ExprCXX.h revision f89e55ab1bfb3ea997f8b02997c611a02254eb2d
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/UnresolvedSet.h"
20#include "clang/AST/TemplateBase.h"
21
22namespace clang {
23
24  class CXXConstructorDecl;
25  class CXXDestructorDecl;
26  class CXXMethodDecl;
27  class CXXTemporary;
28  class TemplateArgumentListInfo;
29
30//===--------------------------------------------------------------------===//
31// C++ Expressions.
32//===--------------------------------------------------------------------===//
33
34/// \brief A call to an overloaded operator written using operator
35/// syntax.
36///
37/// Represents a call to an overloaded operator written using operator
38/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
39/// normal call, this AST node provides better information about the
40/// syntactic representation of the call.
41///
42/// In a C++ template, this expression node kind will be used whenever
43/// any of the arguments are type-dependent. In this case, the
44/// function itself will be a (possibly empty) set of functions and
45/// function templates that were found by name lookup at template
46/// definition time.
47class CXXOperatorCallExpr : public CallExpr {
48  /// \brief The overloaded operator.
49  OverloadedOperatorKind Operator;
50
51public:
52  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
53                      Expr **args, unsigned numargs, QualType t,
54                      ExprValueKind VK, SourceLocation operatorloc)
55    : CallExpr(C, CXXOperatorCallExprClass, fn, args, numargs, t, VK,
56               operatorloc),
57      Operator(Op) {}
58  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
59    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
60
61
62  /// getOperator - Returns the kind of overloaded operator that this
63  /// expression refers to.
64  OverloadedOperatorKind getOperator() const { return Operator; }
65  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
66
67  /// getOperatorLoc - Returns the location of the operator symbol in
68  /// the expression. When @c getOperator()==OO_Call, this is the
69  /// location of the right parentheses; when @c
70  /// getOperator()==OO_Subscript, this is the location of the right
71  /// bracket.
72  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
73
74  virtual SourceRange getSourceRange() const;
75
76  static bool classof(const Stmt *T) {
77    return T->getStmtClass() == CXXOperatorCallExprClass;
78  }
79  static bool classof(const CXXOperatorCallExpr *) { return true; }
80};
81
82/// CXXMemberCallExpr - Represents a call to a member function that
83/// may be written either with member call syntax (e.g., "obj.func()"
84/// or "objptr->func()") or with normal function-call syntax
85/// ("func()") within a member function that ends up calling a member
86/// function. The callee in either case is a MemberExpr that contains
87/// both the object argument and the member function, while the
88/// arguments are the arguments within the parentheses (not including
89/// the object argument).
90class CXXMemberCallExpr : public CallExpr {
91public:
92  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
93                    QualType t, ExprValueKind VK, SourceLocation RP)
94    : CallExpr(C, CXXMemberCallExprClass, fn, args, numargs, t, VK, RP) {}
95
96  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
97    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
98
99  /// getImplicitObjectArgument - Retrieves the implicit object
100  /// argument for the member call. For example, in "x.f(5)", this
101  /// operation would return "x".
102  Expr *getImplicitObjectArgument();
103
104  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
105  /// the implicit object argument. Note that this is may not be the same
106  /// declaration as that of the class context of the CXXMethodDecl which this
107  /// function is calling.
108  /// FIXME: Returns 0 for member pointer call exprs.
109  CXXRecordDecl *getRecordDecl();
110
111  virtual SourceRange getSourceRange() const;
112
113  static bool classof(const Stmt *T) {
114    return T->getStmtClass() == CXXMemberCallExprClass;
115  }
116  static bool classof(const CXXMemberCallExpr *) { return true; }
117};
118
119/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
120/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
121/// const_cast.
122///
123/// This abstract class is inherited by all of the classes
124/// representing "named" casts, e.g., CXXStaticCastExpr,
125/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
126class CXXNamedCastExpr : public ExplicitCastExpr {
127private:
128  SourceLocation Loc; // the location of the casting op
129
130protected:
131  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
132                   CastKind kind, Expr *op, unsigned PathSize,
133                   TypeSourceInfo *writtenTy, SourceLocation l)
134    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l) {}
135
136  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
137    : ExplicitCastExpr(SC, Shell, PathSize) { }
138
139public:
140  const char *getCastName() const;
141
142  /// \brief Retrieve the location of the cast operator keyword, e.g.,
143  /// "static_cast".
144  SourceLocation getOperatorLoc() const { return Loc; }
145  void setOperatorLoc(SourceLocation L) { Loc = L; }
146
147  virtual SourceRange getSourceRange() const {
148    return SourceRange(Loc, getSubExpr()->getSourceRange().getEnd());
149  }
150  static bool classof(const Stmt *T) {
151    switch (T->getStmtClass()) {
152    case CXXStaticCastExprClass:
153    case CXXDynamicCastExprClass:
154    case CXXReinterpretCastExprClass:
155    case CXXConstCastExprClass:
156      return true;
157    default:
158      return false;
159    }
160  }
161  static bool classof(const CXXNamedCastExpr *) { return true; }
162};
163
164/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
165///
166/// This expression node represents a C++ static cast, e.g.,
167/// @c static_cast<int>(1.0).
168class CXXStaticCastExpr : public CXXNamedCastExpr {
169  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
170                    unsigned pathSize, TypeSourceInfo *writtenTy,
171                    SourceLocation l)
172    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
173                       writtenTy, l) {}
174
175  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
176    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
177
178public:
179  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
180                                   ExprValueKind VK, CastKind K, Expr *Op,
181                                   const CXXCastPath *Path,
182                                   TypeSourceInfo *Written, SourceLocation L);
183  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
184                                        unsigned PathSize);
185
186  static bool classof(const Stmt *T) {
187    return T->getStmtClass() == CXXStaticCastExprClass;
188  }
189  static bool classof(const CXXStaticCastExpr *) { return true; }
190};
191
192/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
193/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
194/// determine how to perform the type cast.
195///
196/// This expression node represents a dynamic cast, e.g.,
197/// @c dynamic_cast<Derived*>(BasePtr).
198class CXXDynamicCastExpr : public CXXNamedCastExpr {
199  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
200                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
201                     SourceLocation l)
202    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
203                       writtenTy, l) {}
204
205  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
206    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
207
208public:
209  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
210                                    ExprValueKind VK, CastKind Kind, Expr *Op,
211                                    const CXXCastPath *Path,
212                                    TypeSourceInfo *Written, SourceLocation L);
213
214  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
215                                         unsigned pathSize);
216
217  static bool classof(const Stmt *T) {
218    return T->getStmtClass() == CXXDynamicCastExprClass;
219  }
220  static bool classof(const CXXDynamicCastExpr *) { return true; }
221};
222
223/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
224/// [expr.reinterpret.cast]), which provides a differently-typed view
225/// of a value but performs no actual work at run time.
226///
227/// This expression node represents a reinterpret cast, e.g.,
228/// @c reinterpret_cast<int>(VoidPtr).
229class CXXReinterpretCastExpr : public CXXNamedCastExpr {
230  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
231                         Expr *op, unsigned pathSize,
232                         TypeSourceInfo *writtenTy, SourceLocation l)
233    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
234                       pathSize, writtenTy, l) {}
235
236  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
237    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
238
239public:
240  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
241                                        ExprValueKind VK, CastKind Kind,
242                                        Expr *Op, const CXXCastPath *Path,
243                                 TypeSourceInfo *WrittenTy, SourceLocation L);
244  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
245                                             unsigned pathSize);
246
247  static bool classof(const Stmt *T) {
248    return T->getStmtClass() == CXXReinterpretCastExprClass;
249  }
250  static bool classof(const CXXReinterpretCastExpr *) { return true; }
251};
252
253/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
254/// which can remove type qualifiers but does not change the underlying value.
255///
256/// This expression node represents a const cast, e.g.,
257/// @c const_cast<char*>(PtrToConstChar).
258class CXXConstCastExpr : public CXXNamedCastExpr {
259  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
260                   TypeSourceInfo *writtenTy, SourceLocation l)
261    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
262                       0, writtenTy, l) {}
263
264  explicit CXXConstCastExpr(EmptyShell Empty)
265    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
266
267public:
268  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
269                                  ExprValueKind VK, Expr *Op,
270                                  TypeSourceInfo *WrittenTy, SourceLocation L);
271  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
272
273  static bool classof(const Stmt *T) {
274    return T->getStmtClass() == CXXConstCastExprClass;
275  }
276  static bool classof(const CXXConstCastExpr *) { return true; }
277};
278
279/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
280///
281class CXXBoolLiteralExpr : public Expr {
282  bool Value;
283  SourceLocation Loc;
284public:
285  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
286    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false),
287    Value(val), Loc(l) {}
288
289  explicit CXXBoolLiteralExpr(EmptyShell Empty)
290    : Expr(CXXBoolLiteralExprClass, Empty) { }
291
292  bool getValue() const { return Value; }
293  void setValue(bool V) { Value = V; }
294
295  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
296
297  SourceLocation getLocation() const { return Loc; }
298  void setLocation(SourceLocation L) { Loc = L; }
299
300  static bool classof(const Stmt *T) {
301    return T->getStmtClass() == CXXBoolLiteralExprClass;
302  }
303  static bool classof(const CXXBoolLiteralExpr *) { return true; }
304
305  // Iterators
306  virtual child_iterator child_begin();
307  virtual child_iterator child_end();
308};
309
310/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
311class CXXNullPtrLiteralExpr : public Expr {
312  SourceLocation Loc;
313public:
314  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
315    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false),
316    Loc(l) {}
317
318  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
319    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
320
321  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
322
323  SourceLocation getLocation() const { return Loc; }
324  void setLocation(SourceLocation L) { Loc = L; }
325
326  static bool classof(const Stmt *T) {
327    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
328  }
329  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
330
331  virtual child_iterator child_begin();
332  virtual child_iterator child_end();
333};
334
335/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
336/// the type_info that corresponds to the supplied type, or the (possibly
337/// dynamic) type of the supplied expression.
338///
339/// This represents code like @c typeid(int) or @c typeid(*objPtr)
340class CXXTypeidExpr : public Expr {
341private:
342  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
343  SourceRange Range;
344
345public:
346  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
347    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
348           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
349           false,
350           // typeid is value-dependent if the type or expression are dependent
351           Operand->getType()->isDependentType()),
352      Operand(Operand), Range(R) { }
353
354  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
355    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
356        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
357        false,
358        // typeid is value-dependent if the type or expression are dependent
359        Operand->isTypeDependent() || Operand->isValueDependent()),
360      Operand(Operand), Range(R) { }
361
362  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
363    : Expr(CXXTypeidExprClass, Empty) {
364    if (isExpr)
365      Operand = (Expr*)0;
366    else
367      Operand = (TypeSourceInfo*)0;
368  }
369
370  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
371
372  /// \brief Retrieves the type operand of this typeid() expression after
373  /// various required adjustments (removing reference types, cv-qualifiers).
374  QualType getTypeOperand() const;
375
376  /// \brief Retrieve source information for the type operand.
377  TypeSourceInfo *getTypeOperandSourceInfo() const {
378    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
379    return Operand.get<TypeSourceInfo *>();
380  }
381
382  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
383    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
384    Operand = TSI;
385  }
386
387  Expr *getExprOperand() const {
388    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
389    return static_cast<Expr*>(Operand.get<Stmt *>());
390  }
391
392  void setExprOperand(Expr *E) {
393    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
394    Operand = E;
395  }
396
397  virtual SourceRange getSourceRange() const { return Range; }
398  void setSourceRange(SourceRange R) { Range = R; }
399
400  static bool classof(const Stmt *T) {
401    return T->getStmtClass() == CXXTypeidExprClass;
402  }
403  static bool classof(const CXXTypeidExpr *) { return true; }
404
405  // Iterators
406  virtual child_iterator child_begin();
407  virtual child_iterator child_end();
408};
409
410/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
411/// the _GUID that corresponds to the supplied type or expression.
412///
413/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
414class CXXUuidofExpr : public Expr {
415private:
416  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
417  SourceRange Range;
418
419public:
420  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
421    : Expr(CXXUuidofExprClass, Ty, VK_RValue, OK_Ordinary,
422        false, Operand->getType()->isDependentType()),
423      Operand(Operand), Range(R) { }
424
425  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
426    : Expr(CXXUuidofExprClass, Ty, /*FIXME*/ VK_LValue, OK_Ordinary,
427        false, Operand->isTypeDependent()),
428      Operand(Operand), Range(R) { }
429
430  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
431    : Expr(CXXUuidofExprClass, Empty) {
432    if (isExpr)
433      Operand = (Expr*)0;
434    else
435      Operand = (TypeSourceInfo*)0;
436  }
437
438  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
439
440  /// \brief Retrieves the type operand of this __uuidof() expression after
441  /// various required adjustments (removing reference types, cv-qualifiers).
442  QualType getTypeOperand() const;
443
444  /// \brief Retrieve source information for the type operand.
445  TypeSourceInfo *getTypeOperandSourceInfo() const {
446    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
447    return Operand.get<TypeSourceInfo *>();
448  }
449
450  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
451    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
452    Operand = TSI;
453  }
454
455  Expr *getExprOperand() const {
456    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
457    return static_cast<Expr*>(Operand.get<Stmt *>());
458  }
459
460  void setExprOperand(Expr *E) {
461    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
462    Operand = E;
463  }
464
465  virtual SourceRange getSourceRange() const { return Range; }
466  void setSourceRange(SourceRange R) { Range = R; }
467
468  static bool classof(const Stmt *T) {
469    return T->getStmtClass() == CXXUuidofExprClass;
470  }
471  static bool classof(const CXXUuidofExpr *) { return true; }
472
473  // Iterators
474  virtual child_iterator child_begin();
475  virtual child_iterator child_end();
476};
477
478/// CXXThisExpr - Represents the "this" expression in C++, which is a
479/// pointer to the object on which the current member function is
480/// executing (C++ [expr.prim]p3). Example:
481///
482/// @code
483/// class Foo {
484/// public:
485///   void bar();
486///   void test() { this->bar(); }
487/// };
488/// @endcode
489class CXXThisExpr : public Expr {
490  SourceLocation Loc;
491  bool Implicit : 1;
492
493public:
494  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
495    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
496           // 'this' is type-dependent if the class type of the enclosing
497           // member function is dependent (C++ [temp.dep.expr]p2)
498           Type->isDependentType(), Type->isDependentType()),
499      Loc(L), Implicit(isImplicit) { }
500
501  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
502
503  SourceLocation getLocation() const { return Loc; }
504  void setLocation(SourceLocation L) { Loc = L; }
505
506  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
507
508  bool isImplicit() const { return Implicit; }
509  void setImplicit(bool I) { Implicit = I; }
510
511  static bool classof(const Stmt *T) {
512    return T->getStmtClass() == CXXThisExprClass;
513  }
514  static bool classof(const CXXThisExpr *) { return true; }
515
516  // Iterators
517  virtual child_iterator child_begin();
518  virtual child_iterator child_end();
519};
520
521///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
522///  'throw' and 'throw' assignment-expression.  When
523///  assignment-expression isn't present, Op will be null.
524///
525class CXXThrowExpr : public Expr {
526  Stmt *Op;
527  SourceLocation ThrowLoc;
528public:
529  // Ty is the void type which is used as the result type of the
530  // exepression.  The l is the location of the throw keyword.  expr
531  // can by null, if the optional expression to throw isn't present.
532  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
533    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false),
534    Op(expr), ThrowLoc(l) {}
535  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
536
537  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
538  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
539  void setSubExpr(Expr *E) { Op = E; }
540
541  SourceLocation getThrowLoc() const { return ThrowLoc; }
542  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
543
544  virtual SourceRange getSourceRange() const {
545    if (getSubExpr() == 0)
546      return SourceRange(ThrowLoc, ThrowLoc);
547    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
548  }
549
550  static bool classof(const Stmt *T) {
551    return T->getStmtClass() == CXXThrowExprClass;
552  }
553  static bool classof(const CXXThrowExpr *) { return true; }
554
555  // Iterators
556  virtual child_iterator child_begin();
557  virtual child_iterator child_end();
558};
559
560/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
561/// function call argument that was created from the corresponding
562/// parameter's default argument, when the call did not explicitly
563/// supply arguments for all of the parameters.
564class CXXDefaultArgExpr : public Expr {
565  /// \brief The parameter whose default is being used.
566  ///
567  /// When the bit is set, the subexpression is stored after the
568  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
569  /// actual default expression is the subexpression.
570  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
571
572  /// \brief The location where the default argument expression was used.
573  SourceLocation Loc;
574
575  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
576    : Expr(SC,
577           param->hasUnparsedDefaultArg()
578             ? param->getType().getNonReferenceType()
579             : param->getDefaultArg()->getType(),
580           getValueKindForType(param->getType()), OK_Ordinary, false, false),
581      Param(param, false), Loc(Loc) { }
582
583  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
584                    Expr *SubExpr)
585    : Expr(SC, SubExpr->getType(), SubExpr->getValueKind(), OK_Ordinary,
586           false, false), Param(param, true), Loc(Loc) {
587    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
588  }
589
590public:
591  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
592
593
594  // Param is the parameter whose default argument is used by this
595  // expression.
596  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
597                                   ParmVarDecl *Param) {
598    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
599  }
600
601  // Param is the parameter whose default argument is used by this
602  // expression, and SubExpr is the expression that will actually be used.
603  static CXXDefaultArgExpr *Create(ASTContext &C,
604                                   SourceLocation Loc,
605                                   ParmVarDecl *Param,
606                                   Expr *SubExpr);
607
608  // Retrieve the parameter that the argument was created from.
609  const ParmVarDecl *getParam() const { return Param.getPointer(); }
610  ParmVarDecl *getParam() { return Param.getPointer(); }
611
612  // Retrieve the actual argument to the function call.
613  const Expr *getExpr() const {
614    if (Param.getInt())
615      return *reinterpret_cast<Expr const * const*> (this + 1);
616    return getParam()->getDefaultArg();
617  }
618  Expr *getExpr() {
619    if (Param.getInt())
620      return *reinterpret_cast<Expr **> (this + 1);
621    return getParam()->getDefaultArg();
622  }
623
624  /// \brief Retrieve the location where this default argument was actually
625  /// used.
626  SourceLocation getUsedLocation() const { return Loc; }
627
628  virtual SourceRange getSourceRange() const {
629    // Default argument expressions have no representation in the
630    // source, so they have an empty source range.
631    return SourceRange();
632  }
633
634  static bool classof(const Stmt *T) {
635    return T->getStmtClass() == CXXDefaultArgExprClass;
636  }
637  static bool classof(const CXXDefaultArgExpr *) { return true; }
638
639  // Iterators
640  virtual child_iterator child_begin();
641  virtual child_iterator child_end();
642
643  friend class ASTStmtReader;
644  friend class ASTStmtWriter;
645};
646
647/// CXXTemporary - Represents a C++ temporary.
648class CXXTemporary {
649  /// Destructor - The destructor that needs to be called.
650  const CXXDestructorDecl *Destructor;
651
652  CXXTemporary(const CXXDestructorDecl *destructor)
653    : Destructor(destructor) { }
654
655public:
656  static CXXTemporary *Create(ASTContext &C,
657                              const CXXDestructorDecl *Destructor);
658
659  const CXXDestructorDecl *getDestructor() const { return Destructor; }
660};
661
662/// \brief Represents binding an expression to a temporary.
663///
664/// This ensures the destructor is called for the temporary. It should only be
665/// needed for non-POD, non-trivially destructable class types. For example:
666///
667/// \code
668///   struct S {
669///     S() { }  // User defined constructor makes S non-POD.
670///     ~S() { } // User defined destructor makes it non-trivial.
671///   };
672///   void test() {
673///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
674///   }
675/// \endcode
676class CXXBindTemporaryExpr : public Expr {
677  CXXTemporary *Temp;
678
679  Stmt *SubExpr;
680
681  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* subexpr,
682                       bool TD=false, bool VD=false)
683   : Expr(CXXBindTemporaryExprClass, subexpr->getType(),
684          VK_RValue, OK_Ordinary, TD, VD),
685     Temp(temp), SubExpr(subexpr) { }
686
687public:
688  CXXBindTemporaryExpr(EmptyShell Empty)
689    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
690
691  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
692                                      Expr* SubExpr);
693
694  CXXTemporary *getTemporary() { return Temp; }
695  const CXXTemporary *getTemporary() const { return Temp; }
696  void setTemporary(CXXTemporary *T) { Temp = T; }
697
698  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
699  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
700  void setSubExpr(Expr *E) { SubExpr = E; }
701
702  virtual SourceRange getSourceRange() const {
703    return SubExpr->getSourceRange();
704  }
705
706  // Implement isa/cast/dyncast/etc.
707  static bool classof(const Stmt *T) {
708    return T->getStmtClass() == CXXBindTemporaryExprClass;
709  }
710  static bool classof(const CXXBindTemporaryExpr *) { return true; }
711
712  // Iterators
713  virtual child_iterator child_begin();
714  virtual child_iterator child_end();
715};
716
717/// CXXConstructExpr - Represents a call to a C++ constructor.
718class CXXConstructExpr : public Expr {
719public:
720  enum ConstructionKind {
721    CK_Complete,
722    CK_NonVirtualBase,
723    CK_VirtualBase
724  };
725
726private:
727  CXXConstructorDecl *Constructor;
728
729  SourceLocation Loc;
730  SourceRange ParenRange;
731  bool Elidable : 1;
732  bool ZeroInitialization : 1;
733  unsigned ConstructKind : 2;
734  Stmt **Args;
735  unsigned NumArgs;
736
737protected:
738  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
739                   SourceLocation Loc,
740                   CXXConstructorDecl *d, bool elidable,
741                   Expr **args, unsigned numargs,
742                   bool ZeroInitialization = false,
743                   ConstructionKind ConstructKind = CK_Complete,
744                   SourceRange ParenRange = SourceRange());
745
746  /// \brief Construct an empty C++ construction expression.
747  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
748    : Expr(SC, Empty), Constructor(0), Elidable(0), ZeroInitialization(0),
749      ConstructKind(0), Args(0), NumArgs(0) { }
750
751public:
752  /// \brief Construct an empty C++ construction expression.
753  explicit CXXConstructExpr(EmptyShell Empty)
754    : Expr(CXXConstructExprClass, Empty), Constructor(0),
755      Elidable(0), ZeroInitialization(0),
756      ConstructKind(0), Args(0), NumArgs(0) { }
757
758  static CXXConstructExpr *Create(ASTContext &C, QualType T,
759                                  SourceLocation Loc,
760                                  CXXConstructorDecl *D, bool Elidable,
761                                  Expr **Args, unsigned NumArgs,
762                                  bool ZeroInitialization = false,
763                                  ConstructionKind ConstructKind = CK_Complete,
764                                  SourceRange ParenRange = SourceRange());
765
766
767  CXXConstructorDecl* getConstructor() const { return Constructor; }
768  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
769
770  SourceLocation getLocation() const { return Loc; }
771  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
772
773  /// \brief Whether this construction is elidable.
774  bool isElidable() const { return Elidable; }
775  void setElidable(bool E) { Elidable = E; }
776
777  /// \brief Whether this construction first requires
778  /// zero-initialization before the initializer is called.
779  bool requiresZeroInitialization() const { return ZeroInitialization; }
780  void setRequiresZeroInitialization(bool ZeroInit) {
781    ZeroInitialization = ZeroInit;
782  }
783
784  /// \brief Determines whether this constructor is actually constructing
785  /// a base class (rather than a complete object).
786  ConstructionKind getConstructionKind() const {
787    return (ConstructionKind)ConstructKind;
788  }
789  void setConstructionKind(ConstructionKind CK) {
790    ConstructKind = CK;
791  }
792
793  typedef ExprIterator arg_iterator;
794  typedef ConstExprIterator const_arg_iterator;
795
796  arg_iterator arg_begin() { return Args; }
797  arg_iterator arg_end() { return Args + NumArgs; }
798  const_arg_iterator arg_begin() const { return Args; }
799  const_arg_iterator arg_end() const { return Args + NumArgs; }
800
801  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
802  unsigned getNumArgs() const { return NumArgs; }
803
804  /// getArg - Return the specified argument.
805  Expr *getArg(unsigned Arg) {
806    assert(Arg < NumArgs && "Arg access out of range!");
807    return cast<Expr>(Args[Arg]);
808  }
809  const Expr *getArg(unsigned Arg) const {
810    assert(Arg < NumArgs && "Arg access out of range!");
811    return cast<Expr>(Args[Arg]);
812  }
813
814  /// setArg - Set the specified argument.
815  void setArg(unsigned Arg, Expr *ArgExpr) {
816    assert(Arg < NumArgs && "Arg access out of range!");
817    Args[Arg] = ArgExpr;
818  }
819
820  virtual SourceRange getSourceRange() const;
821  SourceRange getParenRange() const { return ParenRange; }
822
823  static bool classof(const Stmt *T) {
824    return T->getStmtClass() == CXXConstructExprClass ||
825      T->getStmtClass() == CXXTemporaryObjectExprClass;
826  }
827  static bool classof(const CXXConstructExpr *) { return true; }
828
829  // Iterators
830  virtual child_iterator child_begin();
831  virtual child_iterator child_end();
832
833  friend class ASTStmtReader;
834};
835
836/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
837/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
838/// x = int(0.5);
839class CXXFunctionalCastExpr : public ExplicitCastExpr {
840  SourceLocation TyBeginLoc;
841  SourceLocation RParenLoc;
842
843  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
844                        TypeSourceInfo *writtenTy,
845                        SourceLocation tyBeginLoc, CastKind kind,
846                        Expr *castExpr, unsigned pathSize,
847                        SourceLocation rParenLoc)
848    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
849                       castExpr, pathSize, writtenTy),
850      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
851
852  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
853    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
854
855public:
856  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
857                                       ExprValueKind VK,
858                                       TypeSourceInfo *Written,
859                                       SourceLocation TyBeginLoc,
860                                       CastKind Kind, Expr *Op,
861                                       const CXXCastPath *Path,
862                                       SourceLocation RPLoc);
863  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
864                                            unsigned PathSize);
865
866  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
867  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
868  SourceLocation getRParenLoc() const { return RParenLoc; }
869  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
870
871  virtual SourceRange getSourceRange() const {
872    return SourceRange(TyBeginLoc, RParenLoc);
873  }
874  static bool classof(const Stmt *T) {
875    return T->getStmtClass() == CXXFunctionalCastExprClass;
876  }
877  static bool classof(const CXXFunctionalCastExpr *) { return true; }
878};
879
880/// @brief Represents a C++ functional cast expression that builds a
881/// temporary object.
882///
883/// This expression type represents a C++ "functional" cast
884/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
885/// constructor to build a temporary object. With N == 1 arguments the
886/// functional cast expression will be represented by CXXFunctionalCastExpr.
887/// Example:
888/// @code
889/// struct X { X(int, float); }
890///
891/// X create_X() {
892///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
893/// };
894/// @endcode
895class CXXTemporaryObjectExpr : public CXXConstructExpr {
896  TypeSourceInfo *Type;
897
898public:
899  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
900                         TypeSourceInfo *Type,
901                         Expr **Args,unsigned NumArgs,
902                         SourceRange parenRange,
903                         bool ZeroInitialization = false);
904  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
905    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
906
907  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
908
909  virtual SourceRange getSourceRange() const;
910
911  static bool classof(const Stmt *T) {
912    return T->getStmtClass() == CXXTemporaryObjectExprClass;
913  }
914  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
915
916  friend class ASTStmtReader;
917};
918
919/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
920/// Expression "T()" which creates a value-initialized rvalue of type
921/// T, which is a non-class type.
922///
923class CXXScalarValueInitExpr : public Expr {
924  SourceLocation RParenLoc;
925  TypeSourceInfo *TypeInfo;
926
927  friend class ASTStmtReader;
928
929public:
930  /// \brief Create an explicitly-written scalar-value initialization
931  /// expression.
932  CXXScalarValueInitExpr(QualType Type,
933                         TypeSourceInfo *TypeInfo,
934                         SourceLocation rParenLoc ) :
935    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
936         false, false),
937    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
938
939  explicit CXXScalarValueInitExpr(EmptyShell Shell)
940    : Expr(CXXScalarValueInitExprClass, Shell) { }
941
942  TypeSourceInfo *getTypeSourceInfo() const {
943    return TypeInfo;
944  }
945
946  SourceLocation getRParenLoc() const { return RParenLoc; }
947
948  virtual SourceRange getSourceRange() const;
949
950  static bool classof(const Stmt *T) {
951    return T->getStmtClass() == CXXScalarValueInitExprClass;
952  }
953  static bool classof(const CXXScalarValueInitExpr *) { return true; }
954
955  // Iterators
956  virtual child_iterator child_begin();
957  virtual child_iterator child_end();
958};
959
960/// CXXNewExpr - A new expression for memory allocation and constructor calls,
961/// e.g: "new CXXNewExpr(foo)".
962class CXXNewExpr : public Expr {
963  // Was the usage ::new, i.e. is the global new to be used?
964  bool GlobalNew : 1;
965  // Is there an initializer? If not, built-ins are uninitialized, else they're
966  // value-initialized.
967  bool Initializer : 1;
968  // Do we allocate an array? If so, the first SubExpr is the size expression.
969  bool Array : 1;
970  // The number of placement new arguments.
971  unsigned NumPlacementArgs : 15;
972  // The number of constructor arguments. This may be 1 even for non-class
973  // types; use the pseudo copy constructor.
974  unsigned NumConstructorArgs : 14;
975  // Contains an optional array size expression, any number of optional
976  // placement arguments, and any number of optional constructor arguments,
977  // in that order.
978  Stmt **SubExprs;
979  // Points to the allocation function used.
980  FunctionDecl *OperatorNew;
981  // Points to the deallocation function used in case of error. May be null.
982  FunctionDecl *OperatorDelete;
983  // Points to the constructor used. Cannot be null if AllocType is a record;
984  // it would still point at the default constructor (even an implicit one).
985  // Must be null for all other types.
986  CXXConstructorDecl *Constructor;
987
988  /// \brief The allocated type-source information, as written in the source.
989  TypeSourceInfo *AllocatedTypeInfo;
990
991  /// \brief If the allocated type was expressed as a parenthesized type-id,
992  /// the source range covering the parenthesized type-id.
993  SourceRange TypeIdParens;
994
995  SourceLocation StartLoc;
996  SourceLocation EndLoc;
997  SourceLocation ConstructorLParen;
998  SourceLocation ConstructorRParen;
999
1000  friend class ASTStmtReader;
1001public:
1002  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1003             Expr **placementArgs, unsigned numPlaceArgs,
1004             SourceRange TypeIdParens,
1005             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1006             Expr **constructorArgs, unsigned numConsArgs,
1007             FunctionDecl *operatorDelete, QualType ty,
1008             TypeSourceInfo *AllocatedTypeInfo,
1009             SourceLocation startLoc, SourceLocation endLoc,
1010             SourceLocation constructorLParen,
1011             SourceLocation constructorRParen);
1012  explicit CXXNewExpr(EmptyShell Shell)
1013    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1014
1015  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1016                         unsigned numConsArgs);
1017
1018  QualType getAllocatedType() const {
1019    assert(getType()->isPointerType());
1020    return getType()->getAs<PointerType>()->getPointeeType();
1021  }
1022
1023  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1024    return AllocatedTypeInfo;
1025  }
1026
1027  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1028  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1029  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1030  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1031  CXXConstructorDecl *getConstructor() const { return Constructor; }
1032  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1033
1034  bool isArray() const { return Array; }
1035  Expr *getArraySize() {
1036    return Array ? cast<Expr>(SubExprs[0]) : 0;
1037  }
1038  const Expr *getArraySize() const {
1039    return Array ? cast<Expr>(SubExprs[0]) : 0;
1040  }
1041
1042  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1043  Expr *getPlacementArg(unsigned i) {
1044    assert(i < NumPlacementArgs && "Index out of range");
1045    return cast<Expr>(SubExprs[Array + i]);
1046  }
1047  const Expr *getPlacementArg(unsigned i) const {
1048    assert(i < NumPlacementArgs && "Index out of range");
1049    return cast<Expr>(SubExprs[Array + i]);
1050  }
1051
1052  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1053  SourceRange getTypeIdParens() const { return TypeIdParens; }
1054
1055  bool isGlobalNew() const { return GlobalNew; }
1056  void setGlobalNew(bool V) { GlobalNew = V; }
1057  bool hasInitializer() const { return Initializer; }
1058  void setHasInitializer(bool V) { Initializer = V; }
1059
1060  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1061  Expr *getConstructorArg(unsigned i) {
1062    assert(i < NumConstructorArgs && "Index out of range");
1063    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1064  }
1065  const Expr *getConstructorArg(unsigned i) const {
1066    assert(i < NumConstructorArgs && "Index out of range");
1067    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1068  }
1069
1070  typedef ExprIterator arg_iterator;
1071  typedef ConstExprIterator const_arg_iterator;
1072
1073  arg_iterator placement_arg_begin() {
1074    return SubExprs + Array;
1075  }
1076  arg_iterator placement_arg_end() {
1077    return SubExprs + Array + getNumPlacementArgs();
1078  }
1079  const_arg_iterator placement_arg_begin() const {
1080    return SubExprs + Array;
1081  }
1082  const_arg_iterator placement_arg_end() const {
1083    return SubExprs + Array + getNumPlacementArgs();
1084  }
1085
1086  arg_iterator constructor_arg_begin() {
1087    return SubExprs + Array + getNumPlacementArgs();
1088  }
1089  arg_iterator constructor_arg_end() {
1090    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1091  }
1092  const_arg_iterator constructor_arg_begin() const {
1093    return SubExprs + Array + getNumPlacementArgs();
1094  }
1095  const_arg_iterator constructor_arg_end() const {
1096    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1097  }
1098
1099  typedef Stmt **raw_arg_iterator;
1100  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1101  raw_arg_iterator raw_arg_end() {
1102    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1103  }
1104  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1105  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1106
1107  SourceLocation getStartLoc() const { return StartLoc; }
1108  SourceLocation getEndLoc() const { return EndLoc; }
1109
1110  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1111  SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1112
1113  virtual SourceRange getSourceRange() const {
1114    return SourceRange(StartLoc, EndLoc);
1115  }
1116
1117  static bool classof(const Stmt *T) {
1118    return T->getStmtClass() == CXXNewExprClass;
1119  }
1120  static bool classof(const CXXNewExpr *) { return true; }
1121
1122  // Iterators
1123  virtual child_iterator child_begin();
1124  virtual child_iterator child_end();
1125};
1126
1127/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1128/// calls, e.g. "delete[] pArray".
1129class CXXDeleteExpr : public Expr {
1130  // Is this a forced global delete, i.e. "::delete"?
1131  bool GlobalDelete : 1;
1132  // Is this the array form of delete, i.e. "delete[]"?
1133  bool ArrayForm : 1;
1134  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1135  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1136  // will be true).
1137  bool ArrayFormAsWritten : 1;
1138  // Points to the operator delete overload that is used. Could be a member.
1139  FunctionDecl *OperatorDelete;
1140  // The pointer expression to be deleted.
1141  Stmt *Argument;
1142  // Location of the expression.
1143  SourceLocation Loc;
1144public:
1145  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1146                bool arrayFormAsWritten, FunctionDecl *operatorDelete,
1147                Expr *arg, SourceLocation loc)
1148    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false),
1149      GlobalDelete(globalDelete),
1150      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1151      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1152  explicit CXXDeleteExpr(EmptyShell Shell)
1153    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1154
1155  bool isGlobalDelete() const { return GlobalDelete; }
1156  bool isArrayForm() const { return ArrayForm; }
1157  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1158
1159  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1160
1161  Expr *getArgument() { return cast<Expr>(Argument); }
1162  const Expr *getArgument() const { return cast<Expr>(Argument); }
1163
1164  /// \brief Retrieve the type being destroyed.  If the type being
1165  /// destroyed is a dependent type which may or may not be a pointer,
1166  /// return an invalid type.
1167  QualType getDestroyedType() const;
1168
1169  virtual SourceRange getSourceRange() const {
1170    return SourceRange(Loc, Argument->getLocEnd());
1171  }
1172
1173  static bool classof(const Stmt *T) {
1174    return T->getStmtClass() == CXXDeleteExprClass;
1175  }
1176  static bool classof(const CXXDeleteExpr *) { return true; }
1177
1178  // Iterators
1179  virtual child_iterator child_begin();
1180  virtual child_iterator child_end();
1181
1182  friend class ASTStmtReader;
1183};
1184
1185/// \brief Structure used to store the type being destroyed by a
1186/// pseudo-destructor expression.
1187class PseudoDestructorTypeStorage {
1188  /// \brief Either the type source information or the name of the type, if
1189  /// it couldn't be resolved due to type-dependence.
1190  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1191
1192  /// \brief The starting source location of the pseudo-destructor type.
1193  SourceLocation Location;
1194
1195public:
1196  PseudoDestructorTypeStorage() { }
1197
1198  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1199    : Type(II), Location(Loc) { }
1200
1201  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1202
1203  TypeSourceInfo *getTypeSourceInfo() const {
1204    return Type.dyn_cast<TypeSourceInfo *>();
1205  }
1206
1207  IdentifierInfo *getIdentifier() const {
1208    return Type.dyn_cast<IdentifierInfo *>();
1209  }
1210
1211  SourceLocation getLocation() const { return Location; }
1212};
1213
1214/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1215///
1216/// A pseudo-destructor is an expression that looks like a member access to a
1217/// destructor of a scalar type, except that scalar types don't have
1218/// destructors. For example:
1219///
1220/// \code
1221/// typedef int T;
1222/// void f(int *p) {
1223///   p->T::~T();
1224/// }
1225/// \endcode
1226///
1227/// Pseudo-destructors typically occur when instantiating templates such as:
1228///
1229/// \code
1230/// template<typename T>
1231/// void destroy(T* ptr) {
1232///   ptr->T::~T();
1233/// }
1234/// \endcode
1235///
1236/// for scalar types. A pseudo-destructor expression has no run-time semantics
1237/// beyond evaluating the base expression.
1238class CXXPseudoDestructorExpr : public Expr {
1239  /// \brief The base expression (that is being destroyed).
1240  Stmt *Base;
1241
1242  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1243  /// period ('.').
1244  bool IsArrow : 1;
1245
1246  /// \brief The location of the '.' or '->' operator.
1247  SourceLocation OperatorLoc;
1248
1249  /// \brief The nested-name-specifier that follows the operator, if present.
1250  NestedNameSpecifier *Qualifier;
1251
1252  /// \brief The source range that covers the nested-name-specifier, if
1253  /// present.
1254  SourceRange QualifierRange;
1255
1256  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1257  /// expression.
1258  TypeSourceInfo *ScopeType;
1259
1260  /// \brief The location of the '::' in a qualified pseudo-destructor
1261  /// expression.
1262  SourceLocation ColonColonLoc;
1263
1264  /// \brief The location of the '~'.
1265  SourceLocation TildeLoc;
1266
1267  /// \brief The type being destroyed, or its name if we were unable to
1268  /// resolve the name.
1269  PseudoDestructorTypeStorage DestroyedType;
1270
1271public:
1272  CXXPseudoDestructorExpr(ASTContext &Context,
1273                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1274                          NestedNameSpecifier *Qualifier,
1275                          SourceRange QualifierRange,
1276                          TypeSourceInfo *ScopeType,
1277                          SourceLocation ColonColonLoc,
1278                          SourceLocation TildeLoc,
1279                          PseudoDestructorTypeStorage DestroyedType)
1280    : Expr(CXXPseudoDestructorExprClass,
1281           Context.getPointerType(Context.getFunctionType(Context.VoidTy, 0, 0,
1282                                                          false, 0, false,
1283                                                          false, 0, 0,
1284                                                      FunctionType::ExtInfo())),
1285           VK_RValue, OK_Ordinary,
1286           /*isTypeDependent=*/(Base->isTypeDependent() ||
1287            (DestroyedType.getTypeSourceInfo() &&
1288              DestroyedType.getTypeSourceInfo()->getType()->isDependentType())),
1289           /*isValueDependent=*/Base->isValueDependent()),
1290      Base(static_cast<Stmt *>(Base)), IsArrow(isArrow),
1291      OperatorLoc(OperatorLoc), Qualifier(Qualifier),
1292      QualifierRange(QualifierRange),
1293      ScopeType(ScopeType), ColonColonLoc(ColonColonLoc), TildeLoc(TildeLoc),
1294      DestroyedType(DestroyedType) { }
1295
1296  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1297    : Expr(CXXPseudoDestructorExprClass, Shell),
1298      Base(0), IsArrow(false), Qualifier(0), ScopeType(0) { }
1299
1300  void setBase(Expr *E) { Base = E; }
1301  Expr *getBase() const { return cast<Expr>(Base); }
1302
1303  /// \brief Determines whether this member expression actually had
1304  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1305  /// x->Base::foo.
1306  bool hasQualifier() const { return Qualifier != 0; }
1307
1308  /// \brief If the member name was qualified, retrieves the source range of
1309  /// the nested-name-specifier that precedes the member name. Otherwise,
1310  /// returns an empty source range.
1311  SourceRange getQualifierRange() const { return QualifierRange; }
1312  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1313
1314  /// \brief If the member name was qualified, retrieves the
1315  /// nested-name-specifier that precedes the member name. Otherwise, returns
1316  /// NULL.
1317  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1318  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1319
1320  /// \brief Determine whether this pseudo-destructor expression was written
1321  /// using an '->' (otherwise, it used a '.').
1322  bool isArrow() const { return IsArrow; }
1323  void setArrow(bool A) { IsArrow = A; }
1324
1325  /// \brief Retrieve the location of the '.' or '->' operator.
1326  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1327  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1328
1329  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1330  /// expression.
1331  ///
1332  /// Pseudo-destructor expressions can have extra qualification within them
1333  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1334  /// Here, if the object type of the expression is (or may be) a scalar type,
1335  /// \p T may also be a scalar type and, therefore, cannot be part of a
1336  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1337  /// destructor expression.
1338  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1339  void setScopeTypeInfo(TypeSourceInfo *Info) { ScopeType = Info; }
1340
1341  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1342  /// expression.
1343  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1344  void setColonColonLoc(SourceLocation L) { ColonColonLoc = L; }
1345
1346  /// \brief Retrieve the location of the '~'.
1347  SourceLocation getTildeLoc() const { return TildeLoc; }
1348  void setTildeLoc(SourceLocation L) { TildeLoc = L; }
1349
1350  /// \brief Retrieve the source location information for the type
1351  /// being destroyed.
1352  ///
1353  /// This type-source information is available for non-dependent
1354  /// pseudo-destructor expressions and some dependent pseudo-destructor
1355  /// expressions. Returns NULL if we only have the identifier for a
1356  /// dependent pseudo-destructor expression.
1357  TypeSourceInfo *getDestroyedTypeInfo() const {
1358    return DestroyedType.getTypeSourceInfo();
1359  }
1360
1361  /// \brief In a dependent pseudo-destructor expression for which we do not
1362  /// have full type information on the destroyed type, provides the name
1363  /// of the destroyed type.
1364  IdentifierInfo *getDestroyedTypeIdentifier() const {
1365    return DestroyedType.getIdentifier();
1366  }
1367
1368  /// \brief Retrieve the type being destroyed.
1369  QualType getDestroyedType() const;
1370
1371  /// \brief Retrieve the starting location of the type being destroyed.
1372  SourceLocation getDestroyedTypeLoc() const {
1373    return DestroyedType.getLocation();
1374  }
1375
1376  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1377  /// expression.
1378  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1379    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1380  }
1381
1382  /// \brief Set the destroyed type.
1383  void setDestroyedType(TypeSourceInfo *Info) {
1384    DestroyedType = PseudoDestructorTypeStorage(Info);
1385  }
1386
1387  virtual SourceRange getSourceRange() const;
1388
1389  static bool classof(const Stmt *T) {
1390    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1391  }
1392  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1393
1394  // Iterators
1395  virtual child_iterator child_begin();
1396  virtual child_iterator child_end();
1397};
1398
1399/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1400/// implementation of TR1/C++0x type trait templates.
1401/// Example:
1402/// __is_pod(int) == true
1403/// __is_enum(std::string) == false
1404class UnaryTypeTraitExpr : public Expr {
1405  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1406  unsigned UTT : 31;
1407  /// The value of the type trait. Unspecified if dependent.
1408  bool Value : 1;
1409
1410  /// Loc - The location of the type trait keyword.
1411  SourceLocation Loc;
1412
1413  /// RParen - The location of the closing paren.
1414  SourceLocation RParen;
1415
1416  /// The type being queried.
1417  TypeSourceInfo *QueriedType;
1418
1419public:
1420  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1421                     TypeSourceInfo *queried, bool value,
1422                     SourceLocation rparen, QualType ty)
1423    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1424           false,  queried->getType()->isDependentType()),
1425      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1426
1427  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1428    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1429      QueriedType() { }
1430
1431  virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1432
1433  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1434
1435  QualType getQueriedType() const { return QueriedType->getType(); }
1436
1437  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1438
1439  bool getValue() const { return Value; }
1440
1441  static bool classof(const Stmt *T) {
1442    return T->getStmtClass() == UnaryTypeTraitExprClass;
1443  }
1444  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1445
1446  // Iterators
1447  virtual child_iterator child_begin();
1448  virtual child_iterator child_end();
1449
1450  friend class ASTStmtReader;
1451};
1452
1453/// \brief A reference to an overloaded function set, either an
1454/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1455class OverloadExpr : public Expr {
1456  /// The results.  These are undesugared, which is to say, they may
1457  /// include UsingShadowDecls.  Access is relative to the naming
1458  /// class.
1459  // FIXME: Allocate this data after the OverloadExpr subclass.
1460  DeclAccessPair *Results;
1461  unsigned NumResults;
1462
1463  /// The common name of these declarations.
1464  DeclarationNameInfo NameInfo;
1465
1466  /// The scope specifier, if any.
1467  NestedNameSpecifier *Qualifier;
1468
1469  /// The source range of the scope specifier.
1470  SourceRange QualifierRange;
1471
1472protected:
1473  /// True if the name was a template-id.
1474  bool HasExplicitTemplateArgs;
1475
1476  OverloadExpr(StmtClass K, ASTContext &C, QualType T, bool Dependent,
1477               NestedNameSpecifier *Qualifier, SourceRange QRange,
1478               const DeclarationNameInfo &NameInfo,
1479               bool HasTemplateArgs,
1480               UnresolvedSetIterator Begin, UnresolvedSetIterator End);
1481
1482  OverloadExpr(StmtClass K, EmptyShell Empty)
1483    : Expr(K, Empty), Results(0), NumResults(0),
1484      Qualifier(0), HasExplicitTemplateArgs(false) { }
1485
1486public:
1487  /// Computes whether an unresolved lookup on the given declarations
1488  /// and optional template arguments is type- and value-dependent.
1489  static bool ComputeDependence(UnresolvedSetIterator Begin,
1490                                UnresolvedSetIterator End,
1491                                const TemplateArgumentListInfo *Args);
1492
1493  struct FindResult {
1494    OverloadExpr *Expression;
1495    bool IsAddressOfOperand;
1496    bool HasFormOfMemberPointer;
1497  };
1498
1499  /// Finds the overloaded expression in the given expression of
1500  /// OverloadTy.
1501  ///
1502  /// \return the expression (which must be there) and true if it has
1503  /// the particular form of a member pointer expression
1504  static FindResult find(Expr *E) {
1505    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1506
1507    FindResult Result;
1508
1509    E = E->IgnoreParens();
1510    if (isa<UnaryOperator>(E)) {
1511      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
1512      E = cast<UnaryOperator>(E)->getSubExpr();
1513      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
1514
1515      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
1516      Result.IsAddressOfOperand = true;
1517      Result.Expression = Ovl;
1518    } else {
1519      Result.HasFormOfMemberPointer = false;
1520      Result.IsAddressOfOperand = false;
1521      Result.Expression = cast<OverloadExpr>(E);
1522    }
1523
1524    return Result;
1525  }
1526
1527  /// Gets the naming class of this lookup, if any.
1528  CXXRecordDecl *getNamingClass() const;
1529
1530  typedef UnresolvedSetImpl::iterator decls_iterator;
1531  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1532  decls_iterator decls_end() const {
1533    return UnresolvedSetIterator(Results + NumResults);
1534  }
1535
1536  void initializeResults(ASTContext &C,
1537                         UnresolvedSetIterator Begin,UnresolvedSetIterator End);
1538
1539  /// Gets the number of declarations in the unresolved set.
1540  unsigned getNumDecls() const { return NumResults; }
1541
1542  /// Gets the full name info.
1543  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1544  void setNameInfo(const DeclarationNameInfo &N) { NameInfo = N; }
1545
1546  /// Gets the name looked up.
1547  DeclarationName getName() const { return NameInfo.getName(); }
1548  void setName(DeclarationName N) { NameInfo.setName(N); }
1549
1550  /// Gets the location of the name.
1551  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
1552  void setNameLoc(SourceLocation Loc) { NameInfo.setLoc(Loc); }
1553
1554  /// Fetches the nested-name qualifier, if one was given.
1555  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1556  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1557
1558  /// Fetches the range of the nested-name qualifier.
1559  SourceRange getQualifierRange() const { return QualifierRange; }
1560  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1561
1562  /// \brief Determines whether this expression had an explicit
1563  /// template argument list, e.g. f<int>.
1564  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1565
1566  ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
1567
1568  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1569    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1570  }
1571
1572  /// \brief Retrieves the optional explicit template arguments.
1573  /// This points to the same data as getExplicitTemplateArgs(), but
1574  /// returns null if there are no explicit template arguments.
1575  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1576    if (!hasExplicitTemplateArgs()) return 0;
1577    return &getExplicitTemplateArgs();
1578  }
1579
1580  static bool classof(const Stmt *T) {
1581    return T->getStmtClass() == UnresolvedLookupExprClass ||
1582           T->getStmtClass() == UnresolvedMemberExprClass;
1583  }
1584  static bool classof(const OverloadExpr *) { return true; }
1585
1586  friend class ASTStmtReader;
1587  friend class ASTStmtWriter;
1588};
1589
1590/// \brief A reference to a name which we were able to look up during
1591/// parsing but could not resolve to a specific declaration.  This
1592/// arises in several ways:
1593///   * we might be waiting for argument-dependent lookup
1594///   * the name might resolve to an overloaded function
1595/// and eventually:
1596///   * the lookup might have included a function template
1597/// These never include UnresolvedUsingValueDecls, which are always
1598/// class members and therefore appear only in
1599/// UnresolvedMemberLookupExprs.
1600class UnresolvedLookupExpr : public OverloadExpr {
1601  /// True if these lookup results should be extended by
1602  /// argument-dependent lookup if this is the operand of a function
1603  /// call.
1604  bool RequiresADL;
1605
1606  /// True if these lookup results are overloaded.  This is pretty
1607  /// trivially rederivable if we urgently need to kill this field.
1608  bool Overloaded;
1609
1610  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1611  /// any.  This can generally be recalculated from the context chain,
1612  /// but that can be fairly expensive for unqualified lookups.  If we
1613  /// want to improve memory use here, this could go in a union
1614  /// against the qualified-lookup bits.
1615  CXXRecordDecl *NamingClass;
1616
1617  UnresolvedLookupExpr(ASTContext &C, QualType T, bool Dependent,
1618                       CXXRecordDecl *NamingClass,
1619                       NestedNameSpecifier *Qualifier, SourceRange QRange,
1620                       const DeclarationNameInfo &NameInfo,
1621                       bool RequiresADL, bool Overloaded, bool HasTemplateArgs,
1622                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
1623    : OverloadExpr(UnresolvedLookupExprClass, C, T,
1624                   Dependent, Qualifier,  QRange, NameInfo, HasTemplateArgs,
1625                   Begin, End),
1626      RequiresADL(RequiresADL), Overloaded(Overloaded), NamingClass(NamingClass)
1627  {}
1628
1629  UnresolvedLookupExpr(EmptyShell Empty)
1630    : OverloadExpr(UnresolvedLookupExprClass, Empty),
1631      RequiresADL(false), Overloaded(false), NamingClass(0)
1632  {}
1633
1634public:
1635  static UnresolvedLookupExpr *Create(ASTContext &C,
1636                                      bool Dependent,
1637                                      CXXRecordDecl *NamingClass,
1638                                      NestedNameSpecifier *Qualifier,
1639                                      SourceRange QualifierRange,
1640                                      const DeclarationNameInfo &NameInfo,
1641                                      bool ADL, bool Overloaded,
1642                                      UnresolvedSetIterator Begin,
1643                                      UnresolvedSetIterator End) {
1644    return new(C) UnresolvedLookupExpr(C,
1645                                       Dependent ? C.DependentTy : C.OverloadTy,
1646                                       Dependent, NamingClass,
1647                                       Qualifier, QualifierRange, NameInfo,
1648                                       ADL, Overloaded, false,
1649                                       Begin, End);
1650  }
1651
1652  static UnresolvedLookupExpr *Create(ASTContext &C,
1653                                      bool Dependent,
1654                                      CXXRecordDecl *NamingClass,
1655                                      NestedNameSpecifier *Qualifier,
1656                                      SourceRange QualifierRange,
1657                                      const DeclarationNameInfo &NameInfo,
1658                                      bool ADL,
1659                                      const TemplateArgumentListInfo &Args,
1660                                      UnresolvedSetIterator Begin,
1661                                      UnresolvedSetIterator End);
1662
1663  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1664                                           unsigned NumTemplateArgs);
1665
1666  /// True if this declaration should be extended by
1667  /// argument-dependent lookup.
1668  bool requiresADL() const { return RequiresADL; }
1669  void setRequiresADL(bool V) { RequiresADL = V; }
1670
1671  /// True if this lookup is overloaded.
1672  bool isOverloaded() const { return Overloaded; }
1673  void setOverloaded(bool V) { Overloaded = V; }
1674
1675  /// Gets the 'naming class' (in the sense of C++0x
1676  /// [class.access.base]p5) of the lookup.  This is the scope
1677  /// that was looked in to find these results.
1678  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1679  void setNamingClass(CXXRecordDecl *D) { NamingClass = D; }
1680
1681  // Note that, inconsistently with the explicit-template-argument AST
1682  // nodes, users are *forbidden* from calling these methods on objects
1683  // without explicit template arguments.
1684
1685  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1686    assert(hasExplicitTemplateArgs());
1687    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1688  }
1689
1690  /// Gets a reference to the explicit template argument list.
1691  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1692    assert(hasExplicitTemplateArgs());
1693    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1694  }
1695
1696  /// \brief Retrieves the optional explicit template arguments.
1697  /// This points to the same data as getExplicitTemplateArgs(), but
1698  /// returns null if there are no explicit template arguments.
1699  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1700    if (!hasExplicitTemplateArgs()) return 0;
1701    return &getExplicitTemplateArgs();
1702  }
1703
1704  /// \brief Copies the template arguments (if present) into the given
1705  /// structure.
1706  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1707    getExplicitTemplateArgs().copyInto(List);
1708  }
1709
1710  SourceLocation getLAngleLoc() const {
1711    return getExplicitTemplateArgs().LAngleLoc;
1712  }
1713
1714  SourceLocation getRAngleLoc() const {
1715    return getExplicitTemplateArgs().RAngleLoc;
1716  }
1717
1718  TemplateArgumentLoc const *getTemplateArgs() const {
1719    return getExplicitTemplateArgs().getTemplateArgs();
1720  }
1721
1722  unsigned getNumTemplateArgs() const {
1723    return getExplicitTemplateArgs().NumTemplateArgs;
1724  }
1725
1726  virtual SourceRange getSourceRange() const {
1727    SourceRange Range(getNameInfo().getSourceRange());
1728    if (getQualifier()) Range.setBegin(getQualifierRange().getBegin());
1729    if (hasExplicitTemplateArgs()) Range.setEnd(getRAngleLoc());
1730    return Range;
1731  }
1732
1733  virtual StmtIterator child_begin();
1734  virtual StmtIterator child_end();
1735
1736  static bool classof(const Stmt *T) {
1737    return T->getStmtClass() == UnresolvedLookupExprClass;
1738  }
1739  static bool classof(const UnresolvedLookupExpr *) { return true; }
1740};
1741
1742/// \brief A qualified reference to a name whose declaration cannot
1743/// yet be resolved.
1744///
1745/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
1746/// it expresses a reference to a declaration such as
1747/// X<T>::value. The difference, however, is that an
1748/// DependentScopeDeclRefExpr node is used only within C++ templates when
1749/// the qualification (e.g., X<T>::) refers to a dependent type. In
1750/// this case, X<T>::value cannot resolve to a declaration because the
1751/// declaration will differ from on instantiation of X<T> to the
1752/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
1753/// qualifier (X<T>::) and the name of the entity being referenced
1754/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
1755/// declaration can be found.
1756class DependentScopeDeclRefExpr : public Expr {
1757  /// The name of the entity we will be referencing.
1758  DeclarationNameInfo NameInfo;
1759
1760  /// QualifierRange - The source range that covers the
1761  /// nested-name-specifier.
1762  SourceRange QualifierRange;
1763
1764  /// \brief The nested-name-specifier that qualifies this unresolved
1765  /// declaration name.
1766  NestedNameSpecifier *Qualifier;
1767
1768  /// \brief Whether the name includes explicit template arguments.
1769  bool HasExplicitTemplateArgs;
1770
1771  DependentScopeDeclRefExpr(QualType T,
1772                            NestedNameSpecifier *Qualifier,
1773                            SourceRange QualifierRange,
1774                            const DeclarationNameInfo &NameInfo,
1775                            bool HasExplicitTemplateArgs)
1776    : Expr(DependentScopeDeclRefExprClass, T, VK_LValue, OK_Ordinary,
1777           true, true),
1778      NameInfo(NameInfo), QualifierRange(QualifierRange), Qualifier(Qualifier),
1779      HasExplicitTemplateArgs(HasExplicitTemplateArgs)
1780  {}
1781
1782public:
1783  static DependentScopeDeclRefExpr *Create(ASTContext &C,
1784                                           NestedNameSpecifier *Qualifier,
1785                                           SourceRange QualifierRange,
1786                                           const DeclarationNameInfo &NameInfo,
1787                              const TemplateArgumentListInfo *TemplateArgs = 0);
1788
1789  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
1790                                                unsigned NumTemplateArgs);
1791
1792  /// \brief Retrieve the name that this expression refers to.
1793  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1794  void setNameInfo(const DeclarationNameInfo &N) { NameInfo =  N; }
1795
1796  /// \brief Retrieve the name that this expression refers to.
1797  DeclarationName getDeclName() const { return NameInfo.getName(); }
1798  void setDeclName(DeclarationName N) { NameInfo.setName(N); }
1799
1800  /// \brief Retrieve the location of the name within the expression.
1801  SourceLocation getLocation() const { return NameInfo.getLoc(); }
1802  void setLocation(SourceLocation L) { NameInfo.setLoc(L); }
1803
1804  /// \brief Retrieve the source range of the nested-name-specifier.
1805  SourceRange getQualifierRange() const { return QualifierRange; }
1806  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1807
1808  /// \brief Retrieve the nested-name-specifier that qualifies this
1809  /// declaration.
1810  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1811  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1812
1813  /// Determines whether this lookup had explicit template arguments.
1814  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1815
1816  // Note that, inconsistently with the explicit-template-argument AST
1817  // nodes, users are *forbidden* from calling these methods on objects
1818  // without explicit template arguments.
1819
1820  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1821    assert(hasExplicitTemplateArgs());
1822    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1823  }
1824
1825  /// Gets a reference to the explicit template argument list.
1826  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1827    assert(hasExplicitTemplateArgs());
1828    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1829  }
1830
1831  /// \brief Retrieves the optional explicit template arguments.
1832  /// This points to the same data as getExplicitTemplateArgs(), but
1833  /// returns null if there are no explicit template arguments.
1834  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1835    if (!hasExplicitTemplateArgs()) return 0;
1836    return &getExplicitTemplateArgs();
1837  }
1838
1839  /// \brief Copies the template arguments (if present) into the given
1840  /// structure.
1841  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1842    getExplicitTemplateArgs().copyInto(List);
1843  }
1844
1845  SourceLocation getLAngleLoc() const {
1846    return getExplicitTemplateArgs().LAngleLoc;
1847  }
1848
1849  SourceLocation getRAngleLoc() const {
1850    return getExplicitTemplateArgs().RAngleLoc;
1851  }
1852
1853  TemplateArgumentLoc const *getTemplateArgs() const {
1854    return getExplicitTemplateArgs().getTemplateArgs();
1855  }
1856
1857  unsigned getNumTemplateArgs() const {
1858    return getExplicitTemplateArgs().NumTemplateArgs;
1859  }
1860
1861  virtual SourceRange getSourceRange() const {
1862    SourceRange Range(QualifierRange.getBegin(), getLocation());
1863    if (hasExplicitTemplateArgs())
1864      Range.setEnd(getRAngleLoc());
1865    return Range;
1866  }
1867
1868  static bool classof(const Stmt *T) {
1869    return T->getStmtClass() == DependentScopeDeclRefExprClass;
1870  }
1871  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
1872
1873  virtual StmtIterator child_begin();
1874  virtual StmtIterator child_end();
1875
1876  friend class ASTStmtReader;
1877  friend class ASTStmtWriter;
1878};
1879
1880class CXXExprWithTemporaries : public Expr {
1881  Stmt *SubExpr;
1882
1883  CXXTemporary **Temps;
1884  unsigned NumTemps;
1885
1886  CXXExprWithTemporaries(ASTContext &C, Expr *SubExpr, CXXTemporary **Temps,
1887                         unsigned NumTemps);
1888
1889public:
1890  CXXExprWithTemporaries(EmptyShell Empty)
1891    : Expr(CXXExprWithTemporariesClass, Empty),
1892      SubExpr(0), Temps(0), NumTemps(0) {}
1893
1894  static CXXExprWithTemporaries *Create(ASTContext &C, Expr *SubExpr,
1895                                        CXXTemporary **Temps,
1896                                        unsigned NumTemps);
1897
1898  unsigned getNumTemporaries() const { return NumTemps; }
1899  void setNumTemporaries(ASTContext &C, unsigned N);
1900
1901  CXXTemporary *getTemporary(unsigned i) {
1902    assert(i < NumTemps && "Index out of range");
1903    return Temps[i];
1904  }
1905  const CXXTemporary *getTemporary(unsigned i) const {
1906    return const_cast<CXXExprWithTemporaries*>(this)->getTemporary(i);
1907  }
1908  void setTemporary(unsigned i, CXXTemporary *T) {
1909    assert(i < NumTemps && "Index out of range");
1910    Temps[i] = T;
1911  }
1912
1913  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1914  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1915  void setSubExpr(Expr *E) { SubExpr = E; }
1916
1917  virtual SourceRange getSourceRange() const {
1918    return SubExpr->getSourceRange();
1919  }
1920
1921  // Implement isa/cast/dyncast/etc.
1922  static bool classof(const Stmt *T) {
1923    return T->getStmtClass() == CXXExprWithTemporariesClass;
1924  }
1925  static bool classof(const CXXExprWithTemporaries *) { return true; }
1926
1927  // Iterators
1928  virtual child_iterator child_begin();
1929  virtual child_iterator child_end();
1930};
1931
1932/// \brief Describes an explicit type conversion that uses functional
1933/// notion but could not be resolved because one or more arguments are
1934/// type-dependent.
1935///
1936/// The explicit type conversions expressed by
1937/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
1938/// where \c T is some type and \c a1, a2, ..., aN are values, and
1939/// either \C T is a dependent type or one or more of the \c a's is
1940/// type-dependent. For example, this would occur in a template such
1941/// as:
1942///
1943/// \code
1944///   template<typename T, typename A1>
1945///   inline T make_a(const A1& a1) {
1946///     return T(a1);
1947///   }
1948/// \endcode
1949///
1950/// When the returned expression is instantiated, it may resolve to a
1951/// constructor call, conversion function call, or some kind of type
1952/// conversion.
1953class CXXUnresolvedConstructExpr : public Expr {
1954  /// \brief The type being constructed.
1955  TypeSourceInfo *Type;
1956
1957  /// \brief The location of the left parentheses ('(').
1958  SourceLocation LParenLoc;
1959
1960  /// \brief The location of the right parentheses (')').
1961  SourceLocation RParenLoc;
1962
1963  /// \brief The number of arguments used to construct the type.
1964  unsigned NumArgs;
1965
1966  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
1967                             SourceLocation LParenLoc,
1968                             Expr **Args,
1969                             unsigned NumArgs,
1970                             SourceLocation RParenLoc);
1971
1972  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
1973    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
1974
1975  friend class ASTStmtReader;
1976
1977public:
1978  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
1979                                            TypeSourceInfo *Type,
1980                                            SourceLocation LParenLoc,
1981                                            Expr **Args,
1982                                            unsigned NumArgs,
1983                                            SourceLocation RParenLoc);
1984
1985  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
1986                                                 unsigned NumArgs);
1987
1988  /// \brief Retrieve the type that is being constructed, as specified
1989  /// in the source code.
1990  QualType getTypeAsWritten() const { return Type->getType(); }
1991
1992  /// \brief Retrieve the type source information for the type being
1993  /// constructed.
1994  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1995
1996  /// \brief Retrieve the location of the left parentheses ('(') that
1997  /// precedes the argument list.
1998  SourceLocation getLParenLoc() const { return LParenLoc; }
1999  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2000
2001  /// \brief Retrieve the location of the right parentheses (')') that
2002  /// follows the argument list.
2003  SourceLocation getRParenLoc() const { return RParenLoc; }
2004  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2005
2006  /// \brief Retrieve the number of arguments.
2007  unsigned arg_size() const { return NumArgs; }
2008
2009  typedef Expr** arg_iterator;
2010  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2011  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2012
2013  typedef const Expr* const * const_arg_iterator;
2014  const_arg_iterator arg_begin() const {
2015    return reinterpret_cast<const Expr* const *>(this + 1);
2016  }
2017  const_arg_iterator arg_end() const {
2018    return arg_begin() + NumArgs;
2019  }
2020
2021  Expr *getArg(unsigned I) {
2022    assert(I < NumArgs && "Argument index out-of-range");
2023    return *(arg_begin() + I);
2024  }
2025
2026  const Expr *getArg(unsigned I) const {
2027    assert(I < NumArgs && "Argument index out-of-range");
2028    return *(arg_begin() + I);
2029  }
2030
2031  void setArg(unsigned I, Expr *E) {
2032    assert(I < NumArgs && "Argument index out-of-range");
2033    *(arg_begin() + I) = E;
2034  }
2035
2036  virtual SourceRange getSourceRange() const;
2037
2038  static bool classof(const Stmt *T) {
2039    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2040  }
2041  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2042
2043  // Iterators
2044  virtual child_iterator child_begin();
2045  virtual child_iterator child_end();
2046};
2047
2048/// \brief Represents a C++ member access expression where the actual
2049/// member referenced could not be resolved because the base
2050/// expression or the member name was dependent.
2051///
2052/// Like UnresolvedMemberExprs, these can be either implicit or
2053/// explicit accesses.  It is only possible to get one of these with
2054/// an implicit access if a qualifier is provided.
2055class CXXDependentScopeMemberExpr : public Expr {
2056  /// \brief The expression for the base pointer or class reference,
2057  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2058  Stmt *Base;
2059
2060  /// \brief The type of the base expression.  Never null, even for
2061  /// implicit accesses.
2062  QualType BaseType;
2063
2064  /// \brief Whether this member expression used the '->' operator or
2065  /// the '.' operator.
2066  bool IsArrow : 1;
2067
2068  /// \brief Whether this member expression has explicitly-specified template
2069  /// arguments.
2070  bool HasExplicitTemplateArgs : 1;
2071
2072  /// \brief The location of the '->' or '.' operator.
2073  SourceLocation OperatorLoc;
2074
2075  /// \brief The nested-name-specifier that precedes the member name, if any.
2076  NestedNameSpecifier *Qualifier;
2077
2078  /// \brief The source range covering the nested name specifier.
2079  SourceRange QualifierRange;
2080
2081  /// \brief In a qualified member access expression such as t->Base::f, this
2082  /// member stores the resolves of name lookup in the context of the member
2083  /// access expression, to be used at instantiation time.
2084  ///
2085  /// FIXME: This member, along with the Qualifier and QualifierRange, could
2086  /// be stuck into a structure that is optionally allocated at the end of
2087  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2088  NamedDecl *FirstQualifierFoundInScope;
2089
2090  /// \brief The member to which this member expression refers, which
2091  /// can be name, overloaded operator, or destructor.
2092  /// FIXME: could also be a template-id
2093  DeclarationNameInfo MemberNameInfo;
2094
2095  CXXDependentScopeMemberExpr(ASTContext &C,
2096                          Expr *Base, QualType BaseType, bool IsArrow,
2097                          SourceLocation OperatorLoc,
2098                          NestedNameSpecifier *Qualifier,
2099                          SourceRange QualifierRange,
2100                          NamedDecl *FirstQualifierFoundInScope,
2101                          DeclarationNameInfo MemberNameInfo,
2102                          const TemplateArgumentListInfo *TemplateArgs);
2103
2104public:
2105  CXXDependentScopeMemberExpr(ASTContext &C,
2106                          Expr *Base, QualType BaseType,
2107                          bool IsArrow,
2108                          SourceLocation OperatorLoc,
2109                          NestedNameSpecifier *Qualifier,
2110                          SourceRange QualifierRange,
2111                          NamedDecl *FirstQualifierFoundInScope,
2112                          DeclarationNameInfo MemberNameInfo)
2113  : Expr(CXXDependentScopeMemberExprClass, C.DependentTy,
2114         VK_LValue, OK_Ordinary, true, true),
2115    Base(Base), BaseType(BaseType), IsArrow(IsArrow),
2116    HasExplicitTemplateArgs(false), OperatorLoc(OperatorLoc),
2117    Qualifier(Qualifier), QualifierRange(QualifierRange),
2118    FirstQualifierFoundInScope(FirstQualifierFoundInScope),
2119    MemberNameInfo(MemberNameInfo) { }
2120
2121  static CXXDependentScopeMemberExpr *
2122  Create(ASTContext &C,
2123         Expr *Base, QualType BaseType, bool IsArrow,
2124         SourceLocation OperatorLoc,
2125         NestedNameSpecifier *Qualifier,
2126         SourceRange QualifierRange,
2127         NamedDecl *FirstQualifierFoundInScope,
2128         DeclarationNameInfo MemberNameInfo,
2129         const TemplateArgumentListInfo *TemplateArgs);
2130
2131  static CXXDependentScopeMemberExpr *
2132  CreateEmpty(ASTContext &C, unsigned NumTemplateArgs);
2133
2134  /// \brief True if this is an implicit access, i.e. one in which the
2135  /// member being accessed was not written in the source.  The source
2136  /// location of the operator is invalid in this case.
2137  bool isImplicitAccess() const { return Base == 0; }
2138
2139  /// \brief Retrieve the base object of this member expressions,
2140  /// e.g., the \c x in \c x.m.
2141  Expr *getBase() const {
2142    assert(!isImplicitAccess());
2143    return cast<Expr>(Base);
2144  }
2145  void setBase(Expr *E) { Base = E; }
2146
2147  QualType getBaseType() const { return BaseType; }
2148  void setBaseType(QualType T) { BaseType = T; }
2149
2150  /// \brief Determine whether this member expression used the '->'
2151  /// operator; otherwise, it used the '.' operator.
2152  bool isArrow() const { return IsArrow; }
2153  void setArrow(bool A) { IsArrow = A; }
2154
2155  /// \brief Retrieve the location of the '->' or '.' operator.
2156  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2157  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2158
2159  /// \brief Retrieve the nested-name-specifier that qualifies the member
2160  /// name.
2161  NestedNameSpecifier *getQualifier() const { return Qualifier; }
2162  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
2163
2164  /// \brief Retrieve the source range covering the nested-name-specifier
2165  /// that qualifies the member name.
2166  SourceRange getQualifierRange() const { return QualifierRange; }
2167  void setQualifierRange(SourceRange R) { QualifierRange = R; }
2168
2169  /// \brief Retrieve the first part of the nested-name-specifier that was
2170  /// found in the scope of the member access expression when the member access
2171  /// was initially parsed.
2172  ///
2173  /// This function only returns a useful result when member access expression
2174  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2175  /// returned by this function describes what was found by unqualified name
2176  /// lookup for the identifier "Base" within the scope of the member access
2177  /// expression itself. At template instantiation time, this information is
2178  /// combined with the results of name lookup into the type of the object
2179  /// expression itself (the class type of x).
2180  NamedDecl *getFirstQualifierFoundInScope() const {
2181    return FirstQualifierFoundInScope;
2182  }
2183  void setFirstQualifierFoundInScope(NamedDecl *D) {
2184    FirstQualifierFoundInScope = D;
2185  }
2186
2187  /// \brief Retrieve the name of the member that this expression
2188  /// refers to.
2189  const DeclarationNameInfo &getMemberNameInfo() const {
2190    return MemberNameInfo;
2191  }
2192  void setMemberNameInfo(const DeclarationNameInfo &N) { MemberNameInfo = N; }
2193
2194  /// \brief Retrieve the name of the member that this expression
2195  /// refers to.
2196  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2197  void setMember(DeclarationName N) { MemberNameInfo.setName(N); }
2198
2199  // \brief Retrieve the location of the name of the member that this
2200  // expression refers to.
2201  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2202  void setMemberLoc(SourceLocation L) { MemberNameInfo.setLoc(L); }
2203
2204  /// \brief Determines whether this member expression actually had a C++
2205  /// template argument list explicitly specified, e.g., x.f<int>.
2206  bool hasExplicitTemplateArgs() const {
2207    return HasExplicitTemplateArgs;
2208  }
2209
2210  /// \brief Retrieve the explicit template argument list that followed the
2211  /// member template name, if any.
2212  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2213    assert(HasExplicitTemplateArgs);
2214    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2215  }
2216
2217  /// \brief Retrieve the explicit template argument list that followed the
2218  /// member template name, if any.
2219  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2220    return const_cast<CXXDependentScopeMemberExpr *>(this)
2221             ->getExplicitTemplateArgs();
2222  }
2223
2224  /// \brief Retrieves the optional explicit template arguments.
2225  /// This points to the same data as getExplicitTemplateArgs(), but
2226  /// returns null if there are no explicit template arguments.
2227  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2228    if (!hasExplicitTemplateArgs()) return 0;
2229    return &getExplicitTemplateArgs();
2230  }
2231
2232  /// \brief Copies the template arguments (if present) into the given
2233  /// structure.
2234  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2235    getExplicitTemplateArgs().copyInto(List);
2236  }
2237
2238  /// \brief Initializes the template arguments using the given structure.
2239  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2240    getExplicitTemplateArgs().initializeFrom(List);
2241  }
2242
2243  /// \brief Retrieve the location of the left angle bracket following the
2244  /// member name ('<'), if any.
2245  SourceLocation getLAngleLoc() const {
2246    return getExplicitTemplateArgs().LAngleLoc;
2247  }
2248
2249  /// \brief Retrieve the template arguments provided as part of this
2250  /// template-id.
2251  const TemplateArgumentLoc *getTemplateArgs() const {
2252    return getExplicitTemplateArgs().getTemplateArgs();
2253  }
2254
2255  /// \brief Retrieve the number of template arguments provided as part of this
2256  /// template-id.
2257  unsigned getNumTemplateArgs() const {
2258    return getExplicitTemplateArgs().NumTemplateArgs;
2259  }
2260
2261  /// \brief Retrieve the location of the right angle bracket following the
2262  /// template arguments ('>').
2263  SourceLocation getRAngleLoc() const {
2264    return getExplicitTemplateArgs().RAngleLoc;
2265  }
2266
2267  virtual SourceRange getSourceRange() const {
2268    SourceRange Range;
2269    if (!isImplicitAccess())
2270      Range.setBegin(Base->getSourceRange().getBegin());
2271    else if (getQualifier())
2272      Range.setBegin(getQualifierRange().getBegin());
2273    else
2274      Range.setBegin(MemberNameInfo.getBeginLoc());
2275
2276    if (hasExplicitTemplateArgs())
2277      Range.setEnd(getRAngleLoc());
2278    else
2279      Range.setEnd(MemberNameInfo.getEndLoc());
2280    return Range;
2281  }
2282
2283  static bool classof(const Stmt *T) {
2284    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2285  }
2286  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2287
2288  // Iterators
2289  virtual child_iterator child_begin();
2290  virtual child_iterator child_end();
2291
2292  friend class ASTStmtReader;
2293  friend class ASTStmtWriter;
2294};
2295
2296/// \brief Represents a C++ member access expression for which lookup
2297/// produced a set of overloaded functions.
2298///
2299/// The member access may be explicit or implicit:
2300///    struct A {
2301///      int a, b;
2302///      int explicitAccess() { return this->a + this->A::b; }
2303///      int implicitAccess() { return a + A::b; }
2304///    };
2305///
2306/// In the final AST, an explicit access always becomes a MemberExpr.
2307/// An implicit access may become either a MemberExpr or a
2308/// DeclRefExpr, depending on whether the member is static.
2309class UnresolvedMemberExpr : public OverloadExpr {
2310  /// \brief Whether this member expression used the '->' operator or
2311  /// the '.' operator.
2312  bool IsArrow : 1;
2313
2314  /// \brief Whether the lookup results contain an unresolved using
2315  /// declaration.
2316  bool HasUnresolvedUsing : 1;
2317
2318  /// \brief The expression for the base pointer or class reference,
2319  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2320  /// member expression
2321  Stmt *Base;
2322
2323  /// \brief The type of the base expression;  never null.
2324  QualType BaseType;
2325
2326  /// \brief The location of the '->' or '.' operator.
2327  SourceLocation OperatorLoc;
2328
2329  UnresolvedMemberExpr(ASTContext &C, QualType T, bool Dependent,
2330                       bool HasUnresolvedUsing,
2331                       Expr *Base, QualType BaseType, bool IsArrow,
2332                       SourceLocation OperatorLoc,
2333                       NestedNameSpecifier *Qualifier,
2334                       SourceRange QualifierRange,
2335                       const DeclarationNameInfo &MemberNameInfo,
2336                       const TemplateArgumentListInfo *TemplateArgs,
2337                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2338
2339  UnresolvedMemberExpr(EmptyShell Empty)
2340    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2341      HasUnresolvedUsing(false), Base(0) { }
2342
2343public:
2344  static UnresolvedMemberExpr *
2345  Create(ASTContext &C, bool Dependent, bool HasUnresolvedUsing,
2346         Expr *Base, QualType BaseType, bool IsArrow,
2347         SourceLocation OperatorLoc,
2348         NestedNameSpecifier *Qualifier,
2349         SourceRange QualifierRange,
2350         const DeclarationNameInfo &MemberNameInfo,
2351         const TemplateArgumentListInfo *TemplateArgs,
2352         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2353
2354  static UnresolvedMemberExpr *
2355  CreateEmpty(ASTContext &C, unsigned NumTemplateArgs);
2356
2357  /// \brief True if this is an implicit access, i.e. one in which the
2358  /// member being accessed was not written in the source.  The source
2359  /// location of the operator is invalid in this case.
2360  bool isImplicitAccess() const { return Base == 0; }
2361
2362  /// \brief Retrieve the base object of this member expressions,
2363  /// e.g., the \c x in \c x.m.
2364  Expr *getBase() {
2365    assert(!isImplicitAccess());
2366    return cast<Expr>(Base);
2367  }
2368  const Expr *getBase() const {
2369    assert(!isImplicitAccess());
2370    return cast<Expr>(Base);
2371  }
2372  void setBase(Expr *E) { Base = E; }
2373
2374  QualType getBaseType() const { return BaseType; }
2375  void setBaseType(QualType T) { BaseType = T; }
2376
2377  /// \brief Determine whether the lookup results contain an unresolved using
2378  /// declaration.
2379  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2380  void setHasUnresolvedUsing(bool V) { HasUnresolvedUsing = V; }
2381
2382  /// \brief Determine whether this member expression used the '->'
2383  /// operator; otherwise, it used the '.' operator.
2384  bool isArrow() const { return IsArrow; }
2385  void setArrow(bool A) { IsArrow = A; }
2386
2387  /// \brief Retrieve the location of the '->' or '.' operator.
2388  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2389  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2390
2391  /// \brief Retrieves the naming class of this lookup.
2392  CXXRecordDecl *getNamingClass() const;
2393
2394  /// \brief Retrieve the full name info for the member that this expression
2395  /// refers to.
2396  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
2397  void setMemberNameInfo(const DeclarationNameInfo &N) { setNameInfo(N); }
2398
2399  /// \brief Retrieve the name of the member that this expression
2400  /// refers to.
2401  DeclarationName getMemberName() const { return getName(); }
2402  void setMemberName(DeclarationName N) { setName(N); }
2403
2404  // \brief Retrieve the location of the name of the member that this
2405  // expression refers to.
2406  SourceLocation getMemberLoc() const { return getNameLoc(); }
2407  void setMemberLoc(SourceLocation L) { setNameLoc(L); }
2408
2409  /// \brief Retrieve the explicit template argument list that followed the
2410  /// member template name.
2411  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2412    assert(hasExplicitTemplateArgs());
2413    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2414  }
2415
2416  /// \brief Retrieve the explicit template argument list that followed the
2417  /// member template name, if any.
2418  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2419    assert(hasExplicitTemplateArgs());
2420    return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
2421  }
2422
2423  /// \brief Retrieves the optional explicit template arguments.
2424  /// This points to the same data as getExplicitTemplateArgs(), but
2425  /// returns null if there are no explicit template arguments.
2426  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2427    if (!hasExplicitTemplateArgs()) return 0;
2428    return &getExplicitTemplateArgs();
2429  }
2430
2431  /// \brief Copies the template arguments into the given structure.
2432  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2433    getExplicitTemplateArgs().copyInto(List);
2434  }
2435
2436  /// \brief Retrieve the location of the left angle bracket following
2437  /// the member name ('<').
2438  SourceLocation getLAngleLoc() const {
2439    return getExplicitTemplateArgs().LAngleLoc;
2440  }
2441
2442  /// \brief Retrieve the template arguments provided as part of this
2443  /// template-id.
2444  const TemplateArgumentLoc *getTemplateArgs() const {
2445    return getExplicitTemplateArgs().getTemplateArgs();
2446  }
2447
2448  /// \brief Retrieve the number of template arguments provided as
2449  /// part of this template-id.
2450  unsigned getNumTemplateArgs() const {
2451    return getExplicitTemplateArgs().NumTemplateArgs;
2452  }
2453
2454  /// \brief Retrieve the location of the right angle bracket
2455  /// following the template arguments ('>').
2456  SourceLocation getRAngleLoc() const {
2457    return getExplicitTemplateArgs().RAngleLoc;
2458  }
2459
2460  virtual SourceRange getSourceRange() const {
2461    SourceRange Range = getMemberNameInfo().getSourceRange();
2462    if (!isImplicitAccess())
2463      Range.setBegin(Base->getSourceRange().getBegin());
2464    else if (getQualifier())
2465      Range.setBegin(getQualifierRange().getBegin());
2466
2467    if (hasExplicitTemplateArgs())
2468      Range.setEnd(getRAngleLoc());
2469    return Range;
2470  }
2471
2472  static bool classof(const Stmt *T) {
2473    return T->getStmtClass() == UnresolvedMemberExprClass;
2474  }
2475  static bool classof(const UnresolvedMemberExpr *) { return true; }
2476
2477  // Iterators
2478  virtual child_iterator child_begin();
2479  virtual child_iterator child_end();
2480};
2481
2482/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
2483///
2484/// The noexcept expression tests whether a given expression might throw. Its
2485/// result is a boolean constant.
2486class CXXNoexceptExpr : public Expr {
2487  bool Value : 1;
2488  Stmt *Operand;
2489  SourceRange Range;
2490
2491  friend class ASTStmtReader;
2492
2493public:
2494  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
2495                  SourceLocation Keyword, SourceLocation RParen)
2496    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
2497           /*TypeDependent*/false,
2498           /*ValueDependent*/Val == CT_Dependent),
2499      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
2500  { }
2501
2502  CXXNoexceptExpr(EmptyShell Empty)
2503    : Expr(CXXNoexceptExprClass, Empty)
2504  { }
2505
2506  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
2507
2508  virtual SourceRange getSourceRange() const { return Range; }
2509
2510  bool getValue() const { return Value; }
2511
2512  static bool classof(const Stmt *T) {
2513    return T->getStmtClass() == CXXNoexceptExprClass;
2514  }
2515  static bool classof(const CXXNoexceptExpr *) { return true; }
2516
2517  // Iterators
2518  virtual child_iterator child_begin();
2519  virtual child_iterator child_end();
2520};
2521
2522inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
2523  if (isa<UnresolvedLookupExpr>(this))
2524    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2525  else
2526    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2527}
2528
2529}  // end namespace clang
2530
2531#endif
2532