Type.h revision 13dcd00615de5c4279d97bdf63cd5f0a14fd9dcc
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/AST/TemplateName.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/type_traits.h"
23#include "llvm/ADT/APSInt.h"
24#include "llvm/ADT/FoldingSet.h"
25#include "llvm/ADT/PointerIntPair.h"
26#include "llvm/ADT/PointerUnion.h"
27
28using llvm::isa;
29using llvm::cast;
30using llvm::cast_or_null;
31using llvm::dyn_cast;
32using llvm::dyn_cast_or_null;
33namespace clang {
34  enum {
35    TypeAlignmentInBits = 3,
36    TypeAlignment = 1 << TypeAlignmentInBits
37  };
38  class Type; class ExtQuals;
39}
40
41namespace llvm {
42  template <typename T>
43  class PointerLikeTypeTraits;
44  template<>
45  class PointerLikeTypeTraits< ::clang::Type*> {
46  public:
47    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
48    static inline ::clang::Type *getFromVoidPointer(void *P) {
49      return static_cast< ::clang::Type*>(P);
50    }
51    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
52  };
53  template<>
54  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
55  public:
56    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
57    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
58      return static_cast< ::clang::ExtQuals*>(P);
59    }
60    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
61  };
62}
63
64namespace clang {
65  class ASTContext;
66  class TypedefDecl;
67  class TemplateDecl;
68  class TemplateTypeParmDecl;
69  class NonTypeTemplateParmDecl;
70  class TemplateTemplateParmDecl;
71  class TagDecl;
72  class RecordDecl;
73  class CXXRecordDecl;
74  class EnumDecl;
75  class FieldDecl;
76  class ObjCInterfaceDecl;
77  class ObjCProtocolDecl;
78  class ObjCMethodDecl;
79  class Expr;
80  class Stmt;
81  class SourceLocation;
82  class StmtIteratorBase;
83  class TemplateArgument;
84  class TemplateArgumentLoc;
85  class QualifiedNameType;
86  struct PrintingPolicy;
87
88  // Provide forward declarations for all of the *Type classes
89#define TYPE(Class, Base) class Class##Type;
90#include "clang/AST/TypeNodes.def"
91
92/// Qualifiers - The collection of all-type qualifiers we support.
93/// Clang supports five independent qualifiers:
94/// * C99: const, volatile, and restrict
95/// * Embedded C (TR18037): address spaces
96/// * Objective C: the GC attributes (none, weak, or strong)
97class Qualifiers {
98public:
99  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
100    Const    = 0x1,
101    Restrict = 0x2,
102    Volatile = 0x4,
103    CVRMask = Const | Volatile | Restrict
104  };
105
106  enum GC {
107    GCNone = 0,
108    Weak,
109    Strong
110  };
111
112  enum {
113    /// The maximum supported address space number.
114    /// 24 bits should be enough for anyone.
115    MaxAddressSpace = 0xffffffu,
116
117    /// The width of the "fast" qualifier mask.
118    FastWidth = 2,
119
120    /// The fast qualifier mask.
121    FastMask = (1 << FastWidth) - 1
122  };
123
124  Qualifiers() : Mask(0) {}
125
126  static Qualifiers fromFastMask(unsigned Mask) {
127    Qualifiers Qs;
128    Qs.addFastQualifiers(Mask);
129    return Qs;
130  }
131
132  static Qualifiers fromCVRMask(unsigned CVR) {
133    Qualifiers Qs;
134    Qs.addCVRQualifiers(CVR);
135    return Qs;
136  }
137
138  // Deserialize qualifiers from an opaque representation.
139  static Qualifiers fromOpaqueValue(unsigned opaque) {
140    Qualifiers Qs;
141    Qs.Mask = opaque;
142    return Qs;
143  }
144
145  // Serialize these qualifiers into an opaque representation.
146  unsigned getAsOpaqueValue() const {
147    return Mask;
148  }
149
150  bool hasConst() const { return Mask & Const; }
151  void setConst(bool flag) {
152    Mask = (Mask & ~Const) | (flag ? Const : 0);
153  }
154  void removeConst() { Mask &= ~Const; }
155  void addConst() { Mask |= Const; }
156
157  bool hasVolatile() const { return Mask & Volatile; }
158  void setVolatile(bool flag) {
159    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
160  }
161  void removeVolatile() { Mask &= ~Volatile; }
162  void addVolatile() { Mask |= Volatile; }
163
164  bool hasRestrict() const { return Mask & Restrict; }
165  void setRestrict(bool flag) {
166    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
167  }
168  void removeRestrict() { Mask &= ~Restrict; }
169  void addRestrict() { Mask |= Restrict; }
170
171  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
172  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
173  void setCVRQualifiers(unsigned mask) {
174    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
175    Mask = (Mask & ~CVRMask) | mask;
176  }
177  void removeCVRQualifiers(unsigned mask) {
178    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
179    Mask &= ~mask;
180  }
181  void removeCVRQualifiers() {
182    removeCVRQualifiers(CVRMask);
183  }
184  void addCVRQualifiers(unsigned mask) {
185    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
186    Mask |= mask;
187  }
188
189  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
190  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
191  void setObjCGCAttr(GC type) {
192    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
193  }
194  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
195  void addObjCGCAttr(GC type) {
196    assert(type);
197    setObjCGCAttr(type);
198  }
199
200  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
201  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
202  void setAddressSpace(unsigned space) {
203    assert(space <= MaxAddressSpace);
204    Mask = (Mask & ~AddressSpaceMask)
205         | (((uint32_t) space) << AddressSpaceShift);
206  }
207  void removeAddressSpace() { setAddressSpace(0); }
208  void addAddressSpace(unsigned space) {
209    assert(space);
210    setAddressSpace(space);
211  }
212
213  // Fast qualifiers are those that can be allocated directly
214  // on a QualType object.
215  bool hasFastQualifiers() const { return getFastQualifiers(); }
216  unsigned getFastQualifiers() const { return Mask & FastMask; }
217  void setFastQualifiers(unsigned mask) {
218    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
219    Mask = (Mask & ~FastMask) | mask;
220  }
221  void removeFastQualifiers(unsigned mask) {
222    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
223    Mask &= ~mask;
224  }
225  void removeFastQualifiers() {
226    removeFastQualifiers(FastMask);
227  }
228  void addFastQualifiers(unsigned mask) {
229    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
230    Mask |= mask;
231  }
232
233  /// hasNonFastQualifiers - Return true if the set contains any
234  /// qualifiers which require an ExtQuals node to be allocated.
235  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
236  Qualifiers getNonFastQualifiers() const {
237    Qualifiers Quals = *this;
238    Quals.setFastQualifiers(0);
239    return Quals;
240  }
241
242  /// hasQualifiers - Return true if the set contains any qualifiers.
243  bool hasQualifiers() const { return Mask; }
244  bool empty() const { return !Mask; }
245
246  /// \brief Add the qualifiers from the given set to this set.
247  void addQualifiers(Qualifiers Q) {
248    // If the other set doesn't have any non-boolean qualifiers, just
249    // bit-or it in.
250    if (!(Q.Mask & ~CVRMask))
251      Mask |= Q.Mask;
252    else {
253      Mask |= (Q.Mask & CVRMask);
254      if (Q.hasAddressSpace())
255        addAddressSpace(Q.getAddressSpace());
256      if (Q.hasObjCGCAttr())
257        addObjCGCAttr(Q.getObjCGCAttr());
258    }
259  }
260
261  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
262  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
263
264  operator bool() const { return hasQualifiers(); }
265
266  Qualifiers &operator+=(Qualifiers R) {
267    addQualifiers(R);
268    return *this;
269  }
270
271  // Union two qualifier sets.  If an enumerated qualifier appears
272  // in both sets, use the one from the right.
273  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
274    L += R;
275    return L;
276  }
277
278  std::string getAsString() const;
279  std::string getAsString(const PrintingPolicy &Policy) const {
280    std::string Buffer;
281    getAsStringInternal(Buffer, Policy);
282    return Buffer;
283  }
284  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
285
286  void Profile(llvm::FoldingSetNodeID &ID) const {
287    ID.AddInteger(Mask);
288  }
289
290private:
291
292  // bits:     |0 1 2|3 .. 4|5  ..  31|
293  //           |C R V|GCAttr|AddrSpace|
294  uint32_t Mask;
295
296  static const uint32_t GCAttrMask = 0x18;
297  static const uint32_t GCAttrShift = 3;
298  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
299  static const uint32_t AddressSpaceShift = 5;
300};
301
302
303/// ExtQuals - We can encode up to three bits in the low bits of a
304/// type pointer, but there are many more type qualifiers that we want
305/// to be able to apply to an arbitrary type.  Therefore we have this
306/// struct, intended to be heap-allocated and used by QualType to
307/// store qualifiers.
308///
309/// The current design tags the 'const' and 'restrict' qualifiers in
310/// two low bits on the QualType pointer; a third bit records whether
311/// the pointer is an ExtQuals node.  'const' was chosen because it is
312/// orders of magnitude more common than the other two qualifiers, in
313/// both library and user code.  It's relatively rare to see
314/// 'restrict' in user code, but many standard C headers are saturated
315/// with 'restrict' declarations, so that representing them efficiently
316/// is a critical goal of this representation.
317class ExtQuals : public llvm::FoldingSetNode {
318  // NOTE: changing the fast qualifiers should be straightforward as
319  // long as you don't make 'const' non-fast.
320  // 1. Qualifiers:
321  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
322  //       Fast qualifiers must occupy the low-order bits.
323  //    b) Update Qualifiers::FastWidth and FastMask.
324  // 2. QualType:
325  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
326  //    b) Update remove{Volatile,Restrict}, defined near the end of
327  //       this header.
328  // 3. ASTContext:
329  //    a) Update get{Volatile,Restrict}Type.
330
331  /// Context - the context to which this set belongs.  We save this
332  /// here so that QualifierCollector can use it to reapply extended
333  /// qualifiers to an arbitrary type without requiring a context to
334  /// be pushed through every single API dealing with qualifiers.
335  ASTContext& Context;
336
337  /// BaseType - the underlying type that this qualifies
338  const Type *BaseType;
339
340  /// Quals - the immutable set of qualifiers applied by this
341  /// node;  always contains extended qualifiers.
342  Qualifiers Quals;
343
344public:
345  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
346    : Context(Context), BaseType(Base), Quals(Quals)
347  {
348    assert(Quals.hasNonFastQualifiers()
349           && "ExtQuals created with no fast qualifiers");
350    assert(!Quals.hasFastQualifiers()
351           && "ExtQuals created with fast qualifiers");
352  }
353
354  Qualifiers getQualifiers() const { return Quals; }
355
356  bool hasVolatile() const { return Quals.hasVolatile(); }
357
358  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
359  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
360
361  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
362  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
363
364  const Type *getBaseType() const { return BaseType; }
365
366  ASTContext &getContext() const { return Context; }
367
368public:
369  void Profile(llvm::FoldingSetNodeID &ID) const {
370    Profile(ID, getBaseType(), Quals);
371  }
372  static void Profile(llvm::FoldingSetNodeID &ID,
373                      const Type *BaseType,
374                      Qualifiers Quals) {
375    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
376    ID.AddPointer(BaseType);
377    Quals.Profile(ID);
378  }
379};
380
381
382/// QualType - For efficiency, we don't store CV-qualified types as nodes on
383/// their own: instead each reference to a type stores the qualifiers.  This
384/// greatly reduces the number of nodes we need to allocate for types (for
385/// example we only need one for 'int', 'const int', 'volatile int',
386/// 'const volatile int', etc).
387///
388/// As an added efficiency bonus, instead of making this a pair, we
389/// just store the two bits we care about in the low bits of the
390/// pointer.  To handle the packing/unpacking, we make QualType be a
391/// simple wrapper class that acts like a smart pointer.  A third bit
392/// indicates whether there are extended qualifiers present, in which
393/// case the pointer points to a special structure.
394class QualType {
395  // Thankfully, these are efficiently composable.
396  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
397                       Qualifiers::FastWidth> Value;
398
399  const ExtQuals *getExtQualsUnsafe() const {
400    return Value.getPointer().get<const ExtQuals*>();
401  }
402
403  const Type *getTypePtrUnsafe() const {
404    return Value.getPointer().get<const Type*>();
405  }
406
407  QualType getUnqualifiedTypeSlow() const;
408
409  friend class QualifierCollector;
410public:
411  QualType() {}
412
413  QualType(const Type *Ptr, unsigned Quals)
414    : Value(Ptr, Quals) {}
415  QualType(const ExtQuals *Ptr, unsigned Quals)
416    : Value(Ptr, Quals) {}
417
418  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
419  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
420
421  /// Retrieves a pointer to the underlying (unqualified) type.
422  /// This should really return a const Type, but it's not worth
423  /// changing all the users right now.
424  Type *getTypePtr() const {
425    if (hasLocalNonFastQualifiers())
426      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
427    return const_cast<Type*>(getTypePtrUnsafe());
428  }
429
430  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
431  static QualType getFromOpaquePtr(void *Ptr) {
432    QualType T;
433    T.Value.setFromOpaqueValue(Ptr);
434    return T;
435  }
436
437  Type &operator*() const {
438    return *getTypePtr();
439  }
440
441  Type *operator->() const {
442    return getTypePtr();
443  }
444
445  bool isCanonical() const;
446  bool isCanonicalAsParam() const;
447
448  /// isNull - Return true if this QualType doesn't point to a type yet.
449  bool isNull() const {
450    return Value.getPointer().isNull();
451  }
452
453  /// \brief Determine whether this particular QualType instance has the
454  /// "const" qualifier set, without looking through typedefs that may have
455  /// added "const" at a different level.
456  bool isLocalConstQualified() const {
457    return (getLocalFastQualifiers() & Qualifiers::Const);
458  }
459
460  /// \brief Determine whether this type is const-qualified.
461  bool isConstQualified() const;
462
463  /// \brief Determine whether this particular QualType instance has the
464  /// "restrict" qualifier set, without looking through typedefs that may have
465  /// added "restrict" at a different level.
466  bool isLocalRestrictQualified() const {
467    return (getLocalFastQualifiers() & Qualifiers::Restrict);
468  }
469
470  /// \brief Determine whether this type is restrict-qualified.
471  bool isRestrictQualified() const;
472
473  /// \brief Determine whether this particular QualType instance has the
474  /// "volatile" qualifier set, without looking through typedefs that may have
475  /// added "volatile" at a different level.
476  bool isLocalVolatileQualified() const {
477    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
478  }
479
480  /// \brief Determine whether this type is volatile-qualified.
481  bool isVolatileQualified() const;
482
483  /// \brief Determine whether this particular QualType instance has any
484  /// qualifiers, without looking through any typedefs that might add
485  /// qualifiers at a different level.
486  bool hasLocalQualifiers() const {
487    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
488  }
489
490  /// \brief Determine whether this type has any qualifiers.
491  bool hasQualifiers() const;
492
493  /// \brief Determine whether this particular QualType instance has any
494  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
495  /// instance.
496  bool hasLocalNonFastQualifiers() const {
497    return Value.getPointer().is<const ExtQuals*>();
498  }
499
500  /// \brief Retrieve the set of qualifiers local to this particular QualType
501  /// instance, not including any qualifiers acquired through typedefs or
502  /// other sugar.
503  Qualifiers getLocalQualifiers() const {
504    Qualifiers Quals;
505    if (hasLocalNonFastQualifiers())
506      Quals = getExtQualsUnsafe()->getQualifiers();
507    Quals.addFastQualifiers(getLocalFastQualifiers());
508    return Quals;
509  }
510
511  /// \brief Retrieve the set of qualifiers applied to this type.
512  Qualifiers getQualifiers() const;
513
514  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
515  /// local to this particular QualType instance, not including any qualifiers
516  /// acquired through typedefs or other sugar.
517  unsigned getLocalCVRQualifiers() const {
518    unsigned CVR = getLocalFastQualifiers();
519    if (isLocalVolatileQualified())
520      CVR |= Qualifiers::Volatile;
521    return CVR;
522  }
523
524  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
525  /// applied to this type.
526  unsigned getCVRQualifiers() const;
527
528  bool isConstant(ASTContext& Ctx) const {
529    return QualType::isConstant(*this, Ctx);
530  }
531
532  // Don't promise in the API that anything besides 'const' can be
533  // easily added.
534
535  /// addConst - add the specified type qualifier to this QualType.
536  void addConst() {
537    addFastQualifiers(Qualifiers::Const);
538  }
539  QualType withConst() const {
540    return withFastQualifiers(Qualifiers::Const);
541  }
542
543  void addFastQualifiers(unsigned TQs) {
544    assert(!(TQs & ~Qualifiers::FastMask)
545           && "non-fast qualifier bits set in mask!");
546    Value.setInt(Value.getInt() | TQs);
547  }
548
549  // FIXME: The remove* functions are semantically broken, because they might
550  // not remove a qualifier stored on a typedef. Most of the with* functions
551  // have the same problem.
552  void removeConst();
553  void removeVolatile();
554  void removeRestrict();
555  void removeCVRQualifiers(unsigned Mask);
556
557  void removeFastQualifiers() { Value.setInt(0); }
558  void removeFastQualifiers(unsigned Mask) {
559    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
560    Value.setInt(Value.getInt() & ~Mask);
561  }
562
563  // Creates a type with the given qualifiers in addition to any
564  // qualifiers already on this type.
565  QualType withFastQualifiers(unsigned TQs) const {
566    QualType T = *this;
567    T.addFastQualifiers(TQs);
568    return T;
569  }
570
571  // Creates a type with exactly the given fast qualifiers, removing
572  // any existing fast qualifiers.
573  QualType withExactFastQualifiers(unsigned TQs) const {
574    return withoutFastQualifiers().withFastQualifiers(TQs);
575  }
576
577  // Removes fast qualifiers, but leaves any extended qualifiers in place.
578  QualType withoutFastQualifiers() const {
579    QualType T = *this;
580    T.removeFastQualifiers();
581    return T;
582  }
583
584  /// \brief Return this type with all of the instance-specific qualifiers
585  /// removed, but without removing any qualifiers that may have been applied
586  /// through typedefs.
587  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
588
589  /// \brief Return the unqualified form of the given type, which might be
590  /// desugared to eliminate qualifiers introduced via typedefs.
591  QualType getUnqualifiedType() const {
592    QualType T = getLocalUnqualifiedType();
593    if (!T.hasQualifiers())
594      return T;
595
596    return getUnqualifiedTypeSlow();
597  }
598
599  bool isMoreQualifiedThan(QualType Other) const;
600  bool isAtLeastAsQualifiedAs(QualType Other) const;
601  QualType getNonReferenceType() const;
602
603  /// getDesugaredType - Return the specified type with any "sugar" removed from
604  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
605  /// the type is already concrete, it returns it unmodified.  This is similar
606  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
607  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
608  /// concrete.
609  ///
610  /// Qualifiers are left in place.
611  QualType getDesugaredType() const {
612    return QualType::getDesugaredType(*this);
613  }
614
615  /// operator==/!= - Indicate whether the specified types and qualifiers are
616  /// identical.
617  friend bool operator==(const QualType &LHS, const QualType &RHS) {
618    return LHS.Value == RHS.Value;
619  }
620  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
621    return LHS.Value != RHS.Value;
622  }
623  std::string getAsString() const;
624
625  std::string getAsString(const PrintingPolicy &Policy) const {
626    std::string S;
627    getAsStringInternal(S, Policy);
628    return S;
629  }
630  void getAsStringInternal(std::string &Str,
631                           const PrintingPolicy &Policy) const;
632
633  void dump(const char *s) const;
634  void dump() const;
635
636  void Profile(llvm::FoldingSetNodeID &ID) const {
637    ID.AddPointer(getAsOpaquePtr());
638  }
639
640  /// getAddressSpace - Return the address space of this type.
641  inline unsigned getAddressSpace() const;
642
643  /// GCAttrTypesAttr - Returns gc attribute of this type.
644  inline Qualifiers::GC getObjCGCAttr() const;
645
646  /// isObjCGCWeak true when Type is objc's weak.
647  bool isObjCGCWeak() const {
648    return getObjCGCAttr() == Qualifiers::Weak;
649  }
650
651  /// isObjCGCStrong true when Type is objc's strong.
652  bool isObjCGCStrong() const {
653    return getObjCGCAttr() == Qualifiers::Strong;
654  }
655
656  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
657  /// false otherwise.
658  bool getNoReturnAttr() const;
659
660private:
661  // These methods are implemented in a separate translation unit;
662  // "static"-ize them to avoid creating temporary QualTypes in the
663  // caller.
664  static bool isConstant(QualType T, ASTContext& Ctx);
665  static QualType getDesugaredType(QualType T);
666};
667
668} // end clang.
669
670namespace llvm {
671/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
672/// to a specific Type class.
673template<> struct simplify_type<const ::clang::QualType> {
674  typedef ::clang::Type* SimpleType;
675  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
676    return Val.getTypePtr();
677  }
678};
679template<> struct simplify_type< ::clang::QualType>
680  : public simplify_type<const ::clang::QualType> {};
681
682// Teach SmallPtrSet that QualType is "basically a pointer".
683template<>
684class PointerLikeTypeTraits<clang::QualType> {
685public:
686  static inline void *getAsVoidPointer(clang::QualType P) {
687    return P.getAsOpaquePtr();
688  }
689  static inline clang::QualType getFromVoidPointer(void *P) {
690    return clang::QualType::getFromOpaquePtr(P);
691  }
692  // Various qualifiers go in low bits.
693  enum { NumLowBitsAvailable = 0 };
694};
695
696} // end namespace llvm
697
698namespace clang {
699
700/// Type - This is the base class of the type hierarchy.  A central concept
701/// with types is that each type always has a canonical type.  A canonical type
702/// is the type with any typedef names stripped out of it or the types it
703/// references.  For example, consider:
704///
705///  typedef int  foo;
706///  typedef foo* bar;
707///    'int *'    'foo *'    'bar'
708///
709/// There will be a Type object created for 'int'.  Since int is canonical, its
710/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
711/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
712/// there is a PointerType that represents 'int*', which, like 'int', is
713/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
714/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
715/// is also 'int*'.
716///
717/// Non-canonical types are useful for emitting diagnostics, without losing
718/// information about typedefs being used.  Canonical types are useful for type
719/// comparisons (they allow by-pointer equality tests) and useful for reasoning
720/// about whether something has a particular form (e.g. is a function type),
721/// because they implicitly, recursively, strip all typedefs out of a type.
722///
723/// Types, once created, are immutable.
724///
725class Type {
726public:
727  enum TypeClass {
728#define TYPE(Class, Base) Class,
729#define ABSTRACT_TYPE(Class, Base)
730#include "clang/AST/TypeNodes.def"
731    TagFirst = Record, TagLast = Enum
732  };
733
734protected:
735  enum { TypeClassBitSize = 6 };
736
737private:
738  QualType CanonicalType;
739
740  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
741  bool Dependent : 1;
742
743  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
744  /// Note that this should stay at the end of the ivars for Type so that
745  /// subclasses can pack their bitfields into the same word.
746  unsigned TC : TypeClassBitSize;
747
748  Type(const Type&);           // DO NOT IMPLEMENT.
749  void operator=(const Type&); // DO NOT IMPLEMENT.
750protected:
751  // silence VC++ warning C4355: 'this' : used in base member initializer list
752  Type *this_() { return this; }
753  Type(TypeClass tc, QualType Canonical, bool dependent)
754    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
755      Dependent(dependent), TC(tc) {}
756  virtual ~Type() {}
757  virtual void Destroy(ASTContext& C);
758  friend class ASTContext;
759
760public:
761  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
762
763  bool isCanonicalUnqualified() const {
764    return CanonicalType.getTypePtr() == this;
765  }
766
767  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
768  /// object types, function types, and incomplete types.
769
770  /// \brief Determines whether the type describes an object in memory.
771  ///
772  /// Note that this definition of object type corresponds to the C++
773  /// definition of object type, which includes incomplete types, as
774  /// opposed to the C definition (which does not include incomplete
775  /// types).
776  bool isObjectType() const;
777
778  /// isIncompleteType - Return true if this is an incomplete type.
779  /// A type that can describe objects, but which lacks information needed to
780  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
781  /// routine will need to determine if the size is actually required.
782  bool isIncompleteType() const;
783
784  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
785  /// type, in other words, not a function type.
786  bool isIncompleteOrObjectType() const {
787    return !isFunctionType();
788  }
789
790  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
791  bool isPODType() const;
792
793  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
794  /// types that have a non-constant expression. This does not include "[]".
795  bool isVariablyModifiedType() const;
796
797  /// Helper methods to distinguish type categories. All type predicates
798  /// operate on the canonical type, ignoring typedefs and qualifiers.
799
800  /// isSpecificBuiltinType - Test for a particular builtin type.
801  bool isSpecificBuiltinType(unsigned K) const;
802
803  /// isIntegerType() does *not* include complex integers (a GCC extension).
804  /// isComplexIntegerType() can be used to test for complex integers.
805  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
806  bool isEnumeralType() const;
807  bool isBooleanType() const;
808  bool isCharType() const;
809  bool isWideCharType() const;
810  bool isIntegralType() const;
811
812  /// Floating point categories.
813  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
814  /// isComplexType() does *not* include complex integers (a GCC extension).
815  /// isComplexIntegerType() can be used to test for complex integers.
816  bool isComplexType() const;      // C99 6.2.5p11 (complex)
817  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
818  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
819  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
820  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
821  bool isVoidType() const;         // C99 6.2.5p19
822  bool isDerivedType() const;      // C99 6.2.5p20
823  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
824  bool isAggregateType() const;
825
826  // Type Predicates: Check to see if this type is structurally the specified
827  // type, ignoring typedefs and qualifiers.
828  bool isFunctionType() const;
829  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
830  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
831  bool isPointerType() const;
832  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
833  bool isBlockPointerType() const;
834  bool isVoidPointerType() const;
835  bool isReferenceType() const;
836  bool isLValueReferenceType() const;
837  bool isRValueReferenceType() const;
838  bool isFunctionPointerType() const;
839  bool isMemberPointerType() const;
840  bool isMemberFunctionPointerType() const;
841  bool isArrayType() const;
842  bool isConstantArrayType() const;
843  bool isIncompleteArrayType() const;
844  bool isVariableArrayType() const;
845  bool isDependentSizedArrayType() const;
846  bool isRecordType() const;
847  bool isClassType() const;
848  bool isStructureType() const;
849  bool isUnionType() const;
850  bool isComplexIntegerType() const;            // GCC _Complex integer type.
851  bool isVectorType() const;                    // GCC vector type.
852  bool isExtVectorType() const;                 // Extended vector type.
853  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
854  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
855  // for the common case.
856  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
857  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
858  bool isObjCQualifiedIdType() const;           // id<foo>
859  bool isObjCQualifiedClassType() const;        // Class<foo>
860  bool isObjCIdType() const;                    // id
861  bool isObjCClassType() const;                 // Class
862  bool isObjCSelType() const;                 // Class
863  bool isObjCBuiltinType() const;               // 'id' or 'Class'
864  bool isTemplateTypeParmType() const;          // C++ template type parameter
865  bool isNullPtrType() const;                   // C++0x nullptr_t
866
867  /// isDependentType - Whether this type is a dependent type, meaning
868  /// that its definition somehow depends on a template parameter
869  /// (C++ [temp.dep.type]).
870  bool isDependentType() const { return Dependent; }
871  bool isOverloadableType() const;
872
873  /// hasPointerRepresentation - Whether this type is represented
874  /// natively as a pointer; this includes pointers, references, block
875  /// pointers, and Objective-C interface, qualified id, and qualified
876  /// interface types, as well as nullptr_t.
877  bool hasPointerRepresentation() const;
878
879  /// hasObjCPointerRepresentation - Whether this type can represent
880  /// an objective pointer type for the purpose of GC'ability
881  bool hasObjCPointerRepresentation() const;
882
883  // Type Checking Functions: Check to see if this type is structurally the
884  // specified type, ignoring typedefs and qualifiers, and return a pointer to
885  // the best type we can.
886  const RecordType *getAsStructureType() const;
887  /// NOTE: getAs*ArrayType are methods on ASTContext.
888  const RecordType *getAsUnionType() const;
889  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
890  // The following is a convenience method that returns an ObjCObjectPointerType
891  // for object declared using an interface.
892  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
893  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
894  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
895  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
896
897  // Member-template getAs<specific type>'.  This scheme will eventually
898  // replace the specific getAsXXXX methods above.
899  //
900  // There are some specializations of this member template listed
901  // immediately following this class.
902  template <typename T> const T *getAs() const;
903
904  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
905  /// interface, return the interface type, otherwise return null.
906  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
907
908  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
909  /// element type of the array, potentially with type qualifiers missing.
910  /// This method should never be used when type qualifiers are meaningful.
911  const Type *getArrayElementTypeNoTypeQual() const;
912
913  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
914  /// pointer, this returns the respective pointee.
915  QualType getPointeeType() const;
916
917  /// getUnqualifiedDesugaredType() - Return the specified type with
918  /// any "sugar" removed from the type, removing any typedefs,
919  /// typeofs, etc., as well as any qualifiers.
920  const Type *getUnqualifiedDesugaredType() const;
921
922  /// More type predicates useful for type checking/promotion
923  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
924
925  /// isSignedIntegerType - Return true if this is an integer type that is
926  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
927  /// an enum decl which has a signed representation, or a vector of signed
928  /// integer element type.
929  bool isSignedIntegerType() const;
930
931  /// isUnsignedIntegerType - Return true if this is an integer type that is
932  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
933  /// decl which has an unsigned representation, or a vector of unsigned integer
934  /// element type.
935  bool isUnsignedIntegerType() const;
936
937  /// isConstantSizeType - Return true if this is not a variable sized type,
938  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
939  /// incomplete types.
940  bool isConstantSizeType() const;
941
942  /// isSpecifierType - Returns true if this type can be represented by some
943  /// set of type specifiers.
944  bool isSpecifierType() const;
945
946  const char *getTypeClassName() const;
947
948  QualType getCanonicalTypeInternal() const { return CanonicalType; }
949  void dump() const;
950  static bool classof(const Type *) { return true; }
951};
952
953template <> inline const TypedefType *Type::getAs() const {
954  return dyn_cast<TypedefType>(this);
955}
956
957// We can do canonical leaf types faster, because we don't have to
958// worry about preserving child type decoration.
959#define TYPE(Class, Base)
960#define LEAF_TYPE(Class) \
961template <> inline const Class##Type *Type::getAs() const { \
962  return dyn_cast<Class##Type>(CanonicalType); \
963}
964#include "clang/AST/TypeNodes.def"
965
966
967/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
968/// types are always canonical and have a literal name field.
969class BuiltinType : public Type {
970public:
971  enum Kind {
972    Void,
973
974    Bool,     // This is bool and/or _Bool.
975    Char_U,   // This is 'char' for targets where char is unsigned.
976    UChar,    // This is explicitly qualified unsigned char.
977    Char16,   // This is 'char16_t' for C++.
978    Char32,   // This is 'char32_t' for C++.
979    UShort,
980    UInt,
981    ULong,
982    ULongLong,
983    UInt128,  // __uint128_t
984
985    Char_S,   // This is 'char' for targets where char is signed.
986    SChar,    // This is explicitly qualified signed char.
987    WChar,    // This is 'wchar_t' for C++.
988    Short,
989    Int,
990    Long,
991    LongLong,
992    Int128,   // __int128_t
993
994    Float, Double, LongDouble,
995
996    NullPtr,  // This is the type of C++0x 'nullptr'.
997
998    Overload,  // This represents the type of an overloaded function declaration.
999    Dependent, // This represents the type of a type-dependent expression.
1000
1001    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1002                   // that has not been deduced yet.
1003    ObjCId,    // This represents the ObjC 'id' type.
1004    ObjCClass, // This represents the ObjC 'Class' type.
1005    ObjCSel    // This represents the ObjC 'SEL' type.
1006  };
1007private:
1008  Kind TypeKind;
1009public:
1010  BuiltinType(Kind K)
1011    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
1012      TypeKind(K) {}
1013
1014  Kind getKind() const { return TypeKind; }
1015  const char *getName(const LangOptions &LO) const;
1016
1017  bool isSugared() const { return false; }
1018  QualType desugar() const { return QualType(this, 0); }
1019
1020  bool isInteger() const {
1021    return TypeKind >= Bool && TypeKind <= Int128;
1022  }
1023
1024  bool isSignedInteger() const {
1025    return TypeKind >= Char_S && TypeKind <= Int128;
1026  }
1027
1028  bool isUnsignedInteger() const {
1029    return TypeKind >= Bool && TypeKind <= UInt128;
1030  }
1031
1032  bool isFloatingPoint() const {
1033    return TypeKind >= Float && TypeKind <= LongDouble;
1034  }
1035
1036  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1037  static bool classof(const BuiltinType *) { return true; }
1038};
1039
1040/// FixedWidthIntType - Used for arbitrary width types that we either don't
1041/// want to or can't map to named integer types.  These always have a lower
1042/// integer rank than builtin types of the same width.
1043class FixedWidthIntType : public Type {
1044private:
1045  unsigned Width;
1046  bool Signed;
1047public:
1048  FixedWidthIntType(unsigned W, bool S) : Type(FixedWidthInt, QualType(), false),
1049                                          Width(W), Signed(S) {}
1050
1051  unsigned getWidth() const { return Width; }
1052  bool isSigned() const { return Signed; }
1053  const char *getName() const;
1054
1055  bool isSugared() const { return false; }
1056  QualType desugar() const { return QualType(this, 0); }
1057
1058  static bool classof(const Type *T) { return T->getTypeClass() == FixedWidthInt; }
1059  static bool classof(const FixedWidthIntType *) { return true; }
1060};
1061
1062/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1063/// types (_Complex float etc) as well as the GCC integer complex extensions.
1064///
1065class ComplexType : public Type, public llvm::FoldingSetNode {
1066  QualType ElementType;
1067  ComplexType(QualType Element, QualType CanonicalPtr) :
1068    Type(Complex, CanonicalPtr, Element->isDependentType()),
1069    ElementType(Element) {
1070  }
1071  friend class ASTContext;  // ASTContext creates these.
1072public:
1073  QualType getElementType() const { return ElementType; }
1074
1075  bool isSugared() const { return false; }
1076  QualType desugar() const { return QualType(this, 0); }
1077
1078  void Profile(llvm::FoldingSetNodeID &ID) {
1079    Profile(ID, getElementType());
1080  }
1081  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1082    ID.AddPointer(Element.getAsOpaquePtr());
1083  }
1084
1085  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1086  static bool classof(const ComplexType *) { return true; }
1087};
1088
1089/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1090///
1091class PointerType : public Type, public llvm::FoldingSetNode {
1092  QualType PointeeType;
1093
1094  PointerType(QualType Pointee, QualType CanonicalPtr) :
1095    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1096  }
1097  friend class ASTContext;  // ASTContext creates these.
1098public:
1099
1100  QualType getPointeeType() const { return PointeeType; }
1101
1102  bool isSugared() const { return false; }
1103  QualType desugar() const { return QualType(this, 0); }
1104
1105  void Profile(llvm::FoldingSetNodeID &ID) {
1106    Profile(ID, getPointeeType());
1107  }
1108  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1109    ID.AddPointer(Pointee.getAsOpaquePtr());
1110  }
1111
1112  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1113  static bool classof(const PointerType *) { return true; }
1114};
1115
1116/// BlockPointerType - pointer to a block type.
1117/// This type is to represent types syntactically represented as
1118/// "void (^)(int)", etc. Pointee is required to always be a function type.
1119///
1120class BlockPointerType : public Type, public llvm::FoldingSetNode {
1121  QualType PointeeType;  // Block is some kind of pointer type
1122  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1123    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1124    PointeeType(Pointee) {
1125  }
1126  friend class ASTContext;  // ASTContext creates these.
1127public:
1128
1129  // Get the pointee type. Pointee is required to always be a function type.
1130  QualType getPointeeType() const { return PointeeType; }
1131
1132  bool isSugared() const { return false; }
1133  QualType desugar() const { return QualType(this, 0); }
1134
1135  void Profile(llvm::FoldingSetNodeID &ID) {
1136      Profile(ID, getPointeeType());
1137  }
1138  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1139      ID.AddPointer(Pointee.getAsOpaquePtr());
1140  }
1141
1142  static bool classof(const Type *T) {
1143    return T->getTypeClass() == BlockPointer;
1144  }
1145  static bool classof(const BlockPointerType *) { return true; }
1146};
1147
1148/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1149///
1150class ReferenceType : public Type, public llvm::FoldingSetNode {
1151  QualType PointeeType;
1152
1153  /// True if the type was originally spelled with an lvalue sigil.
1154  /// This is never true of rvalue references but can also be false
1155  /// on lvalue references because of C++0x [dcl.typedef]p9,
1156  /// as follows:
1157  ///
1158  ///   typedef int &ref;    // lvalue, spelled lvalue
1159  ///   typedef int &&rvref; // rvalue
1160  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1161  ///   ref &&a;             // lvalue, inner ref
1162  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1163  ///   rvref &&a;           // rvalue, inner ref
1164  bool SpelledAsLValue;
1165
1166  /// True if the inner type is a reference type.  This only happens
1167  /// in non-canonical forms.
1168  bool InnerRef;
1169
1170protected:
1171  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1172                bool SpelledAsLValue) :
1173    Type(tc, CanonicalRef, Referencee->isDependentType()),
1174    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1175    InnerRef(Referencee->isReferenceType()) {
1176  }
1177public:
1178  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1179
1180  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1181  QualType getPointeeType() const {
1182    // FIXME: this might strip inner qualifiers; okay?
1183    const ReferenceType *T = this;
1184    while (T->InnerRef)
1185      T = T->PointeeType->getAs<ReferenceType>();
1186    return T->PointeeType;
1187  }
1188
1189  void Profile(llvm::FoldingSetNodeID &ID) {
1190    Profile(ID, PointeeType, SpelledAsLValue);
1191  }
1192  static void Profile(llvm::FoldingSetNodeID &ID,
1193                      QualType Referencee,
1194                      bool SpelledAsLValue) {
1195    ID.AddPointer(Referencee.getAsOpaquePtr());
1196    ID.AddBoolean(SpelledAsLValue);
1197  }
1198
1199  static bool classof(const Type *T) {
1200    return T->getTypeClass() == LValueReference ||
1201           T->getTypeClass() == RValueReference;
1202  }
1203  static bool classof(const ReferenceType *) { return true; }
1204};
1205
1206/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1207///
1208class LValueReferenceType : public ReferenceType {
1209  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1210                      bool SpelledAsLValue) :
1211    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1212  {}
1213  friend class ASTContext; // ASTContext creates these
1214public:
1215  bool isSugared() const { return false; }
1216  QualType desugar() const { return QualType(this, 0); }
1217
1218  static bool classof(const Type *T) {
1219    return T->getTypeClass() == LValueReference;
1220  }
1221  static bool classof(const LValueReferenceType *) { return true; }
1222};
1223
1224/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1225///
1226class RValueReferenceType : public ReferenceType {
1227  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1228    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1229  }
1230  friend class ASTContext; // ASTContext creates these
1231public:
1232  bool isSugared() const { return false; }
1233  QualType desugar() const { return QualType(this, 0); }
1234
1235  static bool classof(const Type *T) {
1236    return T->getTypeClass() == RValueReference;
1237  }
1238  static bool classof(const RValueReferenceType *) { return true; }
1239};
1240
1241/// MemberPointerType - C++ 8.3.3 - Pointers to members
1242///
1243class MemberPointerType : public Type, public llvm::FoldingSetNode {
1244  QualType PointeeType;
1245  /// The class of which the pointee is a member. Must ultimately be a
1246  /// RecordType, but could be a typedef or a template parameter too.
1247  const Type *Class;
1248
1249  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1250    Type(MemberPointer, CanonicalPtr,
1251         Cls->isDependentType() || Pointee->isDependentType()),
1252    PointeeType(Pointee), Class(Cls) {
1253  }
1254  friend class ASTContext; // ASTContext creates these.
1255public:
1256
1257  QualType getPointeeType() const { return PointeeType; }
1258
1259  const Type *getClass() const { return Class; }
1260
1261  bool isSugared() const { return false; }
1262  QualType desugar() const { return QualType(this, 0); }
1263
1264  void Profile(llvm::FoldingSetNodeID &ID) {
1265    Profile(ID, getPointeeType(), getClass());
1266  }
1267  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1268                      const Type *Class) {
1269    ID.AddPointer(Pointee.getAsOpaquePtr());
1270    ID.AddPointer(Class);
1271  }
1272
1273  static bool classof(const Type *T) {
1274    return T->getTypeClass() == MemberPointer;
1275  }
1276  static bool classof(const MemberPointerType *) { return true; }
1277};
1278
1279/// ArrayType - C99 6.7.5.2 - Array Declarators.
1280///
1281class ArrayType : public Type, public llvm::FoldingSetNode {
1282public:
1283  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1284  /// an array with a static size (e.g. int X[static 4]), or an array
1285  /// with a star size (e.g. int X[*]).
1286  /// 'static' is only allowed on function parameters.
1287  enum ArraySizeModifier {
1288    Normal, Static, Star
1289  };
1290private:
1291  /// ElementType - The element type of the array.
1292  QualType ElementType;
1293
1294  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1295  /// NOTE: These fields are packed into the bitfields space in the Type class.
1296  unsigned SizeModifier : 2;
1297
1298  /// IndexTypeQuals - Capture qualifiers in declarations like:
1299  /// 'int X[static restrict 4]'. For function parameters only.
1300  unsigned IndexTypeQuals : 3;
1301
1302protected:
1303  // C++ [temp.dep.type]p1:
1304  //   A type is dependent if it is...
1305  //     - an array type constructed from any dependent type or whose
1306  //       size is specified by a constant expression that is
1307  //       value-dependent,
1308  ArrayType(TypeClass tc, QualType et, QualType can,
1309            ArraySizeModifier sm, unsigned tq)
1310    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1311      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1312
1313  friend class ASTContext;  // ASTContext creates these.
1314public:
1315  QualType getElementType() const { return ElementType; }
1316  ArraySizeModifier getSizeModifier() const {
1317    return ArraySizeModifier(SizeModifier);
1318  }
1319  Qualifiers getIndexTypeQualifiers() const {
1320    return Qualifiers::fromCVRMask(IndexTypeQuals);
1321  }
1322  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1323
1324  static bool classof(const Type *T) {
1325    return T->getTypeClass() == ConstantArray ||
1326           T->getTypeClass() == VariableArray ||
1327           T->getTypeClass() == IncompleteArray ||
1328           T->getTypeClass() == DependentSizedArray;
1329  }
1330  static bool classof(const ArrayType *) { return true; }
1331};
1332
1333/// ConstantArrayType - This class represents the canonical version of
1334/// C arrays with a specified constant size.  For example, the canonical
1335/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1336/// type is 'int' and the size is 404.
1337class ConstantArrayType : public ArrayType {
1338  llvm::APInt Size; // Allows us to unique the type.
1339
1340  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1341                    ArraySizeModifier sm, unsigned tq)
1342    : ArrayType(ConstantArray, et, can, sm, tq),
1343      Size(size) {}
1344protected:
1345  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1346                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1347    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1348  friend class ASTContext;  // ASTContext creates these.
1349public:
1350  const llvm::APInt &getSize() const { return Size; }
1351  bool isSugared() const { return false; }
1352  QualType desugar() const { return QualType(this, 0); }
1353
1354  void Profile(llvm::FoldingSetNodeID &ID) {
1355    Profile(ID, getElementType(), getSize(),
1356            getSizeModifier(), getIndexTypeCVRQualifiers());
1357  }
1358  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1359                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1360                      unsigned TypeQuals) {
1361    ID.AddPointer(ET.getAsOpaquePtr());
1362    ID.AddInteger(ArraySize.getZExtValue());
1363    ID.AddInteger(SizeMod);
1364    ID.AddInteger(TypeQuals);
1365  }
1366  static bool classof(const Type *T) {
1367    return T->getTypeClass() == ConstantArray;
1368  }
1369  static bool classof(const ConstantArrayType *) { return true; }
1370};
1371
1372/// IncompleteArrayType - This class represents C arrays with an unspecified
1373/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1374/// type is 'int' and the size is unspecified.
1375class IncompleteArrayType : public ArrayType {
1376
1377  IncompleteArrayType(QualType et, QualType can,
1378                      ArraySizeModifier sm, unsigned tq)
1379    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1380  friend class ASTContext;  // ASTContext creates these.
1381public:
1382  bool isSugared() const { return false; }
1383  QualType desugar() const { return QualType(this, 0); }
1384
1385  static bool classof(const Type *T) {
1386    return T->getTypeClass() == IncompleteArray;
1387  }
1388  static bool classof(const IncompleteArrayType *) { return true; }
1389
1390  friend class StmtIteratorBase;
1391
1392  void Profile(llvm::FoldingSetNodeID &ID) {
1393    Profile(ID, getElementType(), getSizeModifier(),
1394            getIndexTypeCVRQualifiers());
1395  }
1396
1397  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1398                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1399    ID.AddPointer(ET.getAsOpaquePtr());
1400    ID.AddInteger(SizeMod);
1401    ID.AddInteger(TypeQuals);
1402  }
1403};
1404
1405/// VariableArrayType - This class represents C arrays with a specified size
1406/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1407/// Since the size expression is an arbitrary expression, we store it as such.
1408///
1409/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1410/// should not be: two lexically equivalent variable array types could mean
1411/// different things, for example, these variables do not have the same type
1412/// dynamically:
1413///
1414/// void foo(int x) {
1415///   int Y[x];
1416///   ++x;
1417///   int Z[x];
1418/// }
1419///
1420class VariableArrayType : public ArrayType {
1421  /// SizeExpr - An assignment expression. VLA's are only permitted within
1422  /// a function block.
1423  Stmt *SizeExpr;
1424  /// Brackets - The left and right array brackets.
1425  SourceRange Brackets;
1426
1427  VariableArrayType(QualType et, QualType can, Expr *e,
1428                    ArraySizeModifier sm, unsigned tq,
1429                    SourceRange brackets)
1430    : ArrayType(VariableArray, et, can, sm, tq),
1431      SizeExpr((Stmt*) e), Brackets(brackets) {}
1432  friend class ASTContext;  // ASTContext creates these.
1433  virtual void Destroy(ASTContext& C);
1434
1435public:
1436  Expr *getSizeExpr() const {
1437    // We use C-style casts instead of cast<> here because we do not wish
1438    // to have a dependency of Type.h on Stmt.h/Expr.h.
1439    return (Expr*) SizeExpr;
1440  }
1441  SourceRange getBracketsRange() const { return Brackets; }
1442  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1443  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1444
1445  bool isSugared() const { return false; }
1446  QualType desugar() const { return QualType(this, 0); }
1447
1448  static bool classof(const Type *T) {
1449    return T->getTypeClass() == VariableArray;
1450  }
1451  static bool classof(const VariableArrayType *) { return true; }
1452
1453  friend class StmtIteratorBase;
1454
1455  void Profile(llvm::FoldingSetNodeID &ID) {
1456    assert(0 && "Cannnot unique VariableArrayTypes.");
1457  }
1458};
1459
1460/// DependentSizedArrayType - This type represents an array type in
1461/// C++ whose size is a value-dependent expression. For example:
1462///
1463/// \code
1464/// template<typename T, int Size>
1465/// class array {
1466///   T data[Size];
1467/// };
1468/// \endcode
1469///
1470/// For these types, we won't actually know what the array bound is
1471/// until template instantiation occurs, at which point this will
1472/// become either a ConstantArrayType or a VariableArrayType.
1473class DependentSizedArrayType : public ArrayType {
1474  ASTContext &Context;
1475
1476  /// \brief An assignment expression that will instantiate to the
1477  /// size of the array.
1478  ///
1479  /// The expression itself might be NULL, in which case the array
1480  /// type will have its size deduced from an initializer.
1481  Stmt *SizeExpr;
1482
1483  /// Brackets - The left and right array brackets.
1484  SourceRange Brackets;
1485
1486  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1487                          Expr *e, ArraySizeModifier sm, unsigned tq,
1488                          SourceRange brackets)
1489    : ArrayType(DependentSizedArray, et, can, sm, tq),
1490      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1491  friend class ASTContext;  // ASTContext creates these.
1492  virtual void Destroy(ASTContext& C);
1493
1494public:
1495  Expr *getSizeExpr() const {
1496    // We use C-style casts instead of cast<> here because we do not wish
1497    // to have a dependency of Type.h on Stmt.h/Expr.h.
1498    return (Expr*) SizeExpr;
1499  }
1500  SourceRange getBracketsRange() const { return Brackets; }
1501  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1502  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1503
1504  bool isSugared() const { return false; }
1505  QualType desugar() const { return QualType(this, 0); }
1506
1507  static bool classof(const Type *T) {
1508    return T->getTypeClass() == DependentSizedArray;
1509  }
1510  static bool classof(const DependentSizedArrayType *) { return true; }
1511
1512  friend class StmtIteratorBase;
1513
1514
1515  void Profile(llvm::FoldingSetNodeID &ID) {
1516    Profile(ID, Context, getElementType(),
1517            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1518  }
1519
1520  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1521                      QualType ET, ArraySizeModifier SizeMod,
1522                      unsigned TypeQuals, Expr *E);
1523};
1524
1525/// DependentSizedExtVectorType - This type represent an extended vector type
1526/// where either the type or size is dependent. For example:
1527/// @code
1528/// template<typename T, int Size>
1529/// class vector {
1530///   typedef T __attribute__((ext_vector_type(Size))) type;
1531/// }
1532/// @endcode
1533class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1534  ASTContext &Context;
1535  Expr *SizeExpr;
1536  /// ElementType - The element type of the array.
1537  QualType ElementType;
1538  SourceLocation loc;
1539
1540  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1541                              QualType can, Expr *SizeExpr, SourceLocation loc)
1542    : Type (DependentSizedExtVector, can, true),
1543      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1544      loc(loc) {}
1545  friend class ASTContext;
1546  virtual void Destroy(ASTContext& C);
1547
1548public:
1549  Expr *getSizeExpr() const { return SizeExpr; }
1550  QualType getElementType() const { return ElementType; }
1551  SourceLocation getAttributeLoc() const { return loc; }
1552
1553  bool isSugared() const { return false; }
1554  QualType desugar() const { return QualType(this, 0); }
1555
1556  static bool classof(const Type *T) {
1557    return T->getTypeClass() == DependentSizedExtVector;
1558  }
1559  static bool classof(const DependentSizedExtVectorType *) { return true; }
1560
1561  void Profile(llvm::FoldingSetNodeID &ID) {
1562    Profile(ID, Context, getElementType(), getSizeExpr());
1563  }
1564
1565  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1566                      QualType ElementType, Expr *SizeExpr);
1567};
1568
1569
1570/// VectorType - GCC generic vector type. This type is created using
1571/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1572/// bytes. Since the constructor takes the number of vector elements, the
1573/// client is responsible for converting the size into the number of elements.
1574class VectorType : public Type, public llvm::FoldingSetNode {
1575protected:
1576  /// ElementType - The element type of the vector.
1577  QualType ElementType;
1578
1579  /// NumElements - The number of elements in the vector.
1580  unsigned NumElements;
1581
1582  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1583    Type(Vector, canonType, vecType->isDependentType()),
1584    ElementType(vecType), NumElements(nElements) {}
1585  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1586             QualType canonType)
1587    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1588      NumElements(nElements) {}
1589  friend class ASTContext;  // ASTContext creates these.
1590public:
1591
1592  QualType getElementType() const { return ElementType; }
1593  unsigned getNumElements() const { return NumElements; }
1594
1595  bool isSugared() const { return false; }
1596  QualType desugar() const { return QualType(this, 0); }
1597
1598  void Profile(llvm::FoldingSetNodeID &ID) {
1599    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1600  }
1601  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1602                      unsigned NumElements, TypeClass TypeClass) {
1603    ID.AddPointer(ElementType.getAsOpaquePtr());
1604    ID.AddInteger(NumElements);
1605    ID.AddInteger(TypeClass);
1606  }
1607  static bool classof(const Type *T) {
1608    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1609  }
1610  static bool classof(const VectorType *) { return true; }
1611};
1612
1613/// ExtVectorType - Extended vector type. This type is created using
1614/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1615/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1616/// class enables syntactic extensions, like Vector Components for accessing
1617/// points, colors, and textures (modeled after OpenGL Shading Language).
1618class ExtVectorType : public VectorType {
1619  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1620    VectorType(ExtVector, vecType, nElements, canonType) {}
1621  friend class ASTContext;  // ASTContext creates these.
1622public:
1623  static int getPointAccessorIdx(char c) {
1624    switch (c) {
1625    default: return -1;
1626    case 'x': return 0;
1627    case 'y': return 1;
1628    case 'z': return 2;
1629    case 'w': return 3;
1630    }
1631  }
1632  static int getNumericAccessorIdx(char c) {
1633    switch (c) {
1634      default: return -1;
1635      case '0': return 0;
1636      case '1': return 1;
1637      case '2': return 2;
1638      case '3': return 3;
1639      case '4': return 4;
1640      case '5': return 5;
1641      case '6': return 6;
1642      case '7': return 7;
1643      case '8': return 8;
1644      case '9': return 9;
1645      case 'A':
1646      case 'a': return 10;
1647      case 'B':
1648      case 'b': return 11;
1649      case 'C':
1650      case 'c': return 12;
1651      case 'D':
1652      case 'd': return 13;
1653      case 'E':
1654      case 'e': return 14;
1655      case 'F':
1656      case 'f': return 15;
1657    }
1658  }
1659
1660  static int getAccessorIdx(char c) {
1661    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1662    return getNumericAccessorIdx(c);
1663  }
1664
1665  bool isAccessorWithinNumElements(char c) const {
1666    if (int idx = getAccessorIdx(c)+1)
1667      return unsigned(idx-1) < NumElements;
1668    return false;
1669  }
1670  bool isSugared() const { return false; }
1671  QualType desugar() const { return QualType(this, 0); }
1672
1673  static bool classof(const Type *T) {
1674    return T->getTypeClass() == ExtVector;
1675  }
1676  static bool classof(const ExtVectorType *) { return true; }
1677};
1678
1679/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1680/// class of FunctionNoProtoType and FunctionProtoType.
1681///
1682class FunctionType : public Type {
1683  /// SubClassData - This field is owned by the subclass, put here to pack
1684  /// tightly with the ivars in Type.
1685  bool SubClassData : 1;
1686
1687  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1688  /// other bitfields.
1689  /// The qualifiers are part of FunctionProtoType because...
1690  ///
1691  /// C++ 8.3.5p4: The return type, the parameter type list and the
1692  /// cv-qualifier-seq, [...], are part of the function type.
1693  ///
1694  unsigned TypeQuals : 3;
1695
1696  /// NoReturn - Indicates if the function type is attribute noreturn.
1697  unsigned NoReturn : 1;
1698
1699  // The type returned by the function.
1700  QualType ResultType;
1701protected:
1702  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1703               unsigned typeQuals, QualType Canonical, bool Dependent,
1704               bool noReturn = false)
1705    : Type(tc, Canonical, Dependent),
1706      SubClassData(SubclassInfo), TypeQuals(typeQuals), NoReturn(noReturn),
1707      ResultType(res) {}
1708  bool getSubClassData() const { return SubClassData; }
1709  unsigned getTypeQuals() const { return TypeQuals; }
1710public:
1711
1712  QualType getResultType() const { return ResultType; }
1713  bool getNoReturnAttr() const { return NoReturn; }
1714
1715  static bool classof(const Type *T) {
1716    return T->getTypeClass() == FunctionNoProto ||
1717           T->getTypeClass() == FunctionProto;
1718  }
1719  static bool classof(const FunctionType *) { return true; }
1720};
1721
1722/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1723/// no information available about its arguments.
1724class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1725  FunctionNoProtoType(QualType Result, QualType Canonical,
1726                      bool NoReturn = false)
1727    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1728                   /*Dependent=*/false, NoReturn) {}
1729  friend class ASTContext;  // ASTContext creates these.
1730public:
1731  // No additional state past what FunctionType provides.
1732
1733  bool isSugared() const { return false; }
1734  QualType desugar() const { return QualType(this, 0); }
1735
1736  void Profile(llvm::FoldingSetNodeID &ID) {
1737    Profile(ID, getResultType(), getNoReturnAttr());
1738  }
1739  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1740                      bool NoReturn) {
1741    ID.AddInteger(NoReturn);
1742    ID.AddPointer(ResultType.getAsOpaquePtr());
1743  }
1744
1745  static bool classof(const Type *T) {
1746    return T->getTypeClass() == FunctionNoProto;
1747  }
1748  static bool classof(const FunctionNoProtoType *) { return true; }
1749};
1750
1751/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1752/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1753/// arguments, not as having a single void argument. Such a type can have an
1754/// exception specification, but this specification is not part of the canonical
1755/// type.
1756class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1757  /// hasAnyDependentType - Determine whether there are any dependent
1758  /// types within the arguments passed in.
1759  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1760    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1761      if (ArgArray[Idx]->isDependentType())
1762    return true;
1763
1764    return false;
1765  }
1766
1767  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1768                    bool isVariadic, unsigned typeQuals, bool hasExs,
1769                    bool hasAnyExs, const QualType *ExArray,
1770                    unsigned numExs, QualType Canonical, bool NoReturn)
1771    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1772                   (Result->isDependentType() ||
1773                    hasAnyDependentType(ArgArray, numArgs)), NoReturn),
1774      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1775      AnyExceptionSpec(hasAnyExs) {
1776    // Fill in the trailing argument array.
1777    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1778    for (unsigned i = 0; i != numArgs; ++i)
1779      ArgInfo[i] = ArgArray[i];
1780    // Fill in the exception array.
1781    QualType *Ex = ArgInfo + numArgs;
1782    for (unsigned i = 0; i != numExs; ++i)
1783      Ex[i] = ExArray[i];
1784  }
1785
1786  /// NumArgs - The number of arguments this function has, not counting '...'.
1787  unsigned NumArgs : 20;
1788
1789  /// NumExceptions - The number of types in the exception spec, if any.
1790  unsigned NumExceptions : 10;
1791
1792  /// HasExceptionSpec - Whether this function has an exception spec at all.
1793  bool HasExceptionSpec : 1;
1794
1795  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1796  bool AnyExceptionSpec : 1;
1797
1798  /// ArgInfo - There is an variable size array after the class in memory that
1799  /// holds the argument types.
1800
1801  /// Exceptions - There is another variable size array after ArgInfo that
1802  /// holds the exception types.
1803
1804  friend class ASTContext;  // ASTContext creates these.
1805
1806public:
1807  unsigned getNumArgs() const { return NumArgs; }
1808  QualType getArgType(unsigned i) const {
1809    assert(i < NumArgs && "Invalid argument number!");
1810    return arg_type_begin()[i];
1811  }
1812
1813  bool hasExceptionSpec() const { return HasExceptionSpec; }
1814  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1815  unsigned getNumExceptions() const { return NumExceptions; }
1816  QualType getExceptionType(unsigned i) const {
1817    assert(i < NumExceptions && "Invalid exception number!");
1818    return exception_begin()[i];
1819  }
1820  bool hasEmptyExceptionSpec() const {
1821    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1822      getNumExceptions() == 0;
1823  }
1824
1825  bool isVariadic() const { return getSubClassData(); }
1826  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1827
1828  typedef const QualType *arg_type_iterator;
1829  arg_type_iterator arg_type_begin() const {
1830    return reinterpret_cast<const QualType *>(this+1);
1831  }
1832  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1833
1834  typedef const QualType *exception_iterator;
1835  exception_iterator exception_begin() const {
1836    // exceptions begin where arguments end
1837    return arg_type_end();
1838  }
1839  exception_iterator exception_end() const {
1840    return exception_begin() + NumExceptions;
1841  }
1842
1843  bool isSugared() const { return false; }
1844  QualType desugar() const { return QualType(this, 0); }
1845
1846  static bool classof(const Type *T) {
1847    return T->getTypeClass() == FunctionProto;
1848  }
1849  static bool classof(const FunctionProtoType *) { return true; }
1850
1851  void Profile(llvm::FoldingSetNodeID &ID);
1852  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1853                      arg_type_iterator ArgTys, unsigned NumArgs,
1854                      bool isVariadic, unsigned TypeQuals,
1855                      bool hasExceptionSpec, bool anyExceptionSpec,
1856                      unsigned NumExceptions, exception_iterator Exs,
1857                      bool NoReturn);
1858};
1859
1860
1861class TypedefType : public Type {
1862  TypedefDecl *Decl;
1863protected:
1864  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1865    : Type(tc, can, can->isDependentType()), Decl(D) {
1866    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1867  }
1868  friend class ASTContext;  // ASTContext creates these.
1869public:
1870
1871  TypedefDecl *getDecl() const { return Decl; }
1872
1873  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1874  /// potentially looking through *all* consecutive typedefs.  This returns the
1875  /// sum of the type qualifiers, so if you have:
1876  ///   typedef const int A;
1877  ///   typedef volatile A B;
1878  /// looking through the typedefs for B will give you "const volatile A".
1879  QualType LookThroughTypedefs() const;
1880
1881  bool isSugared() const { return true; }
1882  QualType desugar() const;
1883
1884  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1885  static bool classof(const TypedefType *) { return true; }
1886};
1887
1888/// TypeOfExprType (GCC extension).
1889class TypeOfExprType : public Type {
1890  Expr *TOExpr;
1891
1892protected:
1893  TypeOfExprType(Expr *E, QualType can = QualType());
1894  friend class ASTContext;  // ASTContext creates these.
1895public:
1896  Expr *getUnderlyingExpr() const { return TOExpr; }
1897
1898  /// \brief Remove a single level of sugar.
1899  QualType desugar() const;
1900
1901  /// \brief Returns whether this type directly provides sugar.
1902  bool isSugared() const { return true; }
1903
1904  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1905  static bool classof(const TypeOfExprType *) { return true; }
1906};
1907
1908/// Subclass of TypeOfExprType that is used for canonical, dependent
1909/// typeof(expr) types.
1910class DependentTypeOfExprType
1911  : public TypeOfExprType, public llvm::FoldingSetNode {
1912  ASTContext &Context;
1913
1914public:
1915  DependentTypeOfExprType(ASTContext &Context, Expr *E)
1916    : TypeOfExprType(E), Context(Context) { }
1917
1918  bool isSugared() const { return false; }
1919  QualType desugar() const { return QualType(this, 0); }
1920
1921  void Profile(llvm::FoldingSetNodeID &ID) {
1922    Profile(ID, Context, getUnderlyingExpr());
1923  }
1924
1925  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1926                      Expr *E);
1927};
1928
1929/// TypeOfType (GCC extension).
1930class TypeOfType : public Type {
1931  QualType TOType;
1932  TypeOfType(QualType T, QualType can)
1933    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
1934    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1935  }
1936  friend class ASTContext;  // ASTContext creates these.
1937public:
1938  QualType getUnderlyingType() const { return TOType; }
1939
1940  /// \brief Remove a single level of sugar.
1941  QualType desugar() const { return getUnderlyingType(); }
1942
1943  /// \brief Returns whether this type directly provides sugar.
1944  bool isSugared() const { return true; }
1945
1946  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
1947  static bool classof(const TypeOfType *) { return true; }
1948};
1949
1950/// DecltypeType (C++0x)
1951class DecltypeType : public Type {
1952  Expr *E;
1953
1954  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
1955  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
1956  // from it.
1957  QualType UnderlyingType;
1958
1959protected:
1960  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
1961  friend class ASTContext;  // ASTContext creates these.
1962public:
1963  Expr *getUnderlyingExpr() const { return E; }
1964  QualType getUnderlyingType() const { return UnderlyingType; }
1965
1966  /// \brief Remove a single level of sugar.
1967  QualType desugar() const { return getUnderlyingType(); }
1968
1969  /// \brief Returns whether this type directly provides sugar.
1970  bool isSugared() const { return !isDependentType(); }
1971
1972  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
1973  static bool classof(const DecltypeType *) { return true; }
1974};
1975
1976/// Subclass of DecltypeType that is used for canonical, dependent
1977/// C++0x decltype types.
1978class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
1979  ASTContext &Context;
1980
1981public:
1982  DependentDecltypeType(ASTContext &Context, Expr *E);
1983
1984  bool isSugared() const { return false; }
1985  QualType desugar() const { return QualType(this, 0); }
1986
1987  void Profile(llvm::FoldingSetNodeID &ID) {
1988    Profile(ID, Context, getUnderlyingExpr());
1989  }
1990
1991  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1992                      Expr *E);
1993};
1994
1995class TagType : public Type {
1996  /// Stores the TagDecl associated with this type. The decl will
1997  /// point to the TagDecl that actually defines the entity (or is a
1998  /// definition in progress), if there is such a definition. The
1999  /// single-bit value will be non-zero when this tag is in the
2000  /// process of being defined.
2001  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
2002  friend class ASTContext;
2003  friend class TagDecl;
2004
2005protected:
2006  TagType(TypeClass TC, TagDecl *D, QualType can);
2007
2008public:
2009  TagDecl *getDecl() const { return decl.getPointer(); }
2010
2011  /// @brief Determines whether this type is in the process of being
2012  /// defined.
2013  bool isBeingDefined() const { return decl.getInt(); }
2014  void setBeingDefined(bool Def) const { decl.setInt(Def? 1 : 0); }
2015
2016  static bool classof(const Type *T) {
2017    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2018  }
2019  static bool classof(const TagType *) { return true; }
2020  static bool classof(const RecordType *) { return true; }
2021  static bool classof(const EnumType *) { return true; }
2022};
2023
2024/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2025/// to detect TagType objects of structs/unions/classes.
2026class RecordType : public TagType {
2027protected:
2028  explicit RecordType(RecordDecl *D)
2029    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
2030  explicit RecordType(TypeClass TC, RecordDecl *D)
2031    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
2032  friend class ASTContext;   // ASTContext creates these.
2033public:
2034
2035  RecordDecl *getDecl() const {
2036    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2037  }
2038
2039  // FIXME: This predicate is a helper to QualType/Type. It needs to
2040  // recursively check all fields for const-ness. If any field is declared
2041  // const, it needs to return false.
2042  bool hasConstFields() const { return false; }
2043
2044  // FIXME: RecordType needs to check when it is created that all fields are in
2045  // the same address space, and return that.
2046  unsigned getAddressSpace() const { return 0; }
2047
2048  bool isSugared() const { return false; }
2049  QualType desugar() const { return QualType(this, 0); }
2050
2051  static bool classof(const TagType *T);
2052  static bool classof(const Type *T) {
2053    return isa<TagType>(T) && classof(cast<TagType>(T));
2054  }
2055  static bool classof(const RecordType *) { return true; }
2056};
2057
2058/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2059/// to detect TagType objects of enums.
2060class EnumType : public TagType {
2061  explicit EnumType(EnumDecl *D)
2062    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
2063  friend class ASTContext;   // ASTContext creates these.
2064public:
2065
2066  EnumDecl *getDecl() const {
2067    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2068  }
2069
2070  bool isSugared() const { return false; }
2071  QualType desugar() const { return QualType(this, 0); }
2072
2073  static bool classof(const TagType *T);
2074  static bool classof(const Type *T) {
2075    return isa<TagType>(T) && classof(cast<TagType>(T));
2076  }
2077  static bool classof(const EnumType *) { return true; }
2078};
2079
2080/// ElaboratedType - A non-canonical type used to represents uses of
2081/// elaborated type specifiers in C++.  For example:
2082///
2083///   void foo(union MyUnion);
2084///            ^^^^^^^^^^^^^
2085///
2086/// At the moment, for efficiency we do not create elaborated types in
2087/// C, since outside of typedefs all references to structs would
2088/// necessarily be elaborated.
2089class ElaboratedType : public Type, public llvm::FoldingSetNode {
2090public:
2091  enum TagKind {
2092    TK_struct,
2093    TK_union,
2094    TK_class,
2095    TK_enum
2096  };
2097
2098private:
2099  /// The tag that was used in this elaborated type specifier.
2100  TagKind Tag;
2101
2102  /// The underlying type.
2103  QualType UnderlyingType;
2104
2105  explicit ElaboratedType(QualType Ty, TagKind Tag, QualType Canon)
2106    : Type(Elaborated, Canon, Canon->isDependentType()),
2107      Tag(Tag), UnderlyingType(Ty) { }
2108  friend class ASTContext;   // ASTContext creates these.
2109
2110public:
2111  TagKind getTagKind() const { return Tag; }
2112  QualType getUnderlyingType() const { return UnderlyingType; }
2113
2114  /// \brief Remove a single level of sugar.
2115  QualType desugar() const { return getUnderlyingType(); }
2116
2117  /// \brief Returns whether this type directly provides sugar.
2118  bool isSugared() const { return true; }
2119
2120  static const char *getNameForTagKind(TagKind Kind) {
2121    switch (Kind) {
2122    default: assert(0 && "Unknown TagKind!");
2123    case TK_struct: return "struct";
2124    case TK_union:  return "union";
2125    case TK_class:  return "class";
2126    case TK_enum:   return "enum";
2127    }
2128  }
2129
2130  void Profile(llvm::FoldingSetNodeID &ID) {
2131    Profile(ID, getUnderlyingType(), getTagKind());
2132  }
2133  static void Profile(llvm::FoldingSetNodeID &ID, QualType T, TagKind Tag) {
2134    ID.AddPointer(T.getAsOpaquePtr());
2135    ID.AddInteger(Tag);
2136  }
2137
2138  static bool classof(const ElaboratedType*) { return true; }
2139  static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
2140};
2141
2142class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2143  unsigned Depth : 15;
2144  unsigned Index : 16;
2145  unsigned ParameterPack : 1;
2146  IdentifierInfo *Name;
2147
2148  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2149                       QualType Canon)
2150    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2151      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2152
2153  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2154    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2155      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2156
2157  friend class ASTContext;  // ASTContext creates these
2158
2159public:
2160  unsigned getDepth() const { return Depth; }
2161  unsigned getIndex() const { return Index; }
2162  bool isParameterPack() const { return ParameterPack; }
2163  IdentifierInfo *getName() const { return Name; }
2164
2165  bool isSugared() const { return false; }
2166  QualType desugar() const { return QualType(this, 0); }
2167
2168  void Profile(llvm::FoldingSetNodeID &ID) {
2169    Profile(ID, Depth, Index, ParameterPack, Name);
2170  }
2171
2172  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2173                      unsigned Index, bool ParameterPack,
2174                      IdentifierInfo *Name) {
2175    ID.AddInteger(Depth);
2176    ID.AddInteger(Index);
2177    ID.AddBoolean(ParameterPack);
2178    ID.AddPointer(Name);
2179  }
2180
2181  static bool classof(const Type *T) {
2182    return T->getTypeClass() == TemplateTypeParm;
2183  }
2184  static bool classof(const TemplateTypeParmType *T) { return true; }
2185};
2186
2187/// \brief Represents the result of substituting a type for a template
2188/// type parameter.
2189///
2190/// Within an instantiated template, all template type parameters have
2191/// been replaced with these.  They are used solely to record that a
2192/// type was originally written as a template type parameter;
2193/// therefore they are never canonical.
2194class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2195  // The original type parameter.
2196  const TemplateTypeParmType *Replaced;
2197
2198  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2199    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2200      Replaced(Param) { }
2201
2202  friend class ASTContext;
2203
2204public:
2205  IdentifierInfo *getName() const { return Replaced->getName(); }
2206
2207  /// Gets the template parameter that was substituted for.
2208  const TemplateTypeParmType *getReplacedParameter() const {
2209    return Replaced;
2210  }
2211
2212  /// Gets the type that was substituted for the template
2213  /// parameter.
2214  QualType getReplacementType() const {
2215    return getCanonicalTypeInternal();
2216  }
2217
2218  bool isSugared() const { return true; }
2219  QualType desugar() const { return getReplacementType(); }
2220
2221  void Profile(llvm::FoldingSetNodeID &ID) {
2222    Profile(ID, getReplacedParameter(), getReplacementType());
2223  }
2224  static void Profile(llvm::FoldingSetNodeID &ID,
2225                      const TemplateTypeParmType *Replaced,
2226                      QualType Replacement) {
2227    ID.AddPointer(Replaced);
2228    ID.AddPointer(Replacement.getAsOpaquePtr());
2229  }
2230
2231  static bool classof(const Type *T) {
2232    return T->getTypeClass() == SubstTemplateTypeParm;
2233  }
2234  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2235};
2236
2237/// \brief Represents the type of a template specialization as written
2238/// in the source code.
2239///
2240/// Template specialization types represent the syntactic form of a
2241/// template-id that refers to a type, e.g., @c vector<int>. Some
2242/// template specialization types are syntactic sugar, whose canonical
2243/// type will point to some other type node that represents the
2244/// instantiation or class template specialization. For example, a
2245/// class template specialization type of @c vector<int> will refer to
2246/// a tag type for the instantiation
2247/// @c std::vector<int, std::allocator<int>>.
2248///
2249/// Other template specialization types, for which the template name
2250/// is dependent, may be canonical types. These types are always
2251/// dependent.
2252class TemplateSpecializationType
2253  : public Type, public llvm::FoldingSetNode {
2254
2255  // FIXME: Currently needed for profiling expressions; can we avoid this?
2256  ASTContext &Context;
2257
2258    /// \brief The name of the template being specialized.
2259  TemplateName Template;
2260
2261  /// \brief - The number of template arguments named in this class
2262  /// template specialization.
2263  unsigned NumArgs;
2264
2265  TemplateSpecializationType(ASTContext &Context,
2266                             TemplateName T,
2267                             const TemplateArgument *Args,
2268                             unsigned NumArgs, QualType Canon);
2269
2270  virtual void Destroy(ASTContext& C);
2271
2272  friend class ASTContext;  // ASTContext creates these
2273
2274public:
2275  /// \brief Determine whether any of the given template arguments are
2276  /// dependent.
2277  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2278                                            unsigned NumArgs);
2279
2280  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2281                                            unsigned NumArgs);
2282
2283  /// \brief Print a template argument list, including the '<' and '>'
2284  /// enclosing the template arguments.
2285  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2286                                               unsigned NumArgs,
2287                                               const PrintingPolicy &Policy);
2288
2289  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2290                                               unsigned NumArgs,
2291                                               const PrintingPolicy &Policy);
2292
2293  typedef const TemplateArgument * iterator;
2294
2295  iterator begin() const { return getArgs(); }
2296  iterator end() const;
2297
2298  /// \brief Retrieve the name of the template that we are specializing.
2299  TemplateName getTemplateName() const { return Template; }
2300
2301  /// \brief Retrieve the template arguments.
2302  const TemplateArgument *getArgs() const {
2303    return reinterpret_cast<const TemplateArgument *>(this + 1);
2304  }
2305
2306  /// \brief Retrieve the number of template arguments.
2307  unsigned getNumArgs() const { return NumArgs; }
2308
2309  /// \brief Retrieve a specific template argument as a type.
2310  /// \precondition @c isArgType(Arg)
2311  const TemplateArgument &getArg(unsigned Idx) const;
2312
2313  bool isSugared() const { return !isDependentType(); }
2314  QualType desugar() const { return getCanonicalTypeInternal(); }
2315
2316  void Profile(llvm::FoldingSetNodeID &ID) {
2317    Profile(ID, Template, getArgs(), NumArgs, Context);
2318  }
2319
2320  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2321                      const TemplateArgument *Args, unsigned NumArgs,
2322                      ASTContext &Context);
2323
2324  static bool classof(const Type *T) {
2325    return T->getTypeClass() == TemplateSpecialization;
2326  }
2327  static bool classof(const TemplateSpecializationType *T) { return true; }
2328};
2329
2330/// \brief Represents a type that was referred to via a qualified
2331/// name, e.g., N::M::type.
2332///
2333/// This type is used to keep track of a type name as written in the
2334/// source code, including any nested-name-specifiers. The type itself
2335/// is always "sugar", used to express what was written in the source
2336/// code but containing no additional semantic information.
2337class QualifiedNameType : public Type, public llvm::FoldingSetNode {
2338  /// \brief The nested name specifier containing the qualifier.
2339  NestedNameSpecifier *NNS;
2340
2341  /// \brief The type that this qualified name refers to.
2342  QualType NamedType;
2343
2344  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
2345                    QualType CanonType)
2346    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
2347      NNS(NNS), NamedType(NamedType) { }
2348
2349  friend class ASTContext;  // ASTContext creates these
2350
2351public:
2352  /// \brief Retrieve the qualification on this type.
2353  NestedNameSpecifier *getQualifier() const { return NNS; }
2354
2355  /// \brief Retrieve the type named by the qualified-id.
2356  QualType getNamedType() const { return NamedType; }
2357
2358  /// \brief Remove a single level of sugar.
2359  QualType desugar() const { return getNamedType(); }
2360
2361  /// \brief Returns whether this type directly provides sugar.
2362  bool isSugared() const { return true; }
2363
2364  void Profile(llvm::FoldingSetNodeID &ID) {
2365    Profile(ID, NNS, NamedType);
2366  }
2367
2368  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2369                      QualType NamedType) {
2370    ID.AddPointer(NNS);
2371    NamedType.Profile(ID);
2372  }
2373
2374  static bool classof(const Type *T) {
2375    return T->getTypeClass() == QualifiedName;
2376  }
2377  static bool classof(const QualifiedNameType *T) { return true; }
2378};
2379
2380/// \brief Represents a 'typename' specifier that names a type within
2381/// a dependent type, e.g., "typename T::type".
2382///
2383/// TypenameType has a very similar structure to QualifiedNameType,
2384/// which also involves a nested-name-specifier following by a type,
2385/// and (FIXME!) both can even be prefixed by the 'typename'
2386/// keyword. However, the two types serve very different roles:
2387/// QualifiedNameType is a non-semantic type that serves only as sugar
2388/// to show how a particular type was written in the source
2389/// code. TypenameType, on the other hand, only occurs when the
2390/// nested-name-specifier is dependent, such that we cannot resolve
2391/// the actual type until after instantiation.
2392class TypenameType : public Type, public llvm::FoldingSetNode {
2393  /// \brief The nested name specifier containing the qualifier.
2394  NestedNameSpecifier *NNS;
2395
2396  typedef llvm::PointerUnion<const IdentifierInfo *,
2397                             const TemplateSpecializationType *> NameType;
2398
2399  /// \brief The type that this typename specifier refers to.
2400  NameType Name;
2401
2402  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
2403               QualType CanonType)
2404    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
2405    assert(NNS->isDependent() &&
2406           "TypenameType requires a dependent nested-name-specifier");
2407  }
2408
2409  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
2410               QualType CanonType)
2411    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
2412    assert(NNS->isDependent() &&
2413           "TypenameType requires a dependent nested-name-specifier");
2414  }
2415
2416  friend class ASTContext;  // ASTContext creates these
2417
2418public:
2419  /// \brief Retrieve the qualification on this type.
2420  NestedNameSpecifier *getQualifier() const { return NNS; }
2421
2422  /// \brief Retrieve the type named by the typename specifier as an
2423  /// identifier.
2424  ///
2425  /// This routine will return a non-NULL identifier pointer when the
2426  /// form of the original typename was terminated by an identifier,
2427  /// e.g., "typename T::type".
2428  const IdentifierInfo *getIdentifier() const {
2429    return Name.dyn_cast<const IdentifierInfo *>();
2430  }
2431
2432  /// \brief Retrieve the type named by the typename specifier as a
2433  /// type specialization.
2434  const TemplateSpecializationType *getTemplateId() const {
2435    return Name.dyn_cast<const TemplateSpecializationType *>();
2436  }
2437
2438  bool isSugared() const { return false; }
2439  QualType desugar() const { return QualType(this, 0); }
2440
2441  void Profile(llvm::FoldingSetNodeID &ID) {
2442    Profile(ID, NNS, Name);
2443  }
2444
2445  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2446                      NameType Name) {
2447    ID.AddPointer(NNS);
2448    ID.AddPointer(Name.getOpaqueValue());
2449  }
2450
2451  static bool classof(const Type *T) {
2452    return T->getTypeClass() == Typename;
2453  }
2454  static bool classof(const TypenameType *T) { return true; }
2455};
2456
2457/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
2458/// object oriented design.  They basically correspond to C++ classes.  There
2459/// are two kinds of interface types, normal interfaces like "NSString" and
2460/// qualified interfaces, which are qualified with a protocol list like
2461/// "NSString<NSCopyable, NSAmazing>".
2462class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
2463  ObjCInterfaceDecl *Decl;
2464
2465  // List of protocols for this protocol conforming object type
2466  // List is sorted on protocol name. No protocol is enterred more than once.
2467  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;
2468
2469  ObjCInterfaceType(QualType Canonical, ObjCInterfaceDecl *D,
2470                    ObjCProtocolDecl **Protos, unsigned NumP) :
2471    Type(ObjCInterface, Canonical, /*Dependent=*/false),
2472    Decl(D), Protocols(Protos, Protos+NumP) { }
2473  friend class ASTContext;  // ASTContext creates these.
2474public:
2475  ObjCInterfaceDecl *getDecl() const { return Decl; }
2476
2477  /// getNumProtocols - Return the number of qualifying protocols in this
2478  /// interface type, or 0 if there are none.
2479  unsigned getNumProtocols() const { return Protocols.size(); }
2480
2481  /// qual_iterator and friends: this provides access to the (potentially empty)
2482  /// list of protocols qualifying this interface.
2483  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
2484  qual_iterator qual_begin() const { return Protocols.begin(); }
2485  qual_iterator qual_end() const   { return Protocols.end(); }
2486  bool qual_empty() const { return Protocols.size() == 0; }
2487
2488  bool isSugared() const { return false; }
2489  QualType desugar() const { return QualType(this, 0); }
2490
2491  void Profile(llvm::FoldingSetNodeID &ID);
2492  static void Profile(llvm::FoldingSetNodeID &ID,
2493                      const ObjCInterfaceDecl *Decl,
2494                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2495
2496  static bool classof(const Type *T) {
2497    return T->getTypeClass() == ObjCInterface;
2498  }
2499  static bool classof(const ObjCInterfaceType *) { return true; }
2500};
2501
2502/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
2503/// and 'Interface <p> *'.
2504///
2505/// Duplicate protocols are removed and protocol list is canonicalized to be in
2506/// alphabetical order.
2507class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
2508  QualType PointeeType; // A builtin or interface type.
2509
2510  // List of protocols for this protocol conforming object type
2511  // List is sorted on protocol name. No protocol is entered more than once.
2512  llvm::SmallVector<ObjCProtocolDecl*, 8> Protocols;
2513
2514  ObjCObjectPointerType(QualType Canonical, QualType T,
2515                        ObjCProtocolDecl **Protos, unsigned NumP) :
2516    Type(ObjCObjectPointer, Canonical, /*Dependent=*/false),
2517    PointeeType(T), Protocols(Protos, Protos+NumP) { }
2518  friend class ASTContext;  // ASTContext creates these.
2519
2520public:
2521  // Get the pointee type. Pointee will either be:
2522  // - a built-in type (for 'id' and 'Class').
2523  // - an interface type (for user-defined types).
2524  // - a TypedefType whose canonical type is an interface (as in 'T' below).
2525  //   For example: typedef NSObject T; T *var;
2526  QualType getPointeeType() const { return PointeeType; }
2527
2528  const ObjCInterfaceType *getInterfaceType() const {
2529    return PointeeType->getAs<ObjCInterfaceType>();
2530  }
2531  /// getInterfaceDecl - returns an interface decl for user-defined types.
2532  ObjCInterfaceDecl *getInterfaceDecl() const {
2533    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
2534  }
2535  /// isObjCIdType - true for "id".
2536  bool isObjCIdType() const {
2537    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2538           !Protocols.size();
2539  }
2540  /// isObjCClassType - true for "Class".
2541  bool isObjCClassType() const {
2542    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2543           !Protocols.size();
2544  }
2545
2546  /// isObjCSelType - true for "SEL".
2547  bool isObjCSelType() const {
2548    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
2549  }
2550
2551  /// isObjCQualifiedIdType - true for "id <p>".
2552  bool isObjCQualifiedIdType() const {
2553    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2554           Protocols.size();
2555  }
2556  /// isObjCQualifiedClassType - true for "Class <p>".
2557  bool isObjCQualifiedClassType() const {
2558    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2559           Protocols.size();
2560  }
2561  /// qual_iterator and friends: this provides access to the (potentially empty)
2562  /// list of protocols qualifying this interface.
2563  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
2564
2565  qual_iterator qual_begin() const { return Protocols.begin(); }
2566  qual_iterator qual_end() const   { return Protocols.end(); }
2567  bool qual_empty() const { return Protocols.size() == 0; }
2568
2569  /// getNumProtocols - Return the number of qualifying protocols in this
2570  /// interface type, or 0 if there are none.
2571  unsigned getNumProtocols() const { return Protocols.size(); }
2572
2573  bool isSugared() const { return false; }
2574  QualType desugar() const { return QualType(this, 0); }
2575
2576  void Profile(llvm::FoldingSetNodeID &ID);
2577  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2578                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2579  static bool classof(const Type *T) {
2580    return T->getTypeClass() == ObjCObjectPointer;
2581  }
2582  static bool classof(const ObjCObjectPointerType *) { return true; }
2583};
2584
2585/// A qualifier set is used to build a set of qualifiers.
2586class QualifierCollector : public Qualifiers {
2587  ASTContext *Context;
2588
2589public:
2590  QualifierCollector(Qualifiers Qs = Qualifiers())
2591    : Qualifiers(Qs), Context(0) {}
2592  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
2593    : Qualifiers(Qs), Context(&Context) {}
2594
2595  void setContext(ASTContext &C) { Context = &C; }
2596
2597  /// Collect any qualifiers on the given type and return an
2598  /// unqualified type.
2599  const Type *strip(QualType QT) {
2600    addFastQualifiers(QT.getLocalFastQualifiers());
2601    if (QT.hasLocalNonFastQualifiers()) {
2602      const ExtQuals *EQ = QT.getExtQualsUnsafe();
2603      Context = &EQ->getContext();
2604      addQualifiers(EQ->getQualifiers());
2605      return EQ->getBaseType();
2606    }
2607    return QT.getTypePtrUnsafe();
2608  }
2609
2610  /// Apply the collected qualifiers to the given type.
2611  QualType apply(QualType QT) const;
2612
2613  /// Apply the collected qualifiers to the given type.
2614  QualType apply(const Type* T) const;
2615
2616};
2617
2618
2619// Inline function definitions.
2620
2621inline bool QualType::isCanonical() const {
2622  const Type *T = getTypePtr();
2623  if (hasLocalQualifiers())
2624    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
2625  return T->isCanonicalUnqualified();
2626}
2627
2628inline bool QualType::isCanonicalAsParam() const {
2629  if (hasLocalQualifiers()) return false;
2630  const Type *T = getTypePtr();
2631  return T->isCanonicalUnqualified() &&
2632           !isa<FunctionType>(T) && !isa<ArrayType>(T);
2633}
2634
2635inline bool QualType::isConstQualified() const {
2636  return isLocalConstQualified() ||
2637              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
2638}
2639
2640inline bool QualType::isRestrictQualified() const {
2641  return isLocalRestrictQualified() ||
2642            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
2643}
2644
2645
2646inline bool QualType::isVolatileQualified() const {
2647  return isLocalVolatileQualified() ||
2648  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
2649}
2650
2651inline bool QualType::hasQualifiers() const {
2652  return hasLocalQualifiers() ||
2653                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
2654}
2655
2656inline Qualifiers QualType::getQualifiers() const {
2657  Qualifiers Quals = getLocalQualifiers();
2658  Quals.addQualifiers(
2659                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
2660  return Quals;
2661}
2662
2663inline unsigned QualType::getCVRQualifiers() const {
2664  return getLocalCVRQualifiers() |
2665              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
2666}
2667
2668inline void QualType::removeConst() {
2669  removeFastQualifiers(Qualifiers::Const);
2670}
2671
2672inline void QualType::removeRestrict() {
2673  removeFastQualifiers(Qualifiers::Restrict);
2674}
2675
2676inline void QualType::removeVolatile() {
2677  QualifierCollector Qc;
2678  const Type *Ty = Qc.strip(*this);
2679  if (Qc.hasVolatile()) {
2680    Qc.removeVolatile();
2681    *this = Qc.apply(Ty);
2682  }
2683}
2684
2685inline void QualType::removeCVRQualifiers(unsigned Mask) {
2686  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
2687
2688  // Fast path: we don't need to touch the slow qualifiers.
2689  if (!(Mask & ~Qualifiers::FastMask)) {
2690    removeFastQualifiers(Mask);
2691    return;
2692  }
2693
2694  QualifierCollector Qc;
2695  const Type *Ty = Qc.strip(*this);
2696  Qc.removeCVRQualifiers(Mask);
2697  *this = Qc.apply(Ty);
2698}
2699
2700/// getAddressSpace - Return the address space of this type.
2701inline unsigned QualType::getAddressSpace() const {
2702  if (hasLocalNonFastQualifiers()) {
2703    const ExtQuals *EQ = getExtQualsUnsafe();
2704    if (EQ->hasAddressSpace())
2705      return EQ->getAddressSpace();
2706  }
2707
2708  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2709  if (CT.hasLocalNonFastQualifiers()) {
2710    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2711    if (EQ->hasAddressSpace())
2712      return EQ->getAddressSpace();
2713  }
2714
2715  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2716    return AT->getElementType().getAddressSpace();
2717  if (const RecordType *RT = dyn_cast<RecordType>(CT))
2718    return RT->getAddressSpace();
2719  return 0;
2720}
2721
2722/// getObjCGCAttr - Return the gc attribute of this type.
2723inline Qualifiers::GC QualType::getObjCGCAttr() const {
2724  if (hasLocalNonFastQualifiers()) {
2725    const ExtQuals *EQ = getExtQualsUnsafe();
2726    if (EQ->hasObjCGCAttr())
2727      return EQ->getObjCGCAttr();
2728  }
2729
2730  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2731  if (CT.hasLocalNonFastQualifiers()) {
2732    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2733    if (EQ->hasObjCGCAttr())
2734      return EQ->getObjCGCAttr();
2735  }
2736
2737  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2738      return AT->getElementType().getObjCGCAttr();
2739  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
2740    return PT->getPointeeType().getObjCGCAttr();
2741  // We most look at all pointer types, not just pointer to interface types.
2742  if (const PointerType *PT = CT->getAs<PointerType>())
2743    return PT->getPointeeType().getObjCGCAttr();
2744  return Qualifiers::GCNone;
2745}
2746
2747  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
2748  /// false otherwise.
2749inline bool QualType::getNoReturnAttr() const {
2750  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2751  if (const PointerType *PT = getTypePtr()->getAs<PointerType>()) {
2752    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
2753      return FT->getNoReturnAttr();
2754  } else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
2755    return FT->getNoReturnAttr();
2756
2757  return false;
2758}
2759
2760/// isMoreQualifiedThan - Determine whether this type is more
2761/// qualified than the Other type. For example, "const volatile int"
2762/// is more qualified than "const int", "volatile int", and
2763/// "int". However, it is not more qualified than "const volatile
2764/// int".
2765inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2766  // FIXME: work on arbitrary qualifiers
2767  unsigned MyQuals = this->getCVRQualifiers();
2768  unsigned OtherQuals = Other.getCVRQualifiers();
2769  if (getAddressSpace() != Other.getAddressSpace())
2770    return false;
2771  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2772}
2773
2774/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2775/// as qualified as the Other type. For example, "const volatile
2776/// int" is at least as qualified as "const int", "volatile int",
2777/// "int", and "const volatile int".
2778inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2779  // FIXME: work on arbitrary qualifiers
2780  unsigned MyQuals = this->getCVRQualifiers();
2781  unsigned OtherQuals = Other.getCVRQualifiers();
2782  if (getAddressSpace() != Other.getAddressSpace())
2783    return false;
2784  return (MyQuals | OtherQuals) == MyQuals;
2785}
2786
2787/// getNonReferenceType - If Type is a reference type (e.g., const
2788/// int&), returns the type that the reference refers to ("const
2789/// int"). Otherwise, returns the type itself. This routine is used
2790/// throughout Sema to implement C++ 5p6:
2791///
2792///   If an expression initially has the type "reference to T" (8.3.2,
2793///   8.5.3), the type is adjusted to "T" prior to any further
2794///   analysis, the expression designates the object or function
2795///   denoted by the reference, and the expression is an lvalue.
2796inline QualType QualType::getNonReferenceType() const {
2797  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
2798    return RefType->getPointeeType();
2799  else
2800    return *this;
2801}
2802
2803inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
2804  if (const PointerType *PT = getAs<PointerType>())
2805    return PT->getPointeeType()->getAs<ObjCInterfaceType>();
2806  return 0;
2807}
2808
2809inline bool Type::isFunctionType() const {
2810  return isa<FunctionType>(CanonicalType);
2811}
2812inline bool Type::isPointerType() const {
2813  return isa<PointerType>(CanonicalType);
2814}
2815inline bool Type::isAnyPointerType() const {
2816  return isPointerType() || isObjCObjectPointerType();
2817}
2818inline bool Type::isBlockPointerType() const {
2819  return isa<BlockPointerType>(CanonicalType);
2820}
2821inline bool Type::isReferenceType() const {
2822  return isa<ReferenceType>(CanonicalType);
2823}
2824inline bool Type::isLValueReferenceType() const {
2825  return isa<LValueReferenceType>(CanonicalType);
2826}
2827inline bool Type::isRValueReferenceType() const {
2828  return isa<RValueReferenceType>(CanonicalType);
2829}
2830inline bool Type::isFunctionPointerType() const {
2831  if (const PointerType* T = getAs<PointerType>())
2832    return T->getPointeeType()->isFunctionType();
2833  else
2834    return false;
2835}
2836inline bool Type::isMemberPointerType() const {
2837  return isa<MemberPointerType>(CanonicalType);
2838}
2839inline bool Type::isMemberFunctionPointerType() const {
2840  if (const MemberPointerType* T = getAs<MemberPointerType>())
2841    return T->getPointeeType()->isFunctionType();
2842  else
2843    return false;
2844}
2845inline bool Type::isArrayType() const {
2846  return isa<ArrayType>(CanonicalType);
2847}
2848inline bool Type::isConstantArrayType() const {
2849  return isa<ConstantArrayType>(CanonicalType);
2850}
2851inline bool Type::isIncompleteArrayType() const {
2852  return isa<IncompleteArrayType>(CanonicalType);
2853}
2854inline bool Type::isVariableArrayType() const {
2855  return isa<VariableArrayType>(CanonicalType);
2856}
2857inline bool Type::isDependentSizedArrayType() const {
2858  return isa<DependentSizedArrayType>(CanonicalType);
2859}
2860inline bool Type::isRecordType() const {
2861  return isa<RecordType>(CanonicalType);
2862}
2863inline bool Type::isAnyComplexType() const {
2864  return isa<ComplexType>(CanonicalType);
2865}
2866inline bool Type::isVectorType() const {
2867  return isa<VectorType>(CanonicalType);
2868}
2869inline bool Type::isExtVectorType() const {
2870  return isa<ExtVectorType>(CanonicalType);
2871}
2872inline bool Type::isObjCObjectPointerType() const {
2873  return isa<ObjCObjectPointerType>(CanonicalType);
2874}
2875inline bool Type::isObjCInterfaceType() const {
2876  return isa<ObjCInterfaceType>(CanonicalType);
2877}
2878inline bool Type::isObjCQualifiedIdType() const {
2879  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2880    return OPT->isObjCQualifiedIdType();
2881  return false;
2882}
2883inline bool Type::isObjCQualifiedClassType() const {
2884  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2885    return OPT->isObjCQualifiedClassType();
2886  return false;
2887}
2888inline bool Type::isObjCIdType() const {
2889  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2890    return OPT->isObjCIdType();
2891  return false;
2892}
2893inline bool Type::isObjCClassType() const {
2894  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2895    return OPT->isObjCClassType();
2896  return false;
2897}
2898inline bool Type::isObjCSelType() const {
2899  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2900    return OPT->isObjCSelType();
2901  return false;
2902}
2903inline bool Type::isObjCBuiltinType() const {
2904  return isObjCIdType() || isObjCClassType() || isObjCSelType();
2905}
2906inline bool Type::isTemplateTypeParmType() const {
2907  return isa<TemplateTypeParmType>(CanonicalType);
2908}
2909
2910inline bool Type::isSpecificBuiltinType(unsigned K) const {
2911  if (const BuiltinType *BT = getAs<BuiltinType>())
2912    if (BT->getKind() == (BuiltinType::Kind) K)
2913      return true;
2914  return false;
2915}
2916
2917/// \brief Determines whether this is a type for which one can define
2918/// an overloaded operator.
2919inline bool Type::isOverloadableType() const {
2920  return isDependentType() || isRecordType() || isEnumeralType();
2921}
2922
2923inline bool Type::hasPointerRepresentation() const {
2924  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
2925          isObjCInterfaceType() || isObjCObjectPointerType() ||
2926          isObjCQualifiedInterfaceType() || isNullPtrType());
2927}
2928
2929inline bool Type::hasObjCPointerRepresentation() const {
2930  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
2931          isObjCQualifiedInterfaceType());
2932}
2933
2934/// Insertion operator for diagnostics.  This allows sending QualType's into a
2935/// diagnostic with <<.
2936inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2937                                           QualType T) {
2938  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
2939                  Diagnostic::ak_qualtype);
2940  return DB;
2941}
2942
2943// Helper class template that is used by Type::getAs to ensure that one does
2944// not try to look through a qualified type to get to an array type.
2945template<typename T,
2946         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
2947                             llvm::is_base_of<ArrayType, T>::value)>
2948struct ArrayType_cannot_be_used_with_getAs { };
2949
2950template<typename T>
2951struct ArrayType_cannot_be_used_with_getAs<T, true>;
2952
2953/// Member-template getAs<specific type>'.
2954template <typename T> const T *Type::getAs() const {
2955  ArrayType_cannot_be_used_with_getAs<T> at;
2956  (void)at;
2957
2958  // If this is directly a T type, return it.
2959  if (const T *Ty = dyn_cast<T>(this))
2960    return Ty;
2961
2962  // If the canonical form of this type isn't the right kind, reject it.
2963  if (!isa<T>(CanonicalType))
2964    return 0;
2965
2966  // If this is a typedef for the type, strip the typedef off without
2967  // losing all typedef information.
2968  return cast<T>(getUnqualifiedDesugaredType());
2969}
2970
2971}  // end namespace clang
2972
2973#endif
2974