ExprCXX.h revision f68af647dda5cca00b49be27d24f62b0a7fff986
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::Expr interface and subclasses for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_EXPRCXX_H
16#define LLVM_CLANG_AST_EXPRCXX_H
17
18#include "clang/AST/Decl.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/TemplateBase.h"
21#include "clang/AST/UnresolvedSet.h"
22#include "clang/Basic/ExpressionTraits.h"
23#include "clang/Basic/Lambda.h"
24#include "clang/Basic/TypeTraits.h"
25#include "llvm/Support/Compiler.h"
26
27namespace clang {
28
29class CXXConstructorDecl;
30class CXXDestructorDecl;
31class CXXMethodDecl;
32class CXXTemporary;
33class MSPropertyDecl;
34class TemplateArgumentListInfo;
35class UuidAttr;
36
37//===--------------------------------------------------------------------===//
38// C++ Expressions.
39//===--------------------------------------------------------------------===//
40
41/// \brief A call to an overloaded operator written using operator
42/// syntax.
43///
44/// Represents a call to an overloaded operator written using operator
45/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
46/// normal call, this AST node provides better information about the
47/// syntactic representation of the call.
48///
49/// In a C++ template, this expression node kind will be used whenever
50/// any of the arguments are type-dependent. In this case, the
51/// function itself will be a (possibly empty) set of functions and
52/// function templates that were found by name lookup at template
53/// definition time.
54class CXXOperatorCallExpr : public CallExpr {
55  /// \brief The overloaded operator.
56  OverloadedOperatorKind Operator;
57  SourceRange Range;
58
59  // Record the FP_CONTRACT state that applies to this operator call. Only
60  // meaningful for floating point types. For other types this value can be
61  // set to false.
62  unsigned FPContractable : 1;
63
64  SourceRange getSourceRangeImpl() const LLVM_READONLY;
65public:
66  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
67                      ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
68                      SourceLocation operatorloc, bool fpContractable)
69    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, t, VK,
70               operatorloc),
71      Operator(Op), FPContractable(fpContractable) {
72    Range = getSourceRangeImpl();
73  }
74  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
75    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
76
77
78  /// \brief Returns the kind of overloaded operator that this
79  /// expression refers to.
80  OverloadedOperatorKind getOperator() const { return Operator; }
81
82  /// \brief Returns the location of the operator symbol in the expression.
83  ///
84  /// When \c getOperator()==OO_Call, this is the location of the right
85  /// parentheses; when \c getOperator()==OO_Subscript, this is the location
86  /// of the right bracket.
87  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
88
89  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
90  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
91  SourceRange getSourceRange() const { return Range; }
92
93  static bool classof(const Stmt *T) {
94    return T->getStmtClass() == CXXOperatorCallExprClass;
95  }
96
97  // Set the FP contractability status of this operator. Only meaningful for
98  // operations on floating point types.
99  void setFPContractable(bool FPC) { FPContractable = FPC; }
100
101  // Get the FP contractability status of this operator. Only meaningful for
102  // operations on floating point types.
103  bool isFPContractable() const { return FPContractable; }
104
105  friend class ASTStmtReader;
106  friend class ASTStmtWriter;
107};
108
109/// Represents a call to a member function that
110/// may be written either with member call syntax (e.g., "obj.func()"
111/// or "objptr->func()") or with normal function-call syntax
112/// ("func()") within a member function that ends up calling a member
113/// function. The callee in either case is a MemberExpr that contains
114/// both the object argument and the member function, while the
115/// arguments are the arguments within the parentheses (not including
116/// the object argument).
117class CXXMemberCallExpr : public CallExpr {
118public:
119  CXXMemberCallExpr(ASTContext &C, Expr *fn, ArrayRef<Expr*> args,
120                    QualType t, ExprValueKind VK, SourceLocation RP)
121    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, t, VK, RP) {}
122
123  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
124    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
125
126  /// \brief Retrieves the implicit object argument for the member call.
127  ///
128  /// For example, in "x.f(5)", this returns the sub-expression "x".
129  Expr *getImplicitObjectArgument() const;
130
131  /// \brief Retrieves the declaration of the called method.
132  CXXMethodDecl *getMethodDecl() const;
133
134  /// \brief Retrieves the CXXRecordDecl for the underlying type of
135  /// the implicit object argument.
136  ///
137  /// Note that this is may not be the same declaration as that of the class
138  /// context of the CXXMethodDecl which this function is calling.
139  /// FIXME: Returns 0 for member pointer call exprs.
140  CXXRecordDecl *getRecordDecl() const;
141
142  static bool classof(const Stmt *T) {
143    return T->getStmtClass() == CXXMemberCallExprClass;
144  }
145};
146
147/// \brief Represents a call to a CUDA kernel function.
148class CUDAKernelCallExpr : public CallExpr {
149private:
150  enum { CONFIG, END_PREARG };
151
152public:
153  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
154                     ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
155                     SourceLocation RP)
156    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, t, VK, RP) {
157    setConfig(Config);
158  }
159
160  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
161    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
162
163  const CallExpr *getConfig() const {
164    return cast_or_null<CallExpr>(getPreArg(CONFIG));
165  }
166  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
167  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
168
169  static bool classof(const Stmt *T) {
170    return T->getStmtClass() == CUDAKernelCallExprClass;
171  }
172};
173
174/// \brief Abstract class common to all of the C++ "named"/"keyword" casts.
175///
176/// This abstract class is inherited by all of the classes
177/// representing "named" casts: CXXStaticCastExpr for \c static_cast,
178/// CXXDynamicCastExpr for \c dynamic_cast, CXXReinterpretCastExpr for
179/// reinterpret_cast, and CXXConstCastExpr for \c const_cast.
180class CXXNamedCastExpr : public ExplicitCastExpr {
181private:
182  SourceLocation Loc; // the location of the casting op
183  SourceLocation RParenLoc; // the location of the right parenthesis
184  SourceRange AngleBrackets; // range for '<' '>'
185
186protected:
187  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
188                   CastKind kind, Expr *op, unsigned PathSize,
189                   TypeSourceInfo *writtenTy, SourceLocation l,
190                   SourceLocation RParenLoc,
191                   SourceRange AngleBrackets)
192    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
193      RParenLoc(RParenLoc), AngleBrackets(AngleBrackets) {}
194
195  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
196    : ExplicitCastExpr(SC, Shell, PathSize) { }
197
198  friend class ASTStmtReader;
199
200public:
201  const char *getCastName() const;
202
203  /// \brief Retrieve the location of the cast operator keyword, e.g.,
204  /// \c static_cast.
205  SourceLocation getOperatorLoc() const { return Loc; }
206
207  /// \brief Retrieve the location of the closing parenthesis.
208  SourceLocation getRParenLoc() const { return RParenLoc; }
209
210  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
211  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
212  SourceRange getAngleBrackets() const LLVM_READONLY { return AngleBrackets; }
213
214  static bool classof(const Stmt *T) {
215    switch (T->getStmtClass()) {
216    case CXXStaticCastExprClass:
217    case CXXDynamicCastExprClass:
218    case CXXReinterpretCastExprClass:
219    case CXXConstCastExprClass:
220      return true;
221    default:
222      return false;
223    }
224  }
225};
226
227/// \brief A C++ \c static_cast expression (C++ [expr.static.cast]).
228///
229/// This expression node represents a C++ static cast, e.g.,
230/// \c static_cast<int>(1.0).
231class CXXStaticCastExpr : public CXXNamedCastExpr {
232  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
233                    unsigned pathSize, TypeSourceInfo *writtenTy,
234                    SourceLocation l, SourceLocation RParenLoc,
235                    SourceRange AngleBrackets)
236    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
237                       writtenTy, l, RParenLoc, AngleBrackets) {}
238
239  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
240    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
241
242public:
243  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
244                                   ExprValueKind VK, CastKind K, Expr *Op,
245                                   const CXXCastPath *Path,
246                                   TypeSourceInfo *Written, SourceLocation L,
247                                   SourceLocation RParenLoc,
248                                   SourceRange AngleBrackets);
249  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
250                                        unsigned PathSize);
251
252  static bool classof(const Stmt *T) {
253    return T->getStmtClass() == CXXStaticCastExprClass;
254  }
255};
256
257/// \brief A C++ @c dynamic_cast expression (C++ [expr.dynamic.cast]).
258///
259/// This expression node represents a dynamic cast, e.g.,
260/// \c dynamic_cast<Derived*>(BasePtr). Such a cast may perform a run-time
261/// check to determine how to perform the type conversion.
262class CXXDynamicCastExpr : public CXXNamedCastExpr {
263  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
264                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
265                     SourceLocation l, SourceLocation RParenLoc,
266                     SourceRange AngleBrackets)
267    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
268                       writtenTy, l, RParenLoc, AngleBrackets) {}
269
270  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
271    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
272
273public:
274  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
275                                    ExprValueKind VK, CastKind Kind, Expr *Op,
276                                    const CXXCastPath *Path,
277                                    TypeSourceInfo *Written, SourceLocation L,
278                                    SourceLocation RParenLoc,
279                                    SourceRange AngleBrackets);
280
281  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
282                                         unsigned pathSize);
283
284  bool isAlwaysNull() const;
285
286  static bool classof(const Stmt *T) {
287    return T->getStmtClass() == CXXDynamicCastExprClass;
288  }
289};
290
291/// \brief A C++ @c reinterpret_cast expression (C++ [expr.reinterpret.cast]).
292///
293/// This expression node represents a reinterpret cast, e.g.,
294/// @c reinterpret_cast<int>(VoidPtr).
295///
296/// A reinterpret_cast provides a differently-typed view of a value but
297/// (in Clang, as in most C++ implementations) performs no actual work at
298/// run time.
299class CXXReinterpretCastExpr : public CXXNamedCastExpr {
300  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
301                         Expr *op, unsigned pathSize,
302                         TypeSourceInfo *writtenTy, SourceLocation l,
303                         SourceLocation RParenLoc,
304                         SourceRange AngleBrackets)
305    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
306                       pathSize, writtenTy, l, RParenLoc, AngleBrackets) {}
307
308  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
309    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
310
311public:
312  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
313                                        ExprValueKind VK, CastKind Kind,
314                                        Expr *Op, const CXXCastPath *Path,
315                                 TypeSourceInfo *WrittenTy, SourceLocation L,
316                                        SourceLocation RParenLoc,
317                                        SourceRange AngleBrackets);
318  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
319                                             unsigned pathSize);
320
321  static bool classof(const Stmt *T) {
322    return T->getStmtClass() == CXXReinterpretCastExprClass;
323  }
324};
325
326/// \brief A C++ \c const_cast expression (C++ [expr.const.cast]).
327///
328/// This expression node represents a const cast, e.g.,
329/// \c const_cast<char*>(PtrToConstChar).
330///
331/// A const_cast can remove type qualifiers but does not change the underlying
332/// value.
333class CXXConstCastExpr : public CXXNamedCastExpr {
334  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
335                   TypeSourceInfo *writtenTy, SourceLocation l,
336                   SourceLocation RParenLoc, SourceRange AngleBrackets)
337    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
338                       0, writtenTy, l, RParenLoc, AngleBrackets) {}
339
340  explicit CXXConstCastExpr(EmptyShell Empty)
341    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
342
343public:
344  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
345                                  ExprValueKind VK, Expr *Op,
346                                  TypeSourceInfo *WrittenTy, SourceLocation L,
347                                  SourceLocation RParenLoc,
348                                  SourceRange AngleBrackets);
349  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
350
351  static bool classof(const Stmt *T) {
352    return T->getStmtClass() == CXXConstCastExprClass;
353  }
354};
355
356/// \brief A call to a literal operator (C++11 [over.literal])
357/// written as a user-defined literal (C++11 [lit.ext]).
358///
359/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
360/// is semantically equivalent to a normal call, this AST node provides better
361/// information about the syntactic representation of the literal.
362///
363/// Since literal operators are never found by ADL and can only be declared at
364/// namespace scope, a user-defined literal is never dependent.
365class UserDefinedLiteral : public CallExpr {
366  /// \brief The location of a ud-suffix within the literal.
367  SourceLocation UDSuffixLoc;
368
369public:
370  UserDefinedLiteral(ASTContext &C, Expr *Fn, ArrayRef<Expr*> Args,
371                     QualType T, ExprValueKind VK, SourceLocation LitEndLoc,
372                     SourceLocation SuffixLoc)
373    : CallExpr(C, UserDefinedLiteralClass, Fn, 0, Args, T, VK, LitEndLoc),
374      UDSuffixLoc(SuffixLoc) {}
375  explicit UserDefinedLiteral(ASTContext &C, EmptyShell Empty)
376    : CallExpr(C, UserDefinedLiteralClass, Empty) {}
377
378  /// The kind of literal operator which is invoked.
379  enum LiteralOperatorKind {
380    LOK_Raw,      ///< Raw form: operator "" X (const char *)
381    LOK_Template, ///< Raw form: operator "" X<cs...> ()
382    LOK_Integer,  ///< operator "" X (unsigned long long)
383    LOK_Floating, ///< operator "" X (long double)
384    LOK_String,   ///< operator "" X (const CharT *, size_t)
385    LOK_Character ///< operator "" X (CharT)
386  };
387
388  /// \brief Returns the kind of literal operator invocation
389  /// which this expression represents.
390  LiteralOperatorKind getLiteralOperatorKind() const;
391
392  /// \brief If this is not a raw user-defined literal, get the
393  /// underlying cooked literal (representing the literal with the suffix
394  /// removed).
395  Expr *getCookedLiteral();
396  const Expr *getCookedLiteral() const {
397    return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
398  }
399
400  SourceLocation getLocStart() const {
401    if (getLiteralOperatorKind() == LOK_Template)
402      return getRParenLoc();
403    return getArg(0)->getLocStart();
404  }
405  SourceLocation getLocEnd() const { return getRParenLoc(); }
406
407
408  /// \brief Returns the location of a ud-suffix in the expression.
409  ///
410  /// For a string literal, there may be multiple identical suffixes. This
411  /// returns the first.
412  SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
413
414  /// \brief Returns the ud-suffix specified for this literal.
415  const IdentifierInfo *getUDSuffix() const;
416
417  static bool classof(const Stmt *S) {
418    return S->getStmtClass() == UserDefinedLiteralClass;
419  }
420
421  friend class ASTStmtReader;
422  friend class ASTStmtWriter;
423};
424
425/// \brief A boolean literal, per ([C++ lex.bool] Boolean literals).
426///
427class CXXBoolLiteralExpr : public Expr {
428  bool Value;
429  SourceLocation Loc;
430public:
431  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
432    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
433         false, false),
434    Value(val), Loc(l) {}
435
436  explicit CXXBoolLiteralExpr(EmptyShell Empty)
437    : Expr(CXXBoolLiteralExprClass, Empty) { }
438
439  bool getValue() const { return Value; }
440  void setValue(bool V) { Value = V; }
441
442  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
443  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
444
445  SourceLocation getLocation() const { return Loc; }
446  void setLocation(SourceLocation L) { Loc = L; }
447
448  static bool classof(const Stmt *T) {
449    return T->getStmtClass() == CXXBoolLiteralExprClass;
450  }
451
452  // Iterators
453  child_range children() { return child_range(); }
454};
455
456/// \brief The null pointer literal (C++11 [lex.nullptr])
457///
458/// Introduced in C++11, the only literal of type \c nullptr_t is \c nullptr.
459class CXXNullPtrLiteralExpr : public Expr {
460  SourceLocation Loc;
461public:
462  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
463    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
464         false, false),
465    Loc(l) {}
466
467  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
468    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
469
470  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
471  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
472
473  SourceLocation getLocation() const { return Loc; }
474  void setLocation(SourceLocation L) { Loc = L; }
475
476  static bool classof(const Stmt *T) {
477    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
478  }
479
480  child_range children() { return child_range(); }
481};
482
483/// \brief Implicit construction of a std::initializer_list<T> object from an
484/// array temporary within list-initialization (C++11 [dcl.init.list]p5).
485class CXXStdInitializerListExpr : public Expr {
486  Stmt *SubExpr;
487
488  CXXStdInitializerListExpr(EmptyShell Empty)
489    : Expr(CXXStdInitializerListExprClass, Empty), SubExpr(0) {}
490
491public:
492  CXXStdInitializerListExpr(QualType Ty, Expr *SubExpr)
493    : Expr(CXXStdInitializerListExprClass, Ty, VK_RValue, OK_Ordinary,
494           Ty->isDependentType(), SubExpr->isValueDependent(),
495           SubExpr->isInstantiationDependent(),
496           SubExpr->containsUnexpandedParameterPack()),
497      SubExpr(SubExpr) {}
498
499  Expr *getSubExpr() { return static_cast<Expr*>(SubExpr); }
500  const Expr *getSubExpr() const { return static_cast<const Expr*>(SubExpr); }
501
502  SourceLocation getLocStart() const LLVM_READONLY {
503    return SubExpr->getLocStart();
504  }
505  SourceLocation getLocEnd() const LLVM_READONLY {
506    return SubExpr->getLocEnd();
507  }
508  SourceRange getSourceRange() const LLVM_READONLY {
509    return SubExpr->getSourceRange();
510  }
511
512  static bool classof(const Stmt *S) {
513    return S->getStmtClass() == CXXStdInitializerListExprClass;
514  }
515
516  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
517
518  friend class ASTReader;
519  friend class ASTStmtReader;
520};
521
522/// A C++ \c typeid expression (C++ [expr.typeid]), which gets
523/// the \c type_info that corresponds to the supplied type, or the (possibly
524/// dynamic) type of the supplied expression.
525///
526/// This represents code like \c typeid(int) or \c typeid(*objPtr)
527class CXXTypeidExpr : public Expr {
528private:
529  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
530  SourceRange Range;
531
532public:
533  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
534    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
535           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
536           false,
537           // typeid is value-dependent if the type or expression are dependent
538           Operand->getType()->isDependentType(),
539           Operand->getType()->isInstantiationDependentType(),
540           Operand->getType()->containsUnexpandedParameterPack()),
541      Operand(Operand), Range(R) { }
542
543  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
544    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
545        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
546           false,
547        // typeid is value-dependent if the type or expression are dependent
548           Operand->isTypeDependent() || Operand->isValueDependent(),
549           Operand->isInstantiationDependent(),
550           Operand->containsUnexpandedParameterPack()),
551      Operand(Operand), Range(R) { }
552
553  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
554    : Expr(CXXTypeidExprClass, Empty) {
555    if (isExpr)
556      Operand = (Expr*)0;
557    else
558      Operand = (TypeSourceInfo*)0;
559  }
560
561  /// Determine whether this typeid has a type operand which is potentially
562  /// evaluated, per C++11 [expr.typeid]p3.
563  bool isPotentiallyEvaluated() const;
564
565  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
566
567  /// \brief Retrieves the type operand of this typeid() expression after
568  /// various required adjustments (removing reference types, cv-qualifiers).
569  QualType getTypeOperand() const;
570
571  /// \brief Retrieve source information for the type operand.
572  TypeSourceInfo *getTypeOperandSourceInfo() const {
573    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
574    return Operand.get<TypeSourceInfo *>();
575  }
576
577  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
578    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
579    Operand = TSI;
580  }
581
582  Expr *getExprOperand() const {
583    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
584    return static_cast<Expr*>(Operand.get<Stmt *>());
585  }
586
587  void setExprOperand(Expr *E) {
588    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
589    Operand = E;
590  }
591
592  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
593  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
594  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
595  void setSourceRange(SourceRange R) { Range = R; }
596
597  static bool classof(const Stmt *T) {
598    return T->getStmtClass() == CXXTypeidExprClass;
599  }
600
601  // Iterators
602  child_range children() {
603    if (isTypeOperand()) return child_range();
604    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
605    return child_range(begin, begin + 1);
606  }
607};
608
609/// \brief A member reference to an MSPropertyDecl.
610///
611/// This expression always has pseudo-object type, and therefore it is
612/// typically not encountered in a fully-typechecked expression except
613/// within the syntactic form of a PseudoObjectExpr.
614class MSPropertyRefExpr : public Expr {
615  Expr *BaseExpr;
616  MSPropertyDecl *TheDecl;
617  SourceLocation MemberLoc;
618  bool IsArrow;
619  NestedNameSpecifierLoc QualifierLoc;
620
621public:
622  MSPropertyRefExpr(Expr *baseExpr, MSPropertyDecl *decl, bool isArrow,
623                    QualType ty, ExprValueKind VK,
624                    NestedNameSpecifierLoc qualifierLoc,
625                    SourceLocation nameLoc)
626  : Expr(MSPropertyRefExprClass, ty, VK, OK_Ordinary,
627         /*type-dependent*/ false, baseExpr->isValueDependent(),
628         baseExpr->isInstantiationDependent(),
629         baseExpr->containsUnexpandedParameterPack()),
630    BaseExpr(baseExpr), TheDecl(decl),
631    MemberLoc(nameLoc), IsArrow(isArrow),
632    QualifierLoc(qualifierLoc) {}
633
634  MSPropertyRefExpr(EmptyShell Empty) : Expr(MSPropertyRefExprClass, Empty) {}
635
636  SourceRange getSourceRange() const LLVM_READONLY {
637    return SourceRange(getLocStart(), getLocEnd());
638  }
639  bool isImplicitAccess() const {
640    return getBaseExpr() && getBaseExpr()->isImplicitCXXThis();
641  }
642  SourceLocation getLocStart() const {
643    if (!isImplicitAccess())
644      return BaseExpr->getLocStart();
645    else if (QualifierLoc)
646      return QualifierLoc.getBeginLoc();
647    else
648        return MemberLoc;
649  }
650  SourceLocation getLocEnd() const { return getMemberLoc(); }
651
652  child_range children() {
653    return child_range((Stmt**)&BaseExpr, (Stmt**)&BaseExpr + 1);
654  }
655  static bool classof(const Stmt *T) {
656    return T->getStmtClass() == MSPropertyRefExprClass;
657  }
658
659  Expr *getBaseExpr() const { return BaseExpr; }
660  MSPropertyDecl *getPropertyDecl() const { return TheDecl; }
661  bool isArrow() const { return IsArrow; }
662  SourceLocation getMemberLoc() const { return MemberLoc; }
663  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
664
665  friend class ASTStmtReader;
666};
667
668/// A Microsoft C++ @c __uuidof expression, which gets
669/// the _GUID that corresponds to the supplied type or expression.
670///
671/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
672class CXXUuidofExpr : public Expr {
673private:
674  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
675  SourceRange Range;
676
677public:
678  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
679    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
680           false, Operand->getType()->isDependentType(),
681           Operand->getType()->isInstantiationDependentType(),
682           Operand->getType()->containsUnexpandedParameterPack()),
683      Operand(Operand), Range(R) { }
684
685  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
686    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
687           false, Operand->isTypeDependent(),
688           Operand->isInstantiationDependent(),
689           Operand->containsUnexpandedParameterPack()),
690      Operand(Operand), Range(R) { }
691
692  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
693    : Expr(CXXUuidofExprClass, Empty) {
694    if (isExpr)
695      Operand = (Expr*)0;
696    else
697      Operand = (TypeSourceInfo*)0;
698  }
699
700  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
701
702  /// \brief Retrieves the type operand of this __uuidof() expression after
703  /// various required adjustments (removing reference types, cv-qualifiers).
704  QualType getTypeOperand() const;
705
706  /// \brief Retrieve source information for the type operand.
707  TypeSourceInfo *getTypeOperandSourceInfo() const {
708    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
709    return Operand.get<TypeSourceInfo *>();
710  }
711
712  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
713    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
714    Operand = TSI;
715  }
716
717  Expr *getExprOperand() const {
718    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
719    return static_cast<Expr*>(Operand.get<Stmt *>());
720  }
721
722  void setExprOperand(Expr *E) {
723    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
724    Operand = E;
725  }
726
727  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
728  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
729  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
730  void setSourceRange(SourceRange R) { Range = R; }
731
732  static bool classof(const Stmt *T) {
733    return T->getStmtClass() == CXXUuidofExprClass;
734  }
735
736  /// Grabs __declspec(uuid()) off a type, or returns 0 if there is none.
737  static UuidAttr *GetUuidAttrOfType(QualType QT);
738
739  // Iterators
740  child_range children() {
741    if (isTypeOperand()) return child_range();
742    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
743    return child_range(begin, begin + 1);
744  }
745};
746
747/// \brief Represents the \c this expression in C++.
748///
749/// This is a pointer to the object on which the current member function is
750/// executing (C++ [expr.prim]p3). Example:
751///
752/// \code
753/// class Foo {
754/// public:
755///   void bar();
756///   void test() { this->bar(); }
757/// };
758/// \endcode
759class CXXThisExpr : public Expr {
760  SourceLocation Loc;
761  bool Implicit : 1;
762
763public:
764  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
765    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
766           // 'this' is type-dependent if the class type of the enclosing
767           // member function is dependent (C++ [temp.dep.expr]p2)
768           Type->isDependentType(), Type->isDependentType(),
769           Type->isInstantiationDependentType(),
770           /*ContainsUnexpandedParameterPack=*/false),
771      Loc(L), Implicit(isImplicit) { }
772
773  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
774
775  SourceLocation getLocation() const { return Loc; }
776  void setLocation(SourceLocation L) { Loc = L; }
777
778  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
779  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
780
781  bool isImplicit() const { return Implicit; }
782  void setImplicit(bool I) { Implicit = I; }
783
784  static bool classof(const Stmt *T) {
785    return T->getStmtClass() == CXXThisExprClass;
786  }
787
788  // Iterators
789  child_range children() { return child_range(); }
790};
791
792/// \brief A C++ throw-expression (C++ [except.throw]).
793///
794/// This handles 'throw' (for re-throwing the current exception) and
795/// 'throw' assignment-expression.  When assignment-expression isn't
796/// present, Op will be null.
797class CXXThrowExpr : public Expr {
798  Stmt *Op;
799  SourceLocation ThrowLoc;
800  /// \brief Whether the thrown variable (if any) is in scope.
801  unsigned IsThrownVariableInScope : 1;
802
803  friend class ASTStmtReader;
804
805public:
806  // \p Ty is the void type which is used as the result type of the
807  // expression.  The \p l is the location of the throw keyword.  \p expr
808  // can by null, if the optional expression to throw isn't present.
809  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
810               bool IsThrownVariableInScope) :
811    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
812         expr && expr->isInstantiationDependent(),
813         expr && expr->containsUnexpandedParameterPack()),
814    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
815  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
816
817  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
818  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
819
820  SourceLocation getThrowLoc() const { return ThrowLoc; }
821
822  /// \brief Determines whether the variable thrown by this expression (if any!)
823  /// is within the innermost try block.
824  ///
825  /// This information is required to determine whether the NRVO can apply to
826  /// this variable.
827  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
828
829  SourceLocation getLocStart() const LLVM_READONLY { return ThrowLoc; }
830  SourceLocation getLocEnd() const LLVM_READONLY {
831    if (getSubExpr() == 0)
832      return ThrowLoc;
833    return getSubExpr()->getLocEnd();
834  }
835
836  static bool classof(const Stmt *T) {
837    return T->getStmtClass() == CXXThrowExprClass;
838  }
839
840  // Iterators
841  child_range children() {
842    return child_range(&Op, Op ? &Op+1 : &Op);
843  }
844};
845
846/// \brief A default argument (C++ [dcl.fct.default]).
847///
848/// This wraps up a function call argument that was created from the
849/// corresponding parameter's default argument, when the call did not
850/// explicitly supply arguments for all of the parameters.
851class CXXDefaultArgExpr : public Expr {
852  /// \brief The parameter whose default is being used.
853  ///
854  /// When the bit is set, the subexpression is stored after the
855  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
856  /// actual default expression is the subexpression.
857  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
858
859  /// \brief The location where the default argument expression was used.
860  SourceLocation Loc;
861
862  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
863    : Expr(SC,
864           param->hasUnparsedDefaultArg()
865             ? param->getType().getNonReferenceType()
866             : param->getDefaultArg()->getType(),
867           param->getDefaultArg()->getValueKind(),
868           param->getDefaultArg()->getObjectKind(), false, false, false, false),
869      Param(param, false), Loc(Loc) { }
870
871  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
872                    Expr *SubExpr)
873    : Expr(SC, SubExpr->getType(),
874           SubExpr->getValueKind(), SubExpr->getObjectKind(),
875           false, false, false, false),
876      Param(param, true), Loc(Loc) {
877    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
878  }
879
880public:
881  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
882
883  // \p Param is the parameter whose default argument is used by this
884  // expression.
885  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
886                                   ParmVarDecl *Param) {
887    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
888  }
889
890  // \p Param is the parameter whose default argument is used by this
891  // expression, and \p SubExpr is the expression that will actually be used.
892  static CXXDefaultArgExpr *Create(ASTContext &C,
893                                   SourceLocation Loc,
894                                   ParmVarDecl *Param,
895                                   Expr *SubExpr);
896
897  // Retrieve the parameter that the argument was created from.
898  const ParmVarDecl *getParam() const { return Param.getPointer(); }
899  ParmVarDecl *getParam() { return Param.getPointer(); }
900
901  // Retrieve the actual argument to the function call.
902  const Expr *getExpr() const {
903    if (Param.getInt())
904      return *reinterpret_cast<Expr const * const*> (this + 1);
905    return getParam()->getDefaultArg();
906  }
907  Expr *getExpr() {
908    if (Param.getInt())
909      return *reinterpret_cast<Expr **> (this + 1);
910    return getParam()->getDefaultArg();
911  }
912
913  /// \brief Retrieve the location where this default argument was actually
914  /// used.
915  SourceLocation getUsedLocation() const { return Loc; }
916
917  /// Default argument expressions have no representation in the
918  /// source, so they have an empty source range.
919  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
920  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
921
922  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
923
924  static bool classof(const Stmt *T) {
925    return T->getStmtClass() == CXXDefaultArgExprClass;
926  }
927
928  // Iterators
929  child_range children() { return child_range(); }
930
931  friend class ASTStmtReader;
932  friend class ASTStmtWriter;
933};
934
935/// \brief A use of a default initializer in a constructor or in aggregate
936/// initialization.
937///
938/// This wraps a use of a C++ default initializer (technically,
939/// a brace-or-equal-initializer for a non-static data member) when it
940/// is implicitly used in a mem-initializer-list in a constructor
941/// (C++11 [class.base.init]p8) or in aggregate initialization
942/// (C++1y [dcl.init.aggr]p7).
943class CXXDefaultInitExpr : public Expr {
944  /// \brief The field whose default is being used.
945  FieldDecl *Field;
946
947  /// \brief The location where the default initializer expression was used.
948  SourceLocation Loc;
949
950  CXXDefaultInitExpr(ASTContext &C, SourceLocation Loc, FieldDecl *Field,
951                     QualType T);
952
953  CXXDefaultInitExpr(EmptyShell Empty) : Expr(CXXDefaultInitExprClass, Empty) {}
954
955public:
956  /// \p Field is the non-static data member whose default initializer is used
957  /// by this expression.
958  static CXXDefaultInitExpr *Create(ASTContext &C, SourceLocation Loc,
959                                    FieldDecl *Field) {
960    return new (C) CXXDefaultInitExpr(C, Loc, Field, Field->getType());
961  }
962
963  /// \brief Get the field whose initializer will be used.
964  FieldDecl *getField() { return Field; }
965  const FieldDecl *getField() const { return Field; }
966
967  /// \brief Get the initialization expression that will be used.
968  const Expr *getExpr() const { return Field->getInClassInitializer(); }
969  Expr *getExpr() { return Field->getInClassInitializer(); }
970
971  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
972  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
973
974  static bool classof(const Stmt *T) {
975    return T->getStmtClass() == CXXDefaultInitExprClass;
976  }
977
978  // Iterators
979  child_range children() { return child_range(); }
980
981  friend class ASTReader;
982  friend class ASTStmtReader;
983};
984
985/// \brief Represents a C++ temporary.
986class CXXTemporary {
987  /// \brief The destructor that needs to be called.
988  const CXXDestructorDecl *Destructor;
989
990  explicit CXXTemporary(const CXXDestructorDecl *destructor)
991    : Destructor(destructor) { }
992
993public:
994  static CXXTemporary *Create(ASTContext &C,
995                              const CXXDestructorDecl *Destructor);
996
997  const CXXDestructorDecl *getDestructor() const { return Destructor; }
998  void setDestructor(const CXXDestructorDecl *Dtor) {
999    Destructor = Dtor;
1000  }
1001};
1002
1003/// \brief Represents binding an expression to a temporary.
1004///
1005/// This ensures the destructor is called for the temporary. It should only be
1006/// needed for non-POD, non-trivially destructable class types. For example:
1007///
1008/// \code
1009///   struct S {
1010///     S() { }  // User defined constructor makes S non-POD.
1011///     ~S() { } // User defined destructor makes it non-trivial.
1012///   };
1013///   void test() {
1014///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
1015///   }
1016/// \endcode
1017class CXXBindTemporaryExpr : public Expr {
1018  CXXTemporary *Temp;
1019
1020  Stmt *SubExpr;
1021
1022  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
1023   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
1024          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
1025          SubExpr->isValueDependent(),
1026          SubExpr->isInstantiationDependent(),
1027          SubExpr->containsUnexpandedParameterPack()),
1028     Temp(temp), SubExpr(SubExpr) { }
1029
1030public:
1031  CXXBindTemporaryExpr(EmptyShell Empty)
1032    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
1033
1034  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
1035                                      Expr* SubExpr);
1036
1037  CXXTemporary *getTemporary() { return Temp; }
1038  const CXXTemporary *getTemporary() const { return Temp; }
1039  void setTemporary(CXXTemporary *T) { Temp = T; }
1040
1041  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1042  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1043  void setSubExpr(Expr *E) { SubExpr = E; }
1044
1045  SourceLocation getLocStart() const LLVM_READONLY {
1046    return SubExpr->getLocStart();
1047  }
1048  SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}
1049
1050  // Implement isa/cast/dyncast/etc.
1051  static bool classof(const Stmt *T) {
1052    return T->getStmtClass() == CXXBindTemporaryExprClass;
1053  }
1054
1055  // Iterators
1056  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
1057};
1058
1059/// \brief Represents a call to a C++ constructor.
1060class CXXConstructExpr : public Expr {
1061public:
1062  enum ConstructionKind {
1063    CK_Complete,
1064    CK_NonVirtualBase,
1065    CK_VirtualBase,
1066    CK_Delegating
1067  };
1068
1069private:
1070  CXXConstructorDecl *Constructor;
1071
1072  SourceLocation Loc;
1073  SourceRange ParenRange;
1074  unsigned NumArgs : 16;
1075  bool Elidable : 1;
1076  bool HadMultipleCandidates : 1;
1077  bool ListInitialization : 1;
1078  bool ZeroInitialization : 1;
1079  unsigned ConstructKind : 2;
1080  Stmt **Args;
1081
1082protected:
1083  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
1084                   SourceLocation Loc,
1085                   CXXConstructorDecl *d, bool elidable,
1086                   ArrayRef<Expr *> Args,
1087                   bool HadMultipleCandidates,
1088                   bool ListInitialization,
1089                   bool ZeroInitialization,
1090                   ConstructionKind ConstructKind,
1091                   SourceRange ParenRange);
1092
1093  /// \brief Construct an empty C++ construction expression.
1094  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
1095    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
1096      HadMultipleCandidates(false), ListInitialization(false),
1097      ZeroInitialization(false), ConstructKind(0), Args(0)
1098  { }
1099
1100public:
1101  /// \brief Construct an empty C++ construction expression.
1102  explicit CXXConstructExpr(EmptyShell Empty)
1103    : Expr(CXXConstructExprClass, Empty), Constructor(0),
1104      NumArgs(0), Elidable(false), HadMultipleCandidates(false),
1105      ListInitialization(false), ZeroInitialization(false),
1106      ConstructKind(0), Args(0)
1107  { }
1108
1109  static CXXConstructExpr *Create(ASTContext &C, QualType T,
1110                                  SourceLocation Loc,
1111                                  CXXConstructorDecl *D, bool Elidable,
1112                                  ArrayRef<Expr *> Args,
1113                                  bool HadMultipleCandidates,
1114                                  bool ListInitialization,
1115                                  bool ZeroInitialization,
1116                                  ConstructionKind ConstructKind,
1117                                  SourceRange ParenRange);
1118
1119  CXXConstructorDecl* getConstructor() const { return Constructor; }
1120  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
1121
1122  SourceLocation getLocation() const { return Loc; }
1123  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
1124
1125  /// \brief Whether this construction is elidable.
1126  bool isElidable() const { return Elidable; }
1127  void setElidable(bool E) { Elidable = E; }
1128
1129  /// \brief Whether the referred constructor was resolved from
1130  /// an overloaded set having size greater than 1.
1131  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
1132  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
1133
1134  /// \brief Whether this constructor call was written as list-initialization.
1135  bool isListInitialization() const { return ListInitialization; }
1136  void setListInitialization(bool V) { ListInitialization = V; }
1137
1138  /// \brief Whether this construction first requires
1139  /// zero-initialization before the initializer is called.
1140  bool requiresZeroInitialization() const { return ZeroInitialization; }
1141  void setRequiresZeroInitialization(bool ZeroInit) {
1142    ZeroInitialization = ZeroInit;
1143  }
1144
1145  /// \brief Determine whether this constructor is actually constructing
1146  /// a base class (rather than a complete object).
1147  ConstructionKind getConstructionKind() const {
1148    return (ConstructionKind)ConstructKind;
1149  }
1150  void setConstructionKind(ConstructionKind CK) {
1151    ConstructKind = CK;
1152  }
1153
1154  typedef ExprIterator arg_iterator;
1155  typedef ConstExprIterator const_arg_iterator;
1156
1157  arg_iterator arg_begin() { return Args; }
1158  arg_iterator arg_end() { return Args + NumArgs; }
1159  const_arg_iterator arg_begin() const { return Args; }
1160  const_arg_iterator arg_end() const { return Args + NumArgs; }
1161
1162  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
1163  unsigned getNumArgs() const { return NumArgs; }
1164
1165  /// \brief Return the specified argument.
1166  Expr *getArg(unsigned Arg) {
1167    assert(Arg < NumArgs && "Arg access out of range!");
1168    return cast<Expr>(Args[Arg]);
1169  }
1170  const Expr *getArg(unsigned Arg) const {
1171    assert(Arg < NumArgs && "Arg access out of range!");
1172    return cast<Expr>(Args[Arg]);
1173  }
1174
1175  /// \brief Set the specified argument.
1176  void setArg(unsigned Arg, Expr *ArgExpr) {
1177    assert(Arg < NumArgs && "Arg access out of range!");
1178    Args[Arg] = ArgExpr;
1179  }
1180
1181  SourceLocation getLocStart() const LLVM_READONLY;
1182  SourceLocation getLocEnd() const LLVM_READONLY;
1183  SourceRange getParenRange() const { return ParenRange; }
1184  void setParenRange(SourceRange Range) { ParenRange = Range; }
1185
1186  static bool classof(const Stmt *T) {
1187    return T->getStmtClass() == CXXConstructExprClass ||
1188      T->getStmtClass() == CXXTemporaryObjectExprClass;
1189  }
1190
1191  // Iterators
1192  child_range children() {
1193    return child_range(&Args[0], &Args[0]+NumArgs);
1194  }
1195
1196  friend class ASTStmtReader;
1197};
1198
1199/// \brief Represents an explicit C++ type conversion that uses "functional"
1200/// notation (C++ [expr.type.conv]).
1201///
1202/// Example:
1203/// \code
1204///   x = int(0.5);
1205/// \endcode
1206class CXXFunctionalCastExpr : public ExplicitCastExpr {
1207  SourceLocation TyBeginLoc;
1208  SourceLocation RParenLoc;
1209
1210  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1211                        TypeSourceInfo *writtenTy,
1212                        SourceLocation tyBeginLoc, CastKind kind,
1213                        Expr *castExpr, unsigned pathSize,
1214                        SourceLocation rParenLoc)
1215    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
1216                       castExpr, pathSize, writtenTy),
1217      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
1218
1219  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
1220    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
1221
1222public:
1223  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
1224                                       ExprValueKind VK,
1225                                       TypeSourceInfo *Written,
1226                                       SourceLocation TyBeginLoc,
1227                                       CastKind Kind, Expr *Op,
1228                                       const CXXCastPath *Path,
1229                                       SourceLocation RPLoc);
1230  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
1231                                            unsigned PathSize);
1232
1233  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
1234  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
1235  SourceLocation getRParenLoc() const { return RParenLoc; }
1236  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1237
1238  SourceLocation getLocStart() const LLVM_READONLY { return TyBeginLoc; }
1239  SourceLocation getLocEnd() const LLVM_READONLY {
1240    return RParenLoc.isValid() ? RParenLoc : getSubExpr()->getLocEnd();
1241  }
1242
1243  static bool classof(const Stmt *T) {
1244    return T->getStmtClass() == CXXFunctionalCastExprClass;
1245  }
1246};
1247
1248/// @brief Represents a C++ functional cast expression that builds a
1249/// temporary object.
1250///
1251/// This expression type represents a C++ "functional" cast
1252/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1253/// constructor to build a temporary object. With N == 1 arguments the
1254/// functional cast expression will be represented by CXXFunctionalCastExpr.
1255/// Example:
1256/// \code
1257/// struct X { X(int, float); }
1258///
1259/// X create_X() {
1260///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1261/// };
1262/// \endcode
1263class CXXTemporaryObjectExpr : public CXXConstructExpr {
1264  TypeSourceInfo *Type;
1265
1266public:
1267  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
1268                         TypeSourceInfo *Type,
1269                         ArrayRef<Expr *> Args,
1270                         SourceRange parenRange,
1271                         bool HadMultipleCandidates,
1272                         bool ListInitialization,
1273                         bool ZeroInitialization);
1274  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1275    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1276
1277  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1278
1279  SourceLocation getLocStart() const LLVM_READONLY;
1280  SourceLocation getLocEnd() const LLVM_READONLY;
1281
1282  static bool classof(const Stmt *T) {
1283    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1284  }
1285
1286  friend class ASTStmtReader;
1287};
1288
1289/// \brief A C++ lambda expression, which produces a function object
1290/// (of unspecified type) that can be invoked later.
1291///
1292/// Example:
1293/// \code
1294/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1295///   values.erase(std::remove_if(values.begin(), values.end(),
1296///                               [=](double value) { return value > cutoff; });
1297/// }
1298/// \endcode
1299///
1300/// C++11 lambda expressions can capture local variables, either by copying
1301/// the values of those local variables at the time the function
1302/// object is constructed (not when it is called!) or by holding a
1303/// reference to the local variable. These captures can occur either
1304/// implicitly or can be written explicitly between the square
1305/// brackets ([...]) that start the lambda expression.
1306///
1307/// C++1y introduces a new form of "capture" called an init-capture that
1308/// includes an initializing expression (rather than capturing a variable),
1309/// and which can never occur implicitly.
1310class LambdaExpr : public Expr {
1311  enum {
1312    /// \brief Flag used by the Capture class to indicate that the given
1313    /// capture was implicit.
1314    Capture_Implicit = 0x01,
1315
1316    /// \brief Flag used by the Capture class to indicate that the
1317    /// given capture was by-copy.
1318    ///
1319    /// This includes the case of a non-reference init-capture.
1320    Capture_ByCopy = 0x02
1321  };
1322
1323  /// \brief The source range that covers the lambda introducer ([...]).
1324  SourceRange IntroducerRange;
1325
1326  /// \brief The source location of this lambda's capture-default ('=' or '&').
1327  SourceLocation CaptureDefaultLoc;
1328
1329  /// \brief The number of captures.
1330  unsigned NumCaptures : 16;
1331
1332  /// \brief The default capture kind, which is a value of type
1333  /// LambdaCaptureDefault.
1334  unsigned CaptureDefault : 2;
1335
1336  /// \brief Whether this lambda had an explicit parameter list vs. an
1337  /// implicit (and empty) parameter list.
1338  unsigned ExplicitParams : 1;
1339
1340  /// \brief Whether this lambda had the result type explicitly specified.
1341  unsigned ExplicitResultType : 1;
1342
1343  /// \brief Whether there are any array index variables stored at the end of
1344  /// this lambda expression.
1345  unsigned HasArrayIndexVars : 1;
1346
1347  /// \brief The location of the closing brace ('}') that completes
1348  /// the lambda.
1349  ///
1350  /// The location of the brace is also available by looking up the
1351  /// function call operator in the lambda class. However, it is
1352  /// stored here to improve the performance of getSourceRange(), and
1353  /// to avoid having to deserialize the function call operator from a
1354  /// module file just to determine the source range.
1355  SourceLocation ClosingBrace;
1356
1357  // Note: The capture initializers are stored directly after the lambda
1358  // expression, along with the index variables used to initialize by-copy
1359  // array captures.
1360
1361public:
1362  /// \brief Describes the capture of a variable or of \c this, or of a
1363  /// C++1y init-capture.
1364  class Capture {
1365    llvm::PointerIntPair<Decl *, 2> DeclAndBits;
1366    SourceLocation Loc;
1367    SourceLocation EllipsisLoc;
1368
1369    friend class ASTStmtReader;
1370    friend class ASTStmtWriter;
1371
1372  public:
1373    /// \brief Create a new capture of a variable or of \c this.
1374    ///
1375    /// \param Loc The source location associated with this capture.
1376    ///
1377    /// \param Kind The kind of capture (this, byref, bycopy), which must
1378    /// not be init-capture.
1379    ///
1380    /// \param Implicit Whether the capture was implicit or explicit.
1381    ///
1382    /// \param Var The local variable being captured, or null if capturing
1383    /// \c this.
1384    ///
1385    /// \param EllipsisLoc The location of the ellipsis (...) for a
1386    /// capture that is a pack expansion, or an invalid source
1387    /// location to indicate that this is not a pack expansion.
1388    Capture(SourceLocation Loc, bool Implicit,
1389            LambdaCaptureKind Kind, VarDecl *Var = 0,
1390            SourceLocation EllipsisLoc = SourceLocation());
1391
1392    /// \brief Create a new init-capture.
1393    Capture(FieldDecl *Field);
1394
1395    /// \brief Determine the kind of capture.
1396    LambdaCaptureKind getCaptureKind() const;
1397
1398    /// \brief Determine whether this capture handles the C++ \c this
1399    /// pointer.
1400    bool capturesThis() const { return DeclAndBits.getPointer() == 0; }
1401
1402    /// \brief Determine whether this capture handles a variable.
1403    bool capturesVariable() const {
1404      return dyn_cast_or_null<VarDecl>(DeclAndBits.getPointer());
1405    }
1406
1407    /// \brief Determine whether this is an init-capture.
1408    bool isInitCapture() const { return getCaptureKind() == LCK_Init; }
1409
1410    /// \brief Retrieve the declaration of the local variable being
1411    /// captured.
1412    ///
1413    /// This operation is only valid if this capture is a variable capture
1414    /// (other than a capture of \c this).
1415    VarDecl *getCapturedVar() const {
1416      assert(capturesVariable() && "No variable available for 'this' capture");
1417      return cast<VarDecl>(DeclAndBits.getPointer());
1418    }
1419
1420    /// \brief Retrieve the field for an init-capture.
1421    ///
1422    /// This works only for an init-capture.  To retrieve the FieldDecl for
1423    /// a captured variable or for a capture of \c this, use
1424    /// LambdaExpr::getLambdaClass and CXXRecordDecl::getCaptureFields.
1425    FieldDecl *getInitCaptureField() const {
1426      assert(getCaptureKind() == LCK_Init && "no field for non-init-capture");
1427      return cast<FieldDecl>(DeclAndBits.getPointer());
1428    }
1429
1430    /// \brief Determine whether this was an implicit capture (not
1431    /// written between the square brackets introducing the lambda).
1432    bool isImplicit() const { return DeclAndBits.getInt() & Capture_Implicit; }
1433
1434    /// \brief Determine whether this was an explicit capture (written
1435    /// between the square brackets introducing the lambda).
1436    bool isExplicit() const { return !isImplicit(); }
1437
1438    /// \brief Retrieve the source location of the capture.
1439    ///
1440    /// For an explicit capture, this returns the location of the
1441    /// explicit capture in the source. For an implicit capture, this
1442    /// returns the location at which the variable or \c this was first
1443    /// used.
1444    SourceLocation getLocation() const { return Loc; }
1445
1446    /// \brief Determine whether this capture is a pack expansion,
1447    /// which captures a function parameter pack.
1448    bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1449
1450    /// \brief Retrieve the location of the ellipsis for a capture
1451    /// that is a pack expansion.
1452    SourceLocation getEllipsisLoc() const {
1453      assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1454      return EllipsisLoc;
1455    }
1456  };
1457
1458private:
1459  /// \brief Construct a lambda expression.
1460  LambdaExpr(QualType T, SourceRange IntroducerRange,
1461             LambdaCaptureDefault CaptureDefault,
1462             SourceLocation CaptureDefaultLoc,
1463             ArrayRef<Capture> Captures,
1464             bool ExplicitParams,
1465             bool ExplicitResultType,
1466             ArrayRef<Expr *> CaptureInits,
1467             ArrayRef<VarDecl *> ArrayIndexVars,
1468             ArrayRef<unsigned> ArrayIndexStarts,
1469             SourceLocation ClosingBrace,
1470             bool ContainsUnexpandedParameterPack);
1471
1472  /// \brief Construct an empty lambda expression.
1473  LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1474    : Expr(LambdaExprClass, Empty),
1475      NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1476      ExplicitResultType(false), HasArrayIndexVars(true) {
1477    getStoredStmts()[NumCaptures] = 0;
1478  }
1479
1480  Stmt **getStoredStmts() const {
1481    return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1482  }
1483
1484  /// \brief Retrieve the mapping from captures to the first array index
1485  /// variable.
1486  unsigned *getArrayIndexStarts() const {
1487    return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1488  }
1489
1490  /// \brief Retrieve the complete set of array-index variables.
1491  VarDecl **getArrayIndexVars() const {
1492    unsigned ArrayIndexSize =
1493        llvm::RoundUpToAlignment(sizeof(unsigned) * (NumCaptures + 1),
1494                                 llvm::alignOf<VarDecl*>());
1495    return reinterpret_cast<VarDecl **>(
1496        reinterpret_cast<char*>(getArrayIndexStarts()) + ArrayIndexSize);
1497  }
1498
1499public:
1500  /// \brief Construct a new lambda expression.
1501  static LambdaExpr *Create(ASTContext &C,
1502                            CXXRecordDecl *Class,
1503                            SourceRange IntroducerRange,
1504                            LambdaCaptureDefault CaptureDefault,
1505                            SourceLocation CaptureDefaultLoc,
1506                            ArrayRef<Capture> Captures,
1507                            bool ExplicitParams,
1508                            bool ExplicitResultType,
1509                            ArrayRef<Expr *> CaptureInits,
1510                            ArrayRef<VarDecl *> ArrayIndexVars,
1511                            ArrayRef<unsigned> ArrayIndexStarts,
1512                            SourceLocation ClosingBrace,
1513                            bool ContainsUnexpandedParameterPack);
1514
1515  /// \brief Construct a new lambda expression that will be deserialized from
1516  /// an external source.
1517  static LambdaExpr *CreateDeserialized(ASTContext &C, unsigned NumCaptures,
1518                                        unsigned NumArrayIndexVars);
1519
1520  /// \brief Determine the default capture kind for this lambda.
1521  LambdaCaptureDefault getCaptureDefault() const {
1522    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1523  }
1524
1525  /// \brief Retrieve the location of this lambda's capture-default, if any.
1526  SourceLocation getCaptureDefaultLoc() const {
1527    return CaptureDefaultLoc;
1528  }
1529
1530  /// \brief An iterator that walks over the captures of the lambda,
1531  /// both implicit and explicit.
1532  typedef const Capture *capture_iterator;
1533
1534  /// \brief Retrieve an iterator pointing to the first lambda capture.
1535  capture_iterator capture_begin() const;
1536
1537  /// \brief Retrieve an iterator pointing past the end of the
1538  /// sequence of lambda captures.
1539  capture_iterator capture_end() const;
1540
1541  /// \brief Determine the number of captures in this lambda.
1542  unsigned capture_size() const { return NumCaptures; }
1543
1544  /// \brief Retrieve an iterator pointing to the first explicit
1545  /// lambda capture.
1546  capture_iterator explicit_capture_begin() const;
1547
1548  /// \brief Retrieve an iterator pointing past the end of the sequence of
1549  /// explicit lambda captures.
1550  capture_iterator explicit_capture_end() const;
1551
1552  /// \brief Retrieve an iterator pointing to the first implicit
1553  /// lambda capture.
1554  capture_iterator implicit_capture_begin() const;
1555
1556  /// \brief Retrieve an iterator pointing past the end of the sequence of
1557  /// implicit lambda captures.
1558  capture_iterator implicit_capture_end() const;
1559
1560  /// \brief Iterator that walks over the capture initialization
1561  /// arguments.
1562  typedef Expr **capture_init_iterator;
1563
1564  /// \brief Retrieve the first initialization argument for this
1565  /// lambda expression (which initializes the first capture field).
1566  capture_init_iterator capture_init_begin() const {
1567    return reinterpret_cast<Expr **>(getStoredStmts());
1568  }
1569
1570  /// \brief Retrieve the iterator pointing one past the last
1571  /// initialization argument for this lambda expression.
1572  capture_init_iterator capture_init_end() const {
1573    return capture_init_begin() + NumCaptures;
1574  }
1575
1576  /// \brief Retrieve the initializer for an init-capture.
1577  Expr *getInitCaptureInit(capture_iterator Capture) {
1578    assert(Capture >= explicit_capture_begin() &&
1579           Capture <= explicit_capture_end() && Capture->isInitCapture());
1580    return capture_init_begin()[Capture - capture_begin()];
1581  }
1582  const Expr *getInitCaptureInit(capture_iterator Capture) const {
1583    return const_cast<LambdaExpr*>(this)->getInitCaptureInit(Capture);
1584  }
1585
1586  /// \brief Retrieve the set of index variables used in the capture
1587  /// initializer of an array captured by copy.
1588  ///
1589  /// \param Iter The iterator that points at the capture initializer for
1590  /// which we are extracting the corresponding index variables.
1591  ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1592
1593  /// \brief Retrieve the source range covering the lambda introducer,
1594  /// which contains the explicit capture list surrounded by square
1595  /// brackets ([...]).
1596  SourceRange getIntroducerRange() const { return IntroducerRange; }
1597
1598  /// \brief Retrieve the class that corresponds to the lambda.
1599  ///
1600  /// This is the "closure type" (C++1y [expr.prim.lambda]), and stores the
1601  /// captures in its fields and provides the various operations permitted
1602  /// on a lambda (copying, calling).
1603  CXXRecordDecl *getLambdaClass() const;
1604
1605  /// \brief Retrieve the function call operator associated with this
1606  /// lambda expression.
1607  CXXMethodDecl *getCallOperator() const;
1608
1609  /// \brief Retrieve the body of the lambda.
1610  CompoundStmt *getBody() const;
1611
1612  /// \brief Determine whether the lambda is mutable, meaning that any
1613  /// captures values can be modified.
1614  bool isMutable() const;
1615
1616  /// \brief Determine whether this lambda has an explicit parameter
1617  /// list vs. an implicit (empty) parameter list.
1618  bool hasExplicitParameters() const { return ExplicitParams; }
1619
1620  /// \brief Whether this lambda had its result type explicitly specified.
1621  bool hasExplicitResultType() const { return ExplicitResultType; }
1622
1623  static bool classof(const Stmt *T) {
1624    return T->getStmtClass() == LambdaExprClass;
1625  }
1626
1627  SourceLocation getLocStart() const LLVM_READONLY {
1628    return IntroducerRange.getBegin();
1629  }
1630  SourceLocation getLocEnd() const LLVM_READONLY { return ClosingBrace; }
1631
1632  child_range children() {
1633    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1634  }
1635
1636  friend class ASTStmtReader;
1637  friend class ASTStmtWriter;
1638};
1639
1640/// An expression "T()" which creates a value-initialized rvalue of type
1641/// T, which is a non-class type.  See (C++98 [5.2.3p2]).
1642class CXXScalarValueInitExpr : public Expr {
1643  SourceLocation RParenLoc;
1644  TypeSourceInfo *TypeInfo;
1645
1646  friend class ASTStmtReader;
1647
1648public:
1649  /// \brief Create an explicitly-written scalar-value initialization
1650  /// expression.
1651  CXXScalarValueInitExpr(QualType Type,
1652                         TypeSourceInfo *TypeInfo,
1653                         SourceLocation rParenLoc ) :
1654    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1655         false, false, Type->isInstantiationDependentType(), false),
1656    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1657
1658  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1659    : Expr(CXXScalarValueInitExprClass, Shell) { }
1660
1661  TypeSourceInfo *getTypeSourceInfo() const {
1662    return TypeInfo;
1663  }
1664
1665  SourceLocation getRParenLoc() const { return RParenLoc; }
1666
1667  SourceLocation getLocStart() const LLVM_READONLY;
1668  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1669
1670  static bool classof(const Stmt *T) {
1671    return T->getStmtClass() == CXXScalarValueInitExprClass;
1672  }
1673
1674  // Iterators
1675  child_range children() { return child_range(); }
1676};
1677
1678/// \brief Represents a new-expression for memory allocation and constructor
1679/// calls, e.g: "new CXXNewExpr(foo)".
1680class CXXNewExpr : public Expr {
1681  /// Contains an optional array size expression, an optional initialization
1682  /// expression, and any number of optional placement arguments, in that order.
1683  Stmt **SubExprs;
1684  /// \brief Points to the allocation function used.
1685  FunctionDecl *OperatorNew;
1686  /// \brief Points to the deallocation function used in case of error. May be
1687  /// null.
1688  FunctionDecl *OperatorDelete;
1689
1690  /// \brief The allocated type-source information, as written in the source.
1691  TypeSourceInfo *AllocatedTypeInfo;
1692
1693  /// \brief If the allocated type was expressed as a parenthesized type-id,
1694  /// the source range covering the parenthesized type-id.
1695  SourceRange TypeIdParens;
1696
1697  /// \brief Range of the entire new expression.
1698  SourceRange Range;
1699
1700  /// \brief Source-range of a paren-delimited initializer.
1701  SourceRange DirectInitRange;
1702
1703  /// Was the usage ::new, i.e. is the global new to be used?
1704  bool GlobalNew : 1;
1705  /// Do we allocate an array? If so, the first SubExpr is the size expression.
1706  bool Array : 1;
1707  /// If this is an array allocation, does the usual deallocation
1708  /// function for the allocated type want to know the allocated size?
1709  bool UsualArrayDeleteWantsSize : 1;
1710  /// The number of placement new arguments.
1711  unsigned NumPlacementArgs : 13;
1712  /// What kind of initializer do we have? Could be none, parens, or braces.
1713  /// In storage, we distinguish between "none, and no initializer expr", and
1714  /// "none, but an implicit initializer expr".
1715  unsigned StoredInitializationStyle : 2;
1716
1717  friend class ASTStmtReader;
1718  friend class ASTStmtWriter;
1719public:
1720  enum InitializationStyle {
1721    NoInit,   ///< New-expression has no initializer as written.
1722    CallInit, ///< New-expression has a C++98 paren-delimited initializer.
1723    ListInit  ///< New-expression has a C++11 list-initializer.
1724  };
1725
1726  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1727             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1728             ArrayRef<Expr*> placementArgs,
1729             SourceRange typeIdParens, Expr *arraySize,
1730             InitializationStyle initializationStyle, Expr *initializer,
1731             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1732             SourceRange Range, SourceRange directInitRange);
1733  explicit CXXNewExpr(EmptyShell Shell)
1734    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1735
1736  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1737                         bool hasInitializer);
1738
1739  QualType getAllocatedType() const {
1740    assert(getType()->isPointerType());
1741    return getType()->getAs<PointerType>()->getPointeeType();
1742  }
1743
1744  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1745    return AllocatedTypeInfo;
1746  }
1747
1748  /// \brief True if the allocation result needs to be null-checked.
1749  ///
1750  /// C++11 [expr.new]p13:
1751  ///   If the allocation function returns null, initialization shall
1752  ///   not be done, the deallocation function shall not be called,
1753  ///   and the value of the new-expression shall be null.
1754  ///
1755  /// An allocation function is not allowed to return null unless it
1756  /// has a non-throwing exception-specification.  The '03 rule is
1757  /// identical except that the definition of a non-throwing
1758  /// exception specification is just "is it throw()?".
1759  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1760
1761  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1762  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1763  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1764  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1765
1766  bool isArray() const { return Array; }
1767  Expr *getArraySize() {
1768    return Array ? cast<Expr>(SubExprs[0]) : 0;
1769  }
1770  const Expr *getArraySize() const {
1771    return Array ? cast<Expr>(SubExprs[0]) : 0;
1772  }
1773
1774  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1775  Expr **getPlacementArgs() {
1776    return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
1777  }
1778
1779  Expr *getPlacementArg(unsigned i) {
1780    assert(i < NumPlacementArgs && "Index out of range");
1781    return getPlacementArgs()[i];
1782  }
1783  const Expr *getPlacementArg(unsigned i) const {
1784    assert(i < NumPlacementArgs && "Index out of range");
1785    return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
1786  }
1787
1788  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1789  SourceRange getTypeIdParens() const { return TypeIdParens; }
1790
1791  bool isGlobalNew() const { return GlobalNew; }
1792
1793  /// \brief Whether this new-expression has any initializer at all.
1794  bool hasInitializer() const { return StoredInitializationStyle > 0; }
1795
1796  /// \brief The kind of initializer this new-expression has.
1797  InitializationStyle getInitializationStyle() const {
1798    if (StoredInitializationStyle == 0)
1799      return NoInit;
1800    return static_cast<InitializationStyle>(StoredInitializationStyle-1);
1801  }
1802
1803  /// \brief The initializer of this new-expression.
1804  Expr *getInitializer() {
1805    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1806  }
1807  const Expr *getInitializer() const {
1808    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1809  }
1810
1811  /// \brief Returns the CXXConstructExpr from this new-expression, or null.
1812  const CXXConstructExpr* getConstructExpr() const {
1813    return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
1814  }
1815
1816  /// Answers whether the usual array deallocation function for the
1817  /// allocated type expects the size of the allocation as a
1818  /// parameter.
1819  bool doesUsualArrayDeleteWantSize() const {
1820    return UsualArrayDeleteWantsSize;
1821  }
1822
1823  typedef ExprIterator arg_iterator;
1824  typedef ConstExprIterator const_arg_iterator;
1825
1826  arg_iterator placement_arg_begin() {
1827    return SubExprs + Array + hasInitializer();
1828  }
1829  arg_iterator placement_arg_end() {
1830    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1831  }
1832  const_arg_iterator placement_arg_begin() const {
1833    return SubExprs + Array + hasInitializer();
1834  }
1835  const_arg_iterator placement_arg_end() const {
1836    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1837  }
1838
1839  typedef Stmt **raw_arg_iterator;
1840  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1841  raw_arg_iterator raw_arg_end() {
1842    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1843  }
1844  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1845  const_arg_iterator raw_arg_end() const {
1846    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1847  }
1848
1849  SourceLocation getStartLoc() const { return Range.getBegin(); }
1850  SourceLocation getEndLoc() const { return Range.getEnd(); }
1851
1852  SourceRange getDirectInitRange() const { return DirectInitRange; }
1853
1854  SourceRange getSourceRange() const LLVM_READONLY {
1855    return Range;
1856  }
1857  SourceLocation getLocStart() const LLVM_READONLY { return getStartLoc(); }
1858  SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
1859
1860  static bool classof(const Stmt *T) {
1861    return T->getStmtClass() == CXXNewExprClass;
1862  }
1863
1864  // Iterators
1865  child_range children() {
1866    return child_range(raw_arg_begin(), raw_arg_end());
1867  }
1868};
1869
1870/// \brief Represents a \c delete expression for memory deallocation and
1871/// destructor calls, e.g. "delete[] pArray".
1872class CXXDeleteExpr : public Expr {
1873  /// Points to the operator delete overload that is used. Could be a member.
1874  FunctionDecl *OperatorDelete;
1875  /// The pointer expression to be deleted.
1876  Stmt *Argument;
1877  /// Location of the expression.
1878  SourceLocation Loc;
1879  /// Is this a forced global delete, i.e. "::delete"?
1880  bool GlobalDelete : 1;
1881  /// Is this the array form of delete, i.e. "delete[]"?
1882  bool ArrayForm : 1;
1883  /// ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1884  /// to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1885  /// will be true).
1886  bool ArrayFormAsWritten : 1;
1887  /// Does the usual deallocation function for the element type require
1888  /// a size_t argument?
1889  bool UsualArrayDeleteWantsSize : 1;
1890public:
1891  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1892                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1893                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1894    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1895           arg->isInstantiationDependent(),
1896           arg->containsUnexpandedParameterPack()),
1897      OperatorDelete(operatorDelete), Argument(arg), Loc(loc),
1898      GlobalDelete(globalDelete),
1899      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1900      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) { }
1901  explicit CXXDeleteExpr(EmptyShell Shell)
1902    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1903
1904  bool isGlobalDelete() const { return GlobalDelete; }
1905  bool isArrayForm() const { return ArrayForm; }
1906  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1907
1908  /// Answers whether the usual array deallocation function for the
1909  /// allocated type expects the size of the allocation as a
1910  /// parameter.  This can be true even if the actual deallocation
1911  /// function that we're using doesn't want a size.
1912  bool doesUsualArrayDeleteWantSize() const {
1913    return UsualArrayDeleteWantsSize;
1914  }
1915
1916  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1917
1918  Expr *getArgument() { return cast<Expr>(Argument); }
1919  const Expr *getArgument() const { return cast<Expr>(Argument); }
1920
1921  /// \brief Retrieve the type being destroyed.
1922  ///
1923  /// If the type being destroyed is a dependent type which may or may not
1924  /// be a pointer, return an invalid type.
1925  QualType getDestroyedType() const;
1926
1927  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1928  SourceLocation getLocEnd() const LLVM_READONLY {return Argument->getLocEnd();}
1929
1930  static bool classof(const Stmt *T) {
1931    return T->getStmtClass() == CXXDeleteExprClass;
1932  }
1933
1934  // Iterators
1935  child_range children() { return child_range(&Argument, &Argument+1); }
1936
1937  friend class ASTStmtReader;
1938};
1939
1940/// \brief Stores the type being destroyed by a pseudo-destructor expression.
1941class PseudoDestructorTypeStorage {
1942  /// \brief Either the type source information or the name of the type, if
1943  /// it couldn't be resolved due to type-dependence.
1944  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1945
1946  /// \brief The starting source location of the pseudo-destructor type.
1947  SourceLocation Location;
1948
1949public:
1950  PseudoDestructorTypeStorage() { }
1951
1952  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1953    : Type(II), Location(Loc) { }
1954
1955  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1956
1957  TypeSourceInfo *getTypeSourceInfo() const {
1958    return Type.dyn_cast<TypeSourceInfo *>();
1959  }
1960
1961  IdentifierInfo *getIdentifier() const {
1962    return Type.dyn_cast<IdentifierInfo *>();
1963  }
1964
1965  SourceLocation getLocation() const { return Location; }
1966};
1967
1968/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1969///
1970/// A pseudo-destructor is an expression that looks like a member access to a
1971/// destructor of a scalar type, except that scalar types don't have
1972/// destructors. For example:
1973///
1974/// \code
1975/// typedef int T;
1976/// void f(int *p) {
1977///   p->T::~T();
1978/// }
1979/// \endcode
1980///
1981/// Pseudo-destructors typically occur when instantiating templates such as:
1982///
1983/// \code
1984/// template<typename T>
1985/// void destroy(T* ptr) {
1986///   ptr->T::~T();
1987/// }
1988/// \endcode
1989///
1990/// for scalar types. A pseudo-destructor expression has no run-time semantics
1991/// beyond evaluating the base expression.
1992class CXXPseudoDestructorExpr : public Expr {
1993  /// \brief The base expression (that is being destroyed).
1994  Stmt *Base;
1995
1996  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1997  /// period ('.').
1998  bool IsArrow : 1;
1999
2000  /// \brief The location of the '.' or '->' operator.
2001  SourceLocation OperatorLoc;
2002
2003  /// \brief The nested-name-specifier that follows the operator, if present.
2004  NestedNameSpecifierLoc QualifierLoc;
2005
2006  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
2007  /// expression.
2008  TypeSourceInfo *ScopeType;
2009
2010  /// \brief The location of the '::' in a qualified pseudo-destructor
2011  /// expression.
2012  SourceLocation ColonColonLoc;
2013
2014  /// \brief The location of the '~'.
2015  SourceLocation TildeLoc;
2016
2017  /// \brief The type being destroyed, or its name if we were unable to
2018  /// resolve the name.
2019  PseudoDestructorTypeStorage DestroyedType;
2020
2021  friend class ASTStmtReader;
2022
2023public:
2024  CXXPseudoDestructorExpr(ASTContext &Context,
2025                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
2026                          NestedNameSpecifierLoc QualifierLoc,
2027                          TypeSourceInfo *ScopeType,
2028                          SourceLocation ColonColonLoc,
2029                          SourceLocation TildeLoc,
2030                          PseudoDestructorTypeStorage DestroyedType);
2031
2032  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
2033    : Expr(CXXPseudoDestructorExprClass, Shell),
2034      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
2035
2036  Expr *getBase() const { return cast<Expr>(Base); }
2037
2038  /// \brief Determines whether this member expression actually had
2039  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2040  /// x->Base::foo.
2041  bool hasQualifier() const { return QualifierLoc.hasQualifier(); }
2042
2043  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
2044  /// with source-location information.
2045  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2046
2047  /// \brief If the member name was qualified, retrieves the
2048  /// nested-name-specifier that precedes the member name. Otherwise, returns
2049  /// null.
2050  NestedNameSpecifier *getQualifier() const {
2051    return QualifierLoc.getNestedNameSpecifier();
2052  }
2053
2054  /// \brief Determine whether this pseudo-destructor expression was written
2055  /// using an '->' (otherwise, it used a '.').
2056  bool isArrow() const { return IsArrow; }
2057
2058  /// \brief Retrieve the location of the '.' or '->' operator.
2059  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2060
2061  /// \brief Retrieve the scope type in a qualified pseudo-destructor
2062  /// expression.
2063  ///
2064  /// Pseudo-destructor expressions can have extra qualification within them
2065  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
2066  /// Here, if the object type of the expression is (or may be) a scalar type,
2067  /// \p T may also be a scalar type and, therefore, cannot be part of a
2068  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
2069  /// destructor expression.
2070  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
2071
2072  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
2073  /// expression.
2074  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
2075
2076  /// \brief Retrieve the location of the '~'.
2077  SourceLocation getTildeLoc() const { return TildeLoc; }
2078
2079  /// \brief Retrieve the source location information for the type
2080  /// being destroyed.
2081  ///
2082  /// This type-source information is available for non-dependent
2083  /// pseudo-destructor expressions and some dependent pseudo-destructor
2084  /// expressions. Returns null if we only have the identifier for a
2085  /// dependent pseudo-destructor expression.
2086  TypeSourceInfo *getDestroyedTypeInfo() const {
2087    return DestroyedType.getTypeSourceInfo();
2088  }
2089
2090  /// \brief In a dependent pseudo-destructor expression for which we do not
2091  /// have full type information on the destroyed type, provides the name
2092  /// of the destroyed type.
2093  IdentifierInfo *getDestroyedTypeIdentifier() const {
2094    return DestroyedType.getIdentifier();
2095  }
2096
2097  /// \brief Retrieve the type being destroyed.
2098  QualType getDestroyedType() const;
2099
2100  /// \brief Retrieve the starting location of the type being destroyed.
2101  SourceLocation getDestroyedTypeLoc() const {
2102    return DestroyedType.getLocation();
2103  }
2104
2105  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
2106  /// expression.
2107  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
2108    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
2109  }
2110
2111  /// \brief Set the destroyed type.
2112  void setDestroyedType(TypeSourceInfo *Info) {
2113    DestroyedType = PseudoDestructorTypeStorage(Info);
2114  }
2115
2116  SourceLocation getLocStart() const LLVM_READONLY {return Base->getLocStart();}
2117  SourceLocation getLocEnd() const LLVM_READONLY;
2118
2119  static bool classof(const Stmt *T) {
2120    return T->getStmtClass() == CXXPseudoDestructorExprClass;
2121  }
2122
2123  // Iterators
2124  child_range children() { return child_range(&Base, &Base + 1); }
2125};
2126
2127/// \brief Represents a GCC or MS unary type trait, as used in the
2128/// implementation of TR1/C++11 type trait templates.
2129///
2130/// Example:
2131/// \code
2132///   __is_pod(int) == true
2133///   __is_enum(std::string) == false
2134/// \endcode
2135class UnaryTypeTraitExpr : public Expr {
2136  /// \brief The trait. A UnaryTypeTrait enum in MSVC compatible unsigned.
2137  unsigned UTT : 31;
2138  /// The value of the type trait. Unspecified if dependent.
2139  bool Value : 1;
2140
2141  /// \brief The location of the type trait keyword.
2142  SourceLocation Loc;
2143
2144  /// \brief The location of the closing paren.
2145  SourceLocation RParen;
2146
2147  /// \brief The type being queried.
2148  TypeSourceInfo *QueriedType;
2149
2150public:
2151  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
2152                     TypeSourceInfo *queried, bool value,
2153                     SourceLocation rparen, QualType ty)
2154    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2155           false,  queried->getType()->isDependentType(),
2156           queried->getType()->isInstantiationDependentType(),
2157           queried->getType()->containsUnexpandedParameterPack()),
2158      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
2159
2160  explicit UnaryTypeTraitExpr(EmptyShell Empty)
2161    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
2162      QueriedType() { }
2163
2164  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2165  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2166
2167  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
2168
2169  QualType getQueriedType() const { return QueriedType->getType(); }
2170
2171  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2172
2173  bool getValue() const { return Value; }
2174
2175  static bool classof(const Stmt *T) {
2176    return T->getStmtClass() == UnaryTypeTraitExprClass;
2177  }
2178
2179  // Iterators
2180  child_range children() { return child_range(); }
2181
2182  friend class ASTStmtReader;
2183};
2184
2185/// \brief Represents a GCC or MS binary type trait, as used in the
2186/// implementation of TR1/C++11 type trait templates.
2187///
2188/// Example:
2189/// \code
2190///   __is_base_of(Base, Derived) == true
2191/// \endcode
2192class BinaryTypeTraitExpr : public Expr {
2193  /// \brief The trait. A BinaryTypeTrait enum in MSVC compatible unsigned.
2194  unsigned BTT : 8;
2195
2196  /// The value of the type trait. Unspecified if dependent.
2197  bool Value : 1;
2198
2199  /// \brief The location of the type trait keyword.
2200  SourceLocation Loc;
2201
2202  /// \brief The location of the closing paren.
2203  SourceLocation RParen;
2204
2205  /// \brief The lhs type being queried.
2206  TypeSourceInfo *LhsType;
2207
2208  /// \brief The rhs type being queried.
2209  TypeSourceInfo *RhsType;
2210
2211public:
2212  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
2213                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
2214                     bool value, SourceLocation rparen, QualType ty)
2215    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
2216           lhsType->getType()->isDependentType() ||
2217           rhsType->getType()->isDependentType(),
2218           (lhsType->getType()->isInstantiationDependentType() ||
2219            rhsType->getType()->isInstantiationDependentType()),
2220           (lhsType->getType()->containsUnexpandedParameterPack() ||
2221            rhsType->getType()->containsUnexpandedParameterPack())),
2222      BTT(btt), Value(value), Loc(loc), RParen(rparen),
2223      LhsType(lhsType), RhsType(rhsType) { }
2224
2225
2226  explicit BinaryTypeTraitExpr(EmptyShell Empty)
2227    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
2228      LhsType(), RhsType() { }
2229
2230  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2231  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2232
2233  BinaryTypeTrait getTrait() const {
2234    return static_cast<BinaryTypeTrait>(BTT);
2235  }
2236
2237  QualType getLhsType() const { return LhsType->getType(); }
2238  QualType getRhsType() const { return RhsType->getType(); }
2239
2240  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
2241  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
2242
2243  bool getValue() const { assert(!isTypeDependent()); return Value; }
2244
2245  static bool classof(const Stmt *T) {
2246    return T->getStmtClass() == BinaryTypeTraitExprClass;
2247  }
2248
2249  // Iterators
2250  child_range children() { return child_range(); }
2251
2252  friend class ASTStmtReader;
2253};
2254
2255/// \brief A type trait used in the implementation of various C++11 and
2256/// Library TR1 trait templates.
2257///
2258/// \code
2259///   __is_trivially_constructible(vector<int>, int*, int*)
2260/// \endcode
2261class TypeTraitExpr : public Expr {
2262  /// \brief The location of the type trait keyword.
2263  SourceLocation Loc;
2264
2265  /// \brief  The location of the closing parenthesis.
2266  SourceLocation RParenLoc;
2267
2268  // Note: The TypeSourceInfos for the arguments are allocated after the
2269  // TypeTraitExpr.
2270
2271  TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2272                ArrayRef<TypeSourceInfo *> Args,
2273                SourceLocation RParenLoc,
2274                bool Value);
2275
2276  TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) { }
2277
2278  /// \brief Retrieve the argument types.
2279  TypeSourceInfo **getTypeSourceInfos() {
2280    return reinterpret_cast<TypeSourceInfo **>(this+1);
2281  }
2282
2283  /// \brief Retrieve the argument types.
2284  TypeSourceInfo * const *getTypeSourceInfos() const {
2285    return reinterpret_cast<TypeSourceInfo * const*>(this+1);
2286  }
2287
2288public:
2289  /// \brief Create a new type trait expression.
2290  static TypeTraitExpr *Create(ASTContext &C, QualType T, SourceLocation Loc,
2291                               TypeTrait Kind,
2292                               ArrayRef<TypeSourceInfo *> Args,
2293                               SourceLocation RParenLoc,
2294                               bool Value);
2295
2296  static TypeTraitExpr *CreateDeserialized(ASTContext &C, unsigned NumArgs);
2297
2298  /// \brief Determine which type trait this expression uses.
2299  TypeTrait getTrait() const {
2300    return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2301  }
2302
2303  bool getValue() const {
2304    assert(!isValueDependent());
2305    return TypeTraitExprBits.Value;
2306  }
2307
2308  /// \brief Determine the number of arguments to this type trait.
2309  unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2310
2311  /// \brief Retrieve the Ith argument.
2312  TypeSourceInfo *getArg(unsigned I) const {
2313    assert(I < getNumArgs() && "Argument out-of-range");
2314    return getArgs()[I];
2315  }
2316
2317  /// \brief Retrieve the argument types.
2318  ArrayRef<TypeSourceInfo *> getArgs() const {
2319    return ArrayRef<TypeSourceInfo *>(getTypeSourceInfos(), getNumArgs());
2320  }
2321
2322  typedef TypeSourceInfo **arg_iterator;
2323  arg_iterator arg_begin() {
2324    return getTypeSourceInfos();
2325  }
2326  arg_iterator arg_end() {
2327    return getTypeSourceInfos() + getNumArgs();
2328  }
2329
2330  typedef TypeSourceInfo const * const *arg_const_iterator;
2331  arg_const_iterator arg_begin() const { return getTypeSourceInfos(); }
2332  arg_const_iterator arg_end() const {
2333    return getTypeSourceInfos() + getNumArgs();
2334  }
2335
2336  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2337  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2338
2339  static bool classof(const Stmt *T) {
2340    return T->getStmtClass() == TypeTraitExprClass;
2341  }
2342
2343  // Iterators
2344  child_range children() { return child_range(); }
2345
2346  friend class ASTStmtReader;
2347  friend class ASTStmtWriter;
2348
2349};
2350
2351/// \brief An Embarcadero array type trait, as used in the implementation of
2352/// __array_rank and __array_extent.
2353///
2354/// Example:
2355/// \code
2356///   __array_rank(int[10][20]) == 2
2357///   __array_extent(int, 1)    == 20
2358/// \endcode
2359class ArrayTypeTraitExpr : public Expr {
2360  virtual void anchor();
2361
2362  /// \brief The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2363  unsigned ATT : 2;
2364
2365  /// \brief The value of the type trait. Unspecified if dependent.
2366  uint64_t Value;
2367
2368  /// \brief The array dimension being queried, or -1 if not used.
2369  Expr *Dimension;
2370
2371  /// \brief The location of the type trait keyword.
2372  SourceLocation Loc;
2373
2374  /// \brief The location of the closing paren.
2375  SourceLocation RParen;
2376
2377  /// \brief The type being queried.
2378  TypeSourceInfo *QueriedType;
2379
2380public:
2381  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2382                     TypeSourceInfo *queried, uint64_t value,
2383                     Expr *dimension, SourceLocation rparen, QualType ty)
2384    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2385           false, queried->getType()->isDependentType(),
2386           (queried->getType()->isInstantiationDependentType() ||
2387            (dimension && dimension->isInstantiationDependent())),
2388           queried->getType()->containsUnexpandedParameterPack()),
2389      ATT(att), Value(value), Dimension(dimension),
2390      Loc(loc), RParen(rparen), QueriedType(queried) { }
2391
2392
2393  explicit ArrayTypeTraitExpr(EmptyShell Empty)
2394    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
2395      QueriedType() { }
2396
2397  virtual ~ArrayTypeTraitExpr() { }
2398
2399  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2400  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2401
2402  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2403
2404  QualType getQueriedType() const { return QueriedType->getType(); }
2405
2406  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2407
2408  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
2409
2410  Expr *getDimensionExpression() const { return Dimension; }
2411
2412  static bool classof(const Stmt *T) {
2413    return T->getStmtClass() == ArrayTypeTraitExprClass;
2414  }
2415
2416  // Iterators
2417  child_range children() { return child_range(); }
2418
2419  friend class ASTStmtReader;
2420};
2421
2422/// \brief An expression trait intrinsic.
2423///
2424/// Example:
2425/// \code
2426///   __is_lvalue_expr(std::cout) == true
2427///   __is_lvalue_expr(1) == false
2428/// \endcode
2429class ExpressionTraitExpr : public Expr {
2430  /// \brief The trait. A ExpressionTrait enum in MSVC compatible unsigned.
2431  unsigned ET : 31;
2432  /// \brief The value of the type trait. Unspecified if dependent.
2433  bool Value : 1;
2434
2435  /// \brief The location of the type trait keyword.
2436  SourceLocation Loc;
2437
2438  /// \brief The location of the closing paren.
2439  SourceLocation RParen;
2440
2441  /// \brief The expression being queried.
2442  Expr* QueriedExpression;
2443public:
2444  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2445                     Expr *queried, bool value,
2446                     SourceLocation rparen, QualType resultType)
2447    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2448           false, // Not type-dependent
2449           // Value-dependent if the argument is type-dependent.
2450           queried->isTypeDependent(),
2451           queried->isInstantiationDependent(),
2452           queried->containsUnexpandedParameterPack()),
2453      ET(et), Value(value), Loc(loc), RParen(rparen),
2454      QueriedExpression(queried) { }
2455
2456  explicit ExpressionTraitExpr(EmptyShell Empty)
2457    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2458      QueriedExpression() { }
2459
2460  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2461  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2462
2463  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2464
2465  Expr *getQueriedExpression() const { return QueriedExpression; }
2466
2467  bool getValue() const { return Value; }
2468
2469  static bool classof(const Stmt *T) {
2470    return T->getStmtClass() == ExpressionTraitExprClass;
2471  }
2472
2473  // Iterators
2474  child_range children() { return child_range(); }
2475
2476  friend class ASTStmtReader;
2477};
2478
2479
2480/// \brief A reference to an overloaded function set, either an
2481/// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
2482class OverloadExpr : public Expr {
2483  /// \brief The common name of these declarations.
2484  DeclarationNameInfo NameInfo;
2485
2486  /// \brief The nested-name-specifier that qualifies the name, if any.
2487  NestedNameSpecifierLoc QualifierLoc;
2488
2489  /// The results.  These are undesugared, which is to say, they may
2490  /// include UsingShadowDecls.  Access is relative to the naming
2491  /// class.
2492  // FIXME: Allocate this data after the OverloadExpr subclass.
2493  DeclAccessPair *Results;
2494  unsigned NumResults;
2495
2496protected:
2497  /// \brief Whether the name includes info for explicit template
2498  /// keyword and arguments.
2499  bool HasTemplateKWAndArgsInfo;
2500
2501  /// \brief Return the optional template keyword and arguments info.
2502  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2503
2504  /// \brief Return the optional template keyword and arguments info.
2505  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2506    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2507  }
2508
2509  OverloadExpr(StmtClass K, ASTContext &C,
2510               NestedNameSpecifierLoc QualifierLoc,
2511               SourceLocation TemplateKWLoc,
2512               const DeclarationNameInfo &NameInfo,
2513               const TemplateArgumentListInfo *TemplateArgs,
2514               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2515               bool KnownDependent,
2516               bool KnownInstantiationDependent,
2517               bool KnownContainsUnexpandedParameterPack);
2518
2519  OverloadExpr(StmtClass K, EmptyShell Empty)
2520    : Expr(K, Empty), QualifierLoc(), Results(0), NumResults(0),
2521      HasTemplateKWAndArgsInfo(false) { }
2522
2523  void initializeResults(ASTContext &C,
2524                         UnresolvedSetIterator Begin,
2525                         UnresolvedSetIterator End);
2526
2527public:
2528  struct FindResult {
2529    OverloadExpr *Expression;
2530    bool IsAddressOfOperand;
2531    bool HasFormOfMemberPointer;
2532  };
2533
2534  /// \brief Finds the overloaded expression in the given expression \p E of
2535  /// OverloadTy.
2536  ///
2537  /// \return the expression (which must be there) and true if it has
2538  /// the particular form of a member pointer expression
2539  static FindResult find(Expr *E) {
2540    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2541
2542    FindResult Result;
2543
2544    E = E->IgnoreParens();
2545    if (isa<UnaryOperator>(E)) {
2546      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2547      E = cast<UnaryOperator>(E)->getSubExpr();
2548      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2549
2550      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2551      Result.IsAddressOfOperand = true;
2552      Result.Expression = Ovl;
2553    } else {
2554      Result.HasFormOfMemberPointer = false;
2555      Result.IsAddressOfOperand = false;
2556      Result.Expression = cast<OverloadExpr>(E);
2557    }
2558
2559    return Result;
2560  }
2561
2562  /// \brief Gets the naming class of this lookup, if any.
2563  CXXRecordDecl *getNamingClass() const;
2564
2565  typedef UnresolvedSetImpl::iterator decls_iterator;
2566  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2567  decls_iterator decls_end() const {
2568    return UnresolvedSetIterator(Results + NumResults);
2569  }
2570
2571  /// \brief Gets the number of declarations in the unresolved set.
2572  unsigned getNumDecls() const { return NumResults; }
2573
2574  /// \brief Gets the full name info.
2575  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2576
2577  /// \brief Gets the name looked up.
2578  DeclarationName getName() const { return NameInfo.getName(); }
2579
2580  /// \brief Gets the location of the name.
2581  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2582
2583  /// \brief Fetches the nested-name qualifier, if one was given.
2584  NestedNameSpecifier *getQualifier() const {
2585    return QualifierLoc.getNestedNameSpecifier();
2586  }
2587
2588  /// \brief Fetches the nested-name qualifier with source-location
2589  /// information, if one was given.
2590  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2591
2592  /// \brief Retrieve the location of the template keyword preceding
2593  /// this name, if any.
2594  SourceLocation getTemplateKeywordLoc() const {
2595    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2596    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2597  }
2598
2599  /// \brief Retrieve the location of the left angle bracket starting the
2600  /// explicit template argument list following the name, if any.
2601  SourceLocation getLAngleLoc() const {
2602    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2603    return getTemplateKWAndArgsInfo()->LAngleLoc;
2604  }
2605
2606  /// \brief Retrieve the location of the right angle bracket ending the
2607  /// explicit template argument list following the name, if any.
2608  SourceLocation getRAngleLoc() const {
2609    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2610    return getTemplateKWAndArgsInfo()->RAngleLoc;
2611  }
2612
2613  /// \brief Determines whether the name was preceded by the template keyword.
2614  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2615
2616  /// \brief Determines whether this expression had explicit template arguments.
2617  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2618
2619  // Note that, inconsistently with the explicit-template-argument AST
2620  // nodes, users are *forbidden* from calling these methods on objects
2621  // without explicit template arguments.
2622
2623  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2624    assert(hasExplicitTemplateArgs());
2625    return *getTemplateKWAndArgsInfo();
2626  }
2627
2628  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2629    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2630  }
2631
2632  TemplateArgumentLoc const *getTemplateArgs() const {
2633    return getExplicitTemplateArgs().getTemplateArgs();
2634  }
2635
2636  unsigned getNumTemplateArgs() const {
2637    return getExplicitTemplateArgs().NumTemplateArgs;
2638  }
2639
2640  /// \brief Copies the template arguments into the given structure.
2641  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2642    getExplicitTemplateArgs().copyInto(List);
2643  }
2644
2645  /// \brief Retrieves the optional explicit template arguments.
2646  ///
2647  /// This points to the same data as getExplicitTemplateArgs(), but
2648  /// returns null if there are no explicit template arguments.
2649  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2650    if (!hasExplicitTemplateArgs()) return 0;
2651    return &getExplicitTemplateArgs();
2652  }
2653
2654  static bool classof(const Stmt *T) {
2655    return T->getStmtClass() == UnresolvedLookupExprClass ||
2656           T->getStmtClass() == UnresolvedMemberExprClass;
2657  }
2658
2659  friend class ASTStmtReader;
2660  friend class ASTStmtWriter;
2661};
2662
2663/// \brief A reference to a name which we were able to look up during
2664/// parsing but could not resolve to a specific declaration.
2665///
2666/// This arises in several ways:
2667///   * we might be waiting for argument-dependent lookup;
2668///   * the name might resolve to an overloaded function;
2669/// and eventually:
2670///   * the lookup might have included a function template.
2671///
2672/// These never include UnresolvedUsingValueDecls, which are always class
2673/// members and therefore appear only in UnresolvedMemberLookupExprs.
2674class UnresolvedLookupExpr : public OverloadExpr {
2675  /// True if these lookup results should be extended by
2676  /// argument-dependent lookup if this is the operand of a function
2677  /// call.
2678  bool RequiresADL;
2679
2680  /// True if these lookup results are overloaded.  This is pretty
2681  /// trivially rederivable if we urgently need to kill this field.
2682  bool Overloaded;
2683
2684  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2685  /// any.  This can generally be recalculated from the context chain,
2686  /// but that can be fairly expensive for unqualified lookups.  If we
2687  /// want to improve memory use here, this could go in a union
2688  /// against the qualified-lookup bits.
2689  CXXRecordDecl *NamingClass;
2690
2691  UnresolvedLookupExpr(ASTContext &C,
2692                       CXXRecordDecl *NamingClass,
2693                       NestedNameSpecifierLoc QualifierLoc,
2694                       SourceLocation TemplateKWLoc,
2695                       const DeclarationNameInfo &NameInfo,
2696                       bool RequiresADL, bool Overloaded,
2697                       const TemplateArgumentListInfo *TemplateArgs,
2698                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
2699    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2700                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2701      RequiresADL(RequiresADL),
2702      Overloaded(Overloaded), NamingClass(NamingClass)
2703  {}
2704
2705  UnresolvedLookupExpr(EmptyShell Empty)
2706    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2707      RequiresADL(false), Overloaded(false), NamingClass(0)
2708  {}
2709
2710  friend class ASTStmtReader;
2711
2712public:
2713  static UnresolvedLookupExpr *Create(ASTContext &C,
2714                                      CXXRecordDecl *NamingClass,
2715                                      NestedNameSpecifierLoc QualifierLoc,
2716                                      const DeclarationNameInfo &NameInfo,
2717                                      bool ADL, bool Overloaded,
2718                                      UnresolvedSetIterator Begin,
2719                                      UnresolvedSetIterator End) {
2720    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2721                                       SourceLocation(), NameInfo,
2722                                       ADL, Overloaded, 0, Begin, End);
2723  }
2724
2725  static UnresolvedLookupExpr *Create(ASTContext &C,
2726                                      CXXRecordDecl *NamingClass,
2727                                      NestedNameSpecifierLoc QualifierLoc,
2728                                      SourceLocation TemplateKWLoc,
2729                                      const DeclarationNameInfo &NameInfo,
2730                                      bool ADL,
2731                                      const TemplateArgumentListInfo *Args,
2732                                      UnresolvedSetIterator Begin,
2733                                      UnresolvedSetIterator End);
2734
2735  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
2736                                           bool HasTemplateKWAndArgsInfo,
2737                                           unsigned NumTemplateArgs);
2738
2739  /// True if this declaration should be extended by
2740  /// argument-dependent lookup.
2741  bool requiresADL() const { return RequiresADL; }
2742
2743  /// True if this lookup is overloaded.
2744  bool isOverloaded() const { return Overloaded; }
2745
2746  /// Gets the 'naming class' (in the sense of C++0x
2747  /// [class.access.base]p5) of the lookup.  This is the scope
2748  /// that was looked in to find these results.
2749  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2750
2751  SourceLocation getLocStart() const LLVM_READONLY {
2752    if (NestedNameSpecifierLoc l = getQualifierLoc())
2753      return l.getBeginLoc();
2754    return getNameInfo().getLocStart();
2755  }
2756  SourceLocation getLocEnd() const LLVM_READONLY {
2757    if (hasExplicitTemplateArgs())
2758      return getRAngleLoc();
2759    return getNameInfo().getLocEnd();
2760  }
2761
2762  child_range children() { return child_range(); }
2763
2764  static bool classof(const Stmt *T) {
2765    return T->getStmtClass() == UnresolvedLookupExprClass;
2766  }
2767};
2768
2769/// \brief A qualified reference to a name whose declaration cannot
2770/// yet be resolved.
2771///
2772/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2773/// it expresses a reference to a declaration such as
2774/// X<T>::value. The difference, however, is that an
2775/// DependentScopeDeclRefExpr node is used only within C++ templates when
2776/// the qualification (e.g., X<T>::) refers to a dependent type. In
2777/// this case, X<T>::value cannot resolve to a declaration because the
2778/// declaration will differ from on instantiation of X<T> to the
2779/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2780/// qualifier (X<T>::) and the name of the entity being referenced
2781/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2782/// declaration can be found.
2783class DependentScopeDeclRefExpr : public Expr {
2784  /// \brief The nested-name-specifier that qualifies this unresolved
2785  /// declaration name.
2786  NestedNameSpecifierLoc QualifierLoc;
2787
2788  /// \brief The name of the entity we will be referencing.
2789  DeclarationNameInfo NameInfo;
2790
2791  /// \brief Whether the name includes info for explicit template
2792  /// keyword and arguments.
2793  bool HasTemplateKWAndArgsInfo;
2794
2795  /// \brief Return the optional template keyword and arguments info.
2796  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2797    if (!HasTemplateKWAndArgsInfo) return 0;
2798    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2799  }
2800  /// \brief Return the optional template keyword and arguments info.
2801  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2802    return const_cast<DependentScopeDeclRefExpr*>(this)
2803      ->getTemplateKWAndArgsInfo();
2804  }
2805
2806  DependentScopeDeclRefExpr(QualType T,
2807                            NestedNameSpecifierLoc QualifierLoc,
2808                            SourceLocation TemplateKWLoc,
2809                            const DeclarationNameInfo &NameInfo,
2810                            const TemplateArgumentListInfo *Args);
2811
2812public:
2813  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2814                                           NestedNameSpecifierLoc QualifierLoc,
2815                                           SourceLocation TemplateKWLoc,
2816                                           const DeclarationNameInfo &NameInfo,
2817                              const TemplateArgumentListInfo *TemplateArgs);
2818
2819  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2820                                                bool HasTemplateKWAndArgsInfo,
2821                                                unsigned NumTemplateArgs);
2822
2823  /// \brief Retrieve the name that this expression refers to.
2824  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2825
2826  /// \brief Retrieve the name that this expression refers to.
2827  DeclarationName getDeclName() const { return NameInfo.getName(); }
2828
2829  /// \brief Retrieve the location of the name within the expression.
2830  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2831
2832  /// \brief Retrieve the nested-name-specifier that qualifies the
2833  /// name, with source location information.
2834  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2835
2836
2837  /// \brief Retrieve the nested-name-specifier that qualifies this
2838  /// declaration.
2839  NestedNameSpecifier *getQualifier() const {
2840    return QualifierLoc.getNestedNameSpecifier();
2841  }
2842
2843  /// \brief Retrieve the location of the template keyword preceding
2844  /// this name, if any.
2845  SourceLocation getTemplateKeywordLoc() const {
2846    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2847    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2848  }
2849
2850  /// \brief Retrieve the location of the left angle bracket starting the
2851  /// explicit template argument list following the name, if any.
2852  SourceLocation getLAngleLoc() const {
2853    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2854    return getTemplateKWAndArgsInfo()->LAngleLoc;
2855  }
2856
2857  /// \brief Retrieve the location of the right angle bracket ending the
2858  /// explicit template argument list following the name, if any.
2859  SourceLocation getRAngleLoc() const {
2860    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2861    return getTemplateKWAndArgsInfo()->RAngleLoc;
2862  }
2863
2864  /// Determines whether the name was preceded by the template keyword.
2865  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2866
2867  /// Determines whether this lookup had explicit template arguments.
2868  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2869
2870  // Note that, inconsistently with the explicit-template-argument AST
2871  // nodes, users are *forbidden* from calling these methods on objects
2872  // without explicit template arguments.
2873
2874  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2875    assert(hasExplicitTemplateArgs());
2876    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2877  }
2878
2879  /// Gets a reference to the explicit template argument list.
2880  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2881    assert(hasExplicitTemplateArgs());
2882    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2883  }
2884
2885  /// \brief Retrieves the optional explicit template arguments.
2886  ///
2887  /// This points to the same data as getExplicitTemplateArgs(), but
2888  /// returns null if there are no explicit template arguments.
2889  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2890    if (!hasExplicitTemplateArgs()) return 0;
2891    return &getExplicitTemplateArgs();
2892  }
2893
2894  /// \brief Copies the template arguments (if present) into the given
2895  /// structure.
2896  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2897    getExplicitTemplateArgs().copyInto(List);
2898  }
2899
2900  TemplateArgumentLoc const *getTemplateArgs() const {
2901    return getExplicitTemplateArgs().getTemplateArgs();
2902  }
2903
2904  unsigned getNumTemplateArgs() const {
2905    return getExplicitTemplateArgs().NumTemplateArgs;
2906  }
2907
2908  SourceLocation getLocStart() const LLVM_READONLY {
2909    return QualifierLoc.getBeginLoc();
2910  }
2911  SourceLocation getLocEnd() const LLVM_READONLY {
2912    if (hasExplicitTemplateArgs())
2913      return getRAngleLoc();
2914    return getLocation();
2915  }
2916
2917  static bool classof(const Stmt *T) {
2918    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2919  }
2920
2921  child_range children() { return child_range(); }
2922
2923  friend class ASTStmtReader;
2924  friend class ASTStmtWriter;
2925};
2926
2927/// Represents an expression -- generally a full-expression -- that
2928/// introduces cleanups to be run at the end of the sub-expression's
2929/// evaluation.  The most common source of expression-introduced
2930/// cleanups is temporary objects in C++, but several other kinds of
2931/// expressions can create cleanups, including basically every
2932/// call in ARC that returns an Objective-C pointer.
2933///
2934/// This expression also tracks whether the sub-expression contains a
2935/// potentially-evaluated block literal.  The lifetime of a block
2936/// literal is the extent of the enclosing scope.
2937class ExprWithCleanups : public Expr {
2938public:
2939  /// The type of objects that are kept in the cleanup.
2940  /// It's useful to remember the set of blocks;  we could also
2941  /// remember the set of temporaries, but there's currently
2942  /// no need.
2943  typedef BlockDecl *CleanupObject;
2944
2945private:
2946  Stmt *SubExpr;
2947
2948  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2949  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2950
2951  CleanupObject *getObjectsBuffer() {
2952    return reinterpret_cast<CleanupObject*>(this + 1);
2953  }
2954  const CleanupObject *getObjectsBuffer() const {
2955    return reinterpret_cast<const CleanupObject*>(this + 1);
2956  }
2957  friend class ASTStmtReader;
2958
2959public:
2960  static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2961                                  unsigned numObjects);
2962
2963  static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2964                                  ArrayRef<CleanupObject> objects);
2965
2966  ArrayRef<CleanupObject> getObjects() const {
2967    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2968  }
2969
2970  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2971
2972  CleanupObject getObject(unsigned i) const {
2973    assert(i < getNumObjects() && "Index out of range");
2974    return getObjects()[i];
2975  }
2976
2977  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2978  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2979
2980  /// As with any mutator of the AST, be very careful
2981  /// when modifying an existing AST to preserve its invariants.
2982  void setSubExpr(Expr *E) { SubExpr = E; }
2983
2984  SourceLocation getLocStart() const LLVM_READONLY {
2985    return SubExpr->getLocStart();
2986  }
2987  SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}
2988
2989  // Implement isa/cast/dyncast/etc.
2990  static bool classof(const Stmt *T) {
2991    return T->getStmtClass() == ExprWithCleanupsClass;
2992  }
2993
2994  // Iterators
2995  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2996};
2997
2998/// \brief Describes an explicit type conversion that uses functional
2999/// notion but could not be resolved because one or more arguments are
3000/// type-dependent.
3001///
3002/// The explicit type conversions expressed by
3003/// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
3004/// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
3005/// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
3006/// type-dependent. For example, this would occur in a template such
3007/// as:
3008///
3009/// \code
3010///   template<typename T, typename A1>
3011///   inline T make_a(const A1& a1) {
3012///     return T(a1);
3013///   }
3014/// \endcode
3015///
3016/// When the returned expression is instantiated, it may resolve to a
3017/// constructor call, conversion function call, or some kind of type
3018/// conversion.
3019class CXXUnresolvedConstructExpr : public Expr {
3020  /// \brief The type being constructed.
3021  TypeSourceInfo *Type;
3022
3023  /// \brief The location of the left parentheses ('(').
3024  SourceLocation LParenLoc;
3025
3026  /// \brief The location of the right parentheses (')').
3027  SourceLocation RParenLoc;
3028
3029  /// \brief The number of arguments used to construct the type.
3030  unsigned NumArgs;
3031
3032  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
3033                             SourceLocation LParenLoc,
3034                             ArrayRef<Expr*> Args,
3035                             SourceLocation RParenLoc);
3036
3037  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
3038    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
3039
3040  friend class ASTStmtReader;
3041
3042public:
3043  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
3044                                            TypeSourceInfo *Type,
3045                                            SourceLocation LParenLoc,
3046                                            ArrayRef<Expr*> Args,
3047                                            SourceLocation RParenLoc);
3048
3049  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
3050                                                 unsigned NumArgs);
3051
3052  /// \brief Retrieve the type that is being constructed, as specified
3053  /// in the source code.
3054  QualType getTypeAsWritten() const { return Type->getType(); }
3055
3056  /// \brief Retrieve the type source information for the type being
3057  /// constructed.
3058  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
3059
3060  /// \brief Retrieve the location of the left parentheses ('(') that
3061  /// precedes the argument list.
3062  SourceLocation getLParenLoc() const { return LParenLoc; }
3063  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3064
3065  /// \brief Retrieve the location of the right parentheses (')') that
3066  /// follows the argument list.
3067  SourceLocation getRParenLoc() const { return RParenLoc; }
3068  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3069
3070  /// \brief Retrieve the number of arguments.
3071  unsigned arg_size() const { return NumArgs; }
3072
3073  typedef Expr** arg_iterator;
3074  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
3075  arg_iterator arg_end() { return arg_begin() + NumArgs; }
3076
3077  typedef const Expr* const * const_arg_iterator;
3078  const_arg_iterator arg_begin() const {
3079    return reinterpret_cast<const Expr* const *>(this + 1);
3080  }
3081  const_arg_iterator arg_end() const {
3082    return arg_begin() + NumArgs;
3083  }
3084
3085  Expr *getArg(unsigned I) {
3086    assert(I < NumArgs && "Argument index out-of-range");
3087    return *(arg_begin() + I);
3088  }
3089
3090  const Expr *getArg(unsigned I) const {
3091    assert(I < NumArgs && "Argument index out-of-range");
3092    return *(arg_begin() + I);
3093  }
3094
3095  void setArg(unsigned I, Expr *E) {
3096    assert(I < NumArgs && "Argument index out-of-range");
3097    *(arg_begin() + I) = E;
3098  }
3099
3100  SourceLocation getLocStart() const LLVM_READONLY;
3101  SourceLocation getLocEnd() const LLVM_READONLY {
3102    assert(RParenLoc.isValid() || NumArgs == 1);
3103    return RParenLoc.isValid() ? RParenLoc : getArg(0)->getLocEnd();
3104  }
3105
3106  static bool classof(const Stmt *T) {
3107    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
3108  }
3109
3110  // Iterators
3111  child_range children() {
3112    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
3113    return child_range(begin, begin + NumArgs);
3114  }
3115};
3116
3117/// \brief Represents a C++ member access expression where the actual
3118/// member referenced could not be resolved because the base
3119/// expression or the member name was dependent.
3120///
3121/// Like UnresolvedMemberExprs, these can be either implicit or
3122/// explicit accesses.  It is only possible to get one of these with
3123/// an implicit access if a qualifier is provided.
3124class CXXDependentScopeMemberExpr : public Expr {
3125  /// \brief The expression for the base pointer or class reference,
3126  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
3127  Stmt *Base;
3128
3129  /// \brief The type of the base expression.  Never null, even for
3130  /// implicit accesses.
3131  QualType BaseType;
3132
3133  /// \brief Whether this member expression used the '->' operator or
3134  /// the '.' operator.
3135  bool IsArrow : 1;
3136
3137  /// \brief Whether this member expression has info for explicit template
3138  /// keyword and arguments.
3139  bool HasTemplateKWAndArgsInfo : 1;
3140
3141  /// \brief The location of the '->' or '.' operator.
3142  SourceLocation OperatorLoc;
3143
3144  /// \brief The nested-name-specifier that precedes the member name, if any.
3145  NestedNameSpecifierLoc QualifierLoc;
3146
3147  /// \brief In a qualified member access expression such as t->Base::f, this
3148  /// member stores the resolves of name lookup in the context of the member
3149  /// access expression, to be used at instantiation time.
3150  ///
3151  /// FIXME: This member, along with the QualifierLoc, could
3152  /// be stuck into a structure that is optionally allocated at the end of
3153  /// the CXXDependentScopeMemberExpr, to save space in the common case.
3154  NamedDecl *FirstQualifierFoundInScope;
3155
3156  /// \brief The member to which this member expression refers, which
3157  /// can be name, overloaded operator, or destructor.
3158  ///
3159  /// FIXME: could also be a template-id
3160  DeclarationNameInfo MemberNameInfo;
3161
3162  /// \brief Return the optional template keyword and arguments info.
3163  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
3164    if (!HasTemplateKWAndArgsInfo) return 0;
3165    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
3166  }
3167  /// \brief Return the optional template keyword and arguments info.
3168  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
3169    return const_cast<CXXDependentScopeMemberExpr*>(this)
3170      ->getTemplateKWAndArgsInfo();
3171  }
3172
3173  CXXDependentScopeMemberExpr(ASTContext &C,
3174                          Expr *Base, QualType BaseType, bool IsArrow,
3175                          SourceLocation OperatorLoc,
3176                          NestedNameSpecifierLoc QualifierLoc,
3177                          SourceLocation TemplateKWLoc,
3178                          NamedDecl *FirstQualifierFoundInScope,
3179                          DeclarationNameInfo MemberNameInfo,
3180                          const TemplateArgumentListInfo *TemplateArgs);
3181
3182public:
3183  CXXDependentScopeMemberExpr(ASTContext &C,
3184                              Expr *Base, QualType BaseType,
3185                              bool IsArrow,
3186                              SourceLocation OperatorLoc,
3187                              NestedNameSpecifierLoc QualifierLoc,
3188                              NamedDecl *FirstQualifierFoundInScope,
3189                              DeclarationNameInfo MemberNameInfo);
3190
3191  static CXXDependentScopeMemberExpr *
3192  Create(ASTContext &C,
3193         Expr *Base, QualType BaseType, bool IsArrow,
3194         SourceLocation OperatorLoc,
3195         NestedNameSpecifierLoc QualifierLoc,
3196         SourceLocation TemplateKWLoc,
3197         NamedDecl *FirstQualifierFoundInScope,
3198         DeclarationNameInfo MemberNameInfo,
3199         const TemplateArgumentListInfo *TemplateArgs);
3200
3201  static CXXDependentScopeMemberExpr *
3202  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
3203              unsigned NumTemplateArgs);
3204
3205  /// \brief True if this is an implicit access, i.e. one in which the
3206  /// member being accessed was not written in the source.  The source
3207  /// location of the operator is invalid in this case.
3208  bool isImplicitAccess() const;
3209
3210  /// \brief Retrieve the base object of this member expressions,
3211  /// e.g., the \c x in \c x.m.
3212  Expr *getBase() const {
3213    assert(!isImplicitAccess());
3214    return cast<Expr>(Base);
3215  }
3216
3217  QualType getBaseType() const { return BaseType; }
3218
3219  /// \brief Determine whether this member expression used the '->'
3220  /// operator; otherwise, it used the '.' operator.
3221  bool isArrow() const { return IsArrow; }
3222
3223  /// \brief Retrieve the location of the '->' or '.' operator.
3224  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3225
3226  /// \brief Retrieve the nested-name-specifier that qualifies the member
3227  /// name.
3228  NestedNameSpecifier *getQualifier() const {
3229    return QualifierLoc.getNestedNameSpecifier();
3230  }
3231
3232  /// \brief Retrieve the nested-name-specifier that qualifies the member
3233  /// name, with source location information.
3234  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3235
3236
3237  /// \brief Retrieve the first part of the nested-name-specifier that was
3238  /// found in the scope of the member access expression when the member access
3239  /// was initially parsed.
3240  ///
3241  /// This function only returns a useful result when member access expression
3242  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
3243  /// returned by this function describes what was found by unqualified name
3244  /// lookup for the identifier "Base" within the scope of the member access
3245  /// expression itself. At template instantiation time, this information is
3246  /// combined with the results of name lookup into the type of the object
3247  /// expression itself (the class type of x).
3248  NamedDecl *getFirstQualifierFoundInScope() const {
3249    return FirstQualifierFoundInScope;
3250  }
3251
3252  /// \brief Retrieve the name of the member that this expression
3253  /// refers to.
3254  const DeclarationNameInfo &getMemberNameInfo() const {
3255    return MemberNameInfo;
3256  }
3257
3258  /// \brief Retrieve the name of the member that this expression
3259  /// refers to.
3260  DeclarationName getMember() const { return MemberNameInfo.getName(); }
3261
3262  // \brief Retrieve the location of the name of the member that this
3263  // expression refers to.
3264  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
3265
3266  /// \brief Retrieve the location of the template keyword preceding the
3267  /// member name, if any.
3268  SourceLocation getTemplateKeywordLoc() const {
3269    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3270    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
3271  }
3272
3273  /// \brief Retrieve the location of the left angle bracket starting the
3274  /// explicit template argument list following the member name, if any.
3275  SourceLocation getLAngleLoc() const {
3276    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3277    return getTemplateKWAndArgsInfo()->LAngleLoc;
3278  }
3279
3280  /// \brief Retrieve the location of the right angle bracket ending the
3281  /// explicit template argument list following the member name, if any.
3282  SourceLocation getRAngleLoc() const {
3283    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3284    return getTemplateKWAndArgsInfo()->RAngleLoc;
3285  }
3286
3287  /// Determines whether the member name was preceded by the template keyword.
3288  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3289
3290  /// \brief Determines whether this member expression actually had a C++
3291  /// template argument list explicitly specified, e.g., x.f<int>.
3292  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3293
3294  /// \brief Retrieve the explicit template argument list that followed the
3295  /// member template name, if any.
3296  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
3297    assert(hasExplicitTemplateArgs());
3298    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
3299  }
3300
3301  /// \brief Retrieve the explicit template argument list that followed the
3302  /// member template name, if any.
3303  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
3304    return const_cast<CXXDependentScopeMemberExpr *>(this)
3305             ->getExplicitTemplateArgs();
3306  }
3307
3308  /// \brief Retrieves the optional explicit template arguments.
3309  ///
3310  /// This points to the same data as getExplicitTemplateArgs(), but
3311  /// returns null if there are no explicit template arguments.
3312  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
3313    if (!hasExplicitTemplateArgs()) return 0;
3314    return &getExplicitTemplateArgs();
3315  }
3316
3317  /// \brief Copies the template arguments (if present) into the given
3318  /// structure.
3319  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3320    getExplicitTemplateArgs().copyInto(List);
3321  }
3322
3323  /// \brief Initializes the template arguments using the given structure.
3324  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
3325    getExplicitTemplateArgs().initializeFrom(List);
3326  }
3327
3328  /// \brief Retrieve the template arguments provided as part of this
3329  /// template-id.
3330  const TemplateArgumentLoc *getTemplateArgs() const {
3331    return getExplicitTemplateArgs().getTemplateArgs();
3332  }
3333
3334  /// \brief Retrieve the number of template arguments provided as part of this
3335  /// template-id.
3336  unsigned getNumTemplateArgs() const {
3337    return getExplicitTemplateArgs().NumTemplateArgs;
3338  }
3339
3340  SourceLocation getLocStart() const LLVM_READONLY {
3341    if (!isImplicitAccess())
3342      return Base->getLocStart();
3343    if (getQualifier())
3344      return getQualifierLoc().getBeginLoc();
3345    return MemberNameInfo.getBeginLoc();
3346
3347  }
3348  SourceLocation getLocEnd() const LLVM_READONLY {
3349    if (hasExplicitTemplateArgs())
3350      return getRAngleLoc();
3351    return MemberNameInfo.getEndLoc();
3352  }
3353
3354  static bool classof(const Stmt *T) {
3355    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
3356  }
3357
3358  // Iterators
3359  child_range children() {
3360    if (isImplicitAccess()) return child_range();
3361    return child_range(&Base, &Base + 1);
3362  }
3363
3364  friend class ASTStmtReader;
3365  friend class ASTStmtWriter;
3366};
3367
3368/// \brief Represents a C++ member access expression for which lookup
3369/// produced a set of overloaded functions.
3370///
3371/// The member access may be explicit or implicit:
3372/// \code
3373///    struct A {
3374///      int a, b;
3375///      int explicitAccess() { return this->a + this->A::b; }
3376///      int implicitAccess() { return a + A::b; }
3377///    };
3378/// \endcode
3379///
3380/// In the final AST, an explicit access always becomes a MemberExpr.
3381/// An implicit access may become either a MemberExpr or a
3382/// DeclRefExpr, depending on whether the member is static.
3383class UnresolvedMemberExpr : public OverloadExpr {
3384  /// \brief Whether this member expression used the '->' operator or
3385  /// the '.' operator.
3386  bool IsArrow : 1;
3387
3388  /// \brief Whether the lookup results contain an unresolved using
3389  /// declaration.
3390  bool HasUnresolvedUsing : 1;
3391
3392  /// \brief The expression for the base pointer or class reference,
3393  /// e.g., the \c x in x.f.
3394  ///
3395  /// This can be null if this is an 'unbased' member expression.
3396  Stmt *Base;
3397
3398  /// \brief The type of the base expression; never null.
3399  QualType BaseType;
3400
3401  /// \brief The location of the '->' or '.' operator.
3402  SourceLocation OperatorLoc;
3403
3404  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
3405                       Expr *Base, QualType BaseType, bool IsArrow,
3406                       SourceLocation OperatorLoc,
3407                       NestedNameSpecifierLoc QualifierLoc,
3408                       SourceLocation TemplateKWLoc,
3409                       const DeclarationNameInfo &MemberNameInfo,
3410                       const TemplateArgumentListInfo *TemplateArgs,
3411                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3412
3413  UnresolvedMemberExpr(EmptyShell Empty)
3414    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
3415      HasUnresolvedUsing(false), Base(0) { }
3416
3417  friend class ASTStmtReader;
3418
3419public:
3420  static UnresolvedMemberExpr *
3421  Create(ASTContext &C, bool HasUnresolvedUsing,
3422         Expr *Base, QualType BaseType, bool IsArrow,
3423         SourceLocation OperatorLoc,
3424         NestedNameSpecifierLoc QualifierLoc,
3425         SourceLocation TemplateKWLoc,
3426         const DeclarationNameInfo &MemberNameInfo,
3427         const TemplateArgumentListInfo *TemplateArgs,
3428         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3429
3430  static UnresolvedMemberExpr *
3431  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
3432              unsigned NumTemplateArgs);
3433
3434  /// \brief True if this is an implicit access, i.e., one in which the
3435  /// member being accessed was not written in the source.
3436  ///
3437  /// The source location of the operator is invalid in this case.
3438  bool isImplicitAccess() const;
3439
3440  /// \brief Retrieve the base object of this member expressions,
3441  /// e.g., the \c x in \c x.m.
3442  Expr *getBase() {
3443    assert(!isImplicitAccess());
3444    return cast<Expr>(Base);
3445  }
3446  const Expr *getBase() const {
3447    assert(!isImplicitAccess());
3448    return cast<Expr>(Base);
3449  }
3450
3451  QualType getBaseType() const { return BaseType; }
3452
3453  /// \brief Determine whether the lookup results contain an unresolved using
3454  /// declaration.
3455  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3456
3457  /// \brief Determine whether this member expression used the '->'
3458  /// operator; otherwise, it used the '.' operator.
3459  bool isArrow() const { return IsArrow; }
3460
3461  /// \brief Retrieve the location of the '->' or '.' operator.
3462  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3463
3464  /// \brief Retrieve the naming class of this lookup.
3465  CXXRecordDecl *getNamingClass() const;
3466
3467  /// \brief Retrieve the full name info for the member that this expression
3468  /// refers to.
3469  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3470
3471  /// \brief Retrieve the name of the member that this expression
3472  /// refers to.
3473  DeclarationName getMemberName() const { return getName(); }
3474
3475  // \brief Retrieve the location of the name of the member that this
3476  // expression refers to.
3477  SourceLocation getMemberLoc() const { return getNameLoc(); }
3478
3479  // \brief Return the preferred location (the member name) for the arrow when
3480  // diagnosing a problem with this expression.
3481  SourceLocation getExprLoc() const LLVM_READONLY { return getMemberLoc(); }
3482
3483  SourceLocation getLocStart() const LLVM_READONLY {
3484    if (!isImplicitAccess())
3485      return Base->getLocStart();
3486    if (NestedNameSpecifierLoc l = getQualifierLoc())
3487      return l.getBeginLoc();
3488    return getMemberNameInfo().getLocStart();
3489  }
3490  SourceLocation getLocEnd() const LLVM_READONLY {
3491    if (hasExplicitTemplateArgs())
3492      return getRAngleLoc();
3493    return getMemberNameInfo().getLocEnd();
3494  }
3495
3496  static bool classof(const Stmt *T) {
3497    return T->getStmtClass() == UnresolvedMemberExprClass;
3498  }
3499
3500  // Iterators
3501  child_range children() {
3502    if (isImplicitAccess()) return child_range();
3503    return child_range(&Base, &Base + 1);
3504  }
3505};
3506
3507/// \brief Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
3508///
3509/// The noexcept expression tests whether a given expression might throw. Its
3510/// result is a boolean constant.
3511class CXXNoexceptExpr : public Expr {
3512  bool Value : 1;
3513  Stmt *Operand;
3514  SourceRange Range;
3515
3516  friend class ASTStmtReader;
3517
3518public:
3519  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3520                  SourceLocation Keyword, SourceLocation RParen)
3521    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3522           /*TypeDependent*/false,
3523           /*ValueDependent*/Val == CT_Dependent,
3524           Val == CT_Dependent || Operand->isInstantiationDependent(),
3525           Operand->containsUnexpandedParameterPack()),
3526      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3527  { }
3528
3529  CXXNoexceptExpr(EmptyShell Empty)
3530    : Expr(CXXNoexceptExprClass, Empty)
3531  { }
3532
3533  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3534
3535  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
3536  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
3537  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
3538
3539  bool getValue() const { return Value; }
3540
3541  static bool classof(const Stmt *T) {
3542    return T->getStmtClass() == CXXNoexceptExprClass;
3543  }
3544
3545  // Iterators
3546  child_range children() { return child_range(&Operand, &Operand + 1); }
3547};
3548
3549/// \brief Represents a C++11 pack expansion that produces a sequence of
3550/// expressions.
3551///
3552/// A pack expansion expression contains a pattern (which itself is an
3553/// expression) followed by an ellipsis. For example:
3554///
3555/// \code
3556/// template<typename F, typename ...Types>
3557/// void forward(F f, Types &&...args) {
3558///   f(static_cast<Types&&>(args)...);
3559/// }
3560/// \endcode
3561///
3562/// Here, the argument to the function object \c f is a pack expansion whose
3563/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3564/// template is instantiated, the pack expansion will instantiate to zero or
3565/// or more function arguments to the function object \c f.
3566class PackExpansionExpr : public Expr {
3567  SourceLocation EllipsisLoc;
3568
3569  /// \brief The number of expansions that will be produced by this pack
3570  /// expansion expression, if known.
3571  ///
3572  /// When zero, the number of expansions is not known. Otherwise, this value
3573  /// is the number of expansions + 1.
3574  unsigned NumExpansions;
3575
3576  Stmt *Pattern;
3577
3578  friend class ASTStmtReader;
3579  friend class ASTStmtWriter;
3580
3581public:
3582  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3583                    Optional<unsigned> NumExpansions)
3584    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3585           Pattern->getObjectKind(), /*TypeDependent=*/true,
3586           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3587           /*ContainsUnexpandedParameterPack=*/false),
3588      EllipsisLoc(EllipsisLoc),
3589      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3590      Pattern(Pattern) { }
3591
3592  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3593
3594  /// \brief Retrieve the pattern of the pack expansion.
3595  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3596
3597  /// \brief Retrieve the pattern of the pack expansion.
3598  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3599
3600  /// \brief Retrieve the location of the ellipsis that describes this pack
3601  /// expansion.
3602  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3603
3604  /// \brief Determine the number of expansions that will be produced when
3605  /// this pack expansion is instantiated, if already known.
3606  Optional<unsigned> getNumExpansions() const {
3607    if (NumExpansions)
3608      return NumExpansions - 1;
3609
3610    return None;
3611  }
3612
3613  SourceLocation getLocStart() const LLVM_READONLY {
3614    return Pattern->getLocStart();
3615  }
3616  SourceLocation getLocEnd() const LLVM_READONLY { return EllipsisLoc; }
3617
3618  static bool classof(const Stmt *T) {
3619    return T->getStmtClass() == PackExpansionExprClass;
3620  }
3621
3622  // Iterators
3623  child_range children() {
3624    return child_range(&Pattern, &Pattern + 1);
3625  }
3626};
3627
3628inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3629  if (!HasTemplateKWAndArgsInfo) return 0;
3630  if (isa<UnresolvedLookupExpr>(this))
3631    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3632      (cast<UnresolvedLookupExpr>(this) + 1);
3633  else
3634    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3635      (cast<UnresolvedMemberExpr>(this) + 1);
3636}
3637
3638/// \brief Represents an expression that computes the length of a parameter
3639/// pack.
3640///
3641/// \code
3642/// template<typename ...Types>
3643/// struct count {
3644///   static const unsigned value = sizeof...(Types);
3645/// };
3646/// \endcode
3647class SizeOfPackExpr : public Expr {
3648  /// \brief The location of the \c sizeof keyword.
3649  SourceLocation OperatorLoc;
3650
3651  /// \brief The location of the name of the parameter pack.
3652  SourceLocation PackLoc;
3653
3654  /// \brief The location of the closing parenthesis.
3655  SourceLocation RParenLoc;
3656
3657  /// \brief The length of the parameter pack, if known.
3658  ///
3659  /// When this expression is value-dependent, the length of the parameter pack
3660  /// is unknown. When this expression is not value-dependent, the length is
3661  /// known.
3662  unsigned Length;
3663
3664  /// \brief The parameter pack itself.
3665  NamedDecl *Pack;
3666
3667  friend class ASTStmtReader;
3668  friend class ASTStmtWriter;
3669
3670public:
3671  /// \brief Create a value-dependent expression that computes the length of
3672  /// the given parameter pack.
3673  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3674                 SourceLocation PackLoc, SourceLocation RParenLoc)
3675    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3676           /*TypeDependent=*/false, /*ValueDependent=*/true,
3677           /*InstantiationDependent=*/true,
3678           /*ContainsUnexpandedParameterPack=*/false),
3679      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3680      Length(0), Pack(Pack) { }
3681
3682  /// \brief Create an expression that computes the length of
3683  /// the given parameter pack, which is already known.
3684  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3685                 SourceLocation PackLoc, SourceLocation RParenLoc,
3686                 unsigned Length)
3687  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3688         /*TypeDependent=*/false, /*ValueDependent=*/false,
3689         /*InstantiationDependent=*/false,
3690         /*ContainsUnexpandedParameterPack=*/false),
3691    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3692    Length(Length), Pack(Pack) { }
3693
3694  /// \brief Create an empty expression.
3695  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3696
3697  /// \brief Determine the location of the 'sizeof' keyword.
3698  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3699
3700  /// \brief Determine the location of the parameter pack.
3701  SourceLocation getPackLoc() const { return PackLoc; }
3702
3703  /// \brief Determine the location of the right parenthesis.
3704  SourceLocation getRParenLoc() const { return RParenLoc; }
3705
3706  /// \brief Retrieve the parameter pack.
3707  NamedDecl *getPack() const { return Pack; }
3708
3709  /// \brief Retrieve the length of the parameter pack.
3710  ///
3711  /// This routine may only be invoked when the expression is not
3712  /// value-dependent.
3713  unsigned getPackLength() const {
3714    assert(!isValueDependent() &&
3715           "Cannot get the length of a value-dependent pack size expression");
3716    return Length;
3717  }
3718
3719  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
3720  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3721
3722  static bool classof(const Stmt *T) {
3723    return T->getStmtClass() == SizeOfPackExprClass;
3724  }
3725
3726  // Iterators
3727  child_range children() { return child_range(); }
3728};
3729
3730/// \brief Represents a reference to a non-type template parameter
3731/// that has been substituted with a template argument.
3732class SubstNonTypeTemplateParmExpr : public Expr {
3733  /// \brief The replaced parameter.
3734  NonTypeTemplateParmDecl *Param;
3735
3736  /// \brief The replacement expression.
3737  Stmt *Replacement;
3738
3739  /// \brief The location of the non-type template parameter reference.
3740  SourceLocation NameLoc;
3741
3742  friend class ASTReader;
3743  friend class ASTStmtReader;
3744  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3745    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3746
3747public:
3748  SubstNonTypeTemplateParmExpr(QualType type,
3749                               ExprValueKind valueKind,
3750                               SourceLocation loc,
3751                               NonTypeTemplateParmDecl *param,
3752                               Expr *replacement)
3753    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3754           replacement->isTypeDependent(), replacement->isValueDependent(),
3755           replacement->isInstantiationDependent(),
3756           replacement->containsUnexpandedParameterPack()),
3757      Param(param), Replacement(replacement), NameLoc(loc) {}
3758
3759  SourceLocation getNameLoc() const { return NameLoc; }
3760  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3761  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3762
3763  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3764
3765  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3766
3767  static bool classof(const Stmt *s) {
3768    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3769  }
3770
3771  // Iterators
3772  child_range children() { return child_range(&Replacement, &Replacement+1); }
3773};
3774
3775/// \brief Represents a reference to a non-type template parameter pack that
3776/// has been substituted with a non-template argument pack.
3777///
3778/// When a pack expansion in the source code contains multiple parameter packs
3779/// and those parameter packs correspond to different levels of template
3780/// parameter lists, this node is used to represent a non-type template
3781/// parameter pack from an outer level, which has already had its argument pack
3782/// substituted but that still lives within a pack expansion that itself
3783/// could not be instantiated. When actually performing a substitution into
3784/// that pack expansion (e.g., when all template parameters have corresponding
3785/// arguments), this type will be replaced with the appropriate underlying
3786/// expression at the current pack substitution index.
3787class SubstNonTypeTemplateParmPackExpr : public Expr {
3788  /// \brief The non-type template parameter pack itself.
3789  NonTypeTemplateParmDecl *Param;
3790
3791  /// \brief A pointer to the set of template arguments that this
3792  /// parameter pack is instantiated with.
3793  const TemplateArgument *Arguments;
3794
3795  /// \brief The number of template arguments in \c Arguments.
3796  unsigned NumArguments;
3797
3798  /// \brief The location of the non-type template parameter pack reference.
3799  SourceLocation NameLoc;
3800
3801  friend class ASTReader;
3802  friend class ASTStmtReader;
3803  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3804    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3805
3806public:
3807  SubstNonTypeTemplateParmPackExpr(QualType T,
3808                                   NonTypeTemplateParmDecl *Param,
3809                                   SourceLocation NameLoc,
3810                                   const TemplateArgument &ArgPack);
3811
3812  /// \brief Retrieve the non-type template parameter pack being substituted.
3813  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3814
3815  /// \brief Retrieve the location of the parameter pack name.
3816  SourceLocation getParameterPackLocation() const { return NameLoc; }
3817
3818  /// \brief Retrieve the template argument pack containing the substituted
3819  /// template arguments.
3820  TemplateArgument getArgumentPack() const;
3821
3822  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3823  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3824
3825  static bool classof(const Stmt *T) {
3826    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3827  }
3828
3829  // Iterators
3830  child_range children() { return child_range(); }
3831};
3832
3833/// \brief Represents a reference to a function parameter pack that has been
3834/// substituted but not yet expanded.
3835///
3836/// When a pack expansion contains multiple parameter packs at different levels,
3837/// this node is used to represent a function parameter pack at an outer level
3838/// which we have already substituted to refer to expanded parameters, but where
3839/// the containing pack expansion cannot yet be expanded.
3840///
3841/// \code
3842/// template<typename...Ts> struct S {
3843///   template<typename...Us> auto f(Ts ...ts) -> decltype(g(Us(ts)...));
3844/// };
3845/// template struct S<int, int>;
3846/// \endcode
3847class FunctionParmPackExpr : public Expr {
3848  /// \brief The function parameter pack which was referenced.
3849  ParmVarDecl *ParamPack;
3850
3851  /// \brief The location of the function parameter pack reference.
3852  SourceLocation NameLoc;
3853
3854  /// \brief The number of expansions of this pack.
3855  unsigned NumParameters;
3856
3857  FunctionParmPackExpr(QualType T, ParmVarDecl *ParamPack,
3858                       SourceLocation NameLoc, unsigned NumParams,
3859                       Decl * const *Params);
3860
3861  friend class ASTReader;
3862  friend class ASTStmtReader;
3863
3864public:
3865  static FunctionParmPackExpr *Create(ASTContext &Context, QualType T,
3866                                      ParmVarDecl *ParamPack,
3867                                      SourceLocation NameLoc,
3868                                      ArrayRef<Decl *> Params);
3869  static FunctionParmPackExpr *CreateEmpty(ASTContext &Context,
3870                                           unsigned NumParams);
3871
3872  /// \brief Get the parameter pack which this expression refers to.
3873  ParmVarDecl *getParameterPack() const { return ParamPack; }
3874
3875  /// \brief Get the location of the parameter pack.
3876  SourceLocation getParameterPackLocation() const { return NameLoc; }
3877
3878  /// \brief Iterators over the parameters which the parameter pack expanded
3879  /// into.
3880  typedef ParmVarDecl * const *iterator;
3881  iterator begin() const { return reinterpret_cast<iterator>(this+1); }
3882  iterator end() const { return begin() + NumParameters; }
3883
3884  /// \brief Get the number of parameters in this parameter pack.
3885  unsigned getNumExpansions() const { return NumParameters; }
3886
3887  /// \brief Get an expansion of the parameter pack by index.
3888  ParmVarDecl *getExpansion(unsigned I) const { return begin()[I]; }
3889
3890  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3891  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3892
3893  static bool classof(const Stmt *T) {
3894    return T->getStmtClass() == FunctionParmPackExprClass;
3895  }
3896
3897  child_range children() { return child_range(); }
3898};
3899
3900/// \brief Represents a prvalue temporary that is written into memory so that
3901/// a reference can bind to it.
3902///
3903/// Prvalue expressions are materialized when they need to have an address
3904/// in memory for a reference to bind to. This happens when binding a
3905/// reference to the result of a conversion, e.g.,
3906///
3907/// \code
3908/// const int &r = 1.0;
3909/// \endcode
3910///
3911/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3912/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3913/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3914/// (either an lvalue or an xvalue, depending on the kind of reference binding
3915/// to it), maintaining the invariant that references always bind to glvalues.
3916///
3917/// Reference binding and copy-elision can both extend the lifetime of a
3918/// temporary. When either happens, the expression will also track the
3919/// declaration which is responsible for the lifetime extension.
3920class MaterializeTemporaryExpr : public Expr {
3921public:
3922  /// \brief The temporary-generating expression whose value will be
3923  /// materialized.
3924  Stmt *Temporary;
3925
3926  /// \brief The declaration which lifetime-extended this reference, if any.
3927  /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
3928  const ValueDecl *ExtendingDecl;
3929
3930  friend class ASTStmtReader;
3931  friend class ASTStmtWriter;
3932
3933public:
3934  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3935                           bool BoundToLvalueReference,
3936                           const ValueDecl *ExtendedBy)
3937    : Expr(MaterializeTemporaryExprClass, T,
3938           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3939           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3940           Temporary->isInstantiationDependent(),
3941           Temporary->containsUnexpandedParameterPack()),
3942      Temporary(Temporary), ExtendingDecl(ExtendedBy) {
3943  }
3944
3945  MaterializeTemporaryExpr(EmptyShell Empty)
3946    : Expr(MaterializeTemporaryExprClass, Empty) { }
3947
3948  /// \brief Retrieve the temporary-generating subexpression whose value will
3949  /// be materialized into a glvalue.
3950  Expr *GetTemporaryExpr() const { return static_cast<Expr *>(Temporary); }
3951
3952  /// \brief Retrieve the storage duration for the materialized temporary.
3953  StorageDuration getStorageDuration() const {
3954    if (!ExtendingDecl)
3955      return SD_FullExpression;
3956    // FIXME: This is not necessarily correct for a temporary materialized
3957    // within a default initializer.
3958    if (isa<FieldDecl>(ExtendingDecl))
3959      return SD_Automatic;
3960    return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
3961  }
3962
3963  /// \brief Get the declaration which triggered the lifetime-extension of this
3964  /// temporary, if any.
3965  const ValueDecl *getExtendingDecl() const { return ExtendingDecl; }
3966
3967  void setExtendingDecl(const ValueDecl *ExtendedBy) {
3968    ExtendingDecl = ExtendedBy;
3969  }
3970
3971  /// \brief Determine whether this materialized temporary is bound to an
3972  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3973  bool isBoundToLvalueReference() const {
3974    return getValueKind() == VK_LValue;
3975  }
3976
3977  SourceLocation getLocStart() const LLVM_READONLY {
3978    return Temporary->getLocStart();
3979  }
3980  SourceLocation getLocEnd() const LLVM_READONLY {
3981    return Temporary->getLocEnd();
3982  }
3983
3984  static bool classof(const Stmt *T) {
3985    return T->getStmtClass() == MaterializeTemporaryExprClass;
3986  }
3987
3988  // Iterators
3989  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3990};
3991
3992}  // end namespace clang
3993
3994#endif
3995