberNameInfo = N; }
2319
2320  /// \brief Retrieve the name of the member that this expression
2321  /// refers to.
2322  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2323  void setMember(DeclarationName N) { MemberNameInfo.setName(N); }
2324
2325  // \brief Retrieve the location of the name of the member that this
2326  // expression refers to.
2327  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2328  void setMemberLoc(SourceLocation L) { MemberNameInfo.setLoc(L); }
2329
2330  /// \brief Determines whether this member expression actually had a C++
2331  /// template argument list explicitly specified, e.g., x.f<int>.
2332  bool hasExplicitTemplateArgs() const {
2333    return HasExplicitTemplateArgs;
2334  }
2335
2336  /// \brief Retrieve the explicit template argument list that followed the
2337  /// member template name, if any.
2338  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2339    assert(HasExplicitTemplateArgs);
2340    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2341  }
2342
2343  /// \brief Retrieve the explicit template argument list that followed the
2344  /// member template name, if any.
2345  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2346    return const_cast<CXXDependentScopeMemberExpr *>(this)
2347             ->getExplicitTemplateArgs();
2348  }
2349
2350  /// \brief Retrieves the optional explicit template arguments.
2351  /// This points to the same data as getExplicitTemplateArgs(), but
2352  /// returns null if there are no explicit template arguments.
2353  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2354    if (!hasExplicitTemplateArgs()) return 0;
2355    return &getExplicitTemplateArgs();
2356  }
2357
2358  /// \brief Copies the template arguments (if present) into the given
2359  /// structure.
2360  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2361    getExplicitTemplateArgs().copyInto(List);
2362  }
2363
2364  /// \brief Initializes the template arguments using the given structure.
2365  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2366    getExplicitTemplateArgs().initializeFrom(List);
2367  }
2368
2369  /// \brief Retrieve the location of the left angle bracket following the
2370  /// member name ('<'), if any.
2371  SourceLocation getLAngleLoc() const {
2372    return getExplicitTemplateArgs().LAngleLoc;
2373  }
2374
2375  /// \brief Retrieve the template arguments provided as part of this
2376  /// template-id.
2377  const TemplateArgumentLoc *getTemplateArgs() const {
2378    return getExplicitTemplateArgs().getTemplateArgs();
2379  }
2380
2381  /// \brief Retrieve the number of template arguments provided as part of this
2382  /// template-id.
2383  unsigned getNumTemplateArgs() const {
2384    return getExplicitTemplateArgs().NumTemplateArgs;
2385  }
2386
2387  /// \brief Retrieve the location of the right angle bracket following the
2388  /// template arguments ('>').
2389  SourceLocation getRAngleLoc() const {
2390    return getExplicitTemplateArgs().RAngleLoc;
2391  }
2392
2393  SourceRange getSourceRange() const {
2394    SourceRange Range;
2395    if (!isImplicitAccess())
2396      Range.setBegin(Base->getSourceRange().getBegin());
2397    else if (getQualifier())
2398      Range.setBegin(getQualifierRange().getBegin());
2399    else
2400      Range.setBegin(MemberNameInfo.getBeginLoc());
2401
2402    if (hasExplicitTemplateArgs())
2403      Range.setEnd(getRAngleLoc());
2404    else
2405      Range.setEnd(MemberNameInfo.getEndLoc());
2406    return Range;
2407  }
2408
2409  static bool classof(const Stmt *T) {
2410    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2411  }
2412  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2413
2414  // Iterators
2415  child_range children() {
2416    if (isImplicitAccess()) return child_range();
2417    return child_range(&Base, &Base + 1);
2418  }
2419
2420  friend class ASTStmtReader;
2421  friend class ASTStmtWriter;
2422};
2423
2424/// \brief Represents a C++ member access expression for which lookup
2425/// produced a set of overloaded functions.
2426///
2427/// The member access may be explicit or implicit:
2428///    struct A {
2429///      int a, b;
2430///      int explicitAccess() { return this->a + this->A::b; }
2431///      int implicitAccess() { return a + A::b; }
2432///    };
2433///
2434/// In the final AST, an explicit access always becomes a MemberExpr.
2435/// An implicit access may become either a MemberExpr or a
2436/// DeclRefExpr, depending on whether the member is static.
2437class UnresolvedMemberExpr : public OverloadExpr {
2438  /// \brief Whether this member expression used the '->' operator or
2439  /// the '.' operator.
2440  bool IsArrow : 1;
2441
2442  /// \brief Whether the lookup results contain an unresolved using
2443  /// declaration.
2444  bool HasUnresolvedUsing : 1;
2445
2446  /// \brief The expression for the base pointer or class reference,
2447  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2448  /// member expression
2449  Stmt *Base;
2450
2451  /// \brief The type of the base expression;  never null.
2452  QualType BaseType;
2453
2454  /// \brief The location of the '->' or '.' operator.
2455  SourceLocation OperatorLoc;
2456
2457  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2458                       Expr *Base, QualType BaseType, bool IsArrow,
2459                       SourceLocation OperatorLoc,
2460                       NestedNameSpecifier *Qualifier,
2461                       SourceRange QualifierRange,
2462                       const DeclarationNameInfo &MemberNameInfo,
2463                       const TemplateArgumentListInfo *TemplateArgs,
2464                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2465
2466  UnresolvedMemberExpr(EmptyShell Empty)
2467    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2468      HasUnresolvedUsing(false), Base(0) { }
2469
2470public:
2471  static UnresolvedMemberExpr *
2472  Create(ASTContext &C, bool HasUnresolvedUsing,
2473         Expr *Base, QualType BaseType, bool IsArrow,
2474         SourceLocation OperatorLoc,
2475         NestedNameSpecifier *Qualifier,
2476         SourceRange QualifierRange,
2477         const DeclarationNameInfo &MemberNameInfo,
2478         const TemplateArgumentListInfo *TemplateArgs,
2479         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2480
2481  static UnresolvedMemberExpr *
2482  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2483              unsigned NumTemplateArgs);
2484
2485  /// \brief True if this is an implicit access, i.e. one in which the
2486  /// member being accessed was not written in the source.  The source
2487  /// location of the operator is invalid in this case.
2488  bool isImplicitAccess() const { return Base == 0; }
2489
2490  /// \brief Retrieve the base object of this member expressions,
2491  /// e.g., the \c x in \c x.m.
2492  Expr *getBase() {
2493    assert(!isImplicitAccess());
2494    return cast<Expr>(Base);
2495  }
2496  const Expr *getBase() const {
2497    assert(!isImplicitAccess());
2498    return cast<Expr>(Base);
2499  }
2500  void setBase(Expr *E) { Base = E; }
2501
2502  QualType getBaseType() const { return BaseType; }
2503  void setBaseType(QualType T) { BaseType = T; }
2504
2505  /// \brief Determine whether the lookup results contain an unresolved using
2506  /// declaration.
2507  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2508  void setHasUnresolvedUsing(bool V) { HasUnresolvedUsing = V; }
2509
2510  /// \brief Determine whether this member expression used the '->'
2511  /// operator; otherwise, it used the '.' operator.
2512  bool isArrow() const { return IsArrow; }
2513  void setArrow(bool A) { IsArrow = A; }
2514
2515  /// \brief Retrieve the location of the '->' or '.' operator.
2516  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2517  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2518
2519  /// \brief Retrieves the naming class of this lookup.
2520  CXXRecordDecl *getNamingClass() const;
2521
2522  /// \brief Retrieve the full name info for the member that this expression
2523  /// refers to.
2524  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
2525  void setMemberNameInfo(const DeclarationNameInfo &N) { setNameInfo(N); }
2526
2527  /// \brief Retrieve the name of the member that this expression
2528  /// refers to.
2529  DeclarationName getMemberName() const { return getName(); }
2530  void setMemberName(DeclarationName N) { setName(N); }
2531
2532  // \brief Retrieve the location of the name of the member that this
2533  // expression refers to.
2534  SourceLocation getMemberLoc() const { return getNameLoc(); }
2535  void setMemberLoc(SourceLocation L) { setNameLoc(L); }
2536
2537  /// \brief Retrieve the explicit template argument list that followed the
2538  /// member template name.
2539  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2540    assert(hasExplicitTemplateArgs());
2541    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2542  }
2543
2544  /// \brief Retrieve the explicit template argument list that followed the
2545  /// member template name, if any.
2546  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2547    assert(hasExplicitTemplateArgs());
2548    return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
2549  }
2550
2551  /// \brief Retrieves the optional explicit template arguments.
2552  /// This points to the same data as getExplicitTemplateArgs(), but
2553  /// returns null if there are no explicit template arguments.
2554  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2555    if (!hasExplicitTemplateArgs()) return 0;
2556    return &getExplicitTemplateArgs();
2557  }
2558
2559  /// \brief Copies the template arguments into the given structure.
2560  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2561    getExplicitTemplateArgs().copyInto(List);
2562  }
2563
2564  /// \brief Retrieve the location of the left angle bracket following
2565  /// the member name ('<').
2566  SourceLocation getLAngleLoc() const {
2567    return getExplicitTemplateArgs().LAngleLoc;
2568  }
2569
2570  /// \brief Retrieve the template arguments provided as part of this
2571  /// template-id.
2572  const TemplateArgumentLoc *getTemplateArgs() const {
2573    return getExplicitTemplateArgs().getTemplateArgs();
2574  }
2575
2576  /// \brief Retrieve the number of template arguments provided as
2577  /// part of this template-id.
2578  unsigned getNumTemplateArgs() const {
2579    return getExplicitTemplateArgs().NumTemplateArgs;
2580  }
2581
2582  /// \brief Retrieve the location of the right angle bracket
2583  /// following the template arguments ('>').
2584  SourceLocation getRAngleLoc() const {
2585    return getExplicitTemplateArgs().RAngleLoc;
2586  }
2587
2588  SourceRange getSourceRange() const {
2589    SourceRange Range = getMemberNameInfo().getSourceRange();
2590    if (!isImplicitAccess())
2591      Range.setBegin(Base->getSourceRange().getBegin());
2592    else if (getQualifier())
2593      Range.setBegin(getQualifierRange().getBegin());
2594
2595    if (hasExplicitTemplateArgs())
2596      Range.setEnd(getRAngleLoc());
2597    return Range;
2598  }
2599
2600  static bool classof(const Stmt *T) {
2601    return T->getStmtClass() == UnresolvedMemberExprClass;
2602  }
2603  static bool classof(const UnresolvedMemberExpr *) { return true; }
2604
2605  // Iterators
2606  child_range children() {
2607    if (isImplicitAccess()) return child_range();
2608    return child_range(&Base, &Base + 1);
2609  }
2610};
2611
2612/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
2613///
2614/// The noexcept expression tests whether a given expression might throw. Its
2615/// result is a boolean constant.
2616class CXXNoexceptExpr : public Expr {
2617  bool Value : 1;
2618  Stmt *Operand;
2619  SourceRange Range;
2620
2621  friend class ASTStmtReader;
2622
2623public:
2624  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
2625                  SourceLocation Keyword, SourceLocation RParen)
2626    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
2627           /*TypeDependent*/false,
2628           /*ValueDependent*/Val == CT_Dependent,
2629           Operand->containsUnexpandedParameterPack()),
2630      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
2631  { }
2632
2633  CXXNoexceptExpr(EmptyShell Empty)
2634    : Expr(CXXNoexceptExprClass, Empty)
2635  { }
2636
2637  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
2638
2639  SourceRange getSourceRange() const { return Range; }
2640
2641  bool getValue() const { return Value; }
2642
2643  static bool classof(const Stmt *T) {
2644    return T->getStmtClass() == CXXNoexceptExprClass;
2645  }
2646  static bool classof(const CXXNoexceptExpr *) { return true; }
2647
2648  // Iterators
2649  child_range children() { return child_range(&Operand, &Operand + 1); }
2650};
2651
2652/// \brief Represents a C++0x pack expansion that produces a sequence of
2653/// expressions.
2654///
2655/// A pack expansion expression contains a pattern (which itself is an
2656/// expression) followed by an ellipsis. For example:
2657///
2658/// \code
2659/// template<typename F, typename ...Types>
2660/// void forward(F f, Types &&...args) {
2661///   f(static_cast<Types&&>(args)...);
2662/// }
2663/// \endcode
2664///
2665/// Here, the argument to the function object \c f is a pack expansion whose
2666/// pattern is \c static_cast<Types&&>(args). When the \c forward function
2667/// template is instantiated, the pack expansion will instantiate to zero or
2668/// or more function arguments to the function object \c f.
2669class PackExpansionExpr : public Expr {
2670  SourceLocation EllipsisLoc;
2671
2672  /// \brief The number of expansions that will be produced by this pack
2673  /// expansion expression, if known.
2674  ///
2675  /// When zero, the number of expansions is not known. Otherwise, this value
2676  /// is the number of expansions + 1.
2677  unsigned NumExpansions;
2678
2679  Stmt *Pattern;
2680
2681  friend class ASTStmtReader;
2682  friend class ASTStmtWriter;
2683
2684public:
2685  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
2686                    llvm::Optional<unsigned> NumExpansions)
2687    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
2688           Pattern->getObjectKind(), /*TypeDependent=*/true,
2689           /*ValueDependent=*/true, /*ContainsUnexpandedParameterPack=*/false),
2690      EllipsisLoc(EllipsisLoc),
2691      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
2692      Pattern(Pattern) { }
2693
2694  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
2695
2696  /// \brief Retrieve the pattern of the pack expansion.
2697  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
2698
2699  /// \brief Retrieve the pattern of the pack expansion.
2700  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
2701
2702  /// \brief Retrieve the location of the ellipsis that describes this pack
2703  /// expansion.
2704  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
2705
2706  /// \brief Determine the number of expansions that will be produced when
2707  /// this pack expansion is instantiated, if already known.
2708  llvm::Optional<unsigned> getNumExpansions() const {
2709    if (NumExpansions)
2710      return NumExpansions - 1;
2711
2712    return llvm::Optional<unsigned>();
2713  }
2714
2715  SourceRange getSourceRange() const {
2716    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
2717  }
2718
2719  static bool classof(const Stmt *T) {
2720    return T->getStmtClass() == PackExpansionExprClass;
2721  }
2722  static bool classof(const PackExpansionExpr *) { return true; }
2723
2724  // Iterators
2725  child_range children() {
2726    return child_range(&Pattern, &Pattern + 1);
2727  }
2728};
2729
2730inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
2731  if (isa<UnresolvedLookupExpr>(this))
2732    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2733  else
2734    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2735}
2736
2737/// \brief Represents an expression that computes the length of a parameter
2738/// pack.
2739///
2740/// \code
2741/// template<typename ...Types>
2742/// struct count {
2743///   static const unsigned value = sizeof...(Types);
2744/// };
2745/// \endcode
2746class SizeOfPackExpr : public Expr {
2747  /// \brief The location of the 'sizeof' keyword.
2748  SourceLocation OperatorLoc;
2749
2750  /// \brief The location of the name of the parameter pack.
2751  SourceLocation PackLoc;
2752
2753  /// \brief The location of the closing parenthesis.
2754  SourceLocation RParenLoc;
2755
2756  /// \brief The length of the parameter pack, if known.
2757  ///
2758  /// When this expression is value-dependent, the length of the parameter pack
2759  /// is unknown. When this expression is not value-dependent, the length is
2760  /// known.
2761  unsigned Length;
2762
2763  /// \brief The parameter pack itself.
2764  NamedDecl *Pack;
2765
2766  friend class ASTStmtReader;
2767  friend class ASTStmtWriter;
2768
2769public:
2770  /// \brief Creates a value-dependent expression that computes the length of
2771  /// the given parameter pack.
2772  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2773                 SourceLocation PackLoc, SourceLocation RParenLoc)
2774    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2775           /*TypeDependent=*/false, /*ValueDependent=*/true,
2776           /*ContainsUnexpandedParameterPack=*/false),
2777      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2778      Length(0), Pack(Pack) { }
2779
2780  /// \brief Creates an expression that computes the length of
2781  /// the given parameter pack, which is already known.
2782  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2783                 SourceLocation PackLoc, SourceLocation RParenLoc,
2784                 unsigned Length)
2785  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2786         /*TypeDependent=*/false, /*ValueDependent=*/false,
2787         /*ContainsUnexpandedParameterPack=*/false),
2788    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2789    Length(Length), Pack(Pack) { }
2790
2791  /// \brief Create an empty expression.
2792  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
2793
2794  /// \brief Determine the location of the 'sizeof' keyword.
2795  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2796
2797  /// \brief Determine the location of the parameter pack.
2798  SourceLocation getPackLoc() const { return PackLoc; }
2799
2800  /// \brief Determine the location of the right parenthesis.
2801  SourceLocation getRParenLoc() const { return RParenLoc; }
2802
2803  /// \brief Retrieve the parameter pack.
2804  NamedDecl *getPack() const { return Pack; }
2805
2806  /// \brief Retrieve the length of the parameter pack.
2807  ///
2808  /// This routine may only be invoked when the expression is not
2809  /// value-dependent.
2810  unsigned getPackLength() const {
2811    assert(!isValueDependent() &&
2812           "Cannot get the length of a value-dependent pack size expression");
2813    return Length;
2814  }
2815
2816  SourceRange getSourceRange() const {
2817    return SourceRange(OperatorLoc, RParenLoc);
2818  }
2819
2820  static bool classof(const Stmt *T) {
2821    return T->getStmtClass() == SizeOfPackExprClass;
2822  }
2823  static bool classof(const SizeOfPackExpr *) { return true; }
2824
2825  // Iterators
2826  child_range children() { return child_range(); }
2827};
2828
2829/// \brief Represents a reference to a non-type template parameter pack that
2830/// has been substituted with a non-template argument pack.
2831///
2832/// When a pack expansion in the source code contains multiple parameter packs
2833/// and those parameter packs correspond to different levels of template
2834/// parameter lists, this node node is used to represent a non-type template
2835/// parameter pack from an outer level, which has already had its argument pack
2836/// substituted but that still lives within a pack expansion that itself
2837/// could not be instantiated. When actually performing a substitution into
2838/// that pack expansion (e.g., when all template parameters have corresponding
2839/// arguments), this type will be replaced with the appropriate underlying
2840/// expression at the current pack substitution index.
2841class SubstNonTypeTemplateParmPackExpr : public Expr {
2842  /// \brief The non-type template parameter pack itself.
2843  NonTypeTemplateParmDecl *Param;
2844
2845  /// \brief A pointer to the set of template arguments that this
2846  /// parameter pack is instantiated with.
2847  const TemplateArgument *Arguments;
2848
2849  /// \brief The number of template arguments in \c Arguments.
2850  unsigned NumArguments;
2851
2852  /// \brief The location of the non-type template parameter pack reference.
2853  SourceLocation NameLoc;
2854
2855  friend class ASTStmtReader;
2856  friend class ASTStmtWriter;
2857
2858public:
2859  SubstNonTypeTemplateParmPackExpr(QualType T,
2860                                   NonTypeTemplateParmDecl *Param,
2861                                   SourceLocation NameLoc,
2862                                   const TemplateArgument &ArgPack);
2863
2864  SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
2865    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
2866
2867  /// \brief Retrieve the non-type template parameter pack being substituted.
2868  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
2869
2870  /// \brief Retrieve the location of the parameter pack name.
2871  SourceLocation getParameterPackLocation() const { return NameLoc; }
2872
2873  /// \brief Retrieve the template argument pack containing the substituted
2874  /// template arguments.
2875  TemplateArgument getArgumentPack() const;
2876
2877  SourceRange getSourceRange() const { return NameLoc; }
2878
2879  static bool classof(const Stmt *T) {
2880    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
2881  }
2882  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
2883    return true;
2884  }
2885
2886  // Iterators
2887  child_range children() { return child_range(); }
2888};
2889
2890}  // end namespace clang
2891
2892#endif
2893