Type.h revision 152f6b7be508fbc61543f3736ebd390d7ac84bd1
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/ExceptionSpecificationType.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/Linkage.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Basic/Visibility.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/TemplateName.h"
25#include "llvm/Support/type_traits.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32#include "clang/Basic/LLVM.h"
33
34namespace clang {
35  enum {
36    TypeAlignmentInBits = 4,
37    TypeAlignment = 1 << TypeAlignmentInBits
38  };
39  class Type;
40  class ExtQuals;
41  class QualType;
42}
43
44namespace llvm {
45  template <typename T>
46  class PointerLikeTypeTraits;
47  template<>
48  class PointerLikeTypeTraits< ::clang::Type*> {
49  public:
50    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
51    static inline ::clang::Type *getFromVoidPointer(void *P) {
52      return static_cast< ::clang::Type*>(P);
53    }
54    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
55  };
56  template<>
57  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
58  public:
59    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
60    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
61      return static_cast< ::clang::ExtQuals*>(P);
62    }
63    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
64  };
65
66  template <>
67  struct isPodLike<clang::QualType> { static const bool value = true; };
68}
69
70namespace clang {
71  class ASTContext;
72  class TypedefNameDecl;
73  class TemplateDecl;
74  class TemplateTypeParmDecl;
75  class NonTypeTemplateParmDecl;
76  class TemplateTemplateParmDecl;
77  class TagDecl;
78  class RecordDecl;
79  class CXXRecordDecl;
80  class EnumDecl;
81  class FieldDecl;
82  class FunctionDecl;
83  class ObjCInterfaceDecl;
84  class ObjCProtocolDecl;
85  class ObjCMethodDecl;
86  class UnresolvedUsingTypenameDecl;
87  class Expr;
88  class Stmt;
89  class SourceLocation;
90  class StmtIteratorBase;
91  class TemplateArgument;
92  class TemplateArgumentLoc;
93  class TemplateArgumentListInfo;
94  class ElaboratedType;
95  class ExtQuals;
96  class ExtQualsTypeCommonBase;
97  struct PrintingPolicy;
98
99  template <typename> class CanQual;
100  typedef CanQual<Type> CanQualType;
101
102  // Provide forward declarations for all of the *Type classes
103#define TYPE(Class, Base) class Class##Type;
104#include "clang/AST/TypeNodes.def"
105
106/// Qualifiers - The collection of all-type qualifiers we support.
107/// Clang supports five independent qualifiers:
108/// * C99: const, volatile, and restrict
109/// * Embedded C (TR18037): address spaces
110/// * Objective C: the GC attributes (none, weak, or strong)
111class Qualifiers {
112public:
113  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
114    Const    = 0x1,
115    Restrict = 0x2,
116    Volatile = 0x4,
117    CVRMask = Const | Volatile | Restrict
118  };
119
120  enum GC {
121    GCNone = 0,
122    Weak,
123    Strong
124  };
125
126  enum ObjCLifetime {
127    /// There is no lifetime qualification on this type.
128    OCL_None,
129
130    /// This object can be modified without requiring retains or
131    /// releases.
132    OCL_ExplicitNone,
133
134    /// Assigning into this object requires the old value to be
135    /// released and the new value to be retained.  The timing of the
136    /// release of the old value is inexact: it may be moved to
137    /// immediately after the last known point where the value is
138    /// live.
139    OCL_Strong,
140
141    /// Reading or writing from this object requires a barrier call.
142    OCL_Weak,
143
144    /// Assigning into this object requires a lifetime extension.
145    OCL_Autoreleasing
146  };
147
148  enum {
149    /// The maximum supported address space number.
150    /// 24 bits should be enough for anyone.
151    MaxAddressSpace = 0xffffffu,
152
153    /// The width of the "fast" qualifier mask.
154    FastWidth = 3,
155
156    /// The fast qualifier mask.
157    FastMask = (1 << FastWidth) - 1
158  };
159
160  Qualifiers() : Mask(0) {}
161
162  static Qualifiers fromFastMask(unsigned Mask) {
163    Qualifiers Qs;
164    Qs.addFastQualifiers(Mask);
165    return Qs;
166  }
167
168  static Qualifiers fromCVRMask(unsigned CVR) {
169    Qualifiers Qs;
170    Qs.addCVRQualifiers(CVR);
171    return Qs;
172  }
173
174  // Deserialize qualifiers from an opaque representation.
175  static Qualifiers fromOpaqueValue(unsigned opaque) {
176    Qualifiers Qs;
177    Qs.Mask = opaque;
178    return Qs;
179  }
180
181  // Serialize these qualifiers into an opaque representation.
182  unsigned getAsOpaqueValue() const {
183    return Mask;
184  }
185
186  bool hasConst() const { return Mask & Const; }
187  void setConst(bool flag) {
188    Mask = (Mask & ~Const) | (flag ? Const : 0);
189  }
190  void removeConst() { Mask &= ~Const; }
191  void addConst() { Mask |= Const; }
192
193  bool hasVolatile() const { return Mask & Volatile; }
194  void setVolatile(bool flag) {
195    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
196  }
197  void removeVolatile() { Mask &= ~Volatile; }
198  void addVolatile() { Mask |= Volatile; }
199
200  bool hasRestrict() const { return Mask & Restrict; }
201  void setRestrict(bool flag) {
202    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
203  }
204  void removeRestrict() { Mask &= ~Restrict; }
205  void addRestrict() { Mask |= Restrict; }
206
207  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
208  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
209  void setCVRQualifiers(unsigned mask) {
210    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
211    Mask = (Mask & ~CVRMask) | mask;
212  }
213  void removeCVRQualifiers(unsigned mask) {
214    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
215    Mask &= ~mask;
216  }
217  void removeCVRQualifiers() {
218    removeCVRQualifiers(CVRMask);
219  }
220  void addCVRQualifiers(unsigned mask) {
221    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
222    Mask |= mask;
223  }
224
225  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
226  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
227  void setObjCGCAttr(GC type) {
228    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
229  }
230  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
231  void addObjCGCAttr(GC type) {
232    assert(type);
233    setObjCGCAttr(type);
234  }
235  Qualifiers withoutObjCGCAttr() const {
236    Qualifiers qs = *this;
237    qs.removeObjCGCAttr();
238    return qs;
239  }
240  Qualifiers withoutObjCLifetime() const {
241    Qualifiers qs = *this;
242    qs.removeObjCLifetime();
243    return qs;
244  }
245
246  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
247  ObjCLifetime getObjCLifetime() const {
248    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
249  }
250  void setObjCLifetime(ObjCLifetime type) {
251    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
252  }
253  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
254  void addObjCLifetime(ObjCLifetime type) {
255    assert(type);
256    assert(!hasObjCLifetime());
257    Mask |= (type << LifetimeShift);
258  }
259
260  /// True if the lifetime is neither None or ExplicitNone.
261  bool hasNonTrivialObjCLifetime() const {
262    ObjCLifetime lifetime = getObjCLifetime();
263    return (lifetime > OCL_ExplicitNone);
264  }
265
266  /// True if the lifetime is either strong or weak.
267  bool hasStrongOrWeakObjCLifetime() const {
268    ObjCLifetime lifetime = getObjCLifetime();
269    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
270  }
271
272  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
273  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
274  void setAddressSpace(unsigned space) {
275    assert(space <= MaxAddressSpace);
276    Mask = (Mask & ~AddressSpaceMask)
277         | (((uint32_t) space) << AddressSpaceShift);
278  }
279  void removeAddressSpace() { setAddressSpace(0); }
280  void addAddressSpace(unsigned space) {
281    assert(space);
282    setAddressSpace(space);
283  }
284
285  // Fast qualifiers are those that can be allocated directly
286  // on a QualType object.
287  bool hasFastQualifiers() const { return getFastQualifiers(); }
288  unsigned getFastQualifiers() const { return Mask & FastMask; }
289  void setFastQualifiers(unsigned mask) {
290    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
291    Mask = (Mask & ~FastMask) | mask;
292  }
293  void removeFastQualifiers(unsigned mask) {
294    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
295    Mask &= ~mask;
296  }
297  void removeFastQualifiers() {
298    removeFastQualifiers(FastMask);
299  }
300  void addFastQualifiers(unsigned mask) {
301    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
302    Mask |= mask;
303  }
304
305  /// hasNonFastQualifiers - Return true if the set contains any
306  /// qualifiers which require an ExtQuals node to be allocated.
307  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
308  Qualifiers getNonFastQualifiers() const {
309    Qualifiers Quals = *this;
310    Quals.setFastQualifiers(0);
311    return Quals;
312  }
313
314  /// hasQualifiers - Return true if the set contains any qualifiers.
315  bool hasQualifiers() const { return Mask; }
316  bool empty() const { return !Mask; }
317
318  /// \brief Add the qualifiers from the given set to this set.
319  void addQualifiers(Qualifiers Q) {
320    // If the other set doesn't have any non-boolean qualifiers, just
321    // bit-or it in.
322    if (!(Q.Mask & ~CVRMask))
323      Mask |= Q.Mask;
324    else {
325      Mask |= (Q.Mask & CVRMask);
326      if (Q.hasAddressSpace())
327        addAddressSpace(Q.getAddressSpace());
328      if (Q.hasObjCGCAttr())
329        addObjCGCAttr(Q.getObjCGCAttr());
330      if (Q.hasObjCLifetime())
331        addObjCLifetime(Q.getObjCLifetime());
332    }
333  }
334
335  /// \brief Add the qualifiers from the given set to this set, given that
336  /// they don't conflict.
337  void addConsistentQualifiers(Qualifiers qs) {
338    assert(getAddressSpace() == qs.getAddressSpace() ||
339           !hasAddressSpace() || !qs.hasAddressSpace());
340    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
341           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
342    assert(getObjCLifetime() == qs.getObjCLifetime() ||
343           !hasObjCLifetime() || !qs.hasObjCLifetime());
344    Mask |= qs.Mask;
345  }
346
347  /// \brief Determines if these qualifiers compatibly include another set.
348  /// Generally this answers the question of whether an object with the other
349  /// qualifiers can be safely used as an object with these qualifiers.
350  bool compatiblyIncludes(Qualifiers other) const {
351    return
352      // Address spaces must match exactly.
353      getAddressSpace() == other.getAddressSpace() &&
354      // ObjC GC qualifiers can match, be added, or be removed, but can't be
355      // changed.
356      (getObjCGCAttr() == other.getObjCGCAttr() ||
357       !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
358      // ObjC lifetime qualifiers must match exactly.
359      getObjCLifetime() == other.getObjCLifetime() &&
360      // CVR qualifiers may subset.
361      (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
362  }
363
364  /// \brief Determines if these qualifiers compatibly include another set of
365  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
366  ///
367  /// One set of Objective-C lifetime qualifiers compatibly includes the other
368  /// if the lifetime qualifiers match, or if both are non-__weak and the
369  /// including set also contains the 'const' qualifier.
370  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
371    if (getObjCLifetime() == other.getObjCLifetime())
372      return true;
373
374    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
375      return false;
376
377    return hasConst();
378  }
379
380  bool isSupersetOf(Qualifiers Other) const;
381
382  /// \brief Determine whether this set of qualifiers is a strict superset of
383  /// another set of qualifiers, not considering qualifier compatibility.
384  bool isStrictSupersetOf(Qualifiers Other) const;
385
386  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
387  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
388
389  operator bool() const { return hasQualifiers(); }
390
391  Qualifiers &operator+=(Qualifiers R) {
392    addQualifiers(R);
393    return *this;
394  }
395
396  // Union two qualifier sets.  If an enumerated qualifier appears
397  // in both sets, use the one from the right.
398  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
399    L += R;
400    return L;
401  }
402
403  Qualifiers &operator-=(Qualifiers R) {
404    Mask = Mask & ~(R.Mask);
405    return *this;
406  }
407
408  /// \brief Compute the difference between two qualifier sets.
409  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
410    L -= R;
411    return L;
412  }
413
414  std::string getAsString() const;
415  std::string getAsString(const PrintingPolicy &Policy) const {
416    std::string Buffer;
417    getAsStringInternal(Buffer, Policy);
418    return Buffer;
419  }
420  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
421
422  void Profile(llvm::FoldingSetNodeID &ID) const {
423    ID.AddInteger(Mask);
424  }
425
426private:
427
428  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
429  //           |C R V|GCAttr|Lifetime|AddressSpace|
430  uint32_t Mask;
431
432  static const uint32_t GCAttrMask = 0x18;
433  static const uint32_t GCAttrShift = 3;
434  static const uint32_t LifetimeMask = 0xE0;
435  static const uint32_t LifetimeShift = 5;
436  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
437  static const uint32_t AddressSpaceShift = 8;
438};
439
440/// CallingConv - Specifies the calling convention that a function uses.
441enum CallingConv {
442  CC_Default,
443  CC_C,           // __attribute__((cdecl))
444  CC_X86StdCall,  // __attribute__((stdcall))
445  CC_X86FastCall, // __attribute__((fastcall))
446  CC_X86ThisCall, // __attribute__((thiscall))
447  CC_X86Pascal,   // __attribute__((pascal))
448  CC_AAPCS,       // __attribute__((pcs("aapcs")))
449  CC_AAPCS_VFP    // __attribute__((pcs("aapcs-vfp")))
450};
451
452/// A std::pair-like structure for storing a qualified type split
453/// into its local qualifiers and its locally-unqualified type.
454struct SplitQualType {
455  /// The locally-unqualified type.
456  const Type *Ty;
457
458  /// The local qualifiers.
459  Qualifiers Quals;
460
461  SplitQualType() : Ty(0), Quals() {}
462  SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
463
464  SplitQualType getSingleStepDesugaredType() const; // end of this file
465
466  // Make llvm::tie work.
467  operator std::pair<const Type *,Qualifiers>() const {
468    return std::pair<const Type *,Qualifiers>(Ty, Quals);
469  }
470
471  friend bool operator==(SplitQualType a, SplitQualType b) {
472    return a.Ty == b.Ty && a.Quals == b.Quals;
473  }
474  friend bool operator!=(SplitQualType a, SplitQualType b) {
475    return a.Ty != b.Ty || a.Quals != b.Quals;
476  }
477};
478
479/// QualType - For efficiency, we don't store CV-qualified types as nodes on
480/// their own: instead each reference to a type stores the qualifiers.  This
481/// greatly reduces the number of nodes we need to allocate for types (for
482/// example we only need one for 'int', 'const int', 'volatile int',
483/// 'const volatile int', etc).
484///
485/// As an added efficiency bonus, instead of making this a pair, we
486/// just store the two bits we care about in the low bits of the
487/// pointer.  To handle the packing/unpacking, we make QualType be a
488/// simple wrapper class that acts like a smart pointer.  A third bit
489/// indicates whether there are extended qualifiers present, in which
490/// case the pointer points to a special structure.
491class QualType {
492  // Thankfully, these are efficiently composable.
493  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
494                       Qualifiers::FastWidth> Value;
495
496  const ExtQuals *getExtQualsUnsafe() const {
497    return Value.getPointer().get<const ExtQuals*>();
498  }
499
500  const Type *getTypePtrUnsafe() const {
501    return Value.getPointer().get<const Type*>();
502  }
503
504  const ExtQualsTypeCommonBase *getCommonPtr() const {
505    assert(!isNull() && "Cannot retrieve a NULL type pointer");
506    uintptr_t CommonPtrVal
507      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
508    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
509    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
510  }
511
512  friend class QualifierCollector;
513public:
514  QualType() {}
515
516  QualType(const Type *Ptr, unsigned Quals)
517    : Value(Ptr, Quals) {}
518  QualType(const ExtQuals *Ptr, unsigned Quals)
519    : Value(Ptr, Quals) {}
520
521  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
522  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
523
524  /// Retrieves a pointer to the underlying (unqualified) type.
525  /// This should really return a const Type, but it's not worth
526  /// changing all the users right now.
527  ///
528  /// This function requires that the type not be NULL. If the type might be
529  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
530  const Type *getTypePtr() const;
531
532  const Type *getTypePtrOrNull() const;
533
534  /// Retrieves a pointer to the name of the base type.
535  const IdentifierInfo *getBaseTypeIdentifier() const;
536
537  /// Divides a QualType into its unqualified type and a set of local
538  /// qualifiers.
539  SplitQualType split() const;
540
541  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
542  static QualType getFromOpaquePtr(const void *Ptr) {
543    QualType T;
544    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
545    return T;
546  }
547
548  const Type &operator*() const {
549    return *getTypePtr();
550  }
551
552  const Type *operator->() const {
553    return getTypePtr();
554  }
555
556  bool isCanonical() const;
557  bool isCanonicalAsParam() const;
558
559  /// isNull - Return true if this QualType doesn't point to a type yet.
560  bool isNull() const {
561    return Value.getPointer().isNull();
562  }
563
564  /// \brief Determine whether this particular QualType instance has the
565  /// "const" qualifier set, without looking through typedefs that may have
566  /// added "const" at a different level.
567  bool isLocalConstQualified() const {
568    return (getLocalFastQualifiers() & Qualifiers::Const);
569  }
570
571  /// \brief Determine whether this type is const-qualified.
572  bool isConstQualified() const;
573
574  /// \brief Determine whether this particular QualType instance has the
575  /// "restrict" qualifier set, without looking through typedefs that may have
576  /// added "restrict" at a different level.
577  bool isLocalRestrictQualified() const {
578    return (getLocalFastQualifiers() & Qualifiers::Restrict);
579  }
580
581  /// \brief Determine whether this type is restrict-qualified.
582  bool isRestrictQualified() const;
583
584  /// \brief Determine whether this particular QualType instance has the
585  /// "volatile" qualifier set, without looking through typedefs that may have
586  /// added "volatile" at a different level.
587  bool isLocalVolatileQualified() const {
588    return (getLocalFastQualifiers() & Qualifiers::Volatile);
589  }
590
591  /// \brief Determine whether this type is volatile-qualified.
592  bool isVolatileQualified() const;
593
594  /// \brief Determine whether this particular QualType instance has any
595  /// qualifiers, without looking through any typedefs that might add
596  /// qualifiers at a different level.
597  bool hasLocalQualifiers() const {
598    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
599  }
600
601  /// \brief Determine whether this type has any qualifiers.
602  bool hasQualifiers() const;
603
604  /// \brief Determine whether this particular QualType instance has any
605  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
606  /// instance.
607  bool hasLocalNonFastQualifiers() const {
608    return Value.getPointer().is<const ExtQuals*>();
609  }
610
611  /// \brief Retrieve the set of qualifiers local to this particular QualType
612  /// instance, not including any qualifiers acquired through typedefs or
613  /// other sugar.
614  Qualifiers getLocalQualifiers() const;
615
616  /// \brief Retrieve the set of qualifiers applied to this type.
617  Qualifiers getQualifiers() const;
618
619  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
620  /// local to this particular QualType instance, not including any qualifiers
621  /// acquired through typedefs or other sugar.
622  unsigned getLocalCVRQualifiers() const {
623    return getLocalFastQualifiers();
624  }
625
626  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
627  /// applied to this type.
628  unsigned getCVRQualifiers() const;
629
630  bool isConstant(ASTContext& Ctx) const {
631    return QualType::isConstant(*this, Ctx);
632  }
633
634  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
635  bool isPODType(ASTContext &Context) const;
636
637  /// isCXX98PODType() - Return true if this is a POD type according to the
638  /// rules of the C++98 standard, regardless of the current compilation's
639  /// language.
640  bool isCXX98PODType(ASTContext &Context) const;
641
642  /// isCXX11PODType() - Return true if this is a POD type according to the
643  /// more relaxed rules of the C++11 standard, regardless of the current
644  /// compilation's language.
645  /// (C++0x [basic.types]p9)
646  bool isCXX11PODType(ASTContext &Context) const;
647
648  /// isTrivialType - Return true if this is a trivial type
649  /// (C++0x [basic.types]p9)
650  bool isTrivialType(ASTContext &Context) const;
651
652  /// isTriviallyCopyableType - Return true if this is a trivially
653  /// copyable type (C++0x [basic.types]p9)
654  bool isTriviallyCopyableType(ASTContext &Context) const;
655
656  // Don't promise in the API that anything besides 'const' can be
657  // easily added.
658
659  /// addConst - add the specified type qualifier to this QualType.
660  void addConst() {
661    addFastQualifiers(Qualifiers::Const);
662  }
663  QualType withConst() const {
664    return withFastQualifiers(Qualifiers::Const);
665  }
666
667  /// addVolatile - add the specified type qualifier to this QualType.
668  void addVolatile() {
669    addFastQualifiers(Qualifiers::Volatile);
670  }
671  QualType withVolatile() const {
672    return withFastQualifiers(Qualifiers::Volatile);
673  }
674
675  /// Add the restrict qualifier to this QualType.
676  void addRestrict() {
677    addFastQualifiers(Qualifiers::Restrict);
678  }
679  QualType withRestrict() const {
680    return withFastQualifiers(Qualifiers::Restrict);
681  }
682
683  QualType withCVRQualifiers(unsigned CVR) const {
684    return withFastQualifiers(CVR);
685  }
686
687  void addFastQualifiers(unsigned TQs) {
688    assert(!(TQs & ~Qualifiers::FastMask)
689           && "non-fast qualifier bits set in mask!");
690    Value.setInt(Value.getInt() | TQs);
691  }
692
693  void removeLocalConst();
694  void removeLocalVolatile();
695  void removeLocalRestrict();
696  void removeLocalCVRQualifiers(unsigned Mask);
697
698  void removeLocalFastQualifiers() { Value.setInt(0); }
699  void removeLocalFastQualifiers(unsigned Mask) {
700    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
701    Value.setInt(Value.getInt() & ~Mask);
702  }
703
704  // Creates a type with the given qualifiers in addition to any
705  // qualifiers already on this type.
706  QualType withFastQualifiers(unsigned TQs) const {
707    QualType T = *this;
708    T.addFastQualifiers(TQs);
709    return T;
710  }
711
712  // Creates a type with exactly the given fast qualifiers, removing
713  // any existing fast qualifiers.
714  QualType withExactLocalFastQualifiers(unsigned TQs) const {
715    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
716  }
717
718  // Removes fast qualifiers, but leaves any extended qualifiers in place.
719  QualType withoutLocalFastQualifiers() const {
720    QualType T = *this;
721    T.removeLocalFastQualifiers();
722    return T;
723  }
724
725  QualType getCanonicalType() const;
726
727  /// \brief Return this type with all of the instance-specific qualifiers
728  /// removed, but without removing any qualifiers that may have been applied
729  /// through typedefs.
730  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
731
732  /// \brief Retrieve the unqualified variant of the given type,
733  /// removing as little sugar as possible.
734  ///
735  /// This routine looks through various kinds of sugar to find the
736  /// least-desugared type that is unqualified. For example, given:
737  ///
738  /// \code
739  /// typedef int Integer;
740  /// typedef const Integer CInteger;
741  /// typedef CInteger DifferenceType;
742  /// \endcode
743  ///
744  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
745  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
746  ///
747  /// The resulting type might still be qualified if it's an array
748  /// type.  To strip qualifiers even from within an array type, use
749  /// ASTContext::getUnqualifiedArrayType.
750  inline QualType getUnqualifiedType() const;
751
752  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
753  /// given type, removing as little sugar as possible.
754  ///
755  /// Like getUnqualifiedType(), but also returns the set of
756  /// qualifiers that were built up.
757  ///
758  /// The resulting type might still be qualified if it's an array
759  /// type.  To strip qualifiers even from within an array type, use
760  /// ASTContext::getUnqualifiedArrayType.
761  inline SplitQualType getSplitUnqualifiedType() const;
762
763  /// \brief Determine whether this type is more qualified than the other
764  /// given type, requiring exact equality for non-CVR qualifiers.
765  bool isMoreQualifiedThan(QualType Other) const;
766
767  /// \brief Determine whether this type is at least as qualified as the other
768  /// given type, requiring exact equality for non-CVR qualifiers.
769  bool isAtLeastAsQualifiedAs(QualType Other) const;
770
771  QualType getNonReferenceType() const;
772
773  /// \brief Determine the type of a (typically non-lvalue) expression with the
774  /// specified result type.
775  ///
776  /// This routine should be used for expressions for which the return type is
777  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
778  /// an lvalue. It removes a top-level reference (since there are no
779  /// expressions of reference type) and deletes top-level cvr-qualifiers
780  /// from non-class types (in C++) or all types (in C).
781  QualType getNonLValueExprType(ASTContext &Context) const;
782
783  /// getDesugaredType - Return the specified type with any "sugar" removed from
784  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
785  /// the type is already concrete, it returns it unmodified.  This is similar
786  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
787  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
788  /// concrete.
789  ///
790  /// Qualifiers are left in place.
791  QualType getDesugaredType(const ASTContext &Context) const {
792    return getDesugaredType(*this, Context);
793  }
794
795  SplitQualType getSplitDesugaredType() const {
796    return getSplitDesugaredType(*this);
797  }
798
799  /// \brief Return the specified type with one level of "sugar" removed from
800  /// the type.
801  ///
802  /// This routine takes off the first typedef, typeof, etc. If the outer level
803  /// of the type is already concrete, it returns it unmodified.
804  QualType getSingleStepDesugaredType(const ASTContext &Context) const {
805    return getSingleStepDesugaredTypeImpl(*this, Context);
806  }
807
808  /// IgnoreParens - Returns the specified type after dropping any
809  /// outer-level parentheses.
810  QualType IgnoreParens() const {
811    if (isa<ParenType>(*this))
812      return QualType::IgnoreParens(*this);
813    return *this;
814  }
815
816  /// operator==/!= - Indicate whether the specified types and qualifiers are
817  /// identical.
818  friend bool operator==(const QualType &LHS, const QualType &RHS) {
819    return LHS.Value == RHS.Value;
820  }
821  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
822    return LHS.Value != RHS.Value;
823  }
824  std::string getAsString() const {
825    return getAsString(split());
826  }
827  static std::string getAsString(SplitQualType split) {
828    return getAsString(split.Ty, split.Quals);
829  }
830  static std::string getAsString(const Type *ty, Qualifiers qs);
831
832  std::string getAsString(const PrintingPolicy &Policy) const {
833    std::string S;
834    getAsStringInternal(S, Policy);
835    return S;
836  }
837  void getAsStringInternal(std::string &Str,
838                           const PrintingPolicy &Policy) const {
839    return getAsStringInternal(split(), Str, Policy);
840  }
841  static void getAsStringInternal(SplitQualType split, std::string &out,
842                                  const PrintingPolicy &policy) {
843    return getAsStringInternal(split.Ty, split.Quals, out, policy);
844  }
845  static void getAsStringInternal(const Type *ty, Qualifiers qs,
846                                  std::string &out,
847                                  const PrintingPolicy &policy);
848
849  void dump(const char *s) const;
850  void dump() const;
851
852  void Profile(llvm::FoldingSetNodeID &ID) const {
853    ID.AddPointer(getAsOpaquePtr());
854  }
855
856  /// getAddressSpace - Return the address space of this type.
857  inline unsigned getAddressSpace() const;
858
859  /// getObjCGCAttr - Returns gc attribute of this type.
860  inline Qualifiers::GC getObjCGCAttr() const;
861
862  /// isObjCGCWeak true when Type is objc's weak.
863  bool isObjCGCWeak() const {
864    return getObjCGCAttr() == Qualifiers::Weak;
865  }
866
867  /// isObjCGCStrong true when Type is objc's strong.
868  bool isObjCGCStrong() const {
869    return getObjCGCAttr() == Qualifiers::Strong;
870  }
871
872  /// getObjCLifetime - Returns lifetime attribute of this type.
873  Qualifiers::ObjCLifetime getObjCLifetime() const {
874    return getQualifiers().getObjCLifetime();
875  }
876
877  bool hasNonTrivialObjCLifetime() const {
878    return getQualifiers().hasNonTrivialObjCLifetime();
879  }
880
881  bool hasStrongOrWeakObjCLifetime() const {
882    return getQualifiers().hasStrongOrWeakObjCLifetime();
883  }
884
885  enum DestructionKind {
886    DK_none,
887    DK_cxx_destructor,
888    DK_objc_strong_lifetime,
889    DK_objc_weak_lifetime
890  };
891
892  /// isDestructedType - nonzero if objects of this type require
893  /// non-trivial work to clean up after.  Non-zero because it's
894  /// conceivable that qualifiers (objc_gc(weak)?) could make
895  /// something require destruction.
896  DestructionKind isDestructedType() const {
897    return isDestructedTypeImpl(*this);
898  }
899
900  /// \brief Determine whether expressions of the given type are forbidden
901  /// from being lvalues in C.
902  ///
903  /// The expression types that are forbidden to be lvalues are:
904  ///   - 'void', but not qualified void
905  ///   - function types
906  ///
907  /// The exact rule here is C99 6.3.2.1:
908  ///   An lvalue is an expression with an object type or an incomplete
909  ///   type other than void.
910  bool isCForbiddenLValueType() const;
911
912  /// \brief Determine whether this type has trivial copy/move-assignment
913  ///        semantics.
914  bool hasTrivialAssignment(ASTContext &Context, bool Copying) const;
915
916private:
917  // These methods are implemented in a separate translation unit;
918  // "static"-ize them to avoid creating temporary QualTypes in the
919  // caller.
920  static bool isConstant(QualType T, ASTContext& Ctx);
921  static QualType getDesugaredType(QualType T, const ASTContext &Context);
922  static SplitQualType getSplitDesugaredType(QualType T);
923  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
924  static QualType getSingleStepDesugaredTypeImpl(QualType type,
925                                                 const ASTContext &C);
926  static QualType IgnoreParens(QualType T);
927  static DestructionKind isDestructedTypeImpl(QualType type);
928};
929
930} // end clang.
931
932namespace llvm {
933/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
934/// to a specific Type class.
935template<> struct simplify_type<const ::clang::QualType> {
936  typedef const ::clang::Type *SimpleType;
937  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
938    return Val.getTypePtr();
939  }
940};
941template<> struct simplify_type< ::clang::QualType>
942  : public simplify_type<const ::clang::QualType> {};
943
944// Teach SmallPtrSet that QualType is "basically a pointer".
945template<>
946class PointerLikeTypeTraits<clang::QualType> {
947public:
948  static inline void *getAsVoidPointer(clang::QualType P) {
949    return P.getAsOpaquePtr();
950  }
951  static inline clang::QualType getFromVoidPointer(void *P) {
952    return clang::QualType::getFromOpaquePtr(P);
953  }
954  // Various qualifiers go in low bits.
955  enum { NumLowBitsAvailable = 0 };
956};
957
958} // end namespace llvm
959
960namespace clang {
961
962/// \brief Base class that is common to both the \c ExtQuals and \c Type
963/// classes, which allows \c QualType to access the common fields between the
964/// two.
965///
966class ExtQualsTypeCommonBase {
967  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
968    : BaseType(baseType), CanonicalType(canon) {}
969
970  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
971  /// a self-referential pointer (for \c Type).
972  ///
973  /// This pointer allows an efficient mapping from a QualType to its
974  /// underlying type pointer.
975  const Type *const BaseType;
976
977  /// \brief The canonical type of this type.  A QualType.
978  QualType CanonicalType;
979
980  friend class QualType;
981  friend class Type;
982  friend class ExtQuals;
983};
984
985/// ExtQuals - We can encode up to four bits in the low bits of a
986/// type pointer, but there are many more type qualifiers that we want
987/// to be able to apply to an arbitrary type.  Therefore we have this
988/// struct, intended to be heap-allocated and used by QualType to
989/// store qualifiers.
990///
991/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
992/// in three low bits on the QualType pointer; a fourth bit records whether
993/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
994/// Objective-C GC attributes) are much more rare.
995class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
996  // NOTE: changing the fast qualifiers should be straightforward as
997  // long as you don't make 'const' non-fast.
998  // 1. Qualifiers:
999  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1000  //       Fast qualifiers must occupy the low-order bits.
1001  //    b) Update Qualifiers::FastWidth and FastMask.
1002  // 2. QualType:
1003  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
1004  //    b) Update remove{Volatile,Restrict}, defined near the end of
1005  //       this header.
1006  // 3. ASTContext:
1007  //    a) Update get{Volatile,Restrict}Type.
1008
1009  /// Quals - the immutable set of qualifiers applied by this
1010  /// node;  always contains extended qualifiers.
1011  Qualifiers Quals;
1012
1013  ExtQuals *this_() { return this; }
1014
1015public:
1016  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1017    : ExtQualsTypeCommonBase(baseType,
1018                             canon.isNull() ? QualType(this_(), 0) : canon),
1019      Quals(quals)
1020  {
1021    assert(Quals.hasNonFastQualifiers()
1022           && "ExtQuals created with no fast qualifiers");
1023    assert(!Quals.hasFastQualifiers()
1024           && "ExtQuals created with fast qualifiers");
1025  }
1026
1027  Qualifiers getQualifiers() const { return Quals; }
1028
1029  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1030  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1031
1032  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1033  Qualifiers::ObjCLifetime getObjCLifetime() const {
1034    return Quals.getObjCLifetime();
1035  }
1036
1037  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1038  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
1039
1040  const Type *getBaseType() const { return BaseType; }
1041
1042public:
1043  void Profile(llvm::FoldingSetNodeID &ID) const {
1044    Profile(ID, getBaseType(), Quals);
1045  }
1046  static void Profile(llvm::FoldingSetNodeID &ID,
1047                      const Type *BaseType,
1048                      Qualifiers Quals) {
1049    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1050    ID.AddPointer(BaseType);
1051    Quals.Profile(ID);
1052  }
1053};
1054
1055/// \brief The kind of C++0x ref-qualifier associated with a function type,
1056/// which determines whether a member function's "this" object can be an
1057/// lvalue, rvalue, or neither.
1058enum RefQualifierKind {
1059  /// \brief No ref-qualifier was provided.
1060  RQ_None = 0,
1061  /// \brief An lvalue ref-qualifier was provided (\c &).
1062  RQ_LValue,
1063  /// \brief An rvalue ref-qualifier was provided (\c &&).
1064  RQ_RValue
1065};
1066
1067/// Type - This is the base class of the type hierarchy.  A central concept
1068/// with types is that each type always has a canonical type.  A canonical type
1069/// is the type with any typedef names stripped out of it or the types it
1070/// references.  For example, consider:
1071///
1072///  typedef int  foo;
1073///  typedef foo* bar;
1074///    'int *'    'foo *'    'bar'
1075///
1076/// There will be a Type object created for 'int'.  Since int is canonical, its
1077/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
1078/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1079/// there is a PointerType that represents 'int*', which, like 'int', is
1080/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1081/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1082/// is also 'int*'.
1083///
1084/// Non-canonical types are useful for emitting diagnostics, without losing
1085/// information about typedefs being used.  Canonical types are useful for type
1086/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1087/// about whether something has a particular form (e.g. is a function type),
1088/// because they implicitly, recursively, strip all typedefs out of a type.
1089///
1090/// Types, once created, are immutable.
1091///
1092class Type : public ExtQualsTypeCommonBase {
1093public:
1094  enum TypeClass {
1095#define TYPE(Class, Base) Class,
1096#define LAST_TYPE(Class) TypeLast = Class,
1097#define ABSTRACT_TYPE(Class, Base)
1098#include "clang/AST/TypeNodes.def"
1099    TagFirst = Record, TagLast = Enum
1100  };
1101
1102private:
1103  Type(const Type&);           // DO NOT IMPLEMENT.
1104  void operator=(const Type&); // DO NOT IMPLEMENT.
1105
1106  /// Bitfields required by the Type class.
1107  class TypeBitfields {
1108    friend class Type;
1109    template <class T> friend class TypePropertyCache;
1110
1111    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1112    unsigned TC : 8;
1113
1114    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
1115    /// Note that this should stay at the end of the ivars for Type so that
1116    /// subclasses can pack their bitfields into the same word.
1117    unsigned Dependent : 1;
1118
1119    /// \brief Whether this type somehow involves a template parameter, even
1120    /// if the resolution of the type does not depend on a template parameter.
1121    unsigned InstantiationDependent : 1;
1122
1123    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1124    unsigned VariablyModified : 1;
1125
1126    /// \brief Whether this type contains an unexpanded parameter pack
1127    /// (for C++0x variadic templates).
1128    unsigned ContainsUnexpandedParameterPack : 1;
1129
1130    /// \brief Nonzero if the cache (i.e. the bitfields here starting
1131    /// with 'Cache') is valid.  If so, then this is a
1132    /// LangOptions::VisibilityMode+1.
1133    mutable unsigned CacheValidAndVisibility : 2;
1134
1135    /// \brief True if the visibility was set explicitly in the source code.
1136    mutable unsigned CachedExplicitVisibility : 1;
1137
1138    /// \brief Linkage of this type.
1139    mutable unsigned CachedLinkage : 2;
1140
1141    /// \brief Whether this type involves and local or unnamed types.
1142    mutable unsigned CachedLocalOrUnnamed : 1;
1143
1144    /// \brief FromAST - Whether this type comes from an AST file.
1145    mutable unsigned FromAST : 1;
1146
1147    bool isCacheValid() const {
1148      return (CacheValidAndVisibility != 0);
1149    }
1150    Visibility getVisibility() const {
1151      assert(isCacheValid() && "getting linkage from invalid cache");
1152      return static_cast<Visibility>(CacheValidAndVisibility-1);
1153    }
1154    bool isVisibilityExplicit() const {
1155      assert(isCacheValid() && "getting linkage from invalid cache");
1156      return CachedExplicitVisibility;
1157    }
1158    Linkage getLinkage() const {
1159      assert(isCacheValid() && "getting linkage from invalid cache");
1160      return static_cast<Linkage>(CachedLinkage);
1161    }
1162    bool hasLocalOrUnnamedType() const {
1163      assert(isCacheValid() && "getting linkage from invalid cache");
1164      return CachedLocalOrUnnamed;
1165    }
1166  };
1167  enum { NumTypeBits = 19 };
1168
1169protected:
1170  // These classes allow subclasses to somewhat cleanly pack bitfields
1171  // into Type.
1172
1173  class ArrayTypeBitfields {
1174    friend class ArrayType;
1175
1176    unsigned : NumTypeBits;
1177
1178    /// IndexTypeQuals - CVR qualifiers from declarations like
1179    /// 'int X[static restrict 4]'. For function parameters only.
1180    unsigned IndexTypeQuals : 3;
1181
1182    /// SizeModifier - storage class qualifiers from declarations like
1183    /// 'int X[static restrict 4]'. For function parameters only.
1184    /// Actually an ArrayType::ArraySizeModifier.
1185    unsigned SizeModifier : 3;
1186  };
1187
1188  class BuiltinTypeBitfields {
1189    friend class BuiltinType;
1190
1191    unsigned : NumTypeBits;
1192
1193    /// The kind (BuiltinType::Kind) of builtin type this is.
1194    unsigned Kind : 8;
1195  };
1196
1197  class FunctionTypeBitfields {
1198    friend class FunctionType;
1199
1200    unsigned : NumTypeBits;
1201
1202    /// Extra information which affects how the function is called, like
1203    /// regparm and the calling convention.
1204    unsigned ExtInfo : 8;
1205
1206    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1207    /// other bitfields.
1208    /// The qualifiers are part of FunctionProtoType because...
1209    ///
1210    /// C++ 8.3.5p4: The return type, the parameter type list and the
1211    /// cv-qualifier-seq, [...], are part of the function type.
1212    unsigned TypeQuals : 3;
1213
1214    /// \brief The ref-qualifier associated with a \c FunctionProtoType.
1215    ///
1216    /// This is a value of type \c RefQualifierKind.
1217    unsigned RefQualifier : 2;
1218  };
1219
1220  class ObjCObjectTypeBitfields {
1221    friend class ObjCObjectType;
1222
1223    unsigned : NumTypeBits;
1224
1225    /// NumProtocols - The number of protocols stored directly on this
1226    /// object type.
1227    unsigned NumProtocols : 32 - NumTypeBits;
1228  };
1229
1230  class ReferenceTypeBitfields {
1231    friend class ReferenceType;
1232
1233    unsigned : NumTypeBits;
1234
1235    /// True if the type was originally spelled with an lvalue sigil.
1236    /// This is never true of rvalue references but can also be false
1237    /// on lvalue references because of C++0x [dcl.typedef]p9,
1238    /// as follows:
1239    ///
1240    ///   typedef int &ref;    // lvalue, spelled lvalue
1241    ///   typedef int &&rvref; // rvalue
1242    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1243    ///   ref &&a;             // lvalue, inner ref
1244    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1245    ///   rvref &&a;           // rvalue, inner ref
1246    unsigned SpelledAsLValue : 1;
1247
1248    /// True if the inner type is a reference type.  This only happens
1249    /// in non-canonical forms.
1250    unsigned InnerRef : 1;
1251  };
1252
1253  class TypeWithKeywordBitfields {
1254    friend class TypeWithKeyword;
1255
1256    unsigned : NumTypeBits;
1257
1258    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1259    unsigned Keyword : 8;
1260  };
1261
1262  class VectorTypeBitfields {
1263    friend class VectorType;
1264
1265    unsigned : NumTypeBits;
1266
1267    /// VecKind - The kind of vector, either a generic vector type or some
1268    /// target-specific vector type such as for AltiVec or Neon.
1269    unsigned VecKind : 3;
1270
1271    /// NumElements - The number of elements in the vector.
1272    unsigned NumElements : 29 - NumTypeBits;
1273  };
1274
1275  class AttributedTypeBitfields {
1276    friend class AttributedType;
1277
1278    unsigned : NumTypeBits;
1279
1280    /// AttrKind - an AttributedType::Kind
1281    unsigned AttrKind : 32 - NumTypeBits;
1282  };
1283
1284  union {
1285    TypeBitfields TypeBits;
1286    ArrayTypeBitfields ArrayTypeBits;
1287    AttributedTypeBitfields AttributedTypeBits;
1288    BuiltinTypeBitfields BuiltinTypeBits;
1289    FunctionTypeBitfields FunctionTypeBits;
1290    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1291    ReferenceTypeBitfields ReferenceTypeBits;
1292    TypeWithKeywordBitfields TypeWithKeywordBits;
1293    VectorTypeBitfields VectorTypeBits;
1294  };
1295
1296private:
1297  /// \brief Set whether this type comes from an AST file.
1298  void setFromAST(bool V = true) const {
1299    TypeBits.FromAST = V;
1300  }
1301
1302  template <class T> friend class TypePropertyCache;
1303
1304protected:
1305  // silence VC++ warning C4355: 'this' : used in base member initializer list
1306  Type *this_() { return this; }
1307  Type(TypeClass tc, QualType canon, bool Dependent,
1308       bool InstantiationDependent, bool VariablyModified,
1309       bool ContainsUnexpandedParameterPack)
1310    : ExtQualsTypeCommonBase(this,
1311                             canon.isNull() ? QualType(this_(), 0) : canon) {
1312    TypeBits.TC = tc;
1313    TypeBits.Dependent = Dependent;
1314    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1315    TypeBits.VariablyModified = VariablyModified;
1316    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1317    TypeBits.CacheValidAndVisibility = 0;
1318    TypeBits.CachedExplicitVisibility = false;
1319    TypeBits.CachedLocalOrUnnamed = false;
1320    TypeBits.CachedLinkage = NoLinkage;
1321    TypeBits.FromAST = false;
1322  }
1323  friend class ASTContext;
1324
1325  void setDependent(bool D = true) {
1326    TypeBits.Dependent = D;
1327    if (D)
1328      TypeBits.InstantiationDependent = true;
1329  }
1330  void setInstantiationDependent(bool D = true) {
1331    TypeBits.InstantiationDependent = D; }
1332  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1333  }
1334  void setContainsUnexpandedParameterPack(bool PP = true) {
1335    TypeBits.ContainsUnexpandedParameterPack = PP;
1336  }
1337
1338public:
1339  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1340
1341  /// \brief Whether this type comes from an AST file.
1342  bool isFromAST() const { return TypeBits.FromAST; }
1343
1344  /// \brief Whether this type is or contains an unexpanded parameter
1345  /// pack, used to support C++0x variadic templates.
1346  ///
1347  /// A type that contains a parameter pack shall be expanded by the
1348  /// ellipsis operator at some point. For example, the typedef in the
1349  /// following example contains an unexpanded parameter pack 'T':
1350  ///
1351  /// \code
1352  /// template<typename ...T>
1353  /// struct X {
1354  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1355  /// };
1356  /// \endcode
1357  ///
1358  /// Note that this routine does not specify which
1359  bool containsUnexpandedParameterPack() const {
1360    return TypeBits.ContainsUnexpandedParameterPack;
1361  }
1362
1363  /// Determines if this type would be canonical if it had no further
1364  /// qualification.
1365  bool isCanonicalUnqualified() const {
1366    return CanonicalType == QualType(this, 0);
1367  }
1368
1369  /// Pull a single level of sugar off of this locally-unqualified type.
1370  /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1371  /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1372  QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1373
1374  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1375  /// object types, function types, and incomplete types.
1376
1377  /// isIncompleteType - Return true if this is an incomplete type.
1378  /// A type that can describe objects, but which lacks information needed to
1379  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1380  /// routine will need to determine if the size is actually required.
1381  ///
1382  /// \brief Def If non-NULL, and the type refers to some kind of declaration
1383  /// that can be completed (such as a C struct, C++ class, or Objective-C
1384  /// class), will be set to the declaration.
1385  bool isIncompleteType(NamedDecl **Def = 0) const;
1386
1387  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1388  /// type, in other words, not a function type.
1389  bool isIncompleteOrObjectType() const {
1390    return !isFunctionType();
1391  }
1392
1393  /// \brief Determine whether this type is an object type.
1394  bool isObjectType() const {
1395    // C++ [basic.types]p8:
1396    //   An object type is a (possibly cv-qualified) type that is not a
1397    //   function type, not a reference type, and not a void type.
1398    return !isReferenceType() && !isFunctionType() && !isVoidType();
1399  }
1400
1401  /// isLiteralType - Return true if this is a literal type
1402  /// (C++0x [basic.types]p10)
1403  bool isLiteralType() const;
1404
1405  /// \brief Test if this type is a standard-layout type.
1406  /// (C++0x [basic.type]p9)
1407  bool isStandardLayoutType() const;
1408
1409  /// Helper methods to distinguish type categories. All type predicates
1410  /// operate on the canonical type, ignoring typedefs and qualifiers.
1411
1412  /// isBuiltinType - returns true if the type is a builtin type.
1413  bool isBuiltinType() const;
1414
1415  /// isSpecificBuiltinType - Test for a particular builtin type.
1416  bool isSpecificBuiltinType(unsigned K) const;
1417
1418  /// isPlaceholderType - Test for a type which does not represent an
1419  /// actual type-system type but is instead used as a placeholder for
1420  /// various convenient purposes within Clang.  All such types are
1421  /// BuiltinTypes.
1422  bool isPlaceholderType() const;
1423  const BuiltinType *getAsPlaceholderType() const;
1424
1425  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1426  bool isSpecificPlaceholderType(unsigned K) const;
1427
1428  /// isNonOverloadPlaceholderType - Test for a placeholder type
1429  /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
1430  bool isNonOverloadPlaceholderType() const;
1431
1432  /// isIntegerType() does *not* include complex integers (a GCC extension).
1433  /// isComplexIntegerType() can be used to test for complex integers.
1434  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1435  bool isEnumeralType() const;
1436  bool isBooleanType() const;
1437  bool isCharType() const;
1438  bool isWideCharType() const;
1439  bool isChar16Type() const;
1440  bool isChar32Type() const;
1441  bool isAnyCharacterType() const;
1442  bool isIntegralType(ASTContext &Ctx) const;
1443
1444  /// \brief Determine whether this type is an integral or enumeration type.
1445  bool isIntegralOrEnumerationType() const;
1446  /// \brief Determine whether this type is an integral or unscoped enumeration
1447  /// type.
1448  bool isIntegralOrUnscopedEnumerationType() const;
1449
1450  /// Floating point categories.
1451  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1452  /// isComplexType() does *not* include complex integers (a GCC extension).
1453  /// isComplexIntegerType() can be used to test for complex integers.
1454  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1455  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1456  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1457  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1458  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1459  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1460  bool isVoidType() const;         // C99 6.2.5p19
1461  bool isDerivedType() const;      // C99 6.2.5p20
1462  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1463  bool isAggregateType() const;
1464  bool isFundamentalType() const;
1465  bool isCompoundType() const;
1466
1467  // Type Predicates: Check to see if this type is structurally the specified
1468  // type, ignoring typedefs and qualifiers.
1469  bool isFunctionType() const;
1470  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1471  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1472  bool isPointerType() const;
1473  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1474  bool isBlockPointerType() const;
1475  bool isVoidPointerType() const;
1476  bool isReferenceType() const;
1477  bool isLValueReferenceType() const;
1478  bool isRValueReferenceType() const;
1479  bool isFunctionPointerType() const;
1480  bool isMemberPointerType() const;
1481  bool isMemberFunctionPointerType() const;
1482  bool isMemberDataPointerType() const;
1483  bool isArrayType() const;
1484  bool isConstantArrayType() const;
1485  bool isIncompleteArrayType() const;
1486  bool isVariableArrayType() const;
1487  bool isDependentSizedArrayType() const;
1488  bool isRecordType() const;
1489  bool isClassType() const;
1490  bool isStructureType() const;
1491  bool isStructureOrClassType() const;
1492  bool isUnionType() const;
1493  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1494  bool isVectorType() const;                    // GCC vector type.
1495  bool isExtVectorType() const;                 // Extended vector type.
1496  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1497  bool isObjCRetainableType() const;            // ObjC object or block pointer
1498  bool isObjCLifetimeType() const;              // (array of)* retainable type
1499  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1500  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1501  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1502  // for the common case.
1503  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1504  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1505  bool isObjCQualifiedIdType() const;           // id<foo>
1506  bool isObjCQualifiedClassType() const;        // Class<foo>
1507  bool isObjCObjectOrInterfaceType() const;
1508  bool isObjCIdType() const;                    // id
1509  bool isObjCClassType() const;                 // Class
1510  bool isObjCSelType() const;                 // Class
1511  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1512  bool isObjCARCBridgableType() const;
1513  bool isCARCBridgableType() const;
1514  bool isTemplateTypeParmType() const;          // C++ template type parameter
1515  bool isNullPtrType() const;                   // C++0x nullptr_t
1516  bool isAtomicType() const;                    // C11 _Atomic()
1517
1518  /// Determines if this type, which must satisfy
1519  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1520  /// than implicitly __strong.
1521  bool isObjCARCImplicitlyUnretainedType() const;
1522
1523  /// Return the implicit lifetime for this type, which must not be dependent.
1524  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1525
1526  enum ScalarTypeKind {
1527    STK_CPointer,
1528    STK_BlockPointer,
1529    STK_ObjCObjectPointer,
1530    STK_MemberPointer,
1531    STK_Bool,
1532    STK_Integral,
1533    STK_Floating,
1534    STK_IntegralComplex,
1535    STK_FloatingComplex
1536  };
1537  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1538  ScalarTypeKind getScalarTypeKind() const;
1539
1540  /// isDependentType - Whether this type is a dependent type, meaning
1541  /// that its definition somehow depends on a template parameter
1542  /// (C++ [temp.dep.type]).
1543  bool isDependentType() const { return TypeBits.Dependent; }
1544
1545  /// \brief Determine whether this type is an instantiation-dependent type,
1546  /// meaning that the type involves a template parameter (even if the
1547  /// definition does not actually depend on the type substituted for that
1548  /// template parameter).
1549  bool isInstantiationDependentType() const {
1550    return TypeBits.InstantiationDependent;
1551  }
1552
1553  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1554  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1555
1556  /// \brief Whether this type involves a variable-length array type
1557  /// with a definite size.
1558  bool hasSizedVLAType() const;
1559
1560  /// \brief Whether this type is or contains a local or unnamed type.
1561  bool hasUnnamedOrLocalType() const;
1562
1563  bool isOverloadableType() const;
1564
1565  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1566  bool isElaboratedTypeSpecifier() const;
1567
1568  bool canDecayToPointerType() const;
1569
1570  /// hasPointerRepresentation - Whether this type is represented
1571  /// natively as a pointer; this includes pointers, references, block
1572  /// pointers, and Objective-C interface, qualified id, and qualified
1573  /// interface types, as well as nullptr_t.
1574  bool hasPointerRepresentation() const;
1575
1576  /// hasObjCPointerRepresentation - Whether this type can represent
1577  /// an objective pointer type for the purpose of GC'ability
1578  bool hasObjCPointerRepresentation() const;
1579
1580  /// \brief Determine whether this type has an integer representation
1581  /// of some sort, e.g., it is an integer type or a vector.
1582  bool hasIntegerRepresentation() const;
1583
1584  /// \brief Determine whether this type has an signed integer representation
1585  /// of some sort, e.g., it is an signed integer type or a vector.
1586  bool hasSignedIntegerRepresentation() const;
1587
1588  /// \brief Determine whether this type has an unsigned integer representation
1589  /// of some sort, e.g., it is an unsigned integer type or a vector.
1590  bool hasUnsignedIntegerRepresentation() const;
1591
1592  /// \brief Determine whether this type has a floating-point representation
1593  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1594  bool hasFloatingRepresentation() const;
1595
1596  // Type Checking Functions: Check to see if this type is structurally the
1597  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1598  // the best type we can.
1599  const RecordType *getAsStructureType() const;
1600  /// NOTE: getAs*ArrayType are methods on ASTContext.
1601  const RecordType *getAsUnionType() const;
1602  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1603  // The following is a convenience method that returns an ObjCObjectPointerType
1604  // for object declared using an interface.
1605  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1606  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1607  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1608  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1609  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
1610
1611  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1612  /// because the type is a RecordType or because it is the injected-class-name
1613  /// type of a class template or class template partial specialization.
1614  CXXRecordDecl *getAsCXXRecordDecl() const;
1615
1616  /// \brief Get the AutoType whose type will be deduced for a variable with
1617  /// an initializer of this type. This looks through declarators like pointer
1618  /// types, but not through decltype or typedefs.
1619  AutoType *getContainedAutoType() const;
1620
1621  /// Member-template getAs<specific type>'.  Look through sugar for
1622  /// an instance of <specific type>.   This scheme will eventually
1623  /// replace the specific getAsXXXX methods above.
1624  ///
1625  /// There are some specializations of this member template listed
1626  /// immediately following this class.
1627  template <typename T> const T *getAs() const;
1628
1629  /// A variant of getAs<> for array types which silently discards
1630  /// qualifiers from the outermost type.
1631  const ArrayType *getAsArrayTypeUnsafe() const;
1632
1633  /// Member-template castAs<specific type>.  Look through sugar for
1634  /// the underlying instance of <specific type>.
1635  ///
1636  /// This method has the same relationship to getAs<T> as cast<T> has
1637  /// to dyn_cast<T>; which is to say, the underlying type *must*
1638  /// have the intended type, and this method will never return null.
1639  template <typename T> const T *castAs() const;
1640
1641  /// A variant of castAs<> for array type which silently discards
1642  /// qualifiers from the outermost type.
1643  const ArrayType *castAsArrayTypeUnsafe() const;
1644
1645  /// getBaseElementTypeUnsafe - Get the base element type of this
1646  /// type, potentially discarding type qualifiers.  This method
1647  /// should never be used when type qualifiers are meaningful.
1648  const Type *getBaseElementTypeUnsafe() const;
1649
1650  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1651  /// element type of the array, potentially with type qualifiers missing.
1652  /// This method should never be used when type qualifiers are meaningful.
1653  const Type *getArrayElementTypeNoTypeQual() const;
1654
1655  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1656  /// pointer, this returns the respective pointee.
1657  QualType getPointeeType() const;
1658
1659  /// getUnqualifiedDesugaredType() - Return the specified type with
1660  /// any "sugar" removed from the type, removing any typedefs,
1661  /// typeofs, etc., as well as any qualifiers.
1662  const Type *getUnqualifiedDesugaredType() const;
1663
1664  /// More type predicates useful for type checking/promotion
1665  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1666
1667  /// isSignedIntegerType - Return true if this is an integer type that is
1668  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1669  /// or an enum decl which has a signed representation.
1670  bool isSignedIntegerType() const;
1671
1672  /// isUnsignedIntegerType - Return true if this is an integer type that is
1673  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1674  /// or an enum decl which has an unsigned representation.
1675  bool isUnsignedIntegerType() const;
1676
1677  /// Determines whether this is an integer type that is signed or an
1678  /// enumeration types whose underlying type is a signed integer type.
1679  bool isSignedIntegerOrEnumerationType() const;
1680
1681  /// Determines whether this is an integer type that is unsigned or an
1682  /// enumeration types whose underlying type is a unsigned integer type.
1683  bool isUnsignedIntegerOrEnumerationType() const;
1684
1685  /// isConstantSizeType - Return true if this is not a variable sized type,
1686  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1687  /// incomplete types.
1688  bool isConstantSizeType() const;
1689
1690  /// isSpecifierType - Returns true if this type can be represented by some
1691  /// set of type specifiers.
1692  bool isSpecifierType() const;
1693
1694  /// \brief Determine the linkage of this type.
1695  Linkage getLinkage() const;
1696
1697  /// \brief Determine the visibility of this type.
1698  Visibility getVisibility() const;
1699
1700  /// \brief Return true if the visibility was explicitly set is the code.
1701  bool isVisibilityExplicit() const;
1702
1703  /// \brief Determine the linkage and visibility of this type.
1704  std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
1705
1706  /// \brief Note that the linkage is no longer known.
1707  void ClearLinkageCache();
1708
1709  const char *getTypeClassName() const;
1710
1711  QualType getCanonicalTypeInternal() const {
1712    return CanonicalType;
1713  }
1714  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1715  LLVM_ATTRIBUTE_USED void dump() const;
1716
1717  static bool classof(const Type *) { return true; }
1718
1719  friend class ASTReader;
1720  friend class ASTWriter;
1721};
1722
1723template <> inline const TypedefType *Type::getAs() const {
1724  return dyn_cast<TypedefType>(this);
1725}
1726
1727// We can do canonical leaf types faster, because we don't have to
1728// worry about preserving child type decoration.
1729#define TYPE(Class, Base)
1730#define LEAF_TYPE(Class) \
1731template <> inline const Class##Type *Type::getAs() const { \
1732  return dyn_cast<Class##Type>(CanonicalType); \
1733} \
1734template <> inline const Class##Type *Type::castAs() const { \
1735  return cast<Class##Type>(CanonicalType); \
1736}
1737#include "clang/AST/TypeNodes.def"
1738
1739
1740/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1741/// types are always canonical and have a literal name field.
1742class BuiltinType : public Type {
1743public:
1744  enum Kind {
1745#define BUILTIN_TYPE(Id, SingletonId) Id,
1746#define LAST_BUILTIN_TYPE(Id) LastKind = Id
1747#include "clang/AST/BuiltinTypes.def"
1748  };
1749
1750public:
1751  BuiltinType(Kind K)
1752    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1753           /*InstantiationDependent=*/(K == Dependent),
1754           /*VariablyModified=*/false,
1755           /*Unexpanded paramter pack=*/false) {
1756    BuiltinTypeBits.Kind = K;
1757  }
1758
1759  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1760  const char *getName(const PrintingPolicy &Policy) const;
1761
1762  bool isSugared() const { return false; }
1763  QualType desugar() const { return QualType(this, 0); }
1764
1765  bool isInteger() const {
1766    return getKind() >= Bool && getKind() <= Int128;
1767  }
1768
1769  bool isSignedInteger() const {
1770    return getKind() >= Char_S && getKind() <= Int128;
1771  }
1772
1773  bool isUnsignedInteger() const {
1774    return getKind() >= Bool && getKind() <= UInt128;
1775  }
1776
1777  bool isFloatingPoint() const {
1778    return getKind() >= Half && getKind() <= LongDouble;
1779  }
1780
1781  /// Determines whether the given kind corresponds to a placeholder type.
1782  static bool isPlaceholderTypeKind(Kind K) {
1783    return K >= Overload;
1784  }
1785
1786  /// Determines whether this type is a placeholder type, i.e. a type
1787  /// which cannot appear in arbitrary positions in a fully-formed
1788  /// expression.
1789  bool isPlaceholderType() const {
1790    return isPlaceholderTypeKind(getKind());
1791  }
1792
1793  /// Determines whether this type is a placeholder type other than
1794  /// Overload.  Most placeholder types require only syntactic
1795  /// information about their context in order to be resolved (e.g.
1796  /// whether it is a call expression), which means they can (and
1797  /// should) be resolved in an earlier "phase" of analysis.
1798  /// Overload expressions sometimes pick up further information
1799  /// from their context, like whether the context expects a
1800  /// specific function-pointer type, and so frequently need
1801  /// special treatment.
1802  bool isNonOverloadPlaceholderType() const {
1803    return getKind() > Overload;
1804  }
1805
1806  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1807  static bool classof(const BuiltinType *) { return true; }
1808};
1809
1810/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1811/// types (_Complex float etc) as well as the GCC integer complex extensions.
1812///
1813class ComplexType : public Type, public llvm::FoldingSetNode {
1814  QualType ElementType;
1815  ComplexType(QualType Element, QualType CanonicalPtr) :
1816    Type(Complex, CanonicalPtr, Element->isDependentType(),
1817         Element->isInstantiationDependentType(),
1818         Element->isVariablyModifiedType(),
1819         Element->containsUnexpandedParameterPack()),
1820    ElementType(Element) {
1821  }
1822  friend class ASTContext;  // ASTContext creates these.
1823
1824public:
1825  QualType getElementType() const { return ElementType; }
1826
1827  bool isSugared() const { return false; }
1828  QualType desugar() const { return QualType(this, 0); }
1829
1830  void Profile(llvm::FoldingSetNodeID &ID) {
1831    Profile(ID, getElementType());
1832  }
1833  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1834    ID.AddPointer(Element.getAsOpaquePtr());
1835  }
1836
1837  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1838  static bool classof(const ComplexType *) { return true; }
1839};
1840
1841/// ParenType - Sugar for parentheses used when specifying types.
1842///
1843class ParenType : public Type, public llvm::FoldingSetNode {
1844  QualType Inner;
1845
1846  ParenType(QualType InnerType, QualType CanonType) :
1847    Type(Paren, CanonType, InnerType->isDependentType(),
1848         InnerType->isInstantiationDependentType(),
1849         InnerType->isVariablyModifiedType(),
1850         InnerType->containsUnexpandedParameterPack()),
1851    Inner(InnerType) {
1852  }
1853  friend class ASTContext;  // ASTContext creates these.
1854
1855public:
1856
1857  QualType getInnerType() const { return Inner; }
1858
1859  bool isSugared() const { return true; }
1860  QualType desugar() const { return getInnerType(); }
1861
1862  void Profile(llvm::FoldingSetNodeID &ID) {
1863    Profile(ID, getInnerType());
1864  }
1865  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1866    Inner.Profile(ID);
1867  }
1868
1869  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1870  static bool classof(const ParenType *) { return true; }
1871};
1872
1873/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1874///
1875class PointerType : public Type, public llvm::FoldingSetNode {
1876  QualType PointeeType;
1877
1878  PointerType(QualType Pointee, QualType CanonicalPtr) :
1879    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1880         Pointee->isInstantiationDependentType(),
1881         Pointee->isVariablyModifiedType(),
1882         Pointee->containsUnexpandedParameterPack()),
1883    PointeeType(Pointee) {
1884  }
1885  friend class ASTContext;  // ASTContext creates these.
1886
1887public:
1888
1889  QualType getPointeeType() const { return PointeeType; }
1890
1891  bool isSugared() const { return false; }
1892  QualType desugar() const { return QualType(this, 0); }
1893
1894  void Profile(llvm::FoldingSetNodeID &ID) {
1895    Profile(ID, getPointeeType());
1896  }
1897  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1898    ID.AddPointer(Pointee.getAsOpaquePtr());
1899  }
1900
1901  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1902  static bool classof(const PointerType *) { return true; }
1903};
1904
1905/// BlockPointerType - pointer to a block type.
1906/// This type is to represent types syntactically represented as
1907/// "void (^)(int)", etc. Pointee is required to always be a function type.
1908///
1909class BlockPointerType : public Type, public llvm::FoldingSetNode {
1910  QualType PointeeType;  // Block is some kind of pointer type
1911  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1912    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1913         Pointee->isInstantiationDependentType(),
1914         Pointee->isVariablyModifiedType(),
1915         Pointee->containsUnexpandedParameterPack()),
1916    PointeeType(Pointee) {
1917  }
1918  friend class ASTContext;  // ASTContext creates these.
1919
1920public:
1921
1922  // Get the pointee type. Pointee is required to always be a function type.
1923  QualType getPointeeType() const { return PointeeType; }
1924
1925  bool isSugared() const { return false; }
1926  QualType desugar() const { return QualType(this, 0); }
1927
1928  void Profile(llvm::FoldingSetNodeID &ID) {
1929      Profile(ID, getPointeeType());
1930  }
1931  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1932      ID.AddPointer(Pointee.getAsOpaquePtr());
1933  }
1934
1935  static bool classof(const Type *T) {
1936    return T->getTypeClass() == BlockPointer;
1937  }
1938  static bool classof(const BlockPointerType *) { return true; }
1939};
1940
1941/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1942///
1943class ReferenceType : public Type, public llvm::FoldingSetNode {
1944  QualType PointeeType;
1945
1946protected:
1947  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1948                bool SpelledAsLValue) :
1949    Type(tc, CanonicalRef, Referencee->isDependentType(),
1950         Referencee->isInstantiationDependentType(),
1951         Referencee->isVariablyModifiedType(),
1952         Referencee->containsUnexpandedParameterPack()),
1953    PointeeType(Referencee)
1954  {
1955    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
1956    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
1957  }
1958
1959public:
1960  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
1961  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
1962
1963  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1964  QualType getPointeeType() const {
1965    // FIXME: this might strip inner qualifiers; okay?
1966    const ReferenceType *T = this;
1967    while (T->isInnerRef())
1968      T = T->PointeeType->castAs<ReferenceType>();
1969    return T->PointeeType;
1970  }
1971
1972  void Profile(llvm::FoldingSetNodeID &ID) {
1973    Profile(ID, PointeeType, isSpelledAsLValue());
1974  }
1975  static void Profile(llvm::FoldingSetNodeID &ID,
1976                      QualType Referencee,
1977                      bool SpelledAsLValue) {
1978    ID.AddPointer(Referencee.getAsOpaquePtr());
1979    ID.AddBoolean(SpelledAsLValue);
1980  }
1981
1982  static bool classof(const Type *T) {
1983    return T->getTypeClass() == LValueReference ||
1984           T->getTypeClass() == RValueReference;
1985  }
1986  static bool classof(const ReferenceType *) { return true; }
1987};
1988
1989/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1990///
1991class LValueReferenceType : public ReferenceType {
1992  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1993                      bool SpelledAsLValue) :
1994    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1995  {}
1996  friend class ASTContext; // ASTContext creates these
1997public:
1998  bool isSugared() const { return false; }
1999  QualType desugar() const { return QualType(this, 0); }
2000
2001  static bool classof(const Type *T) {
2002    return T->getTypeClass() == LValueReference;
2003  }
2004  static bool classof(const LValueReferenceType *) { return true; }
2005};
2006
2007/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
2008///
2009class RValueReferenceType : public ReferenceType {
2010  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
2011    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
2012  }
2013  friend class ASTContext; // ASTContext creates these
2014public:
2015  bool isSugared() const { return false; }
2016  QualType desugar() const { return QualType(this, 0); }
2017
2018  static bool classof(const Type *T) {
2019    return T->getTypeClass() == RValueReference;
2020  }
2021  static bool classof(const RValueReferenceType *) { return true; }
2022};
2023
2024/// MemberPointerType - C++ 8.3.3 - Pointers to members
2025///
2026class MemberPointerType : public Type, public llvm::FoldingSetNode {
2027  QualType PointeeType;
2028  /// The class of which the pointee is a member. Must ultimately be a
2029  /// RecordType, but could be a typedef or a template parameter too.
2030  const Type *Class;
2031
2032  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
2033    Type(MemberPointer, CanonicalPtr,
2034         Cls->isDependentType() || Pointee->isDependentType(),
2035         (Cls->isInstantiationDependentType() ||
2036          Pointee->isInstantiationDependentType()),
2037         Pointee->isVariablyModifiedType(),
2038         (Cls->containsUnexpandedParameterPack() ||
2039          Pointee->containsUnexpandedParameterPack())),
2040    PointeeType(Pointee), Class(Cls) {
2041  }
2042  friend class ASTContext; // ASTContext creates these.
2043
2044public:
2045  QualType getPointeeType() const { return PointeeType; }
2046
2047  /// Returns true if the member type (i.e. the pointee type) is a
2048  /// function type rather than a data-member type.
2049  bool isMemberFunctionPointer() const {
2050    return PointeeType->isFunctionProtoType();
2051  }
2052
2053  /// Returns true if the member type (i.e. the pointee type) is a
2054  /// data type rather than a function type.
2055  bool isMemberDataPointer() const {
2056    return !PointeeType->isFunctionProtoType();
2057  }
2058
2059  const Type *getClass() const { return Class; }
2060
2061  bool isSugared() const { return false; }
2062  QualType desugar() const { return QualType(this, 0); }
2063
2064  void Profile(llvm::FoldingSetNodeID &ID) {
2065    Profile(ID, getPointeeType(), getClass());
2066  }
2067  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2068                      const Type *Class) {
2069    ID.AddPointer(Pointee.getAsOpaquePtr());
2070    ID.AddPointer(Class);
2071  }
2072
2073  static bool classof(const Type *T) {
2074    return T->getTypeClass() == MemberPointer;
2075  }
2076  static bool classof(const MemberPointerType *) { return true; }
2077};
2078
2079/// ArrayType - C99 6.7.5.2 - Array Declarators.
2080///
2081class ArrayType : public Type, public llvm::FoldingSetNode {
2082public:
2083  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
2084  /// an array with a static size (e.g. int X[static 4]), or an array
2085  /// with a star size (e.g. int X[*]).
2086  /// 'static' is only allowed on function parameters.
2087  enum ArraySizeModifier {
2088    Normal, Static, Star
2089  };
2090private:
2091  /// ElementType - The element type of the array.
2092  QualType ElementType;
2093
2094protected:
2095  // C++ [temp.dep.type]p1:
2096  //   A type is dependent if it is...
2097  //     - an array type constructed from any dependent type or whose
2098  //       size is specified by a constant expression that is
2099  //       value-dependent,
2100  ArrayType(TypeClass tc, QualType et, QualType can,
2101            ArraySizeModifier sm, unsigned tq,
2102            bool ContainsUnexpandedParameterPack)
2103    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2104           et->isInstantiationDependentType() || tc == DependentSizedArray,
2105           (tc == VariableArray || et->isVariablyModifiedType()),
2106           ContainsUnexpandedParameterPack),
2107      ElementType(et) {
2108    ArrayTypeBits.IndexTypeQuals = tq;
2109    ArrayTypeBits.SizeModifier = sm;
2110  }
2111
2112  friend class ASTContext;  // ASTContext creates these.
2113
2114public:
2115  QualType getElementType() const { return ElementType; }
2116  ArraySizeModifier getSizeModifier() const {
2117    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2118  }
2119  Qualifiers getIndexTypeQualifiers() const {
2120    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2121  }
2122  unsigned getIndexTypeCVRQualifiers() const {
2123    return ArrayTypeBits.IndexTypeQuals;
2124  }
2125
2126  static bool classof(const Type *T) {
2127    return T->getTypeClass() == ConstantArray ||
2128           T->getTypeClass() == VariableArray ||
2129           T->getTypeClass() == IncompleteArray ||
2130           T->getTypeClass() == DependentSizedArray;
2131  }
2132  static bool classof(const ArrayType *) { return true; }
2133};
2134
2135/// ConstantArrayType - This class represents the canonical version of
2136/// C arrays with a specified constant size.  For example, the canonical
2137/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
2138/// type is 'int' and the size is 404.
2139class ConstantArrayType : public ArrayType {
2140  llvm::APInt Size; // Allows us to unique the type.
2141
2142  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2143                    ArraySizeModifier sm, unsigned tq)
2144    : ArrayType(ConstantArray, et, can, sm, tq,
2145                et->containsUnexpandedParameterPack()),
2146      Size(size) {}
2147protected:
2148  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2149                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2150    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2151      Size(size) {}
2152  friend class ASTContext;  // ASTContext creates these.
2153public:
2154  const llvm::APInt &getSize() const { return Size; }
2155  bool isSugared() const { return false; }
2156  QualType desugar() const { return QualType(this, 0); }
2157
2158
2159  /// \brief Determine the number of bits required to address a member of
2160  // an array with the given element type and number of elements.
2161  static unsigned getNumAddressingBits(ASTContext &Context,
2162                                       QualType ElementType,
2163                                       const llvm::APInt &NumElements);
2164
2165  /// \brief Determine the maximum number of active bits that an array's size
2166  /// can require, which limits the maximum size of the array.
2167  static unsigned getMaxSizeBits(ASTContext &Context);
2168
2169  void Profile(llvm::FoldingSetNodeID &ID) {
2170    Profile(ID, getElementType(), getSize(),
2171            getSizeModifier(), getIndexTypeCVRQualifiers());
2172  }
2173  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2174                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2175                      unsigned TypeQuals) {
2176    ID.AddPointer(ET.getAsOpaquePtr());
2177    ID.AddInteger(ArraySize.getZExtValue());
2178    ID.AddInteger(SizeMod);
2179    ID.AddInteger(TypeQuals);
2180  }
2181  static bool classof(const Type *T) {
2182    return T->getTypeClass() == ConstantArray;
2183  }
2184  static bool classof(const ConstantArrayType *) { return true; }
2185};
2186
2187/// IncompleteArrayType - This class represents C arrays with an unspecified
2188/// size.  For example 'int A[]' has an IncompleteArrayType where the element
2189/// type is 'int' and the size is unspecified.
2190class IncompleteArrayType : public ArrayType {
2191
2192  IncompleteArrayType(QualType et, QualType can,
2193                      ArraySizeModifier sm, unsigned tq)
2194    : ArrayType(IncompleteArray, et, can, sm, tq,
2195                et->containsUnexpandedParameterPack()) {}
2196  friend class ASTContext;  // ASTContext creates these.
2197public:
2198  bool isSugared() const { return false; }
2199  QualType desugar() const { return QualType(this, 0); }
2200
2201  static bool classof(const Type *T) {
2202    return T->getTypeClass() == IncompleteArray;
2203  }
2204  static bool classof(const IncompleteArrayType *) { return true; }
2205
2206  friend class StmtIteratorBase;
2207
2208  void Profile(llvm::FoldingSetNodeID &ID) {
2209    Profile(ID, getElementType(), getSizeModifier(),
2210            getIndexTypeCVRQualifiers());
2211  }
2212
2213  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2214                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2215    ID.AddPointer(ET.getAsOpaquePtr());
2216    ID.AddInteger(SizeMod);
2217    ID.AddInteger(TypeQuals);
2218  }
2219};
2220
2221/// VariableArrayType - This class represents C arrays with a specified size
2222/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
2223/// Since the size expression is an arbitrary expression, we store it as such.
2224///
2225/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2226/// should not be: two lexically equivalent variable array types could mean
2227/// different things, for example, these variables do not have the same type
2228/// dynamically:
2229///
2230/// void foo(int x) {
2231///   int Y[x];
2232///   ++x;
2233///   int Z[x];
2234/// }
2235///
2236class VariableArrayType : public ArrayType {
2237  /// SizeExpr - An assignment expression. VLA's are only permitted within
2238  /// a function block.
2239  Stmt *SizeExpr;
2240  /// Brackets - The left and right array brackets.
2241  SourceRange Brackets;
2242
2243  VariableArrayType(QualType et, QualType can, Expr *e,
2244                    ArraySizeModifier sm, unsigned tq,
2245                    SourceRange brackets)
2246    : ArrayType(VariableArray, et, can, sm, tq,
2247                et->containsUnexpandedParameterPack()),
2248      SizeExpr((Stmt*) e), Brackets(brackets) {}
2249  friend class ASTContext;  // ASTContext creates these.
2250
2251public:
2252  Expr *getSizeExpr() const {
2253    // We use C-style casts instead of cast<> here because we do not wish
2254    // to have a dependency of Type.h on Stmt.h/Expr.h.
2255    return (Expr*) SizeExpr;
2256  }
2257  SourceRange getBracketsRange() const { return Brackets; }
2258  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2259  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2260
2261  bool isSugared() const { return false; }
2262  QualType desugar() const { return QualType(this, 0); }
2263
2264  static bool classof(const Type *T) {
2265    return T->getTypeClass() == VariableArray;
2266  }
2267  static bool classof(const VariableArrayType *) { return true; }
2268
2269  friend class StmtIteratorBase;
2270
2271  void Profile(llvm::FoldingSetNodeID &ID) {
2272    llvm_unreachable("Cannot unique VariableArrayTypes.");
2273  }
2274};
2275
2276/// DependentSizedArrayType - This type represents an array type in
2277/// C++ whose size is a value-dependent expression. For example:
2278///
2279/// \code
2280/// template<typename T, int Size>
2281/// class array {
2282///   T data[Size];
2283/// };
2284/// \endcode
2285///
2286/// For these types, we won't actually know what the array bound is
2287/// until template instantiation occurs, at which point this will
2288/// become either a ConstantArrayType or a VariableArrayType.
2289class DependentSizedArrayType : public ArrayType {
2290  const ASTContext &Context;
2291
2292  /// \brief An assignment expression that will instantiate to the
2293  /// size of the array.
2294  ///
2295  /// The expression itself might be NULL, in which case the array
2296  /// type will have its size deduced from an initializer.
2297  Stmt *SizeExpr;
2298
2299  /// Brackets - The left and right array brackets.
2300  SourceRange Brackets;
2301
2302  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2303                          Expr *e, ArraySizeModifier sm, unsigned tq,
2304                          SourceRange brackets);
2305
2306  friend class ASTContext;  // ASTContext creates these.
2307
2308public:
2309  Expr *getSizeExpr() const {
2310    // We use C-style casts instead of cast<> here because we do not wish
2311    // to have a dependency of Type.h on Stmt.h/Expr.h.
2312    return (Expr*) SizeExpr;
2313  }
2314  SourceRange getBracketsRange() const { return Brackets; }
2315  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2316  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2317
2318  bool isSugared() const { return false; }
2319  QualType desugar() const { return QualType(this, 0); }
2320
2321  static bool classof(const Type *T) {
2322    return T->getTypeClass() == DependentSizedArray;
2323  }
2324  static bool classof(const DependentSizedArrayType *) { return true; }
2325
2326  friend class StmtIteratorBase;
2327
2328
2329  void Profile(llvm::FoldingSetNodeID &ID) {
2330    Profile(ID, Context, getElementType(),
2331            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2332  }
2333
2334  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2335                      QualType ET, ArraySizeModifier SizeMod,
2336                      unsigned TypeQuals, Expr *E);
2337};
2338
2339/// DependentSizedExtVectorType - This type represent an extended vector type
2340/// where either the type or size is dependent. For example:
2341/// @code
2342/// template<typename T, int Size>
2343/// class vector {
2344///   typedef T __attribute__((ext_vector_type(Size))) type;
2345/// }
2346/// @endcode
2347class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2348  const ASTContext &Context;
2349  Expr *SizeExpr;
2350  /// ElementType - The element type of the array.
2351  QualType ElementType;
2352  SourceLocation loc;
2353
2354  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2355                              QualType can, Expr *SizeExpr, SourceLocation loc);
2356
2357  friend class ASTContext;
2358
2359public:
2360  Expr *getSizeExpr() const { return SizeExpr; }
2361  QualType getElementType() const { return ElementType; }
2362  SourceLocation getAttributeLoc() const { return loc; }
2363
2364  bool isSugared() const { return false; }
2365  QualType desugar() const { return QualType(this, 0); }
2366
2367  static bool classof(const Type *T) {
2368    return T->getTypeClass() == DependentSizedExtVector;
2369  }
2370  static bool classof(const DependentSizedExtVectorType *) { return true; }
2371
2372  void Profile(llvm::FoldingSetNodeID &ID) {
2373    Profile(ID, Context, getElementType(), getSizeExpr());
2374  }
2375
2376  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2377                      QualType ElementType, Expr *SizeExpr);
2378};
2379
2380
2381/// VectorType - GCC generic vector type. This type is created using
2382/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2383/// bytes; or from an Altivec __vector or vector declaration.
2384/// Since the constructor takes the number of vector elements, the
2385/// client is responsible for converting the size into the number of elements.
2386class VectorType : public Type, public llvm::FoldingSetNode {
2387public:
2388  enum VectorKind {
2389    GenericVector,  // not a target-specific vector type
2390    AltiVecVector,  // is AltiVec vector
2391    AltiVecPixel,   // is AltiVec 'vector Pixel'
2392    AltiVecBool,    // is AltiVec 'vector bool ...'
2393    NeonVector,     // is ARM Neon vector
2394    NeonPolyVector  // is ARM Neon polynomial vector
2395  };
2396protected:
2397  /// ElementType - The element type of the vector.
2398  QualType ElementType;
2399
2400  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2401             VectorKind vecKind);
2402
2403  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2404             QualType canonType, VectorKind vecKind);
2405
2406  friend class ASTContext;  // ASTContext creates these.
2407
2408public:
2409
2410  QualType getElementType() const { return ElementType; }
2411  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2412
2413  bool isSugared() const { return false; }
2414  QualType desugar() const { return QualType(this, 0); }
2415
2416  VectorKind getVectorKind() const {
2417    return VectorKind(VectorTypeBits.VecKind);
2418  }
2419
2420  void Profile(llvm::FoldingSetNodeID &ID) {
2421    Profile(ID, getElementType(), getNumElements(),
2422            getTypeClass(), getVectorKind());
2423  }
2424  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2425                      unsigned NumElements, TypeClass TypeClass,
2426                      VectorKind VecKind) {
2427    ID.AddPointer(ElementType.getAsOpaquePtr());
2428    ID.AddInteger(NumElements);
2429    ID.AddInteger(TypeClass);
2430    ID.AddInteger(VecKind);
2431  }
2432
2433  static bool classof(const Type *T) {
2434    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2435  }
2436  static bool classof(const VectorType *) { return true; }
2437};
2438
2439/// ExtVectorType - Extended vector type. This type is created using
2440/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2441/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2442/// class enables syntactic extensions, like Vector Components for accessing
2443/// points, colors, and textures (modeled after OpenGL Shading Language).
2444class ExtVectorType : public VectorType {
2445  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2446    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2447  friend class ASTContext;  // ASTContext creates these.
2448public:
2449  static int getPointAccessorIdx(char c) {
2450    switch (c) {
2451    default: return -1;
2452    case 'x': return 0;
2453    case 'y': return 1;
2454    case 'z': return 2;
2455    case 'w': return 3;
2456    }
2457  }
2458  static int getNumericAccessorIdx(char c) {
2459    switch (c) {
2460      default: return -1;
2461      case '0': return 0;
2462      case '1': return 1;
2463      case '2': return 2;
2464      case '3': return 3;
2465      case '4': return 4;
2466      case '5': return 5;
2467      case '6': return 6;
2468      case '7': return 7;
2469      case '8': return 8;
2470      case '9': return 9;
2471      case 'A':
2472      case 'a': return 10;
2473      case 'B':
2474      case 'b': return 11;
2475      case 'C':
2476      case 'c': return 12;
2477      case 'D':
2478      case 'd': return 13;
2479      case 'E':
2480      case 'e': return 14;
2481      case 'F':
2482      case 'f': return 15;
2483    }
2484  }
2485
2486  static int getAccessorIdx(char c) {
2487    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2488    return getNumericAccessorIdx(c);
2489  }
2490
2491  bool isAccessorWithinNumElements(char c) const {
2492    if (int idx = getAccessorIdx(c)+1)
2493      return unsigned(idx-1) < getNumElements();
2494    return false;
2495  }
2496  bool isSugared() const { return false; }
2497  QualType desugar() const { return QualType(this, 0); }
2498
2499  static bool classof(const Type *T) {
2500    return T->getTypeClass() == ExtVector;
2501  }
2502  static bool classof(const ExtVectorType *) { return true; }
2503};
2504
2505/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2506/// class of FunctionNoProtoType and FunctionProtoType.
2507///
2508class FunctionType : public Type {
2509  // The type returned by the function.
2510  QualType ResultType;
2511
2512 public:
2513  /// ExtInfo - A class which abstracts out some details necessary for
2514  /// making a call.
2515  ///
2516  /// It is not actually used directly for storing this information in
2517  /// a FunctionType, although FunctionType does currently use the
2518  /// same bit-pattern.
2519  ///
2520  // If you add a field (say Foo), other than the obvious places (both,
2521  // constructors, compile failures), what you need to update is
2522  // * Operator==
2523  // * getFoo
2524  // * withFoo
2525  // * functionType. Add Foo, getFoo.
2526  // * ASTContext::getFooType
2527  // * ASTContext::mergeFunctionTypes
2528  // * FunctionNoProtoType::Profile
2529  // * FunctionProtoType::Profile
2530  // * TypePrinter::PrintFunctionProto
2531  // * AST read and write
2532  // * Codegen
2533  class ExtInfo {
2534    // Feel free to rearrange or add bits, but if you go over 8,
2535    // you'll need to adjust both the Bits field below and
2536    // Type::FunctionTypeBitfields.
2537
2538    //   |  CC  |noreturn|produces|regparm|
2539    //   |0 .. 2|   3    |    4   | 5 .. 7|
2540    //
2541    // regparm is either 0 (no regparm attribute) or the regparm value+1.
2542    enum { CallConvMask = 0x7 };
2543    enum { NoReturnMask = 0x8 };
2544    enum { ProducesResultMask = 0x10 };
2545    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2546           RegParmOffset = 5 }; // Assumed to be the last field
2547
2548    uint16_t Bits;
2549
2550    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2551
2552    friend class FunctionType;
2553
2554   public:
2555    // Constructor with no defaults. Use this when you know that you
2556    // have all the elements (when reading an AST file for example).
2557    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2558            bool producesResult) {
2559      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2560      Bits = ((unsigned) cc) |
2561             (noReturn ? NoReturnMask : 0) |
2562             (producesResult ? ProducesResultMask : 0) |
2563             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2564    }
2565
2566    // Constructor with all defaults. Use when for example creating a
2567    // function know to use defaults.
2568    ExtInfo() : Bits(0) {}
2569
2570    bool getNoReturn() const { return Bits & NoReturnMask; }
2571    bool getProducesResult() const { return Bits & ProducesResultMask; }
2572    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2573    unsigned getRegParm() const {
2574      unsigned RegParm = Bits >> RegParmOffset;
2575      if (RegParm > 0)
2576        --RegParm;
2577      return RegParm;
2578    }
2579    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2580
2581    bool operator==(ExtInfo Other) const {
2582      return Bits == Other.Bits;
2583    }
2584    bool operator!=(ExtInfo Other) const {
2585      return Bits != Other.Bits;
2586    }
2587
2588    // Note that we don't have setters. That is by design, use
2589    // the following with methods instead of mutating these objects.
2590
2591    ExtInfo withNoReturn(bool noReturn) const {
2592      if (noReturn)
2593        return ExtInfo(Bits | NoReturnMask);
2594      else
2595        return ExtInfo(Bits & ~NoReturnMask);
2596    }
2597
2598    ExtInfo withProducesResult(bool producesResult) const {
2599      if (producesResult)
2600        return ExtInfo(Bits | ProducesResultMask);
2601      else
2602        return ExtInfo(Bits & ~ProducesResultMask);
2603    }
2604
2605    ExtInfo withRegParm(unsigned RegParm) const {
2606      assert(RegParm < 7 && "Invalid regparm value");
2607      return ExtInfo((Bits & ~RegParmMask) |
2608                     ((RegParm + 1) << RegParmOffset));
2609    }
2610
2611    ExtInfo withCallingConv(CallingConv cc) const {
2612      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2613    }
2614
2615    void Profile(llvm::FoldingSetNodeID &ID) const {
2616      ID.AddInteger(Bits);
2617    }
2618  };
2619
2620protected:
2621  FunctionType(TypeClass tc, QualType res,
2622               unsigned typeQuals, RefQualifierKind RefQualifier,
2623               QualType Canonical, bool Dependent,
2624               bool InstantiationDependent,
2625               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2626               ExtInfo Info)
2627    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
2628           ContainsUnexpandedParameterPack),
2629      ResultType(res) {
2630    FunctionTypeBits.ExtInfo = Info.Bits;
2631    FunctionTypeBits.TypeQuals = typeQuals;
2632    FunctionTypeBits.RefQualifier = static_cast<unsigned>(RefQualifier);
2633  }
2634  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2635
2636  RefQualifierKind getRefQualifier() const {
2637    return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
2638  }
2639
2640public:
2641
2642  QualType getResultType() const { return ResultType; }
2643
2644  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2645  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2646  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2647  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2648  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2649
2650  /// \brief Determine the type of an expression that calls a function of
2651  /// this type.
2652  QualType getCallResultType(ASTContext &Context) const {
2653    return getResultType().getNonLValueExprType(Context);
2654  }
2655
2656  static StringRef getNameForCallConv(CallingConv CC);
2657
2658  static bool classof(const Type *T) {
2659    return T->getTypeClass() == FunctionNoProto ||
2660           T->getTypeClass() == FunctionProto;
2661  }
2662  static bool classof(const FunctionType *) { return true; }
2663};
2664
2665/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2666/// no information available about its arguments.
2667class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2668  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2669    : FunctionType(FunctionNoProto, Result, 0, RQ_None, Canonical,
2670                   /*Dependent=*/false, /*InstantiationDependent=*/false,
2671                   Result->isVariablyModifiedType(),
2672                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2673
2674  friend class ASTContext;  // ASTContext creates these.
2675
2676public:
2677  // No additional state past what FunctionType provides.
2678
2679  bool isSugared() const { return false; }
2680  QualType desugar() const { return QualType(this, 0); }
2681
2682  void Profile(llvm::FoldingSetNodeID &ID) {
2683    Profile(ID, getResultType(), getExtInfo());
2684  }
2685  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2686                      ExtInfo Info) {
2687    Info.Profile(ID);
2688    ID.AddPointer(ResultType.getAsOpaquePtr());
2689  }
2690
2691  static bool classof(const Type *T) {
2692    return T->getTypeClass() == FunctionNoProto;
2693  }
2694  static bool classof(const FunctionNoProtoType *) { return true; }
2695};
2696
2697/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2698/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2699/// arguments, not as having a single void argument. Such a type can have an
2700/// exception specification, but this specification is not part of the canonical
2701/// type.
2702class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2703public:
2704  /// ExtProtoInfo - Extra information about a function prototype.
2705  struct ExtProtoInfo {
2706    ExtProtoInfo() :
2707      Variadic(false), HasTrailingReturn(false), TypeQuals(0),
2708      ExceptionSpecType(EST_None), RefQualifier(RQ_None),
2709      NumExceptions(0), Exceptions(0), NoexceptExpr(0),
2710      ExceptionSpecDecl(0), ExceptionSpecTemplate(0),
2711      ConsumedArguments(0) {}
2712
2713    FunctionType::ExtInfo ExtInfo;
2714    bool Variadic : 1;
2715    bool HasTrailingReturn : 1;
2716    unsigned char TypeQuals;
2717    ExceptionSpecificationType ExceptionSpecType;
2718    RefQualifierKind RefQualifier;
2719    unsigned NumExceptions;
2720    const QualType *Exceptions;
2721    Expr *NoexceptExpr;
2722    FunctionDecl *ExceptionSpecDecl;
2723    FunctionDecl *ExceptionSpecTemplate;
2724    const bool *ConsumedArguments;
2725  };
2726
2727private:
2728  /// \brief Determine whether there are any argument types that
2729  /// contain an unexpanded parameter pack.
2730  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2731                                                 unsigned numArgs) {
2732    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2733      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2734        return true;
2735
2736    return false;
2737  }
2738
2739  FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
2740                    QualType canonical, const ExtProtoInfo &epi);
2741
2742  /// NumArgs - The number of arguments this function has, not counting '...'.
2743  unsigned NumArgs : 17;
2744
2745  /// NumExceptions - The number of types in the exception spec, if any.
2746  unsigned NumExceptions : 9;
2747
2748  /// ExceptionSpecType - The type of exception specification this function has.
2749  unsigned ExceptionSpecType : 3;
2750
2751  /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
2752  unsigned HasAnyConsumedArgs : 1;
2753
2754  /// Variadic - Whether the function is variadic.
2755  unsigned Variadic : 1;
2756
2757  /// HasTrailingReturn - Whether this function has a trailing return type.
2758  unsigned HasTrailingReturn : 1;
2759
2760  // ArgInfo - There is an variable size array after the class in memory that
2761  // holds the argument types.
2762
2763  // Exceptions - There is another variable size array after ArgInfo that
2764  // holds the exception types.
2765
2766  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2767  // to the expression in the noexcept() specifier.
2768
2769  // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
2770  // be a pair of FunctionDecl* pointing to the function which should be used to
2771  // instantiate this function type's exception specification, and the function
2772  // from which it should be instantiated.
2773
2774  // ConsumedArgs - A variable size array, following Exceptions
2775  // and of length NumArgs, holding flags indicating which arguments
2776  // are consumed.  This only appears if HasAnyConsumedArgs is true.
2777
2778  friend class ASTContext;  // ASTContext creates these.
2779
2780  const bool *getConsumedArgsBuffer() const {
2781    assert(hasAnyConsumedArgs());
2782
2783    // Find the end of the exceptions.
2784    Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
2785    if (getExceptionSpecType() != EST_ComputedNoexcept)
2786      eh_end += NumExceptions;
2787    else
2788      eh_end += 1; // NoexceptExpr
2789
2790    return reinterpret_cast<const bool*>(eh_end);
2791  }
2792
2793public:
2794  unsigned getNumArgs() const { return NumArgs; }
2795  QualType getArgType(unsigned i) const {
2796    assert(i < NumArgs && "Invalid argument number!");
2797    return arg_type_begin()[i];
2798  }
2799
2800  ExtProtoInfo getExtProtoInfo() const {
2801    ExtProtoInfo EPI;
2802    EPI.ExtInfo = getExtInfo();
2803    EPI.Variadic = isVariadic();
2804    EPI.HasTrailingReturn = hasTrailingReturn();
2805    EPI.ExceptionSpecType = getExceptionSpecType();
2806    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2807    EPI.RefQualifier = getRefQualifier();
2808    if (EPI.ExceptionSpecType == EST_Dynamic) {
2809      EPI.NumExceptions = NumExceptions;
2810      EPI.Exceptions = exception_begin();
2811    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2812      EPI.NoexceptExpr = getNoexceptExpr();
2813    } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2814      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2815      EPI.ExceptionSpecTemplate = getExceptionSpecTemplate();
2816    }
2817    if (hasAnyConsumedArgs())
2818      EPI.ConsumedArguments = getConsumedArgsBuffer();
2819    return EPI;
2820  }
2821
2822  /// \brief Get the kind of exception specification on this function.
2823  ExceptionSpecificationType getExceptionSpecType() const {
2824    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2825  }
2826  /// \brief Return whether this function has any kind of exception spec.
2827  bool hasExceptionSpec() const {
2828    return getExceptionSpecType() != EST_None;
2829  }
2830  /// \brief Return whether this function has a dynamic (throw) exception spec.
2831  bool hasDynamicExceptionSpec() const {
2832    return isDynamicExceptionSpec(getExceptionSpecType());
2833  }
2834  /// \brief Return whether this function has a noexcept exception spec.
2835  bool hasNoexceptExceptionSpec() const {
2836    return isNoexceptExceptionSpec(getExceptionSpecType());
2837  }
2838  /// \brief Result type of getNoexceptSpec().
2839  enum NoexceptResult {
2840    NR_NoNoexcept,  ///< There is no noexcept specifier.
2841    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2842    NR_Dependent,   ///< The noexcept specifier is dependent.
2843    NR_Throw,       ///< The noexcept specifier evaluates to false.
2844    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2845  };
2846  /// \brief Get the meaning of the noexcept spec on this function, if any.
2847  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2848  unsigned getNumExceptions() const { return NumExceptions; }
2849  QualType getExceptionType(unsigned i) const {
2850    assert(i < NumExceptions && "Invalid exception number!");
2851    return exception_begin()[i];
2852  }
2853  Expr *getNoexceptExpr() const {
2854    if (getExceptionSpecType() != EST_ComputedNoexcept)
2855      return 0;
2856    // NoexceptExpr sits where the arguments end.
2857    return *reinterpret_cast<Expr *const *>(arg_type_end());
2858  }
2859  /// \brief If this function type has an uninstantiated exception
2860  /// specification, this is the function whose exception specification
2861  /// is represented by this type.
2862  FunctionDecl *getExceptionSpecDecl() const {
2863    if (getExceptionSpecType() != EST_Uninstantiated)
2864      return 0;
2865    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[0];
2866  }
2867  /// \brief If this function type has an uninstantiated exception
2868  /// specification, this is the function whose exception specification
2869  /// should be instantiated to find the exception specification for
2870  /// this type.
2871  FunctionDecl *getExceptionSpecTemplate() const {
2872    if (getExceptionSpecType() != EST_Uninstantiated)
2873      return 0;
2874    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[1];
2875  }
2876  bool isNothrow(ASTContext &Ctx) const {
2877    ExceptionSpecificationType EST = getExceptionSpecType();
2878    assert(EST != EST_Delayed && EST != EST_Uninstantiated);
2879    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2880      return true;
2881    if (EST != EST_ComputedNoexcept)
2882      return false;
2883    return getNoexceptSpec(Ctx) == NR_Nothrow;
2884  }
2885
2886  bool isVariadic() const { return Variadic; }
2887
2888  /// \brief Determines whether this function prototype contains a
2889  /// parameter pack at the end.
2890  ///
2891  /// A function template whose last parameter is a parameter pack can be
2892  /// called with an arbitrary number of arguments, much like a variadic
2893  /// function.
2894  bool isTemplateVariadic() const;
2895
2896  bool hasTrailingReturn() const { return HasTrailingReturn; }
2897
2898  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2899
2900
2901  /// \brief Retrieve the ref-qualifier associated with this function type.
2902  RefQualifierKind getRefQualifier() const {
2903    return FunctionType::getRefQualifier();
2904  }
2905
2906  typedef const QualType *arg_type_iterator;
2907  arg_type_iterator arg_type_begin() const {
2908    return reinterpret_cast<const QualType *>(this+1);
2909  }
2910  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2911
2912  typedef const QualType *exception_iterator;
2913  exception_iterator exception_begin() const {
2914    // exceptions begin where arguments end
2915    return arg_type_end();
2916  }
2917  exception_iterator exception_end() const {
2918    if (getExceptionSpecType() != EST_Dynamic)
2919      return exception_begin();
2920    return exception_begin() + NumExceptions;
2921  }
2922
2923  bool hasAnyConsumedArgs() const {
2924    return HasAnyConsumedArgs;
2925  }
2926  bool isArgConsumed(unsigned I) const {
2927    assert(I < getNumArgs() && "argument index out of range!");
2928    if (hasAnyConsumedArgs())
2929      return getConsumedArgsBuffer()[I];
2930    return false;
2931  }
2932
2933  bool isSugared() const { return false; }
2934  QualType desugar() const { return QualType(this, 0); }
2935
2936  void printExceptionSpecification(std::string &S,
2937                                   PrintingPolicy Policy) const;
2938
2939  static bool classof(const Type *T) {
2940    return T->getTypeClass() == FunctionProto;
2941  }
2942  static bool classof(const FunctionProtoType *) { return true; }
2943
2944  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
2945  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2946                      arg_type_iterator ArgTys, unsigned NumArgs,
2947                      const ExtProtoInfo &EPI, const ASTContext &Context);
2948};
2949
2950
2951/// \brief Represents the dependent type named by a dependently-scoped
2952/// typename using declaration, e.g.
2953///   using typename Base<T>::foo;
2954/// Template instantiation turns these into the underlying type.
2955class UnresolvedUsingType : public Type {
2956  UnresolvedUsingTypenameDecl *Decl;
2957
2958  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2959    : Type(UnresolvedUsing, QualType(), true, true, false,
2960           /*ContainsUnexpandedParameterPack=*/false),
2961      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2962  friend class ASTContext; // ASTContext creates these.
2963public:
2964
2965  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2966
2967  bool isSugared() const { return false; }
2968  QualType desugar() const { return QualType(this, 0); }
2969
2970  static bool classof(const Type *T) {
2971    return T->getTypeClass() == UnresolvedUsing;
2972  }
2973  static bool classof(const UnresolvedUsingType *) { return true; }
2974
2975  void Profile(llvm::FoldingSetNodeID &ID) {
2976    return Profile(ID, Decl);
2977  }
2978  static void Profile(llvm::FoldingSetNodeID &ID,
2979                      UnresolvedUsingTypenameDecl *D) {
2980    ID.AddPointer(D);
2981  }
2982};
2983
2984
2985class TypedefType : public Type {
2986  TypedefNameDecl *Decl;
2987protected:
2988  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
2989    : Type(tc, can, can->isDependentType(),
2990           can->isInstantiationDependentType(),
2991           can->isVariablyModifiedType(),
2992           /*ContainsUnexpandedParameterPack=*/false),
2993      Decl(const_cast<TypedefNameDecl*>(D)) {
2994    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2995  }
2996  friend class ASTContext;  // ASTContext creates these.
2997public:
2998
2999  TypedefNameDecl *getDecl() const { return Decl; }
3000
3001  bool isSugared() const { return true; }
3002  QualType desugar() const;
3003
3004  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
3005  static bool classof(const TypedefType *) { return true; }
3006};
3007
3008/// TypeOfExprType (GCC extension).
3009class TypeOfExprType : public Type {
3010  Expr *TOExpr;
3011
3012protected:
3013  TypeOfExprType(Expr *E, QualType can = QualType());
3014  friend class ASTContext;  // ASTContext creates these.
3015public:
3016  Expr *getUnderlyingExpr() const { return TOExpr; }
3017
3018  /// \brief Remove a single level of sugar.
3019  QualType desugar() const;
3020
3021  /// \brief Returns whether this type directly provides sugar.
3022  bool isSugared() const;
3023
3024  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
3025  static bool classof(const TypeOfExprType *) { return true; }
3026};
3027
3028/// \brief Internal representation of canonical, dependent
3029/// typeof(expr) types.
3030///
3031/// This class is used internally by the ASTContext to manage
3032/// canonical, dependent types, only. Clients will only see instances
3033/// of this class via TypeOfExprType nodes.
3034class DependentTypeOfExprType
3035  : public TypeOfExprType, public llvm::FoldingSetNode {
3036  const ASTContext &Context;
3037
3038public:
3039  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
3040    : TypeOfExprType(E), Context(Context) { }
3041
3042  void Profile(llvm::FoldingSetNodeID &ID) {
3043    Profile(ID, Context, getUnderlyingExpr());
3044  }
3045
3046  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3047                      Expr *E);
3048};
3049
3050/// TypeOfType (GCC extension).
3051class TypeOfType : public Type {
3052  QualType TOType;
3053  TypeOfType(QualType T, QualType can)
3054    : Type(TypeOf, can, T->isDependentType(),
3055           T->isInstantiationDependentType(),
3056           T->isVariablyModifiedType(),
3057           T->containsUnexpandedParameterPack()),
3058      TOType(T) {
3059    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3060  }
3061  friend class ASTContext;  // ASTContext creates these.
3062public:
3063  QualType getUnderlyingType() const { return TOType; }
3064
3065  /// \brief Remove a single level of sugar.
3066  QualType desugar() const { return getUnderlyingType(); }
3067
3068  /// \brief Returns whether this type directly provides sugar.
3069  bool isSugared() const { return true; }
3070
3071  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
3072  static bool classof(const TypeOfType *) { return true; }
3073};
3074
3075/// DecltypeType (C++0x)
3076class DecltypeType : public Type {
3077  Expr *E;
3078  QualType UnderlyingType;
3079
3080protected:
3081  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3082  friend class ASTContext;  // ASTContext creates these.
3083public:
3084  Expr *getUnderlyingExpr() const { return E; }
3085  QualType getUnderlyingType() const { return UnderlyingType; }
3086
3087  /// \brief Remove a single level of sugar.
3088  QualType desugar() const;
3089
3090  /// \brief Returns whether this type directly provides sugar.
3091  bool isSugared() const;
3092
3093  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3094  static bool classof(const DecltypeType *) { return true; }
3095};
3096
3097/// \brief Internal representation of canonical, dependent
3098/// decltype(expr) types.
3099///
3100/// This class is used internally by the ASTContext to manage
3101/// canonical, dependent types, only. Clients will only see instances
3102/// of this class via DecltypeType nodes.
3103class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3104  const ASTContext &Context;
3105
3106public:
3107  DependentDecltypeType(const ASTContext &Context, Expr *E);
3108
3109  void Profile(llvm::FoldingSetNodeID &ID) {
3110    Profile(ID, Context, getUnderlyingExpr());
3111  }
3112
3113  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3114                      Expr *E);
3115};
3116
3117/// \brief A unary type transform, which is a type constructed from another
3118class UnaryTransformType : public Type {
3119public:
3120  enum UTTKind {
3121    EnumUnderlyingType
3122  };
3123
3124private:
3125  /// The untransformed type.
3126  QualType BaseType;
3127  /// The transformed type if not dependent, otherwise the same as BaseType.
3128  QualType UnderlyingType;
3129
3130  UTTKind UKind;
3131protected:
3132  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3133                     QualType CanonicalTy);
3134  friend class ASTContext;
3135public:
3136  bool isSugared() const { return !isDependentType(); }
3137  QualType desugar() const { return UnderlyingType; }
3138
3139  QualType getUnderlyingType() const { return UnderlyingType; }
3140  QualType getBaseType() const { return BaseType; }
3141
3142  UTTKind getUTTKind() const { return UKind; }
3143
3144  static bool classof(const Type *T) {
3145    return T->getTypeClass() == UnaryTransform;
3146  }
3147  static bool classof(const UnaryTransformType *) { return true; }
3148};
3149
3150class TagType : public Type {
3151  /// Stores the TagDecl associated with this type. The decl may point to any
3152  /// TagDecl that declares the entity.
3153  TagDecl * decl;
3154
3155  friend class ASTReader;
3156
3157protected:
3158  TagType(TypeClass TC, const TagDecl *D, QualType can);
3159
3160public:
3161  TagDecl *getDecl() const;
3162
3163  /// @brief Determines whether this type is in the process of being
3164  /// defined.
3165  bool isBeingDefined() const;
3166
3167  static bool classof(const Type *T) {
3168    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3169  }
3170  static bool classof(const TagType *) { return true; }
3171};
3172
3173/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
3174/// to detect TagType objects of structs/unions/classes.
3175class RecordType : public TagType {
3176protected:
3177  explicit RecordType(const RecordDecl *D)
3178    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3179  explicit RecordType(TypeClass TC, RecordDecl *D)
3180    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3181  friend class ASTContext;   // ASTContext creates these.
3182public:
3183
3184  RecordDecl *getDecl() const {
3185    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3186  }
3187
3188  // FIXME: This predicate is a helper to QualType/Type. It needs to
3189  // recursively check all fields for const-ness. If any field is declared
3190  // const, it needs to return false.
3191  bool hasConstFields() const { return false; }
3192
3193  bool isSugared() const { return false; }
3194  QualType desugar() const { return QualType(this, 0); }
3195
3196  static bool classof(const Type *T) { return T->getTypeClass() == Record; }
3197  static bool classof(const RecordType *) { return true; }
3198};
3199
3200/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
3201/// to detect TagType objects of enums.
3202class EnumType : public TagType {
3203  explicit EnumType(const EnumDecl *D)
3204    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3205  friend class ASTContext;   // ASTContext creates these.
3206public:
3207
3208  EnumDecl *getDecl() const {
3209    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3210  }
3211
3212  bool isSugared() const { return false; }
3213  QualType desugar() const { return QualType(this, 0); }
3214
3215  static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
3216  static bool classof(const EnumType *) { return true; }
3217};
3218
3219/// AttributedType - An attributed type is a type to which a type
3220/// attribute has been applied.  The "modified type" is the
3221/// fully-sugared type to which the attributed type was applied;
3222/// generally it is not canonically equivalent to the attributed type.
3223/// The "equivalent type" is the minimally-desugared type which the
3224/// type is canonically equivalent to.
3225///
3226/// For example, in the following attributed type:
3227///     int32_t __attribute__((vector_size(16)))
3228///   - the modified type is the TypedefType for int32_t
3229///   - the equivalent type is VectorType(16, int32_t)
3230///   - the canonical type is VectorType(16, int)
3231class AttributedType : public Type, public llvm::FoldingSetNode {
3232public:
3233  // It is really silly to have yet another attribute-kind enum, but
3234  // clang::attr::Kind doesn't currently cover the pure type attrs.
3235  enum Kind {
3236    // Expression operand.
3237    attr_address_space,
3238    attr_regparm,
3239    attr_vector_size,
3240    attr_neon_vector_type,
3241    attr_neon_polyvector_type,
3242
3243    FirstExprOperandKind = attr_address_space,
3244    LastExprOperandKind = attr_neon_polyvector_type,
3245
3246    // Enumerated operand (string or keyword).
3247    attr_objc_gc,
3248    attr_objc_ownership,
3249    attr_pcs,
3250
3251    FirstEnumOperandKind = attr_objc_gc,
3252    LastEnumOperandKind = attr_pcs,
3253
3254    // No operand.
3255    attr_noreturn,
3256    attr_cdecl,
3257    attr_fastcall,
3258    attr_stdcall,
3259    attr_thiscall,
3260    attr_pascal
3261  };
3262
3263private:
3264  QualType ModifiedType;
3265  QualType EquivalentType;
3266
3267  friend class ASTContext; // creates these
3268
3269  AttributedType(QualType canon, Kind attrKind,
3270                 QualType modified, QualType equivalent)
3271    : Type(Attributed, canon, canon->isDependentType(),
3272           canon->isInstantiationDependentType(),
3273           canon->isVariablyModifiedType(),
3274           canon->containsUnexpandedParameterPack()),
3275      ModifiedType(modified), EquivalentType(equivalent) {
3276    AttributedTypeBits.AttrKind = attrKind;
3277  }
3278
3279public:
3280  Kind getAttrKind() const {
3281    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3282  }
3283
3284  QualType getModifiedType() const { return ModifiedType; }
3285  QualType getEquivalentType() const { return EquivalentType; }
3286
3287  bool isSugared() const { return true; }
3288  QualType desugar() const { return getEquivalentType(); }
3289
3290  void Profile(llvm::FoldingSetNodeID &ID) {
3291    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3292  }
3293
3294  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3295                      QualType modified, QualType equivalent) {
3296    ID.AddInteger(attrKind);
3297    ID.AddPointer(modified.getAsOpaquePtr());
3298    ID.AddPointer(equivalent.getAsOpaquePtr());
3299  }
3300
3301  static bool classof(const Type *T) {
3302    return T->getTypeClass() == Attributed;
3303  }
3304  static bool classof(const AttributedType *T) { return true; }
3305};
3306
3307class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3308  // Helper data collector for canonical types.
3309  struct CanonicalTTPTInfo {
3310    unsigned Depth : 15;
3311    unsigned ParameterPack : 1;
3312    unsigned Index : 16;
3313  };
3314
3315  union {
3316    // Info for the canonical type.
3317    CanonicalTTPTInfo CanTTPTInfo;
3318    // Info for the non-canonical type.
3319    TemplateTypeParmDecl *TTPDecl;
3320  };
3321
3322  /// Build a non-canonical type.
3323  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3324    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3325           /*InstantiationDependent=*/true,
3326           /*VariablyModified=*/false,
3327           Canon->containsUnexpandedParameterPack()),
3328      TTPDecl(TTPDecl) { }
3329
3330  /// Build the canonical type.
3331  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3332    : Type(TemplateTypeParm, QualType(this, 0),
3333           /*Dependent=*/true,
3334           /*InstantiationDependent=*/true,
3335           /*VariablyModified=*/false, PP) {
3336    CanTTPTInfo.Depth = D;
3337    CanTTPTInfo.Index = I;
3338    CanTTPTInfo.ParameterPack = PP;
3339  }
3340
3341  friend class ASTContext;  // ASTContext creates these
3342
3343  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3344    QualType Can = getCanonicalTypeInternal();
3345    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3346  }
3347
3348public:
3349  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3350  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3351  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3352
3353  TemplateTypeParmDecl *getDecl() const {
3354    return isCanonicalUnqualified() ? 0 : TTPDecl;
3355  }
3356
3357  IdentifierInfo *getIdentifier() const;
3358
3359  bool isSugared() const { return false; }
3360  QualType desugar() const { return QualType(this, 0); }
3361
3362  void Profile(llvm::FoldingSetNodeID &ID) {
3363    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3364  }
3365
3366  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3367                      unsigned Index, bool ParameterPack,
3368                      TemplateTypeParmDecl *TTPDecl) {
3369    ID.AddInteger(Depth);
3370    ID.AddInteger(Index);
3371    ID.AddBoolean(ParameterPack);
3372    ID.AddPointer(TTPDecl);
3373  }
3374
3375  static bool classof(const Type *T) {
3376    return T->getTypeClass() == TemplateTypeParm;
3377  }
3378  static bool classof(const TemplateTypeParmType *T) { return true; }
3379};
3380
3381/// \brief Represents the result of substituting a type for a template
3382/// type parameter.
3383///
3384/// Within an instantiated template, all template type parameters have
3385/// been replaced with these.  They are used solely to record that a
3386/// type was originally written as a template type parameter;
3387/// therefore they are never canonical.
3388class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3389  // The original type parameter.
3390  const TemplateTypeParmType *Replaced;
3391
3392  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3393    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3394           Canon->isInstantiationDependentType(),
3395           Canon->isVariablyModifiedType(),
3396           Canon->containsUnexpandedParameterPack()),
3397      Replaced(Param) { }
3398
3399  friend class ASTContext;
3400
3401public:
3402  /// Gets the template parameter that was substituted for.
3403  const TemplateTypeParmType *getReplacedParameter() const {
3404    return Replaced;
3405  }
3406
3407  /// Gets the type that was substituted for the template
3408  /// parameter.
3409  QualType getReplacementType() const {
3410    return getCanonicalTypeInternal();
3411  }
3412
3413  bool isSugared() const { return true; }
3414  QualType desugar() const { return getReplacementType(); }
3415
3416  void Profile(llvm::FoldingSetNodeID &ID) {
3417    Profile(ID, getReplacedParameter(), getReplacementType());
3418  }
3419  static void Profile(llvm::FoldingSetNodeID &ID,
3420                      const TemplateTypeParmType *Replaced,
3421                      QualType Replacement) {
3422    ID.AddPointer(Replaced);
3423    ID.AddPointer(Replacement.getAsOpaquePtr());
3424  }
3425
3426  static bool classof(const Type *T) {
3427    return T->getTypeClass() == SubstTemplateTypeParm;
3428  }
3429  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
3430};
3431
3432/// \brief Represents the result of substituting a set of types for a template
3433/// type parameter pack.
3434///
3435/// When a pack expansion in the source code contains multiple parameter packs
3436/// and those parameter packs correspond to different levels of template
3437/// parameter lists, this type node is used to represent a template type
3438/// parameter pack from an outer level, which has already had its argument pack
3439/// substituted but that still lives within a pack expansion that itself
3440/// could not be instantiated. When actually performing a substitution into
3441/// that pack expansion (e.g., when all template parameters have corresponding
3442/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3443/// at the current pack substitution index.
3444class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3445  /// \brief The original type parameter.
3446  const TemplateTypeParmType *Replaced;
3447
3448  /// \brief A pointer to the set of template arguments that this
3449  /// parameter pack is instantiated with.
3450  const TemplateArgument *Arguments;
3451
3452  /// \brief The number of template arguments in \c Arguments.
3453  unsigned NumArguments;
3454
3455  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3456                                QualType Canon,
3457                                const TemplateArgument &ArgPack);
3458
3459  friend class ASTContext;
3460
3461public:
3462  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
3463
3464  /// Gets the template parameter that was substituted for.
3465  const TemplateTypeParmType *getReplacedParameter() const {
3466    return Replaced;
3467  }
3468
3469  bool isSugared() const { return false; }
3470  QualType desugar() const { return QualType(this, 0); }
3471
3472  TemplateArgument getArgumentPack() const;
3473
3474  void Profile(llvm::FoldingSetNodeID &ID);
3475  static void Profile(llvm::FoldingSetNodeID &ID,
3476                      const TemplateTypeParmType *Replaced,
3477                      const TemplateArgument &ArgPack);
3478
3479  static bool classof(const Type *T) {
3480    return T->getTypeClass() == SubstTemplateTypeParmPack;
3481  }
3482  static bool classof(const SubstTemplateTypeParmPackType *T) { return true; }
3483};
3484
3485/// \brief Represents a C++0x auto type.
3486///
3487/// These types are usually a placeholder for a deduced type. However, within
3488/// templates and before the initializer is attached, there is no deduced type
3489/// and an auto type is type-dependent and canonical.
3490class AutoType : public Type, public llvm::FoldingSetNode {
3491  AutoType(QualType DeducedType)
3492    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3493           /*Dependent=*/DeducedType.isNull(),
3494           /*InstantiationDependent=*/DeducedType.isNull(),
3495           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3496    assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
3497           "deduced a dependent type for auto");
3498  }
3499
3500  friend class ASTContext;  // ASTContext creates these
3501
3502public:
3503  bool isSugared() const { return isDeduced(); }
3504  QualType desugar() const { return getCanonicalTypeInternal(); }
3505
3506  QualType getDeducedType() const {
3507    return isDeduced() ? getCanonicalTypeInternal() : QualType();
3508  }
3509  bool isDeduced() const {
3510    return !isDependentType();
3511  }
3512
3513  void Profile(llvm::FoldingSetNodeID &ID) {
3514    Profile(ID, getDeducedType());
3515  }
3516
3517  static void Profile(llvm::FoldingSetNodeID &ID,
3518                      QualType Deduced) {
3519    ID.AddPointer(Deduced.getAsOpaquePtr());
3520  }
3521
3522  static bool classof(const Type *T) {
3523    return T->getTypeClass() == Auto;
3524  }
3525  static bool classof(const AutoType *T) { return true; }
3526};
3527
3528/// \brief Represents a type template specialization; the template
3529/// must be a class template, a type alias template, or a template
3530/// template parameter.  A template which cannot be resolved to one of
3531/// these, e.g. because it is written with a dependent scope
3532/// specifier, is instead represented as a
3533/// @c DependentTemplateSpecializationType.
3534///
3535/// A non-dependent template specialization type is always "sugar",
3536/// typically for a @c RecordType.  For example, a class template
3537/// specialization type of @c vector<int> will refer to a tag type for
3538/// the instantiation @c std::vector<int, std::allocator<int>>
3539///
3540/// Template specializations are dependent if either the template or
3541/// any of the template arguments are dependent, in which case the
3542/// type may also be canonical.
3543///
3544/// Instances of this type are allocated with a trailing array of
3545/// TemplateArguments, followed by a QualType representing the
3546/// non-canonical aliased type when the template is a type alias
3547/// template.
3548class TemplateSpecializationType
3549  : public Type, public llvm::FoldingSetNode {
3550  /// \brief The name of the template being specialized.  This is
3551  /// either a TemplateName::Template (in which case it is a
3552  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
3553  /// TypeAliasTemplateDecl*), a
3554  /// TemplateName::SubstTemplateTemplateParmPack, or a
3555  /// TemplateName::SubstTemplateTemplateParm (in which case the
3556  /// replacement must, recursively, be one of these).
3557  TemplateName Template;
3558
3559  /// \brief - The number of template arguments named in this class
3560  /// template specialization.
3561  unsigned NumArgs : 31;
3562
3563  /// \brief Whether this template specialization type is a substituted
3564  /// type alias.
3565  bool TypeAlias : 1;
3566
3567  TemplateSpecializationType(TemplateName T,
3568                             const TemplateArgument *Args,
3569                             unsigned NumArgs, QualType Canon,
3570                             QualType Aliased);
3571
3572  friend class ASTContext;  // ASTContext creates these
3573
3574public:
3575  /// \brief Determine whether any of the given template arguments are
3576  /// dependent.
3577  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3578                                            unsigned NumArgs,
3579                                            bool &InstantiationDependent);
3580
3581  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3582                                            unsigned NumArgs,
3583                                            bool &InstantiationDependent);
3584
3585  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
3586                                            bool &InstantiationDependent);
3587
3588  /// \brief Print a template argument list, including the '<' and '>'
3589  /// enclosing the template arguments.
3590  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
3591                                               unsigned NumArgs,
3592                                               const PrintingPolicy &Policy,
3593                                               bool SkipBrackets = false);
3594
3595  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
3596                                               unsigned NumArgs,
3597                                               const PrintingPolicy &Policy);
3598
3599  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
3600                                               const PrintingPolicy &Policy);
3601
3602  /// True if this template specialization type matches a current
3603  /// instantiation in the context in which it is found.
3604  bool isCurrentInstantiation() const {
3605    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3606  }
3607
3608  /// \brief Determine if this template specialization type is for a type alias
3609  /// template that has been substituted.
3610  ///
3611  /// Nearly every template specialization type whose template is an alias
3612  /// template will be substituted. However, this is not the case when
3613  /// the specialization contains a pack expansion but the template alias
3614  /// does not have a corresponding parameter pack, e.g.,
3615  ///
3616  /// \code
3617  /// template<typename T, typename U, typename V> struct S;
3618  /// template<typename T, typename U> using A = S<T, int, U>;
3619  /// template<typename... Ts> struct X {
3620  ///   typedef A<Ts...> type; // not a type alias
3621  /// };
3622  /// \endcode
3623  bool isTypeAlias() const { return TypeAlias; }
3624
3625  /// Get the aliased type, if this is a specialization of a type alias
3626  /// template.
3627  QualType getAliasedType() const {
3628    assert(isTypeAlias() && "not a type alias template specialization");
3629    return *reinterpret_cast<const QualType*>(end());
3630  }
3631
3632  typedef const TemplateArgument * iterator;
3633
3634  iterator begin() const { return getArgs(); }
3635  iterator end() const; // defined inline in TemplateBase.h
3636
3637  /// \brief Retrieve the name of the template that we are specializing.
3638  TemplateName getTemplateName() const { return Template; }
3639
3640  /// \brief Retrieve the template arguments.
3641  const TemplateArgument *getArgs() const {
3642    return reinterpret_cast<const TemplateArgument *>(this + 1);
3643  }
3644
3645  /// \brief Retrieve the number of template arguments.
3646  unsigned getNumArgs() const { return NumArgs; }
3647
3648  /// \brief Retrieve a specific template argument as a type.
3649  /// \precondition @c isArgType(Arg)
3650  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3651
3652  bool isSugared() const {
3653    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
3654  }
3655  QualType desugar() const { return getCanonicalTypeInternal(); }
3656
3657  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3658    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3659    if (isTypeAlias())
3660      getAliasedType().Profile(ID);
3661  }
3662
3663  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3664                      const TemplateArgument *Args,
3665                      unsigned NumArgs,
3666                      const ASTContext &Context);
3667
3668  static bool classof(const Type *T) {
3669    return T->getTypeClass() == TemplateSpecialization;
3670  }
3671  static bool classof(const TemplateSpecializationType *T) { return true; }
3672};
3673
3674/// \brief The injected class name of a C++ class template or class
3675/// template partial specialization.  Used to record that a type was
3676/// spelled with a bare identifier rather than as a template-id; the
3677/// equivalent for non-templated classes is just RecordType.
3678///
3679/// Injected class name types are always dependent.  Template
3680/// instantiation turns these into RecordTypes.
3681///
3682/// Injected class name types are always canonical.  This works
3683/// because it is impossible to compare an injected class name type
3684/// with the corresponding non-injected template type, for the same
3685/// reason that it is impossible to directly compare template
3686/// parameters from different dependent contexts: injected class name
3687/// types can only occur within the scope of a particular templated
3688/// declaration, and within that scope every template specialization
3689/// will canonicalize to the injected class name (when appropriate
3690/// according to the rules of the language).
3691class InjectedClassNameType : public Type {
3692  CXXRecordDecl *Decl;
3693
3694  /// The template specialization which this type represents.
3695  /// For example, in
3696  ///   template <class T> class A { ... };
3697  /// this is A<T>, whereas in
3698  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3699  /// this is A<B<X,Y> >.
3700  ///
3701  /// It is always unqualified, always a template specialization type,
3702  /// and always dependent.
3703  QualType InjectedType;
3704
3705  friend class ASTContext; // ASTContext creates these.
3706  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3707                          // currently suitable for AST reading, too much
3708                          // interdependencies.
3709  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3710    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3711           /*InstantiationDependent=*/true,
3712           /*VariablyModified=*/false,
3713           /*ContainsUnexpandedParameterPack=*/false),
3714      Decl(D), InjectedType(TST) {
3715    assert(isa<TemplateSpecializationType>(TST));
3716    assert(!TST.hasQualifiers());
3717    assert(TST->isDependentType());
3718  }
3719
3720public:
3721  QualType getInjectedSpecializationType() const { return InjectedType; }
3722  const TemplateSpecializationType *getInjectedTST() const {
3723    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3724  }
3725
3726  CXXRecordDecl *getDecl() const;
3727
3728  bool isSugared() const { return false; }
3729  QualType desugar() const { return QualType(this, 0); }
3730
3731  static bool classof(const Type *T) {
3732    return T->getTypeClass() == InjectedClassName;
3733  }
3734  static bool classof(const InjectedClassNameType *T) { return true; }
3735};
3736
3737/// \brief The kind of a tag type.
3738enum TagTypeKind {
3739  /// \brief The "struct" keyword.
3740  TTK_Struct,
3741  /// \brief The "union" keyword.
3742  TTK_Union,
3743  /// \brief The "class" keyword.
3744  TTK_Class,
3745  /// \brief The "enum" keyword.
3746  TTK_Enum
3747};
3748
3749/// \brief The elaboration keyword that precedes a qualified type name or
3750/// introduces an elaborated-type-specifier.
3751enum ElaboratedTypeKeyword {
3752  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3753  ETK_Struct,
3754  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3755  ETK_Union,
3756  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3757  ETK_Class,
3758  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3759  ETK_Enum,
3760  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3761  /// \c typename T::type.
3762  ETK_Typename,
3763  /// \brief No keyword precedes the qualified type name.
3764  ETK_None
3765};
3766
3767/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3768/// The keyword in stored in the free bits of the base class.
3769/// Also provides a few static helpers for converting and printing
3770/// elaborated type keyword and tag type kind enumerations.
3771class TypeWithKeyword : public Type {
3772protected:
3773  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3774                  QualType Canonical, bool Dependent,
3775                  bool InstantiationDependent, bool VariablyModified,
3776                  bool ContainsUnexpandedParameterPack)
3777  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3778         ContainsUnexpandedParameterPack) {
3779    TypeWithKeywordBits.Keyword = Keyword;
3780  }
3781
3782public:
3783  ElaboratedTypeKeyword getKeyword() const {
3784    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3785  }
3786
3787  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3788  /// into an elaborated type keyword.
3789  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3790
3791  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3792  /// into a tag type kind.  It is an error to provide a type specifier
3793  /// which *isn't* a tag kind here.
3794  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3795
3796  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3797  /// elaborated type keyword.
3798  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3799
3800  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3801  // a TagTypeKind. It is an error to provide an elaborated type keyword
3802  /// which *isn't* a tag kind here.
3803  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3804
3805  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3806
3807  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3808
3809  static const char *getTagTypeKindName(TagTypeKind Kind) {
3810    return getKeywordName(getKeywordForTagTypeKind(Kind));
3811  }
3812
3813  class CannotCastToThisType {};
3814  static CannotCastToThisType classof(const Type *);
3815};
3816
3817/// \brief Represents a type that was referred to using an elaborated type
3818/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3819/// or both.
3820///
3821/// This type is used to keep track of a type name as written in the
3822/// source code, including tag keywords and any nested-name-specifiers.
3823/// The type itself is always "sugar", used to express what was written
3824/// in the source code but containing no additional semantic information.
3825class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3826
3827  /// \brief The nested name specifier containing the qualifier.
3828  NestedNameSpecifier *NNS;
3829
3830  /// \brief The type that this qualified name refers to.
3831  QualType NamedType;
3832
3833  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3834                 QualType NamedType, QualType CanonType)
3835    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3836                      NamedType->isDependentType(),
3837                      NamedType->isInstantiationDependentType(),
3838                      NamedType->isVariablyModifiedType(),
3839                      NamedType->containsUnexpandedParameterPack()),
3840      NNS(NNS), NamedType(NamedType) {
3841    assert(!(Keyword == ETK_None && NNS == 0) &&
3842           "ElaboratedType cannot have elaborated type keyword "
3843           "and name qualifier both null.");
3844  }
3845
3846  friend class ASTContext;  // ASTContext creates these
3847
3848public:
3849  ~ElaboratedType();
3850
3851  /// \brief Retrieve the qualification on this type.
3852  NestedNameSpecifier *getQualifier() const { return NNS; }
3853
3854  /// \brief Retrieve the type named by the qualified-id.
3855  QualType getNamedType() const { return NamedType; }
3856
3857  /// \brief Remove a single level of sugar.
3858  QualType desugar() const { return getNamedType(); }
3859
3860  /// \brief Returns whether this type directly provides sugar.
3861  bool isSugared() const { return true; }
3862
3863  void Profile(llvm::FoldingSetNodeID &ID) {
3864    Profile(ID, getKeyword(), NNS, NamedType);
3865  }
3866
3867  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3868                      NestedNameSpecifier *NNS, QualType NamedType) {
3869    ID.AddInteger(Keyword);
3870    ID.AddPointer(NNS);
3871    NamedType.Profile(ID);
3872  }
3873
3874  static bool classof(const Type *T) {
3875    return T->getTypeClass() == Elaborated;
3876  }
3877  static bool classof(const ElaboratedType *T) { return true; }
3878};
3879
3880/// \brief Represents a qualified type name for which the type name is
3881/// dependent.
3882///
3883/// DependentNameType represents a class of dependent types that involve a
3884/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3885/// name of a type. The DependentNameType may start with a "typename" (for a
3886/// typename-specifier), "class", "struct", "union", or "enum" (for a
3887/// dependent elaborated-type-specifier), or nothing (in contexts where we
3888/// know that we must be referring to a type, e.g., in a base class specifier).
3889class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3890
3891  /// \brief The nested name specifier containing the qualifier.
3892  NestedNameSpecifier *NNS;
3893
3894  /// \brief The type that this typename specifier refers to.
3895  const IdentifierInfo *Name;
3896
3897  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3898                    const IdentifierInfo *Name, QualType CanonType)
3899    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3900                      /*InstantiationDependent=*/true,
3901                      /*VariablyModified=*/false,
3902                      NNS->containsUnexpandedParameterPack()),
3903      NNS(NNS), Name(Name) {
3904    assert(NNS->isDependent() &&
3905           "DependentNameType requires a dependent nested-name-specifier");
3906  }
3907
3908  friend class ASTContext;  // ASTContext creates these
3909
3910public:
3911  /// \brief Retrieve the qualification on this type.
3912  NestedNameSpecifier *getQualifier() const { return NNS; }
3913
3914  /// \brief Retrieve the type named by the typename specifier as an
3915  /// identifier.
3916  ///
3917  /// This routine will return a non-NULL identifier pointer when the
3918  /// form of the original typename was terminated by an identifier,
3919  /// e.g., "typename T::type".
3920  const IdentifierInfo *getIdentifier() const {
3921    return Name;
3922  }
3923
3924  bool isSugared() const { return false; }
3925  QualType desugar() const { return QualType(this, 0); }
3926
3927  void Profile(llvm::FoldingSetNodeID &ID) {
3928    Profile(ID, getKeyword(), NNS, Name);
3929  }
3930
3931  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3932                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
3933    ID.AddInteger(Keyword);
3934    ID.AddPointer(NNS);
3935    ID.AddPointer(Name);
3936  }
3937
3938  static bool classof(const Type *T) {
3939    return T->getTypeClass() == DependentName;
3940  }
3941  static bool classof(const DependentNameType *T) { return true; }
3942};
3943
3944/// DependentTemplateSpecializationType - Represents a template
3945/// specialization type whose template cannot be resolved, e.g.
3946///   A<T>::template B<T>
3947class DependentTemplateSpecializationType :
3948  public TypeWithKeyword, public llvm::FoldingSetNode {
3949
3950  /// \brief The nested name specifier containing the qualifier.
3951  NestedNameSpecifier *NNS;
3952
3953  /// \brief The identifier of the template.
3954  const IdentifierInfo *Name;
3955
3956  /// \brief - The number of template arguments named in this class
3957  /// template specialization.
3958  unsigned NumArgs;
3959
3960  const TemplateArgument *getArgBuffer() const {
3961    return reinterpret_cast<const TemplateArgument*>(this+1);
3962  }
3963  TemplateArgument *getArgBuffer() {
3964    return reinterpret_cast<TemplateArgument*>(this+1);
3965  }
3966
3967  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
3968                                      NestedNameSpecifier *NNS,
3969                                      const IdentifierInfo *Name,
3970                                      unsigned NumArgs,
3971                                      const TemplateArgument *Args,
3972                                      QualType Canon);
3973
3974  friend class ASTContext;  // ASTContext creates these
3975
3976public:
3977  NestedNameSpecifier *getQualifier() const { return NNS; }
3978  const IdentifierInfo *getIdentifier() const { return Name; }
3979
3980  /// \brief Retrieve the template arguments.
3981  const TemplateArgument *getArgs() const {
3982    return getArgBuffer();
3983  }
3984
3985  /// \brief Retrieve the number of template arguments.
3986  unsigned getNumArgs() const { return NumArgs; }
3987
3988  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3989
3990  typedef const TemplateArgument * iterator;
3991  iterator begin() const { return getArgs(); }
3992  iterator end() const; // inline in TemplateBase.h
3993
3994  bool isSugared() const { return false; }
3995  QualType desugar() const { return QualType(this, 0); }
3996
3997  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
3998    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
3999  }
4000
4001  static void Profile(llvm::FoldingSetNodeID &ID,
4002                      const ASTContext &Context,
4003                      ElaboratedTypeKeyword Keyword,
4004                      NestedNameSpecifier *Qualifier,
4005                      const IdentifierInfo *Name,
4006                      unsigned NumArgs,
4007                      const TemplateArgument *Args);
4008
4009  static bool classof(const Type *T) {
4010    return T->getTypeClass() == DependentTemplateSpecialization;
4011  }
4012  static bool classof(const DependentTemplateSpecializationType *T) {
4013    return true;
4014  }
4015};
4016
4017/// \brief Represents a pack expansion of types.
4018///
4019/// Pack expansions are part of C++0x variadic templates. A pack
4020/// expansion contains a pattern, which itself contains one or more
4021/// "unexpanded" parameter packs. When instantiated, a pack expansion
4022/// produces a series of types, each instantiated from the pattern of
4023/// the expansion, where the Ith instantiation of the pattern uses the
4024/// Ith arguments bound to each of the unexpanded parameter packs. The
4025/// pack expansion is considered to "expand" these unexpanded
4026/// parameter packs.
4027///
4028/// \code
4029/// template<typename ...Types> struct tuple;
4030///
4031/// template<typename ...Types>
4032/// struct tuple_of_references {
4033///   typedef tuple<Types&...> type;
4034/// };
4035/// \endcode
4036///
4037/// Here, the pack expansion \c Types&... is represented via a
4038/// PackExpansionType whose pattern is Types&.
4039class PackExpansionType : public Type, public llvm::FoldingSetNode {
4040  /// \brief The pattern of the pack expansion.
4041  QualType Pattern;
4042
4043  /// \brief The number of expansions that this pack expansion will
4044  /// generate when substituted (+1), or indicates that
4045  ///
4046  /// This field will only have a non-zero value when some of the parameter
4047  /// packs that occur within the pattern have been substituted but others have
4048  /// not.
4049  unsigned NumExpansions;
4050
4051  PackExpansionType(QualType Pattern, QualType Canon,
4052                    llvm::Optional<unsigned> NumExpansions)
4053    : Type(PackExpansion, Canon, /*Dependent=*/true,
4054           /*InstantiationDependent=*/true,
4055           /*VariableModified=*/Pattern->isVariablyModifiedType(),
4056           /*ContainsUnexpandedParameterPack=*/false),
4057      Pattern(Pattern),
4058      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
4059
4060  friend class ASTContext;  // ASTContext creates these
4061
4062public:
4063  /// \brief Retrieve the pattern of this pack expansion, which is the
4064  /// type that will be repeatedly instantiated when instantiating the
4065  /// pack expansion itself.
4066  QualType getPattern() const { return Pattern; }
4067
4068  /// \brief Retrieve the number of expansions that this pack expansion will
4069  /// generate, if known.
4070  llvm::Optional<unsigned> getNumExpansions() const {
4071    if (NumExpansions)
4072      return NumExpansions - 1;
4073
4074    return llvm::Optional<unsigned>();
4075  }
4076
4077  bool isSugared() const { return false; }
4078  QualType desugar() const { return QualType(this, 0); }
4079
4080  void Profile(llvm::FoldingSetNodeID &ID) {
4081    Profile(ID, getPattern(), getNumExpansions());
4082  }
4083
4084  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
4085                      llvm::Optional<unsigned> NumExpansions) {
4086    ID.AddPointer(Pattern.getAsOpaquePtr());
4087    ID.AddBoolean(NumExpansions);
4088    if (NumExpansions)
4089      ID.AddInteger(*NumExpansions);
4090  }
4091
4092  static bool classof(const Type *T) {
4093    return T->getTypeClass() == PackExpansion;
4094  }
4095  static bool classof(const PackExpansionType *T) {
4096    return true;
4097  }
4098};
4099
4100/// ObjCObjectType - Represents a class type in Objective C.
4101/// Every Objective C type is a combination of a base type and a
4102/// list of protocols.
4103///
4104/// Given the following declarations:
4105///   @class C;
4106///   @protocol P;
4107///
4108/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4109/// with base C and no protocols.
4110///
4111/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
4112///
4113/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
4114/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4115/// and no protocols.
4116///
4117/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
4118/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4119/// this should get its own sugar class to better represent the source.
4120class ObjCObjectType : public Type {
4121  // ObjCObjectType.NumProtocols - the number of protocols stored
4122  // after the ObjCObjectPointerType node.
4123  //
4124  // These protocols are those written directly on the type.  If
4125  // protocol qualifiers ever become additive, the iterators will need
4126  // to get kindof complicated.
4127  //
4128  // In the canonical object type, these are sorted alphabetically
4129  // and uniqued.
4130
4131  /// Either a BuiltinType or an InterfaceType or sugar for either.
4132  QualType BaseType;
4133
4134  ObjCProtocolDecl * const *getProtocolStorage() const {
4135    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4136  }
4137
4138  ObjCProtocolDecl **getProtocolStorage();
4139
4140protected:
4141  ObjCObjectType(QualType Canonical, QualType Base,
4142                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
4143
4144  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4145  ObjCObjectType(enum Nonce_ObjCInterface)
4146        : Type(ObjCInterface, QualType(), false, false, false, false),
4147      BaseType(QualType(this_(), 0)) {
4148    ObjCObjectTypeBits.NumProtocols = 0;
4149  }
4150
4151public:
4152  /// getBaseType - Gets the base type of this object type.  This is
4153  /// always (possibly sugar for) one of:
4154  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4155  ///    user, which is a typedef for an ObjCPointerType)
4156  ///  - the 'Class' builtin type (same caveat)
4157  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4158  QualType getBaseType() const { return BaseType; }
4159
4160  bool isObjCId() const {
4161    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4162  }
4163  bool isObjCClass() const {
4164    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4165  }
4166  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4167  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4168  bool isObjCUnqualifiedIdOrClass() const {
4169    if (!qual_empty()) return false;
4170    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4171      return T->getKind() == BuiltinType::ObjCId ||
4172             T->getKind() == BuiltinType::ObjCClass;
4173    return false;
4174  }
4175  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4176  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4177
4178  /// Gets the interface declaration for this object type, if the base type
4179  /// really is an interface.
4180  ObjCInterfaceDecl *getInterface() const;
4181
4182  typedef ObjCProtocolDecl * const *qual_iterator;
4183
4184  qual_iterator qual_begin() const { return getProtocolStorage(); }
4185  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4186
4187  bool qual_empty() const { return getNumProtocols() == 0; }
4188
4189  /// getNumProtocols - Return the number of qualifying protocols in this
4190  /// interface type, or 0 if there are none.
4191  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4192
4193  /// \brief Fetch a protocol by index.
4194  ObjCProtocolDecl *getProtocol(unsigned I) const {
4195    assert(I < getNumProtocols() && "Out-of-range protocol access");
4196    return qual_begin()[I];
4197  }
4198
4199  bool isSugared() const { return false; }
4200  QualType desugar() const { return QualType(this, 0); }
4201
4202  static bool classof(const Type *T) {
4203    return T->getTypeClass() == ObjCObject ||
4204           T->getTypeClass() == ObjCInterface;
4205  }
4206  static bool classof(const ObjCObjectType *) { return true; }
4207};
4208
4209/// ObjCObjectTypeImpl - A class providing a concrete implementation
4210/// of ObjCObjectType, so as to not increase the footprint of
4211/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4212/// system should not reference this type.
4213class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4214  friend class ASTContext;
4215
4216  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4217  // will need to be modified.
4218
4219  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4220                     ObjCProtocolDecl * const *Protocols,
4221                     unsigned NumProtocols)
4222    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
4223
4224public:
4225  void Profile(llvm::FoldingSetNodeID &ID);
4226  static void Profile(llvm::FoldingSetNodeID &ID,
4227                      QualType Base,
4228                      ObjCProtocolDecl *const *protocols,
4229                      unsigned NumProtocols);
4230};
4231
4232inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4233  return reinterpret_cast<ObjCProtocolDecl**>(
4234            static_cast<ObjCObjectTypeImpl*>(this) + 1);
4235}
4236
4237/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
4238/// object oriented design.  They basically correspond to C++ classes.  There
4239/// are two kinds of interface types, normal interfaces like "NSString" and
4240/// qualified interfaces, which are qualified with a protocol list like
4241/// "NSString<NSCopyable, NSAmazing>".
4242///
4243/// ObjCInterfaceType guarantees the following properties when considered
4244/// as a subtype of its superclass, ObjCObjectType:
4245///   - There are no protocol qualifiers.  To reinforce this, code which
4246///     tries to invoke the protocol methods via an ObjCInterfaceType will
4247///     fail to compile.
4248///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4249///     T->getBaseType() == QualType(T, 0).
4250class ObjCInterfaceType : public ObjCObjectType {
4251  mutable ObjCInterfaceDecl *Decl;
4252
4253  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4254    : ObjCObjectType(Nonce_ObjCInterface),
4255      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4256  friend class ASTContext;  // ASTContext creates these.
4257  friend class ASTReader;
4258  friend class ObjCInterfaceDecl;
4259
4260public:
4261  /// getDecl - Get the declaration of this interface.
4262  ObjCInterfaceDecl *getDecl() const { return Decl; }
4263
4264  bool isSugared() const { return false; }
4265  QualType desugar() const { return QualType(this, 0); }
4266
4267  static bool classof(const Type *T) {
4268    return T->getTypeClass() == ObjCInterface;
4269  }
4270  static bool classof(const ObjCInterfaceType *) { return true; }
4271
4272  // Nonsense to "hide" certain members of ObjCObjectType within this
4273  // class.  People asking for protocols on an ObjCInterfaceType are
4274  // not going to get what they want: ObjCInterfaceTypes are
4275  // guaranteed to have no protocols.
4276  enum {
4277    qual_iterator,
4278    qual_begin,
4279    qual_end,
4280    getNumProtocols,
4281    getProtocol
4282  };
4283};
4284
4285inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4286  if (const ObjCInterfaceType *T =
4287        getBaseType()->getAs<ObjCInterfaceType>())
4288    return T->getDecl();
4289  return 0;
4290}
4291
4292/// ObjCObjectPointerType - Used to represent a pointer to an
4293/// Objective C object.  These are constructed from pointer
4294/// declarators when the pointee type is an ObjCObjectType (or sugar
4295/// for one).  In addition, the 'id' and 'Class' types are typedefs
4296/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
4297/// are translated into these.
4298///
4299/// Pointers to pointers to Objective C objects are still PointerTypes;
4300/// only the first level of pointer gets it own type implementation.
4301class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4302  QualType PointeeType;
4303
4304  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4305    : Type(ObjCObjectPointer, Canonical, false, false, false, false),
4306      PointeeType(Pointee) {}
4307  friend class ASTContext;  // ASTContext creates these.
4308
4309public:
4310  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
4311  /// The result will always be an ObjCObjectType or sugar thereof.
4312  QualType getPointeeType() const { return PointeeType; }
4313
4314  /// getObjCObjectType - Gets the type pointed to by this ObjC
4315  /// pointer.  This method always returns non-null.
4316  ///
4317  /// This method is equivalent to getPointeeType() except that
4318  /// it discards any typedefs (or other sugar) between this
4319  /// type and the "outermost" object type.  So for:
4320  ///   @class A; @protocol P; @protocol Q;
4321  ///   typedef A<P> AP;
4322  ///   typedef A A1;
4323  ///   typedef A1<P> A1P;
4324  ///   typedef A1P<Q> A1PQ;
4325  /// For 'A*', getObjectType() will return 'A'.
4326  /// For 'A<P>*', getObjectType() will return 'A<P>'.
4327  /// For 'AP*', getObjectType() will return 'A<P>'.
4328  /// For 'A1*', getObjectType() will return 'A'.
4329  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
4330  /// For 'A1P*', getObjectType() will return 'A1<P>'.
4331  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
4332  ///   adding protocols to a protocol-qualified base discards the
4333  ///   old qualifiers (for now).  But if it didn't, getObjectType()
4334  ///   would return 'A1P<Q>' (and we'd have to make iterating over
4335  ///   qualifiers more complicated).
4336  const ObjCObjectType *getObjectType() const {
4337    return PointeeType->castAs<ObjCObjectType>();
4338  }
4339
4340  /// getInterfaceType - If this pointer points to an Objective C
4341  /// @interface type, gets the type for that interface.  Any protocol
4342  /// qualifiers on the interface are ignored.
4343  ///
4344  /// \return null if the base type for this pointer is 'id' or 'Class'
4345  const ObjCInterfaceType *getInterfaceType() const {
4346    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
4347  }
4348
4349  /// getInterfaceDecl - If this pointer points to an Objective @interface
4350  /// type, gets the declaration for that interface.
4351  ///
4352  /// \return null if the base type for this pointer is 'id' or 'Class'
4353  ObjCInterfaceDecl *getInterfaceDecl() const {
4354    return getObjectType()->getInterface();
4355  }
4356
4357  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
4358  /// its object type is the primitive 'id' type with no protocols.
4359  bool isObjCIdType() const {
4360    return getObjectType()->isObjCUnqualifiedId();
4361  }
4362
4363  /// isObjCClassType - True if this is equivalent to the 'Class' type,
4364  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
4365  bool isObjCClassType() const {
4366    return getObjectType()->isObjCUnqualifiedClass();
4367  }
4368
4369  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
4370  /// non-empty set of protocols.
4371  bool isObjCQualifiedIdType() const {
4372    return getObjectType()->isObjCQualifiedId();
4373  }
4374
4375  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
4376  /// some non-empty set of protocols.
4377  bool isObjCQualifiedClassType() const {
4378    return getObjectType()->isObjCQualifiedClass();
4379  }
4380
4381  /// An iterator over the qualifiers on the object type.  Provided
4382  /// for convenience.  This will always iterate over the full set of
4383  /// protocols on a type, not just those provided directly.
4384  typedef ObjCObjectType::qual_iterator qual_iterator;
4385
4386  qual_iterator qual_begin() const {
4387    return getObjectType()->qual_begin();
4388  }
4389  qual_iterator qual_end() const {
4390    return getObjectType()->qual_end();
4391  }
4392  bool qual_empty() const { return getObjectType()->qual_empty(); }
4393
4394  /// getNumProtocols - Return the number of qualifying protocols on
4395  /// the object type.
4396  unsigned getNumProtocols() const {
4397    return getObjectType()->getNumProtocols();
4398  }
4399
4400  /// \brief Retrieve a qualifying protocol by index on the object
4401  /// type.
4402  ObjCProtocolDecl *getProtocol(unsigned I) const {
4403    return getObjectType()->getProtocol(I);
4404  }
4405
4406  bool isSugared() const { return false; }
4407  QualType desugar() const { return QualType(this, 0); }
4408
4409  void Profile(llvm::FoldingSetNodeID &ID) {
4410    Profile(ID, getPointeeType());
4411  }
4412  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4413    ID.AddPointer(T.getAsOpaquePtr());
4414  }
4415  static bool classof(const Type *T) {
4416    return T->getTypeClass() == ObjCObjectPointer;
4417  }
4418  static bool classof(const ObjCObjectPointerType *) { return true; }
4419};
4420
4421class AtomicType : public Type, public llvm::FoldingSetNode {
4422  QualType ValueType;
4423
4424  AtomicType(QualType ValTy, QualType Canonical)
4425    : Type(Atomic, Canonical, ValTy->isDependentType(),
4426           ValTy->isInstantiationDependentType(),
4427           ValTy->isVariablyModifiedType(),
4428           ValTy->containsUnexpandedParameterPack()),
4429      ValueType(ValTy) {}
4430  friend class ASTContext;  // ASTContext creates these.
4431
4432  public:
4433  /// getValueType - Gets the type contained by this atomic type, i.e.
4434  /// the type returned by performing an atomic load of this atomic type.
4435  QualType getValueType() const { return ValueType; }
4436
4437  bool isSugared() const { return false; }
4438  QualType desugar() const { return QualType(this, 0); }
4439
4440  void Profile(llvm::FoldingSetNodeID &ID) {
4441    Profile(ID, getValueType());
4442  }
4443  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4444    ID.AddPointer(T.getAsOpaquePtr());
4445  }
4446  static bool classof(const Type *T) {
4447    return T->getTypeClass() == Atomic;
4448  }
4449  static bool classof(const AtomicType *) { return true; }
4450};
4451
4452/// A qualifier set is used to build a set of qualifiers.
4453class QualifierCollector : public Qualifiers {
4454public:
4455  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4456
4457  /// Collect any qualifiers on the given type and return an
4458  /// unqualified type.  The qualifiers are assumed to be consistent
4459  /// with those already in the type.
4460  const Type *strip(QualType type) {
4461    addFastQualifiers(type.getLocalFastQualifiers());
4462    if (!type.hasLocalNonFastQualifiers())
4463      return type.getTypePtrUnsafe();
4464
4465    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4466    addConsistentQualifiers(extQuals->getQualifiers());
4467    return extQuals->getBaseType();
4468  }
4469
4470  /// Apply the collected qualifiers to the given type.
4471  QualType apply(const ASTContext &Context, QualType QT) const;
4472
4473  /// Apply the collected qualifiers to the given type.
4474  QualType apply(const ASTContext &Context, const Type* T) const;
4475};
4476
4477
4478// Inline function definitions.
4479
4480inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
4481  SplitQualType desugar =
4482    Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
4483  desugar.Quals.addConsistentQualifiers(Quals);
4484  return desugar;
4485}
4486
4487inline const Type *QualType::getTypePtr() const {
4488  return getCommonPtr()->BaseType;
4489}
4490
4491inline const Type *QualType::getTypePtrOrNull() const {
4492  return (isNull() ? 0 : getCommonPtr()->BaseType);
4493}
4494
4495inline SplitQualType QualType::split() const {
4496  if (!hasLocalNonFastQualifiers())
4497    return SplitQualType(getTypePtrUnsafe(),
4498                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4499
4500  const ExtQuals *eq = getExtQualsUnsafe();
4501  Qualifiers qs = eq->getQualifiers();
4502  qs.addFastQualifiers(getLocalFastQualifiers());
4503  return SplitQualType(eq->getBaseType(), qs);
4504}
4505
4506inline Qualifiers QualType::getLocalQualifiers() const {
4507  Qualifiers Quals;
4508  if (hasLocalNonFastQualifiers())
4509    Quals = getExtQualsUnsafe()->getQualifiers();
4510  Quals.addFastQualifiers(getLocalFastQualifiers());
4511  return Quals;
4512}
4513
4514inline Qualifiers QualType::getQualifiers() const {
4515  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4516  quals.addFastQualifiers(getLocalFastQualifiers());
4517  return quals;
4518}
4519
4520inline unsigned QualType::getCVRQualifiers() const {
4521  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4522  cvr |= getLocalCVRQualifiers();
4523  return cvr;
4524}
4525
4526inline QualType QualType::getCanonicalType() const {
4527  QualType canon = getCommonPtr()->CanonicalType;
4528  return canon.withFastQualifiers(getLocalFastQualifiers());
4529}
4530
4531inline bool QualType::isCanonical() const {
4532  return getTypePtr()->isCanonicalUnqualified();
4533}
4534
4535inline bool QualType::isCanonicalAsParam() const {
4536  if (!isCanonical()) return false;
4537  if (hasLocalQualifiers()) return false;
4538
4539  const Type *T = getTypePtr();
4540  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4541    return false;
4542
4543  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4544}
4545
4546inline bool QualType::isConstQualified() const {
4547  return isLocalConstQualified() ||
4548         getCommonPtr()->CanonicalType.isLocalConstQualified();
4549}
4550
4551inline bool QualType::isRestrictQualified() const {
4552  return isLocalRestrictQualified() ||
4553         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4554}
4555
4556
4557inline bool QualType::isVolatileQualified() const {
4558  return isLocalVolatileQualified() ||
4559         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4560}
4561
4562inline bool QualType::hasQualifiers() const {
4563  return hasLocalQualifiers() ||
4564         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4565}
4566
4567inline QualType QualType::getUnqualifiedType() const {
4568  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4569    return QualType(getTypePtr(), 0);
4570
4571  return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
4572}
4573
4574inline SplitQualType QualType::getSplitUnqualifiedType() const {
4575  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4576    return split();
4577
4578  return getSplitUnqualifiedTypeImpl(*this);
4579}
4580
4581inline void QualType::removeLocalConst() {
4582  removeLocalFastQualifiers(Qualifiers::Const);
4583}
4584
4585inline void QualType::removeLocalRestrict() {
4586  removeLocalFastQualifiers(Qualifiers::Restrict);
4587}
4588
4589inline void QualType::removeLocalVolatile() {
4590  removeLocalFastQualifiers(Qualifiers::Volatile);
4591}
4592
4593inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4594  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4595  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4596
4597  // Fast path: we don't need to touch the slow qualifiers.
4598  removeLocalFastQualifiers(Mask);
4599}
4600
4601/// getAddressSpace - Return the address space of this type.
4602inline unsigned QualType::getAddressSpace() const {
4603  return getQualifiers().getAddressSpace();
4604}
4605
4606/// getObjCGCAttr - Return the gc attribute of this type.
4607inline Qualifiers::GC QualType::getObjCGCAttr() const {
4608  return getQualifiers().getObjCGCAttr();
4609}
4610
4611inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4612  if (const PointerType *PT = t.getAs<PointerType>()) {
4613    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4614      return FT->getExtInfo();
4615  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4616    return FT->getExtInfo();
4617
4618  return FunctionType::ExtInfo();
4619}
4620
4621inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4622  return getFunctionExtInfo(*t);
4623}
4624
4625/// isMoreQualifiedThan - Determine whether this type is more
4626/// qualified than the Other type. For example, "const volatile int"
4627/// is more qualified than "const int", "volatile int", and
4628/// "int". However, it is not more qualified than "const volatile
4629/// int".
4630inline bool QualType::isMoreQualifiedThan(QualType other) const {
4631  Qualifiers myQuals = getQualifiers();
4632  Qualifiers otherQuals = other.getQualifiers();
4633  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4634}
4635
4636/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4637/// as qualified as the Other type. For example, "const volatile
4638/// int" is at least as qualified as "const int", "volatile int",
4639/// "int", and "const volatile int".
4640inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4641  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4642}
4643
4644/// getNonReferenceType - If Type is a reference type (e.g., const
4645/// int&), returns the type that the reference refers to ("const
4646/// int"). Otherwise, returns the type itself. This routine is used
4647/// throughout Sema to implement C++ 5p6:
4648///
4649///   If an expression initially has the type "reference to T" (8.3.2,
4650///   8.5.3), the type is adjusted to "T" prior to any further
4651///   analysis, the expression designates the object or function
4652///   denoted by the reference, and the expression is an lvalue.
4653inline QualType QualType::getNonReferenceType() const {
4654  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4655    return RefType->getPointeeType();
4656  else
4657    return *this;
4658}
4659
4660inline bool QualType::isCForbiddenLValueType() const {
4661  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
4662          getTypePtr()->isFunctionType());
4663}
4664
4665/// \brief Tests whether the type is categorized as a fundamental type.
4666///
4667/// \returns True for types specified in C++0x [basic.fundamental].
4668inline bool Type::isFundamentalType() const {
4669  return isVoidType() ||
4670         // FIXME: It's really annoying that we don't have an
4671         // 'isArithmeticType()' which agrees with the standard definition.
4672         (isArithmeticType() && !isEnumeralType());
4673}
4674
4675/// \brief Tests whether the type is categorized as a compound type.
4676///
4677/// \returns True for types specified in C++0x [basic.compound].
4678inline bool Type::isCompoundType() const {
4679  // C++0x [basic.compound]p1:
4680  //   Compound types can be constructed in the following ways:
4681  //    -- arrays of objects of a given type [...];
4682  return isArrayType() ||
4683  //    -- functions, which have parameters of given types [...];
4684         isFunctionType() ||
4685  //    -- pointers to void or objects or functions [...];
4686         isPointerType() ||
4687  //    -- references to objects or functions of a given type. [...]
4688         isReferenceType() ||
4689  //    -- classes containing a sequence of objects of various types, [...];
4690         isRecordType() ||
4691  //    -- unions, which are classes capable of containing objects of different
4692  //               types at different times;
4693         isUnionType() ||
4694  //    -- enumerations, which comprise a set of named constant values. [...];
4695         isEnumeralType() ||
4696  //    -- pointers to non-static class members, [...].
4697         isMemberPointerType();
4698}
4699
4700inline bool Type::isFunctionType() const {
4701  return isa<FunctionType>(CanonicalType);
4702}
4703inline bool Type::isPointerType() const {
4704  return isa<PointerType>(CanonicalType);
4705}
4706inline bool Type::isAnyPointerType() const {
4707  return isPointerType() || isObjCObjectPointerType();
4708}
4709inline bool Type::isBlockPointerType() const {
4710  return isa<BlockPointerType>(CanonicalType);
4711}
4712inline bool Type::isReferenceType() const {
4713  return isa<ReferenceType>(CanonicalType);
4714}
4715inline bool Type::isLValueReferenceType() const {
4716  return isa<LValueReferenceType>(CanonicalType);
4717}
4718inline bool Type::isRValueReferenceType() const {
4719  return isa<RValueReferenceType>(CanonicalType);
4720}
4721inline bool Type::isFunctionPointerType() const {
4722  if (const PointerType *T = getAs<PointerType>())
4723    return T->getPointeeType()->isFunctionType();
4724  else
4725    return false;
4726}
4727inline bool Type::isMemberPointerType() const {
4728  return isa<MemberPointerType>(CanonicalType);
4729}
4730inline bool Type::isMemberFunctionPointerType() const {
4731  if (const MemberPointerType* T = getAs<MemberPointerType>())
4732    return T->isMemberFunctionPointer();
4733  else
4734    return false;
4735}
4736inline bool Type::isMemberDataPointerType() const {
4737  if (const MemberPointerType* T = getAs<MemberPointerType>())
4738    return T->isMemberDataPointer();
4739  else
4740    return false;
4741}
4742inline bool Type::isArrayType() const {
4743  return isa<ArrayType>(CanonicalType);
4744}
4745inline bool Type::isConstantArrayType() const {
4746  return isa<ConstantArrayType>(CanonicalType);
4747}
4748inline bool Type::isIncompleteArrayType() const {
4749  return isa<IncompleteArrayType>(CanonicalType);
4750}
4751inline bool Type::isVariableArrayType() const {
4752  return isa<VariableArrayType>(CanonicalType);
4753}
4754inline bool Type::isDependentSizedArrayType() const {
4755  return isa<DependentSizedArrayType>(CanonicalType);
4756}
4757inline bool Type::isBuiltinType() const {
4758  return isa<BuiltinType>(CanonicalType);
4759}
4760inline bool Type::isRecordType() const {
4761  return isa<RecordType>(CanonicalType);
4762}
4763inline bool Type::isEnumeralType() const {
4764  return isa<EnumType>(CanonicalType);
4765}
4766inline bool Type::isAnyComplexType() const {
4767  return isa<ComplexType>(CanonicalType);
4768}
4769inline bool Type::isVectorType() const {
4770  return isa<VectorType>(CanonicalType);
4771}
4772inline bool Type::isExtVectorType() const {
4773  return isa<ExtVectorType>(CanonicalType);
4774}
4775inline bool Type::isObjCObjectPointerType() const {
4776  return isa<ObjCObjectPointerType>(CanonicalType);
4777}
4778inline bool Type::isObjCObjectType() const {
4779  return isa<ObjCObjectType>(CanonicalType);
4780}
4781inline bool Type::isObjCObjectOrInterfaceType() const {
4782  return isa<ObjCInterfaceType>(CanonicalType) ||
4783    isa<ObjCObjectType>(CanonicalType);
4784}
4785inline bool Type::isAtomicType() const {
4786  return isa<AtomicType>(CanonicalType);
4787}
4788
4789inline bool Type::isObjCQualifiedIdType() const {
4790  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4791    return OPT->isObjCQualifiedIdType();
4792  return false;
4793}
4794inline bool Type::isObjCQualifiedClassType() const {
4795  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4796    return OPT->isObjCQualifiedClassType();
4797  return false;
4798}
4799inline bool Type::isObjCIdType() const {
4800  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4801    return OPT->isObjCIdType();
4802  return false;
4803}
4804inline bool Type::isObjCClassType() const {
4805  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4806    return OPT->isObjCClassType();
4807  return false;
4808}
4809inline bool Type::isObjCSelType() const {
4810  if (const PointerType *OPT = getAs<PointerType>())
4811    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4812  return false;
4813}
4814inline bool Type::isObjCBuiltinType() const {
4815  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4816}
4817inline bool Type::isTemplateTypeParmType() const {
4818  return isa<TemplateTypeParmType>(CanonicalType);
4819}
4820
4821inline bool Type::isSpecificBuiltinType(unsigned K) const {
4822  if (const BuiltinType *BT = getAs<BuiltinType>())
4823    if (BT->getKind() == (BuiltinType::Kind) K)
4824      return true;
4825  return false;
4826}
4827
4828inline bool Type::isPlaceholderType() const {
4829  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4830    return BT->isPlaceholderType();
4831  return false;
4832}
4833
4834inline const BuiltinType *Type::getAsPlaceholderType() const {
4835  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4836    if (BT->isPlaceholderType())
4837      return BT;
4838  return 0;
4839}
4840
4841inline bool Type::isSpecificPlaceholderType(unsigned K) const {
4842  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
4843  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4844    return (BT->getKind() == (BuiltinType::Kind) K);
4845  return false;
4846}
4847
4848inline bool Type::isNonOverloadPlaceholderType() const {
4849  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4850    return BT->isNonOverloadPlaceholderType();
4851  return false;
4852}
4853
4854inline bool Type::isVoidType() const {
4855  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4856    return BT->getKind() == BuiltinType::Void;
4857  return false;
4858}
4859
4860inline bool Type::isHalfType() const {
4861  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4862    return BT->getKind() == BuiltinType::Half;
4863  // FIXME: Should we allow complex __fp16? Probably not.
4864  return false;
4865}
4866
4867inline bool Type::isNullPtrType() const {
4868  if (const BuiltinType *BT = getAs<BuiltinType>())
4869    return BT->getKind() == BuiltinType::NullPtr;
4870  return false;
4871}
4872
4873extern bool IsEnumDeclComplete(EnumDecl *);
4874extern bool IsEnumDeclScoped(EnumDecl *);
4875
4876inline bool Type::isIntegerType() const {
4877  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4878    return BT->getKind() >= BuiltinType::Bool &&
4879           BT->getKind() <= BuiltinType::Int128;
4880  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
4881    // Incomplete enum types are not treated as integer types.
4882    // FIXME: In C++, enum types are never integer types.
4883    return IsEnumDeclComplete(ET->getDecl()) &&
4884      !IsEnumDeclScoped(ET->getDecl());
4885  }
4886  return false;
4887}
4888
4889inline bool Type::isScalarType() const {
4890  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4891    return BT->getKind() > BuiltinType::Void &&
4892           BT->getKind() <= BuiltinType::NullPtr;
4893  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
4894    // Enums are scalar types, but only if they are defined.  Incomplete enums
4895    // are not treated as scalar types.
4896    return IsEnumDeclComplete(ET->getDecl());
4897  return isa<PointerType>(CanonicalType) ||
4898         isa<BlockPointerType>(CanonicalType) ||
4899         isa<MemberPointerType>(CanonicalType) ||
4900         isa<ComplexType>(CanonicalType) ||
4901         isa<ObjCObjectPointerType>(CanonicalType);
4902}
4903
4904inline bool Type::isIntegralOrEnumerationType() const {
4905  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4906    return BT->getKind() >= BuiltinType::Bool &&
4907           BT->getKind() <= BuiltinType::Int128;
4908
4909  // Check for a complete enum type; incomplete enum types are not properly an
4910  // enumeration type in the sense required here.
4911  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
4912    return IsEnumDeclComplete(ET->getDecl());
4913
4914  return false;
4915}
4916
4917inline bool Type::isBooleanType() const {
4918  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4919    return BT->getKind() == BuiltinType::Bool;
4920  return false;
4921}
4922
4923/// \brief Determines whether this is a type for which one can define
4924/// an overloaded operator.
4925inline bool Type::isOverloadableType() const {
4926  return isDependentType() || isRecordType() || isEnumeralType();
4927}
4928
4929/// \brief Determines whether this type can decay to a pointer type.
4930inline bool Type::canDecayToPointerType() const {
4931  return isFunctionType() || isArrayType();
4932}
4933
4934inline bool Type::hasPointerRepresentation() const {
4935  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
4936          isObjCObjectPointerType() || isNullPtrType());
4937}
4938
4939inline bool Type::hasObjCPointerRepresentation() const {
4940  return isObjCObjectPointerType();
4941}
4942
4943inline const Type *Type::getBaseElementTypeUnsafe() const {
4944  const Type *type = this;
4945  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
4946    type = arrayType->getElementType().getTypePtr();
4947  return type;
4948}
4949
4950/// Insertion operator for diagnostics.  This allows sending QualType's into a
4951/// diagnostic with <<.
4952inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
4953                                           QualType T) {
4954  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4955                  DiagnosticsEngine::ak_qualtype);
4956  return DB;
4957}
4958
4959/// Insertion operator for partial diagnostics.  This allows sending QualType's
4960/// into a diagnostic with <<.
4961inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
4962                                           QualType T) {
4963  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4964                  DiagnosticsEngine::ak_qualtype);
4965  return PD;
4966}
4967
4968// Helper class template that is used by Type::getAs to ensure that one does
4969// not try to look through a qualified type to get to an array type.
4970template<typename T,
4971         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
4972                             llvm::is_base_of<ArrayType, T>::value)>
4973struct ArrayType_cannot_be_used_with_getAs { };
4974
4975template<typename T>
4976struct ArrayType_cannot_be_used_with_getAs<T, true>;
4977
4978/// Member-template getAs<specific type>'.
4979template <typename T> const T *Type::getAs() const {
4980  ArrayType_cannot_be_used_with_getAs<T> at;
4981  (void)at;
4982
4983  // If this is directly a T type, return it.
4984  if (const T *Ty = dyn_cast<T>(this))
4985    return Ty;
4986
4987  // If the canonical form of this type isn't the right kind, reject it.
4988  if (!isa<T>(CanonicalType))
4989    return 0;
4990
4991  // If this is a typedef for the type, strip the typedef off without
4992  // losing all typedef information.
4993  return cast<T>(getUnqualifiedDesugaredType());
4994}
4995
4996inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
4997  // If this is directly an array type, return it.
4998  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
4999    return arr;
5000
5001  // If the canonical form of this type isn't the right kind, reject it.
5002  if (!isa<ArrayType>(CanonicalType))
5003    return 0;
5004
5005  // If this is a typedef for the type, strip the typedef off without
5006  // losing all typedef information.
5007  return cast<ArrayType>(getUnqualifiedDesugaredType());
5008}
5009
5010template <typename T> const T *Type::castAs() const {
5011  ArrayType_cannot_be_used_with_getAs<T> at;
5012  (void) at;
5013
5014  assert(isa<T>(CanonicalType));
5015  if (const T *ty = dyn_cast<T>(this)) return ty;
5016  return cast<T>(getUnqualifiedDesugaredType());
5017}
5018
5019inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
5020  assert(isa<ArrayType>(CanonicalType));
5021  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
5022  return cast<ArrayType>(getUnqualifiedDesugaredType());
5023}
5024
5025}  // end namespace clang
5026
5027#endif
5028