Stmt.h revision 478851c3ed6bd784e7377dffd8e57b200c1b9ba9
1//===--- Stmt.h - Classes for representing statements -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Stmt interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_STMT_H
15#define LLVM_CLANG_AST_STMT_H
16
17#include "clang/Basic/LLVM.h"
18#include "clang/Basic/SourceLocation.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "clang/AST/StmtIterator.h"
21#include "clang/AST/DeclGroup.h"
22#include "clang/AST/Attr.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/raw_ostream.h"
26#include <string>
27
28namespace llvm {
29  class FoldingSetNodeID;
30}
31
32namespace clang {
33  class ASTContext;
34  class Expr;
35  class Decl;
36  class ParmVarDecl;
37  class QualType;
38  class IdentifierInfo;
39  class LabelDecl;
40  class SourceManager;
41  class StringLiteral;
42  class SwitchStmt;
43  class VarDecl;
44
45  //===--------------------------------------------------------------------===//
46  // ExprIterator - Iterators for iterating over Stmt* arrays that contain
47  //  only Expr*.  This is needed because AST nodes use Stmt* arrays to store
48  //  references to children (to be compatible with StmtIterator).
49  //===--------------------------------------------------------------------===//
50
51  class Stmt;
52  class Expr;
53
54  class ExprIterator {
55    Stmt** I;
56  public:
57    ExprIterator(Stmt** i) : I(i) {}
58    ExprIterator() : I(0) {}
59    ExprIterator& operator++() { ++I; return *this; }
60    ExprIterator operator-(size_t i) { return I-i; }
61    ExprIterator operator+(size_t i) { return I+i; }
62    Expr* operator[](size_t idx);
63    // FIXME: Verify that this will correctly return a signed distance.
64    signed operator-(const ExprIterator& R) const { return I - R.I; }
65    Expr* operator*() const;
66    Expr* operator->() const;
67    bool operator==(const ExprIterator& R) const { return I == R.I; }
68    bool operator!=(const ExprIterator& R) const { return I != R.I; }
69    bool operator>(const ExprIterator& R) const { return I > R.I; }
70    bool operator>=(const ExprIterator& R) const { return I >= R.I; }
71  };
72
73  class ConstExprIterator {
74    const Stmt * const *I;
75  public:
76    ConstExprIterator(const Stmt * const *i) : I(i) {}
77    ConstExprIterator() : I(0) {}
78    ConstExprIterator& operator++() { ++I; return *this; }
79    ConstExprIterator operator+(size_t i) const { return I+i; }
80    ConstExprIterator operator-(size_t i) const { return I-i; }
81    const Expr * operator[](size_t idx) const;
82    signed operator-(const ConstExprIterator& R) const { return I - R.I; }
83    const Expr * operator*() const;
84    const Expr * operator->() const;
85    bool operator==(const ConstExprIterator& R) const { return I == R.I; }
86    bool operator!=(const ConstExprIterator& R) const { return I != R.I; }
87    bool operator>(const ConstExprIterator& R) const { return I > R.I; }
88    bool operator>=(const ConstExprIterator& R) const { return I >= R.I; }
89  };
90
91//===----------------------------------------------------------------------===//
92// AST classes for statements.
93//===----------------------------------------------------------------------===//
94
95/// Stmt - This represents one statement.
96///
97class Stmt {
98public:
99  enum StmtClass {
100    NoStmtClass = 0,
101#define STMT(CLASS, PARENT) CLASS##Class,
102#define STMT_RANGE(BASE, FIRST, LAST) \
103        first##BASE##Constant=FIRST##Class, last##BASE##Constant=LAST##Class,
104#define LAST_STMT_RANGE(BASE, FIRST, LAST) \
105        first##BASE##Constant=FIRST##Class, last##BASE##Constant=LAST##Class
106#define ABSTRACT_STMT(STMT)
107#include "clang/AST/StmtNodes.inc"
108  };
109
110  // Make vanilla 'new' and 'delete' illegal for Stmts.
111protected:
112  void* operator new(size_t bytes) throw() {
113    llvm_unreachable("Stmts cannot be allocated with regular 'new'.");
114  }
115  void operator delete(void* data) throw() {
116    llvm_unreachable("Stmts cannot be released with regular 'delete'.");
117  }
118
119  class StmtBitfields {
120    friend class Stmt;
121
122    /// \brief The statement class.
123    unsigned sClass : 8;
124  };
125  enum { NumStmtBits = 8 };
126
127  class CompoundStmtBitfields {
128    friend class CompoundStmt;
129    unsigned : NumStmtBits;
130
131    unsigned NumStmts : 32 - NumStmtBits;
132  };
133
134  class ExprBitfields {
135    friend class Expr;
136    friend class DeclRefExpr; // computeDependence
137    friend class InitListExpr; // ctor
138    friend class DesignatedInitExpr; // ctor
139    friend class BlockDeclRefExpr; // ctor
140    friend class ASTStmtReader; // deserialization
141    friend class CXXNewExpr; // ctor
142    friend class DependentScopeDeclRefExpr; // ctor
143    friend class CXXConstructExpr; // ctor
144    friend class CallExpr; // ctor
145    friend class OffsetOfExpr; // ctor
146    friend class ObjCMessageExpr; // ctor
147    friend class ObjCArrayLiteral; // ctor
148    friend class ObjCDictionaryLiteral; // ctor
149    friend class ShuffleVectorExpr; // ctor
150    friend class ParenListExpr; // ctor
151    friend class CXXUnresolvedConstructExpr; // ctor
152    friend class CXXDependentScopeMemberExpr; // ctor
153    friend class OverloadExpr; // ctor
154    friend class PseudoObjectExpr; // ctor
155    friend class AtomicExpr; // ctor
156    unsigned : NumStmtBits;
157
158    unsigned ValueKind : 2;
159    unsigned ObjectKind : 2;
160    unsigned TypeDependent : 1;
161    unsigned ValueDependent : 1;
162    unsigned InstantiationDependent : 1;
163    unsigned ContainsUnexpandedParameterPack : 1;
164  };
165  enum { NumExprBits = 16 };
166
167  class CharacterLiteralBitfields {
168    friend class CharacterLiteral;
169    unsigned : NumExprBits;
170
171    unsigned Kind : 2;
172  };
173
174  class FloatingLiteralBitfields {
175    friend class FloatingLiteral;
176    unsigned : NumExprBits;
177
178    unsigned IsIEEE : 1; // Distinguishes between PPC128 and IEEE128.
179    unsigned IsExact : 1;
180  };
181
182  class UnaryExprOrTypeTraitExprBitfields {
183    friend class UnaryExprOrTypeTraitExpr;
184    unsigned : NumExprBits;
185
186    unsigned Kind : 2;
187    unsigned IsType : 1; // true if operand is a type, false if an expression.
188  };
189
190  class DeclRefExprBitfields {
191    friend class DeclRefExpr;
192    friend class ASTStmtReader; // deserialization
193    unsigned : NumExprBits;
194
195    unsigned HasQualifier : 1;
196    unsigned HasTemplateKWAndArgsInfo : 1;
197    unsigned HasFoundDecl : 1;
198    unsigned HadMultipleCandidates : 1;
199    unsigned RefersToEnclosingLocal : 1;
200  };
201
202  class CastExprBitfields {
203    friend class CastExpr;
204    unsigned : NumExprBits;
205
206    unsigned Kind : 6;
207    unsigned BasePathSize : 32 - 6 - NumExprBits;
208  };
209
210  class CallExprBitfields {
211    friend class CallExpr;
212    unsigned : NumExprBits;
213
214    unsigned NumPreArgs : 1;
215  };
216
217  class ExprWithCleanupsBitfields {
218    friend class ExprWithCleanups;
219    friend class ASTStmtReader; // deserialization
220
221    unsigned : NumExprBits;
222
223    unsigned NumObjects : 32 - NumExprBits;
224  };
225
226  class PseudoObjectExprBitfields {
227    friend class PseudoObjectExpr;
228    friend class ASTStmtReader; // deserialization
229
230    unsigned : NumExprBits;
231
232    // These don't need to be particularly wide, because they're
233    // strictly limited by the forms of expressions we permit.
234    unsigned NumSubExprs : 8;
235    unsigned ResultIndex : 32 - 8 - NumExprBits;
236  };
237
238  class ObjCIndirectCopyRestoreExprBitfields {
239    friend class ObjCIndirectCopyRestoreExpr;
240    unsigned : NumExprBits;
241
242    unsigned ShouldCopy : 1;
243  };
244
245  class InitListExprBitfields {
246    friend class InitListExpr;
247
248    unsigned : NumExprBits;
249
250    /// Whether this initializer list originally had a GNU array-range
251    /// designator in it. This is a temporary marker used by CodeGen.
252    unsigned HadArrayRangeDesignator : 1;
253
254    /// Whether this initializer list initializes a std::initializer_list
255    /// object.
256    unsigned InitializesStdInitializerList : 1;
257  };
258
259  class TypeTraitExprBitfields {
260    friend class TypeTraitExpr;
261    friend class ASTStmtReader;
262    friend class ASTStmtWriter;
263
264    unsigned : NumExprBits;
265
266    /// \brief The kind of type trait, which is a value of a TypeTrait enumerator.
267    unsigned Kind : 8;
268
269    /// \brief If this expression is not value-dependent, this indicates whether
270    /// the trait evaluated true or false.
271    unsigned Value : 1;
272
273    /// \brief The number of arguments to this type trait.
274    unsigned NumArgs : 32 - 8 - 1 - NumExprBits;
275  };
276
277  union {
278    // FIXME: this is wasteful on 64-bit platforms.
279    void *Aligner;
280
281    StmtBitfields StmtBits;
282    CompoundStmtBitfields CompoundStmtBits;
283    ExprBitfields ExprBits;
284    CharacterLiteralBitfields CharacterLiteralBits;
285    FloatingLiteralBitfields FloatingLiteralBits;
286    UnaryExprOrTypeTraitExprBitfields UnaryExprOrTypeTraitExprBits;
287    DeclRefExprBitfields DeclRefExprBits;
288    CastExprBitfields CastExprBits;
289    CallExprBitfields CallExprBits;
290    ExprWithCleanupsBitfields ExprWithCleanupsBits;
291    PseudoObjectExprBitfields PseudoObjectExprBits;
292    ObjCIndirectCopyRestoreExprBitfields ObjCIndirectCopyRestoreExprBits;
293    InitListExprBitfields InitListExprBits;
294    TypeTraitExprBitfields TypeTraitExprBits;
295  };
296
297  friend class ASTStmtReader;
298  friend class ASTStmtWriter;
299
300public:
301  // Only allow allocation of Stmts using the allocator in ASTContext
302  // or by doing a placement new.
303  void* operator new(size_t bytes, ASTContext& C,
304                     unsigned alignment = 8) throw() {
305    return ::operator new(bytes, C, alignment);
306  }
307
308  void* operator new(size_t bytes, ASTContext* C,
309                     unsigned alignment = 8) throw() {
310    return ::operator new(bytes, *C, alignment);
311  }
312
313  void* operator new(size_t bytes, void* mem) throw() {
314    return mem;
315  }
316
317  void operator delete(void*, ASTContext&, unsigned) throw() { }
318  void operator delete(void*, ASTContext*, unsigned) throw() { }
319  void operator delete(void*, std::size_t) throw() { }
320  void operator delete(void*, void*) throw() { }
321
322public:
323  /// \brief A placeholder type used to construct an empty shell of a
324  /// type, that will be filled in later (e.g., by some
325  /// de-serialization).
326  struct EmptyShell { };
327
328private:
329  /// \brief Whether statistic collection is enabled.
330  static bool StatisticsEnabled;
331
332protected:
333  /// \brief Construct an empty statement.
334  explicit Stmt(StmtClass SC, EmptyShell) {
335    StmtBits.sClass = SC;
336    if (StatisticsEnabled) Stmt::addStmtClass(SC);
337  }
338
339public:
340  Stmt(StmtClass SC) {
341    StmtBits.sClass = SC;
342    if (StatisticsEnabled) Stmt::addStmtClass(SC);
343  }
344
345  StmtClass getStmtClass() const {
346    return static_cast<StmtClass>(StmtBits.sClass);
347  }
348  const char *getStmtClassName() const;
349
350  /// SourceLocation tokens are not useful in isolation - they are low level
351  /// value objects created/interpreted by SourceManager. We assume AST
352  /// clients will have a pointer to the respective SourceManager.
353  SourceRange getSourceRange() const LLVM_READONLY;
354  SourceLocation getLocStart() const LLVM_READONLY;
355  SourceLocation getLocEnd() const LLVM_READONLY;
356
357  // global temp stats (until we have a per-module visitor)
358  static void addStmtClass(const StmtClass s);
359  static void EnableStatistics();
360  static void PrintStats();
361
362  /// dump - This does a local dump of the specified AST fragment.  It dumps the
363  /// specified node and a few nodes underneath it, but not the whole subtree.
364  /// This is useful in a debugger.
365  LLVM_ATTRIBUTE_USED void dump() const;
366  LLVM_ATTRIBUTE_USED void dump(SourceManager &SM) const;
367  void dump(raw_ostream &OS, SourceManager &SM) const;
368
369  /// dumpAll - This does a dump of the specified AST fragment and all subtrees.
370  void dumpAll() const;
371  void dumpAll(SourceManager &SM) const;
372
373  /// dumpPretty/printPretty - These two methods do a "pretty print" of the AST
374  /// back to its original source language syntax.
375  void dumpPretty(ASTContext& Context) const;
376  void printPretty(raw_ostream &OS, PrinterHelper *Helper,
377                   const PrintingPolicy &Policy,
378                   unsigned Indentation = 0) const {
379    printPretty(OS, *(ASTContext*)0, Helper, Policy, Indentation);
380  }
381  void printPretty(raw_ostream &OS, ASTContext &Context,
382                   PrinterHelper *Helper,
383                   const PrintingPolicy &Policy,
384                   unsigned Indentation = 0) const;
385
386  /// viewAST - Visualize an AST rooted at this Stmt* using GraphViz.  Only
387  ///   works on systems with GraphViz (Mac OS X) or dot+gv installed.
388  void viewAST() const;
389
390  /// Skip past any implicit AST nodes which might surround this
391  /// statement, such as ExprWithCleanups or ImplicitCastExpr nodes.
392  Stmt *IgnoreImplicit();
393
394  const Stmt *stripLabelLikeStatements() const;
395  Stmt *stripLabelLikeStatements() {
396    return const_cast<Stmt*>(
397      const_cast<const Stmt*>(this)->stripLabelLikeStatements());
398  }
399
400  // Implement isa<T> support.
401  static bool classof(const Stmt *) { return true; }
402
403  /// hasImplicitControlFlow - Some statements (e.g. short circuited operations)
404  ///  contain implicit control-flow in the order their subexpressions
405  ///  are evaluated.  This predicate returns true if this statement has
406  ///  such implicit control-flow.  Such statements are also specially handled
407  ///  within CFGs.
408  bool hasImplicitControlFlow() const;
409
410  /// Child Iterators: All subclasses must implement 'children'
411  /// to permit easy iteration over the substatements/subexpessions of an
412  /// AST node.  This permits easy iteration over all nodes in the AST.
413  typedef StmtIterator       child_iterator;
414  typedef ConstStmtIterator  const_child_iterator;
415
416  typedef StmtRange          child_range;
417  typedef ConstStmtRange     const_child_range;
418
419  child_range children();
420  const_child_range children() const {
421    return const_cast<Stmt*>(this)->children();
422  }
423
424  child_iterator child_begin() { return children().first; }
425  child_iterator child_end() { return children().second; }
426
427  const_child_iterator child_begin() const { return children().first; }
428  const_child_iterator child_end() const { return children().second; }
429
430  /// \brief Produce a unique representation of the given statement.
431  ///
432  /// \brief ID once the profiling operation is complete, will contain
433  /// the unique representation of the given statement.
434  ///
435  /// \brief Context the AST context in which the statement resides
436  ///
437  /// \brief Canonical whether the profile should be based on the canonical
438  /// representation of this statement (e.g., where non-type template
439  /// parameters are identified by index/level rather than their
440  /// declaration pointers) or the exact representation of the statement as
441  /// written in the source.
442  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
443               bool Canonical) const;
444};
445
446/// DeclStmt - Adaptor class for mixing declarations with statements and
447/// expressions. For example, CompoundStmt mixes statements, expressions
448/// and declarations (variables, types). Another example is ForStmt, where
449/// the first statement can be an expression or a declaration.
450///
451class DeclStmt : public Stmt {
452  DeclGroupRef DG;
453  SourceLocation StartLoc, EndLoc;
454
455public:
456  DeclStmt(DeclGroupRef dg, SourceLocation startLoc,
457           SourceLocation endLoc) : Stmt(DeclStmtClass), DG(dg),
458                                    StartLoc(startLoc), EndLoc(endLoc) {}
459
460  /// \brief Build an empty declaration statement.
461  explicit DeclStmt(EmptyShell Empty) : Stmt(DeclStmtClass, Empty) { }
462
463  /// isSingleDecl - This method returns true if this DeclStmt refers
464  /// to a single Decl.
465  bool isSingleDecl() const {
466    return DG.isSingleDecl();
467  }
468
469  const Decl *getSingleDecl() const { return DG.getSingleDecl(); }
470  Decl *getSingleDecl() { return DG.getSingleDecl(); }
471
472  const DeclGroupRef getDeclGroup() const { return DG; }
473  DeclGroupRef getDeclGroup() { return DG; }
474  void setDeclGroup(DeclGroupRef DGR) { DG = DGR; }
475
476  SourceLocation getStartLoc() const { return StartLoc; }
477  void setStartLoc(SourceLocation L) { StartLoc = L; }
478  SourceLocation getEndLoc() const { return EndLoc; }
479  void setEndLoc(SourceLocation L) { EndLoc = L; }
480
481  SourceRange getSourceRange() const LLVM_READONLY {
482    return SourceRange(StartLoc, EndLoc);
483  }
484
485  static bool classof(const Stmt *T) {
486    return T->getStmtClass() == DeclStmtClass;
487  }
488  static bool classof(const DeclStmt *) { return true; }
489
490  // Iterators over subexpressions.
491  child_range children() {
492    return child_range(child_iterator(DG.begin(), DG.end()),
493                       child_iterator(DG.end(), DG.end()));
494  }
495
496  typedef DeclGroupRef::iterator decl_iterator;
497  typedef DeclGroupRef::const_iterator const_decl_iterator;
498
499  decl_iterator decl_begin() { return DG.begin(); }
500  decl_iterator decl_end() { return DG.end(); }
501  const_decl_iterator decl_begin() const { return DG.begin(); }
502  const_decl_iterator decl_end() const { return DG.end(); }
503};
504
505/// NullStmt - This is the null statement ";": C99 6.8.3p3.
506///
507class NullStmt : public Stmt {
508  SourceLocation SemiLoc;
509
510  /// \brief True if the null statement was preceded by an empty macro, e.g:
511  /// @code
512  ///   #define CALL(x)
513  ///   CALL(0);
514  /// @endcode
515  bool HasLeadingEmptyMacro;
516public:
517  NullStmt(SourceLocation L, bool hasLeadingEmptyMacro = false)
518    : Stmt(NullStmtClass), SemiLoc(L),
519      HasLeadingEmptyMacro(hasLeadingEmptyMacro) {}
520
521  /// \brief Build an empty null statement.
522  explicit NullStmt(EmptyShell Empty) : Stmt(NullStmtClass, Empty),
523      HasLeadingEmptyMacro(false) { }
524
525  SourceLocation getSemiLoc() const { return SemiLoc; }
526  void setSemiLoc(SourceLocation L) { SemiLoc = L; }
527
528  bool hasLeadingEmptyMacro() const { return HasLeadingEmptyMacro; }
529
530  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(SemiLoc); }
531
532  static bool classof(const Stmt *T) {
533    return T->getStmtClass() == NullStmtClass;
534  }
535  static bool classof(const NullStmt *) { return true; }
536
537  child_range children() { return child_range(); }
538
539  friend class ASTStmtReader;
540  friend class ASTStmtWriter;
541};
542
543/// CompoundStmt - This represents a group of statements like { stmt stmt }.
544///
545class CompoundStmt : public Stmt {
546  Stmt** Body;
547  SourceLocation LBracLoc, RBracLoc;
548public:
549  CompoundStmt(ASTContext &C, Stmt **StmtStart, unsigned NumStmts,
550               SourceLocation LB, SourceLocation RB);
551
552  // \brief Build an empty compound statment with a location.
553  explicit CompoundStmt(SourceLocation Loc)
554    : Stmt(CompoundStmtClass), Body(0), LBracLoc(Loc), RBracLoc(Loc) {
555    CompoundStmtBits.NumStmts = 0;
556  }
557
558  // \brief Build an empty compound statement.
559  explicit CompoundStmt(EmptyShell Empty)
560    : Stmt(CompoundStmtClass, Empty), Body(0) {
561    CompoundStmtBits.NumStmts = 0;
562  }
563
564  void setStmts(ASTContext &C, Stmt **Stmts, unsigned NumStmts);
565
566  bool body_empty() const { return CompoundStmtBits.NumStmts == 0; }
567  unsigned size() const { return CompoundStmtBits.NumStmts; }
568
569  typedef Stmt** body_iterator;
570  body_iterator body_begin() { return Body; }
571  body_iterator body_end() { return Body + size(); }
572  Stmt *body_back() { return !body_empty() ? Body[size()-1] : 0; }
573
574  void setLastStmt(Stmt *S) {
575    assert(!body_empty() && "setLastStmt");
576    Body[size()-1] = S;
577  }
578
579  typedef Stmt* const * const_body_iterator;
580  const_body_iterator body_begin() const { return Body; }
581  const_body_iterator body_end() const { return Body + size(); }
582  const Stmt *body_back() const { return !body_empty() ? Body[size()-1] : 0; }
583
584  typedef std::reverse_iterator<body_iterator> reverse_body_iterator;
585  reverse_body_iterator body_rbegin() {
586    return reverse_body_iterator(body_end());
587  }
588  reverse_body_iterator body_rend() {
589    return reverse_body_iterator(body_begin());
590  }
591
592  typedef std::reverse_iterator<const_body_iterator>
593          const_reverse_body_iterator;
594
595  const_reverse_body_iterator body_rbegin() const {
596    return const_reverse_body_iterator(body_end());
597  }
598
599  const_reverse_body_iterator body_rend() const {
600    return const_reverse_body_iterator(body_begin());
601  }
602
603  SourceRange getSourceRange() const LLVM_READONLY {
604    return SourceRange(LBracLoc, RBracLoc);
605  }
606
607  SourceLocation getLBracLoc() const { return LBracLoc; }
608  void setLBracLoc(SourceLocation L) { LBracLoc = L; }
609  SourceLocation getRBracLoc() const { return RBracLoc; }
610  void setRBracLoc(SourceLocation L) { RBracLoc = L; }
611
612  static bool classof(const Stmt *T) {
613    return T->getStmtClass() == CompoundStmtClass;
614  }
615  static bool classof(const CompoundStmt *) { return true; }
616
617  // Iterators
618  child_range children() {
619    return child_range(&Body[0], &Body[0]+CompoundStmtBits.NumStmts);
620  }
621
622  const_child_range children() const {
623    return child_range(&Body[0], &Body[0]+CompoundStmtBits.NumStmts);
624  }
625};
626
627// SwitchCase is the base class for CaseStmt and DefaultStmt,
628class SwitchCase : public Stmt {
629protected:
630  // A pointer to the following CaseStmt or DefaultStmt class,
631  // used by SwitchStmt.
632  SwitchCase *NextSwitchCase;
633
634  SwitchCase(StmtClass SC) : Stmt(SC), NextSwitchCase(0) {}
635
636public:
637  const SwitchCase *getNextSwitchCase() const { return NextSwitchCase; }
638
639  SwitchCase *getNextSwitchCase() { return NextSwitchCase; }
640
641  void setNextSwitchCase(SwitchCase *SC) { NextSwitchCase = SC; }
642
643  Stmt *getSubStmt();
644  const Stmt *getSubStmt() const {
645    return const_cast<SwitchCase*>(this)->getSubStmt();
646  }
647
648  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(); }
649
650  static bool classof(const Stmt *T) {
651    return T->getStmtClass() == CaseStmtClass ||
652           T->getStmtClass() == DefaultStmtClass;
653  }
654  static bool classof(const SwitchCase *) { return true; }
655};
656
657class CaseStmt : public SwitchCase {
658  enum { LHS, RHS, SUBSTMT, END_EXPR };
659  Stmt* SubExprs[END_EXPR];  // The expression for the RHS is Non-null for
660                             // GNU "case 1 ... 4" extension
661  SourceLocation CaseLoc;
662  SourceLocation EllipsisLoc;
663  SourceLocation ColonLoc;
664public:
665  CaseStmt(Expr *lhs, Expr *rhs, SourceLocation caseLoc,
666           SourceLocation ellipsisLoc, SourceLocation colonLoc)
667    : SwitchCase(CaseStmtClass) {
668    SubExprs[SUBSTMT] = 0;
669    SubExprs[LHS] = reinterpret_cast<Stmt*>(lhs);
670    SubExprs[RHS] = reinterpret_cast<Stmt*>(rhs);
671    CaseLoc = caseLoc;
672    EllipsisLoc = ellipsisLoc;
673    ColonLoc = colonLoc;
674  }
675
676  /// \brief Build an empty switch case statement.
677  explicit CaseStmt(EmptyShell Empty) : SwitchCase(CaseStmtClass) { }
678
679  SourceLocation getCaseLoc() const { return CaseLoc; }
680  void setCaseLoc(SourceLocation L) { CaseLoc = L; }
681  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
682  void setEllipsisLoc(SourceLocation L) { EllipsisLoc = L; }
683  SourceLocation getColonLoc() const { return ColonLoc; }
684  void setColonLoc(SourceLocation L) { ColonLoc = L; }
685
686  Expr *getLHS() { return reinterpret_cast<Expr*>(SubExprs[LHS]); }
687  Expr *getRHS() { return reinterpret_cast<Expr*>(SubExprs[RHS]); }
688  Stmt *getSubStmt() { return SubExprs[SUBSTMT]; }
689
690  const Expr *getLHS() const {
691    return reinterpret_cast<const Expr*>(SubExprs[LHS]);
692  }
693  const Expr *getRHS() const {
694    return reinterpret_cast<const Expr*>(SubExprs[RHS]);
695  }
696  const Stmt *getSubStmt() const { return SubExprs[SUBSTMT]; }
697
698  void setSubStmt(Stmt *S) { SubExprs[SUBSTMT] = S; }
699  void setLHS(Expr *Val) { SubExprs[LHS] = reinterpret_cast<Stmt*>(Val); }
700  void setRHS(Expr *Val) { SubExprs[RHS] = reinterpret_cast<Stmt*>(Val); }
701
702
703  SourceRange getSourceRange() const LLVM_READONLY {
704    // Handle deeply nested case statements with iteration instead of recursion.
705    const CaseStmt *CS = this;
706    while (const CaseStmt *CS2 = dyn_cast<CaseStmt>(CS->getSubStmt()))
707      CS = CS2;
708
709    return SourceRange(CaseLoc, CS->getSubStmt()->getLocEnd());
710  }
711  static bool classof(const Stmt *T) {
712    return T->getStmtClass() == CaseStmtClass;
713  }
714  static bool classof(const CaseStmt *) { return true; }
715
716  // Iterators
717  child_range children() {
718    return child_range(&SubExprs[0], &SubExprs[END_EXPR]);
719  }
720};
721
722class DefaultStmt : public SwitchCase {
723  Stmt* SubStmt;
724  SourceLocation DefaultLoc;
725  SourceLocation ColonLoc;
726public:
727  DefaultStmt(SourceLocation DL, SourceLocation CL, Stmt *substmt) :
728    SwitchCase(DefaultStmtClass), SubStmt(substmt), DefaultLoc(DL),
729    ColonLoc(CL) {}
730
731  /// \brief Build an empty default statement.
732  explicit DefaultStmt(EmptyShell) : SwitchCase(DefaultStmtClass) { }
733
734  Stmt *getSubStmt() { return SubStmt; }
735  const Stmt *getSubStmt() const { return SubStmt; }
736  void setSubStmt(Stmt *S) { SubStmt = S; }
737
738  SourceLocation getDefaultLoc() const { return DefaultLoc; }
739  void setDefaultLoc(SourceLocation L) { DefaultLoc = L; }
740  SourceLocation getColonLoc() const { return ColonLoc; }
741  void setColonLoc(SourceLocation L) { ColonLoc = L; }
742
743  SourceRange getSourceRange() const LLVM_READONLY {
744    return SourceRange(DefaultLoc, SubStmt->getLocEnd());
745  }
746  static bool classof(const Stmt *T) {
747    return T->getStmtClass() == DefaultStmtClass;
748  }
749  static bool classof(const DefaultStmt *) { return true; }
750
751  // Iterators
752  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
753};
754
755
756/// LabelStmt - Represents a label, which has a substatement.  For example:
757///    foo: return;
758///
759class LabelStmt : public Stmt {
760  LabelDecl *TheDecl;
761  Stmt *SubStmt;
762  SourceLocation IdentLoc;
763public:
764  LabelStmt(SourceLocation IL, LabelDecl *D, Stmt *substmt)
765    : Stmt(LabelStmtClass), TheDecl(D), SubStmt(substmt), IdentLoc(IL) {
766  }
767
768  // \brief Build an empty label statement.
769  explicit LabelStmt(EmptyShell Empty) : Stmt(LabelStmtClass, Empty) { }
770
771  SourceLocation getIdentLoc() const { return IdentLoc; }
772  LabelDecl *getDecl() const { return TheDecl; }
773  void setDecl(LabelDecl *D) { TheDecl = D; }
774  const char *getName() const;
775  Stmt *getSubStmt() { return SubStmt; }
776  const Stmt *getSubStmt() const { return SubStmt; }
777  void setIdentLoc(SourceLocation L) { IdentLoc = L; }
778  void setSubStmt(Stmt *SS) { SubStmt = SS; }
779
780  SourceRange getSourceRange() const LLVM_READONLY {
781    return SourceRange(IdentLoc, SubStmt->getLocEnd());
782  }
783  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
784
785  static bool classof(const Stmt *T) {
786    return T->getStmtClass() == LabelStmtClass;
787  }
788  static bool classof(const LabelStmt *) { return true; }
789};
790
791
792/// \brief Represents an attribute applied to a statement.
793///
794/// Represents an attribute applied to a statement. For example:
795///   [[omp::for(...)]] for (...) { ... }
796///
797class AttributedStmt : public Stmt {
798  Stmt *SubStmt;
799  SourceLocation AttrLoc;
800  AttrVec Attrs;
801  // TODO: It can be done as Attr *Attrs[1]; and variable size array as in
802  // StringLiteral
803
804  friend class ASTStmtReader;
805
806public:
807  AttributedStmt(SourceLocation loc, const AttrVec &attrs, Stmt *substmt)
808    : Stmt(AttributedStmtClass), SubStmt(substmt), AttrLoc(loc), Attrs(attrs) {
809  }
810
811  // \brief Build an empty attributed statement.
812  explicit AttributedStmt(EmptyShell Empty)
813    : Stmt(AttributedStmtClass, Empty) {
814  }
815
816  SourceLocation getAttrLoc() const { return AttrLoc; }
817  const AttrVec &getAttrs() const { return Attrs; }
818  Stmt *getSubStmt() { return SubStmt; }
819  const Stmt *getSubStmt() const { return SubStmt; }
820
821  SourceRange getSourceRange() const LLVM_READONLY {
822    return SourceRange(AttrLoc, SubStmt->getLocEnd());
823  }
824  child_range children() { return child_range(&SubStmt, &SubStmt + 1); }
825
826  static bool classof(const Stmt *T) {
827    return T->getStmtClass() == AttributedStmtClass;
828  }
829  static bool classof(const AttributedStmt *) { return true; }
830};
831
832
833/// IfStmt - This represents an if/then/else.
834///
835class IfStmt : public Stmt {
836  enum { VAR, COND, THEN, ELSE, END_EXPR };
837  Stmt* SubExprs[END_EXPR];
838
839  SourceLocation IfLoc;
840  SourceLocation ElseLoc;
841
842public:
843  IfStmt(ASTContext &C, SourceLocation IL, VarDecl *var, Expr *cond,
844         Stmt *then, SourceLocation EL = SourceLocation(), Stmt *elsev = 0);
845
846  /// \brief Build an empty if/then/else statement
847  explicit IfStmt(EmptyShell Empty) : Stmt(IfStmtClass, Empty) { }
848
849  /// \brief Retrieve the variable declared in this "if" statement, if any.
850  ///
851  /// In the following example, "x" is the condition variable.
852  /// \code
853  /// if (int x = foo()) {
854  ///   printf("x is %d", x);
855  /// }
856  /// \endcode
857  VarDecl *getConditionVariable() const;
858  void setConditionVariable(ASTContext &C, VarDecl *V);
859
860  /// If this IfStmt has a condition variable, return the faux DeclStmt
861  /// associated with the creation of that condition variable.
862  const DeclStmt *getConditionVariableDeclStmt() const {
863    return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
864  }
865
866  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
867  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
868  const Stmt *getThen() const { return SubExprs[THEN]; }
869  void setThen(Stmt *S) { SubExprs[THEN] = S; }
870  const Stmt *getElse() const { return SubExprs[ELSE]; }
871  void setElse(Stmt *S) { SubExprs[ELSE] = S; }
872
873  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
874  Stmt *getThen() { return SubExprs[THEN]; }
875  Stmt *getElse() { return SubExprs[ELSE]; }
876
877  SourceLocation getIfLoc() const { return IfLoc; }
878  void setIfLoc(SourceLocation L) { IfLoc = L; }
879  SourceLocation getElseLoc() const { return ElseLoc; }
880  void setElseLoc(SourceLocation L) { ElseLoc = L; }
881
882  SourceRange getSourceRange() const LLVM_READONLY {
883    if (SubExprs[ELSE])
884      return SourceRange(IfLoc, SubExprs[ELSE]->getLocEnd());
885    else
886      return SourceRange(IfLoc, SubExprs[THEN]->getLocEnd());
887  }
888
889  // Iterators over subexpressions.  The iterators will include iterating
890  // over the initialization expression referenced by the condition variable.
891  child_range children() {
892    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
893  }
894
895  static bool classof(const Stmt *T) {
896    return T->getStmtClass() == IfStmtClass;
897  }
898  static bool classof(const IfStmt *) { return true; }
899};
900
901/// SwitchStmt - This represents a 'switch' stmt.
902///
903class SwitchStmt : public Stmt {
904  enum { VAR, COND, BODY, END_EXPR };
905  Stmt* SubExprs[END_EXPR];
906  // This points to a linked list of case and default statements.
907  SwitchCase *FirstCase;
908  SourceLocation SwitchLoc;
909
910  /// If the SwitchStmt is a switch on an enum value, this records whether
911  /// all the enum values were covered by CaseStmts.  This value is meant to
912  /// be a hint for possible clients.
913  unsigned AllEnumCasesCovered : 1;
914
915public:
916  SwitchStmt(ASTContext &C, VarDecl *Var, Expr *cond);
917
918  /// \brief Build a empty switch statement.
919  explicit SwitchStmt(EmptyShell Empty) : Stmt(SwitchStmtClass, Empty) { }
920
921  /// \brief Retrieve the variable declared in this "switch" statement, if any.
922  ///
923  /// In the following example, "x" is the condition variable.
924  /// \code
925  /// switch (int x = foo()) {
926  ///   case 0: break;
927  ///   // ...
928  /// }
929  /// \endcode
930  VarDecl *getConditionVariable() const;
931  void setConditionVariable(ASTContext &C, VarDecl *V);
932
933  /// If this SwitchStmt has a condition variable, return the faux DeclStmt
934  /// associated with the creation of that condition variable.
935  const DeclStmt *getConditionVariableDeclStmt() const {
936    return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
937  }
938
939  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
940  const Stmt *getBody() const { return SubExprs[BODY]; }
941  const SwitchCase *getSwitchCaseList() const { return FirstCase; }
942
943  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]);}
944  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
945  Stmt *getBody() { return SubExprs[BODY]; }
946  void setBody(Stmt *S) { SubExprs[BODY] = S; }
947  SwitchCase *getSwitchCaseList() { return FirstCase; }
948
949  /// \brief Set the case list for this switch statement.
950  ///
951  /// The caller is responsible for incrementing the retain counts on
952  /// all of the SwitchCase statements in this list.
953  void setSwitchCaseList(SwitchCase *SC) { FirstCase = SC; }
954
955  SourceLocation getSwitchLoc() const { return SwitchLoc; }
956  void setSwitchLoc(SourceLocation L) { SwitchLoc = L; }
957
958  void setBody(Stmt *S, SourceLocation SL) {
959    SubExprs[BODY] = S;
960    SwitchLoc = SL;
961  }
962  void addSwitchCase(SwitchCase *SC) {
963    assert(!SC->getNextSwitchCase()
964           && "case/default already added to a switch");
965    SC->setNextSwitchCase(FirstCase);
966    FirstCase = SC;
967  }
968
969  /// Set a flag in the SwitchStmt indicating that if the 'switch (X)' is a
970  /// switch over an enum value then all cases have been explicitly covered.
971  void setAllEnumCasesCovered() {
972    AllEnumCasesCovered = 1;
973  }
974
975  /// Returns true if the SwitchStmt is a switch of an enum value and all cases
976  /// have been explicitly covered.
977  bool isAllEnumCasesCovered() const {
978    return (bool) AllEnumCasesCovered;
979  }
980
981  SourceRange getSourceRange() const LLVM_READONLY {
982    return SourceRange(SwitchLoc, SubExprs[BODY]->getLocEnd());
983  }
984  // Iterators
985  child_range children() {
986    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
987  }
988
989  static bool classof(const Stmt *T) {
990    return T->getStmtClass() == SwitchStmtClass;
991  }
992  static bool classof(const SwitchStmt *) { return true; }
993};
994
995
996/// WhileStmt - This represents a 'while' stmt.
997///
998class WhileStmt : public Stmt {
999  enum { VAR, COND, BODY, END_EXPR };
1000  Stmt* SubExprs[END_EXPR];
1001  SourceLocation WhileLoc;
1002public:
1003  WhileStmt(ASTContext &C, VarDecl *Var, Expr *cond, Stmt *body,
1004            SourceLocation WL);
1005
1006  /// \brief Build an empty while statement.
1007  explicit WhileStmt(EmptyShell Empty) : Stmt(WhileStmtClass, Empty) { }
1008
1009  /// \brief Retrieve the variable declared in this "while" statement, if any.
1010  ///
1011  /// In the following example, "x" is the condition variable.
1012  /// \code
1013  /// while (int x = random()) {
1014  ///   // ...
1015  /// }
1016  /// \endcode
1017  VarDecl *getConditionVariable() const;
1018  void setConditionVariable(ASTContext &C, VarDecl *V);
1019
1020  /// If this WhileStmt has a condition variable, return the faux DeclStmt
1021  /// associated with the creation of that condition variable.
1022  const DeclStmt *getConditionVariableDeclStmt() const {
1023    return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
1024  }
1025
1026  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
1027  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
1028  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
1029  Stmt *getBody() { return SubExprs[BODY]; }
1030  const Stmt *getBody() const { return SubExprs[BODY]; }
1031  void setBody(Stmt *S) { SubExprs[BODY] = S; }
1032
1033  SourceLocation getWhileLoc() const { return WhileLoc; }
1034  void setWhileLoc(SourceLocation L) { WhileLoc = L; }
1035
1036  SourceRange getSourceRange() const LLVM_READONLY {
1037    return SourceRange(WhileLoc, SubExprs[BODY]->getLocEnd());
1038  }
1039  static bool classof(const Stmt *T) {
1040    return T->getStmtClass() == WhileStmtClass;
1041  }
1042  static bool classof(const WhileStmt *) { return true; }
1043
1044  // Iterators
1045  child_range children() {
1046    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1047  }
1048};
1049
1050/// DoStmt - This represents a 'do/while' stmt.
1051///
1052class DoStmt : public Stmt {
1053  enum { BODY, COND, END_EXPR };
1054  Stmt* SubExprs[END_EXPR];
1055  SourceLocation DoLoc;
1056  SourceLocation WhileLoc;
1057  SourceLocation RParenLoc;  // Location of final ')' in do stmt condition.
1058
1059public:
1060  DoStmt(Stmt *body, Expr *cond, SourceLocation DL, SourceLocation WL,
1061         SourceLocation RP)
1062    : Stmt(DoStmtClass), DoLoc(DL), WhileLoc(WL), RParenLoc(RP) {
1063    SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
1064    SubExprs[BODY] = body;
1065  }
1066
1067  /// \brief Build an empty do-while statement.
1068  explicit DoStmt(EmptyShell Empty) : Stmt(DoStmtClass, Empty) { }
1069
1070  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
1071  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
1072  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
1073  Stmt *getBody() { return SubExprs[BODY]; }
1074  const Stmt *getBody() const { return SubExprs[BODY]; }
1075  void setBody(Stmt *S) { SubExprs[BODY] = S; }
1076
1077  SourceLocation getDoLoc() const { return DoLoc; }
1078  void setDoLoc(SourceLocation L) { DoLoc = L; }
1079  SourceLocation getWhileLoc() const { return WhileLoc; }
1080  void setWhileLoc(SourceLocation L) { WhileLoc = L; }
1081
1082  SourceLocation getRParenLoc() const { return RParenLoc; }
1083  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1084
1085  SourceRange getSourceRange() const LLVM_READONLY {
1086    return SourceRange(DoLoc, RParenLoc);
1087  }
1088  static bool classof(const Stmt *T) {
1089    return T->getStmtClass() == DoStmtClass;
1090  }
1091  static bool classof(const DoStmt *) { return true; }
1092
1093  // Iterators
1094  child_range children() {
1095    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1096  }
1097};
1098
1099
1100/// ForStmt - This represents a 'for (init;cond;inc)' stmt.  Note that any of
1101/// the init/cond/inc parts of the ForStmt will be null if they were not
1102/// specified in the source.
1103///
1104class ForStmt : public Stmt {
1105  enum { INIT, CONDVAR, COND, INC, BODY, END_EXPR };
1106  Stmt* SubExprs[END_EXPR]; // SubExprs[INIT] is an expression or declstmt.
1107  SourceLocation ForLoc;
1108  SourceLocation LParenLoc, RParenLoc;
1109
1110public:
1111  ForStmt(ASTContext &C, Stmt *Init, Expr *Cond, VarDecl *condVar, Expr *Inc,
1112          Stmt *Body, SourceLocation FL, SourceLocation LP, SourceLocation RP);
1113
1114  /// \brief Build an empty for statement.
1115  explicit ForStmt(EmptyShell Empty) : Stmt(ForStmtClass, Empty) { }
1116
1117  Stmt *getInit() { return SubExprs[INIT]; }
1118
1119  /// \brief Retrieve the variable declared in this "for" statement, if any.
1120  ///
1121  /// In the following example, "y" is the condition variable.
1122  /// \code
1123  /// for (int x = random(); int y = mangle(x); ++x) {
1124  ///   // ...
1125  /// }
1126  /// \endcode
1127  VarDecl *getConditionVariable() const;
1128  void setConditionVariable(ASTContext &C, VarDecl *V);
1129
1130  /// If this ForStmt has a condition variable, return the faux DeclStmt
1131  /// associated with the creation of that condition variable.
1132  const DeclStmt *getConditionVariableDeclStmt() const {
1133    return reinterpret_cast<DeclStmt*>(SubExprs[CONDVAR]);
1134  }
1135
1136  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
1137  Expr *getInc()  { return reinterpret_cast<Expr*>(SubExprs[INC]); }
1138  Stmt *getBody() { return SubExprs[BODY]; }
1139
1140  const Stmt *getInit() const { return SubExprs[INIT]; }
1141  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
1142  const Expr *getInc()  const { return reinterpret_cast<Expr*>(SubExprs[INC]); }
1143  const Stmt *getBody() const { return SubExprs[BODY]; }
1144
1145  void setInit(Stmt *S) { SubExprs[INIT] = S; }
1146  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
1147  void setInc(Expr *E) { SubExprs[INC] = reinterpret_cast<Stmt*>(E); }
1148  void setBody(Stmt *S) { SubExprs[BODY] = S; }
1149
1150  SourceLocation getForLoc() const { return ForLoc; }
1151  void setForLoc(SourceLocation L) { ForLoc = L; }
1152  SourceLocation getLParenLoc() const { return LParenLoc; }
1153  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1154  SourceLocation getRParenLoc() const { return RParenLoc; }
1155  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1156
1157  SourceRange getSourceRange() const LLVM_READONLY {
1158    return SourceRange(ForLoc, SubExprs[BODY]->getLocEnd());
1159  }
1160  static bool classof(const Stmt *T) {
1161    return T->getStmtClass() == ForStmtClass;
1162  }
1163  static bool classof(const ForStmt *) { return true; }
1164
1165  // Iterators
1166  child_range children() {
1167    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1168  }
1169};
1170
1171/// GotoStmt - This represents a direct goto.
1172///
1173class GotoStmt : public Stmt {
1174  LabelDecl *Label;
1175  SourceLocation GotoLoc;
1176  SourceLocation LabelLoc;
1177public:
1178  GotoStmt(LabelDecl *label, SourceLocation GL, SourceLocation LL)
1179    : Stmt(GotoStmtClass), Label(label), GotoLoc(GL), LabelLoc(LL) {}
1180
1181  /// \brief Build an empty goto statement.
1182  explicit GotoStmt(EmptyShell Empty) : Stmt(GotoStmtClass, Empty) { }
1183
1184  LabelDecl *getLabel() const { return Label; }
1185  void setLabel(LabelDecl *D) { Label = D; }
1186
1187  SourceLocation getGotoLoc() const { return GotoLoc; }
1188  void setGotoLoc(SourceLocation L) { GotoLoc = L; }
1189  SourceLocation getLabelLoc() const { return LabelLoc; }
1190  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
1191
1192  SourceRange getSourceRange() const LLVM_READONLY {
1193    return SourceRange(GotoLoc, LabelLoc);
1194  }
1195  static bool classof(const Stmt *T) {
1196    return T->getStmtClass() == GotoStmtClass;
1197  }
1198  static bool classof(const GotoStmt *) { return true; }
1199
1200  // Iterators
1201  child_range children() { return child_range(); }
1202};
1203
1204/// IndirectGotoStmt - This represents an indirect goto.
1205///
1206class IndirectGotoStmt : public Stmt {
1207  SourceLocation GotoLoc;
1208  SourceLocation StarLoc;
1209  Stmt *Target;
1210public:
1211  IndirectGotoStmt(SourceLocation gotoLoc, SourceLocation starLoc,
1212                   Expr *target)
1213    : Stmt(IndirectGotoStmtClass), GotoLoc(gotoLoc), StarLoc(starLoc),
1214      Target((Stmt*)target) {}
1215
1216  /// \brief Build an empty indirect goto statement.
1217  explicit IndirectGotoStmt(EmptyShell Empty)
1218    : Stmt(IndirectGotoStmtClass, Empty) { }
1219
1220  void setGotoLoc(SourceLocation L) { GotoLoc = L; }
1221  SourceLocation getGotoLoc() const { return GotoLoc; }
1222  void setStarLoc(SourceLocation L) { StarLoc = L; }
1223  SourceLocation getStarLoc() const { return StarLoc; }
1224
1225  Expr *getTarget() { return reinterpret_cast<Expr*>(Target); }
1226  const Expr *getTarget() const {return reinterpret_cast<const Expr*>(Target);}
1227  void setTarget(Expr *E) { Target = reinterpret_cast<Stmt*>(E); }
1228
1229  /// getConstantTarget - Returns the fixed target of this indirect
1230  /// goto, if one exists.
1231  LabelDecl *getConstantTarget();
1232  const LabelDecl *getConstantTarget() const {
1233    return const_cast<IndirectGotoStmt*>(this)->getConstantTarget();
1234  }
1235
1236  SourceRange getSourceRange() const LLVM_READONLY {
1237    return SourceRange(GotoLoc, Target->getLocEnd());
1238  }
1239
1240  static bool classof(const Stmt *T) {
1241    return T->getStmtClass() == IndirectGotoStmtClass;
1242  }
1243  static bool classof(const IndirectGotoStmt *) { return true; }
1244
1245  // Iterators
1246  child_range children() { return child_range(&Target, &Target+1); }
1247};
1248
1249
1250/// ContinueStmt - This represents a continue.
1251///
1252class ContinueStmt : public Stmt {
1253  SourceLocation ContinueLoc;
1254public:
1255  ContinueStmt(SourceLocation CL) : Stmt(ContinueStmtClass), ContinueLoc(CL) {}
1256
1257  /// \brief Build an empty continue statement.
1258  explicit ContinueStmt(EmptyShell Empty) : Stmt(ContinueStmtClass, Empty) { }
1259
1260  SourceLocation getContinueLoc() const { return ContinueLoc; }
1261  void setContinueLoc(SourceLocation L) { ContinueLoc = L; }
1262
1263  SourceRange getSourceRange() const LLVM_READONLY {
1264    return SourceRange(ContinueLoc);
1265  }
1266
1267  static bool classof(const Stmt *T) {
1268    return T->getStmtClass() == ContinueStmtClass;
1269  }
1270  static bool classof(const ContinueStmt *) { return true; }
1271
1272  // Iterators
1273  child_range children() { return child_range(); }
1274};
1275
1276/// BreakStmt - This represents a break.
1277///
1278class BreakStmt : public Stmt {
1279  SourceLocation BreakLoc;
1280public:
1281  BreakStmt(SourceLocation BL) : Stmt(BreakStmtClass), BreakLoc(BL) {}
1282
1283  /// \brief Build an empty break statement.
1284  explicit BreakStmt(EmptyShell Empty) : Stmt(BreakStmtClass, Empty) { }
1285
1286  SourceLocation getBreakLoc() const { return BreakLoc; }
1287  void setBreakLoc(SourceLocation L) { BreakLoc = L; }
1288
1289  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(BreakLoc); }
1290
1291  static bool classof(const Stmt *T) {
1292    return T->getStmtClass() == BreakStmtClass;
1293  }
1294  static bool classof(const BreakStmt *) { return true; }
1295
1296  // Iterators
1297  child_range children() { return child_range(); }
1298};
1299
1300
1301/// ReturnStmt - This represents a return, optionally of an expression:
1302///   return;
1303///   return 4;
1304///
1305/// Note that GCC allows return with no argument in a function declared to
1306/// return a value, and it allows returning a value in functions declared to
1307/// return void.  We explicitly model this in the AST, which means you can't
1308/// depend on the return type of the function and the presence of an argument.
1309///
1310class ReturnStmt : public Stmt {
1311  Stmt *RetExpr;
1312  SourceLocation RetLoc;
1313  const VarDecl *NRVOCandidate;
1314
1315public:
1316  ReturnStmt(SourceLocation RL)
1317    : Stmt(ReturnStmtClass), RetExpr(0), RetLoc(RL), NRVOCandidate(0) { }
1318
1319  ReturnStmt(SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate)
1320    : Stmt(ReturnStmtClass), RetExpr((Stmt*) E), RetLoc(RL),
1321      NRVOCandidate(NRVOCandidate) {}
1322
1323  /// \brief Build an empty return expression.
1324  explicit ReturnStmt(EmptyShell Empty) : Stmt(ReturnStmtClass, Empty) { }
1325
1326  const Expr *getRetValue() const;
1327  Expr *getRetValue();
1328  void setRetValue(Expr *E) { RetExpr = reinterpret_cast<Stmt*>(E); }
1329
1330  SourceLocation getReturnLoc() const { return RetLoc; }
1331  void setReturnLoc(SourceLocation L) { RetLoc = L; }
1332
1333  /// \brief Retrieve the variable that might be used for the named return
1334  /// value optimization.
1335  ///
1336  /// The optimization itself can only be performed if the variable is
1337  /// also marked as an NRVO object.
1338  const VarDecl *getNRVOCandidate() const { return NRVOCandidate; }
1339  void setNRVOCandidate(const VarDecl *Var) { NRVOCandidate = Var; }
1340
1341  SourceRange getSourceRange() const LLVM_READONLY;
1342
1343  static bool classof(const Stmt *T) {
1344    return T->getStmtClass() == ReturnStmtClass;
1345  }
1346  static bool classof(const ReturnStmt *) { return true; }
1347
1348  // Iterators
1349  child_range children() {
1350    if (RetExpr) return child_range(&RetExpr, &RetExpr+1);
1351    return child_range();
1352  }
1353};
1354
1355/// AsmStmt - This represents a GNU inline-assembly statement extension.
1356///
1357class AsmStmt : public Stmt {
1358  SourceLocation AsmLoc, RParenLoc;
1359  StringLiteral *AsmStr;
1360
1361  bool IsSimple;
1362  bool IsVolatile;
1363  bool MSAsm;
1364
1365  unsigned NumOutputs;
1366  unsigned NumInputs;
1367  unsigned NumClobbers;
1368
1369  // FIXME: If we wanted to, we could allocate all of these in one big array.
1370  IdentifierInfo **Names;
1371  StringLiteral **Constraints;
1372  Stmt **Exprs;
1373  StringLiteral **Clobbers;
1374
1375public:
1376  AsmStmt(ASTContext &C, SourceLocation asmloc, bool issimple, bool isvolatile,
1377          bool msasm, unsigned numoutputs, unsigned numinputs,
1378          IdentifierInfo **names, StringLiteral **constraints,
1379          Expr **exprs, StringLiteral *asmstr, unsigned numclobbers,
1380          StringLiteral **clobbers, SourceLocation rparenloc);
1381
1382  /// \brief Build an empty inline-assembly statement.
1383  explicit AsmStmt(EmptyShell Empty) : Stmt(AsmStmtClass, Empty),
1384    Names(0), Constraints(0), Exprs(0), Clobbers(0) { }
1385
1386  SourceLocation getAsmLoc() const { return AsmLoc; }
1387  void setAsmLoc(SourceLocation L) { AsmLoc = L; }
1388  SourceLocation getRParenLoc() const { return RParenLoc; }
1389  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1390
1391  bool isVolatile() const { return IsVolatile; }
1392  void setVolatile(bool V) { IsVolatile = V; }
1393  bool isSimple() const { return IsSimple; }
1394  void setSimple(bool V) { IsSimple = V; }
1395  bool isMSAsm() const { return MSAsm; }
1396  void setMSAsm(bool V) { MSAsm = V; }
1397
1398  //===--- Asm String Analysis ---===//
1399
1400  const StringLiteral *getAsmString() const { return AsmStr; }
1401  StringLiteral *getAsmString() { return AsmStr; }
1402  void setAsmString(StringLiteral *E) { AsmStr = E; }
1403
1404  /// AsmStringPiece - this is part of a decomposed asm string specification
1405  /// (for use with the AnalyzeAsmString function below).  An asm string is
1406  /// considered to be a concatenation of these parts.
1407  class AsmStringPiece {
1408  public:
1409    enum Kind {
1410      String,  // String in .ll asm string form, "$" -> "$$" and "%%" -> "%".
1411      Operand  // Operand reference, with optional modifier %c4.
1412    };
1413  private:
1414    Kind MyKind;
1415    std::string Str;
1416    unsigned OperandNo;
1417  public:
1418    AsmStringPiece(const std::string &S) : MyKind(String), Str(S) {}
1419    AsmStringPiece(unsigned OpNo, char Modifier)
1420      : MyKind(Operand), Str(), OperandNo(OpNo) {
1421      Str += Modifier;
1422    }
1423
1424    bool isString() const { return MyKind == String; }
1425    bool isOperand() const { return MyKind == Operand; }
1426
1427    const std::string &getString() const {
1428      assert(isString());
1429      return Str;
1430    }
1431
1432    unsigned getOperandNo() const {
1433      assert(isOperand());
1434      return OperandNo;
1435    }
1436
1437    /// getModifier - Get the modifier for this operand, if present.  This
1438    /// returns '\0' if there was no modifier.
1439    char getModifier() const {
1440      assert(isOperand());
1441      return Str[0];
1442    }
1443  };
1444
1445  /// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing
1446  /// it into pieces.  If the asm string is erroneous, emit errors and return
1447  /// true, otherwise return false.  This handles canonicalization and
1448  /// translation of strings from GCC syntax to LLVM IR syntax, and handles
1449  //// flattening of named references like %[foo] to Operand AsmStringPiece's.
1450  unsigned AnalyzeAsmString(SmallVectorImpl<AsmStringPiece> &Pieces,
1451                            ASTContext &C, unsigned &DiagOffs) const;
1452
1453
1454  //===--- Output operands ---===//
1455
1456  unsigned getNumOutputs() const { return NumOutputs; }
1457
1458  IdentifierInfo *getOutputIdentifier(unsigned i) const {
1459    return Names[i];
1460  }
1461
1462  StringRef getOutputName(unsigned i) const {
1463    if (IdentifierInfo *II = getOutputIdentifier(i))
1464      return II->getName();
1465
1466    return StringRef();
1467  }
1468
1469  /// getOutputConstraint - Return the constraint string for the specified
1470  /// output operand.  All output constraints are known to be non-empty (either
1471  /// '=' or '+').
1472  StringRef getOutputConstraint(unsigned i) const;
1473
1474  const StringLiteral *getOutputConstraintLiteral(unsigned i) const {
1475    return Constraints[i];
1476  }
1477  StringLiteral *getOutputConstraintLiteral(unsigned i) {
1478    return Constraints[i];
1479  }
1480
1481  Expr *getOutputExpr(unsigned i);
1482
1483  const Expr *getOutputExpr(unsigned i) const {
1484    return const_cast<AsmStmt*>(this)->getOutputExpr(i);
1485  }
1486
1487  /// isOutputPlusConstraint - Return true if the specified output constraint
1488  /// is a "+" constraint (which is both an input and an output) or false if it
1489  /// is an "=" constraint (just an output).
1490  bool isOutputPlusConstraint(unsigned i) const {
1491    return getOutputConstraint(i)[0] == '+';
1492  }
1493
1494  /// getNumPlusOperands - Return the number of output operands that have a "+"
1495  /// constraint.
1496  unsigned getNumPlusOperands() const;
1497
1498  //===--- Input operands ---===//
1499
1500  unsigned getNumInputs() const { return NumInputs; }
1501
1502  IdentifierInfo *getInputIdentifier(unsigned i) const {
1503    return Names[i + NumOutputs];
1504  }
1505
1506  StringRef getInputName(unsigned i) const {
1507    if (IdentifierInfo *II = getInputIdentifier(i))
1508      return II->getName();
1509
1510    return StringRef();
1511  }
1512
1513  /// getInputConstraint - Return the specified input constraint.  Unlike output
1514  /// constraints, these can be empty.
1515  StringRef getInputConstraint(unsigned i) const;
1516
1517  const StringLiteral *getInputConstraintLiteral(unsigned i) const {
1518    return Constraints[i + NumOutputs];
1519  }
1520  StringLiteral *getInputConstraintLiteral(unsigned i) {
1521    return Constraints[i + NumOutputs];
1522  }
1523
1524  Expr *getInputExpr(unsigned i);
1525  void setInputExpr(unsigned i, Expr *E);
1526
1527  const Expr *getInputExpr(unsigned i) const {
1528    return const_cast<AsmStmt*>(this)->getInputExpr(i);
1529  }
1530
1531  void setOutputsAndInputsAndClobbers(ASTContext &C,
1532                                      IdentifierInfo **Names,
1533                                      StringLiteral **Constraints,
1534                                      Stmt **Exprs,
1535                                      unsigned NumOutputs,
1536                                      unsigned NumInputs,
1537                                      StringLiteral **Clobbers,
1538                                      unsigned NumClobbers);
1539
1540  //===--- Other ---===//
1541
1542  /// getNamedOperand - Given a symbolic operand reference like %[foo],
1543  /// translate this into a numeric value needed to reference the same operand.
1544  /// This returns -1 if the operand name is invalid.
1545  int getNamedOperand(StringRef SymbolicName) const;
1546
1547  unsigned getNumClobbers() const { return NumClobbers; }
1548  StringLiteral *getClobber(unsigned i) { return Clobbers[i]; }
1549  const StringLiteral *getClobber(unsigned i) const { return Clobbers[i]; }
1550
1551  SourceRange getSourceRange() const LLVM_READONLY {
1552    return SourceRange(AsmLoc, RParenLoc);
1553  }
1554
1555  static bool classof(const Stmt *T) {return T->getStmtClass() == AsmStmtClass;}
1556  static bool classof(const AsmStmt *) { return true; }
1557
1558  // Input expr iterators.
1559
1560  typedef ExprIterator inputs_iterator;
1561  typedef ConstExprIterator const_inputs_iterator;
1562
1563  inputs_iterator begin_inputs() {
1564    return &Exprs[0] + NumOutputs;
1565  }
1566
1567  inputs_iterator end_inputs() {
1568    return &Exprs[0] + NumOutputs + NumInputs;
1569  }
1570
1571  const_inputs_iterator begin_inputs() const {
1572    return &Exprs[0] + NumOutputs;
1573  }
1574
1575  const_inputs_iterator end_inputs() const {
1576    return &Exprs[0] + NumOutputs + NumInputs;
1577  }
1578
1579  // Output expr iterators.
1580
1581  typedef ExprIterator outputs_iterator;
1582  typedef ConstExprIterator const_outputs_iterator;
1583
1584  outputs_iterator begin_outputs() {
1585    return &Exprs[0];
1586  }
1587  outputs_iterator end_outputs() {
1588    return &Exprs[0] + NumOutputs;
1589  }
1590
1591  const_outputs_iterator begin_outputs() const {
1592    return &Exprs[0];
1593  }
1594  const_outputs_iterator end_outputs() const {
1595    return &Exprs[0] + NumOutputs;
1596  }
1597
1598  child_range children() {
1599    return child_range(&Exprs[0], &Exprs[0] + NumOutputs + NumInputs);
1600  }
1601};
1602
1603/// MSAsmStmt - This represents a MS inline-assembly statement extension.
1604///
1605class MSAsmStmt : public Stmt {
1606  SourceLocation AsmLoc, EndLoc;
1607  std::string AsmStr;
1608
1609  bool IsSimple;
1610  bool IsVolatile;
1611
1612  Stmt **Exprs;
1613
1614public:
1615  MSAsmStmt(ASTContext &C, SourceLocation asmloc, std::string &asmstr,
1616            SourceLocation endloc);
1617
1618  SourceLocation getAsmLoc() const { return AsmLoc; }
1619  void setAsmLoc(SourceLocation L) { AsmLoc = L; }
1620  SourceLocation getEndLoc() const { return EndLoc; }
1621  void setEndLoc(SourceLocation L) { EndLoc = L; }
1622
1623  bool isVolatile() const { return IsVolatile; }
1624  void setVolatile(bool V) { IsVolatile = V; }
1625  bool isSimple() const { return IsSimple; }
1626  void setSimple(bool V) { IsSimple = V; }
1627
1628  //===--- Asm String Analysis ---===//
1629
1630  const std::string *getAsmString() const { return &AsmStr; }
1631  std::string *getAsmString() { return &AsmStr; }
1632  void setAsmString(StringRef &E) { AsmStr = E.str(); }
1633
1634  //===--- Other ---===//
1635
1636  SourceRange getSourceRange() const LLVM_READONLY {
1637    return SourceRange(AsmLoc, EndLoc);
1638  }
1639  static bool classof(const Stmt *T) {
1640    return T->getStmtClass() == MSAsmStmtClass;
1641  }
1642  static bool classof(const MSAsmStmt *) { return true; }
1643
1644  child_range children() {
1645    return child_range(&Exprs[0], &Exprs[0]);
1646  }
1647};
1648
1649class SEHExceptStmt : public Stmt {
1650  SourceLocation  Loc;
1651  Stmt           *Children[2];
1652
1653  enum { FILTER_EXPR, BLOCK };
1654
1655  SEHExceptStmt(SourceLocation Loc,
1656                Expr *FilterExpr,
1657                Stmt *Block);
1658
1659  friend class ASTReader;
1660  friend class ASTStmtReader;
1661  explicit SEHExceptStmt(EmptyShell E) : Stmt(SEHExceptStmtClass, E) { }
1662
1663public:
1664  static SEHExceptStmt* Create(ASTContext &C,
1665                               SourceLocation ExceptLoc,
1666                               Expr *FilterExpr,
1667                               Stmt *Block);
1668  SourceRange getSourceRange() const LLVM_READONLY {
1669    return SourceRange(getExceptLoc(), getEndLoc());
1670  }
1671
1672  SourceLocation getExceptLoc() const { return Loc; }
1673  SourceLocation getEndLoc() const { return getBlock()->getLocEnd(); }
1674
1675  Expr *getFilterExpr() const {
1676    return reinterpret_cast<Expr*>(Children[FILTER_EXPR]);
1677  }
1678
1679  CompoundStmt *getBlock() const {
1680    return llvm::cast<CompoundStmt>(Children[BLOCK]);
1681  }
1682
1683  child_range children() {
1684    return child_range(Children,Children+2);
1685  }
1686
1687  static bool classof(const Stmt *T) {
1688    return T->getStmtClass() == SEHExceptStmtClass;
1689  }
1690
1691  static bool classof(SEHExceptStmt *) { return true; }
1692
1693};
1694
1695class SEHFinallyStmt : public Stmt {
1696  SourceLocation  Loc;
1697  Stmt           *Block;
1698
1699  SEHFinallyStmt(SourceLocation Loc,
1700                 Stmt *Block);
1701
1702  friend class ASTReader;
1703  friend class ASTStmtReader;
1704  explicit SEHFinallyStmt(EmptyShell E) : Stmt(SEHFinallyStmtClass, E) { }
1705
1706public:
1707  static SEHFinallyStmt* Create(ASTContext &C,
1708                                SourceLocation FinallyLoc,
1709                                Stmt *Block);
1710
1711  SourceRange getSourceRange() const LLVM_READONLY {
1712    return SourceRange(getFinallyLoc(), getEndLoc());
1713  }
1714
1715  SourceLocation getFinallyLoc() const { return Loc; }
1716  SourceLocation getEndLoc() const { return Block->getLocEnd(); }
1717
1718  CompoundStmt *getBlock() const { return llvm::cast<CompoundStmt>(Block); }
1719
1720  child_range children() {
1721    return child_range(&Block,&Block+1);
1722  }
1723
1724  static bool classof(const Stmt *T) {
1725    return T->getStmtClass() == SEHFinallyStmtClass;
1726  }
1727
1728  static bool classof(SEHFinallyStmt *) { return true; }
1729
1730};
1731
1732class SEHTryStmt : public Stmt {
1733  bool            IsCXXTry;
1734  SourceLocation  TryLoc;
1735  Stmt           *Children[2];
1736
1737  enum { TRY = 0, HANDLER = 1 };
1738
1739  SEHTryStmt(bool isCXXTry, // true if 'try' otherwise '__try'
1740             SourceLocation TryLoc,
1741             Stmt *TryBlock,
1742             Stmt *Handler);
1743
1744  friend class ASTReader;
1745  friend class ASTStmtReader;
1746  explicit SEHTryStmt(EmptyShell E) : Stmt(SEHTryStmtClass, E) { }
1747
1748public:
1749  static SEHTryStmt* Create(ASTContext &C,
1750                            bool isCXXTry,
1751                            SourceLocation TryLoc,
1752                            Stmt *TryBlock,
1753                            Stmt *Handler);
1754
1755  SourceRange getSourceRange() const LLVM_READONLY {
1756    return SourceRange(getTryLoc(), getEndLoc());
1757  }
1758
1759  SourceLocation getTryLoc() const { return TryLoc; }
1760  SourceLocation getEndLoc() const { return Children[HANDLER]->getLocEnd(); }
1761
1762  bool getIsCXXTry() const { return IsCXXTry; }
1763
1764  CompoundStmt* getTryBlock() const {
1765    return llvm::cast<CompoundStmt>(Children[TRY]);
1766  }
1767
1768  Stmt *getHandler() const { return Children[HANDLER]; }
1769
1770  /// Returns 0 if not defined
1771  SEHExceptStmt  *getExceptHandler() const;
1772  SEHFinallyStmt *getFinallyHandler() const;
1773
1774  child_range children() {
1775    return child_range(Children,Children+2);
1776  }
1777
1778  static bool classof(const Stmt *T) {
1779    return T->getStmtClass() == SEHTryStmtClass;
1780  }
1781
1782  static bool classof(SEHTryStmt *) { return true; }
1783};
1784
1785}  // end namespace clang
1786
1787#endif
1788