Stmt.h revision a93d0f280693b8418bc88cf7a8c93325f7fcf4c6
1//===--- Stmt.h - Classes for representing statements -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Stmt interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_STMT_H
15#define LLVM_CLANG_AST_STMT_H
16
17#include "clang/AST/DeclGroup.h"
18#include "clang/AST/StmtIterator.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/LLVM.h"
21#include "clang/Basic/SourceLocation.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/ErrorHandling.h"
25#include <string>
26
27namespace llvm {
28  class FoldingSetNodeID;
29}
30
31namespace clang {
32  class ASTContext;
33  class Attr;
34  class Decl;
35  class Expr;
36  class IdentifierInfo;
37  class LabelDecl;
38  class ParmVarDecl;
39  class PrinterHelper;
40  struct PrintingPolicy;
41  class QualType;
42  class SourceManager;
43  class StringLiteral;
44  class SwitchStmt;
45  class Token;
46  class VarDecl;
47
48  //===--------------------------------------------------------------------===//
49  // ExprIterator - Iterators for iterating over Stmt* arrays that contain
50  //  only Expr*.  This is needed because AST nodes use Stmt* arrays to store
51  //  references to children (to be compatible with StmtIterator).
52  //===--------------------------------------------------------------------===//
53
54  class Stmt;
55  class Expr;
56
57  class ExprIterator {
58    Stmt** I;
59  public:
60    ExprIterator(Stmt** i) : I(i) {}
61    ExprIterator() : I(0) {}
62    ExprIterator& operator++() { ++I; return *this; }
63    ExprIterator operator-(size_t i) { return I-i; }
64    ExprIterator operator+(size_t i) { return I+i; }
65    Expr* operator[](size_t idx);
66    // FIXME: Verify that this will correctly return a signed distance.
67    signed operator-(const ExprIterator& R) const { return I - R.I; }
68    Expr* operator*() const;
69    Expr* operator->() const;
70    bool operator==(const ExprIterator& R) const { return I == R.I; }
71    bool operator!=(const ExprIterator& R) const { return I != R.I; }
72    bool operator>(const ExprIterator& R) const { return I > R.I; }
73    bool operator>=(const ExprIterator& R) const { return I >= R.I; }
74  };
75
76  class ConstExprIterator {
77    const Stmt * const *I;
78  public:
79    ConstExprIterator(const Stmt * const *i) : I(i) {}
80    ConstExprIterator() : I(0) {}
81    ConstExprIterator& operator++() { ++I; return *this; }
82    ConstExprIterator operator+(size_t i) const { return I+i; }
83    ConstExprIterator operator-(size_t i) const { return I-i; }
84    const Expr * operator[](size_t idx) const;
85    signed operator-(const ConstExprIterator& R) const { return I - R.I; }
86    const Expr * operator*() const;
87    const Expr * operator->() const;
88    bool operator==(const ConstExprIterator& R) const { return I == R.I; }
89    bool operator!=(const ConstExprIterator& R) const { return I != R.I; }
90    bool operator>(const ConstExprIterator& R) const { return I > R.I; }
91    bool operator>=(const ConstExprIterator& R) const { return I >= R.I; }
92  };
93
94//===----------------------------------------------------------------------===//
95// AST classes for statements.
96//===----------------------------------------------------------------------===//
97
98/// Stmt - This represents one statement.
99///
100class Stmt {
101public:
102  enum StmtClass {
103    NoStmtClass = 0,
104#define STMT(CLASS, PARENT) CLASS##Class,
105#define STMT_RANGE(BASE, FIRST, LAST) \
106        first##BASE##Constant=FIRST##Class, last##BASE##Constant=LAST##Class,
107#define LAST_STMT_RANGE(BASE, FIRST, LAST) \
108        first##BASE##Constant=FIRST##Class, last##BASE##Constant=LAST##Class
109#define ABSTRACT_STMT(STMT)
110#include "clang/AST/StmtNodes.inc"
111  };
112
113  // Make vanilla 'new' and 'delete' illegal for Stmts.
114protected:
115  void* operator new(size_t bytes) throw() {
116    llvm_unreachable("Stmts cannot be allocated with regular 'new'.");
117  }
118  void operator delete(void* data) throw() {
119    llvm_unreachable("Stmts cannot be released with regular 'delete'.");
120  }
121
122  class StmtBitfields {
123    friend class Stmt;
124
125    /// \brief The statement class.
126    unsigned sClass : 8;
127  };
128  enum { NumStmtBits = 8 };
129
130  class CompoundStmtBitfields {
131    friend class CompoundStmt;
132    unsigned : NumStmtBits;
133
134    unsigned NumStmts : 32 - NumStmtBits;
135  };
136
137  class ExprBitfields {
138    friend class Expr;
139    friend class DeclRefExpr; // computeDependence
140    friend class InitListExpr; // ctor
141    friend class DesignatedInitExpr; // ctor
142    friend class BlockDeclRefExpr; // ctor
143    friend class ASTStmtReader; // deserialization
144    friend class CXXNewExpr; // ctor
145    friend class DependentScopeDeclRefExpr; // ctor
146    friend class CXXConstructExpr; // ctor
147    friend class CallExpr; // ctor
148    friend class OffsetOfExpr; // ctor
149    friend class ObjCMessageExpr; // ctor
150    friend class ObjCArrayLiteral; // ctor
151    friend class ObjCDictionaryLiteral; // ctor
152    friend class ShuffleVectorExpr; // ctor
153    friend class ParenListExpr; // ctor
154    friend class CXXUnresolvedConstructExpr; // ctor
155    friend class CXXDependentScopeMemberExpr; // ctor
156    friend class OverloadExpr; // ctor
157    friend class PseudoObjectExpr; // ctor
158    friend class AtomicExpr; // ctor
159    unsigned : NumStmtBits;
160
161    unsigned ValueKind : 2;
162    unsigned ObjectKind : 2;
163    unsigned TypeDependent : 1;
164    unsigned ValueDependent : 1;
165    unsigned InstantiationDependent : 1;
166    unsigned ContainsUnexpandedParameterPack : 1;
167  };
168  enum { NumExprBits = 16 };
169
170  class CharacterLiteralBitfields {
171    friend class CharacterLiteral;
172    unsigned : NumExprBits;
173
174    unsigned Kind : 2;
175  };
176
177  class FloatingLiteralBitfields {
178    friend class FloatingLiteral;
179    unsigned : NumExprBits;
180
181    unsigned IsIEEE : 1; // Distinguishes between PPC128 and IEEE128.
182    unsigned IsExact : 1;
183  };
184
185  class UnaryExprOrTypeTraitExprBitfields {
186    friend class UnaryExprOrTypeTraitExpr;
187    unsigned : NumExprBits;
188
189    unsigned Kind : 2;
190    unsigned IsType : 1; // true if operand is a type, false if an expression.
191  };
192
193  class DeclRefExprBitfields {
194    friend class DeclRefExpr;
195    friend class ASTStmtReader; // deserialization
196    unsigned : NumExprBits;
197
198    unsigned HasQualifier : 1;
199    unsigned HasTemplateKWAndArgsInfo : 1;
200    unsigned HasFoundDecl : 1;
201    unsigned HadMultipleCandidates : 1;
202    unsigned RefersToEnclosingLocal : 1;
203  };
204
205  class CastExprBitfields {
206    friend class CastExpr;
207    unsigned : NumExprBits;
208
209    unsigned Kind : 6;
210    unsigned BasePathSize : 32 - 6 - NumExprBits;
211  };
212
213  class CallExprBitfields {
214    friend class CallExpr;
215    unsigned : NumExprBits;
216
217    unsigned NumPreArgs : 1;
218  };
219
220  class ExprWithCleanupsBitfields {
221    friend class ExprWithCleanups;
222    friend class ASTStmtReader; // deserialization
223
224    unsigned : NumExprBits;
225
226    unsigned NumObjects : 32 - NumExprBits;
227  };
228
229  class PseudoObjectExprBitfields {
230    friend class PseudoObjectExpr;
231    friend class ASTStmtReader; // deserialization
232
233    unsigned : NumExprBits;
234
235    // These don't need to be particularly wide, because they're
236    // strictly limited by the forms of expressions we permit.
237    unsigned NumSubExprs : 8;
238    unsigned ResultIndex : 32 - 8 - NumExprBits;
239  };
240
241  class ObjCIndirectCopyRestoreExprBitfields {
242    friend class ObjCIndirectCopyRestoreExpr;
243    unsigned : NumExprBits;
244
245    unsigned ShouldCopy : 1;
246  };
247
248  class InitListExprBitfields {
249    friend class InitListExpr;
250
251    unsigned : NumExprBits;
252
253    /// Whether this initializer list originally had a GNU array-range
254    /// designator in it. This is a temporary marker used by CodeGen.
255    unsigned HadArrayRangeDesignator : 1;
256
257    /// Whether this initializer list initializes a std::initializer_list
258    /// object.
259    unsigned InitializesStdInitializerList : 1;
260  };
261
262  class TypeTraitExprBitfields {
263    friend class TypeTraitExpr;
264    friend class ASTStmtReader;
265    friend class ASTStmtWriter;
266
267    unsigned : NumExprBits;
268
269    /// \brief The kind of type trait, which is a value of a TypeTrait enumerator.
270    unsigned Kind : 8;
271
272    /// \brief If this expression is not value-dependent, this indicates whether
273    /// the trait evaluated true or false.
274    unsigned Value : 1;
275
276    /// \brief The number of arguments to this type trait.
277    unsigned NumArgs : 32 - 8 - 1 - NumExprBits;
278  };
279
280  union {
281    // FIXME: this is wasteful on 64-bit platforms.
282    void *Aligner;
283
284    StmtBitfields StmtBits;
285    CompoundStmtBitfields CompoundStmtBits;
286    ExprBitfields ExprBits;
287    CharacterLiteralBitfields CharacterLiteralBits;
288    FloatingLiteralBitfields FloatingLiteralBits;
289    UnaryExprOrTypeTraitExprBitfields UnaryExprOrTypeTraitExprBits;
290    DeclRefExprBitfields DeclRefExprBits;
291    CastExprBitfields CastExprBits;
292    CallExprBitfields CallExprBits;
293    ExprWithCleanupsBitfields ExprWithCleanupsBits;
294    PseudoObjectExprBitfields PseudoObjectExprBits;
295    ObjCIndirectCopyRestoreExprBitfields ObjCIndirectCopyRestoreExprBits;
296    InitListExprBitfields InitListExprBits;
297    TypeTraitExprBitfields TypeTraitExprBits;
298  };
299
300  friend class ASTStmtReader;
301  friend class ASTStmtWriter;
302
303public:
304  // Only allow allocation of Stmts using the allocator in ASTContext
305  // or by doing a placement new.
306  void* operator new(size_t bytes, ASTContext& C,
307                     unsigned alignment = 8) throw();
308
309  void* operator new(size_t bytes, ASTContext* C,
310                     unsigned alignment = 8) throw();
311
312  void* operator new(size_t bytes, void* mem) throw() {
313    return mem;
314  }
315
316  void operator delete(void*, ASTContext&, unsigned) throw() { }
317  void operator delete(void*, ASTContext*, unsigned) throw() { }
318  void operator delete(void*, std::size_t) throw() { }
319  void operator delete(void*, void*) throw() { }
320
321public:
322  /// \brief A placeholder type used to construct an empty shell of a
323  /// type, that will be filled in later (e.g., by some
324  /// de-serialization).
325  struct EmptyShell { };
326
327private:
328  /// \brief Whether statistic collection is enabled.
329  static bool StatisticsEnabled;
330
331protected:
332  /// \brief Construct an empty statement.
333  explicit Stmt(StmtClass SC, EmptyShell) {
334    StmtBits.sClass = SC;
335    if (StatisticsEnabled) Stmt::addStmtClass(SC);
336  }
337
338public:
339  Stmt(StmtClass SC) {
340    StmtBits.sClass = SC;
341    if (StatisticsEnabled) Stmt::addStmtClass(SC);
342  }
343
344  StmtClass getStmtClass() const {
345    return static_cast<StmtClass>(StmtBits.sClass);
346  }
347  const char *getStmtClassName() const;
348
349  /// SourceLocation tokens are not useful in isolation - they are low level
350  /// value objects created/interpreted by SourceManager. We assume AST
351  /// clients will have a pointer to the respective SourceManager.
352  SourceRange getSourceRange() const LLVM_READONLY;
353  SourceLocation getLocStart() const LLVM_READONLY;
354  SourceLocation getLocEnd() const LLVM_READONLY;
355
356  // global temp stats (until we have a per-module visitor)
357  static void addStmtClass(const StmtClass s);
358  static void EnableStatistics();
359  static void PrintStats();
360
361  /// \brief Dumps the specified AST fragment and all subtrees to
362  /// \c llvm::errs().
363  LLVM_ATTRIBUTE_USED void dump() const;
364  LLVM_ATTRIBUTE_USED void dump(SourceManager &SM) const;
365  void dump(raw_ostream &OS, SourceManager &SM) const;
366
367  /// dumpPretty/printPretty - These two methods do a "pretty print" of the AST
368  /// back to its original source language syntax.
369  void dumpPretty(ASTContext &Context) const;
370  void printPretty(raw_ostream &OS, PrinterHelper *Helper,
371                   const PrintingPolicy &Policy,
372                   unsigned Indentation = 0) const;
373
374  /// viewAST - Visualize an AST rooted at this Stmt* using GraphViz.  Only
375  ///   works on systems with GraphViz (Mac OS X) or dot+gv installed.
376  void viewAST() const;
377
378  /// Skip past any implicit AST nodes which might surround this
379  /// statement, such as ExprWithCleanups or ImplicitCastExpr nodes.
380  Stmt *IgnoreImplicit();
381
382  const Stmt *stripLabelLikeStatements() const;
383  Stmt *stripLabelLikeStatements() {
384    return const_cast<Stmt*>(
385      const_cast<const Stmt*>(this)->stripLabelLikeStatements());
386  }
387
388  /// hasImplicitControlFlow - Some statements (e.g. short circuited operations)
389  ///  contain implicit control-flow in the order their subexpressions
390  ///  are evaluated.  This predicate returns true if this statement has
391  ///  such implicit control-flow.  Such statements are also specially handled
392  ///  within CFGs.
393  bool hasImplicitControlFlow() const;
394
395  /// Child Iterators: All subclasses must implement 'children'
396  /// to permit easy iteration over the substatements/subexpessions of an
397  /// AST node.  This permits easy iteration over all nodes in the AST.
398  typedef StmtIterator       child_iterator;
399  typedef ConstStmtIterator  const_child_iterator;
400
401  typedef StmtRange          child_range;
402  typedef ConstStmtRange     const_child_range;
403
404  child_range children();
405  const_child_range children() const {
406    return const_cast<Stmt*>(this)->children();
407  }
408
409  child_iterator child_begin() { return children().first; }
410  child_iterator child_end() { return children().second; }
411
412  const_child_iterator child_begin() const { return children().first; }
413  const_child_iterator child_end() const { return children().second; }
414
415  /// \brief Produce a unique representation of the given statement.
416  ///
417  /// \param ID once the profiling operation is complete, will contain
418  /// the unique representation of the given statement.
419  ///
420  /// \param Context the AST context in which the statement resides
421  ///
422  /// \param Canonical whether the profile should be based on the canonical
423  /// representation of this statement (e.g., where non-type template
424  /// parameters are identified by index/level rather than their
425  /// declaration pointers) or the exact representation of the statement as
426  /// written in the source.
427  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
428               bool Canonical) const;
429};
430
431/// DeclStmt - Adaptor class for mixing declarations with statements and
432/// expressions. For example, CompoundStmt mixes statements, expressions
433/// and declarations (variables, types). Another example is ForStmt, where
434/// the first statement can be an expression or a declaration.
435///
436class DeclStmt : public Stmt {
437  DeclGroupRef DG;
438  SourceLocation StartLoc, EndLoc;
439
440public:
441  DeclStmt(DeclGroupRef dg, SourceLocation startLoc,
442           SourceLocation endLoc) : Stmt(DeclStmtClass), DG(dg),
443                                    StartLoc(startLoc), EndLoc(endLoc) {}
444
445  /// \brief Build an empty declaration statement.
446  explicit DeclStmt(EmptyShell Empty) : Stmt(DeclStmtClass, Empty) { }
447
448  /// isSingleDecl - This method returns true if this DeclStmt refers
449  /// to a single Decl.
450  bool isSingleDecl() const {
451    return DG.isSingleDecl();
452  }
453
454  const Decl *getSingleDecl() const { return DG.getSingleDecl(); }
455  Decl *getSingleDecl() { return DG.getSingleDecl(); }
456
457  const DeclGroupRef getDeclGroup() const { return DG; }
458  DeclGroupRef getDeclGroup() { return DG; }
459  void setDeclGroup(DeclGroupRef DGR) { DG = DGR; }
460
461  SourceLocation getStartLoc() const { return StartLoc; }
462  void setStartLoc(SourceLocation L) { StartLoc = L; }
463  SourceLocation getEndLoc() const { return EndLoc; }
464  void setEndLoc(SourceLocation L) { EndLoc = L; }
465
466  SourceRange getSourceRange() const LLVM_READONLY {
467    return SourceRange(StartLoc, EndLoc);
468  }
469
470  static bool classof(const Stmt *T) {
471    return T->getStmtClass() == DeclStmtClass;
472  }
473
474  // Iterators over subexpressions.
475  child_range children() {
476    return child_range(child_iterator(DG.begin(), DG.end()),
477                       child_iterator(DG.end(), DG.end()));
478  }
479
480  typedef DeclGroupRef::iterator decl_iterator;
481  typedef DeclGroupRef::const_iterator const_decl_iterator;
482
483  decl_iterator decl_begin() { return DG.begin(); }
484  decl_iterator decl_end() { return DG.end(); }
485  const_decl_iterator decl_begin() const { return DG.begin(); }
486  const_decl_iterator decl_end() const { return DG.end(); }
487
488  typedef std::reverse_iterator<decl_iterator> reverse_decl_iterator;
489  reverse_decl_iterator decl_rbegin() {
490    return reverse_decl_iterator(decl_end());
491  }
492  reverse_decl_iterator decl_rend() {
493    return reverse_decl_iterator(decl_begin());
494  }
495};
496
497/// NullStmt - This is the null statement ";": C99 6.8.3p3.
498///
499class NullStmt : public Stmt {
500  SourceLocation SemiLoc;
501
502  /// \brief True if the null statement was preceded by an empty macro, e.g:
503  /// @code
504  ///   #define CALL(x)
505  ///   CALL(0);
506  /// @endcode
507  bool HasLeadingEmptyMacro;
508public:
509  NullStmt(SourceLocation L, bool hasLeadingEmptyMacro = false)
510    : Stmt(NullStmtClass), SemiLoc(L),
511      HasLeadingEmptyMacro(hasLeadingEmptyMacro) {}
512
513  /// \brief Build an empty null statement.
514  explicit NullStmt(EmptyShell Empty) : Stmt(NullStmtClass, Empty),
515      HasLeadingEmptyMacro(false) { }
516
517  SourceLocation getSemiLoc() const { return SemiLoc; }
518  void setSemiLoc(SourceLocation L) { SemiLoc = L; }
519
520  bool hasLeadingEmptyMacro() const { return HasLeadingEmptyMacro; }
521
522  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(SemiLoc); }
523
524  static bool classof(const Stmt *T) {
525    return T->getStmtClass() == NullStmtClass;
526  }
527
528  child_range children() { return child_range(); }
529
530  friend class ASTStmtReader;
531  friend class ASTStmtWriter;
532};
533
534/// CompoundStmt - This represents a group of statements like { stmt stmt }.
535///
536class CompoundStmt : public Stmt {
537  Stmt** Body;
538  SourceLocation LBracLoc, RBracLoc;
539public:
540  CompoundStmt(ASTContext &C, Stmt **StmtStart, unsigned NumStmts,
541               SourceLocation LB, SourceLocation RB);
542
543  // \brief Build an empty compound statment with a location.
544  explicit CompoundStmt(SourceLocation Loc)
545    : Stmt(CompoundStmtClass), Body(0), LBracLoc(Loc), RBracLoc(Loc) {
546    CompoundStmtBits.NumStmts = 0;
547  }
548
549  // \brief Build an empty compound statement.
550  explicit CompoundStmt(EmptyShell Empty)
551    : Stmt(CompoundStmtClass, Empty), Body(0) {
552    CompoundStmtBits.NumStmts = 0;
553  }
554
555  void setStmts(ASTContext &C, Stmt **Stmts, unsigned NumStmts);
556
557  bool body_empty() const { return CompoundStmtBits.NumStmts == 0; }
558  unsigned size() const { return CompoundStmtBits.NumStmts; }
559
560  typedef Stmt** body_iterator;
561  body_iterator body_begin() { return Body; }
562  body_iterator body_end() { return Body + size(); }
563  Stmt *body_back() { return !body_empty() ? Body[size()-1] : 0; }
564
565  void setLastStmt(Stmt *S) {
566    assert(!body_empty() && "setLastStmt");
567    Body[size()-1] = S;
568  }
569
570  typedef Stmt* const * const_body_iterator;
571  const_body_iterator body_begin() const { return Body; }
572  const_body_iterator body_end() const { return Body + size(); }
573  const Stmt *body_back() const { return !body_empty() ? Body[size()-1] : 0; }
574
575  typedef std::reverse_iterator<body_iterator> reverse_body_iterator;
576  reverse_body_iterator body_rbegin() {
577    return reverse_body_iterator(body_end());
578  }
579  reverse_body_iterator body_rend() {
580    return reverse_body_iterator(body_begin());
581  }
582
583  typedef std::reverse_iterator<const_body_iterator>
584          const_reverse_body_iterator;
585
586  const_reverse_body_iterator body_rbegin() const {
587    return const_reverse_body_iterator(body_end());
588  }
589
590  const_reverse_body_iterator body_rend() const {
591    return const_reverse_body_iterator(body_begin());
592  }
593
594  SourceRange getSourceRange() const LLVM_READONLY {
595    return SourceRange(LBracLoc, RBracLoc);
596  }
597
598  SourceLocation getLBracLoc() const { return LBracLoc; }
599  void setLBracLoc(SourceLocation L) { LBracLoc = L; }
600  SourceLocation getRBracLoc() const { return RBracLoc; }
601  void setRBracLoc(SourceLocation L) { RBracLoc = L; }
602
603  static bool classof(const Stmt *T) {
604    return T->getStmtClass() == CompoundStmtClass;
605  }
606
607  // Iterators
608  child_range children() {
609    return child_range(&Body[0], &Body[0]+CompoundStmtBits.NumStmts);
610  }
611
612  const_child_range children() const {
613    return child_range(&Body[0], &Body[0]+CompoundStmtBits.NumStmts);
614  }
615};
616
617// SwitchCase is the base class for CaseStmt and DefaultStmt,
618class SwitchCase : public Stmt {
619protected:
620  // A pointer to the following CaseStmt or DefaultStmt class,
621  // used by SwitchStmt.
622  SwitchCase *NextSwitchCase;
623
624  SwitchCase(StmtClass SC) : Stmt(SC), NextSwitchCase(0) {}
625
626public:
627  const SwitchCase *getNextSwitchCase() const { return NextSwitchCase; }
628
629  SwitchCase *getNextSwitchCase() { return NextSwitchCase; }
630
631  void setNextSwitchCase(SwitchCase *SC) { NextSwitchCase = SC; }
632
633  Stmt *getSubStmt();
634  const Stmt *getSubStmt() const {
635    return const_cast<SwitchCase*>(this)->getSubStmt();
636  }
637
638  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(); }
639
640  static bool classof(const Stmt *T) {
641    return T->getStmtClass() == CaseStmtClass ||
642           T->getStmtClass() == DefaultStmtClass;
643  }
644};
645
646class CaseStmt : public SwitchCase {
647  enum { LHS, RHS, SUBSTMT, END_EXPR };
648  Stmt* SubExprs[END_EXPR];  // The expression for the RHS is Non-null for
649                             // GNU "case 1 ... 4" extension
650  SourceLocation CaseLoc;
651  SourceLocation EllipsisLoc;
652  SourceLocation ColonLoc;
653public:
654  CaseStmt(Expr *lhs, Expr *rhs, SourceLocation caseLoc,
655           SourceLocation ellipsisLoc, SourceLocation colonLoc)
656    : SwitchCase(CaseStmtClass) {
657    SubExprs[SUBSTMT] = 0;
658    SubExprs[LHS] = reinterpret_cast<Stmt*>(lhs);
659    SubExprs[RHS] = reinterpret_cast<Stmt*>(rhs);
660    CaseLoc = caseLoc;
661    EllipsisLoc = ellipsisLoc;
662    ColonLoc = colonLoc;
663  }
664
665  /// \brief Build an empty switch case statement.
666  explicit CaseStmt(EmptyShell Empty) : SwitchCase(CaseStmtClass) { }
667
668  SourceLocation getCaseLoc() const { return CaseLoc; }
669  void setCaseLoc(SourceLocation L) { CaseLoc = L; }
670  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
671  void setEllipsisLoc(SourceLocation L) { EllipsisLoc = L; }
672  SourceLocation getColonLoc() const { return ColonLoc; }
673  void setColonLoc(SourceLocation L) { ColonLoc = L; }
674
675  Expr *getLHS() { return reinterpret_cast<Expr*>(SubExprs[LHS]); }
676  Expr *getRHS() { return reinterpret_cast<Expr*>(SubExprs[RHS]); }
677  Stmt *getSubStmt() { return SubExprs[SUBSTMT]; }
678
679  const Expr *getLHS() const {
680    return reinterpret_cast<const Expr*>(SubExprs[LHS]);
681  }
682  const Expr *getRHS() const {
683    return reinterpret_cast<const Expr*>(SubExprs[RHS]);
684  }
685  const Stmt *getSubStmt() const { return SubExprs[SUBSTMT]; }
686
687  void setSubStmt(Stmt *S) { SubExprs[SUBSTMT] = S; }
688  void setLHS(Expr *Val) { SubExprs[LHS] = reinterpret_cast<Stmt*>(Val); }
689  void setRHS(Expr *Val) { SubExprs[RHS] = reinterpret_cast<Stmt*>(Val); }
690
691
692  SourceRange getSourceRange() const LLVM_READONLY {
693    // Handle deeply nested case statements with iteration instead of recursion.
694    const CaseStmt *CS = this;
695    while (const CaseStmt *CS2 = dyn_cast<CaseStmt>(CS->getSubStmt()))
696      CS = CS2;
697
698    return SourceRange(CaseLoc, CS->getSubStmt()->getLocEnd());
699  }
700  static bool classof(const Stmt *T) {
701    return T->getStmtClass() == CaseStmtClass;
702  }
703
704  // Iterators
705  child_range children() {
706    return child_range(&SubExprs[0], &SubExprs[END_EXPR]);
707  }
708};
709
710class DefaultStmt : public SwitchCase {
711  Stmt* SubStmt;
712  SourceLocation DefaultLoc;
713  SourceLocation ColonLoc;
714public:
715  DefaultStmt(SourceLocation DL, SourceLocation CL, Stmt *substmt) :
716    SwitchCase(DefaultStmtClass), SubStmt(substmt), DefaultLoc(DL),
717    ColonLoc(CL) {}
718
719  /// \brief Build an empty default statement.
720  explicit DefaultStmt(EmptyShell) : SwitchCase(DefaultStmtClass) { }
721
722  Stmt *getSubStmt() { return SubStmt; }
723  const Stmt *getSubStmt() const { return SubStmt; }
724  void setSubStmt(Stmt *S) { SubStmt = S; }
725
726  SourceLocation getDefaultLoc() const { return DefaultLoc; }
727  void setDefaultLoc(SourceLocation L) { DefaultLoc = L; }
728  SourceLocation getColonLoc() const { return ColonLoc; }
729  void setColonLoc(SourceLocation L) { ColonLoc = L; }
730
731  SourceRange getSourceRange() const LLVM_READONLY {
732    return SourceRange(DefaultLoc, SubStmt->getLocEnd());
733  }
734  static bool classof(const Stmt *T) {
735    return T->getStmtClass() == DefaultStmtClass;
736  }
737
738  // Iterators
739  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
740};
741
742
743/// LabelStmt - Represents a label, which has a substatement.  For example:
744///    foo: return;
745///
746class LabelStmt : public Stmt {
747  LabelDecl *TheDecl;
748  Stmt *SubStmt;
749  SourceLocation IdentLoc;
750public:
751  LabelStmt(SourceLocation IL, LabelDecl *D, Stmt *substmt)
752    : Stmt(LabelStmtClass), TheDecl(D), SubStmt(substmt), IdentLoc(IL) {
753  }
754
755  // \brief Build an empty label statement.
756  explicit LabelStmt(EmptyShell Empty) : Stmt(LabelStmtClass, Empty) { }
757
758  SourceLocation getIdentLoc() const { return IdentLoc; }
759  LabelDecl *getDecl() const { return TheDecl; }
760  void setDecl(LabelDecl *D) { TheDecl = D; }
761  const char *getName() const;
762  Stmt *getSubStmt() { return SubStmt; }
763  const Stmt *getSubStmt() const { return SubStmt; }
764  void setIdentLoc(SourceLocation L) { IdentLoc = L; }
765  void setSubStmt(Stmt *SS) { SubStmt = SS; }
766
767  SourceRange getSourceRange() const LLVM_READONLY {
768    return SourceRange(IdentLoc, SubStmt->getLocEnd());
769  }
770  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
771
772  static bool classof(const Stmt *T) {
773    return T->getStmtClass() == LabelStmtClass;
774  }
775};
776
777
778/// \brief Represents an attribute applied to a statement.
779///
780/// Represents an attribute applied to a statement. For example:
781///   [[omp::for(...)]] for (...) { ... }
782///
783class AttributedStmt : public Stmt {
784  Stmt *SubStmt;
785  SourceLocation AttrLoc;
786  unsigned NumAttrs;
787  const Attr *Attrs[1];
788
789  friend class ASTStmtReader;
790
791  AttributedStmt(SourceLocation Loc, ArrayRef<const Attr*> Attrs, Stmt *SubStmt)
792    : Stmt(AttributedStmtClass), SubStmt(SubStmt), AttrLoc(Loc),
793      NumAttrs(Attrs.size()) {
794    memcpy(this->Attrs, Attrs.data(), Attrs.size() * sizeof(Attr*));
795  }
796
797  explicit AttributedStmt(EmptyShell Empty, unsigned NumAttrs)
798    : Stmt(AttributedStmtClass, Empty), NumAttrs(NumAttrs) {
799    memset(Attrs, 0, NumAttrs * sizeof(Attr*));
800  }
801
802public:
803  static AttributedStmt *Create(ASTContext &C, SourceLocation Loc,
804                                ArrayRef<const Attr*> Attrs, Stmt *SubStmt);
805  // \brief Build an empty attributed statement.
806  static AttributedStmt *CreateEmpty(ASTContext &C, unsigned NumAttrs);
807
808  SourceLocation getAttrLoc() const { return AttrLoc; }
809  ArrayRef<const Attr*> getAttrs() const {
810    return ArrayRef<const Attr*>(Attrs, NumAttrs);
811  }
812  Stmt *getSubStmt() { return SubStmt; }
813  const Stmt *getSubStmt() const { return SubStmt; }
814
815  SourceRange getSourceRange() const LLVM_READONLY {
816    return SourceRange(AttrLoc, SubStmt->getLocEnd());
817  }
818  child_range children() { return child_range(&SubStmt, &SubStmt + 1); }
819
820  static bool classof(const Stmt *T) {
821    return T->getStmtClass() == AttributedStmtClass;
822  }
823};
824
825
826/// IfStmt - This represents an if/then/else.
827///
828class IfStmt : public Stmt {
829  enum { VAR, COND, THEN, ELSE, END_EXPR };
830  Stmt* SubExprs[END_EXPR];
831
832  SourceLocation IfLoc;
833  SourceLocation ElseLoc;
834
835public:
836  IfStmt(ASTContext &C, SourceLocation IL, VarDecl *var, Expr *cond,
837         Stmt *then, SourceLocation EL = SourceLocation(), Stmt *elsev = 0);
838
839  /// \brief Build an empty if/then/else statement
840  explicit IfStmt(EmptyShell Empty) : Stmt(IfStmtClass, Empty) { }
841
842  /// \brief Retrieve the variable declared in this "if" statement, if any.
843  ///
844  /// In the following example, "x" is the condition variable.
845  /// \code
846  /// if (int x = foo()) {
847  ///   printf("x is %d", x);
848  /// }
849  /// \endcode
850  VarDecl *getConditionVariable() const;
851  void setConditionVariable(ASTContext &C, VarDecl *V);
852
853  /// If this IfStmt has a condition variable, return the faux DeclStmt
854  /// associated with the creation of that condition variable.
855  const DeclStmt *getConditionVariableDeclStmt() const {
856    return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
857  }
858
859  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
860  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
861  const Stmt *getThen() const { return SubExprs[THEN]; }
862  void setThen(Stmt *S) { SubExprs[THEN] = S; }
863  const Stmt *getElse() const { return SubExprs[ELSE]; }
864  void setElse(Stmt *S) { SubExprs[ELSE] = S; }
865
866  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
867  Stmt *getThen() { return SubExprs[THEN]; }
868  Stmt *getElse() { return SubExprs[ELSE]; }
869
870  SourceLocation getIfLoc() const { return IfLoc; }
871  void setIfLoc(SourceLocation L) { IfLoc = L; }
872  SourceLocation getElseLoc() const { return ElseLoc; }
873  void setElseLoc(SourceLocation L) { ElseLoc = L; }
874
875  SourceRange getSourceRange() const LLVM_READONLY {
876    if (SubExprs[ELSE])
877      return SourceRange(IfLoc, SubExprs[ELSE]->getLocEnd());
878    else
879      return SourceRange(IfLoc, SubExprs[THEN]->getLocEnd());
880  }
881
882  // Iterators over subexpressions.  The iterators will include iterating
883  // over the initialization expression referenced by the condition variable.
884  child_range children() {
885    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
886  }
887
888  static bool classof(const Stmt *T) {
889    return T->getStmtClass() == IfStmtClass;
890  }
891};
892
893/// SwitchStmt - This represents a 'switch' stmt.
894///
895class SwitchStmt : public Stmt {
896  enum { VAR, COND, BODY, END_EXPR };
897  Stmt* SubExprs[END_EXPR];
898  // This points to a linked list of case and default statements.
899  SwitchCase *FirstCase;
900  SourceLocation SwitchLoc;
901
902  /// If the SwitchStmt is a switch on an enum value, this records whether
903  /// all the enum values were covered by CaseStmts.  This value is meant to
904  /// be a hint for possible clients.
905  unsigned AllEnumCasesCovered : 1;
906
907public:
908  SwitchStmt(ASTContext &C, VarDecl *Var, Expr *cond);
909
910  /// \brief Build a empty switch statement.
911  explicit SwitchStmt(EmptyShell Empty) : Stmt(SwitchStmtClass, Empty) { }
912
913  /// \brief Retrieve the variable declared in this "switch" statement, if any.
914  ///
915  /// In the following example, "x" is the condition variable.
916  /// \code
917  /// switch (int x = foo()) {
918  ///   case 0: break;
919  ///   // ...
920  /// }
921  /// \endcode
922  VarDecl *getConditionVariable() const;
923  void setConditionVariable(ASTContext &C, VarDecl *V);
924
925  /// If this SwitchStmt has a condition variable, return the faux DeclStmt
926  /// associated with the creation of that condition variable.
927  const DeclStmt *getConditionVariableDeclStmt() const {
928    return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
929  }
930
931  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
932  const Stmt *getBody() const { return SubExprs[BODY]; }
933  const SwitchCase *getSwitchCaseList() const { return FirstCase; }
934
935  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]);}
936  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
937  Stmt *getBody() { return SubExprs[BODY]; }
938  void setBody(Stmt *S) { SubExprs[BODY] = S; }
939  SwitchCase *getSwitchCaseList() { return FirstCase; }
940
941  /// \brief Set the case list for this switch statement.
942  ///
943  /// The caller is responsible for incrementing the retain counts on
944  /// all of the SwitchCase statements in this list.
945  void setSwitchCaseList(SwitchCase *SC) { FirstCase = SC; }
946
947  SourceLocation getSwitchLoc() const { return SwitchLoc; }
948  void setSwitchLoc(SourceLocation L) { SwitchLoc = L; }
949
950  void setBody(Stmt *S, SourceLocation SL) {
951    SubExprs[BODY] = S;
952    SwitchLoc = SL;
953  }
954  void addSwitchCase(SwitchCase *SC) {
955    assert(!SC->getNextSwitchCase()
956           && "case/default already added to a switch");
957    SC->setNextSwitchCase(FirstCase);
958    FirstCase = SC;
959  }
960
961  /// Set a flag in the SwitchStmt indicating that if the 'switch (X)' is a
962  /// switch over an enum value then all cases have been explicitly covered.
963  void setAllEnumCasesCovered() {
964    AllEnumCasesCovered = 1;
965  }
966
967  /// Returns true if the SwitchStmt is a switch of an enum value and all cases
968  /// have been explicitly covered.
969  bool isAllEnumCasesCovered() const {
970    return (bool) AllEnumCasesCovered;
971  }
972
973  SourceRange getSourceRange() const LLVM_READONLY {
974    return SourceRange(SwitchLoc, SubExprs[BODY]->getLocEnd());
975  }
976  // Iterators
977  child_range children() {
978    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
979  }
980
981  static bool classof(const Stmt *T) {
982    return T->getStmtClass() == SwitchStmtClass;
983  }
984};
985
986
987/// WhileStmt - This represents a 'while' stmt.
988///
989class WhileStmt : public Stmt {
990  enum { VAR, COND, BODY, END_EXPR };
991  Stmt* SubExprs[END_EXPR];
992  SourceLocation WhileLoc;
993public:
994  WhileStmt(ASTContext &C, VarDecl *Var, Expr *cond, Stmt *body,
995            SourceLocation WL);
996
997  /// \brief Build an empty while statement.
998  explicit WhileStmt(EmptyShell Empty) : Stmt(WhileStmtClass, Empty) { }
999
1000  /// \brief Retrieve the variable declared in this "while" statement, if any.
1001  ///
1002  /// In the following example, "x" is the condition variable.
1003  /// \code
1004  /// while (int x = random()) {
1005  ///   // ...
1006  /// }
1007  /// \endcode
1008  VarDecl *getConditionVariable() const;
1009  void setConditionVariable(ASTContext &C, VarDecl *V);
1010
1011  /// If this WhileStmt has a condition variable, return the faux DeclStmt
1012  /// associated with the creation of that condition variable.
1013  const DeclStmt *getConditionVariableDeclStmt() const {
1014    return reinterpret_cast<DeclStmt*>(SubExprs[VAR]);
1015  }
1016
1017  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
1018  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
1019  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
1020  Stmt *getBody() { return SubExprs[BODY]; }
1021  const Stmt *getBody() const { return SubExprs[BODY]; }
1022  void setBody(Stmt *S) { SubExprs[BODY] = S; }
1023
1024  SourceLocation getWhileLoc() const { return WhileLoc; }
1025  void setWhileLoc(SourceLocation L) { WhileLoc = L; }
1026
1027  SourceRange getSourceRange() const LLVM_READONLY {
1028    return SourceRange(WhileLoc, SubExprs[BODY]->getLocEnd());
1029  }
1030  static bool classof(const Stmt *T) {
1031    return T->getStmtClass() == WhileStmtClass;
1032  }
1033
1034  // Iterators
1035  child_range children() {
1036    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1037  }
1038};
1039
1040/// DoStmt - This represents a 'do/while' stmt.
1041///
1042class DoStmt : public Stmt {
1043  enum { BODY, COND, END_EXPR };
1044  Stmt* SubExprs[END_EXPR];
1045  SourceLocation DoLoc;
1046  SourceLocation WhileLoc;
1047  SourceLocation RParenLoc;  // Location of final ')' in do stmt condition.
1048
1049public:
1050  DoStmt(Stmt *body, Expr *cond, SourceLocation DL, SourceLocation WL,
1051         SourceLocation RP)
1052    : Stmt(DoStmtClass), DoLoc(DL), WhileLoc(WL), RParenLoc(RP) {
1053    SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
1054    SubExprs[BODY] = body;
1055  }
1056
1057  /// \brief Build an empty do-while statement.
1058  explicit DoStmt(EmptyShell Empty) : Stmt(DoStmtClass, Empty) { }
1059
1060  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
1061  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
1062  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
1063  Stmt *getBody() { return SubExprs[BODY]; }
1064  const Stmt *getBody() const { return SubExprs[BODY]; }
1065  void setBody(Stmt *S) { SubExprs[BODY] = S; }
1066
1067  SourceLocation getDoLoc() const { return DoLoc; }
1068  void setDoLoc(SourceLocation L) { DoLoc = L; }
1069  SourceLocation getWhileLoc() const { return WhileLoc; }
1070  void setWhileLoc(SourceLocation L) { WhileLoc = L; }
1071
1072  SourceLocation getRParenLoc() const { return RParenLoc; }
1073  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1074
1075  SourceRange getSourceRange() const LLVM_READONLY {
1076    return SourceRange(DoLoc, RParenLoc);
1077  }
1078  static bool classof(const Stmt *T) {
1079    return T->getStmtClass() == DoStmtClass;
1080  }
1081
1082  // Iterators
1083  child_range children() {
1084    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1085  }
1086};
1087
1088
1089/// ForStmt - This represents a 'for (init;cond;inc)' stmt.  Note that any of
1090/// the init/cond/inc parts of the ForStmt will be null if they were not
1091/// specified in the source.
1092///
1093class ForStmt : public Stmt {
1094  enum { INIT, CONDVAR, COND, INC, BODY, END_EXPR };
1095  Stmt* SubExprs[END_EXPR]; // SubExprs[INIT] is an expression or declstmt.
1096  SourceLocation ForLoc;
1097  SourceLocation LParenLoc, RParenLoc;
1098
1099public:
1100  ForStmt(ASTContext &C, Stmt *Init, Expr *Cond, VarDecl *condVar, Expr *Inc,
1101          Stmt *Body, SourceLocation FL, SourceLocation LP, SourceLocation RP);
1102
1103  /// \brief Build an empty for statement.
1104  explicit ForStmt(EmptyShell Empty) : Stmt(ForStmtClass, Empty) { }
1105
1106  Stmt *getInit() { return SubExprs[INIT]; }
1107
1108  /// \brief Retrieve the variable declared in this "for" statement, if any.
1109  ///
1110  /// In the following example, "y" is the condition variable.
1111  /// \code
1112  /// for (int x = random(); int y = mangle(x); ++x) {
1113  ///   // ...
1114  /// }
1115  /// \endcode
1116  VarDecl *getConditionVariable() const;
1117  void setConditionVariable(ASTContext &C, VarDecl *V);
1118
1119  /// If this ForStmt has a condition variable, return the faux DeclStmt
1120  /// associated with the creation of that condition variable.
1121  const DeclStmt *getConditionVariableDeclStmt() const {
1122    return reinterpret_cast<DeclStmt*>(SubExprs[CONDVAR]);
1123  }
1124
1125  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
1126  Expr *getInc()  { return reinterpret_cast<Expr*>(SubExprs[INC]); }
1127  Stmt *getBody() { return SubExprs[BODY]; }
1128
1129  const Stmt *getInit() const { return SubExprs[INIT]; }
1130  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
1131  const Expr *getInc()  const { return reinterpret_cast<Expr*>(SubExprs[INC]); }
1132  const Stmt *getBody() const { return SubExprs[BODY]; }
1133
1134  void setInit(Stmt *S) { SubExprs[INIT] = S; }
1135  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
1136  void setInc(Expr *E) { SubExprs[INC] = reinterpret_cast<Stmt*>(E); }
1137  void setBody(Stmt *S) { SubExprs[BODY] = S; }
1138
1139  SourceLocation getForLoc() const { return ForLoc; }
1140  void setForLoc(SourceLocation L) { ForLoc = L; }
1141  SourceLocation getLParenLoc() const { return LParenLoc; }
1142  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1143  SourceLocation getRParenLoc() const { return RParenLoc; }
1144  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1145
1146  SourceRange getSourceRange() const LLVM_READONLY {
1147    return SourceRange(ForLoc, SubExprs[BODY]->getLocEnd());
1148  }
1149  static bool classof(const Stmt *T) {
1150    return T->getStmtClass() == ForStmtClass;
1151  }
1152
1153  // Iterators
1154  child_range children() {
1155    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1156  }
1157};
1158
1159/// GotoStmt - This represents a direct goto.
1160///
1161class GotoStmt : public Stmt {
1162  LabelDecl *Label;
1163  SourceLocation GotoLoc;
1164  SourceLocation LabelLoc;
1165public:
1166  GotoStmt(LabelDecl *label, SourceLocation GL, SourceLocation LL)
1167    : Stmt(GotoStmtClass), Label(label), GotoLoc(GL), LabelLoc(LL) {}
1168
1169  /// \brief Build an empty goto statement.
1170  explicit GotoStmt(EmptyShell Empty) : Stmt(GotoStmtClass, Empty) { }
1171
1172  LabelDecl *getLabel() const { return Label; }
1173  void setLabel(LabelDecl *D) { Label = D; }
1174
1175  SourceLocation getGotoLoc() const { return GotoLoc; }
1176  void setGotoLoc(SourceLocation L) { GotoLoc = L; }
1177  SourceLocation getLabelLoc() const { return LabelLoc; }
1178  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
1179
1180  SourceRange getSourceRange() const LLVM_READONLY {
1181    return SourceRange(GotoLoc, LabelLoc);
1182  }
1183  static bool classof(const Stmt *T) {
1184    return T->getStmtClass() == GotoStmtClass;
1185  }
1186
1187  // Iterators
1188  child_range children() { return child_range(); }
1189};
1190
1191/// IndirectGotoStmt - This represents an indirect goto.
1192///
1193class IndirectGotoStmt : public Stmt {
1194  SourceLocation GotoLoc;
1195  SourceLocation StarLoc;
1196  Stmt *Target;
1197public:
1198  IndirectGotoStmt(SourceLocation gotoLoc, SourceLocation starLoc,
1199                   Expr *target)
1200    : Stmt(IndirectGotoStmtClass), GotoLoc(gotoLoc), StarLoc(starLoc),
1201      Target((Stmt*)target) {}
1202
1203  /// \brief Build an empty indirect goto statement.
1204  explicit IndirectGotoStmt(EmptyShell Empty)
1205    : Stmt(IndirectGotoStmtClass, Empty) { }
1206
1207  void setGotoLoc(SourceLocation L) { GotoLoc = L; }
1208  SourceLocation getGotoLoc() const { return GotoLoc; }
1209  void setStarLoc(SourceLocation L) { StarLoc = L; }
1210  SourceLocation getStarLoc() const { return StarLoc; }
1211
1212  Expr *getTarget() { return reinterpret_cast<Expr*>(Target); }
1213  const Expr *getTarget() const {return reinterpret_cast<const Expr*>(Target);}
1214  void setTarget(Expr *E) { Target = reinterpret_cast<Stmt*>(E); }
1215
1216  /// getConstantTarget - Returns the fixed target of this indirect
1217  /// goto, if one exists.
1218  LabelDecl *getConstantTarget();
1219  const LabelDecl *getConstantTarget() const {
1220    return const_cast<IndirectGotoStmt*>(this)->getConstantTarget();
1221  }
1222
1223  SourceRange getSourceRange() const LLVM_READONLY {
1224    return SourceRange(GotoLoc, Target->getLocEnd());
1225  }
1226
1227  static bool classof(const Stmt *T) {
1228    return T->getStmtClass() == IndirectGotoStmtClass;
1229  }
1230
1231  // Iterators
1232  child_range children() { return child_range(&Target, &Target+1); }
1233};
1234
1235
1236/// ContinueStmt - This represents a continue.
1237///
1238class ContinueStmt : public Stmt {
1239  SourceLocation ContinueLoc;
1240public:
1241  ContinueStmt(SourceLocation CL) : Stmt(ContinueStmtClass), ContinueLoc(CL) {}
1242
1243  /// \brief Build an empty continue statement.
1244  explicit ContinueStmt(EmptyShell Empty) : Stmt(ContinueStmtClass, Empty) { }
1245
1246  SourceLocation getContinueLoc() const { return ContinueLoc; }
1247  void setContinueLoc(SourceLocation L) { ContinueLoc = L; }
1248
1249  SourceRange getSourceRange() const LLVM_READONLY {
1250    return SourceRange(ContinueLoc);
1251  }
1252
1253  static bool classof(const Stmt *T) {
1254    return T->getStmtClass() == ContinueStmtClass;
1255  }
1256
1257  // Iterators
1258  child_range children() { return child_range(); }
1259};
1260
1261/// BreakStmt - This represents a break.
1262///
1263class BreakStmt : public Stmt {
1264  SourceLocation BreakLoc;
1265public:
1266  BreakStmt(SourceLocation BL) : Stmt(BreakStmtClass), BreakLoc(BL) {}
1267
1268  /// \brief Build an empty break statement.
1269  explicit BreakStmt(EmptyShell Empty) : Stmt(BreakStmtClass, Empty) { }
1270
1271  SourceLocation getBreakLoc() const { return BreakLoc; }
1272  void setBreakLoc(SourceLocation L) { BreakLoc = L; }
1273
1274  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(BreakLoc); }
1275
1276  static bool classof(const Stmt *T) {
1277    return T->getStmtClass() == BreakStmtClass;
1278  }
1279
1280  // Iterators
1281  child_range children() { return child_range(); }
1282};
1283
1284
1285/// ReturnStmt - This represents a return, optionally of an expression:
1286///   return;
1287///   return 4;
1288///
1289/// Note that GCC allows return with no argument in a function declared to
1290/// return a value, and it allows returning a value in functions declared to
1291/// return void.  We explicitly model this in the AST, which means you can't
1292/// depend on the return type of the function and the presence of an argument.
1293///
1294class ReturnStmt : public Stmt {
1295  Stmt *RetExpr;
1296  SourceLocation RetLoc;
1297  const VarDecl *NRVOCandidate;
1298
1299public:
1300  ReturnStmt(SourceLocation RL)
1301    : Stmt(ReturnStmtClass), RetExpr(0), RetLoc(RL), NRVOCandidate(0) { }
1302
1303  ReturnStmt(SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate)
1304    : Stmt(ReturnStmtClass), RetExpr((Stmt*) E), RetLoc(RL),
1305      NRVOCandidate(NRVOCandidate) {}
1306
1307  /// \brief Build an empty return expression.
1308  explicit ReturnStmt(EmptyShell Empty) : Stmt(ReturnStmtClass, Empty) { }
1309
1310  const Expr *getRetValue() const;
1311  Expr *getRetValue();
1312  void setRetValue(Expr *E) { RetExpr = reinterpret_cast<Stmt*>(E); }
1313
1314  SourceLocation getReturnLoc() const { return RetLoc; }
1315  void setReturnLoc(SourceLocation L) { RetLoc = L; }
1316
1317  /// \brief Retrieve the variable that might be used for the named return
1318  /// value optimization.
1319  ///
1320  /// The optimization itself can only be performed if the variable is
1321  /// also marked as an NRVO object.
1322  const VarDecl *getNRVOCandidate() const { return NRVOCandidate; }
1323  void setNRVOCandidate(const VarDecl *Var) { NRVOCandidate = Var; }
1324
1325  SourceRange getSourceRange() const LLVM_READONLY;
1326
1327  static bool classof(const Stmt *T) {
1328    return T->getStmtClass() == ReturnStmtClass;
1329  }
1330
1331  // Iterators
1332  child_range children() {
1333    if (RetExpr) return child_range(&RetExpr, &RetExpr+1);
1334    return child_range();
1335  }
1336};
1337
1338/// AsmStmt is the base class for GCCAsmStmt and MSAsmStmt.
1339///
1340class AsmStmt : public Stmt {
1341protected:
1342  SourceLocation AsmLoc;
1343  /// \brief True if the assembly statement does not have any input or output
1344  /// operands.
1345  bool IsSimple;
1346
1347  /// \brief If true, treat this inline assembly as having side effects.
1348  /// This assembly statement should not be optimized, deleted or moved.
1349  bool IsVolatile;
1350
1351  unsigned NumOutputs;
1352  unsigned NumInputs;
1353  unsigned NumClobbers;
1354
1355  IdentifierInfo **Names;
1356  Stmt **Exprs;
1357
1358  AsmStmt(StmtClass SC, SourceLocation asmloc, bool issimple, bool isvolatile,
1359          unsigned numoutputs, unsigned numinputs, unsigned numclobbers) :
1360    Stmt (SC), AsmLoc(asmloc), IsSimple(issimple), IsVolatile(isvolatile),
1361    NumOutputs(numoutputs), NumInputs(numinputs), NumClobbers(numclobbers) { }
1362
1363public:
1364  /// \brief Build an empty inline-assembly statement.
1365  explicit AsmStmt(StmtClass SC, EmptyShell Empty) :
1366    Stmt(SC, Empty), Names(0), Exprs(0) { }
1367
1368  SourceLocation getAsmLoc() const { return AsmLoc; }
1369  void setAsmLoc(SourceLocation L) { AsmLoc = L; }
1370
1371  bool isSimple() const { return IsSimple; }
1372  void setSimple(bool V) { IsSimple = V; }
1373
1374  bool isVolatile() const { return IsVolatile; }
1375  void setVolatile(bool V) { IsVolatile = V; }
1376
1377  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(); }
1378
1379  //===--- Asm String Analysis ---===//
1380
1381  /// Assemble final IR asm string.
1382  std::string generateAsmString(ASTContext &C) const;
1383
1384  //===--- Output operands ---===//
1385
1386  unsigned getNumOutputs() const { return NumOutputs; }
1387
1388  IdentifierInfo *getOutputIdentifier(unsigned i) const {
1389    return Names[i];
1390  }
1391
1392  StringRef getOutputName(unsigned i) const {
1393    if (IdentifierInfo *II = getOutputIdentifier(i))
1394      return II->getName();
1395
1396    return StringRef();
1397  }
1398
1399  /// getOutputConstraint - Return the constraint string for the specified
1400  /// output operand.  All output constraints are known to be non-empty (either
1401  /// '=' or '+').
1402  StringRef getOutputConstraint(unsigned i) const;
1403
1404  /// isOutputPlusConstraint - Return true if the specified output constraint
1405  /// is a "+" constraint (which is both an input and an output) or false if it
1406  /// is an "=" constraint (just an output).
1407  bool isOutputPlusConstraint(unsigned i) const {
1408    return getOutputConstraint(i)[0] == '+';
1409  }
1410
1411  const Expr *getOutputExpr(unsigned i) const;
1412
1413  /// getNumPlusOperands - Return the number of output operands that have a "+"
1414  /// constraint.
1415  unsigned getNumPlusOperands() const;
1416
1417  //===--- Input operands ---===//
1418
1419  unsigned getNumInputs() const { return NumInputs; }
1420
1421  IdentifierInfo *getInputIdentifier(unsigned i) const {
1422    return Names[i + NumOutputs];
1423  }
1424
1425  StringRef getInputName(unsigned i) const {
1426    if (IdentifierInfo *II = getInputIdentifier(i))
1427      return II->getName();
1428
1429    return StringRef();
1430  }
1431
1432  /// getInputConstraint - Return the specified input constraint.  Unlike output
1433  /// constraints, these can be empty.
1434  StringRef getInputConstraint(unsigned i) const;
1435
1436  const Expr *getInputExpr(unsigned i) const;
1437
1438  //===--- Other ---===//
1439
1440  unsigned getNumClobbers() const { return NumClobbers; }
1441  StringRef getClobber(unsigned i) const;
1442
1443  static bool classof(const Stmt *T) {
1444    return T->getStmtClass() == GCCAsmStmtClass ||
1445      T->getStmtClass() == MSAsmStmtClass;
1446  }
1447
1448  // Input expr iterators.
1449
1450  typedef ExprIterator inputs_iterator;
1451  typedef ConstExprIterator const_inputs_iterator;
1452
1453  inputs_iterator begin_inputs() {
1454    return &Exprs[0] + NumOutputs;
1455  }
1456
1457  inputs_iterator end_inputs() {
1458    return &Exprs[0] + NumOutputs + NumInputs;
1459  }
1460
1461  const_inputs_iterator begin_inputs() const {
1462    return &Exprs[0] + NumOutputs;
1463  }
1464
1465  const_inputs_iterator end_inputs() const {
1466    return &Exprs[0] + NumOutputs + NumInputs;
1467  }
1468
1469  // Output expr iterators.
1470
1471  typedef ExprIterator outputs_iterator;
1472  typedef ConstExprIterator const_outputs_iterator;
1473
1474  outputs_iterator begin_outputs() {
1475    return &Exprs[0];
1476  }
1477  outputs_iterator end_outputs() {
1478    return &Exprs[0] + NumOutputs;
1479  }
1480
1481  const_outputs_iterator begin_outputs() const {
1482    return &Exprs[0];
1483  }
1484  const_outputs_iterator end_outputs() const {
1485    return &Exprs[0] + NumOutputs;
1486  }
1487
1488  child_range children() {
1489    return child_range(&Exprs[0], &Exprs[0] + NumOutputs + NumInputs);
1490  }
1491};
1492
1493/// This represents a GCC inline-assembly statement extension.
1494///
1495class GCCAsmStmt : public AsmStmt {
1496  SourceLocation RParenLoc;
1497  StringLiteral *AsmStr;
1498
1499  // FIXME: If we wanted to, we could allocate all of these in one big array.
1500  StringLiteral **Constraints;
1501  StringLiteral **Clobbers;
1502
1503public:
1504  GCCAsmStmt(ASTContext &C, SourceLocation asmloc, bool issimple,
1505             bool isvolatile, unsigned numoutputs, unsigned numinputs,
1506             IdentifierInfo **names, StringLiteral **constraints, Expr **exprs,
1507             StringLiteral *asmstr, unsigned numclobbers,
1508             StringLiteral **clobbers, SourceLocation rparenloc);
1509
1510  /// \brief Build an empty inline-assembly statement.
1511  explicit GCCAsmStmt(EmptyShell Empty) : AsmStmt(GCCAsmStmtClass, Empty),
1512    Constraints(0), Clobbers(0) { }
1513
1514  SourceLocation getRParenLoc() const { return RParenLoc; }
1515  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1516
1517  //===--- Asm String Analysis ---===//
1518
1519  const StringLiteral *getAsmString() const { return AsmStr; }
1520  StringLiteral *getAsmString() { return AsmStr; }
1521  void setAsmString(StringLiteral *E) { AsmStr = E; }
1522
1523  /// AsmStringPiece - this is part of a decomposed asm string specification
1524  /// (for use with the AnalyzeAsmString function below).  An asm string is
1525  /// considered to be a concatenation of these parts.
1526  class AsmStringPiece {
1527  public:
1528    enum Kind {
1529      String,  // String in .ll asm string form, "$" -> "$$" and "%%" -> "%".
1530      Operand  // Operand reference, with optional modifier %c4.
1531    };
1532  private:
1533    Kind MyKind;
1534    std::string Str;
1535    unsigned OperandNo;
1536  public:
1537    AsmStringPiece(const std::string &S) : MyKind(String), Str(S) {}
1538    AsmStringPiece(unsigned OpNo, char Modifier)
1539      : MyKind(Operand), Str(), OperandNo(OpNo) {
1540      Str += Modifier;
1541    }
1542
1543    bool isString() const { return MyKind == String; }
1544    bool isOperand() const { return MyKind == Operand; }
1545
1546    const std::string &getString() const {
1547      assert(isString());
1548      return Str;
1549    }
1550
1551    unsigned getOperandNo() const {
1552      assert(isOperand());
1553      return OperandNo;
1554    }
1555
1556    /// getModifier - Get the modifier for this operand, if present.  This
1557    /// returns '\0' if there was no modifier.
1558    char getModifier() const {
1559      assert(isOperand());
1560      return Str[0];
1561    }
1562  };
1563
1564  /// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing
1565  /// it into pieces.  If the asm string is erroneous, emit errors and return
1566  /// true, otherwise return false.  This handles canonicalization and
1567  /// translation of strings from GCC syntax to LLVM IR syntax, and handles
1568  //// flattening of named references like %[foo] to Operand AsmStringPiece's.
1569  unsigned AnalyzeAsmString(SmallVectorImpl<AsmStringPiece> &Pieces,
1570                            ASTContext &C, unsigned &DiagOffs) const;
1571
1572  /// Assemble final IR asm string.
1573  std::string generateAsmString(ASTContext &C) const;
1574
1575  //===--- Output operands ---===//
1576
1577  StringRef getOutputConstraint(unsigned i) const;
1578
1579  const StringLiteral *getOutputConstraintLiteral(unsigned i) const {
1580    return Constraints[i];
1581  }
1582  StringLiteral *getOutputConstraintLiteral(unsigned i) {
1583    return Constraints[i];
1584  }
1585
1586  Expr *getOutputExpr(unsigned i);
1587
1588  const Expr *getOutputExpr(unsigned i) const {
1589    return const_cast<GCCAsmStmt*>(this)->getOutputExpr(i);
1590  }
1591
1592  //===--- Input operands ---===//
1593
1594  StringRef getInputConstraint(unsigned i) const;
1595
1596  const StringLiteral *getInputConstraintLiteral(unsigned i) const {
1597    return Constraints[i + NumOutputs];
1598  }
1599  StringLiteral *getInputConstraintLiteral(unsigned i) {
1600    return Constraints[i + NumOutputs];
1601  }
1602
1603  Expr *getInputExpr(unsigned i);
1604  void setInputExpr(unsigned i, Expr *E);
1605
1606  const Expr *getInputExpr(unsigned i) const {
1607    return const_cast<GCCAsmStmt*>(this)->getInputExpr(i);
1608  }
1609
1610  void setOutputsAndInputsAndClobbers(ASTContext &C,
1611                                      IdentifierInfo **Names,
1612                                      StringLiteral **Constraints,
1613                                      Stmt **Exprs,
1614                                      unsigned NumOutputs,
1615                                      unsigned NumInputs,
1616                                      StringLiteral **Clobbers,
1617                                      unsigned NumClobbers);
1618
1619  //===--- Other ---===//
1620
1621  /// getNamedOperand - Given a symbolic operand reference like %[foo],
1622  /// translate this into a numeric value needed to reference the same operand.
1623  /// This returns -1 if the operand name is invalid.
1624  int getNamedOperand(StringRef SymbolicName) const;
1625
1626  StringRef getClobber(unsigned i) const;
1627  StringLiteral *getClobberStringLiteral(unsigned i) { return Clobbers[i]; }
1628  const StringLiteral *getClobberStringLiteral(unsigned i) const {
1629    return Clobbers[i];
1630  }
1631
1632  SourceRange getSourceRange() const LLVM_READONLY {
1633    return SourceRange(AsmLoc, RParenLoc);
1634  }
1635
1636  static bool classof(const Stmt *T) {
1637    return T->getStmtClass() == GCCAsmStmtClass;
1638  }
1639};
1640
1641/// This represents a Microsoft inline-assembly statement extension.
1642///
1643class MSAsmStmt : public AsmStmt {
1644  SourceLocation AsmLoc, LBraceLoc, EndLoc;
1645  std::string AsmStr;
1646
1647  unsigned NumAsmToks;
1648
1649  Token *AsmToks;
1650  StringRef *Constraints;
1651  StringRef *Clobbers;
1652
1653public:
1654  MSAsmStmt(ASTContext &C, SourceLocation asmloc, SourceLocation lbraceloc,
1655            bool issimple, bool isvolatile, ArrayRef<Token> asmtoks,
1656            unsigned numoutputs, unsigned numinputs,
1657            ArrayRef<IdentifierInfo*> names, ArrayRef<StringRef> constraints,
1658            ArrayRef<Expr*> exprs, StringRef asmstr,
1659            ArrayRef<StringRef> clobbers, SourceLocation endloc);
1660
1661  /// \brief Build an empty MS-style inline-assembly statement.
1662  explicit MSAsmStmt(EmptyShell Empty) : AsmStmt(MSAsmStmtClass, Empty),
1663    NumAsmToks(0), AsmToks(0), Constraints(0), Clobbers(0) { }
1664
1665  SourceLocation getLBraceLoc() const { return LBraceLoc; }
1666  void setLBraceLoc(SourceLocation L) { LBraceLoc = L; }
1667  SourceLocation getEndLoc() const { return EndLoc; }
1668  void setEndLoc(SourceLocation L) { EndLoc = L; }
1669
1670  bool hasBraces() const { return LBraceLoc.isValid(); }
1671
1672  unsigned getNumAsmToks() { return NumAsmToks; }
1673  Token *getAsmToks() { return AsmToks; }
1674
1675  //===--- Asm String Analysis ---===//
1676
1677  const std::string *getAsmString() const { return &AsmStr; }
1678  std::string *getAsmString() { return &AsmStr; }
1679  void setAsmString(StringRef &E) { AsmStr = E.str(); }
1680
1681  /// Assemble final IR asm string.
1682  std::string generateAsmString(ASTContext &C) const;
1683
1684  //===--- Output operands ---===//
1685
1686  StringRef getOutputConstraint(unsigned i) const {
1687    return Constraints[i];
1688  }
1689
1690  Expr *getOutputExpr(unsigned i);
1691
1692  const Expr *getOutputExpr(unsigned i) const {
1693    return const_cast<MSAsmStmt*>(this)->getOutputExpr(i);
1694  }
1695
1696  //===--- Input operands ---===//
1697
1698  StringRef getInputConstraint(unsigned i) const {
1699    return Constraints[i + NumOutputs];
1700  }
1701
1702  Expr *getInputExpr(unsigned i);
1703  void setInputExpr(unsigned i, Expr *E);
1704
1705  const Expr *getInputExpr(unsigned i) const {
1706    return const_cast<MSAsmStmt*>(this)->getInputExpr(i);
1707  }
1708
1709  //===--- Other ---===//
1710
1711  StringRef getClobber(unsigned i) const { return Clobbers[i]; }
1712
1713  SourceRange getSourceRange() const LLVM_READONLY {
1714    return SourceRange(AsmLoc, EndLoc);
1715  }
1716  static bool classof(const Stmt *T) {
1717    return T->getStmtClass() == MSAsmStmtClass;
1718  }
1719
1720  child_range children() {
1721    return child_range(&Exprs[0], &Exprs[0]);
1722  }
1723};
1724
1725class SEHExceptStmt : public Stmt {
1726  SourceLocation  Loc;
1727  Stmt           *Children[2];
1728
1729  enum { FILTER_EXPR, BLOCK };
1730
1731  SEHExceptStmt(SourceLocation Loc,
1732                Expr *FilterExpr,
1733                Stmt *Block);
1734
1735  friend class ASTReader;
1736  friend class ASTStmtReader;
1737  explicit SEHExceptStmt(EmptyShell E) : Stmt(SEHExceptStmtClass, E) { }
1738
1739public:
1740  static SEHExceptStmt* Create(ASTContext &C,
1741                               SourceLocation ExceptLoc,
1742                               Expr *FilterExpr,
1743                               Stmt *Block);
1744  SourceRange getSourceRange() const LLVM_READONLY {
1745    return SourceRange(getExceptLoc(), getEndLoc());
1746  }
1747
1748  SourceLocation getExceptLoc() const { return Loc; }
1749  SourceLocation getEndLoc() const { return getBlock()->getLocEnd(); }
1750
1751  Expr *getFilterExpr() const {
1752    return reinterpret_cast<Expr*>(Children[FILTER_EXPR]);
1753  }
1754
1755  CompoundStmt *getBlock() const {
1756    return llvm::cast<CompoundStmt>(Children[BLOCK]);
1757  }
1758
1759  child_range children() {
1760    return child_range(Children,Children+2);
1761  }
1762
1763  static bool classof(const Stmt *T) {
1764    return T->getStmtClass() == SEHExceptStmtClass;
1765  }
1766
1767};
1768
1769class SEHFinallyStmt : public Stmt {
1770  SourceLocation  Loc;
1771  Stmt           *Block;
1772
1773  SEHFinallyStmt(SourceLocation Loc,
1774                 Stmt *Block);
1775
1776  friend class ASTReader;
1777  friend class ASTStmtReader;
1778  explicit SEHFinallyStmt(EmptyShell E) : Stmt(SEHFinallyStmtClass, E) { }
1779
1780public:
1781  static SEHFinallyStmt* Create(ASTContext &C,
1782                                SourceLocation FinallyLoc,
1783                                Stmt *Block);
1784
1785  SourceRange getSourceRange() const LLVM_READONLY {
1786    return SourceRange(getFinallyLoc(), getEndLoc());
1787  }
1788
1789  SourceLocation getFinallyLoc() const { return Loc; }
1790  SourceLocation getEndLoc() const { return Block->getLocEnd(); }
1791
1792  CompoundStmt *getBlock() const { return llvm::cast<CompoundStmt>(Block); }
1793
1794  child_range children() {
1795    return child_range(&Block,&Block+1);
1796  }
1797
1798  static bool classof(const Stmt *T) {
1799    return T->getStmtClass() == SEHFinallyStmtClass;
1800  }
1801
1802};
1803
1804class SEHTryStmt : public Stmt {
1805  bool            IsCXXTry;
1806  SourceLocation  TryLoc;
1807  Stmt           *Children[2];
1808
1809  enum { TRY = 0, HANDLER = 1 };
1810
1811  SEHTryStmt(bool isCXXTry, // true if 'try' otherwise '__try'
1812             SourceLocation TryLoc,
1813             Stmt *TryBlock,
1814             Stmt *Handler);
1815
1816  friend class ASTReader;
1817  friend class ASTStmtReader;
1818  explicit SEHTryStmt(EmptyShell E) : Stmt(SEHTryStmtClass, E) { }
1819
1820public:
1821  static SEHTryStmt* Create(ASTContext &C,
1822                            bool isCXXTry,
1823                            SourceLocation TryLoc,
1824                            Stmt *TryBlock,
1825                            Stmt *Handler);
1826
1827  SourceRange getSourceRange() const LLVM_READONLY {
1828    return SourceRange(getTryLoc(), getEndLoc());
1829  }
1830
1831  SourceLocation getTryLoc() const { return TryLoc; }
1832  SourceLocation getEndLoc() const { return Children[HANDLER]->getLocEnd(); }
1833
1834  bool getIsCXXTry() const { return IsCXXTry; }
1835
1836  CompoundStmt* getTryBlock() const {
1837    return llvm::cast<CompoundStmt>(Children[TRY]);
1838  }
1839
1840  Stmt *getHandler() const { return Children[HANDLER]; }
1841
1842  /// Returns 0 if not defined
1843  SEHExceptStmt  *getExceptHandler() const;
1844  SEHFinallyStmt *getFinallyHandler() const;
1845
1846  child_range children() {
1847    return child_range(Children,Children+2);
1848  }
1849
1850  static bool classof(const Stmt *T) {
1851    return T->getStmtClass() == SEHTryStmtClass;
1852  }
1853};
1854
1855}  // end namespace clang
1856
1857#endif
1858