Stmt.h revision 16f0049415ec596504891259e2a83e19871c0d52
1//===--- Stmt.h - Classes for representing statements -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Stmt interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_STMT_H
15#define LLVM_CLANG_AST_STMT_H
16
17#include "llvm/Support/Casting.h"
18#include "llvm/Support/raw_ostream.h"
19#include "clang/Basic/SourceLocation.h"
20#include "clang/AST/StmtIterator.h"
21#include "clang/AST/DeclGroup.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/iterator.h"
24#include "clang/AST/ASTContext.h"
25#include <string>
26using llvm::dyn_cast_or_null;
27
28namespace clang {
29  class ASTContext;
30  class Expr;
31  class Decl;
32  class ParmVarDecl;
33  class QualType;
34  class IdentifierInfo;
35  class SourceManager;
36  class StringLiteral;
37  class SwitchStmt;
38  class PrinterHelper;
39
40  //===----------------------------------------------------------------------===//
41  // ExprIterator - Iterators for iterating over Stmt* arrays that contain
42  //  only Expr*.  This is needed because AST nodes use Stmt* arrays to store
43  //  references to children (to be compatible with StmtIterator).
44  //===----------------------------------------------------------------------===//
45
46  class Stmt;
47  class Expr;
48
49  class ExprIterator {
50    Stmt** I;
51  public:
52    ExprIterator(Stmt** i) : I(i) {}
53    ExprIterator() : I(0) {}
54    ExprIterator& operator++() { ++I; return *this; }
55    ExprIterator operator-(size_t i) { return I-i; }
56    ExprIterator operator+(size_t i) { return I+i; }
57    Expr* operator[](size_t idx);
58    // FIXME: Verify that this will correctly return a signed distance.
59    signed operator-(const ExprIterator& R) const { return I - R.I; }
60    Expr* operator*() const;
61    Expr* operator->() const;
62    bool operator==(const ExprIterator& R) const { return I == R.I; }
63    bool operator!=(const ExprIterator& R) const { return I != R.I; }
64    bool operator>(const ExprIterator& R) const { return I > R.I; }
65    bool operator>=(const ExprIterator& R) const { return I >= R.I; }
66  };
67
68  class ConstExprIterator {
69    Stmt* const * I;
70  public:
71    ConstExprIterator(Stmt* const* i) : I(i) {}
72    ConstExprIterator() : I(0) {}
73    ConstExprIterator& operator++() { ++I; return *this; }
74    ConstExprIterator operator+(size_t i) { return I+i; }
75    ConstExprIterator operator-(size_t i) { return I-i; }
76    const Expr * operator[](size_t idx) const;
77    signed operator-(const ConstExprIterator& R) const { return I - R.I; }
78    const Expr * operator*() const;
79    const Expr * operator->() const;
80    bool operator==(const ConstExprIterator& R) const { return I == R.I; }
81    bool operator!=(const ConstExprIterator& R) const { return I != R.I; }
82    bool operator>(const ConstExprIterator& R) const { return I > R.I; }
83    bool operator>=(const ConstExprIterator& R) const { return I >= R.I; }
84  };
85
86//===----------------------------------------------------------------------===//
87// AST classes for statements.
88//===----------------------------------------------------------------------===//
89
90/// Stmt - This represents one statement.
91///
92class Stmt {
93public:
94  enum StmtClass {
95    NoStmtClass = 0,
96#define STMT(CLASS, PARENT) CLASS##Class,
97#define FIRST_STMT(CLASS) firstStmtConstant = CLASS##Class,
98#define LAST_STMT(CLASS) lastStmtConstant = CLASS##Class,
99#define FIRST_EXPR(CLASS) firstExprConstant = CLASS##Class,
100#define LAST_EXPR(CLASS) lastExprConstant = CLASS##Class
101#include "clang/AST/StmtNodes.def"
102};
103private:
104  const StmtClass sClass;
105
106  // Make vanilla 'new' and 'delete' illegal for Stmts.
107protected:
108  void* operator new(size_t bytes) throw() {
109    assert(0 && "Stmts cannot be allocated with regular 'new'.");
110    return 0;
111  }
112  void operator delete(void* data) throw() {
113    assert(0 && "Stmts cannot be released with regular 'delete'.");
114  }
115
116public:
117  // Only allow allocation of Stmts using the allocator in ASTContext
118  // or by doing a placement new.
119  void* operator new(size_t bytes, ASTContext& C,
120                     unsigned alignment = 16) throw() {
121    return ::operator new(bytes, C, alignment);
122  }
123
124  void* operator new(size_t bytes, ASTContext* C,
125                     unsigned alignment = 16) throw() {
126    return ::operator new(bytes, *C, alignment);
127  }
128
129  void* operator new(size_t bytes, void* mem) throw() {
130    return mem;
131  }
132
133  void operator delete(void*, ASTContext&, unsigned) throw() { }
134  void operator delete(void*, ASTContext*, unsigned) throw() { }
135  void operator delete(void*, std::size_t) throw() { }
136  void operator delete(void*, void*) throw() { }
137
138public:
139  /// \brief A placeholder type used to construct an empty shell of a
140  /// type, that will be filled in later (e.g., by some
141  /// de-serialization).
142  struct EmptyShell { };
143
144protected:
145  /// DestroyChildren - Invoked by destructors of subclasses of Stmt to
146  ///  recursively release child AST nodes.
147  void DestroyChildren(ASTContext& Ctx);
148
149  /// \brief Construct an empty statement.
150  explicit Stmt(StmtClass SC, EmptyShell) : sClass(SC) {
151    if (Stmt::CollectingStats()) Stmt::addStmtClass(SC);
152  }
153
154public:
155  Stmt(StmtClass SC) : sClass(SC) {
156    if (Stmt::CollectingStats()) Stmt::addStmtClass(SC);
157  }
158  virtual ~Stmt() {}
159
160  virtual void Destroy(ASTContext &Ctx);
161
162  StmtClass getStmtClass() const { return sClass; }
163  const char *getStmtClassName() const;
164
165  /// SourceLocation tokens are not useful in isolation - they are low level
166  /// value objects created/interpreted by SourceManager. We assume AST
167  /// clients will have a pointer to the respective SourceManager.
168  virtual SourceRange getSourceRange() const = 0;
169  SourceLocation getLocStart() const { return getSourceRange().getBegin(); }
170  SourceLocation getLocEnd() const { return getSourceRange().getEnd(); }
171
172  // global temp stats (until we have a per-module visitor)
173  static void addStmtClass(const StmtClass s);
174  static bool CollectingStats(bool enable=false);
175  static void PrintStats();
176
177  /// dump - This does a local dump of the specified AST fragment.  It dumps the
178  /// specified node and a few nodes underneath it, but not the whole subtree.
179  /// This is useful in a debugger.
180  void dump() const;
181  void dump(SourceManager &SM) const;
182
183  /// dumpAll - This does a dump of the specified AST fragment and all subtrees.
184  void dumpAll() const;
185  void dumpAll(SourceManager &SM) const;
186
187  /// dumpPretty/printPretty - These two methods do a "pretty print" of the AST
188  /// back to its original source language syntax.
189  void dumpPretty() const;
190  void printPretty(llvm::raw_ostream &OS, PrinterHelper* = NULL, unsigned = 0,
191                   bool NoIndent=false) const;
192
193  /// viewAST - Visualize an AST rooted at this Stmt* using GraphViz.  Only
194  ///   works on systems with GraphViz (Mac OS X) or dot+gv installed.
195  void viewAST() const;
196
197  // Implement isa<T> support.
198  static bool classof(const Stmt *) { return true; }
199
200  /// hasImplicitControlFlow - Some statements (e.g. short circuited operations)
201  ///  contain implicit control-flow in the order their subexpressions
202  ///  are evaluated.  This predicate returns true if this statement has
203  ///  such implicit control-flow.  Such statements are also specially handled
204  ///  within CFGs.
205  bool hasImplicitControlFlow() const;
206
207  /// Child Iterators: All subclasses must implement child_begin and child_end
208  ///  to permit easy iteration over the substatements/subexpessions of an
209  ///  AST node.  This permits easy iteration over all nodes in the AST.
210  typedef StmtIterator       child_iterator;
211  typedef ConstStmtIterator  const_child_iterator;
212
213  virtual child_iterator child_begin() = 0;
214  virtual child_iterator child_end()   = 0;
215
216  const_child_iterator child_begin() const {
217    return const_child_iterator(const_cast<Stmt*>(this)->child_begin());
218  }
219
220  const_child_iterator child_end() const {
221    return const_child_iterator(const_cast<Stmt*>(this)->child_end());
222  }
223};
224
225/// DeclStmt - Adaptor class for mixing declarations with statements and
226/// expressions. For example, CompoundStmt mixes statements, expressions
227/// and declarations (variables, types). Another example is ForStmt, where
228/// the first statement can be an expression or a declaration.
229///
230class DeclStmt : public Stmt {
231  DeclGroupRef DG;
232  SourceLocation StartLoc, EndLoc;
233public:
234  DeclStmt(DeclGroupRef dg, SourceLocation startLoc,
235           SourceLocation endLoc) : Stmt(DeclStmtClass), DG(dg),
236                                    StartLoc(startLoc), EndLoc(endLoc) {}
237
238  /// \brief Build an empty declaration statement.
239  explicit DeclStmt(EmptyShell Empty) : Stmt(DeclStmtClass, Empty) { }
240
241  virtual void Destroy(ASTContext& Ctx);
242
243  /// isSingleDecl - This method returns true if this DeclStmt refers
244  /// to a single Decl.
245  bool isSingleDecl() const {
246    return DG.isSingleDecl();
247  }
248
249  const Decl *getSingleDecl() const { return DG.getSingleDecl(); }
250  Decl *getSingleDecl() { return DG.getSingleDecl(); }
251
252  const DeclGroupRef getDeclGroup() const { return DG; }
253  DeclGroupRef getDeclGroup() { return DG; }
254  void setDeclGroup(DeclGroupRef DGR) { DG = DGR; }
255
256  SourceLocation getStartLoc() const { return StartLoc; }
257  void setStartLoc(SourceLocation L) { StartLoc = L; }
258  SourceLocation getEndLoc() const { return EndLoc; }
259  void setEndLoc(SourceLocation L) { EndLoc = L; }
260
261  SourceRange getSourceRange() const {
262    return SourceRange(StartLoc, EndLoc);
263  }
264
265  static bool classof(const Stmt *T) {
266    return T->getStmtClass() == DeclStmtClass;
267  }
268  static bool classof(const DeclStmt *) { return true; }
269
270  // Iterators over subexpressions.
271  virtual child_iterator child_begin();
272  virtual child_iterator child_end();
273
274  typedef DeclGroupRef::iterator decl_iterator;
275  typedef DeclGroupRef::const_iterator const_decl_iterator;
276
277  decl_iterator decl_begin() { return DG.begin(); }
278  decl_iterator decl_end() { return DG.end(); }
279  const_decl_iterator decl_begin() const { return DG.begin(); }
280  const_decl_iterator decl_end() const { return DG.end(); }
281};
282
283/// NullStmt - This is the null statement ";": C99 6.8.3p3.
284///
285class NullStmt : public Stmt {
286  SourceLocation SemiLoc;
287public:
288  NullStmt(SourceLocation L) : Stmt(NullStmtClass), SemiLoc(L) {}
289
290  /// \brief Build an empty null statement.
291  explicit NullStmt(EmptyShell Empty) : Stmt(NullStmtClass, Empty) { }
292
293  SourceLocation getSemiLoc() const { return SemiLoc; }
294  void setSemiLoc(SourceLocation L) { SemiLoc = L; }
295
296  virtual SourceRange getSourceRange() const { return SourceRange(SemiLoc); }
297
298  static bool classof(const Stmt *T) {
299    return T->getStmtClass() == NullStmtClass;
300  }
301  static bool classof(const NullStmt *) { return true; }
302
303  // Iterators
304  virtual child_iterator child_begin();
305  virtual child_iterator child_end();
306};
307
308/// CompoundStmt - This represents a group of statements like { stmt stmt }.
309///
310class CompoundStmt : public Stmt {
311  Stmt** Body;
312  unsigned NumStmts;
313  SourceLocation LBracLoc, RBracLoc;
314public:
315  CompoundStmt(ASTContext& C, Stmt **StmtStart, unsigned numStmts,
316                             SourceLocation LB, SourceLocation RB)
317  : Stmt(CompoundStmtClass), NumStmts(numStmts), LBracLoc(LB), RBracLoc(RB) {
318    if (NumStmts == 0) {
319      Body = 0;
320      return;
321    }
322
323    Body = new (C) Stmt*[NumStmts];
324    memcpy(Body, StmtStart, numStmts * sizeof(*Body));
325  }
326
327  // \brief Build an empty compound statement.
328  explicit CompoundStmt(EmptyShell Empty)
329    : Stmt(CompoundStmtClass, Empty), Body(0), NumStmts(0) { }
330
331  void setStmts(ASTContext &C, Stmt **Stmts, unsigned NumStmts);
332
333  bool body_empty() const { return NumStmts == 0; }
334  unsigned size() const { return NumStmts; }
335
336  typedef Stmt** body_iterator;
337  body_iterator body_begin() { return Body; }
338  body_iterator body_end() { return Body + NumStmts; }
339  Stmt *body_back() { return NumStmts ? Body[NumStmts-1] : 0; }
340
341  typedef Stmt* const * const_body_iterator;
342  const_body_iterator body_begin() const { return Body; }
343  const_body_iterator body_end() const { return Body + NumStmts; }
344  const Stmt *body_back() const { return NumStmts ? Body[NumStmts-1] : 0; }
345
346  typedef std::reverse_iterator<body_iterator> reverse_body_iterator;
347  reverse_body_iterator body_rbegin() {
348    return reverse_body_iterator(body_end());
349  }
350  reverse_body_iterator body_rend() {
351    return reverse_body_iterator(body_begin());
352  }
353
354  typedef std::reverse_iterator<const_body_iterator>
355          const_reverse_body_iterator;
356
357  const_reverse_body_iterator body_rbegin() const {
358    return const_reverse_body_iterator(body_end());
359  }
360
361  const_reverse_body_iterator body_rend() const {
362    return const_reverse_body_iterator(body_begin());
363  }
364
365  virtual SourceRange getSourceRange() const {
366    return SourceRange(LBracLoc, RBracLoc);
367  }
368
369  SourceLocation getLBracLoc() const { return LBracLoc; }
370  void setLBracLoc(SourceLocation L) { LBracLoc = L; }
371  SourceLocation getRBracLoc() const { return RBracLoc; }
372  void setRBracLoc(SourceLocation L) { RBracLoc = L; }
373
374  static bool classof(const Stmt *T) {
375    return T->getStmtClass() == CompoundStmtClass;
376  }
377  static bool classof(const CompoundStmt *) { return true; }
378
379  // Iterators
380  virtual child_iterator child_begin();
381  virtual child_iterator child_end();
382};
383
384// SwitchCase is the base class for CaseStmt and DefaultStmt,
385class SwitchCase : public Stmt {
386protected:
387  // A pointer to the following CaseStmt or DefaultStmt class,
388  // used by SwitchStmt.
389  SwitchCase *NextSwitchCase;
390
391  SwitchCase(StmtClass SC) : Stmt(SC), NextSwitchCase(0) {}
392
393public:
394  const SwitchCase *getNextSwitchCase() const { return NextSwitchCase; }
395
396  SwitchCase *getNextSwitchCase() { return NextSwitchCase; }
397
398  void setNextSwitchCase(SwitchCase *SC) { NextSwitchCase = SC; }
399
400  Stmt *getSubStmt() { return v_getSubStmt(); }
401
402  virtual SourceRange getSourceRange() const { return SourceRange(); }
403
404  static bool classof(const Stmt *T) {
405    return T->getStmtClass() == CaseStmtClass ||
406    T->getStmtClass() == DefaultStmtClass;
407  }
408  static bool classof(const SwitchCase *) { return true; }
409protected:
410  virtual Stmt* v_getSubStmt() = 0;
411};
412
413class CaseStmt : public SwitchCase {
414  enum { SUBSTMT, LHS, RHS, END_EXPR };
415  Stmt* SubExprs[END_EXPR];  // The expression for the RHS is Non-null for
416                             // GNU "case 1 ... 4" extension
417  SourceLocation CaseLoc;
418  virtual Stmt* v_getSubStmt() { return getSubStmt(); }
419public:
420  CaseStmt(Expr *lhs, Expr *rhs, SourceLocation caseLoc)
421    : SwitchCase(CaseStmtClass) {
422    SubExprs[SUBSTMT] = 0;
423    SubExprs[LHS] = reinterpret_cast<Stmt*>(lhs);
424    SubExprs[RHS] = reinterpret_cast<Stmt*>(rhs);
425    CaseLoc = caseLoc;
426  }
427
428  /// \brief Build an empty switch case statement.
429  explicit CaseStmt(EmptyShell Empty) : SwitchCase(CaseStmtClass) { }
430
431  SourceLocation getCaseLoc() const { return CaseLoc; }
432  void setCaseLoc(SourceLocation L) { CaseLoc = L; }
433
434  Expr *getLHS() { return reinterpret_cast<Expr*>(SubExprs[LHS]); }
435  Expr *getRHS() { return reinterpret_cast<Expr*>(SubExprs[RHS]); }
436  Stmt *getSubStmt() { return SubExprs[SUBSTMT]; }
437
438  const Expr *getLHS() const {
439    return reinterpret_cast<const Expr*>(SubExprs[LHS]);
440  }
441  const Expr *getRHS() const {
442    return reinterpret_cast<const Expr*>(SubExprs[RHS]);
443  }
444  const Stmt *getSubStmt() const { return SubExprs[SUBSTMT]; }
445
446  void setSubStmt(Stmt *S) { SubExprs[SUBSTMT] = S; }
447  void setLHS(Expr *Val) { SubExprs[LHS] = reinterpret_cast<Stmt*>(Val); }
448  void setRHS(Expr *Val) { SubExprs[RHS] = reinterpret_cast<Stmt*>(Val); }
449
450
451  virtual SourceRange getSourceRange() const {
452    // Handle deeply nested case statements with iteration instead of recursion.
453    const CaseStmt *CS = this;
454    while (const CaseStmt *CS2 = dyn_cast<CaseStmt>(CS->getSubStmt()))
455      CS = CS2;
456
457    return SourceRange(CaseLoc, CS->getSubStmt()->getLocEnd());
458  }
459  static bool classof(const Stmt *T) {
460    return T->getStmtClass() == CaseStmtClass;
461  }
462  static bool classof(const CaseStmt *) { return true; }
463
464  // Iterators
465  virtual child_iterator child_begin();
466  virtual child_iterator child_end();
467};
468
469class DefaultStmt : public SwitchCase {
470  Stmt* SubStmt;
471  SourceLocation DefaultLoc;
472  virtual Stmt* v_getSubStmt() { return getSubStmt(); }
473public:
474  DefaultStmt(SourceLocation DL, Stmt *substmt) :
475    SwitchCase(DefaultStmtClass), SubStmt(substmt), DefaultLoc(DL) {}
476
477  /// \brief Build an empty default statement.
478  explicit DefaultStmt(EmptyShell) : SwitchCase(DefaultStmtClass) { }
479
480  Stmt *getSubStmt() { return SubStmt; }
481  const Stmt *getSubStmt() const { return SubStmt; }
482  void setSubStmt(Stmt *S) { SubStmt = S; }
483
484  SourceLocation getDefaultLoc() const { return DefaultLoc; }
485  void setDefaultLoc(SourceLocation L) { DefaultLoc = L; }
486
487  virtual SourceRange getSourceRange() const {
488    return SourceRange(DefaultLoc, SubStmt->getLocEnd());
489  }
490  static bool classof(const Stmt *T) {
491    return T->getStmtClass() == DefaultStmtClass;
492  }
493  static bool classof(const DefaultStmt *) { return true; }
494
495  // Iterators
496  virtual child_iterator child_begin();
497  virtual child_iterator child_end();
498};
499
500class LabelStmt : public Stmt {
501  IdentifierInfo *Label;
502  Stmt *SubStmt;
503  SourceLocation IdentLoc;
504public:
505  LabelStmt(SourceLocation IL, IdentifierInfo *label, Stmt *substmt)
506    : Stmt(LabelStmtClass), Label(label),
507      SubStmt(substmt), IdentLoc(IL) {}
508
509  // \brief Build an empty label statement.
510  explicit LabelStmt(EmptyShell Empty) : Stmt(LabelStmtClass, Empty) { }
511
512  SourceLocation getIdentLoc() const { return IdentLoc; }
513  IdentifierInfo *getID() const { return Label; }
514  void setID(IdentifierInfo *II) { Label = II; }
515  const char *getName() const;
516  Stmt *getSubStmt() { return SubStmt; }
517  const Stmt *getSubStmt() const { return SubStmt; }
518  void setIdentLoc(SourceLocation L) { IdentLoc = L; }
519  void setSubStmt(Stmt *SS) { SubStmt = SS; }
520
521  virtual SourceRange getSourceRange() const {
522    return SourceRange(IdentLoc, SubStmt->getLocEnd());
523  }
524  static bool classof(const Stmt *T) {
525    return T->getStmtClass() == LabelStmtClass;
526  }
527  static bool classof(const LabelStmt *) { return true; }
528
529  // Iterators
530  virtual child_iterator child_begin();
531  virtual child_iterator child_end();
532};
533
534
535/// IfStmt - This represents an if/then/else.
536///
537class IfStmt : public Stmt {
538  enum { COND, THEN, ELSE, END_EXPR };
539  Stmt* SubExprs[END_EXPR];
540  SourceLocation IfLoc;
541public:
542  IfStmt(SourceLocation IL, Expr *cond, Stmt *then, Stmt *elsev = 0)
543    : Stmt(IfStmtClass)  {
544    SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
545    SubExprs[THEN] = then;
546    SubExprs[ELSE] = elsev;
547    IfLoc = IL;
548  }
549
550  /// \brief Build an empty if/then/else statement
551  explicit IfStmt(EmptyShell Empty) : Stmt(IfStmtClass, Empty) { }
552
553  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
554  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
555  const Stmt *getThen() const { return SubExprs[THEN]; }
556  void setThen(Stmt *S) { SubExprs[THEN] = S; }
557  const Stmt *getElse() const { return SubExprs[ELSE]; }
558  void setElse(Stmt *S) { SubExprs[ELSE] = S; }
559
560  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
561  Stmt *getThen() { return SubExprs[THEN]; }
562  Stmt *getElse() { return SubExprs[ELSE]; }
563
564  SourceLocation getIfLoc() const { return IfLoc; }
565  void setIfLoc(SourceLocation L) { IfLoc = L; }
566
567  virtual SourceRange getSourceRange() const {
568    if (SubExprs[ELSE])
569      return SourceRange(IfLoc, SubExprs[ELSE]->getLocEnd());
570    else
571      return SourceRange(IfLoc, SubExprs[THEN]->getLocEnd());
572  }
573
574  static bool classof(const Stmt *T) {
575    return T->getStmtClass() == IfStmtClass;
576  }
577  static bool classof(const IfStmt *) { return true; }
578
579  // Iterators
580  virtual child_iterator child_begin();
581  virtual child_iterator child_end();
582};
583
584/// SwitchStmt - This represents a 'switch' stmt.
585///
586class SwitchStmt : public Stmt {
587  enum { COND, BODY, END_EXPR };
588  Stmt* SubExprs[END_EXPR];
589  // This points to a linked list of case and default statements.
590  SwitchCase *FirstCase;
591  SourceLocation SwitchLoc;
592public:
593  SwitchStmt(Expr *cond) : Stmt(SwitchStmtClass), FirstCase(0) {
594      SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
595      SubExprs[BODY] = NULL;
596    }
597
598  /// \brief Build a empty switch statement.
599  explicit SwitchStmt(EmptyShell Empty) : Stmt(SwitchStmtClass, Empty) { }
600
601  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
602  const Stmt *getBody() const { return SubExprs[BODY]; }
603  const SwitchCase *getSwitchCaseList() const { return FirstCase; }
604
605  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]);}
606  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
607  Stmt *getBody() { return SubExprs[BODY]; }
608  void setBody(Stmt *S) { SubExprs[BODY] = S; }
609  SwitchCase *getSwitchCaseList() { return FirstCase; }
610  void setSwitchCaseList(SwitchCase *SC) { FirstCase = SC; }
611
612  SourceLocation getSwitchLoc() const { return SwitchLoc; }
613  void setSwitchLoc(SourceLocation L) { SwitchLoc = L; }
614
615  void setBody(Stmt *S, SourceLocation SL) {
616    SubExprs[BODY] = S;
617    SwitchLoc = SL;
618  }
619  void addSwitchCase(SwitchCase *SC) {
620    assert(!SC->getNextSwitchCase() && "case/default already added to a switch");
621    SC->setNextSwitchCase(FirstCase);
622    FirstCase = SC;
623  }
624  virtual SourceRange getSourceRange() const {
625    return SourceRange(SwitchLoc, SubExprs[BODY]->getLocEnd());
626  }
627  static bool classof(const Stmt *T) {
628    return T->getStmtClass() == SwitchStmtClass;
629  }
630  static bool classof(const SwitchStmt *) { return true; }
631
632  // Iterators
633  virtual child_iterator child_begin();
634  virtual child_iterator child_end();
635};
636
637
638/// WhileStmt - This represents a 'while' stmt.
639///
640class WhileStmt : public Stmt {
641  enum { COND, BODY, END_EXPR };
642  Stmt* SubExprs[END_EXPR];
643  SourceLocation WhileLoc;
644public:
645  WhileStmt(Expr *cond, Stmt *body, SourceLocation WL) : Stmt(WhileStmtClass) {
646    SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
647    SubExprs[BODY] = body;
648    WhileLoc = WL;
649  }
650
651  /// \brief Build an empty while statement.
652  explicit WhileStmt(EmptyShell Empty) : Stmt(WhileStmtClass, Empty) { }
653
654  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
655  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
656  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
657  Stmt *getBody() { return SubExprs[BODY]; }
658  const Stmt *getBody() const { return SubExprs[BODY]; }
659  void setBody(Stmt *S) { SubExprs[BODY] = S; }
660
661  SourceLocation getWhileLoc() const { return WhileLoc; }
662  void setWhileLoc(SourceLocation L) { WhileLoc = L; }
663
664  virtual SourceRange getSourceRange() const {
665    return SourceRange(WhileLoc, SubExprs[BODY]->getLocEnd());
666  }
667  static bool classof(const Stmt *T) {
668    return T->getStmtClass() == WhileStmtClass;
669  }
670  static bool classof(const WhileStmt *) { return true; }
671
672  // Iterators
673  virtual child_iterator child_begin();
674  virtual child_iterator child_end();
675};
676
677/// DoStmt - This represents a 'do/while' stmt.
678///
679class DoStmt : public Stmt {
680  enum { COND, BODY, END_EXPR };
681  Stmt* SubExprs[END_EXPR];
682  SourceLocation DoLoc;
683public:
684  DoStmt(Stmt *body, Expr *cond, SourceLocation DL)
685    : Stmt(DoStmtClass), DoLoc(DL) {
686    SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
687    SubExprs[BODY] = body;
688    DoLoc = DL;
689  }
690
691  /// \brief Build an empty do-while statement.
692  explicit DoStmt(EmptyShell Empty) : Stmt(DoStmtClass, Empty) { }
693
694  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
695  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
696  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
697  Stmt *getBody() { return SubExprs[BODY]; }
698  const Stmt *getBody() const { return SubExprs[BODY]; }
699  void setBody(Stmt *S) { SubExprs[BODY] = S; }
700
701  SourceLocation getDoLoc() const { return DoLoc; }
702  void setDoLoc(SourceLocation L) { DoLoc = L; }
703
704  virtual SourceRange getSourceRange() const {
705    return SourceRange(DoLoc, SubExprs[BODY]->getLocEnd());
706  }
707  static bool classof(const Stmt *T) {
708    return T->getStmtClass() == DoStmtClass;
709  }
710  static bool classof(const DoStmt *) { return true; }
711
712  // Iterators
713  virtual child_iterator child_begin();
714  virtual child_iterator child_end();
715};
716
717
718/// ForStmt - This represents a 'for (init;cond;inc)' stmt.  Note that any of
719/// the init/cond/inc parts of the ForStmt will be null if they were not
720/// specified in the source.
721///
722class ForStmt : public Stmt {
723  enum { INIT, COND, INC, BODY, END_EXPR };
724  Stmt* SubExprs[END_EXPR]; // SubExprs[INIT] is an expression or declstmt.
725  SourceLocation ForLoc;
726public:
727  ForStmt(Stmt *Init, Expr *Cond, Expr *Inc, Stmt *Body, SourceLocation FL)
728    : Stmt(ForStmtClass) {
729    SubExprs[INIT] = Init;
730    SubExprs[COND] = reinterpret_cast<Stmt*>(Cond);
731    SubExprs[INC] = reinterpret_cast<Stmt*>(Inc);
732    SubExprs[BODY] = Body;
733    ForLoc = FL;
734  }
735
736  /// \brief Build an empty for statement.
737  explicit ForStmt(EmptyShell Empty) : Stmt(ForStmtClass, Empty) { }
738
739  Stmt *getInit() { return SubExprs[INIT]; }
740  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
741  Expr *getInc()  { return reinterpret_cast<Expr*>(SubExprs[INC]); }
742  Stmt *getBody() { return SubExprs[BODY]; }
743
744  const Stmt *getInit() const { return SubExprs[INIT]; }
745  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
746  const Expr *getInc()  const { return reinterpret_cast<Expr*>(SubExprs[INC]); }
747  const Stmt *getBody() const { return SubExprs[BODY]; }
748
749  void setInit(Stmt *S) { SubExprs[INIT] = S; }
750  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
751  void setInc(Expr *E) { SubExprs[INC] = reinterpret_cast<Stmt*>(E); }
752  void setBody(Stmt *S) { SubExprs[BODY] = S; }
753
754  SourceLocation getForLoc() const { return ForLoc; }
755  void setForLoc(SourceLocation L) { ForLoc = L; }
756
757  virtual SourceRange getSourceRange() const {
758    return SourceRange(ForLoc, SubExprs[BODY]->getLocEnd());
759  }
760  static bool classof(const Stmt *T) {
761    return T->getStmtClass() == ForStmtClass;
762  }
763  static bool classof(const ForStmt *) { return true; }
764
765  // Iterators
766  virtual child_iterator child_begin();
767  virtual child_iterator child_end();
768};
769
770/// GotoStmt - This represents a direct goto.
771///
772class GotoStmt : public Stmt {
773  LabelStmt *Label;
774  SourceLocation GotoLoc;
775  SourceLocation LabelLoc;
776public:
777  GotoStmt(LabelStmt *label, SourceLocation GL, SourceLocation LL)
778    : Stmt(GotoStmtClass), Label(label), GotoLoc(GL), LabelLoc(LL) {}
779
780  /// \brief Build an empty goto statement.
781  explicit GotoStmt(EmptyShell Empty) : Stmt(GotoStmtClass, Empty) { }
782
783  LabelStmt *getLabel() const { return Label; }
784  void setLabel(LabelStmt *S) { Label = S; }
785
786  SourceLocation getGotoLoc() const { return GotoLoc; }
787  void setGotoLoc(SourceLocation L) { GotoLoc = L; }
788  SourceLocation getLabelLoc() const { return LabelLoc; }
789  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
790
791  virtual SourceRange getSourceRange() const {
792    return SourceRange(GotoLoc, LabelLoc);
793  }
794  static bool classof(const Stmt *T) {
795    return T->getStmtClass() == GotoStmtClass;
796  }
797  static bool classof(const GotoStmt *) { return true; }
798
799  // Iterators
800  virtual child_iterator child_begin();
801  virtual child_iterator child_end();
802};
803
804/// IndirectGotoStmt - This represents an indirect goto.
805///
806class IndirectGotoStmt : public Stmt {
807  SourceLocation GotoLoc;
808  Stmt *Target;
809public:
810  IndirectGotoStmt(SourceLocation gotoLoc, Expr *target)
811    : Stmt(IndirectGotoStmtClass), GotoLoc(gotoLoc), Target((Stmt*)target) {}
812
813  /// \brief Build an empty indirect goto statement.
814  explicit IndirectGotoStmt(EmptyShell Empty)
815    : Stmt(IndirectGotoStmtClass, Empty) { }
816
817  void setGotoLoc(SourceLocation L) { GotoLoc = L; }
818  SourceLocation getGotoLoc() const { return GotoLoc; }
819
820  Expr *getTarget();
821  const Expr *getTarget() const;
822  void setTarget(Expr *E) { Target = reinterpret_cast<Stmt*>(E); }
823
824  virtual SourceRange getSourceRange() const {
825    return SourceRange(GotoLoc, Target->getLocEnd());
826  }
827
828  static bool classof(const Stmt *T) {
829    return T->getStmtClass() == IndirectGotoStmtClass;
830  }
831  static bool classof(const IndirectGotoStmt *) { return true; }
832
833  // Iterators
834  virtual child_iterator child_begin();
835  virtual child_iterator child_end();
836};
837
838
839/// ContinueStmt - This represents a continue.
840///
841class ContinueStmt : public Stmt {
842  SourceLocation ContinueLoc;
843public:
844  ContinueStmt(SourceLocation CL) : Stmt(ContinueStmtClass), ContinueLoc(CL) {}
845
846  /// \brief Build an empty continue statement.
847  explicit ContinueStmt(EmptyShell Empty) : Stmt(ContinueStmtClass, Empty) { }
848
849  SourceLocation getContinueLoc() const { return ContinueLoc; }
850  void setContinueLoc(SourceLocation L) { ContinueLoc = L; }
851
852  virtual SourceRange getSourceRange() const {
853    return SourceRange(ContinueLoc);
854  }
855  static bool classof(const Stmt *T) {
856    return T->getStmtClass() == ContinueStmtClass;
857  }
858  static bool classof(const ContinueStmt *) { return true; }
859
860  // Iterators
861  virtual child_iterator child_begin();
862  virtual child_iterator child_end();
863};
864
865/// BreakStmt - This represents a break.
866///
867class BreakStmt : public Stmt {
868  SourceLocation BreakLoc;
869public:
870  BreakStmt(SourceLocation BL) : Stmt(BreakStmtClass), BreakLoc(BL) {}
871
872  /// \brief Build an empty break statement.
873  explicit BreakStmt(EmptyShell Empty) : Stmt(BreakStmtClass, Empty) { }
874
875  SourceLocation getBreakLoc() const { return BreakLoc; }
876  void setBreakLoc(SourceLocation L) { BreakLoc = L; }
877
878  virtual SourceRange getSourceRange() const { return SourceRange(BreakLoc); }
879
880  static bool classof(const Stmt *T) {
881    return T->getStmtClass() == BreakStmtClass;
882  }
883  static bool classof(const BreakStmt *) { return true; }
884
885  // Iterators
886  virtual child_iterator child_begin();
887  virtual child_iterator child_end();
888};
889
890
891/// ReturnStmt - This represents a return, optionally of an expression:
892///   return;
893///   return 4;
894///
895/// Note that GCC allows return with no argument in a function declared to
896/// return a value, and it allows returning a value in functions declared to
897/// return void.  We explicitly model this in the AST, which means you can't
898/// depend on the return type of the function and the presence of an argument.
899///
900class ReturnStmt : public Stmt {
901  Stmt *RetExpr;
902  SourceLocation RetLoc;
903public:
904  ReturnStmt(SourceLocation RL, Expr *E = 0) : Stmt(ReturnStmtClass),
905    RetExpr((Stmt*) E), RetLoc(RL) {}
906
907  /// \brief Build an empty return expression.
908  explicit ReturnStmt(EmptyShell Empty) : Stmt(ReturnStmtClass, Empty) { }
909
910  const Expr *getRetValue() const;
911  Expr *getRetValue();
912  void setRetValue(Expr *E) { RetExpr = reinterpret_cast<Stmt*>(E); }
913
914  SourceLocation getReturnLoc() const { return RetLoc; }
915  void setReturnLoc(SourceLocation L) { RetLoc = L; }
916
917  virtual SourceRange getSourceRange() const;
918
919  static bool classof(const Stmt *T) {
920    return T->getStmtClass() == ReturnStmtClass;
921  }
922  static bool classof(const ReturnStmt *) { return true; }
923
924  // Iterators
925  virtual child_iterator child_begin();
926  virtual child_iterator child_end();
927};
928
929/// AsmStmt - This represents a GNU inline-assembly statement extension.
930///
931class AsmStmt : public Stmt {
932  SourceLocation AsmLoc, RParenLoc;
933  StringLiteral *AsmStr;
934
935  bool IsSimple;
936  bool IsVolatile;
937
938  unsigned NumOutputs;
939  unsigned NumInputs;
940
941  llvm::SmallVector<std::string, 4> Names;
942  llvm::SmallVector<StringLiteral*, 4> Constraints;
943  llvm::SmallVector<Stmt*, 4> Exprs;
944
945  llvm::SmallVector<StringLiteral*, 4> Clobbers;
946public:
947  AsmStmt(SourceLocation asmloc, bool issimple, bool isvolatile,
948          unsigned numoutputs, unsigned numinputs,
949          std::string *names, StringLiteral **constraints,
950          Expr **exprs, StringLiteral *asmstr, unsigned numclobbers,
951          StringLiteral **clobbers, SourceLocation rparenloc);
952
953  /// \brief Build an empty inline-assembly statement.
954  explicit AsmStmt(EmptyShell Empty) : Stmt(AsmStmtClass, Empty) { }
955
956  SourceLocation getAsmLoc() const { return AsmLoc; }
957  void setAsmLoc(SourceLocation L) { AsmLoc = L; }
958  SourceLocation getRParenLoc() const { return RParenLoc; }
959  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
960
961  bool isVolatile() const { return IsVolatile; }
962  void setVolatile(bool V) { IsVolatile = V; }
963  bool isSimple() const { return IsSimple; }
964  void setSimple(bool V) { IsSimple = false; }
965
966  //===--- Asm String Analysis ---===//
967
968  const StringLiteral *getAsmString() const { return AsmStr; }
969  StringLiteral *getAsmString() { return AsmStr; }
970  void setAsmString(StringLiteral *E) { AsmStr = E; }
971
972  /// AsmStringPiece - this is part of a decomposed asm string specification
973  /// (for use with the AnalyzeAsmString function below).  An asm string is
974  /// considered to be a concatenation of these parts.
975  class AsmStringPiece {
976  public:
977    enum Kind {
978      String,  // String in .ll asm string form, "$" -> "$$" and "%%" -> "%".
979      Operand  // Operand reference, with optional modifier %c4.
980    };
981  private:
982    Kind MyKind;
983    std::string Str;
984    unsigned OperandNo;
985  public:
986    AsmStringPiece(const std::string &S) : MyKind(String), Str(S) {}
987    AsmStringPiece(unsigned OpNo, char Modifier)
988      : MyKind(Operand), Str(), OperandNo(OpNo) {
989      Str += Modifier;
990    }
991
992    bool isString() const { return MyKind == String; }
993    bool isOperand() const { return MyKind == Operand; }
994
995    const std::string &getString() const {
996      assert(isString());
997      return Str;
998    }
999
1000    unsigned getOperandNo() const {
1001      assert(isOperand());
1002      return OperandNo;
1003    }
1004
1005    /// getModifier - Get the modifier for this operand, if present.  This
1006    /// returns '\0' if there was no modifier.
1007    char getModifier() const {
1008      assert(isOperand());
1009      return Str[0];
1010    }
1011  };
1012
1013  /// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing
1014  /// it into pieces.  If the asm string is erroneous, emit errors and return
1015  /// true, otherwise return false.  This handles canonicalization and
1016  /// translation of strings from GCC syntax to LLVM IR syntax, and handles
1017  //// flattening of named references like %[foo] to Operand AsmStringPiece's.
1018  unsigned AnalyzeAsmString(llvm::SmallVectorImpl<AsmStringPiece> &Pieces,
1019                            ASTContext &C, unsigned &DiagOffs) const;
1020
1021
1022  //===--- Output operands ---===//
1023
1024  unsigned getNumOutputs() const { return NumOutputs; }
1025
1026  const std::string &getOutputName(unsigned i) const {
1027    return Names[i];
1028  }
1029
1030  /// getOutputConstraint - Return the constraint string for the specified
1031  /// output operand.  All output constraints are known to be non-empty (either
1032  /// '=' or '+').
1033  std::string getOutputConstraint(unsigned i) const;
1034
1035  const StringLiteral *getOutputConstraintLiteral(unsigned i) const {
1036    return Constraints[i];
1037  }
1038  StringLiteral *getOutputConstraintLiteral(unsigned i) {
1039    return Constraints[i];
1040  }
1041
1042
1043  Expr *getOutputExpr(unsigned i);
1044
1045  const Expr *getOutputExpr(unsigned i) const {
1046    return const_cast<AsmStmt*>(this)->getOutputExpr(i);
1047  }
1048
1049  /// isOutputPlusConstraint - Return true if the specified output constraint
1050  /// is a "+" constraint (which is both an input and an output) or false if it
1051  /// is an "=" constraint (just an output).
1052  bool isOutputPlusConstraint(unsigned i) const {
1053    return getOutputConstraint(i)[0] == '+';
1054  }
1055
1056  /// getNumPlusOperands - Return the number of output operands that have a "+"
1057  /// constraint.
1058  unsigned getNumPlusOperands() const;
1059
1060  //===--- Input operands ---===//
1061
1062  unsigned getNumInputs() const { return NumInputs; }
1063
1064  const std::string &getInputName(unsigned i) const {
1065    return Names[i + NumOutputs];
1066  }
1067
1068  /// getInputConstraint - Return the specified input constraint.  Unlike output
1069  /// constraints, these can be empty.
1070  std::string getInputConstraint(unsigned i) const;
1071
1072  const StringLiteral *getInputConstraintLiteral(unsigned i) const {
1073    return Constraints[i + NumOutputs];
1074  }
1075  StringLiteral *getInputConstraintLiteral(unsigned i) {
1076    return Constraints[i + NumOutputs];
1077  }
1078
1079
1080  Expr *getInputExpr(unsigned i);
1081
1082  const Expr *getInputExpr(unsigned i) const {
1083    return const_cast<AsmStmt*>(this)->getInputExpr(i);
1084  }
1085
1086  void setOutputsAndInputs(unsigned NumOutputs,
1087                           unsigned NumInputs,
1088                           const std::string *Names,
1089                           StringLiteral **Constraints,
1090                           Stmt **Exprs);
1091
1092  //===--- Other ---===//
1093
1094  /// getNamedOperand - Given a symbolic operand reference like %[foo],
1095  /// translate this into a numeric value needed to reference the same operand.
1096  /// This returns -1 if the operand name is invalid.
1097  int getNamedOperand(const std::string &SymbolicName) const;
1098
1099
1100
1101  unsigned getNumClobbers() const { return Clobbers.size(); }
1102  StringLiteral *getClobber(unsigned i) { return Clobbers[i]; }
1103  const StringLiteral *getClobber(unsigned i) const { return Clobbers[i]; }
1104  void setClobbers(StringLiteral **Clobbers, unsigned NumClobbers);
1105
1106  virtual SourceRange getSourceRange() const {
1107    return SourceRange(AsmLoc, RParenLoc);
1108  }
1109
1110  static bool classof(const Stmt *T) {return T->getStmtClass() == AsmStmtClass;}
1111  static bool classof(const AsmStmt *) { return true; }
1112
1113  // Input expr iterators.
1114
1115  typedef ExprIterator inputs_iterator;
1116  typedef ConstExprIterator const_inputs_iterator;
1117
1118  inputs_iterator begin_inputs() {
1119    return &Exprs[0] + NumOutputs;
1120  }
1121
1122  inputs_iterator end_inputs() {
1123    return  &Exprs[0] + NumOutputs + NumInputs;
1124  }
1125
1126  const_inputs_iterator begin_inputs() const {
1127    return &Exprs[0] + NumOutputs;
1128  }
1129
1130  const_inputs_iterator end_inputs() const {
1131    return  &Exprs[0] + NumOutputs + NumInputs;}
1132
1133  // Output expr iterators.
1134
1135  typedef ExprIterator outputs_iterator;
1136  typedef ConstExprIterator const_outputs_iterator;
1137
1138  outputs_iterator begin_outputs() { return &Exprs[0]; }
1139  outputs_iterator end_outputs() { return &Exprs[0] + NumOutputs; }
1140
1141  const_outputs_iterator begin_outputs() const { return &Exprs[0]; }
1142  const_outputs_iterator end_outputs() const { return &Exprs[0] + NumOutputs; }
1143
1144  // Input name iterator.
1145
1146  const std::string *begin_output_names() const {
1147    return &Names[0];
1148  }
1149
1150  const std::string *end_output_names() const {
1151    return &Names[0] + NumOutputs;
1152  }
1153
1154  // Child iterators
1155
1156  virtual child_iterator child_begin();
1157  virtual child_iterator child_end();
1158};
1159
1160}  // end namespace clang
1161
1162#endif
1163