Stmt.h revision 561f81243f665cf2001caadc45df505f826b72d6
1//===--- Stmt.h - Classes for representing statements -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Stmt interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_STMT_H
15#define LLVM_CLANG_AST_STMT_H
16
17#include "llvm/Support/Casting.h"
18#include "llvm/Support/raw_ostream.h"
19#include "clang/Basic/SourceLocation.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "clang/AST/StmtIterator.h"
22#include "clang/AST/DeclGroup.h"
23#include "llvm/ADT/SmallVector.h"
24#include "clang/AST/ASTContext.h"
25#include <string>
26using llvm::dyn_cast_or_null;
27
28namespace llvm {
29  class FoldingSetNodeID;
30}
31
32namespace clang {
33  class ASTContext;
34  class Expr;
35  class Decl;
36  class ParmVarDecl;
37  class QualType;
38  class IdentifierInfo;
39  class SourceManager;
40  class StringLiteral;
41  class SwitchStmt;
42
43  //===----------------------------------------------------------------------===//
44  // ExprIterator - Iterators for iterating over Stmt* arrays that contain
45  //  only Expr*.  This is needed because AST nodes use Stmt* arrays to store
46  //  references to children (to be compatible with StmtIterator).
47  //===----------------------------------------------------------------------===//
48
49  class Stmt;
50  class Expr;
51
52  class ExprIterator {
53    Stmt** I;
54  public:
55    ExprIterator(Stmt** i) : I(i) {}
56    ExprIterator() : I(0) {}
57    ExprIterator& operator++() { ++I; return *this; }
58    ExprIterator operator-(size_t i) { return I-i; }
59    ExprIterator operator+(size_t i) { return I+i; }
60    Expr* operator[](size_t idx);
61    // FIXME: Verify that this will correctly return a signed distance.
62    signed operator-(const ExprIterator& R) const { return I - R.I; }
63    Expr* operator*() const;
64    Expr* operator->() const;
65    bool operator==(const ExprIterator& R) const { return I == R.I; }
66    bool operator!=(const ExprIterator& R) const { return I != R.I; }
67    bool operator>(const ExprIterator& R) const { return I > R.I; }
68    bool operator>=(const ExprIterator& R) const { return I >= R.I; }
69  };
70
71  class ConstExprIterator {
72    const Stmt * const *I;
73  public:
74    ConstExprIterator(const Stmt * const *i) : I(i) {}
75    ConstExprIterator() : I(0) {}
76    ConstExprIterator& operator++() { ++I; return *this; }
77    ConstExprIterator operator+(size_t i) const { return I+i; }
78    ConstExprIterator operator-(size_t i) const { return I-i; }
79    const Expr * operator[](size_t idx) const;
80    signed operator-(const ConstExprIterator& R) const { return I - R.I; }
81    const Expr * operator*() const;
82    const Expr * operator->() const;
83    bool operator==(const ConstExprIterator& R) const { return I == R.I; }
84    bool operator!=(const ConstExprIterator& R) const { return I != R.I; }
85    bool operator>(const ConstExprIterator& R) const { return I > R.I; }
86    bool operator>=(const ConstExprIterator& R) const { return I >= R.I; }
87  };
88
89//===----------------------------------------------------------------------===//
90// AST classes for statements.
91//===----------------------------------------------------------------------===//
92
93/// Stmt - This represents one statement.
94///
95class Stmt {
96public:
97  enum StmtClass {
98    NoStmtClass = 0,
99#define STMT(CLASS, PARENT) CLASS##Class,
100#define STMT_RANGE(BASE, FIRST, LAST) \
101        first##BASE##Constant=FIRST##Class, last##BASE##Constant=LAST##Class,
102#define LAST_STMT_RANGE(BASE, FIRST, LAST) \
103        first##BASE##Constant=FIRST##Class, last##BASE##Constant=LAST##Class
104#define ABSTRACT_STMT(STMT)
105#include "clang/AST/StmtNodes.inc"
106  };
107
108  // Make vanilla 'new' and 'delete' illegal for Stmts.
109protected:
110  void* operator new(size_t bytes) throw() {
111    assert(0 && "Stmts cannot be allocated with regular 'new'.");
112    return 0;
113  }
114  void operator delete(void* data) throw() {
115    assert(0 && "Stmts cannot be released with regular 'delete'.");
116  }
117
118  class StmtBitfields {
119    friend class Stmt;
120
121    /// \brief The statement class.
122    unsigned sClass : 8;
123  };
124  enum { NumStmtBits = 8 };
125
126  class CompoundStmtBitfields {
127    friend class CompoundStmt;
128    unsigned : NumStmtBits;
129
130    unsigned NumStmts : 32 - NumStmtBits;
131  };
132
133  class ExprBitfields {
134    friend class Expr;
135    friend class DeclRefExpr; // computeDependence
136    friend class InitListExpr; // ctor
137    friend class DesignatedInitExpr; // ctor
138    friend class BlockDeclRefExpr; // ctor
139    friend class ASTStmtReader; // deserialization
140    friend class CXXNewExpr; // ctor
141    friend class DependentScopeDeclRefExpr; // ctor
142    friend class CXXConstructExpr; // ctor
143    friend class CallExpr; // ctor
144    friend class OffsetOfExpr; // ctor
145    friend class ObjCMessageExpr; // ctor
146    friend class ShuffleVectorExpr; // ctor
147    friend class ParenListExpr; // ctor
148    friend class CXXUnresolvedConstructExpr; // ctor
149    friend class CXXDependentScopeMemberExpr; // ctor
150    friend class OverloadExpr; // ctor
151    unsigned : NumStmtBits;
152
153    unsigned ValueKind : 2;
154    unsigned ObjectKind : 2;
155    unsigned TypeDependent : 1;
156    unsigned ValueDependent : 1;
157    unsigned InstantiationDependent : 1;
158    unsigned ContainsUnexpandedParameterPack : 1;
159  };
160  enum { NumExprBits = 16 };
161
162  class DeclRefExprBitfields {
163    friend class DeclRefExpr;
164    friend class ASTStmtReader; // deserialization
165    unsigned : NumExprBits;
166
167    unsigned HasQualifier : 1;
168    unsigned HasExplicitTemplateArgs : 1;
169    unsigned HasFoundDecl : 1;
170  };
171
172  class CastExprBitfields {
173    friend class CastExpr;
174    unsigned : NumExprBits;
175
176    unsigned Kind : 6;
177    unsigned BasePathSize : 32 - 6 - NumExprBits;
178  };
179
180  class CallExprBitfields {
181    friend class CallExpr;
182    unsigned : NumExprBits;
183
184    unsigned NumPreArgs : 1;
185  };
186
187  class ObjCIndirectCopyRestoreExprBitfields {
188    friend class ObjCIndirectCopyRestoreExpr;
189    unsigned : NumExprBits;
190
191    unsigned ShouldCopy : 1;
192  };
193
194  union {
195    // FIXME: this is wasteful on 64-bit platforms.
196    void *Aligner;
197
198    StmtBitfields StmtBits;
199    CompoundStmtBitfields CompoundStmtBits;
200    ExprBitfields ExprBits;
201    DeclRefExprBitfields DeclRefExprBits;
202    CastExprBitfields CastExprBits;
203    CallExprBitfields CallExprBits;
204    ObjCIndirectCopyRestoreExprBitfields ObjCIndirectCopyRestoreExprBits;
205  };
206
207  friend class ASTStmtReader;
208
209public:
210  // Only allow allocation of Stmts using the allocator in ASTContext
211  // or by doing a placement new.
212  void* operator new(size_t bytes, ASTContext& C,
213                     unsigned alignment = 8) throw() {
214    return ::operator new(bytes, C, alignment);
215  }
216
217  void* operator new(size_t bytes, ASTContext* C,
218                     unsigned alignment = 8) throw() {
219    return ::operator new(bytes, *C, alignment);
220  }
221
222  void* operator new(size_t bytes, void* mem) throw() {
223    return mem;
224  }
225
226  void operator delete(void*, ASTContext&, unsigned) throw() { }
227  void operator delete(void*, ASTContext*, unsigned) throw() { }
228  void operator delete(void*, std::size_t) throw() { }
229  void operator delete(void*, void*) throw() { }
230
231public:
232  /// \brief A placeholder type used to construct an empty shell of a
233  /// type, that will be filled in later (e.g., by some
234  /// de-serialization).
235  struct EmptyShell { };
236
237protected:
238  /// \brief Construct an empty statement.
239  explicit Stmt(StmtClass SC, EmptyShell) {
240    StmtBits.sClass = SC;
241    if (Stmt::CollectingStats()) Stmt::addStmtClass(SC);
242  }
243
244public:
245  Stmt(StmtClass SC) {
246    StmtBits.sClass = SC;
247    if (Stmt::CollectingStats()) Stmt::addStmtClass(SC);
248  }
249
250  StmtClass getStmtClass() const {
251    return static_cast<StmtClass>(StmtBits.sClass);
252  }
253  const char *getStmtClassName() const;
254
255  /// SourceLocation tokens are not useful in isolation - they are low level
256  /// value objects created/interpreted by SourceManager. We assume AST
257  /// clients will have a pointer to the respective SourceManager.
258  SourceRange getSourceRange() const;
259
260  SourceLocation getLocStart() const { return getSourceRange().getBegin(); }
261  SourceLocation getLocEnd() const { return getSourceRange().getEnd(); }
262
263  // global temp stats (until we have a per-module visitor)
264  static void addStmtClass(const StmtClass s);
265  static bool CollectingStats(bool Enable = false);
266  static void PrintStats();
267
268  /// dump - This does a local dump of the specified AST fragment.  It dumps the
269  /// specified node and a few nodes underneath it, but not the whole subtree.
270  /// This is useful in a debugger.
271  void dump() const;
272  void dump(SourceManager &SM) const;
273  void dump(llvm::raw_ostream &OS, SourceManager &SM) const;
274
275  /// dumpAll - This does a dump of the specified AST fragment and all subtrees.
276  void dumpAll() const;
277  void dumpAll(SourceManager &SM) const;
278
279  /// dumpPretty/printPretty - These two methods do a "pretty print" of the AST
280  /// back to its original source language syntax.
281  void dumpPretty(ASTContext& Context) const;
282  void printPretty(llvm::raw_ostream &OS, PrinterHelper *Helper,
283                   const PrintingPolicy &Policy,
284                   unsigned Indentation = 0) const {
285    printPretty(OS, *(ASTContext*)0, Helper, Policy, Indentation);
286  }
287  void printPretty(llvm::raw_ostream &OS, ASTContext &Context,
288                   PrinterHelper *Helper,
289                   const PrintingPolicy &Policy,
290                   unsigned Indentation = 0) const;
291
292  /// viewAST - Visualize an AST rooted at this Stmt* using GraphViz.  Only
293  ///   works on systems with GraphViz (Mac OS X) or dot+gv installed.
294  void viewAST() const;
295
296  // Implement isa<T> support.
297  static bool classof(const Stmt *) { return true; }
298
299  /// hasImplicitControlFlow - Some statements (e.g. short circuited operations)
300  ///  contain implicit control-flow in the order their subexpressions
301  ///  are evaluated.  This predicate returns true if this statement has
302  ///  such implicit control-flow.  Such statements are also specially handled
303  ///  within CFGs.
304  bool hasImplicitControlFlow() const;
305
306  /// Child Iterators: All subclasses must implement 'children'
307  /// to permit easy iteration over the substatements/subexpessions of an
308  /// AST node.  This permits easy iteration over all nodes in the AST.
309  typedef StmtIterator       child_iterator;
310  typedef ConstStmtIterator  const_child_iterator;
311
312  typedef StmtRange          child_range;
313  typedef ConstStmtRange     const_child_range;
314
315  child_range children();
316  const_child_range children() const {
317    return const_cast<Stmt*>(this)->children();
318  }
319
320  child_iterator child_begin() { return children().first; }
321  child_iterator child_end() { return children().second; }
322
323  const_child_iterator child_begin() const { return children().first; }
324  const_child_iterator child_end() const { return children().second; }
325
326  /// \brief Produce a unique representation of the given statement.
327  ///
328  /// \brief ID once the profiling operation is complete, will contain
329  /// the unique representation of the given statement.
330  ///
331  /// \brief Context the AST context in which the statement resides
332  ///
333  /// \brief Canonical whether the profile should be based on the canonical
334  /// representation of this statement (e.g., where non-type template
335  /// parameters are identified by index/level rather than their
336  /// declaration pointers) or the exact representation of the statement as
337  /// written in the source.
338  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
339               bool Canonical) const;
340};
341
342/// DeclStmt - Adaptor class for mixing declarations with statements and
343/// expressions. For example, CompoundStmt mixes statements, expressions
344/// and declarations (variables, types). Another example is ForStmt, where
345/// the first statement can be an expression or a declaration.
346///
347class DeclStmt : public Stmt {
348  DeclGroupRef DG;
349  SourceLocation StartLoc, EndLoc;
350
351public:
352  DeclStmt(DeclGroupRef dg, SourceLocation startLoc,
353           SourceLocation endLoc) : Stmt(DeclStmtClass), DG(dg),
354                                    StartLoc(startLoc), EndLoc(endLoc) {}
355
356  /// \brief Build an empty declaration statement.
357  explicit DeclStmt(EmptyShell Empty) : Stmt(DeclStmtClass, Empty) { }
358
359  /// isSingleDecl - This method returns true if this DeclStmt refers
360  /// to a single Decl.
361  bool isSingleDecl() const {
362    return DG.isSingleDecl();
363  }
364
365  const Decl *getSingleDecl() const { return DG.getSingleDecl(); }
366  Decl *getSingleDecl() { return DG.getSingleDecl(); }
367
368  const DeclGroupRef getDeclGroup() const { return DG; }
369  DeclGroupRef getDeclGroup() { return DG; }
370  void setDeclGroup(DeclGroupRef DGR) { DG = DGR; }
371
372  SourceLocation getStartLoc() const { return StartLoc; }
373  void setStartLoc(SourceLocation L) { StartLoc = L; }
374  SourceLocation getEndLoc() const { return EndLoc; }
375  void setEndLoc(SourceLocation L) { EndLoc = L; }
376
377  SourceRange getSourceRange() const {
378    return SourceRange(StartLoc, EndLoc);
379  }
380
381  static bool classof(const Stmt *T) {
382    return T->getStmtClass() == DeclStmtClass;
383  }
384  static bool classof(const DeclStmt *) { return true; }
385
386  // Iterators over subexpressions.
387  child_range children() {
388    return child_range(child_iterator(DG.begin(), DG.end()),
389                       child_iterator(DG.end(), DG.end()));
390  }
391
392  typedef DeclGroupRef::iterator decl_iterator;
393  typedef DeclGroupRef::const_iterator const_decl_iterator;
394
395  decl_iterator decl_begin() { return DG.begin(); }
396  decl_iterator decl_end() { return DG.end(); }
397  const_decl_iterator decl_begin() const { return DG.begin(); }
398  const_decl_iterator decl_end() const { return DG.end(); }
399};
400
401/// NullStmt - This is the null statement ";": C99 6.8.3p3.
402///
403class NullStmt : public Stmt {
404  SourceLocation SemiLoc;
405
406  /// \brief If the null statement was preceded by an empty macro this is
407  /// its instantiation source location, e.g:
408  /// @code
409  ///   #define CALL(x)
410  ///   CALL(0);
411  /// @endcode
412  SourceLocation LeadingEmptyMacro;
413public:
414  NullStmt(SourceLocation L, SourceLocation LeadingEmptyMacro =SourceLocation())
415    : Stmt(NullStmtClass), SemiLoc(L), LeadingEmptyMacro(LeadingEmptyMacro) {}
416
417  /// \brief Build an empty null statement.
418  explicit NullStmt(EmptyShell Empty) : Stmt(NullStmtClass, Empty) { }
419
420  SourceLocation getSemiLoc() const { return SemiLoc; }
421  void setSemiLoc(SourceLocation L) { SemiLoc = L; }
422
423  bool hasLeadingEmptyMacro() const { return LeadingEmptyMacro.isValid(); }
424  SourceLocation getLeadingEmptyMacroLoc() const { return LeadingEmptyMacro; }
425
426  SourceRange getSourceRange() const { return SourceRange(SemiLoc); }
427
428  static bool classof(const Stmt *T) {
429    return T->getStmtClass() == NullStmtClass;
430  }
431  static bool classof(const NullStmt *) { return true; }
432
433  child_range children() { return child_range(); }
434
435  friend class ASTStmtReader;
436  friend class ASTStmtWriter;
437};
438
439/// CompoundStmt - This represents a group of statements like { stmt stmt }.
440///
441class CompoundStmt : public Stmt {
442  Stmt** Body;
443  SourceLocation LBracLoc, RBracLoc;
444public:
445  CompoundStmt(ASTContext& C, Stmt **StmtStart, unsigned NumStmts,
446               SourceLocation LB, SourceLocation RB)
447  : Stmt(CompoundStmtClass), LBracLoc(LB), RBracLoc(RB) {
448    CompoundStmtBits.NumStmts = NumStmts;
449    assert(CompoundStmtBits.NumStmts == NumStmts &&
450           "NumStmts doesn't fit in bits of CompoundStmtBits.NumStmts!");
451
452    if (NumStmts == 0) {
453      Body = 0;
454      return;
455    }
456
457    Body = new (C) Stmt*[NumStmts];
458    memcpy(Body, StmtStart, NumStmts * sizeof(*Body));
459  }
460
461  // \brief Build an empty compound statement.
462  explicit CompoundStmt(EmptyShell Empty)
463    : Stmt(CompoundStmtClass, Empty), Body(0) {
464    CompoundStmtBits.NumStmts = 0;
465  }
466
467  void setStmts(ASTContext &C, Stmt **Stmts, unsigned NumStmts);
468
469  bool body_empty() const { return CompoundStmtBits.NumStmts == 0; }
470  unsigned size() const { return CompoundStmtBits.NumStmts; }
471
472  typedef Stmt** body_iterator;
473  body_iterator body_begin() { return Body; }
474  body_iterator body_end() { return Body + size(); }
475  Stmt *body_back() { return !body_empty() ? Body[size()-1] : 0; }
476
477  void setLastStmt(Stmt *S) {
478    assert(!body_empty() && "setLastStmt");
479    Body[size()-1] = S;
480  }
481
482  typedef Stmt* const * const_body_iterator;
483  const_body_iterator body_begin() const { return Body; }
484  const_body_iterator body_end() const { return Body + size(); }
485  const Stmt *body_back() const { return !body_empty() ? Body[size()-1] : 0; }
486
487  typedef std::reverse_iterator<body_iterator> reverse_body_iterator;
488  reverse_body_iterator body_rbegin() {
489    return reverse_body_iterator(body_end());
490  }
491  reverse_body_iterator body_rend() {
492    return reverse_body_iterator(body_begin());
493  }
494
495  typedef std::reverse_iterator<const_body_iterator>
496          const_reverse_body_iterator;
497
498  const_reverse_body_iterator body_rbegin() const {
499    return const_reverse_body_iterator(body_end());
500  }
501
502  const_reverse_body_iterator body_rend() const {
503    return const_reverse_body_iterator(body_begin());
504  }
505
506  SourceRange getSourceRange() const {
507    return SourceRange(LBracLoc, RBracLoc);
508  }
509
510  SourceLocation getLBracLoc() const { return LBracLoc; }
511  void setLBracLoc(SourceLocation L) { LBracLoc = L; }
512  SourceLocation getRBracLoc() const { return RBracLoc; }
513  void setRBracLoc(SourceLocation L) { RBracLoc = L; }
514
515  static bool classof(const Stmt *T) {
516    return T->getStmtClass() == CompoundStmtClass;
517  }
518  static bool classof(const CompoundStmt *) { return true; }
519
520  // Iterators
521  child_range children() {
522    return child_range(&Body[0], &Body[0]+CompoundStmtBits.NumStmts);
523  }
524};
525
526// SwitchCase is the base class for CaseStmt and DefaultStmt,
527class SwitchCase : public Stmt {
528protected:
529  // A pointer to the following CaseStmt or DefaultStmt class,
530  // used by SwitchStmt.
531  SwitchCase *NextSwitchCase;
532
533  SwitchCase(StmtClass SC) : Stmt(SC), NextSwitchCase(0) {}
534
535public:
536  const SwitchCase *getNextSwitchCase() const { return NextSwitchCase; }
537
538  SwitchCase *getNextSwitchCase() { return NextSwitchCase; }
539
540  void setNextSwitchCase(SwitchCase *SC) { NextSwitchCase = SC; }
541
542  Stmt *getSubStmt();
543  const Stmt *getSubStmt() const {
544    return const_cast<SwitchCase*>(this)->getSubStmt();
545  }
546
547  SourceRange getSourceRange() const { return SourceRange(); }
548
549  static bool classof(const Stmt *T) {
550    return T->getStmtClass() == CaseStmtClass ||
551           T->getStmtClass() == DefaultStmtClass;
552  }
553  static bool classof(const SwitchCase *) { return true; }
554};
555
556class CaseStmt : public SwitchCase {
557  enum { LHS, RHS, SUBSTMT, END_EXPR };
558  Stmt* SubExprs[END_EXPR];  // The expression for the RHS is Non-null for
559                             // GNU "case 1 ... 4" extension
560  SourceLocation CaseLoc;
561  SourceLocation EllipsisLoc;
562  SourceLocation ColonLoc;
563public:
564  CaseStmt(Expr *lhs, Expr *rhs, SourceLocation caseLoc,
565           SourceLocation ellipsisLoc, SourceLocation colonLoc)
566    : SwitchCase(CaseStmtClass) {
567    SubExprs[SUBSTMT] = 0;
568    SubExprs[LHS] = reinterpret_cast<Stmt*>(lhs);
569    SubExprs[RHS] = reinterpret_cast<Stmt*>(rhs);
570    CaseLoc = caseLoc;
571    EllipsisLoc = ellipsisLoc;
572    ColonLoc = colonLoc;
573  }
574
575  /// \brief Build an empty switch case statement.
576  explicit CaseStmt(EmptyShell Empty) : SwitchCase(CaseStmtClass) { }
577
578  SourceLocation getCaseLoc() const { return CaseLoc; }
579  void setCaseLoc(SourceLocation L) { CaseLoc = L; }
580  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
581  void setEllipsisLoc(SourceLocation L) { EllipsisLoc = L; }
582  SourceLocation getColonLoc() const { return ColonLoc; }
583  void setColonLoc(SourceLocation L) { ColonLoc = L; }
584
585  Expr *getLHS() { return reinterpret_cast<Expr*>(SubExprs[LHS]); }
586  Expr *getRHS() { return reinterpret_cast<Expr*>(SubExprs[RHS]); }
587  Stmt *getSubStmt() { return SubExprs[SUBSTMT]; }
588
589  const Expr *getLHS() const {
590    return reinterpret_cast<const Expr*>(SubExprs[LHS]);
591  }
592  const Expr *getRHS() const {
593    return reinterpret_cast<const Expr*>(SubExprs[RHS]);
594  }
595  const Stmt *getSubStmt() const { return SubExprs[SUBSTMT]; }
596
597  void setSubStmt(Stmt *S) { SubExprs[SUBSTMT] = S; }
598  void setLHS(Expr *Val) { SubExprs[LHS] = reinterpret_cast<Stmt*>(Val); }
599  void setRHS(Expr *Val) { SubExprs[RHS] = reinterpret_cast<Stmt*>(Val); }
600
601
602  SourceRange getSourceRange() const {
603    // Handle deeply nested case statements with iteration instead of recursion.
604    const CaseStmt *CS = this;
605    while (const CaseStmt *CS2 = dyn_cast<CaseStmt>(CS->getSubStmt()))
606      CS = CS2;
607
608    return SourceRange(CaseLoc, CS->getSubStmt()->getLocEnd());
609  }
610  static bool classof(const Stmt *T) {
611    return T->getStmtClass() == CaseStmtClass;
612  }
613  static bool classof(const CaseStmt *) { return true; }
614
615  // Iterators
616  child_range children() {
617    return child_range(&SubExprs[0], &SubExprs[END_EXPR]);
618  }
619};
620
621class DefaultStmt : public SwitchCase {
622  Stmt* SubStmt;
623  SourceLocation DefaultLoc;
624  SourceLocation ColonLoc;
625public:
626  DefaultStmt(SourceLocation DL, SourceLocation CL, Stmt *substmt) :
627    SwitchCase(DefaultStmtClass), SubStmt(substmt), DefaultLoc(DL),
628    ColonLoc(CL) {}
629
630  /// \brief Build an empty default statement.
631  explicit DefaultStmt(EmptyShell) : SwitchCase(DefaultStmtClass) { }
632
633  Stmt *getSubStmt() { return SubStmt; }
634  const Stmt *getSubStmt() const { return SubStmt; }
635  void setSubStmt(Stmt *S) { SubStmt = S; }
636
637  SourceLocation getDefaultLoc() const { return DefaultLoc; }
638  void setDefaultLoc(SourceLocation L) { DefaultLoc = L; }
639  SourceLocation getColonLoc() const { return ColonLoc; }
640  void setColonLoc(SourceLocation L) { ColonLoc = L; }
641
642  SourceRange getSourceRange() const {
643    return SourceRange(DefaultLoc, SubStmt->getLocEnd());
644  }
645  static bool classof(const Stmt *T) {
646    return T->getStmtClass() == DefaultStmtClass;
647  }
648  static bool classof(const DefaultStmt *) { return true; }
649
650  // Iterators
651  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
652};
653
654
655/// LabelStmt - Represents a label, which has a substatement.  For example:
656///    foo: return;
657///
658class LabelStmt : public Stmt {
659  LabelDecl *TheDecl;
660  Stmt *SubStmt;
661  SourceLocation IdentLoc;
662public:
663  LabelStmt(SourceLocation IL, LabelDecl *D, Stmt *substmt)
664    : Stmt(LabelStmtClass), TheDecl(D), SubStmt(substmt), IdentLoc(IL) {
665  }
666
667  // \brief Build an empty label statement.
668  explicit LabelStmt(EmptyShell Empty) : Stmt(LabelStmtClass, Empty) { }
669
670  SourceLocation getIdentLoc() const { return IdentLoc; }
671  LabelDecl *getDecl() const { return TheDecl; }
672  void setDecl(LabelDecl *D) { TheDecl = D; }
673  const char *getName() const;
674  Stmt *getSubStmt() { return SubStmt; }
675  const Stmt *getSubStmt() const { return SubStmt; }
676  void setIdentLoc(SourceLocation L) { IdentLoc = L; }
677  void setSubStmt(Stmt *SS) { SubStmt = SS; }
678
679  SourceRange getSourceRange() const {
680    return SourceRange(IdentLoc, SubStmt->getLocEnd());
681  }
682  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
683
684  static bool classof(const Stmt *T) {
685    return T->getStmtClass() == LabelStmtClass;
686  }
687  static bool classof(const LabelStmt *) { return true; }
688};
689
690
691/// IfStmt - This represents an if/then/else.
692///
693class IfStmt : public Stmt {
694  enum { VAR, COND, THEN, ELSE, END_EXPR };
695  Stmt* SubExprs[END_EXPR];
696
697  SourceLocation IfLoc;
698  SourceLocation ElseLoc;
699
700public:
701  IfStmt(ASTContext &C, SourceLocation IL, VarDecl *var, Expr *cond,
702         Stmt *then, SourceLocation EL = SourceLocation(), Stmt *elsev = 0);
703
704  /// \brief Build an empty if/then/else statement
705  explicit IfStmt(EmptyShell Empty) : Stmt(IfStmtClass, Empty) { }
706
707  /// \brief Retrieve the variable declared in this "if" statement, if any.
708  ///
709  /// In the following example, "x" is the condition variable.
710  /// \code
711  /// if (int x = foo()) {
712  ///   printf("x is %d", x);
713  /// }
714  /// \endcode
715  VarDecl *getConditionVariable() const;
716  void setConditionVariable(ASTContext &C, VarDecl *V);
717
718  /// If this IfStmt has a condition variable, return the faux DeclStmt
719  /// associated with the creation of that condition variable.
720  const DeclStmt *getConditionVariableDeclStmt() const {
721    return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
722  }
723
724  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
725  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
726  const Stmt *getThen() const { return SubExprs[THEN]; }
727  void setThen(Stmt *S) { SubExprs[THEN] = S; }
728  const Stmt *getElse() const { return SubExprs[ELSE]; }
729  void setElse(Stmt *S) { SubExprs[ELSE] = S; }
730
731  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
732  Stmt *getThen() { return SubExprs[THEN]; }
733  Stmt *getElse() { return SubExprs[ELSE]; }
734
735  SourceLocation getIfLoc() const { return IfLoc; }
736  void setIfLoc(SourceLocation L) { IfLoc = L; }
737  SourceLocation getElseLoc() const { return ElseLoc; }
738  void setElseLoc(SourceLocation L) { ElseLoc = L; }
739
740  SourceRange getSourceRange() const {
741    if (SubExprs[ELSE])
742      return SourceRange(IfLoc, SubExprs[ELSE]->getLocEnd());
743    else
744      return SourceRange(IfLoc, SubExprs[THEN]->getLocEnd());
745  }
746
747  // Iterators over subexpressions.  The iterators will include iterating
748  // over the initialization expression referenced by the condition variable.
749  child_range children() {
750    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
751  }
752
753  static bool classof(const Stmt *T) {
754    return T->getStmtClass() == IfStmtClass;
755  }
756  static bool classof(const IfStmt *) { return true; }
757};
758
759/// SwitchStmt - This represents a 'switch' stmt.
760///
761class SwitchStmt : public Stmt {
762  enum { VAR, COND, BODY, END_EXPR };
763  Stmt* SubExprs[END_EXPR];
764  // This points to a linked list of case and default statements.
765  SwitchCase *FirstCase;
766  SourceLocation SwitchLoc;
767
768  /// If the SwitchStmt is a switch on an enum value, this records whether
769  /// all the enum values were covered by CaseStmts.  This value is meant to
770  /// be a hint for possible clients.
771  unsigned AllEnumCasesCovered : 1;
772
773public:
774  SwitchStmt(ASTContext &C, VarDecl *Var, Expr *cond);
775
776  /// \brief Build a empty switch statement.
777  explicit SwitchStmt(EmptyShell Empty) : Stmt(SwitchStmtClass, Empty) { }
778
779  /// \brief Retrieve the variable declared in this "switch" statement, if any.
780  ///
781  /// In the following example, "x" is the condition variable.
782  /// \code
783  /// switch (int x = foo()) {
784  ///   case 0: break;
785  ///   // ...
786  /// }
787  /// \endcode
788  VarDecl *getConditionVariable() const;
789  void setConditionVariable(ASTContext &C, VarDecl *V);
790
791  /// If this SwitchStmt has a condition variable, return the faux DeclStmt
792  /// associated with the creation of that condition variable.
793  const DeclStmt *getConditionVariableDeclStmt() const {
794    return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
795  }
796
797  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
798  const Stmt *getBody() const { return SubExprs[BODY]; }
799  const SwitchCase *getSwitchCaseList() const { return FirstCase; }
800
801  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]);}
802  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
803  Stmt *getBody() { return SubExprs[BODY]; }
804  void setBody(Stmt *S) { SubExprs[BODY] = S; }
805  SwitchCase *getSwitchCaseList() { return FirstCase; }
806
807  /// \brief Set the case list for this switch statement.
808  ///
809  /// The caller is responsible for incrementing the retain counts on
810  /// all of the SwitchCase statements in this list.
811  void setSwitchCaseList(SwitchCase *SC) { FirstCase = SC; }
812
813  SourceLocation getSwitchLoc() const { return SwitchLoc; }
814  void setSwitchLoc(SourceLocation L) { SwitchLoc = L; }
815
816  void setBody(Stmt *S, SourceLocation SL) {
817    SubExprs[BODY] = S;
818    SwitchLoc = SL;
819  }
820  void addSwitchCase(SwitchCase *SC) {
821    assert(!SC->getNextSwitchCase() && "case/default already added to a switch");
822    SC->setNextSwitchCase(FirstCase);
823    FirstCase = SC;
824  }
825
826  /// Set a flag in the SwitchStmt indicating that if the 'switch (X)' is a
827  /// switch over an enum value then all cases have been explicitly covered.
828  void setAllEnumCasesCovered() {
829    AllEnumCasesCovered = 1;
830  }
831
832  /// Returns true if the SwitchStmt is a switch of an enum value and all cases
833  /// have been explicitly covered.
834  bool isAllEnumCasesCovered() const {
835    return (bool) AllEnumCasesCovered;
836  }
837
838  SourceRange getSourceRange() const {
839    return SourceRange(SwitchLoc, SubExprs[BODY]->getLocEnd());
840  }
841  // Iterators
842  child_range children() {
843    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
844  }
845
846  static bool classof(const Stmt *T) {
847    return T->getStmtClass() == SwitchStmtClass;
848  }
849  static bool classof(const SwitchStmt *) { return true; }
850};
851
852
853/// WhileStmt - This represents a 'while' stmt.
854///
855class WhileStmt : public Stmt {
856  enum { VAR, COND, BODY, END_EXPR };
857  Stmt* SubExprs[END_EXPR];
858  SourceLocation WhileLoc;
859public:
860  WhileStmt(ASTContext &C, VarDecl *Var, Expr *cond, Stmt *body,
861            SourceLocation WL);
862
863  /// \brief Build an empty while statement.
864  explicit WhileStmt(EmptyShell Empty) : Stmt(WhileStmtClass, Empty) { }
865
866  /// \brief Retrieve the variable declared in this "while" statement, if any.
867  ///
868  /// In the following example, "x" is the condition variable.
869  /// \code
870  /// while (int x = random()) {
871  ///   // ...
872  /// }
873  /// \endcode
874  VarDecl *getConditionVariable() const;
875  void setConditionVariable(ASTContext &C, VarDecl *V);
876
877  /// If this WhileStmt has a condition variable, return the faux DeclStmt
878  /// associated with the creation of that condition variable.
879  const DeclStmt *getConditionVariableDeclStmt() const {
880    return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
881  }
882
883  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
884  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
885  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
886  Stmt *getBody() { return SubExprs[BODY]; }
887  const Stmt *getBody() const { return SubExprs[BODY]; }
888  void setBody(Stmt *S) { SubExprs[BODY] = S; }
889
890  SourceLocation getWhileLoc() const { return WhileLoc; }
891  void setWhileLoc(SourceLocation L) { WhileLoc = L; }
892
893  SourceRange getSourceRange() const {
894    return SourceRange(WhileLoc, SubExprs[BODY]->getLocEnd());
895  }
896  static bool classof(const Stmt *T) {
897    return T->getStmtClass() == WhileStmtClass;
898  }
899  static bool classof(const WhileStmt *) { return true; }
900
901  // Iterators
902  child_range children() {
903    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
904  }
905};
906
907/// DoStmt - This represents a 'do/while' stmt.
908///
909class DoStmt : public Stmt {
910  enum { BODY, COND, END_EXPR };
911  Stmt* SubExprs[END_EXPR];
912  SourceLocation DoLoc;
913  SourceLocation WhileLoc;
914  SourceLocation RParenLoc;  // Location of final ')' in do stmt condition.
915
916public:
917  DoStmt(Stmt *body, Expr *cond, SourceLocation DL, SourceLocation WL,
918         SourceLocation RP)
919    : Stmt(DoStmtClass), DoLoc(DL), WhileLoc(WL), RParenLoc(RP) {
920    SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
921    SubExprs[BODY] = body;
922  }
923
924  /// \brief Build an empty do-while statement.
925  explicit DoStmt(EmptyShell Empty) : Stmt(DoStmtClass, Empty) { }
926
927  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
928  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
929  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
930  Stmt *getBody() { return SubExprs[BODY]; }
931  const Stmt *getBody() const { return SubExprs[BODY]; }
932  void setBody(Stmt *S) { SubExprs[BODY] = S; }
933
934  SourceLocation getDoLoc() const { return DoLoc; }
935  void setDoLoc(SourceLocation L) { DoLoc = L; }
936  SourceLocation getWhileLoc() const { return WhileLoc; }
937  void setWhileLoc(SourceLocation L) { WhileLoc = L; }
938
939  SourceLocation getRParenLoc() const { return RParenLoc; }
940  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
941
942  SourceRange getSourceRange() const {
943    return SourceRange(DoLoc, RParenLoc);
944  }
945  static bool classof(const Stmt *T) {
946    return T->getStmtClass() == DoStmtClass;
947  }
948  static bool classof(const DoStmt *) { return true; }
949
950  // Iterators
951  child_range children() {
952    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
953  }
954};
955
956
957/// ForStmt - This represents a 'for (init;cond;inc)' stmt.  Note that any of
958/// the init/cond/inc parts of the ForStmt will be null if they were not
959/// specified in the source.
960///
961class ForStmt : public Stmt {
962  enum { INIT, CONDVAR, COND, INC, BODY, END_EXPR };
963  Stmt* SubExprs[END_EXPR]; // SubExprs[INIT] is an expression or declstmt.
964  SourceLocation ForLoc;
965  SourceLocation LParenLoc, RParenLoc;
966
967public:
968  ForStmt(ASTContext &C, Stmt *Init, Expr *Cond, VarDecl *condVar, Expr *Inc,
969          Stmt *Body, SourceLocation FL, SourceLocation LP, SourceLocation RP);
970
971  /// \brief Build an empty for statement.
972  explicit ForStmt(EmptyShell Empty) : Stmt(ForStmtClass, Empty) { }
973
974  Stmt *getInit() { return SubExprs[INIT]; }
975
976  /// \brief Retrieve the variable declared in this "for" statement, if any.
977  ///
978  /// In the following example, "y" is the condition variable.
979  /// \code
980  /// for (int x = random(); int y = mangle(x); ++x) {
981  ///   // ...
982  /// }
983  /// \endcode
984  VarDecl *getConditionVariable() const;
985  void setConditionVariable(ASTContext &C, VarDecl *V);
986
987  /// If this ForStmt has a condition variable, return the faux DeclStmt
988  /// associated with the creation of that condition variable.
989  const DeclStmt *getConditionVariableDeclStmt() const {
990    return reinterpret_cast<DeclStmt*>(SubExprs[CONDVAR]);
991  }
992
993  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
994  Expr *getInc()  { return reinterpret_cast<Expr*>(SubExprs[INC]); }
995  Stmt *getBody() { return SubExprs[BODY]; }
996
997  const Stmt *getInit() const { return SubExprs[INIT]; }
998  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
999  const Expr *getInc()  const { return reinterpret_cast<Expr*>(SubExprs[INC]); }
1000  const Stmt *getBody() const { return SubExprs[BODY]; }
1001
1002  void setInit(Stmt *S) { SubExprs[INIT] = S; }
1003  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
1004  void setInc(Expr *E) { SubExprs[INC] = reinterpret_cast<Stmt*>(E); }
1005  void setBody(Stmt *S) { SubExprs[BODY] = S; }
1006
1007  SourceLocation getForLoc() const { return ForLoc; }
1008  void setForLoc(SourceLocation L) { ForLoc = L; }
1009  SourceLocation getLParenLoc() const { return LParenLoc; }
1010  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1011  SourceLocation getRParenLoc() const { return RParenLoc; }
1012  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1013
1014  SourceRange getSourceRange() const {
1015    return SourceRange(ForLoc, SubExprs[BODY]->getLocEnd());
1016  }
1017  static bool classof(const Stmt *T) {
1018    return T->getStmtClass() == ForStmtClass;
1019  }
1020  static bool classof(const ForStmt *) { return true; }
1021
1022  // Iterators
1023  child_range children() {
1024    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1025  }
1026};
1027
1028/// GotoStmt - This represents a direct goto.
1029///
1030class GotoStmt : public Stmt {
1031  LabelDecl *Label;
1032  SourceLocation GotoLoc;
1033  SourceLocation LabelLoc;
1034public:
1035  GotoStmt(LabelDecl *label, SourceLocation GL, SourceLocation LL)
1036    : Stmt(GotoStmtClass), Label(label), GotoLoc(GL), LabelLoc(LL) {}
1037
1038  /// \brief Build an empty goto statement.
1039  explicit GotoStmt(EmptyShell Empty) : Stmt(GotoStmtClass, Empty) { }
1040
1041  LabelDecl *getLabel() const { return Label; }
1042  void setLabel(LabelDecl *D) { Label = D; }
1043
1044  SourceLocation getGotoLoc() const { return GotoLoc; }
1045  void setGotoLoc(SourceLocation L) { GotoLoc = L; }
1046  SourceLocation getLabelLoc() const { return LabelLoc; }
1047  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
1048
1049  SourceRange getSourceRange() const {
1050    return SourceRange(GotoLoc, LabelLoc);
1051  }
1052  static bool classof(const Stmt *T) {
1053    return T->getStmtClass() == GotoStmtClass;
1054  }
1055  static bool classof(const GotoStmt *) { return true; }
1056
1057  // Iterators
1058  child_range children() { return child_range(); }
1059};
1060
1061/// IndirectGotoStmt - This represents an indirect goto.
1062///
1063class IndirectGotoStmt : public Stmt {
1064  SourceLocation GotoLoc;
1065  SourceLocation StarLoc;
1066  Stmt *Target;
1067public:
1068  IndirectGotoStmt(SourceLocation gotoLoc, SourceLocation starLoc,
1069                   Expr *target)
1070    : Stmt(IndirectGotoStmtClass), GotoLoc(gotoLoc), StarLoc(starLoc),
1071      Target((Stmt*)target) {}
1072
1073  /// \brief Build an empty indirect goto statement.
1074  explicit IndirectGotoStmt(EmptyShell Empty)
1075    : Stmt(IndirectGotoStmtClass, Empty) { }
1076
1077  void setGotoLoc(SourceLocation L) { GotoLoc = L; }
1078  SourceLocation getGotoLoc() const { return GotoLoc; }
1079  void setStarLoc(SourceLocation L) { StarLoc = L; }
1080  SourceLocation getStarLoc() const { return StarLoc; }
1081
1082  Expr *getTarget() { return reinterpret_cast<Expr*>(Target); }
1083  const Expr *getTarget() const {return reinterpret_cast<const Expr*>(Target);}
1084  void setTarget(Expr *E) { Target = reinterpret_cast<Stmt*>(E); }
1085
1086  /// getConstantTarget - Returns the fixed target of this indirect
1087  /// goto, if one exists.
1088  LabelDecl *getConstantTarget();
1089  const LabelDecl *getConstantTarget() const {
1090    return const_cast<IndirectGotoStmt*>(this)->getConstantTarget();
1091  }
1092
1093  SourceRange getSourceRange() const {
1094    return SourceRange(GotoLoc, Target->getLocEnd());
1095  }
1096
1097  static bool classof(const Stmt *T) {
1098    return T->getStmtClass() == IndirectGotoStmtClass;
1099  }
1100  static bool classof(const IndirectGotoStmt *) { return true; }
1101
1102  // Iterators
1103  child_range children() { return child_range(&Target, &Target+1); }
1104};
1105
1106
1107/// ContinueStmt - This represents a continue.
1108///
1109class ContinueStmt : public Stmt {
1110  SourceLocation ContinueLoc;
1111public:
1112  ContinueStmt(SourceLocation CL) : Stmt(ContinueStmtClass), ContinueLoc(CL) {}
1113
1114  /// \brief Build an empty continue statement.
1115  explicit ContinueStmt(EmptyShell Empty) : Stmt(ContinueStmtClass, Empty) { }
1116
1117  SourceLocation getContinueLoc() const { return ContinueLoc; }
1118  void setContinueLoc(SourceLocation L) { ContinueLoc = L; }
1119
1120  SourceRange getSourceRange() const {
1121    return SourceRange(ContinueLoc);
1122  }
1123
1124  static bool classof(const Stmt *T) {
1125    return T->getStmtClass() == ContinueStmtClass;
1126  }
1127  static bool classof(const ContinueStmt *) { return true; }
1128
1129  // Iterators
1130  child_range children() { return child_range(); }
1131};
1132
1133/// BreakStmt - This represents a break.
1134///
1135class BreakStmt : public Stmt {
1136  SourceLocation BreakLoc;
1137public:
1138  BreakStmt(SourceLocation BL) : Stmt(BreakStmtClass), BreakLoc(BL) {}
1139
1140  /// \brief Build an empty break statement.
1141  explicit BreakStmt(EmptyShell Empty) : Stmt(BreakStmtClass, Empty) { }
1142
1143  SourceLocation getBreakLoc() const { return BreakLoc; }
1144  void setBreakLoc(SourceLocation L) { BreakLoc = L; }
1145
1146  SourceRange getSourceRange() const { return SourceRange(BreakLoc); }
1147
1148  static bool classof(const Stmt *T) {
1149    return T->getStmtClass() == BreakStmtClass;
1150  }
1151  static bool classof(const BreakStmt *) { return true; }
1152
1153  // Iterators
1154  child_range children() { return child_range(); }
1155};
1156
1157
1158/// ReturnStmt - This represents a return, optionally of an expression:
1159///   return;
1160///   return 4;
1161///
1162/// Note that GCC allows return with no argument in a function declared to
1163/// return a value, and it allows returning a value in functions declared to
1164/// return void.  We explicitly model this in the AST, which means you can't
1165/// depend on the return type of the function and the presence of an argument.
1166///
1167class ReturnStmt : public Stmt {
1168  Stmt *RetExpr;
1169  SourceLocation RetLoc;
1170  const VarDecl *NRVOCandidate;
1171
1172public:
1173  ReturnStmt(SourceLocation RL)
1174    : Stmt(ReturnStmtClass), RetExpr(0), RetLoc(RL), NRVOCandidate(0) { }
1175
1176  ReturnStmt(SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate)
1177    : Stmt(ReturnStmtClass), RetExpr((Stmt*) E), RetLoc(RL),
1178      NRVOCandidate(NRVOCandidate) {}
1179
1180  /// \brief Build an empty return expression.
1181  explicit ReturnStmt(EmptyShell Empty) : Stmt(ReturnStmtClass, Empty) { }
1182
1183  const Expr *getRetValue() const;
1184  Expr *getRetValue();
1185  void setRetValue(Expr *E) { RetExpr = reinterpret_cast<Stmt*>(E); }
1186
1187  SourceLocation getReturnLoc() const { return RetLoc; }
1188  void setReturnLoc(SourceLocation L) { RetLoc = L; }
1189
1190  /// \brief Retrieve the variable that might be used for the named return
1191  /// value optimization.
1192  ///
1193  /// The optimization itself can only be performed if the variable is
1194  /// also marked as an NRVO object.
1195  const VarDecl *getNRVOCandidate() const { return NRVOCandidate; }
1196  void setNRVOCandidate(const VarDecl *Var) { NRVOCandidate = Var; }
1197
1198  SourceRange getSourceRange() const;
1199
1200  static bool classof(const Stmt *T) {
1201    return T->getStmtClass() == ReturnStmtClass;
1202  }
1203  static bool classof(const ReturnStmt *) { return true; }
1204
1205  // Iterators
1206  child_range children() {
1207    if (RetExpr) return child_range(&RetExpr, &RetExpr+1);
1208    return child_range();
1209  }
1210};
1211
1212/// AsmStmt - This represents a GNU inline-assembly statement extension.
1213///
1214class AsmStmt : public Stmt {
1215  SourceLocation AsmLoc, RParenLoc;
1216  StringLiteral *AsmStr;
1217
1218  bool IsSimple;
1219  bool IsVolatile;
1220  bool MSAsm;
1221
1222  unsigned NumOutputs;
1223  unsigned NumInputs;
1224  unsigned NumClobbers;
1225
1226  // FIXME: If we wanted to, we could allocate all of these in one big array.
1227  IdentifierInfo **Names;
1228  StringLiteral **Constraints;
1229  Stmt **Exprs;
1230  StringLiteral **Clobbers;
1231
1232public:
1233  AsmStmt(ASTContext &C, SourceLocation asmloc, bool issimple, bool isvolatile,
1234          bool msasm, unsigned numoutputs, unsigned numinputs,
1235          IdentifierInfo **names, StringLiteral **constraints,
1236          Expr **exprs, StringLiteral *asmstr, unsigned numclobbers,
1237          StringLiteral **clobbers, SourceLocation rparenloc);
1238
1239  /// \brief Build an empty inline-assembly statement.
1240  explicit AsmStmt(EmptyShell Empty) : Stmt(AsmStmtClass, Empty),
1241    Names(0), Constraints(0), Exprs(0), Clobbers(0) { }
1242
1243  SourceLocation getAsmLoc() const { return AsmLoc; }
1244  void setAsmLoc(SourceLocation L) { AsmLoc = L; }
1245  SourceLocation getRParenLoc() const { return RParenLoc; }
1246  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1247
1248  bool isVolatile() const { return IsVolatile; }
1249  void setVolatile(bool V) { IsVolatile = V; }
1250  bool isSimple() const { return IsSimple; }
1251  void setSimple(bool V) { IsSimple = V; }
1252  bool isMSAsm() const { return MSAsm; }
1253  void setMSAsm(bool V) { MSAsm = V; }
1254
1255  //===--- Asm String Analysis ---===//
1256
1257  const StringLiteral *getAsmString() const { return AsmStr; }
1258  StringLiteral *getAsmString() { return AsmStr; }
1259  void setAsmString(StringLiteral *E) { AsmStr = E; }
1260
1261  /// AsmStringPiece - this is part of a decomposed asm string specification
1262  /// (for use with the AnalyzeAsmString function below).  An asm string is
1263  /// considered to be a concatenation of these parts.
1264  class AsmStringPiece {
1265  public:
1266    enum Kind {
1267      String,  // String in .ll asm string form, "$" -> "$$" and "%%" -> "%".
1268      Operand  // Operand reference, with optional modifier %c4.
1269    };
1270  private:
1271    Kind MyKind;
1272    std::string Str;
1273    unsigned OperandNo;
1274  public:
1275    AsmStringPiece(const std::string &S) : MyKind(String), Str(S) {}
1276    AsmStringPiece(unsigned OpNo, char Modifier)
1277      : MyKind(Operand), Str(), OperandNo(OpNo) {
1278      Str += Modifier;
1279    }
1280
1281    bool isString() const { return MyKind == String; }
1282    bool isOperand() const { return MyKind == Operand; }
1283
1284    const std::string &getString() const {
1285      assert(isString());
1286      return Str;
1287    }
1288
1289    unsigned getOperandNo() const {
1290      assert(isOperand());
1291      return OperandNo;
1292    }
1293
1294    /// getModifier - Get the modifier for this operand, if present.  This
1295    /// returns '\0' if there was no modifier.
1296    char getModifier() const {
1297      assert(isOperand());
1298      return Str[0];
1299    }
1300  };
1301
1302  /// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing
1303  /// it into pieces.  If the asm string is erroneous, emit errors and return
1304  /// true, otherwise return false.  This handles canonicalization and
1305  /// translation of strings from GCC syntax to LLVM IR syntax, and handles
1306  //// flattening of named references like %[foo] to Operand AsmStringPiece's.
1307  unsigned AnalyzeAsmString(llvm::SmallVectorImpl<AsmStringPiece> &Pieces,
1308                            ASTContext &C, unsigned &DiagOffs) const;
1309
1310
1311  //===--- Output operands ---===//
1312
1313  unsigned getNumOutputs() const { return NumOutputs; }
1314
1315  IdentifierInfo *getOutputIdentifier(unsigned i) const {
1316    return Names[i];
1317  }
1318
1319  llvm::StringRef getOutputName(unsigned i) const {
1320    if (IdentifierInfo *II = getOutputIdentifier(i))
1321      return II->getName();
1322
1323    return llvm::StringRef();
1324  }
1325
1326  /// getOutputConstraint - Return the constraint string for the specified
1327  /// output operand.  All output constraints are known to be non-empty (either
1328  /// '=' or '+').
1329  llvm::StringRef getOutputConstraint(unsigned i) const;
1330
1331  const StringLiteral *getOutputConstraintLiteral(unsigned i) const {
1332    return Constraints[i];
1333  }
1334  StringLiteral *getOutputConstraintLiteral(unsigned i) {
1335    return Constraints[i];
1336  }
1337
1338  Expr *getOutputExpr(unsigned i);
1339
1340  const Expr *getOutputExpr(unsigned i) const {
1341    return const_cast<AsmStmt*>(this)->getOutputExpr(i);
1342  }
1343
1344  /// isOutputPlusConstraint - Return true if the specified output constraint
1345  /// is a "+" constraint (which is both an input and an output) or false if it
1346  /// is an "=" constraint (just an output).
1347  bool isOutputPlusConstraint(unsigned i) const {
1348    return getOutputConstraint(i)[0] == '+';
1349  }
1350
1351  /// getNumPlusOperands - Return the number of output operands that have a "+"
1352  /// constraint.
1353  unsigned getNumPlusOperands() const;
1354
1355  //===--- Input operands ---===//
1356
1357  unsigned getNumInputs() const { return NumInputs; }
1358
1359  IdentifierInfo *getInputIdentifier(unsigned i) const {
1360    return Names[i + NumOutputs];
1361  }
1362
1363  llvm::StringRef getInputName(unsigned i) const {
1364    if (IdentifierInfo *II = getInputIdentifier(i))
1365      return II->getName();
1366
1367    return llvm::StringRef();
1368  }
1369
1370  /// getInputConstraint - Return the specified input constraint.  Unlike output
1371  /// constraints, these can be empty.
1372  llvm::StringRef getInputConstraint(unsigned i) const;
1373
1374  const StringLiteral *getInputConstraintLiteral(unsigned i) const {
1375    return Constraints[i + NumOutputs];
1376  }
1377  StringLiteral *getInputConstraintLiteral(unsigned i) {
1378    return Constraints[i + NumOutputs];
1379  }
1380
1381  Expr *getInputExpr(unsigned i);
1382  void setInputExpr(unsigned i, Expr *E);
1383
1384  const Expr *getInputExpr(unsigned i) const {
1385    return const_cast<AsmStmt*>(this)->getInputExpr(i);
1386  }
1387
1388  void setOutputsAndInputsAndClobbers(ASTContext &C,
1389                                      IdentifierInfo **Names,
1390                                      StringLiteral **Constraints,
1391                                      Stmt **Exprs,
1392                                      unsigned NumOutputs,
1393                                      unsigned NumInputs,
1394                                      StringLiteral **Clobbers,
1395                                      unsigned NumClobbers);
1396
1397  //===--- Other ---===//
1398
1399  /// getNamedOperand - Given a symbolic operand reference like %[foo],
1400  /// translate this into a numeric value needed to reference the same operand.
1401  /// This returns -1 if the operand name is invalid.
1402  int getNamedOperand(llvm::StringRef SymbolicName) const;
1403
1404  unsigned getNumClobbers() const { return NumClobbers; }
1405  StringLiteral *getClobber(unsigned i) { return Clobbers[i]; }
1406  const StringLiteral *getClobber(unsigned i) const { return Clobbers[i]; }
1407
1408  SourceRange getSourceRange() const {
1409    return SourceRange(AsmLoc, RParenLoc);
1410  }
1411
1412  static bool classof(const Stmt *T) {return T->getStmtClass() == AsmStmtClass;}
1413  static bool classof(const AsmStmt *) { return true; }
1414
1415  // Input expr iterators.
1416
1417  typedef ExprIterator inputs_iterator;
1418  typedef ConstExprIterator const_inputs_iterator;
1419
1420  inputs_iterator begin_inputs() {
1421    return &Exprs[0] + NumOutputs;
1422  }
1423
1424  inputs_iterator end_inputs() {
1425    return &Exprs[0] + NumOutputs + NumInputs;
1426  }
1427
1428  const_inputs_iterator begin_inputs() const {
1429    return &Exprs[0] + NumOutputs;
1430  }
1431
1432  const_inputs_iterator end_inputs() const {
1433    return &Exprs[0] + NumOutputs + NumInputs;
1434  }
1435
1436  // Output expr iterators.
1437
1438  typedef ExprIterator outputs_iterator;
1439  typedef ConstExprIterator const_outputs_iterator;
1440
1441  outputs_iterator begin_outputs() {
1442    return &Exprs[0];
1443  }
1444  outputs_iterator end_outputs() {
1445    return &Exprs[0] + NumOutputs;
1446  }
1447
1448  const_outputs_iterator begin_outputs() const {
1449    return &Exprs[0];
1450  }
1451  const_outputs_iterator end_outputs() const {
1452    return &Exprs[0] + NumOutputs;
1453  }
1454
1455  child_range children() {
1456    return child_range(&Exprs[0], &Exprs[0] + NumOutputs + NumInputs);
1457  }
1458};
1459
1460class SEHExceptStmt : public Stmt {
1461  SourceLocation  Loc;
1462  Stmt           *Children[2];
1463
1464  enum { FILTER_EXPR, BLOCK };
1465
1466  SEHExceptStmt(SourceLocation Loc,
1467                Expr *FilterExpr,
1468                Stmt *Block);
1469
1470public:
1471  static SEHExceptStmt* Create(ASTContext &C,
1472                               SourceLocation ExceptLoc,
1473                               Expr *FilterExpr,
1474                               Stmt *Block);
1475  SourceRange getSourceRange() const {
1476    return SourceRange(getExceptLoc(), getEndLoc());
1477  }
1478
1479  SourceLocation getExceptLoc() const { return Loc; }
1480  SourceLocation getEndLoc() const { return getBlock()->getLocEnd(); }
1481
1482  Expr *getFilterExpr() const { return reinterpret_cast<Expr*>(Children[FILTER_EXPR]); }
1483  CompoundStmt *getBlock() const { return llvm::cast<CompoundStmt>(Children[BLOCK]); }
1484
1485  child_range children() {
1486    return child_range(Children,Children+2);
1487  }
1488
1489  static bool classof(const Stmt *T) {
1490    return T->getStmtClass() == SEHExceptStmtClass;
1491  }
1492
1493  static bool classof(SEHExceptStmt *) { return true; }
1494
1495};
1496
1497class SEHFinallyStmt : public Stmt {
1498  SourceLocation  Loc;
1499  Stmt           *Block;
1500
1501  SEHFinallyStmt(SourceLocation Loc,
1502                 Stmt *Block);
1503
1504public:
1505  static SEHFinallyStmt* Create(ASTContext &C,
1506                                SourceLocation FinallyLoc,
1507                                Stmt *Block);
1508
1509  SourceRange getSourceRange() const {
1510    return SourceRange(getFinallyLoc(), getEndLoc());
1511  }
1512
1513  SourceLocation getFinallyLoc() const { return Loc; }
1514  SourceLocation getEndLoc() const { return Block->getLocEnd(); }
1515
1516  CompoundStmt *getBlock() const { return llvm::cast<CompoundStmt>(Block); }
1517
1518  child_range children() {
1519    return child_range(&Block,&Block+1);
1520  }
1521
1522  static bool classof(const Stmt *T) {
1523    return T->getStmtClass() == SEHFinallyStmtClass;
1524  }
1525
1526  static bool classof(SEHFinallyStmt *) { return true; }
1527
1528};
1529
1530class SEHTryStmt : public Stmt {
1531  bool            IsCXXTry;
1532  SourceLocation  TryLoc;
1533  Stmt           *Children[2];
1534
1535  enum { TRY = 0, HANDLER = 1 };
1536
1537  SEHTryStmt(bool isCXXTry, // true if 'try' otherwise '__try'
1538             SourceLocation TryLoc,
1539             Stmt *TryBlock,
1540             Stmt *Handler);
1541
1542public:
1543  static SEHTryStmt* Create(ASTContext &C,
1544                            bool isCXXTry,
1545                            SourceLocation TryLoc,
1546                            Stmt *TryBlock,
1547                            Stmt *Handler);
1548
1549  SourceRange getSourceRange() const {
1550    return SourceRange(getTryLoc(), getEndLoc());
1551  }
1552
1553  SourceLocation getTryLoc() const { return TryLoc; }
1554  SourceLocation getEndLoc() const { return Children[HANDLER]->getLocEnd(); }
1555
1556  bool getIsCXXTry() const { return IsCXXTry; }
1557  CompoundStmt* getTryBlock() const { return llvm::cast<CompoundStmt>(Children[TRY]); }
1558  Stmt *getHandler() const { return Children[HANDLER]; }
1559
1560  /// Returns 0 if not defined
1561  SEHExceptStmt  *getExceptHandler() const;
1562  SEHFinallyStmt *getFinallyHandler() const;
1563
1564  child_range children() {
1565    return child_range(Children,Children+2);
1566  }
1567
1568  static bool classof(const Stmt *T) {
1569    return T->getStmtClass() == SEHTryStmtClass;
1570  }
1571
1572  static bool classof(SEHTryStmt *) { return true; }
1573
1574};
1575
1576}  // end namespace clang
1577
1578#endif
1579