Type.h revision 0afd9f4ac27a7cef40c7a879f4b3fac0c612a218
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/AST/TemplateName.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/type_traits.h"
23#include "llvm/ADT/APSInt.h"
24#include "llvm/ADT/FoldingSet.h"
25#include "llvm/ADT/PointerIntPair.h"
26#include "llvm/ADT/PointerUnion.h"
27
28using llvm::isa;
29using llvm::cast;
30using llvm::cast_or_null;
31using llvm::dyn_cast;
32using llvm::dyn_cast_or_null;
33namespace clang {
34  enum {
35    TypeAlignmentInBits = 3,
36    TypeAlignment = 1 << TypeAlignmentInBits
37  };
38  class Type; class ExtQuals;
39}
40
41namespace llvm {
42  template <typename T>
43  class PointerLikeTypeTraits;
44  template<>
45  class PointerLikeTypeTraits< ::clang::Type*> {
46  public:
47    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
48    static inline ::clang::Type *getFromVoidPointer(void *P) {
49      return static_cast< ::clang::Type*>(P);
50    }
51    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
52  };
53  template<>
54  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
55  public:
56    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
57    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
58      return static_cast< ::clang::ExtQuals*>(P);
59    }
60    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
61  };
62}
63
64namespace clang {
65  class ASTContext;
66  class TypedefDecl;
67  class TemplateDecl;
68  class TemplateTypeParmDecl;
69  class NonTypeTemplateParmDecl;
70  class TemplateTemplateParmDecl;
71  class TagDecl;
72  class RecordDecl;
73  class CXXRecordDecl;
74  class EnumDecl;
75  class FieldDecl;
76  class ObjCInterfaceDecl;
77  class ObjCProtocolDecl;
78  class ObjCMethodDecl;
79  class Expr;
80  class Stmt;
81  class SourceLocation;
82  class StmtIteratorBase;
83  class TemplateArgument;
84  class QualifiedNameType;
85  struct PrintingPolicy;
86
87  // Provide forward declarations for all of the *Type classes
88#define TYPE(Class, Base) class Class##Type;
89#include "clang/AST/TypeNodes.def"
90
91/// Qualifiers - The collection of all-type qualifiers we support.
92/// Clang supports five independent qualifiers:
93/// * C99: const, volatile, and restrict
94/// * Embedded C (TR18037): address spaces
95/// * Objective C: the GC attributes (none, weak, or strong)
96class Qualifiers {
97public:
98  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
99    Const    = 0x1,
100    Restrict = 0x2,
101    Volatile = 0x4,
102    CVRMask = Const | Volatile | Restrict
103  };
104
105  enum GC {
106    GCNone = 0,
107    Weak,
108    Strong
109  };
110
111  enum {
112    /// The maximum supported address space number.
113    /// 24 bits should be enough for anyone.
114    MaxAddressSpace = 0xffffffu,
115
116    /// The width of the "fast" qualifier mask.
117    FastWidth = 2,
118
119    /// The fast qualifier mask.
120    FastMask = (1 << FastWidth) - 1
121  };
122
123  Qualifiers() : Mask(0) {}
124
125  static Qualifiers fromFastMask(unsigned Mask) {
126    Qualifiers Qs;
127    Qs.addFastQualifiers(Mask);
128    return Qs;
129  }
130
131  static Qualifiers fromCVRMask(unsigned CVR) {
132    Qualifiers Qs;
133    Qs.addCVRQualifiers(CVR);
134    return Qs;
135  }
136
137  // Deserialize qualifiers from an opaque representation.
138  static Qualifiers fromOpaqueValue(unsigned opaque) {
139    Qualifiers Qs;
140    Qs.Mask = opaque;
141    return Qs;
142  }
143
144  // Serialize these qualifiers into an opaque representation.
145  unsigned getAsOpaqueValue() const {
146    return Mask;
147  }
148
149  bool hasConst() const { return Mask & Const; }
150  void setConst(bool flag) {
151    Mask = (Mask & ~Const) | (flag ? Const : 0);
152  }
153  void removeConst() { Mask &= ~Const; }
154  void addConst() { Mask |= Const; }
155
156  bool hasVolatile() const { return Mask & Volatile; }
157  void setVolatile(bool flag) {
158    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
159  }
160  void removeVolatile() { Mask &= ~Volatile; }
161  void addVolatile() { Mask |= Volatile; }
162
163  bool hasRestrict() const { return Mask & Restrict; }
164  void setRestrict(bool flag) {
165    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
166  }
167  void removeRestrict() { Mask &= ~Restrict; }
168  void addRestrict() { Mask |= Restrict; }
169
170  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
171  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
172  void setCVRQualifiers(unsigned mask) {
173    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
174    Mask = (Mask & ~CVRMask) | mask;
175  }
176  void removeCVRQualifiers(unsigned mask) {
177    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
178    Mask &= ~mask;
179  }
180  void removeCVRQualifiers() {
181    removeCVRQualifiers(CVRMask);
182  }
183  void addCVRQualifiers(unsigned mask) {
184    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
185    Mask |= mask;
186  }
187
188  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
189  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
190  void setObjCGCAttr(GC type) {
191    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
192  }
193  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
194  void addObjCGCAttr(GC type) {
195    assert(type);
196    setObjCGCAttr(type);
197  }
198
199  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
200  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
201  void setAddressSpace(unsigned space) {
202    assert(space <= MaxAddressSpace);
203    Mask = (Mask & ~AddressSpaceMask)
204         | (((uint32_t) space) << AddressSpaceShift);
205  }
206  void removeAddressSpace() { setAddressSpace(0); }
207  void addAddressSpace(unsigned space) {
208    assert(space);
209    setAddressSpace(space);
210  }
211
212  // Fast qualifiers are those that can be allocated directly
213  // on a QualType object.
214  bool hasFastQualifiers() const { return getFastQualifiers(); }
215  unsigned getFastQualifiers() const { return Mask & FastMask; }
216  void setFastQualifiers(unsigned mask) {
217    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
218    Mask = (Mask & ~FastMask) | mask;
219  }
220  void removeFastQualifiers(unsigned mask) {
221    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
222    Mask &= ~mask;
223  }
224  void removeFastQualifiers() {
225    removeFastQualifiers(FastMask);
226  }
227  void addFastQualifiers(unsigned mask) {
228    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
229    Mask |= mask;
230  }
231
232  /// hasNonFastQualifiers - Return true if the set contains any
233  /// qualifiers which require an ExtQuals node to be allocated.
234  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
235  Qualifiers getNonFastQualifiers() const {
236    Qualifiers Quals = *this;
237    Quals.setFastQualifiers(0);
238    return Quals;
239  }
240
241  /// hasQualifiers - Return true if the set contains any qualifiers.
242  bool hasQualifiers() const { return Mask; }
243  bool empty() const { return !Mask; }
244
245  /// \brief Add the qualifiers from the given set to this set.
246  void addQualifiers(Qualifiers Q) {
247    // If the other set doesn't have any non-boolean qualifiers, just
248    // bit-or it in.
249    if (!(Q.Mask & ~CVRMask))
250      Mask |= Q.Mask;
251    else {
252      Mask |= (Q.Mask & CVRMask);
253      if (Q.hasAddressSpace())
254        addAddressSpace(Q.getAddressSpace());
255      if (Q.hasObjCGCAttr())
256        addObjCGCAttr(Q.getObjCGCAttr());
257    }
258  }
259
260  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
261  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
262
263  operator bool() const { return hasQualifiers(); }
264
265  Qualifiers &operator+=(Qualifiers R) {
266    addQualifiers(R);
267    return *this;
268  }
269
270  // Union two qualifier sets.  If an enumerated qualifier appears
271  // in both sets, use the one from the right.
272  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
273    L += R;
274    return L;
275  }
276
277  std::string getAsString() const;
278  std::string getAsString(const PrintingPolicy &Policy) const {
279    std::string Buffer;
280    getAsStringInternal(Buffer, Policy);
281    return Buffer;
282  }
283  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
284
285  void Profile(llvm::FoldingSetNodeID &ID) const {
286    ID.AddInteger(Mask);
287  }
288
289private:
290
291  // bits:     |0 1 2|3 .. 4|5  ..  31|
292  //           |C R V|GCAttr|AddrSpace|
293  uint32_t Mask;
294
295  static const uint32_t GCAttrMask = 0x18;
296  static const uint32_t GCAttrShift = 3;
297  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
298  static const uint32_t AddressSpaceShift = 5;
299};
300
301
302/// ExtQuals - We can encode up to three bits in the low bits of a
303/// type pointer, but there are many more type qualifiers that we want
304/// to be able to apply to an arbitrary type.  Therefore we have this
305/// struct, intended to be heap-allocated and used by QualType to
306/// store qualifiers.
307///
308/// The current design tags the 'const' and 'restrict' qualifiers in
309/// two low bits on the QualType pointer; a third bit records whether
310/// the pointer is an ExtQuals node.  'const' was chosen because it is
311/// orders of magnitude more common than the other two qualifiers, in
312/// both library and user code.  It's relatively rare to see
313/// 'restrict' in user code, but many standard C headers are saturated
314/// with 'restrict' declarations, so that representing them efficiently
315/// is a critical goal of this representation.
316class ExtQuals : public llvm::FoldingSetNode {
317  // NOTE: changing the fast qualifiers should be straightforward as
318  // long as you don't make 'const' non-fast.
319  // 1. Qualifiers:
320  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
321  //       Fast qualifiers must occupy the low-order bits.
322  //    b) Update Qualifiers::FastWidth and FastMask.
323  // 2. QualType:
324  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
325  //    b) Update remove{Volatile,Restrict}, defined near the end of
326  //       this header.
327  // 3. ASTContext:
328  //    a) Update get{Volatile,Restrict}Type.
329
330  /// Context - the context to which this set belongs.  We save this
331  /// here so that QualifierCollector can use it to reapply extended
332  /// qualifiers to an arbitrary type without requiring a context to
333  /// be pushed through every single API dealing with qualifiers.
334  ASTContext& Context;
335
336  /// BaseType - the underlying type that this qualifies
337  const Type *BaseType;
338
339  /// Quals - the immutable set of qualifiers applied by this
340  /// node;  always contains extended qualifiers.
341  Qualifiers Quals;
342
343public:
344  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
345    : Context(Context), BaseType(Base), Quals(Quals)
346  {
347    assert(Quals.hasNonFastQualifiers()
348           && "ExtQuals created with no fast qualifiers");
349    assert(!Quals.hasFastQualifiers()
350           && "ExtQuals created with fast qualifiers");
351  }
352
353  Qualifiers getQualifiers() const { return Quals; }
354
355  bool hasVolatile() const { return Quals.hasVolatile(); }
356
357  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
358  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
359
360  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
361  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
362
363  const Type *getBaseType() const { return BaseType; }
364
365  ASTContext &getContext() const { return Context; }
366
367public:
368  void Profile(llvm::FoldingSetNodeID &ID) const {
369    Profile(ID, getBaseType(), Quals);
370  }
371  static void Profile(llvm::FoldingSetNodeID &ID,
372                      const Type *BaseType,
373                      Qualifiers Quals) {
374    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
375    ID.AddPointer(BaseType);
376    Quals.Profile(ID);
377  }
378};
379
380
381/// QualType - For efficiency, we don't store CV-qualified types as nodes on
382/// their own: instead each reference to a type stores the qualifiers.  This
383/// greatly reduces the number of nodes we need to allocate for types (for
384/// example we only need one for 'int', 'const int', 'volatile int',
385/// 'const volatile int', etc).
386///
387/// As an added efficiency bonus, instead of making this a pair, we
388/// just store the two bits we care about in the low bits of the
389/// pointer.  To handle the packing/unpacking, we make QualType be a
390/// simple wrapper class that acts like a smart pointer.  A third bit
391/// indicates whether there are extended qualifiers present, in which
392/// case the pointer points to a special structure.
393class QualType {
394  // Thankfully, these are efficiently composable.
395  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
396                       Qualifiers::FastWidth> Value;
397
398  bool hasExtQuals() const {
399    return Value.getPointer().is<const ExtQuals*>();
400  }
401
402  const ExtQuals *getExtQualsUnsafe() const {
403    return Value.getPointer().get<const ExtQuals*>();
404  }
405
406  const Type *getTypePtrUnsafe() const {
407    return Value.getPointer().get<const Type*>();
408  }
409
410  friend class QualifierCollector;
411public:
412  QualType() {}
413
414  QualType(const Type *Ptr, unsigned Quals)
415    : Value(Ptr, Quals) {}
416  QualType(const ExtQuals *Ptr, unsigned Quals)
417    : Value(Ptr, Quals) {}
418
419  unsigned getFastQualifiers() const { return Value.getInt(); }
420  void setFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
421
422  /// Retrieves a pointer to the underlying (unqualified) type.
423  /// This should really return a const Type, but it's not worth
424  /// changing all the users right now.
425  Type *getTypePtr() const {
426    if (hasNonFastQualifiers())
427      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
428    return const_cast<Type*>(getTypePtrUnsafe());
429  }
430
431  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
432  static QualType getFromOpaquePtr(void *Ptr) {
433    QualType T;
434    T.Value.setFromOpaqueValue(Ptr);
435    return T;
436  }
437
438  Type &operator*() const {
439    return *getTypePtr();
440  }
441
442  Type *operator->() const {
443    return getTypePtr();
444  }
445
446  /// isNull - Return true if this QualType doesn't point to a type yet.
447  bool isNull() const {
448    return Value.getPointer().isNull();
449  }
450
451  bool isConstQualified() const {
452    return (getFastQualifiers() & Qualifiers::Const);
453  }
454  bool isRestrictQualified() const {
455    return (getFastQualifiers() & Qualifiers::Restrict);
456  }
457  bool isVolatileQualified() const {
458    return (hasNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
459  }
460
461  // Determines whether this type has any direct qualifiers.
462  bool hasQualifiers() const {
463    return getFastQualifiers() || hasNonFastQualifiers();
464  }
465
466  bool hasNonFastQualifiers() const {
467    return hasExtQuals();
468  }
469
470  // Retrieves the set of qualifiers belonging to this type.
471  Qualifiers getQualifiers() const {
472    Qualifiers Quals;
473    if (hasNonFastQualifiers())
474      Quals = getExtQualsUnsafe()->getQualifiers();
475    Quals.addFastQualifiers(getFastQualifiers());
476    return Quals;
477  }
478
479  // Retrieves the CVR qualifiers of this type.
480  unsigned getCVRQualifiers() const {
481    unsigned CVR = getFastQualifiers();
482    if (isVolatileQualified()) CVR |= Qualifiers::Volatile;
483    return CVR;
484  }
485
486  bool isConstant(ASTContext& Ctx) const {
487    return QualType::isConstant(*this, Ctx);
488  }
489
490  // Don't promise in the API that anything besides 'const' can be
491  // easily added.
492
493  /// addConst - add the specified type qualifier to this QualType.
494  void addConst() {
495    addFastQualifiers(Qualifiers::Const);
496  }
497  QualType withConst() const {
498    return withFastQualifiers(Qualifiers::Const);
499  }
500
501  void addFastQualifiers(unsigned TQs) {
502    assert(!(TQs & ~Qualifiers::FastMask)
503           && "non-fast qualifier bits set in mask!");
504    Value.setInt(Value.getInt() | TQs);
505  }
506
507  void removeConst();
508  void removeVolatile();
509  void removeRestrict();
510  void removeCVRQualifiers(unsigned Mask);
511
512  void removeFastQualifiers() { Value.setInt(0); }
513  void removeFastQualifiers(unsigned Mask) {
514    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
515    Value.setInt(Value.getInt() & ~Mask);
516  }
517
518  // Creates a type with the given qualifiers in addition to any
519  // qualifiers already on this type.
520  QualType withFastQualifiers(unsigned TQs) const {
521    QualType T = *this;
522    T.addFastQualifiers(TQs);
523    return T;
524  }
525
526  // Creates a type with exactly the given fast qualifiers, removing
527  // any existing fast qualifiers.
528  QualType withExactFastQualifiers(unsigned TQs) const {
529    return withoutFastQualifiers().withFastQualifiers(TQs);
530  }
531
532  // Removes fast qualifiers, but leaves any extended qualifiers in place.
533  QualType withoutFastQualifiers() const {
534    QualType T = *this;
535    T.removeFastQualifiers();
536    return T;
537  }
538
539  QualType getUnqualifiedType() const { return QualType(getTypePtr(), 0); }
540
541  bool isMoreQualifiedThan(QualType Other) const;
542  bool isAtLeastAsQualifiedAs(QualType Other) const;
543  QualType getNonReferenceType() const;
544
545  /// getDesugaredType - Return the specified type with any "sugar" removed from
546  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
547  /// the type is already concrete, it returns it unmodified.  This is similar
548  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
549  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
550  /// concrete.
551  ///
552  /// Qualifiers are left in place.
553  QualType getDesugaredType() const {
554    return QualType::getDesugaredType(*this);
555  }
556
557  /// operator==/!= - Indicate whether the specified types and qualifiers are
558  /// identical.
559  friend bool operator==(const QualType &LHS, const QualType &RHS) {
560    return LHS.Value == RHS.Value;
561  }
562  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
563    return LHS.Value != RHS.Value;
564  }
565  std::string getAsString() const;
566
567  std::string getAsString(const PrintingPolicy &Policy) const {
568    std::string S;
569    getAsStringInternal(S, Policy);
570    return S;
571  }
572  void getAsStringInternal(std::string &Str,
573                           const PrintingPolicy &Policy) const;
574
575  void dump(const char *s) const;
576  void dump() const;
577
578  void Profile(llvm::FoldingSetNodeID &ID) const {
579    ID.AddPointer(getAsOpaquePtr());
580  }
581
582  /// getAddressSpace - Return the address space of this type.
583  inline unsigned getAddressSpace() const;
584
585  /// GCAttrTypesAttr - Returns gc attribute of this type.
586  inline Qualifiers::GC getObjCGCAttr() const;
587
588  /// isObjCGCWeak true when Type is objc's weak.
589  bool isObjCGCWeak() const {
590    return getObjCGCAttr() == Qualifiers::Weak;
591  }
592
593  /// isObjCGCStrong true when Type is objc's strong.
594  bool isObjCGCStrong() const {
595    return getObjCGCAttr() == Qualifiers::Strong;
596  }
597
598  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
599  /// false otherwise.
600  bool getNoReturnAttr() const;
601
602private:
603  // These methods are implemented in a separate translation unit;
604  // "static"-ize them to avoid creating temporary QualTypes in the
605  // caller.
606  static bool isConstant(QualType T, ASTContext& Ctx);
607  static QualType getDesugaredType(QualType T);
608};
609
610} // end clang.
611
612namespace llvm {
613/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
614/// to a specific Type class.
615template<> struct simplify_type<const ::clang::QualType> {
616  typedef ::clang::Type* SimpleType;
617  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
618    return Val.getTypePtr();
619  }
620};
621template<> struct simplify_type< ::clang::QualType>
622  : public simplify_type<const ::clang::QualType> {};
623
624// Teach SmallPtrSet that QualType is "basically a pointer".
625template<>
626class PointerLikeTypeTraits<clang::QualType> {
627public:
628  static inline void *getAsVoidPointer(clang::QualType P) {
629    return P.getAsOpaquePtr();
630  }
631  static inline clang::QualType getFromVoidPointer(void *P) {
632    return clang::QualType::getFromOpaquePtr(P);
633  }
634  // Various qualifiers go in low bits.
635  enum { NumLowBitsAvailable = 0 };
636};
637
638} // end namespace llvm
639
640namespace clang {
641
642/// Type - This is the base class of the type hierarchy.  A central concept
643/// with types is that each type always has a canonical type.  A canonical type
644/// is the type with any typedef names stripped out of it or the types it
645/// references.  For example, consider:
646///
647///  typedef int  foo;
648///  typedef foo* bar;
649///    'int *'    'foo *'    'bar'
650///
651/// There will be a Type object created for 'int'.  Since int is canonical, its
652/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
653/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
654/// there is a PointerType that represents 'int*', which, like 'int', is
655/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
656/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
657/// is also 'int*'.
658///
659/// Non-canonical types are useful for emitting diagnostics, without losing
660/// information about typedefs being used.  Canonical types are useful for type
661/// comparisons (they allow by-pointer equality tests) and useful for reasoning
662/// about whether something has a particular form (e.g. is a function type),
663/// because they implicitly, recursively, strip all typedefs out of a type.
664///
665/// Types, once created, are immutable.
666///
667class Type {
668public:
669  enum TypeClass {
670#define TYPE(Class, Base) Class,
671#define ABSTRACT_TYPE(Class, Base)
672#include "clang/AST/TypeNodes.def"
673    TagFirst = Record, TagLast = Enum
674  };
675
676protected:
677  enum { TypeClassBitSize = 6 };
678
679private:
680  QualType CanonicalType;
681
682  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
683  bool Dependent : 1;
684
685  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
686  /// Note that this should stay at the end of the ivars for Type so that
687  /// subclasses can pack their bitfields into the same word.
688  unsigned TC : TypeClassBitSize;
689
690  Type(const Type&);           // DO NOT IMPLEMENT.
691  void operator=(const Type&); // DO NOT IMPLEMENT.
692protected:
693  // silence VC++ warning C4355: 'this' : used in base member initializer list
694  Type *this_() { return this; }
695  Type(TypeClass tc, QualType Canonical, bool dependent)
696    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
697      Dependent(dependent), TC(tc) {}
698  virtual ~Type() {}
699  virtual void Destroy(ASTContext& C);
700  friend class ASTContext;
701
702public:
703  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
704
705  bool isCanonical() const { return CanonicalType.getTypePtr() == this; }
706
707  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
708  /// object types, function types, and incomplete types.
709
710  /// \brief Determines whether the type describes an object in memory.
711  ///
712  /// Note that this definition of object type corresponds to the C++
713  /// definition of object type, which includes incomplete types, as
714  /// opposed to the C definition (which does not include incomplete
715  /// types).
716  bool isObjectType() const;
717
718  /// isIncompleteType - Return true if this is an incomplete type.
719  /// A type that can describe objects, but which lacks information needed to
720  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
721  /// routine will need to determine if the size is actually required.
722  bool isIncompleteType() const;
723
724  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
725  /// type, in other words, not a function type.
726  bool isIncompleteOrObjectType() const {
727    return !isFunctionType();
728  }
729
730  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
731  bool isPODType() const;
732
733  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
734  /// types that have a non-constant expression. This does not include "[]".
735  bool isVariablyModifiedType() const;
736
737  /// Helper methods to distinguish type categories. All type predicates
738  /// operate on the canonical type, ignoring typedefs and qualifiers.
739
740  /// isSpecificBuiltinType - Test for a particular builtin type.
741  bool isSpecificBuiltinType(unsigned K) const;
742
743  /// isIntegerType() does *not* include complex integers (a GCC extension).
744  /// isComplexIntegerType() can be used to test for complex integers.
745  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
746  bool isEnumeralType() const;
747  bool isBooleanType() const;
748  bool isCharType() const;
749  bool isWideCharType() const;
750  bool isIntegralType() const;
751
752  /// Floating point categories.
753  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
754  /// isComplexType() does *not* include complex integers (a GCC extension).
755  /// isComplexIntegerType() can be used to test for complex integers.
756  bool isComplexType() const;      // C99 6.2.5p11 (complex)
757  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
758  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
759  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
760  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
761  bool isVoidType() const;         // C99 6.2.5p19
762  bool isDerivedType() const;      // C99 6.2.5p20
763  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
764  bool isAggregateType() const;
765
766  // Type Predicates: Check to see if this type is structurally the specified
767  // type, ignoring typedefs and qualifiers.
768  bool isFunctionType() const;
769  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
770  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
771  bool isPointerType() const;
772  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
773  bool isBlockPointerType() const;
774  bool isVoidPointerType() const;
775  bool isReferenceType() const;
776  bool isLValueReferenceType() const;
777  bool isRValueReferenceType() const;
778  bool isFunctionPointerType() const;
779  bool isMemberPointerType() const;
780  bool isMemberFunctionPointerType() const;
781  bool isArrayType() const;
782  bool isConstantArrayType() const;
783  bool isIncompleteArrayType() const;
784  bool isVariableArrayType() const;
785  bool isDependentSizedArrayType() const;
786  bool isRecordType() const;
787  bool isClassType() const;
788  bool isStructureType() const;
789  bool isUnionType() const;
790  bool isComplexIntegerType() const;            // GCC _Complex integer type.
791  bool isVectorType() const;                    // GCC vector type.
792  bool isExtVectorType() const;                 // Extended vector type.
793  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
794  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
795  // for the common case.
796  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
797  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
798  bool isObjCQualifiedIdType() const;           // id<foo>
799  bool isObjCQualifiedClassType() const;        // Class<foo>
800  bool isObjCIdType() const;                    // id
801  bool isObjCClassType() const;                 // Class
802  bool isObjCBuiltinType() const;               // 'id' or 'Class'
803  bool isTemplateTypeParmType() const;          // C++ template type parameter
804  bool isNullPtrType() const;                   // C++0x nullptr_t
805
806  /// isDependentType - Whether this type is a dependent type, meaning
807  /// that its definition somehow depends on a template parameter
808  /// (C++ [temp.dep.type]).
809  bool isDependentType() const { return Dependent; }
810  bool isOverloadableType() const;
811
812  /// hasPointerRepresentation - Whether this type is represented
813  /// natively as a pointer; this includes pointers, references, block
814  /// pointers, and Objective-C interface, qualified id, and qualified
815  /// interface types, as well as nullptr_t.
816  bool hasPointerRepresentation() const;
817
818  /// hasObjCPointerRepresentation - Whether this type can represent
819  /// an objective pointer type for the purpose of GC'ability
820  bool hasObjCPointerRepresentation() const;
821
822  // Type Checking Functions: Check to see if this type is structurally the
823  // specified type, ignoring typedefs and qualifiers, and return a pointer to
824  // the best type we can.
825  const RecordType *getAsStructureType() const;
826  /// NOTE: getAs*ArrayType are methods on ASTContext.
827  const RecordType *getAsUnionType() const;
828  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
829  // The following is a convenience method that returns an ObjCObjectPointerType
830  // for object declared using an interface.
831  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
832  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
833  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
834  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
835
836  // Member-template getAs<specific type>'.  This scheme will eventually
837  // replace the specific getAsXXXX methods above.
838  //
839  // There are some specializations of this member template listed
840  // immediately following this class.
841  template <typename T> const T *getAs() const;
842
843  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
844  /// interface, return the interface type, otherwise return null.
845  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
846
847  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
848  /// element type of the array, potentially with type qualifiers missing.
849  /// This method should never be used when type qualifiers are meaningful.
850  const Type *getArrayElementTypeNoTypeQual() const;
851
852  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
853  /// pointer, this returns the respective pointee.
854  QualType getPointeeType() const;
855
856  /// getUnqualifiedDesugaredType() - Return the specified type with
857  /// any "sugar" removed from the type, removing any typedefs,
858  /// typeofs, etc., as well as any qualifiers.
859  const Type *getUnqualifiedDesugaredType() const;
860
861  /// More type predicates useful for type checking/promotion
862  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
863
864  /// isSignedIntegerType - Return true if this is an integer type that is
865  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
866  /// an enum decl which has a signed representation, or a vector of signed
867  /// integer element type.
868  bool isSignedIntegerType() const;
869
870  /// isUnsignedIntegerType - Return true if this is an integer type that is
871  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
872  /// decl which has an unsigned representation, or a vector of unsigned integer
873  /// element type.
874  bool isUnsignedIntegerType() const;
875
876  /// isConstantSizeType - Return true if this is not a variable sized type,
877  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
878  /// incomplete types.
879  bool isConstantSizeType() const;
880
881  /// isSpecifierType - Returns true if this type can be represented by some
882  /// set of type specifiers.
883  bool isSpecifierType() const;
884
885  const char *getTypeClassName() const;
886
887  QualType getCanonicalTypeInternal() const { return CanonicalType; }
888  void dump() const;
889  virtual void getAsStringInternal(std::string &InnerString,
890                                   const PrintingPolicy &Policy) const = 0;
891  static bool classof(const Type *) { return true; }
892};
893
894template <> inline const TypedefType *Type::getAs() const {
895  return dyn_cast<TypedefType>(this);
896}
897
898// We can do canonical leaf types faster, because we don't have to
899// worry about preserving child type decoration.
900#define TYPE(Class, Base)
901#define LEAF_TYPE(Class) \
902template <> inline const Class##Type *Type::getAs() const { \
903  return dyn_cast<Class##Type>(CanonicalType); \
904}
905#include "clang/AST/TypeNodes.def"
906
907
908/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
909/// types are always canonical and have a literal name field.
910class BuiltinType : public Type {
911public:
912  enum Kind {
913    Void,
914
915    Bool,     // This is bool and/or _Bool.
916    Char_U,   // This is 'char' for targets where char is unsigned.
917    UChar,    // This is explicitly qualified unsigned char.
918    Char16,   // This is 'char16_t' for C++.
919    Char32,   // This is 'char32_t' for C++.
920    UShort,
921    UInt,
922    ULong,
923    ULongLong,
924    UInt128,  // __uint128_t
925
926    Char_S,   // This is 'char' for targets where char is signed.
927    SChar,    // This is explicitly qualified signed char.
928    WChar,    // This is 'wchar_t' for C++.
929    Short,
930    Int,
931    Long,
932    LongLong,
933    Int128,   // __int128_t
934
935    Float, Double, LongDouble,
936
937    NullPtr,  // This is the type of C++0x 'nullptr'.
938
939    Overload,  // This represents the type of an overloaded function declaration.
940    Dependent, // This represents the type of a type-dependent expression.
941
942    UndeducedAuto, // In C++0x, this represents the type of an auto variable
943                   // that has not been deduced yet.
944    ObjCId,    // This represents the ObjC 'id' type.
945    ObjCClass  // This represents the ObjC 'Class' type.
946  };
947private:
948  Kind TypeKind;
949public:
950  BuiltinType(Kind K)
951    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
952      TypeKind(K) {}
953
954  Kind getKind() const { return TypeKind; }
955  const char *getName(const LangOptions &LO) const;
956
957  bool isSugared() const { return false; }
958  QualType desugar() const { return QualType(this, 0); }
959
960  virtual void getAsStringInternal(std::string &InnerString,
961                                   const PrintingPolicy &Policy) const;
962
963  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
964  static bool classof(const BuiltinType *) { return true; }
965};
966
967/// FixedWidthIntType - Used for arbitrary width types that we either don't
968/// want to or can't map to named integer types.  These always have a lower
969/// integer rank than builtin types of the same width.
970class FixedWidthIntType : public Type {
971private:
972  unsigned Width;
973  bool Signed;
974public:
975  FixedWidthIntType(unsigned W, bool S) : Type(FixedWidthInt, QualType(), false),
976                                          Width(W), Signed(S) {}
977
978  unsigned getWidth() const { return Width; }
979  bool isSigned() const { return Signed; }
980  const char *getName() const;
981
982  bool isSugared() const { return false; }
983  QualType desugar() const { return QualType(this, 0); }
984
985  virtual void getAsStringInternal(std::string &InnerString,
986                                   const PrintingPolicy &Policy) const;
987
988  static bool classof(const Type *T) { return T->getTypeClass() == FixedWidthInt; }
989  static bool classof(const FixedWidthIntType *) { return true; }
990};
991
992/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
993/// types (_Complex float etc) as well as the GCC integer complex extensions.
994///
995class ComplexType : public Type, public llvm::FoldingSetNode {
996  QualType ElementType;
997  ComplexType(QualType Element, QualType CanonicalPtr) :
998    Type(Complex, CanonicalPtr, Element->isDependentType()),
999    ElementType(Element) {
1000  }
1001  friend class ASTContext;  // ASTContext creates these.
1002public:
1003  QualType getElementType() const { return ElementType; }
1004
1005  virtual void getAsStringInternal(std::string &InnerString,
1006                                   const PrintingPolicy &Policy) const;
1007
1008  bool isSugared() const { return false; }
1009  QualType desugar() const { return QualType(this, 0); }
1010
1011  void Profile(llvm::FoldingSetNodeID &ID) {
1012    Profile(ID, getElementType());
1013  }
1014  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1015    ID.AddPointer(Element.getAsOpaquePtr());
1016  }
1017
1018  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1019  static bool classof(const ComplexType *) { return true; }
1020};
1021
1022/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1023///
1024class PointerType : public Type, public llvm::FoldingSetNode {
1025  QualType PointeeType;
1026
1027  PointerType(QualType Pointee, QualType CanonicalPtr) :
1028    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1029  }
1030  friend class ASTContext;  // ASTContext creates these.
1031public:
1032
1033  virtual void getAsStringInternal(std::string &InnerString,
1034                                   const PrintingPolicy &Policy) const;
1035
1036  QualType getPointeeType() const { return PointeeType; }
1037
1038  bool isSugared() const { return false; }
1039  QualType desugar() const { return QualType(this, 0); }
1040
1041  void Profile(llvm::FoldingSetNodeID &ID) {
1042    Profile(ID, getPointeeType());
1043  }
1044  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1045    ID.AddPointer(Pointee.getAsOpaquePtr());
1046  }
1047
1048  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1049  static bool classof(const PointerType *) { return true; }
1050};
1051
1052/// BlockPointerType - pointer to a block type.
1053/// This type is to represent types syntactically represented as
1054/// "void (^)(int)", etc. Pointee is required to always be a function type.
1055///
1056class BlockPointerType : public Type, public llvm::FoldingSetNode {
1057  QualType PointeeType;  // Block is some kind of pointer type
1058  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1059    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1060    PointeeType(Pointee) {
1061  }
1062  friend class ASTContext;  // ASTContext creates these.
1063public:
1064
1065  // Get the pointee type. Pointee is required to always be a function type.
1066  QualType getPointeeType() const { return PointeeType; }
1067
1068  virtual void getAsStringInternal(std::string &InnerString,
1069                                   const PrintingPolicy &Policy) const;
1070
1071  bool isSugared() const { return false; }
1072  QualType desugar() const { return QualType(this, 0); }
1073
1074  void Profile(llvm::FoldingSetNodeID &ID) {
1075      Profile(ID, getPointeeType());
1076  }
1077  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1078      ID.AddPointer(Pointee.getAsOpaquePtr());
1079  }
1080
1081  static bool classof(const Type *T) {
1082    return T->getTypeClass() == BlockPointer;
1083  }
1084  static bool classof(const BlockPointerType *) { return true; }
1085};
1086
1087/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1088///
1089class ReferenceType : public Type, public llvm::FoldingSetNode {
1090  QualType PointeeType;
1091
1092protected:
1093  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef) :
1094    Type(tc, CanonicalRef, Referencee->isDependentType()),
1095    PointeeType(Referencee) {
1096  }
1097public:
1098  QualType getPointeeType() const { return PointeeType; }
1099
1100  void Profile(llvm::FoldingSetNodeID &ID) {
1101    Profile(ID, getPointeeType());
1102  }
1103  static void Profile(llvm::FoldingSetNodeID &ID, QualType Referencee) {
1104    ID.AddPointer(Referencee.getAsOpaquePtr());
1105  }
1106
1107  static bool classof(const Type *T) {
1108    return T->getTypeClass() == LValueReference ||
1109           T->getTypeClass() == RValueReference;
1110  }
1111  static bool classof(const ReferenceType *) { return true; }
1112};
1113
1114/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1115///
1116class LValueReferenceType : public ReferenceType {
1117  LValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1118    ReferenceType(LValueReference, Referencee, CanonicalRef) {
1119  }
1120  friend class ASTContext; // ASTContext creates these
1121public:
1122  virtual void getAsStringInternal(std::string &InnerString,
1123                                   const PrintingPolicy &Policy) const;
1124
1125  bool isSugared() const { return false; }
1126  QualType desugar() const { return QualType(this, 0); }
1127
1128  static bool classof(const Type *T) {
1129    return T->getTypeClass() == LValueReference;
1130  }
1131  static bool classof(const LValueReferenceType *) { return true; }
1132};
1133
1134/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1135///
1136class RValueReferenceType : public ReferenceType {
1137  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1138    ReferenceType(RValueReference, Referencee, CanonicalRef) {
1139  }
1140  friend class ASTContext; // ASTContext creates these
1141public:
1142  virtual void getAsStringInternal(std::string &InnerString,
1143                                   const PrintingPolicy &Policy) const;
1144
1145  bool isSugared() const { return false; }
1146  QualType desugar() const { return QualType(this, 0); }
1147
1148  static bool classof(const Type *T) {
1149    return T->getTypeClass() == RValueReference;
1150  }
1151  static bool classof(const RValueReferenceType *) { return true; }
1152};
1153
1154/// MemberPointerType - C++ 8.3.3 - Pointers to members
1155///
1156class MemberPointerType : public Type, public llvm::FoldingSetNode {
1157  QualType PointeeType;
1158  /// The class of which the pointee is a member. Must ultimately be a
1159  /// RecordType, but could be a typedef or a template parameter too.
1160  const Type *Class;
1161
1162  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1163    Type(MemberPointer, CanonicalPtr,
1164         Cls->isDependentType() || Pointee->isDependentType()),
1165    PointeeType(Pointee), Class(Cls) {
1166  }
1167  friend class ASTContext; // ASTContext creates these.
1168public:
1169
1170  QualType getPointeeType() const { return PointeeType; }
1171
1172  const Type *getClass() const { return Class; }
1173
1174  virtual void getAsStringInternal(std::string &InnerString,
1175                                   const PrintingPolicy &Policy) const;
1176
1177  bool isSugared() const { return false; }
1178  QualType desugar() const { return QualType(this, 0); }
1179
1180  void Profile(llvm::FoldingSetNodeID &ID) {
1181    Profile(ID, getPointeeType(), getClass());
1182  }
1183  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1184                      const Type *Class) {
1185    ID.AddPointer(Pointee.getAsOpaquePtr());
1186    ID.AddPointer(Class);
1187  }
1188
1189  static bool classof(const Type *T) {
1190    return T->getTypeClass() == MemberPointer;
1191  }
1192  static bool classof(const MemberPointerType *) { return true; }
1193};
1194
1195/// ArrayType - C99 6.7.5.2 - Array Declarators.
1196///
1197class ArrayType : public Type, public llvm::FoldingSetNode {
1198public:
1199  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1200  /// an array with a static size (e.g. int X[static 4]), or an array
1201  /// with a star size (e.g. int X[*]).
1202  /// 'static' is only allowed on function parameters.
1203  enum ArraySizeModifier {
1204    Normal, Static, Star
1205  };
1206private:
1207  /// ElementType - The element type of the array.
1208  QualType ElementType;
1209
1210  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1211  /// NOTE: These fields are packed into the bitfields space in the Type class.
1212  unsigned SizeModifier : 2;
1213
1214  /// IndexTypeQuals - Capture qualifiers in declarations like:
1215  /// 'int X[static restrict 4]'. For function parameters only.
1216  unsigned IndexTypeQuals : 3;
1217
1218protected:
1219  // C++ [temp.dep.type]p1:
1220  //   A type is dependent if it is...
1221  //     - an array type constructed from any dependent type or whose
1222  //       size is specified by a constant expression that is
1223  //       value-dependent,
1224  ArrayType(TypeClass tc, QualType et, QualType can,
1225            ArraySizeModifier sm, unsigned tq)
1226    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1227      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1228
1229  friend class ASTContext;  // ASTContext creates these.
1230public:
1231  QualType getElementType() const { return ElementType; }
1232  ArraySizeModifier getSizeModifier() const {
1233    return ArraySizeModifier(SizeModifier);
1234  }
1235  Qualifiers getIndexTypeQualifiers() const {
1236    return Qualifiers::fromCVRMask(IndexTypeQuals);
1237  }
1238  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1239
1240  static bool classof(const Type *T) {
1241    return T->getTypeClass() == ConstantArray ||
1242           T->getTypeClass() == ConstantArrayWithExpr ||
1243           T->getTypeClass() == ConstantArrayWithoutExpr ||
1244           T->getTypeClass() == VariableArray ||
1245           T->getTypeClass() == IncompleteArray ||
1246           T->getTypeClass() == DependentSizedArray;
1247  }
1248  static bool classof(const ArrayType *) { return true; }
1249};
1250
1251/// ConstantArrayType - This class represents the canonical version of
1252/// C arrays with a specified constant size.  For example, the canonical
1253/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1254/// type is 'int' and the size is 404.
1255class ConstantArrayType : public ArrayType {
1256  llvm::APInt Size; // Allows us to unique the type.
1257
1258  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1259                    ArraySizeModifier sm, unsigned tq)
1260    : ArrayType(ConstantArray, et, can, sm, tq),
1261      Size(size) {}
1262protected:
1263  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1264                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1265    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1266  friend class ASTContext;  // ASTContext creates these.
1267public:
1268  const llvm::APInt &getSize() const { return Size; }
1269  virtual void getAsStringInternal(std::string &InnerString,
1270                                   const PrintingPolicy &Policy) const;
1271
1272  bool isSugared() const { return false; }
1273  QualType desugar() const { return QualType(this, 0); }
1274
1275  void Profile(llvm::FoldingSetNodeID &ID) {
1276    Profile(ID, getElementType(), getSize(),
1277            getSizeModifier(), getIndexTypeCVRQualifiers());
1278  }
1279  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1280                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1281                      unsigned TypeQuals) {
1282    ID.AddPointer(ET.getAsOpaquePtr());
1283    ID.AddInteger(ArraySize.getZExtValue());
1284    ID.AddInteger(SizeMod);
1285    ID.AddInteger(TypeQuals);
1286  }
1287  static bool classof(const Type *T) {
1288    return T->getTypeClass() == ConstantArray ||
1289           T->getTypeClass() == ConstantArrayWithExpr ||
1290           T->getTypeClass() == ConstantArrayWithoutExpr;
1291  }
1292  static bool classof(const ConstantArrayType *) { return true; }
1293};
1294
1295/// ConstantArrayWithExprType - This class represents C arrays with a
1296/// constant size specified by means of an integer constant expression.
1297/// For example 'int A[sizeof(int)]' has ConstantArrayWithExprType where
1298/// the element type is 'int' and the size expression is 'sizeof(int)'.
1299/// These types are non-canonical.
1300class ConstantArrayWithExprType : public ConstantArrayType {
1301  /// SizeExpr - The ICE occurring in the concrete syntax.
1302  Expr *SizeExpr;
1303  /// Brackets - The left and right array brackets.
1304  SourceRange Brackets;
1305
1306  ConstantArrayWithExprType(QualType et, QualType can,
1307                            const llvm::APInt &size, Expr *e,
1308                            ArraySizeModifier sm, unsigned tq,
1309                            SourceRange brackets)
1310    : ConstantArrayType(ConstantArrayWithExpr, et, can, size, sm, tq),
1311      SizeExpr(e), Brackets(brackets) {}
1312  friend class ASTContext;  // ASTContext creates these.
1313  virtual void Destroy(ASTContext& C);
1314
1315public:
1316  Expr *getSizeExpr() const { return SizeExpr; }
1317  SourceRange getBracketsRange() const { return Brackets; }
1318  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1319  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1320
1321  virtual void getAsStringInternal(std::string &InnerString,
1322                                   const PrintingPolicy &Policy) const;
1323
1324  bool isSugared() const { return false; }
1325  QualType desugar() const { return QualType(this, 0); }
1326
1327  static bool classof(const Type *T) {
1328    return T->getTypeClass() == ConstantArrayWithExpr;
1329  }
1330  static bool classof(const ConstantArrayWithExprType *) { return true; }
1331
1332  void Profile(llvm::FoldingSetNodeID &ID) {
1333    assert(0 && "Cannot unique ConstantArrayWithExprTypes.");
1334  }
1335};
1336
1337/// ConstantArrayWithoutExprType - This class represents C arrays with a
1338/// constant size that was not specified by an integer constant expression,
1339/// but inferred by static semantics.
1340/// For example 'int A[] = { 0, 1, 2 }' has ConstantArrayWithoutExprType.
1341/// These types are non-canonical: the corresponding canonical type,
1342/// having the size specified in an APInt object, is a ConstantArrayType.
1343class ConstantArrayWithoutExprType : public ConstantArrayType {
1344
1345  ConstantArrayWithoutExprType(QualType et, QualType can,
1346                               const llvm::APInt &size,
1347                               ArraySizeModifier sm, unsigned tq)
1348    : ConstantArrayType(ConstantArrayWithoutExpr, et, can, size, sm, tq) {}
1349  friend class ASTContext;  // ASTContext creates these.
1350
1351public:
1352  virtual void getAsStringInternal(std::string &InnerString,
1353                                   const PrintingPolicy &Policy) const;
1354
1355  bool isSugared() const { return false; }
1356  QualType desugar() const { return QualType(this, 0); }
1357
1358  static bool classof(const Type *T) {
1359    return T->getTypeClass() == ConstantArrayWithoutExpr;
1360  }
1361  static bool classof(const ConstantArrayWithoutExprType *) { return true; }
1362
1363  void Profile(llvm::FoldingSetNodeID &ID) {
1364    assert(0 && "Cannot unique ConstantArrayWithoutExprTypes.");
1365  }
1366};
1367
1368/// IncompleteArrayType - This class represents C arrays with an unspecified
1369/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1370/// type is 'int' and the size is unspecified.
1371class IncompleteArrayType : public ArrayType {
1372
1373  IncompleteArrayType(QualType et, QualType can,
1374                      ArraySizeModifier sm, unsigned tq)
1375    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1376  friend class ASTContext;  // ASTContext creates these.
1377public:
1378  virtual void getAsStringInternal(std::string &InnerString,
1379                                   const PrintingPolicy &Policy) const;
1380
1381  bool isSugared() const { return false; }
1382  QualType desugar() const { return QualType(this, 0); }
1383
1384  static bool classof(const Type *T) {
1385    return T->getTypeClass() == IncompleteArray;
1386  }
1387  static bool classof(const IncompleteArrayType *) { return true; }
1388
1389  friend class StmtIteratorBase;
1390
1391  void Profile(llvm::FoldingSetNodeID &ID) {
1392    Profile(ID, getElementType(), getSizeModifier(),
1393            getIndexTypeCVRQualifiers());
1394  }
1395
1396  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1397                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1398    ID.AddPointer(ET.getAsOpaquePtr());
1399    ID.AddInteger(SizeMod);
1400    ID.AddInteger(TypeQuals);
1401  }
1402};
1403
1404/// VariableArrayType - This class represents C arrays with a specified size
1405/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1406/// Since the size expression is an arbitrary expression, we store it as such.
1407///
1408/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1409/// should not be: two lexically equivalent variable array types could mean
1410/// different things, for example, these variables do not have the same type
1411/// dynamically:
1412///
1413/// void foo(int x) {
1414///   int Y[x];
1415///   ++x;
1416///   int Z[x];
1417/// }
1418///
1419class VariableArrayType : public ArrayType {
1420  /// SizeExpr - An assignment expression. VLA's are only permitted within
1421  /// a function block.
1422  Stmt *SizeExpr;
1423  /// Brackets - The left and right array brackets.
1424  SourceRange Brackets;
1425
1426  VariableArrayType(QualType et, QualType can, Expr *e,
1427                    ArraySizeModifier sm, unsigned tq,
1428                    SourceRange brackets)
1429    : ArrayType(VariableArray, et, can, sm, tq),
1430      SizeExpr((Stmt*) e), Brackets(brackets) {}
1431  friend class ASTContext;  // ASTContext creates these.
1432  virtual void Destroy(ASTContext& C);
1433
1434public:
1435  Expr *getSizeExpr() const {
1436    // We use C-style casts instead of cast<> here because we do not wish
1437    // to have a dependency of Type.h on Stmt.h/Expr.h.
1438    return (Expr*) SizeExpr;
1439  }
1440  SourceRange getBracketsRange() const { return Brackets; }
1441  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1442  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1443
1444  virtual void getAsStringInternal(std::string &InnerString,
1445                                   const PrintingPolicy &Policy) const;
1446
1447  bool isSugared() const { return false; }
1448  QualType desugar() const { return QualType(this, 0); }
1449
1450  static bool classof(const Type *T) {
1451    return T->getTypeClass() == VariableArray;
1452  }
1453  static bool classof(const VariableArrayType *) { return true; }
1454
1455  friend class StmtIteratorBase;
1456
1457  void Profile(llvm::FoldingSetNodeID &ID) {
1458    assert(0 && "Cannnot unique VariableArrayTypes.");
1459  }
1460};
1461
1462/// DependentSizedArrayType - This type represents an array type in
1463/// C++ whose size is a value-dependent expression. For example:
1464/// @code
1465/// template<typename T, int Size>
1466/// class array {
1467///   T data[Size];
1468/// };
1469/// @endcode
1470/// For these types, we won't actually know what the array bound is
1471/// until template instantiation occurs, at which point this will
1472/// become either a ConstantArrayType or a VariableArrayType.
1473class DependentSizedArrayType : public ArrayType {
1474  ASTContext &Context;
1475
1476  /// SizeExpr - An assignment expression that will instantiate to the
1477  /// size of the array.
1478  Stmt *SizeExpr;
1479  /// Brackets - The left and right array brackets.
1480  SourceRange Brackets;
1481
1482  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1483                          Expr *e, ArraySizeModifier sm, unsigned tq,
1484                          SourceRange brackets)
1485    : ArrayType(DependentSizedArray, et, can, sm, tq),
1486      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1487  friend class ASTContext;  // ASTContext creates these.
1488  virtual void Destroy(ASTContext& C);
1489
1490public:
1491  Expr *getSizeExpr() const {
1492    // We use C-style casts instead of cast<> here because we do not wish
1493    // to have a dependency of Type.h on Stmt.h/Expr.h.
1494    return (Expr*) SizeExpr;
1495  }
1496  SourceRange getBracketsRange() const { return Brackets; }
1497  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1498  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1499
1500  virtual void getAsStringInternal(std::string &InnerString,
1501                                   const PrintingPolicy &Policy) const;
1502
1503  bool isSugared() const { return false; }
1504  QualType desugar() const { return QualType(this, 0); }
1505
1506  static bool classof(const Type *T) {
1507    return T->getTypeClass() == DependentSizedArray;
1508  }
1509  static bool classof(const DependentSizedArrayType *) { return true; }
1510
1511  friend class StmtIteratorBase;
1512
1513
1514  void Profile(llvm::FoldingSetNodeID &ID) {
1515    Profile(ID, Context, getElementType(),
1516            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1517  }
1518
1519  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1520                      QualType ET, ArraySizeModifier SizeMod,
1521                      unsigned TypeQuals, Expr *E);
1522};
1523
1524/// DependentSizedExtVectorType - This type represent an extended vector type
1525/// where either the type or size is dependent. For example:
1526/// @code
1527/// template<typename T, int Size>
1528/// class vector {
1529///   typedef T __attribute__((ext_vector_type(Size))) type;
1530/// }
1531/// @endcode
1532class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1533  ASTContext &Context;
1534  Expr *SizeExpr;
1535  /// ElementType - The element type of the array.
1536  QualType ElementType;
1537  SourceLocation loc;
1538
1539  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1540                              QualType can, Expr *SizeExpr, SourceLocation loc)
1541    : Type (DependentSizedExtVector, can, true),
1542      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1543      loc(loc) {}
1544  friend class ASTContext;
1545  virtual void Destroy(ASTContext& C);
1546
1547public:
1548  Expr *getSizeExpr() const { return SizeExpr; }
1549  QualType getElementType() const { return ElementType; }
1550  SourceLocation getAttributeLoc() const { return loc; }
1551
1552  virtual void getAsStringInternal(std::string &InnerString,
1553                                   const PrintingPolicy &Policy) const;
1554
1555  bool isSugared() const { return false; }
1556  QualType desugar() const { return QualType(this, 0); }
1557
1558  static bool classof(const Type *T) {
1559    return T->getTypeClass() == DependentSizedExtVector;
1560  }
1561  static bool classof(const DependentSizedExtVectorType *) { return true; }
1562
1563  void Profile(llvm::FoldingSetNodeID &ID) {
1564    Profile(ID, Context, getElementType(), getSizeExpr());
1565  }
1566
1567  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1568                      QualType ElementType, Expr *SizeExpr);
1569};
1570
1571
1572/// VectorType - GCC generic vector type. This type is created using
1573/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1574/// bytes. Since the constructor takes the number of vector elements, the
1575/// client is responsible for converting the size into the number of elements.
1576class VectorType : public Type, public llvm::FoldingSetNode {
1577protected:
1578  /// ElementType - The element type of the vector.
1579  QualType ElementType;
1580
1581  /// NumElements - The number of elements in the vector.
1582  unsigned NumElements;
1583
1584  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1585    Type(Vector, canonType, vecType->isDependentType()),
1586    ElementType(vecType), NumElements(nElements) {}
1587  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1588             QualType canonType)
1589    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1590      NumElements(nElements) {}
1591  friend class ASTContext;  // ASTContext creates these.
1592public:
1593
1594  QualType getElementType() const { return ElementType; }
1595  unsigned getNumElements() const { return NumElements; }
1596
1597  virtual void getAsStringInternal(std::string &InnerString,
1598                                   const PrintingPolicy &Policy) const;
1599
1600  bool isSugared() const { return false; }
1601  QualType desugar() const { return QualType(this, 0); }
1602
1603  void Profile(llvm::FoldingSetNodeID &ID) {
1604    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1605  }
1606  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1607                      unsigned NumElements, TypeClass TypeClass) {
1608    ID.AddPointer(ElementType.getAsOpaquePtr());
1609    ID.AddInteger(NumElements);
1610    ID.AddInteger(TypeClass);
1611  }
1612  static bool classof(const Type *T) {
1613    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1614  }
1615  static bool classof(const VectorType *) { return true; }
1616};
1617
1618/// ExtVectorType - Extended vector type. This type is created using
1619/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1620/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1621/// class enables syntactic extensions, like Vector Components for accessing
1622/// points, colors, and textures (modeled after OpenGL Shading Language).
1623class ExtVectorType : public VectorType {
1624  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1625    VectorType(ExtVector, vecType, nElements, canonType) {}
1626  friend class ASTContext;  // ASTContext creates these.
1627public:
1628  static int getPointAccessorIdx(char c) {
1629    switch (c) {
1630    default: return -1;
1631    case 'x': return 0;
1632    case 'y': return 1;
1633    case 'z': return 2;
1634    case 'w': return 3;
1635    }
1636  }
1637  static int getNumericAccessorIdx(char c) {
1638    switch (c) {
1639      default: return -1;
1640      case '0': return 0;
1641      case '1': return 1;
1642      case '2': return 2;
1643      case '3': return 3;
1644      case '4': return 4;
1645      case '5': return 5;
1646      case '6': return 6;
1647      case '7': return 7;
1648      case '8': return 8;
1649      case '9': return 9;
1650      case 'A':
1651      case 'a': return 10;
1652      case 'B':
1653      case 'b': return 11;
1654      case 'C':
1655      case 'c': return 12;
1656      case 'D':
1657      case 'd': return 13;
1658      case 'E':
1659      case 'e': return 14;
1660      case 'F':
1661      case 'f': return 15;
1662    }
1663  }
1664
1665  static int getAccessorIdx(char c) {
1666    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1667    return getNumericAccessorIdx(c);
1668  }
1669
1670  bool isAccessorWithinNumElements(char c) const {
1671    if (int idx = getAccessorIdx(c)+1)
1672      return unsigned(idx-1) < NumElements;
1673    return false;
1674  }
1675  virtual void getAsStringInternal(std::string &InnerString,
1676                                   const PrintingPolicy &Policy) const;
1677
1678  bool isSugared() const { return false; }
1679  QualType desugar() const { return QualType(this, 0); }
1680
1681  static bool classof(const Type *T) {
1682    return T->getTypeClass() == ExtVector;
1683  }
1684  static bool classof(const ExtVectorType *) { return true; }
1685};
1686
1687/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1688/// class of FunctionNoProtoType and FunctionProtoType.
1689///
1690class FunctionType : public Type {
1691  /// SubClassData - This field is owned by the subclass, put here to pack
1692  /// tightly with the ivars in Type.
1693  bool SubClassData : 1;
1694
1695  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1696  /// other bitfields.
1697  /// The qualifiers are part of FunctionProtoType because...
1698  ///
1699  /// C++ 8.3.5p4: The return type, the parameter type list and the
1700  /// cv-qualifier-seq, [...], are part of the function type.
1701  ///
1702  unsigned TypeQuals : 3;
1703
1704  /// NoReturn - Indicates if the function type is attribute noreturn.
1705  unsigned NoReturn : 1;
1706
1707  // The type returned by the function.
1708  QualType ResultType;
1709protected:
1710  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1711               unsigned typeQuals, QualType Canonical, bool Dependent,
1712               bool noReturn = false)
1713    : Type(tc, Canonical, Dependent),
1714      SubClassData(SubclassInfo), TypeQuals(typeQuals), NoReturn(noReturn),
1715      ResultType(res) {}
1716  bool getSubClassData() const { return SubClassData; }
1717  unsigned getTypeQuals() const { return TypeQuals; }
1718public:
1719
1720  QualType getResultType() const { return ResultType; }
1721  bool getNoReturnAttr() const { return NoReturn; }
1722
1723  static bool classof(const Type *T) {
1724    return T->getTypeClass() == FunctionNoProto ||
1725           T->getTypeClass() == FunctionProto;
1726  }
1727  static bool classof(const FunctionType *) { return true; }
1728};
1729
1730/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1731/// no information available about its arguments.
1732class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1733  FunctionNoProtoType(QualType Result, QualType Canonical,
1734                      bool NoReturn = false)
1735    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1736                   /*Dependent=*/false, NoReturn) {}
1737  friend class ASTContext;  // ASTContext creates these.
1738public:
1739  // No additional state past what FunctionType provides.
1740
1741  virtual void getAsStringInternal(std::string &InnerString,
1742                                   const PrintingPolicy &Policy) const;
1743
1744  bool isSugared() const { return false; }
1745  QualType desugar() const { return QualType(this, 0); }
1746
1747  void Profile(llvm::FoldingSetNodeID &ID) {
1748    Profile(ID, getResultType(), getNoReturnAttr());
1749  }
1750  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1751                      bool NoReturn) {
1752    ID.AddInteger(NoReturn);
1753    ID.AddPointer(ResultType.getAsOpaquePtr());
1754  }
1755
1756  static bool classof(const Type *T) {
1757    return T->getTypeClass() == FunctionNoProto;
1758  }
1759  static bool classof(const FunctionNoProtoType *) { return true; }
1760};
1761
1762/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1763/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1764/// arguments, not as having a single void argument. Such a type can have an
1765/// exception specification, but this specification is not part of the canonical
1766/// type.
1767class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1768  /// hasAnyDependentType - Determine whether there are any dependent
1769  /// types within the arguments passed in.
1770  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1771    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1772      if (ArgArray[Idx]->isDependentType())
1773    return true;
1774
1775    return false;
1776  }
1777
1778  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1779                    bool isVariadic, unsigned typeQuals, bool hasExs,
1780                    bool hasAnyExs, const QualType *ExArray,
1781                    unsigned numExs, QualType Canonical, bool NoReturn)
1782    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1783                   (Result->isDependentType() ||
1784                    hasAnyDependentType(ArgArray, numArgs)), NoReturn),
1785      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1786      AnyExceptionSpec(hasAnyExs) {
1787    // Fill in the trailing argument array.
1788    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1789    for (unsigned i = 0; i != numArgs; ++i)
1790      ArgInfo[i] = ArgArray[i];
1791    // Fill in the exception array.
1792    QualType *Ex = ArgInfo + numArgs;
1793    for (unsigned i = 0; i != numExs; ++i)
1794      Ex[i] = ExArray[i];
1795  }
1796
1797  /// NumArgs - The number of arguments this function has, not counting '...'.
1798  unsigned NumArgs : 20;
1799
1800  /// NumExceptions - The number of types in the exception spec, if any.
1801  unsigned NumExceptions : 10;
1802
1803  /// HasExceptionSpec - Whether this function has an exception spec at all.
1804  bool HasExceptionSpec : 1;
1805
1806  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1807  bool AnyExceptionSpec : 1;
1808
1809  /// ArgInfo - There is an variable size array after the class in memory that
1810  /// holds the argument types.
1811
1812  /// Exceptions - There is another variable size array after ArgInfo that
1813  /// holds the exception types.
1814
1815  friend class ASTContext;  // ASTContext creates these.
1816
1817public:
1818  unsigned getNumArgs() const { return NumArgs; }
1819  QualType getArgType(unsigned i) const {
1820    assert(i < NumArgs && "Invalid argument number!");
1821    return arg_type_begin()[i];
1822  }
1823
1824  bool hasExceptionSpec() const { return HasExceptionSpec; }
1825  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1826  unsigned getNumExceptions() const { return NumExceptions; }
1827  QualType getExceptionType(unsigned i) const {
1828    assert(i < NumExceptions && "Invalid exception number!");
1829    return exception_begin()[i];
1830  }
1831  bool hasEmptyExceptionSpec() const {
1832    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1833      getNumExceptions() == 0;
1834  }
1835
1836  bool isVariadic() const { return getSubClassData(); }
1837  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1838
1839  typedef const QualType *arg_type_iterator;
1840  arg_type_iterator arg_type_begin() const {
1841    return reinterpret_cast<const QualType *>(this+1);
1842  }
1843  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1844
1845  typedef const QualType *exception_iterator;
1846  exception_iterator exception_begin() const {
1847    // exceptions begin where arguments end
1848    return arg_type_end();
1849  }
1850  exception_iterator exception_end() const {
1851    return exception_begin() + NumExceptions;
1852  }
1853
1854  virtual void getAsStringInternal(std::string &InnerString,
1855                                   const PrintingPolicy &Policy) const;
1856
1857  bool isSugared() const { return false; }
1858  QualType desugar() const { return QualType(this, 0); }
1859
1860  static bool classof(const Type *T) {
1861    return T->getTypeClass() == FunctionProto;
1862  }
1863  static bool classof(const FunctionProtoType *) { return true; }
1864
1865  void Profile(llvm::FoldingSetNodeID &ID);
1866  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1867                      arg_type_iterator ArgTys, unsigned NumArgs,
1868                      bool isVariadic, unsigned TypeQuals,
1869                      bool hasExceptionSpec, bool anyExceptionSpec,
1870                      unsigned NumExceptions, exception_iterator Exs,
1871                      bool NoReturn);
1872};
1873
1874
1875class TypedefType : public Type {
1876  TypedefDecl *Decl;
1877protected:
1878  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1879    : Type(tc, can, can->isDependentType()), Decl(D) {
1880    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1881  }
1882  friend class ASTContext;  // ASTContext creates these.
1883public:
1884
1885  TypedefDecl *getDecl() const { return Decl; }
1886
1887  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1888  /// potentially looking through *all* consecutive typedefs.  This returns the
1889  /// sum of the type qualifiers, so if you have:
1890  ///   typedef const int A;
1891  ///   typedef volatile A B;
1892  /// looking through the typedefs for B will give you "const volatile A".
1893  QualType LookThroughTypedefs() const;
1894
1895  bool isSugared() const { return true; }
1896  QualType desugar() const;
1897
1898  virtual void getAsStringInternal(std::string &InnerString,
1899                                   const PrintingPolicy &Policy) const;
1900
1901  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1902  static bool classof(const TypedefType *) { return true; }
1903};
1904
1905/// TypeOfExprType (GCC extension).
1906class TypeOfExprType : public Type {
1907  Expr *TOExpr;
1908
1909protected:
1910  TypeOfExprType(Expr *E, QualType can = QualType());
1911  friend class ASTContext;  // ASTContext creates these.
1912public:
1913  Expr *getUnderlyingExpr() const { return TOExpr; }
1914
1915  /// \brief Remove a single level of sugar.
1916  QualType desugar() const;
1917
1918  /// \brief Returns whether this type directly provides sugar.
1919  bool isSugared() const { return true; }
1920
1921  virtual void getAsStringInternal(std::string &InnerString,
1922                                   const PrintingPolicy &Policy) const;
1923
1924  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1925  static bool classof(const TypeOfExprType *) { return true; }
1926};
1927
1928/// Subclass of TypeOfExprType that is used for canonical, dependent
1929/// typeof(expr) types.
1930class DependentTypeOfExprType
1931  : public TypeOfExprType, public llvm::FoldingSetNode {
1932  ASTContext &Context;
1933
1934public:
1935  DependentTypeOfExprType(ASTContext &Context, Expr *E)
1936    : TypeOfExprType(E), Context(Context) { }
1937
1938  bool isSugared() const { return false; }
1939  QualType desugar() const { return QualType(this, 0); }
1940
1941  void Profile(llvm::FoldingSetNodeID &ID) {
1942    Profile(ID, Context, getUnderlyingExpr());
1943  }
1944
1945  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1946                      Expr *E);
1947};
1948
1949/// TypeOfType (GCC extension).
1950class TypeOfType : public Type {
1951  QualType TOType;
1952  TypeOfType(QualType T, QualType can)
1953    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
1954    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1955  }
1956  friend class ASTContext;  // ASTContext creates these.
1957public:
1958  QualType getUnderlyingType() const { return TOType; }
1959
1960  /// \brief Remove a single level of sugar.
1961  QualType desugar() const { return getUnderlyingType(); }
1962
1963  /// \brief Returns whether this type directly provides sugar.
1964  bool isSugared() const { return true; }
1965
1966  virtual void getAsStringInternal(std::string &InnerString,
1967                                   const PrintingPolicy &Policy) const;
1968
1969  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
1970  static bool classof(const TypeOfType *) { return true; }
1971};
1972
1973/// DecltypeType (C++0x)
1974class DecltypeType : public Type {
1975  Expr *E;
1976
1977  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
1978  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
1979  // from it.
1980  QualType UnderlyingType;
1981
1982protected:
1983  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
1984  friend class ASTContext;  // ASTContext creates these.
1985public:
1986  Expr *getUnderlyingExpr() const { return E; }
1987  QualType getUnderlyingType() const { return UnderlyingType; }
1988
1989  /// \brief Remove a single level of sugar.
1990  QualType desugar() const { return getUnderlyingType(); }
1991
1992  /// \brief Returns whether this type directly provides sugar.
1993  bool isSugared() const { return !isDependentType(); }
1994
1995  virtual void getAsStringInternal(std::string &InnerString,
1996                                   const PrintingPolicy &Policy) const;
1997
1998  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
1999  static bool classof(const DecltypeType *) { return true; }
2000};
2001
2002/// Subclass of DecltypeType that is used for canonical, dependent
2003/// C++0x decltype types.
2004class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2005  ASTContext &Context;
2006
2007public:
2008  DependentDecltypeType(ASTContext &Context, Expr *E);
2009
2010  bool isSugared() const { return false; }
2011  QualType desugar() const { return QualType(this, 0); }
2012
2013  void Profile(llvm::FoldingSetNodeID &ID) {
2014    Profile(ID, Context, getUnderlyingExpr());
2015  }
2016
2017  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2018                      Expr *E);
2019};
2020
2021class TagType : public Type {
2022  /// Stores the TagDecl associated with this type. The decl will
2023  /// point to the TagDecl that actually defines the entity (or is a
2024  /// definition in progress), if there is such a definition. The
2025  /// single-bit value will be non-zero when this tag is in the
2026  /// process of being defined.
2027  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
2028  friend class ASTContext;
2029  friend class TagDecl;
2030
2031protected:
2032  TagType(TypeClass TC, TagDecl *D, QualType can);
2033
2034public:
2035  TagDecl *getDecl() const { return decl.getPointer(); }
2036
2037  /// @brief Determines whether this type is in the process of being
2038  /// defined.
2039  bool isBeingDefined() const { return decl.getInt(); }
2040  void setBeingDefined(bool Def) const { decl.setInt(Def? 1 : 0); }
2041
2042  virtual void getAsStringInternal(std::string &InnerString,
2043                                   const PrintingPolicy &Policy) const;
2044
2045  static bool classof(const Type *T) {
2046    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2047  }
2048  static bool classof(const TagType *) { return true; }
2049  static bool classof(const RecordType *) { return true; }
2050  static bool classof(const EnumType *) { return true; }
2051};
2052
2053/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2054/// to detect TagType objects of structs/unions/classes.
2055class RecordType : public TagType {
2056protected:
2057  explicit RecordType(RecordDecl *D)
2058    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
2059  explicit RecordType(TypeClass TC, RecordDecl *D)
2060    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
2061  friend class ASTContext;   // ASTContext creates these.
2062public:
2063
2064  RecordDecl *getDecl() const {
2065    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2066  }
2067
2068  // FIXME: This predicate is a helper to QualType/Type. It needs to
2069  // recursively check all fields for const-ness. If any field is declared
2070  // const, it needs to return false.
2071  bool hasConstFields() const { return false; }
2072
2073  // FIXME: RecordType needs to check when it is created that all fields are in
2074  // the same address space, and return that.
2075  unsigned getAddressSpace() const { return 0; }
2076
2077  bool isSugared() const { return false; }
2078  QualType desugar() const { return QualType(this, 0); }
2079
2080  static bool classof(const TagType *T);
2081  static bool classof(const Type *T) {
2082    return isa<TagType>(T) && classof(cast<TagType>(T));
2083  }
2084  static bool classof(const RecordType *) { return true; }
2085};
2086
2087/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2088/// to detect TagType objects of enums.
2089class EnumType : public TagType {
2090  explicit EnumType(EnumDecl *D)
2091    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
2092  friend class ASTContext;   // ASTContext creates these.
2093public:
2094
2095  EnumDecl *getDecl() const {
2096    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2097  }
2098
2099  bool isSugared() const { return false; }
2100  QualType desugar() const { return QualType(this, 0); }
2101
2102  static bool classof(const TagType *T);
2103  static bool classof(const Type *T) {
2104    return isa<TagType>(T) && classof(cast<TagType>(T));
2105  }
2106  static bool classof(const EnumType *) { return true; }
2107};
2108
2109/// ElaboratedType - A non-canonical type used to represents uses of
2110/// elaborated type specifiers in C++.  For example:
2111///
2112///   void foo(union MyUnion);
2113///            ^^^^^^^^^^^^^
2114///
2115/// At the moment, for efficiency we do not create elaborated types in
2116/// C, since outside of typedefs all references to structs would
2117/// necessarily be elaborated.
2118class ElaboratedType : public Type, public llvm::FoldingSetNode {
2119public:
2120  enum TagKind {
2121    TK_struct,
2122    TK_union,
2123    TK_class,
2124    TK_enum
2125  };
2126
2127private:
2128  /// The tag that was used in this elaborated type specifier.
2129  TagKind Tag;
2130
2131  /// The underlying type.
2132  QualType UnderlyingType;
2133
2134  explicit ElaboratedType(QualType Ty, TagKind Tag, QualType Canon)
2135    : Type(Elaborated, Canon, Canon->isDependentType()),
2136      Tag(Tag), UnderlyingType(Ty) { }
2137  friend class ASTContext;   // ASTContext creates these.
2138
2139public:
2140  TagKind getTagKind() const { return Tag; }
2141  QualType getUnderlyingType() const { return UnderlyingType; }
2142
2143  /// \brief Remove a single level of sugar.
2144  QualType desugar() const { return getUnderlyingType(); }
2145
2146  /// \brief Returns whether this type directly provides sugar.
2147  bool isSugared() const { return true; }
2148
2149  static const char *getNameForTagKind(TagKind Kind) {
2150    switch (Kind) {
2151    default: assert(0 && "Unknown TagKind!");
2152    case TK_struct: return "struct";
2153    case TK_union:  return "union";
2154    case TK_class:  return "class";
2155    case TK_enum:   return "enum";
2156    }
2157  }
2158
2159  virtual void getAsStringInternal(std::string &InnerString,
2160                                   const PrintingPolicy &Policy) const;
2161
2162  void Profile(llvm::FoldingSetNodeID &ID) {
2163    Profile(ID, getUnderlyingType(), getTagKind());
2164  }
2165  static void Profile(llvm::FoldingSetNodeID &ID, QualType T, TagKind Tag) {
2166    ID.AddPointer(T.getAsOpaquePtr());
2167    ID.AddInteger(Tag);
2168  }
2169
2170  static bool classof(const ElaboratedType*) { return true; }
2171  static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
2172};
2173
2174class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2175  unsigned Depth : 15;
2176  unsigned Index : 16;
2177  unsigned ParameterPack : 1;
2178  IdentifierInfo *Name;
2179
2180  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2181                       QualType Canon)
2182    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2183      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2184
2185  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2186    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2187      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2188
2189  friend class ASTContext;  // ASTContext creates these
2190
2191public:
2192  unsigned getDepth() const { return Depth; }
2193  unsigned getIndex() const { return Index; }
2194  bool isParameterPack() const { return ParameterPack; }
2195  IdentifierInfo *getName() const { return Name; }
2196
2197  virtual void getAsStringInternal(std::string &InnerString,
2198                                   const PrintingPolicy &Policy) const;
2199
2200  bool isSugared() const { return false; }
2201  QualType desugar() const { return QualType(this, 0); }
2202
2203  void Profile(llvm::FoldingSetNodeID &ID) {
2204    Profile(ID, Depth, Index, ParameterPack, Name);
2205  }
2206
2207  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2208                      unsigned Index, bool ParameterPack,
2209                      IdentifierInfo *Name) {
2210    ID.AddInteger(Depth);
2211    ID.AddInteger(Index);
2212    ID.AddBoolean(ParameterPack);
2213    ID.AddPointer(Name);
2214  }
2215
2216  static bool classof(const Type *T) {
2217    return T->getTypeClass() == TemplateTypeParm;
2218  }
2219  static bool classof(const TemplateTypeParmType *T) { return true; }
2220};
2221
2222/// \brief Represents the type of a template specialization as written
2223/// in the source code.
2224///
2225/// Template specialization types represent the syntactic form of a
2226/// template-id that refers to a type, e.g., @c vector<int>. Some
2227/// template specialization types are syntactic sugar, whose canonical
2228/// type will point to some other type node that represents the
2229/// instantiation or class template specialization. For example, a
2230/// class template specialization type of @c vector<int> will refer to
2231/// a tag type for the instantiation
2232/// @c std::vector<int, std::allocator<int>>.
2233///
2234/// Other template specialization types, for which the template name
2235/// is dependent, may be canonical types. These types are always
2236/// dependent.
2237class TemplateSpecializationType
2238  : public Type, public llvm::FoldingSetNode {
2239
2240  // FIXME: Currently needed for profiling expressions; can we avoid this?
2241  ASTContext &Context;
2242
2243    /// \brief The name of the template being specialized.
2244  TemplateName Template;
2245
2246  /// \brief - The number of template arguments named in this class
2247  /// template specialization.
2248  unsigned NumArgs;
2249
2250  TemplateSpecializationType(ASTContext &Context,
2251                             TemplateName T,
2252                             const TemplateArgument *Args,
2253                             unsigned NumArgs, QualType Canon);
2254
2255  virtual void Destroy(ASTContext& C);
2256
2257  friend class ASTContext;  // ASTContext creates these
2258
2259public:
2260  /// \brief Determine whether any of the given template arguments are
2261  /// dependent.
2262  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2263                                            unsigned NumArgs);
2264
2265  /// \brief Print a template argument list, including the '<' and '>'
2266  /// enclosing the template arguments.
2267  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2268                                               unsigned NumArgs,
2269                                               const PrintingPolicy &Policy);
2270
2271  typedef const TemplateArgument * iterator;
2272
2273  iterator begin() const { return getArgs(); }
2274  iterator end() const;
2275
2276  /// \brief Retrieve the name of the template that we are specializing.
2277  TemplateName getTemplateName() const { return Template; }
2278
2279  /// \brief Retrieve the template arguments.
2280  const TemplateArgument *getArgs() const {
2281    return reinterpret_cast<const TemplateArgument *>(this + 1);
2282  }
2283
2284  /// \brief Retrieve the number of template arguments.
2285  unsigned getNumArgs() const { return NumArgs; }
2286
2287  /// \brief Retrieve a specific template argument as a type.
2288  /// \precondition @c isArgType(Arg)
2289  const TemplateArgument &getArg(unsigned Idx) const;
2290
2291  virtual void getAsStringInternal(std::string &InnerString,
2292                                   const PrintingPolicy &Policy) const;
2293
2294  bool isSugared() const { return !isDependentType(); }
2295  QualType desugar() const { return getCanonicalTypeInternal(); }
2296
2297  void Profile(llvm::FoldingSetNodeID &ID) {
2298    Profile(ID, Template, getArgs(), NumArgs, Context);
2299  }
2300
2301  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2302                      const TemplateArgument *Args, unsigned NumArgs,
2303                      ASTContext &Context);
2304
2305  static bool classof(const Type *T) {
2306    return T->getTypeClass() == TemplateSpecialization;
2307  }
2308  static bool classof(const TemplateSpecializationType *T) { return true; }
2309};
2310
2311/// \brief Represents a type that was referred to via a qualified
2312/// name, e.g., N::M::type.
2313///
2314/// This type is used to keep track of a type name as written in the
2315/// source code, including any nested-name-specifiers. The type itself
2316/// is always "sugar", used to express what was written in the source
2317/// code but containing no additional semantic information.
2318class QualifiedNameType : public Type, public llvm::FoldingSetNode {
2319  /// \brief The nested name specifier containing the qualifier.
2320  NestedNameSpecifier *NNS;
2321
2322  /// \brief The type that this qualified name refers to.
2323  QualType NamedType;
2324
2325  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
2326                    QualType CanonType)
2327    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
2328      NNS(NNS), NamedType(NamedType) { }
2329
2330  friend class ASTContext;  // ASTContext creates these
2331
2332public:
2333  /// \brief Retrieve the qualification on this type.
2334  NestedNameSpecifier *getQualifier() const { return NNS; }
2335
2336  /// \brief Retrieve the type named by the qualified-id.
2337  QualType getNamedType() const { return NamedType; }
2338
2339  /// \brief Remove a single level of sugar.
2340  QualType desugar() const { return getNamedType(); }
2341
2342  /// \brief Returns whether this type directly provides sugar.
2343  bool isSugared() const { return true; }
2344
2345  virtual void getAsStringInternal(std::string &InnerString,
2346                                   const PrintingPolicy &Policy) const;
2347
2348  void Profile(llvm::FoldingSetNodeID &ID) {
2349    Profile(ID, NNS, NamedType);
2350  }
2351
2352  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2353                      QualType NamedType) {
2354    ID.AddPointer(NNS);
2355    NamedType.Profile(ID);
2356  }
2357
2358  static bool classof(const Type *T) {
2359    return T->getTypeClass() == QualifiedName;
2360  }
2361  static bool classof(const QualifiedNameType *T) { return true; }
2362};
2363
2364/// \brief Represents a 'typename' specifier that names a type within
2365/// a dependent type, e.g., "typename T::type".
2366///
2367/// TypenameType has a very similar structure to QualifiedNameType,
2368/// which also involves a nested-name-specifier following by a type,
2369/// and (FIXME!) both can even be prefixed by the 'typename'
2370/// keyword. However, the two types serve very different roles:
2371/// QualifiedNameType is a non-semantic type that serves only as sugar
2372/// to show how a particular type was written in the source
2373/// code. TypenameType, on the other hand, only occurs when the
2374/// nested-name-specifier is dependent, such that we cannot resolve
2375/// the actual type until after instantiation.
2376class TypenameType : public Type, public llvm::FoldingSetNode {
2377  /// \brief The nested name specifier containing the qualifier.
2378  NestedNameSpecifier *NNS;
2379
2380  typedef llvm::PointerUnion<const IdentifierInfo *,
2381                             const TemplateSpecializationType *> NameType;
2382
2383  /// \brief The type that this typename specifier refers to.
2384  NameType Name;
2385
2386  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
2387               QualType CanonType)
2388    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
2389    assert(NNS->isDependent() &&
2390           "TypenameType requires a dependent nested-name-specifier");
2391  }
2392
2393  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
2394               QualType CanonType)
2395    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
2396    assert(NNS->isDependent() &&
2397           "TypenameType requires a dependent nested-name-specifier");
2398  }
2399
2400  friend class ASTContext;  // ASTContext creates these
2401
2402public:
2403  /// \brief Retrieve the qualification on this type.
2404  NestedNameSpecifier *getQualifier() const { return NNS; }
2405
2406  /// \brief Retrieve the type named by the typename specifier as an
2407  /// identifier.
2408  ///
2409  /// This routine will return a non-NULL identifier pointer when the
2410  /// form of the original typename was terminated by an identifier,
2411  /// e.g., "typename T::type".
2412  const IdentifierInfo *getIdentifier() const {
2413    return Name.dyn_cast<const IdentifierInfo *>();
2414  }
2415
2416  /// \brief Retrieve the type named by the typename specifier as a
2417  /// type specialization.
2418  const TemplateSpecializationType *getTemplateId() const {
2419    return Name.dyn_cast<const TemplateSpecializationType *>();
2420  }
2421
2422  virtual void getAsStringInternal(std::string &InnerString,
2423                                   const PrintingPolicy &Policy) const;
2424
2425  bool isSugared() const { return false; }
2426  QualType desugar() const { return QualType(this, 0); }
2427
2428  void Profile(llvm::FoldingSetNodeID &ID) {
2429    Profile(ID, NNS, Name);
2430  }
2431
2432  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2433                      NameType Name) {
2434    ID.AddPointer(NNS);
2435    ID.AddPointer(Name.getOpaqueValue());
2436  }
2437
2438  static bool classof(const Type *T) {
2439    return T->getTypeClass() == Typename;
2440  }
2441  static bool classof(const TypenameType *T) { return true; }
2442};
2443
2444/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
2445/// object oriented design.  They basically correspond to C++ classes.  There
2446/// are two kinds of interface types, normal interfaces like "NSString" and
2447/// qualified interfaces, which are qualified with a protocol list like
2448/// "NSString<NSCopyable, NSAmazing>".
2449class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
2450  ObjCInterfaceDecl *Decl;
2451
2452  // List of protocols for this protocol conforming object type
2453  // List is sorted on protocol name. No protocol is enterred more than once.
2454  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;
2455
2456  ObjCInterfaceType(ObjCInterfaceDecl *D,
2457                    ObjCProtocolDecl **Protos, unsigned NumP) :
2458    Type(ObjCInterface, QualType(), /*Dependent=*/false),
2459    Decl(D), Protocols(Protos, Protos+NumP) { }
2460  friend class ASTContext;  // ASTContext creates these.
2461public:
2462  ObjCInterfaceDecl *getDecl() const { return Decl; }
2463
2464  /// getNumProtocols - Return the number of qualifying protocols in this
2465  /// interface type, or 0 if there are none.
2466  unsigned getNumProtocols() const { return Protocols.size(); }
2467
2468  /// qual_iterator and friends: this provides access to the (potentially empty)
2469  /// list of protocols qualifying this interface.
2470  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
2471  qual_iterator qual_begin() const { return Protocols.begin(); }
2472  qual_iterator qual_end() const   { return Protocols.end(); }
2473  bool qual_empty() const { return Protocols.size() == 0; }
2474
2475  virtual void getAsStringInternal(std::string &InnerString,
2476                                   const PrintingPolicy &Policy) const;
2477
2478  bool isSugared() const { return false; }
2479  QualType desugar() const { return QualType(this, 0); }
2480
2481  void Profile(llvm::FoldingSetNodeID &ID);
2482  static void Profile(llvm::FoldingSetNodeID &ID,
2483                      const ObjCInterfaceDecl *Decl,
2484                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2485
2486  static bool classof(const Type *T) {
2487    return T->getTypeClass() == ObjCInterface;
2488  }
2489  static bool classof(const ObjCInterfaceType *) { return true; }
2490};
2491
2492/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
2493/// and 'Interface <p> *'.
2494///
2495/// Duplicate protocols are removed and protocol list is canonicalized to be in
2496/// alphabetical order.
2497class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
2498  QualType PointeeType; // A builtin or interface type.
2499
2500  // List of protocols for this protocol conforming object type
2501  // List is sorted on protocol name. No protocol is entered more than once.
2502  llvm::SmallVector<ObjCProtocolDecl*, 8> Protocols;
2503
2504  ObjCObjectPointerType(QualType T, ObjCProtocolDecl **Protos, unsigned NumP) :
2505    Type(ObjCObjectPointer, QualType(), /*Dependent=*/false),
2506    PointeeType(T), Protocols(Protos, Protos+NumP) { }
2507  friend class ASTContext;  // ASTContext creates these.
2508
2509public:
2510  // Get the pointee type. Pointee will either be:
2511  // - a built-in type (for 'id' and 'Class').
2512  // - an interface type (for user-defined types).
2513  // - a TypedefType whose canonical type is an interface (as in 'T' below).
2514  //   For example: typedef NSObject T; T *var;
2515  QualType getPointeeType() const { return PointeeType; }
2516
2517  const ObjCInterfaceType *getInterfaceType() const {
2518    return PointeeType->getAs<ObjCInterfaceType>();
2519  }
2520  /// getInterfaceDecl - returns an interface decl for user-defined types.
2521  ObjCInterfaceDecl *getInterfaceDecl() const {
2522    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
2523  }
2524  /// isObjCIdType - true for "id".
2525  bool isObjCIdType() const {
2526    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2527           !Protocols.size();
2528  }
2529  /// isObjCClassType - true for "Class".
2530  bool isObjCClassType() const {
2531    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2532           !Protocols.size();
2533  }
2534  /// isObjCQualifiedIdType - true for "id <p>".
2535  bool isObjCQualifiedIdType() const {
2536    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2537           Protocols.size();
2538  }
2539  /// isObjCQualifiedClassType - true for "Class <p>".
2540  bool isObjCQualifiedClassType() const {
2541    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2542           Protocols.size();
2543  }
2544  /// qual_iterator and friends: this provides access to the (potentially empty)
2545  /// list of protocols qualifying this interface.
2546  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
2547
2548  qual_iterator qual_begin() const { return Protocols.begin(); }
2549  qual_iterator qual_end() const   { return Protocols.end(); }
2550  bool qual_empty() const { return Protocols.size() == 0; }
2551
2552  /// getNumProtocols - Return the number of qualifying protocols in this
2553  /// interface type, or 0 if there are none.
2554  unsigned getNumProtocols() const { return Protocols.size(); }
2555
2556  bool isSugared() const { return false; }
2557  QualType desugar() const { return QualType(this, 0); }
2558
2559  void Profile(llvm::FoldingSetNodeID &ID);
2560  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2561                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2562  virtual void getAsStringInternal(std::string &InnerString,
2563                                   const PrintingPolicy &Policy) const;
2564  static bool classof(const Type *T) {
2565    return T->getTypeClass() == ObjCObjectPointer;
2566  }
2567  static bool classof(const ObjCObjectPointerType *) { return true; }
2568};
2569
2570/// \brief An ObjC Protocol list that qualifies a type.
2571///
2572/// This is used only for keeping detailed type source information, it should
2573/// not participate in the semantics of the type system.
2574/// The protocol list is not canonicalized.
2575class ObjCProtocolListType : public Type, public llvm::FoldingSetNode {
2576  QualType BaseType;
2577
2578  // List of protocols for this protocol conforming object type.
2579  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;
2580
2581  ObjCProtocolListType(QualType T, ObjCProtocolDecl **Protos, unsigned NumP) :
2582    Type(ObjCProtocolList, QualType(), /*Dependent=*/false),
2583    BaseType(T), Protocols(Protos, Protos+NumP) { }
2584  friend class ASTContext;  // ASTContext creates these.
2585
2586public:
2587  QualType getBaseType() const { return BaseType; }
2588
2589  /// \brief Provides access to the list of protocols qualifying the base type.
2590  typedef llvm::SmallVector<ObjCProtocolDecl*, 4>::const_iterator qual_iterator;
2591
2592  qual_iterator qual_begin() const { return Protocols.begin(); }
2593  qual_iterator qual_end() const   { return Protocols.end(); }
2594  bool qual_empty() const { return Protocols.size() == 0; }
2595
2596  /// \brief Return the number of qualifying protocols.
2597  unsigned getNumProtocols() const { return Protocols.size(); }
2598
2599  bool isSugared() const { return false; }
2600  QualType desugar() const { return QualType(this, 0); }
2601
2602  void Profile(llvm::FoldingSetNodeID &ID);
2603  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2604                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2605  virtual void getAsStringInternal(std::string &InnerString,
2606                                   const PrintingPolicy &Policy) const;
2607  static bool classof(const Type *T) {
2608    return T->getTypeClass() == ObjCProtocolList;
2609  }
2610  static bool classof(const ObjCProtocolListType *) { return true; }
2611};
2612
2613/// A qualifier set is used to build a set of qualifiers.
2614class QualifierCollector : public Qualifiers {
2615  ASTContext *Context;
2616
2617public:
2618  QualifierCollector(Qualifiers Qs = Qualifiers())
2619    : Qualifiers(Qs), Context(0) {}
2620  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
2621    : Qualifiers(Qs), Context(&Context) {}
2622
2623  void setContext(ASTContext &C) { Context = &C; }
2624
2625  /// Collect any qualifiers on the given type and return an
2626  /// unqualified type.
2627  const Type *strip(QualType QT) {
2628    addFastQualifiers(QT.getFastQualifiers());
2629    if (QT.hasNonFastQualifiers()) {
2630      const ExtQuals *EQ = QT.getExtQualsUnsafe();
2631      Context = &EQ->getContext();
2632      addQualifiers(EQ->getQualifiers());
2633      return EQ->getBaseType();
2634    }
2635    return QT.getTypePtrUnsafe();
2636  }
2637
2638  /// Apply the collected qualifiers to the given type.
2639  QualType apply(QualType QT) const;
2640
2641  /// Apply the collected qualifiers to the given type.
2642  QualType apply(const Type* T) const;
2643
2644};
2645
2646
2647// Inline function definitions.
2648
2649inline void QualType::removeConst() {
2650  removeFastQualifiers(Qualifiers::Const);
2651}
2652
2653inline void QualType::removeRestrict() {
2654  removeFastQualifiers(Qualifiers::Restrict);
2655}
2656
2657inline void QualType::removeVolatile() {
2658  QualifierCollector Qc;
2659  const Type *Ty = Qc.strip(*this);
2660  if (Qc.hasVolatile()) {
2661    Qc.removeVolatile();
2662    *this = Qc.apply(Ty);
2663  }
2664}
2665
2666inline void QualType::removeCVRQualifiers(unsigned Mask) {
2667  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
2668
2669  // Fast path: we don't need to touch the slow qualifiers.
2670  if (!(Mask & ~Qualifiers::FastMask)) {
2671    removeFastQualifiers(Mask);
2672    return;
2673  }
2674
2675  QualifierCollector Qc;
2676  const Type *Ty = Qc.strip(*this);
2677  Qc.removeCVRQualifiers(Mask);
2678  *this = Qc.apply(Ty);
2679}
2680
2681/// getAddressSpace - Return the address space of this type.
2682inline unsigned QualType::getAddressSpace() const {
2683  if (hasNonFastQualifiers()) {
2684    const ExtQuals *EQ = getExtQualsUnsafe();
2685    if (EQ->hasAddressSpace())
2686      return EQ->getAddressSpace();
2687  }
2688
2689  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2690  if (CT.hasNonFastQualifiers()) {
2691    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2692    if (EQ->hasAddressSpace())
2693      return EQ->getAddressSpace();
2694  }
2695
2696  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2697    return AT->getElementType().getAddressSpace();
2698  if (const RecordType *RT = dyn_cast<RecordType>(CT))
2699    return RT->getAddressSpace();
2700  return 0;
2701}
2702
2703/// getObjCGCAttr - Return the gc attribute of this type.
2704inline Qualifiers::GC QualType::getObjCGCAttr() const {
2705  if (hasNonFastQualifiers()) {
2706    const ExtQuals *EQ = getExtQualsUnsafe();
2707    if (EQ->hasObjCGCAttr())
2708      return EQ->getObjCGCAttr();
2709  }
2710
2711  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2712  if (CT.hasNonFastQualifiers()) {
2713    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2714    if (EQ->hasObjCGCAttr())
2715      return EQ->getObjCGCAttr();
2716  }
2717
2718  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2719      return AT->getElementType().getObjCGCAttr();
2720  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
2721    return PT->getPointeeType().getObjCGCAttr();
2722  // We most look at all pointer types, not just pointer to interface types.
2723  if (const PointerType *PT = CT->getAs<PointerType>())
2724    return PT->getPointeeType().getObjCGCAttr();
2725  return Qualifiers::GCNone;
2726}
2727
2728  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
2729  /// false otherwise.
2730inline bool QualType::getNoReturnAttr() const {
2731  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2732  if (const PointerType *PT = getTypePtr()->getAs<PointerType>()) {
2733    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
2734      return FT->getNoReturnAttr();
2735  } else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
2736    return FT->getNoReturnAttr();
2737
2738  return false;
2739}
2740
2741/// isMoreQualifiedThan - Determine whether this type is more
2742/// qualified than the Other type. For example, "const volatile int"
2743/// is more qualified than "const int", "volatile int", and
2744/// "int". However, it is not more qualified than "const volatile
2745/// int".
2746inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2747  // FIXME: work on arbitrary qualifiers
2748  unsigned MyQuals = this->getCVRQualifiers();
2749  unsigned OtherQuals = Other.getCVRQualifiers();
2750  if (getAddressSpace() != Other.getAddressSpace())
2751    return false;
2752  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2753}
2754
2755/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2756/// as qualified as the Other type. For example, "const volatile
2757/// int" is at least as qualified as "const int", "volatile int",
2758/// "int", and "const volatile int".
2759inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2760  // FIXME: work on arbitrary qualifiers
2761  unsigned MyQuals = this->getCVRQualifiers();
2762  unsigned OtherQuals = Other.getCVRQualifiers();
2763  if (getAddressSpace() != Other.getAddressSpace())
2764    return false;
2765  return (MyQuals | OtherQuals) == MyQuals;
2766}
2767
2768/// getNonReferenceType - If Type is a reference type (e.g., const
2769/// int&), returns the type that the reference refers to ("const
2770/// int"). Otherwise, returns the type itself. This routine is used
2771/// throughout Sema to implement C++ 5p6:
2772///
2773///   If an expression initially has the type "reference to T" (8.3.2,
2774///   8.5.3), the type is adjusted to "T" prior to any further
2775///   analysis, the expression designates the object or function
2776///   denoted by the reference, and the expression is an lvalue.
2777inline QualType QualType::getNonReferenceType() const {
2778  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
2779    return RefType->getPointeeType();
2780  else
2781    return *this;
2782}
2783
2784inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
2785  if (const PointerType *PT = getAs<PointerType>())
2786    return PT->getPointeeType()->getAs<ObjCInterfaceType>();
2787  return 0;
2788}
2789
2790// NOTE: All of these methods use "getUnqualifiedType" to strip off address
2791// space qualifiers if present.
2792inline bool Type::isFunctionType() const {
2793  return isa<FunctionType>(CanonicalType.getUnqualifiedType());
2794}
2795inline bool Type::isPointerType() const {
2796  return isa<PointerType>(CanonicalType.getUnqualifiedType());
2797}
2798inline bool Type::isAnyPointerType() const {
2799  return isPointerType() || isObjCObjectPointerType();
2800}
2801inline bool Type::isBlockPointerType() const {
2802  return isa<BlockPointerType>(CanonicalType.getUnqualifiedType());
2803}
2804inline bool Type::isReferenceType() const {
2805  return isa<ReferenceType>(CanonicalType.getUnqualifiedType());
2806}
2807inline bool Type::isLValueReferenceType() const {
2808  return isa<LValueReferenceType>(CanonicalType.getUnqualifiedType());
2809}
2810inline bool Type::isRValueReferenceType() const {
2811  return isa<RValueReferenceType>(CanonicalType.getUnqualifiedType());
2812}
2813inline bool Type::isFunctionPointerType() const {
2814  if (const PointerType* T = getAs<PointerType>())
2815    return T->getPointeeType()->isFunctionType();
2816  else
2817    return false;
2818}
2819inline bool Type::isMemberPointerType() const {
2820  return isa<MemberPointerType>(CanonicalType.getUnqualifiedType());
2821}
2822inline bool Type::isMemberFunctionPointerType() const {
2823  if (const MemberPointerType* T = getAs<MemberPointerType>())
2824    return T->getPointeeType()->isFunctionType();
2825  else
2826    return false;
2827}
2828inline bool Type::isArrayType() const {
2829  return isa<ArrayType>(CanonicalType.getUnqualifiedType());
2830}
2831inline bool Type::isConstantArrayType() const {
2832  return isa<ConstantArrayType>(CanonicalType.getUnqualifiedType());
2833}
2834inline bool Type::isIncompleteArrayType() const {
2835  return isa<IncompleteArrayType>(CanonicalType.getUnqualifiedType());
2836}
2837inline bool Type::isVariableArrayType() const {
2838  return isa<VariableArrayType>(CanonicalType.getUnqualifiedType());
2839}
2840inline bool Type::isDependentSizedArrayType() const {
2841  return isa<DependentSizedArrayType>(CanonicalType.getUnqualifiedType());
2842}
2843inline bool Type::isRecordType() const {
2844  return isa<RecordType>(CanonicalType.getUnqualifiedType());
2845}
2846inline bool Type::isAnyComplexType() const {
2847  return isa<ComplexType>(CanonicalType.getUnqualifiedType());
2848}
2849inline bool Type::isVectorType() const {
2850  return isa<VectorType>(CanonicalType.getUnqualifiedType());
2851}
2852inline bool Type::isExtVectorType() const {
2853  return isa<ExtVectorType>(CanonicalType.getUnqualifiedType());
2854}
2855inline bool Type::isObjCObjectPointerType() const {
2856  return isa<ObjCObjectPointerType>(CanonicalType.getUnqualifiedType());
2857}
2858inline bool Type::isObjCInterfaceType() const {
2859  return isa<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
2860}
2861inline bool Type::isObjCQualifiedIdType() const {
2862  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2863    return OPT->isObjCQualifiedIdType();
2864  return false;
2865}
2866inline bool Type::isObjCQualifiedClassType() const {
2867  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2868    return OPT->isObjCQualifiedClassType();
2869  return false;
2870}
2871inline bool Type::isObjCIdType() const {
2872  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2873    return OPT->isObjCIdType();
2874  return false;
2875}
2876inline bool Type::isObjCClassType() const {
2877  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2878    return OPT->isObjCClassType();
2879  return false;
2880}
2881inline bool Type::isObjCBuiltinType() const {
2882  return isObjCIdType() || isObjCClassType();
2883}
2884inline bool Type::isTemplateTypeParmType() const {
2885  return isa<TemplateTypeParmType>(CanonicalType.getUnqualifiedType());
2886}
2887
2888inline bool Type::isSpecificBuiltinType(unsigned K) const {
2889  if (const BuiltinType *BT = getAs<BuiltinType>())
2890    if (BT->getKind() == (BuiltinType::Kind) K)
2891      return true;
2892  return false;
2893}
2894
2895/// \brief Determines whether this is a type for which one can define
2896/// an overloaded operator.
2897inline bool Type::isOverloadableType() const {
2898  return isDependentType() || isRecordType() || isEnumeralType();
2899}
2900
2901inline bool Type::hasPointerRepresentation() const {
2902  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
2903          isObjCInterfaceType() || isObjCObjectPointerType() ||
2904          isObjCQualifiedInterfaceType() || isNullPtrType());
2905}
2906
2907inline bool Type::hasObjCPointerRepresentation() const {
2908  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
2909          isObjCQualifiedInterfaceType());
2910}
2911
2912/// Insertion operator for diagnostics.  This allows sending QualType's into a
2913/// diagnostic with <<.
2914inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2915                                           QualType T) {
2916  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
2917                  Diagnostic::ak_qualtype);
2918  return DB;
2919}
2920
2921/// Member-template getAs<specific type>'.
2922template <typename T> const T *Type::getAs() const {
2923  // If this is directly a T type, return it.
2924  if (const T *Ty = dyn_cast<T>(this))
2925    return Ty;
2926
2927  // If the canonical form of this type isn't the right kind, reject it.
2928  if (!isa<T>(CanonicalType))
2929    return 0;
2930
2931  // If this is a typedef for the type, strip the typedef off without
2932  // losing all typedef information.
2933  return cast<T>(getUnqualifiedDesugaredType());
2934}
2935
2936}  // end namespace clang
2937
2938#endif
2939