Type.h revision 1a1a6e2bd4c5aefd7fd643cf25915f9623a02e59
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/AST/TemplateName.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/ADT/APSInt.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/PointerUnion.h"
26
27using llvm::isa;
28using llvm::cast;
29using llvm::cast_or_null;
30using llvm::dyn_cast;
31using llvm::dyn_cast_or_null;
32namespace clang { class Type; }
33
34namespace llvm {
35  template <typename T>
36  class PointerLikeTypeTraits;
37  template<>
38  class PointerLikeTypeTraits< ::clang::Type*> {
39  public:
40    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
41    static inline ::clang::Type *getFromVoidPointer(void *P) {
42      return static_cast< ::clang::Type*>(P);
43    }
44    enum { NumLowBitsAvailable = 3 };
45  };
46}
47
48namespace clang {
49  class ASTContext;
50  class TypedefDecl;
51  class TemplateDecl;
52  class TemplateTypeParmDecl;
53  class NonTypeTemplateParmDecl;
54  class TemplateTemplateParmDecl;
55  class TagDecl;
56  class RecordDecl;
57  class CXXRecordDecl;
58  class EnumDecl;
59  class FieldDecl;
60  class ObjCInterfaceDecl;
61  class ObjCProtocolDecl;
62  class ObjCMethodDecl;
63  class Expr;
64  class Stmt;
65  class SourceLocation;
66  class StmtIteratorBase;
67  class TemplateArgument;
68  class QualifiedNameType;
69  struct PrintingPolicy;
70
71  // Provide forward declarations for all of the *Type classes
72#define TYPE(Class, Base) class Class##Type;
73#include "clang/AST/TypeNodes.def"
74
75/// QualType - For efficiency, we don't store CVR-qualified types as nodes on
76/// their own: instead each reference to a type stores the qualifiers.  This
77/// greatly reduces the number of nodes we need to allocate for types (for
78/// example we only need one for 'int', 'const int', 'volatile int',
79/// 'const volatile int', etc).
80///
81/// As an added efficiency bonus, instead of making this a pair, we just store
82/// the three bits we care about in the low bits of the pointer.  To handle the
83/// packing/unpacking, we make QualType be a simple wrapper class that acts like
84/// a smart pointer.
85class QualType {
86  llvm::PointerIntPair<Type*, 3> Value;
87public:
88  enum TQ {   // NOTE: These flags must be kept in sync with DeclSpec::TQ.
89    Const    = 0x1,
90    Restrict = 0x2,
91    Volatile = 0x4,
92    CVRFlags = Const|Restrict|Volatile
93  };
94
95  enum GCAttrTypes {
96    GCNone = 0,
97    Weak,
98    Strong
99  };
100
101  QualType() {}
102
103  QualType(const Type *Ptr, unsigned Quals)
104    : Value(const_cast<Type*>(Ptr), Quals) {}
105
106  unsigned getCVRQualifiers() const { return Value.getInt(); }
107  void setCVRQualifiers(unsigned Quals) { Value.setInt(Quals); }
108  Type *getTypePtr() const { return Value.getPointer(); }
109
110  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
111  static QualType getFromOpaquePtr(void *Ptr) {
112    QualType T;
113    T.Value.setFromOpaqueValue(Ptr);
114    return T;
115  }
116
117  Type &operator*() const {
118    return *getTypePtr();
119  }
120
121  Type *operator->() const {
122    return getTypePtr();
123  }
124
125  /// isNull - Return true if this QualType doesn't point to a type yet.
126  bool isNull() const {
127    return getTypePtr() == 0;
128  }
129
130  bool isConstQualified() const {
131    return (getCVRQualifiers() & Const) ? true : false;
132  }
133  bool isVolatileQualified() const {
134    return (getCVRQualifiers() & Volatile) ? true : false;
135  }
136  bool isRestrictQualified() const {
137    return (getCVRQualifiers() & Restrict) ? true : false;
138  }
139
140  bool isConstant(ASTContext& Ctx) const;
141
142  /// addConst/addVolatile/addRestrict - add the specified type qual to this
143  /// QualType.
144  void addConst()    { Value.setInt(Value.getInt() | Const); }
145  void addVolatile() { Value.setInt(Value.getInt() | Volatile); }
146  void addRestrict() { Value.setInt(Value.getInt() | Restrict); }
147
148  void removeConst()    { Value.setInt(Value.getInt() & ~Const); }
149  void removeVolatile() { Value.setInt(Value.getInt() & ~Volatile); }
150  void removeRestrict() { Value.setInt(Value.getInt() & ~Restrict); }
151
152  QualType getQualifiedType(unsigned TQs) const {
153    return QualType(getTypePtr(), TQs);
154  }
155  QualType getWithAdditionalQualifiers(unsigned TQs) const {
156    return QualType(getTypePtr(), TQs|getCVRQualifiers());
157  }
158
159  QualType withConst() const { return getWithAdditionalQualifiers(Const); }
160  QualType withVolatile() const { return getWithAdditionalQualifiers(Volatile);}
161  QualType withRestrict() const { return getWithAdditionalQualifiers(Restrict);}
162
163  QualType getUnqualifiedType() const;
164  bool isMoreQualifiedThan(QualType Other) const;
165  bool isAtLeastAsQualifiedAs(QualType Other) const;
166  QualType getNonReferenceType() const;
167
168  /// getDesugaredType - Return the specified type with any "sugar" removed from
169  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
170  /// the type is already concrete, it returns it unmodified.  This is similar
171  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
172  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
173  /// concrete.
174  QualType getDesugaredType(bool ForDisplay = false) const;
175
176  /// operator==/!= - Indicate whether the specified types and qualifiers are
177  /// identical.
178  bool operator==(const QualType &RHS) const {
179    return Value == RHS.Value;
180  }
181  bool operator!=(const QualType &RHS) const {
182    return Value != RHS.Value;
183  }
184  std::string getAsString() const;
185
186  std::string getAsString(const PrintingPolicy &Policy) const {
187    std::string S;
188    getAsStringInternal(S, Policy);
189    return S;
190  }
191  void getAsStringInternal(std::string &Str,
192                           const PrintingPolicy &Policy) const;
193
194  void dump(const char *s) const;
195  void dump() const;
196
197  void Profile(llvm::FoldingSetNodeID &ID) const {
198    ID.AddPointer(getAsOpaquePtr());
199  }
200
201public:
202
203  /// getAddressSpace - Return the address space of this type.
204  inline unsigned getAddressSpace() const;
205
206  /// GCAttrTypesAttr - Returns gc attribute of this type.
207  inline QualType::GCAttrTypes getObjCGCAttr() const;
208
209  /// isObjCGCWeak true when Type is objc's weak.
210  bool isObjCGCWeak() const {
211    return getObjCGCAttr() == Weak;
212  }
213
214  /// isObjCGCStrong true when Type is objc's strong.
215  bool isObjCGCStrong() const {
216    return getObjCGCAttr() == Strong;
217  }
218};
219
220} // end clang.
221
222namespace llvm {
223/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
224/// to a specific Type class.
225template<> struct simplify_type<const ::clang::QualType> {
226  typedef ::clang::Type* SimpleType;
227  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
228    return Val.getTypePtr();
229  }
230};
231template<> struct simplify_type< ::clang::QualType>
232  : public simplify_type<const ::clang::QualType> {};
233
234// Teach SmallPtrSet that QualType is "basically a pointer".
235template<>
236class PointerLikeTypeTraits<clang::QualType> {
237public:
238  static inline void *getAsVoidPointer(clang::QualType P) {
239    return P.getAsOpaquePtr();
240  }
241  static inline clang::QualType getFromVoidPointer(void *P) {
242    return clang::QualType::getFromOpaquePtr(P);
243  }
244  // CVR qualifiers go in low bits.
245  enum { NumLowBitsAvailable = 0 };
246};
247} // end namespace llvm
248
249namespace clang {
250
251/// Type - This is the base class of the type hierarchy.  A central concept
252/// with types is that each type always has a canonical type.  A canonical type
253/// is the type with any typedef names stripped out of it or the types it
254/// references.  For example, consider:
255///
256///  typedef int  foo;
257///  typedef foo* bar;
258///    'int *'    'foo *'    'bar'
259///
260/// There will be a Type object created for 'int'.  Since int is canonical, its
261/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
262/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
263/// there is a PointerType that represents 'int*', which, like 'int', is
264/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
265/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
266/// is also 'int*'.
267///
268/// Non-canonical types are useful for emitting diagnostics, without losing
269/// information about typedefs being used.  Canonical types are useful for type
270/// comparisons (they allow by-pointer equality tests) and useful for reasoning
271/// about whether something has a particular form (e.g. is a function type),
272/// because they implicitly, recursively, strip all typedefs out of a type.
273///
274/// Types, once created, are immutable.
275///
276class Type {
277public:
278  enum TypeClass {
279#define TYPE(Class, Base) Class,
280#define ABSTRACT_TYPE(Class, Base)
281#include "clang/AST/TypeNodes.def"
282    TagFirst = Record, TagLast = Enum
283  };
284
285private:
286  QualType CanonicalType;
287
288  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
289  bool Dependent : 1;
290
291  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
292  /// Note that this should stay at the end of the ivars for Type so that
293  /// subclasses can pack their bitfields into the same word.
294  unsigned TC : 6;
295
296  Type(const Type&);           // DO NOT IMPLEMENT.
297  void operator=(const Type&); // DO NOT IMPLEMENT.
298protected:
299  // silence VC++ warning C4355: 'this' : used in base member initializer list
300  Type *this_() { return this; }
301  Type(TypeClass tc, QualType Canonical, bool dependent)
302    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
303      Dependent(dependent), TC(tc) {}
304  virtual ~Type() {}
305  virtual void Destroy(ASTContext& C);
306  friend class ASTContext;
307
308public:
309  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
310
311  bool isCanonical() const { return CanonicalType.getTypePtr() == this; }
312
313  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
314  /// object types, function types, and incomplete types.
315
316  /// \brief Determines whether the type describes an object in memory.
317  ///
318  /// Note that this definition of object type corresponds to the C++
319  /// definition of object type, which includes incomplete types, as
320  /// opposed to the C definition (which does not include incomplete
321  /// types).
322  bool isObjectType() const;
323
324  /// isIncompleteType - Return true if this is an incomplete type.
325  /// A type that can describe objects, but which lacks information needed to
326  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
327  /// routine will need to determine if the size is actually required.
328  bool isIncompleteType() const;
329
330  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
331  /// type, in other words, not a function type.
332  bool isIncompleteOrObjectType() const {
333    return !isFunctionType();
334  }
335
336  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
337  bool isPODType() const;
338
339  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
340  /// types that have a non-constant expression. This does not include "[]".
341  bool isVariablyModifiedType() const;
342
343  /// Helper methods to distinguish type categories. All type predicates
344  /// operate on the canonical type, ignoring typedefs and qualifiers.
345
346  /// isSpecificBuiltinType - Test for a particular builtin type.
347  bool isSpecificBuiltinType(unsigned K) const;
348
349  /// isIntegerType() does *not* include complex integers (a GCC extension).
350  /// isComplexIntegerType() can be used to test for complex integers.
351  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
352  bool isEnumeralType() const;
353  bool isBooleanType() const;
354  bool isCharType() const;
355  bool isWideCharType() const;
356  bool isIntegralType() const;
357
358  /// Floating point categories.
359  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
360  /// isComplexType() does *not* include complex integers (a GCC extension).
361  /// isComplexIntegerType() can be used to test for complex integers.
362  bool isComplexType() const;      // C99 6.2.5p11 (complex)
363  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
364  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
365  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
366  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
367  bool isVoidType() const;         // C99 6.2.5p19
368  bool isDerivedType() const;      // C99 6.2.5p20
369  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
370  bool isAggregateType() const;
371
372  // Type Predicates: Check to see if this type is structurally the specified
373  // type, ignoring typedefs and qualifiers.
374  bool isFunctionType() const;
375  bool isFunctionNoProtoType() const { return getAsFunctionNoProtoType() != 0; }
376  bool isFunctionProtoType() const { return getAsFunctionProtoType() != 0; }
377  bool isPointerType() const;
378  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
379  bool isBlockPointerType() const;
380  bool isVoidPointerType() const;
381  bool isReferenceType() const;
382  bool isLValueReferenceType() const;
383  bool isRValueReferenceType() const;
384  bool isFunctionPointerType() const;
385  bool isMemberPointerType() const;
386  bool isMemberFunctionPointerType() const;
387  bool isArrayType() const;
388  bool isConstantArrayType() const;
389  bool isIncompleteArrayType() const;
390  bool isVariableArrayType() const;
391  bool isDependentSizedArrayType() const;
392  bool isRecordType() const;
393  bool isClassType() const;
394  bool isStructureType() const;
395  bool isUnionType() const;
396  bool isComplexIntegerType() const;            // GCC _Complex integer type.
397  bool isVectorType() const;                    // GCC vector type.
398  bool isExtVectorType() const;                 // Extended vector type.
399  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
400  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
401  // for the common case.
402  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
403  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
404  bool isObjCQualifiedIdType() const;           // id<foo>
405  bool isObjCIdType() const;                    // id
406  bool isObjCClassType() const;                 // Class
407  bool isObjCBuiltinType() const;               // 'id' or 'Class'
408  bool isTemplateTypeParmType() const;          // C++ template type parameter
409  bool isNullPtrType() const;                   // C++0x nullptr_t
410
411  /// isDependentType - Whether this type is a dependent type, meaning
412  /// that its definition somehow depends on a template parameter
413  /// (C++ [temp.dep.type]).
414  bool isDependentType() const { return Dependent; }
415  bool isOverloadableType() const;
416
417  /// hasPointerRepresentation - Whether this type is represented
418  /// natively as a pointer; this includes pointers, references, block
419  /// pointers, and Objective-C interface, qualified id, and qualified
420  /// interface types, as well as nullptr_t.
421  bool hasPointerRepresentation() const;
422
423  /// hasObjCPointerRepresentation - Whether this type can represent
424  /// an objective pointer type for the purpose of GC'ability
425  bool hasObjCPointerRepresentation() const;
426
427  // Type Checking Functions: Check to see if this type is structurally the
428  // specified type, ignoring typedefs and qualifiers, and return a pointer to
429  // the best type we can.
430  const BuiltinType *getAsBuiltinType() const;
431  const FunctionType *getAsFunctionType() const;
432  const FunctionNoProtoType *getAsFunctionNoProtoType() const;
433  const FunctionProtoType *getAsFunctionProtoType() const;
434  const ReferenceType *getAsReferenceType() const;
435  const LValueReferenceType *getAsLValueReferenceType() const;
436  const RValueReferenceType *getAsRValueReferenceType() const;
437  const MemberPointerType *getAsMemberPointerType() const;
438  const TagType *getAsTagType() const;
439  const RecordType *getAsRecordType() const;
440  const RecordType *getAsStructureType() const;
441  /// NOTE: getAs*ArrayType are methods on ASTContext.
442  const TypedefType *getAsTypedefType() const;
443  const RecordType *getAsUnionType() const;
444  const EnumType *getAsEnumType() const;
445  const VectorType *getAsVectorType() const; // GCC vector type.
446  const ComplexType *getAsComplexType() const;
447  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
448  const ExtVectorType *getAsExtVectorType() const; // Extended vector type.
449  const ObjCObjectPointerType *getAsObjCObjectPointerType() const;
450  // The following is a convenience method that returns an ObjCObjectPointerType
451  // for object declared using an interface.
452  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
453  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
454  const ObjCInterfaceType *getAsObjCInterfaceType() const;
455  const ObjCQualifiedInterfaceType *getAsObjCQualifiedInterfaceType() const;
456  const TemplateTypeParmType *getAsTemplateTypeParmType() const;
457
458  // Member-template getAs<specific type>'.  This scheme will eventually
459  // replace the specific getAsXXXX methods above.
460  template <typename T> const T *getAs() const;
461
462  const TemplateSpecializationType *
463    getAsTemplateSpecializationType() const;
464
465  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
466  /// interface, return the interface type, otherwise return null.
467  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
468
469  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
470  /// element type of the array, potentially with type qualifiers missing.
471  /// This method should never be used when type qualifiers are meaningful.
472  const Type *getArrayElementTypeNoTypeQual() const;
473
474  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
475  /// pointer, this returns the respective pointee.
476  QualType getPointeeType() const;
477
478  /// getDesugaredType - Return the specified type with any "sugar" removed from
479  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
480  /// the type is already concrete, it returns it unmodified.  This is similar
481  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
482  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
483  /// concrete.
484  QualType getDesugaredType(bool ForDisplay = false) const;
485
486  /// More type predicates useful for type checking/promotion
487  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
488
489  /// isSignedIntegerType - Return true if this is an integer type that is
490  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
491  /// an enum decl which has a signed representation, or a vector of signed
492  /// integer element type.
493  bool isSignedIntegerType() const;
494
495  /// isUnsignedIntegerType - Return true if this is an integer type that is
496  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
497  /// decl which has an unsigned representation, or a vector of unsigned integer
498  /// element type.
499  bool isUnsignedIntegerType() const;
500
501  /// isConstantSizeType - Return true if this is not a variable sized type,
502  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
503  /// incomplete types.
504  bool isConstantSizeType() const;
505
506  /// isSpecifierType - Returns true if this type can be represented by some
507  /// set of type specifiers.
508  bool isSpecifierType() const;
509
510  QualType getCanonicalTypeInternal() const { return CanonicalType; }
511  void dump() const;
512  virtual void getAsStringInternal(std::string &InnerString,
513                                   const PrintingPolicy &Policy) const = 0;
514  static bool classof(const Type *) { return true; }
515};
516
517/// ExtQualType - TR18037 (C embedded extensions) 6.2.5p26
518/// This supports all kinds of type attributes; including,
519/// address space qualified types, objective-c's __weak and
520/// __strong attributes.
521///
522class ExtQualType : public Type, public llvm::FoldingSetNode {
523  /// BaseType - This is the underlying type that this qualifies.  All CVR
524  /// qualifiers are stored on the QualType that references this type, so we
525  /// can't have any here.
526  Type *BaseType;
527
528  /// Address Space ID - The address space ID this type is qualified with.
529  unsigned AddressSpace;
530  /// GC __weak/__strong attributes
531  QualType::GCAttrTypes GCAttrType;
532
533  ExtQualType(Type *Base, QualType CanonicalPtr, unsigned AddrSpace,
534              QualType::GCAttrTypes gcAttr) :
535      Type(ExtQual, CanonicalPtr, Base->isDependentType()), BaseType(Base),
536      AddressSpace(AddrSpace), GCAttrType(gcAttr) {
537    assert(!isa<ExtQualType>(BaseType) &&
538           "Cannot have ExtQualType of ExtQualType");
539  }
540  friend class ASTContext;  // ASTContext creates these.
541public:
542  Type *getBaseType() const { return BaseType; }
543  QualType::GCAttrTypes getObjCGCAttr() const { return GCAttrType; }
544  unsigned getAddressSpace() const { return AddressSpace; }
545
546  virtual void getAsStringInternal(std::string &InnerString,
547                                   const PrintingPolicy &Policy) const;
548
549  void Profile(llvm::FoldingSetNodeID &ID) {
550    Profile(ID, getBaseType(), AddressSpace, GCAttrType);
551  }
552  static void Profile(llvm::FoldingSetNodeID &ID, Type *Base,
553                      unsigned AddrSpace, QualType::GCAttrTypes gcAttr) {
554    ID.AddPointer(Base);
555    ID.AddInteger(AddrSpace);
556    ID.AddInteger(gcAttr);
557  }
558
559  static bool classof(const Type *T) { return T->getTypeClass() == ExtQual; }
560  static bool classof(const ExtQualType *) { return true; }
561};
562
563
564/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
565/// types are always canonical and have a literal name field.
566class BuiltinType : public Type {
567public:
568  enum Kind {
569    Void,
570
571    Bool,     // This is bool and/or _Bool.
572    Char_U,   // This is 'char' for targets where char is unsigned.
573    UChar,    // This is explicitly qualified unsigned char.
574    Char16,   // This is 'char16_t' for C++.
575    Char32,   // This is 'char32_t' for C++.
576    UShort,
577    UInt,
578    ULong,
579    ULongLong,
580    UInt128,  // __uint128_t
581
582    Char_S,   // This is 'char' for targets where char is signed.
583    SChar,    // This is explicitly qualified signed char.
584    WChar,    // This is 'wchar_t' for C++.
585    Short,
586    Int,
587    Long,
588    LongLong,
589    Int128,   // __int128_t
590
591    Float, Double, LongDouble,
592
593    NullPtr,  // This is the type of C++0x 'nullptr'.
594
595    Overload,  // This represents the type of an overloaded function declaration.
596    Dependent, // This represents the type of a type-dependent expression.
597
598    UndeducedAuto, // In C++0x, this represents the type of an auto variable
599                   // that has not been deduced yet.
600    ObjCId,    // This represents the ObjC 'id' type.
601    ObjCClass  // This represents the ObjC 'Class' type.
602  };
603private:
604  Kind TypeKind;
605public:
606  BuiltinType(Kind K)
607    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
608      TypeKind(K) {}
609
610  Kind getKind() const { return TypeKind; }
611  const char *getName(const LangOptions &LO) const;
612
613  virtual void getAsStringInternal(std::string &InnerString,
614                                   const PrintingPolicy &Policy) const;
615
616  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
617  static bool classof(const BuiltinType *) { return true; }
618};
619
620/// FixedWidthIntType - Used for arbitrary width types that we either don't
621/// want to or can't map to named integer types.  These always have a lower
622/// integer rank than builtin types of the same width.
623class FixedWidthIntType : public Type {
624private:
625  unsigned Width;
626  bool Signed;
627public:
628  FixedWidthIntType(unsigned W, bool S) : Type(FixedWidthInt, QualType(), false),
629                                          Width(W), Signed(S) {}
630
631  unsigned getWidth() const { return Width; }
632  bool isSigned() const { return Signed; }
633  const char *getName() const;
634
635  virtual void getAsStringInternal(std::string &InnerString,
636                                   const PrintingPolicy &Policy) const;
637
638  static bool classof(const Type *T) { return T->getTypeClass() == FixedWidthInt; }
639  static bool classof(const FixedWidthIntType *) { return true; }
640};
641
642/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
643/// types (_Complex float etc) as well as the GCC integer complex extensions.
644///
645class ComplexType : public Type, public llvm::FoldingSetNode {
646  QualType ElementType;
647  ComplexType(QualType Element, QualType CanonicalPtr) :
648    Type(Complex, CanonicalPtr, Element->isDependentType()),
649    ElementType(Element) {
650  }
651  friend class ASTContext;  // ASTContext creates these.
652public:
653  QualType getElementType() const { return ElementType; }
654
655  virtual void getAsStringInternal(std::string &InnerString,
656                                   const PrintingPolicy &Policy) const;
657
658  void Profile(llvm::FoldingSetNodeID &ID) {
659    Profile(ID, getElementType());
660  }
661  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
662    ID.AddPointer(Element.getAsOpaquePtr());
663  }
664
665  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
666  static bool classof(const ComplexType *) { return true; }
667};
668
669/// PointerType - C99 6.7.5.1 - Pointer Declarators.
670///
671class PointerType : public Type, public llvm::FoldingSetNode {
672  QualType PointeeType;
673
674  PointerType(QualType Pointee, QualType CanonicalPtr) :
675    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
676  }
677  friend class ASTContext;  // ASTContext creates these.
678public:
679
680  virtual void getAsStringInternal(std::string &InnerString,
681                                   const PrintingPolicy &Policy) const;
682
683  QualType getPointeeType() const { return PointeeType; }
684
685  void Profile(llvm::FoldingSetNodeID &ID) {
686    Profile(ID, getPointeeType());
687  }
688  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
689    ID.AddPointer(Pointee.getAsOpaquePtr());
690  }
691
692  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
693  static bool classof(const PointerType *) { return true; }
694};
695
696/// BlockPointerType - pointer to a block type.
697/// This type is to represent types syntactically represented as
698/// "void (^)(int)", etc. Pointee is required to always be a function type.
699///
700class BlockPointerType : public Type, public llvm::FoldingSetNode {
701  QualType PointeeType;  // Block is some kind of pointer type
702  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
703    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
704    PointeeType(Pointee) {
705  }
706  friend class ASTContext;  // ASTContext creates these.
707public:
708
709  // Get the pointee type. Pointee is required to always be a function type.
710  QualType getPointeeType() const { return PointeeType; }
711
712  virtual void getAsStringInternal(std::string &InnerString,
713                                   const PrintingPolicy &Policy) const;
714
715  void Profile(llvm::FoldingSetNodeID &ID) {
716      Profile(ID, getPointeeType());
717  }
718  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
719      ID.AddPointer(Pointee.getAsOpaquePtr());
720  }
721
722  static bool classof(const Type *T) {
723    return T->getTypeClass() == BlockPointer;
724  }
725  static bool classof(const BlockPointerType *) { return true; }
726};
727
728/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
729///
730class ReferenceType : public Type, public llvm::FoldingSetNode {
731  QualType PointeeType;
732
733protected:
734  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef) :
735    Type(tc, CanonicalRef, Referencee->isDependentType()),
736    PointeeType(Referencee) {
737  }
738public:
739  QualType getPointeeType() const { return PointeeType; }
740
741  void Profile(llvm::FoldingSetNodeID &ID) {
742    Profile(ID, getPointeeType());
743  }
744  static void Profile(llvm::FoldingSetNodeID &ID, QualType Referencee) {
745    ID.AddPointer(Referencee.getAsOpaquePtr());
746  }
747
748  static bool classof(const Type *T) {
749    return T->getTypeClass() == LValueReference ||
750           T->getTypeClass() == RValueReference;
751  }
752  static bool classof(const ReferenceType *) { return true; }
753};
754
755/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
756///
757class LValueReferenceType : public ReferenceType {
758  LValueReferenceType(QualType Referencee, QualType CanonicalRef) :
759    ReferenceType(LValueReference, Referencee, CanonicalRef) {
760  }
761  friend class ASTContext; // ASTContext creates these
762public:
763  virtual void getAsStringInternal(std::string &InnerString,
764                                   const PrintingPolicy &Policy) const;
765
766  static bool classof(const Type *T) {
767    return T->getTypeClass() == LValueReference;
768  }
769  static bool classof(const LValueReferenceType *) { return true; }
770};
771
772/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
773///
774class RValueReferenceType : public ReferenceType {
775  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
776    ReferenceType(RValueReference, Referencee, CanonicalRef) {
777  }
778  friend class ASTContext; // ASTContext creates these
779public:
780  virtual void getAsStringInternal(std::string &InnerString,
781                                   const PrintingPolicy &Policy) const;
782
783  static bool classof(const Type *T) {
784    return T->getTypeClass() == RValueReference;
785  }
786  static bool classof(const RValueReferenceType *) { return true; }
787};
788
789/// MemberPointerType - C++ 8.3.3 - Pointers to members
790///
791class MemberPointerType : public Type, public llvm::FoldingSetNode {
792  QualType PointeeType;
793  /// The class of which the pointee is a member. Must ultimately be a
794  /// RecordType, but could be a typedef or a template parameter too.
795  const Type *Class;
796
797  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
798    Type(MemberPointer, CanonicalPtr,
799         Cls->isDependentType() || Pointee->isDependentType()),
800    PointeeType(Pointee), Class(Cls) {
801  }
802  friend class ASTContext; // ASTContext creates these.
803public:
804
805  QualType getPointeeType() const { return PointeeType; }
806
807  const Type *getClass() const { return Class; }
808
809  virtual void getAsStringInternal(std::string &InnerString,
810                                   const PrintingPolicy &Policy) const;
811
812  void Profile(llvm::FoldingSetNodeID &ID) {
813    Profile(ID, getPointeeType(), getClass());
814  }
815  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
816                      const Type *Class) {
817    ID.AddPointer(Pointee.getAsOpaquePtr());
818    ID.AddPointer(Class);
819  }
820
821  static bool classof(const Type *T) {
822    return T->getTypeClass() == MemberPointer;
823  }
824  static bool classof(const MemberPointerType *) { return true; }
825};
826
827/// ArrayType - C99 6.7.5.2 - Array Declarators.
828///
829class ArrayType : public Type, public llvm::FoldingSetNode {
830public:
831  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
832  /// an array with a static size (e.g. int X[static 4]), or an array
833  /// with a star size (e.g. int X[*]).
834  /// 'static' is only allowed on function parameters.
835  enum ArraySizeModifier {
836    Normal, Static, Star
837  };
838private:
839  /// ElementType - The element type of the array.
840  QualType ElementType;
841
842  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
843  /// NOTE: These fields are packed into the bitfields space in the Type class.
844  unsigned SizeModifier : 2;
845
846  /// IndexTypeQuals - Capture qualifiers in declarations like:
847  /// 'int X[static restrict 4]'. For function parameters only.
848  unsigned IndexTypeQuals : 3;
849
850protected:
851  // C++ [temp.dep.type]p1:
852  //   A type is dependent if it is...
853  //     - an array type constructed from any dependent type or whose
854  //       size is specified by a constant expression that is
855  //       value-dependent,
856  ArrayType(TypeClass tc, QualType et, QualType can,
857            ArraySizeModifier sm, unsigned tq)
858    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
859      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
860
861  friend class ASTContext;  // ASTContext creates these.
862public:
863  QualType getElementType() const { return ElementType; }
864  ArraySizeModifier getSizeModifier() const {
865    return ArraySizeModifier(SizeModifier);
866  }
867  unsigned getIndexTypeQualifier() const { return IndexTypeQuals; }
868
869  static bool classof(const Type *T) {
870    return T->getTypeClass() == ConstantArray ||
871           T->getTypeClass() == ConstantArrayWithExpr ||
872           T->getTypeClass() == ConstantArrayWithoutExpr ||
873           T->getTypeClass() == VariableArray ||
874           T->getTypeClass() == IncompleteArray ||
875           T->getTypeClass() == DependentSizedArray;
876  }
877  static bool classof(const ArrayType *) { return true; }
878};
879
880/// ConstantArrayType - This class represents the canonical version of
881/// C arrays with a specified constant size.  For example, the canonical
882/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
883/// type is 'int' and the size is 404.
884class ConstantArrayType : public ArrayType {
885  llvm::APInt Size; // Allows us to unique the type.
886
887  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
888                    ArraySizeModifier sm, unsigned tq)
889    : ArrayType(ConstantArray, et, can, sm, tq),
890      Size(size) {}
891protected:
892  ConstantArrayType(TypeClass tc, QualType et, QualType can,
893                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
894    : ArrayType(tc, et, can, sm, tq), Size(size) {}
895  friend class ASTContext;  // ASTContext creates these.
896public:
897  const llvm::APInt &getSize() const { return Size; }
898  virtual void getAsStringInternal(std::string &InnerString,
899                                   const PrintingPolicy &Policy) const;
900
901  void Profile(llvm::FoldingSetNodeID &ID) {
902    Profile(ID, getElementType(), getSize(),
903            getSizeModifier(), getIndexTypeQualifier());
904  }
905  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
906                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
907                      unsigned TypeQuals) {
908    ID.AddPointer(ET.getAsOpaquePtr());
909    ID.AddInteger(ArraySize.getZExtValue());
910    ID.AddInteger(SizeMod);
911    ID.AddInteger(TypeQuals);
912  }
913  static bool classof(const Type *T) {
914    return T->getTypeClass() == ConstantArray ||
915           T->getTypeClass() == ConstantArrayWithExpr ||
916           T->getTypeClass() == ConstantArrayWithoutExpr;
917  }
918  static bool classof(const ConstantArrayType *) { return true; }
919};
920
921/// ConstantArrayWithExprType - This class represents C arrays with a
922/// constant size specified by means of an integer constant expression.
923/// For example 'int A[sizeof(int)]' has ConstantArrayWithExprType where
924/// the element type is 'int' and the size expression is 'sizeof(int)'.
925/// These types are non-canonical.
926class ConstantArrayWithExprType : public ConstantArrayType {
927  /// SizeExpr - The ICE occurring in the concrete syntax.
928  Expr *SizeExpr;
929  /// Brackets - The left and right array brackets.
930  SourceRange Brackets;
931
932  ConstantArrayWithExprType(QualType et, QualType can,
933                            const llvm::APInt &size, Expr *e,
934                            ArraySizeModifier sm, unsigned tq,
935                            SourceRange brackets)
936    : ConstantArrayType(ConstantArrayWithExpr, et, can, size, sm, tq),
937      SizeExpr(e), Brackets(brackets) {}
938  friend class ASTContext;  // ASTContext creates these.
939  virtual void Destroy(ASTContext& C);
940
941public:
942  Expr *getSizeExpr() const { return SizeExpr; }
943  SourceRange getBracketsRange() const { return Brackets; }
944  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
945  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
946
947  virtual void getAsStringInternal(std::string &InnerString,
948                                   const PrintingPolicy &Policy) const;
949
950  static bool classof(const Type *T) {
951    return T->getTypeClass() == ConstantArrayWithExpr;
952  }
953  static bool classof(const ConstantArrayWithExprType *) { return true; }
954
955  void Profile(llvm::FoldingSetNodeID &ID) {
956    assert(0 && "Cannot unique ConstantArrayWithExprTypes.");
957  }
958};
959
960/// ConstantArrayWithoutExprType - This class represents C arrays with a
961/// constant size that was not specified by an integer constant expression,
962/// but inferred by static semantics.
963/// For example 'int A[] = { 0, 1, 2 }' has ConstantArrayWithoutExprType.
964/// These types are non-canonical: the corresponding canonical type,
965/// having the size specified in an APInt object, is a ConstantArrayType.
966class ConstantArrayWithoutExprType : public ConstantArrayType {
967
968  ConstantArrayWithoutExprType(QualType et, QualType can,
969                               const llvm::APInt &size,
970                               ArraySizeModifier sm, unsigned tq)
971    : ConstantArrayType(ConstantArrayWithoutExpr, et, can, size, sm, tq) {}
972  friend class ASTContext;  // ASTContext creates these.
973
974public:
975  virtual void getAsStringInternal(std::string &InnerString,
976                                   const PrintingPolicy &Policy) const;
977
978  static bool classof(const Type *T) {
979    return T->getTypeClass() == ConstantArrayWithoutExpr;
980  }
981  static bool classof(const ConstantArrayWithoutExprType *) { return true; }
982
983  void Profile(llvm::FoldingSetNodeID &ID) {
984    assert(0 && "Cannot unique ConstantArrayWithoutExprTypes.");
985  }
986};
987
988/// IncompleteArrayType - This class represents C arrays with an unspecified
989/// size.  For example 'int A[]' has an IncompleteArrayType where the element
990/// type is 'int' and the size is unspecified.
991class IncompleteArrayType : public ArrayType {
992
993  IncompleteArrayType(QualType et, QualType can,
994                      ArraySizeModifier sm, unsigned tq)
995    : ArrayType(IncompleteArray, et, can, sm, tq) {}
996  friend class ASTContext;  // ASTContext creates these.
997public:
998  virtual void getAsStringInternal(std::string &InnerString,
999                                   const PrintingPolicy &Policy) const;
1000
1001  static bool classof(const Type *T) {
1002    return T->getTypeClass() == IncompleteArray;
1003  }
1004  static bool classof(const IncompleteArrayType *) { return true; }
1005
1006  friend class StmtIteratorBase;
1007
1008  void Profile(llvm::FoldingSetNodeID &ID) {
1009    Profile(ID, getElementType(), getSizeModifier(), getIndexTypeQualifier());
1010  }
1011
1012  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1013                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1014    ID.AddPointer(ET.getAsOpaquePtr());
1015    ID.AddInteger(SizeMod);
1016    ID.AddInteger(TypeQuals);
1017  }
1018};
1019
1020/// VariableArrayType - This class represents C arrays with a specified size
1021/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1022/// Since the size expression is an arbitrary expression, we store it as such.
1023///
1024/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1025/// should not be: two lexically equivalent variable array types could mean
1026/// different things, for example, these variables do not have the same type
1027/// dynamically:
1028///
1029/// void foo(int x) {
1030///   int Y[x];
1031///   ++x;
1032///   int Z[x];
1033/// }
1034///
1035class VariableArrayType : public ArrayType {
1036  /// SizeExpr - An assignment expression. VLA's are only permitted within
1037  /// a function block.
1038  Stmt *SizeExpr;
1039  /// Brackets - The left and right array brackets.
1040  SourceRange Brackets;
1041
1042  VariableArrayType(QualType et, QualType can, Expr *e,
1043                    ArraySizeModifier sm, unsigned tq,
1044                    SourceRange brackets)
1045    : ArrayType(VariableArray, et, can, sm, tq),
1046      SizeExpr((Stmt*) e), Brackets(brackets) {}
1047  friend class ASTContext;  // ASTContext creates these.
1048  virtual void Destroy(ASTContext& C);
1049
1050public:
1051  Expr *getSizeExpr() const {
1052    // We use C-style casts instead of cast<> here because we do not wish
1053    // to have a dependency of Type.h on Stmt.h/Expr.h.
1054    return (Expr*) SizeExpr;
1055  }
1056  SourceRange getBracketsRange() const { return Brackets; }
1057  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1058  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1059
1060  virtual void getAsStringInternal(std::string &InnerString,
1061                                   const PrintingPolicy &Policy) const;
1062
1063  static bool classof(const Type *T) {
1064    return T->getTypeClass() == VariableArray;
1065  }
1066  static bool classof(const VariableArrayType *) { return true; }
1067
1068  friend class StmtIteratorBase;
1069
1070  void Profile(llvm::FoldingSetNodeID &ID) {
1071    assert(0 && "Cannnot unique VariableArrayTypes.");
1072  }
1073};
1074
1075/// DependentSizedArrayType - This type represents an array type in
1076/// C++ whose size is a value-dependent expression. For example:
1077/// @code
1078/// template<typename T, int Size>
1079/// class array {
1080///   T data[Size];
1081/// };
1082/// @endcode
1083/// For these types, we won't actually know what the array bound is
1084/// until template instantiation occurs, at which point this will
1085/// become either a ConstantArrayType or a VariableArrayType.
1086class DependentSizedArrayType : public ArrayType {
1087  /// SizeExpr - An assignment expression that will instantiate to the
1088  /// size of the array.
1089  Stmt *SizeExpr;
1090  /// Brackets - The left and right array brackets.
1091  SourceRange Brackets;
1092
1093  DependentSizedArrayType(QualType et, QualType can, Expr *e,
1094			  ArraySizeModifier sm, unsigned tq,
1095                          SourceRange brackets)
1096    : ArrayType(DependentSizedArray, et, can, sm, tq),
1097      SizeExpr((Stmt*) e), Brackets(brackets) {}
1098  friend class ASTContext;  // ASTContext creates these.
1099  virtual void Destroy(ASTContext& C);
1100
1101public:
1102  Expr *getSizeExpr() const {
1103    // We use C-style casts instead of cast<> here because we do not wish
1104    // to have a dependency of Type.h on Stmt.h/Expr.h.
1105    return (Expr*) SizeExpr;
1106  }
1107  SourceRange getBracketsRange() const { return Brackets; }
1108  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1109  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1110
1111  virtual void getAsStringInternal(std::string &InnerString,
1112                                   const PrintingPolicy &Policy) const;
1113
1114  static bool classof(const Type *T) {
1115    return T->getTypeClass() == DependentSizedArray;
1116  }
1117  static bool classof(const DependentSizedArrayType *) { return true; }
1118
1119  friend class StmtIteratorBase;
1120
1121  void Profile(llvm::FoldingSetNodeID &ID) {
1122    assert(0 && "Cannnot unique DependentSizedArrayTypes.");
1123  }
1124};
1125
1126/// DependentSizedExtVectorType - This type represent an extended vector type
1127/// where either the type or size is dependent. For example:
1128/// @code
1129/// template<typename T, int Size>
1130/// class vector {
1131///   typedef T __attribute__((ext_vector_type(Size))) type;
1132/// }
1133/// @endcode
1134class DependentSizedExtVectorType : public Type {
1135  Expr *SizeExpr;
1136  /// ElementType - The element type of the array.
1137  QualType ElementType;
1138  SourceLocation loc;
1139
1140  DependentSizedExtVectorType(QualType ElementType, QualType can,
1141                              Expr *SizeExpr, SourceLocation loc)
1142    : Type (DependentSizedExtVector, can, true),
1143    SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {}
1144  friend class ASTContext;
1145  virtual void Destroy(ASTContext& C);
1146
1147public:
1148  const Expr *getSizeExpr() const { return SizeExpr; }
1149  QualType getElementType() const { return ElementType; }
1150  SourceLocation getAttributeLoc() const { return loc; }
1151
1152  virtual void getAsStringInternal(std::string &InnerString,
1153                                   const PrintingPolicy &Policy) const;
1154
1155  static bool classof(const Type *T) {
1156    return T->getTypeClass() == DependentSizedExtVector;
1157  }
1158  static bool classof(const DependentSizedExtVectorType *) { return true; }
1159};
1160
1161
1162/// VectorType - GCC generic vector type. This type is created using
1163/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1164/// bytes. Since the constructor takes the number of vector elements, the
1165/// client is responsible for converting the size into the number of elements.
1166class VectorType : public Type, public llvm::FoldingSetNode {
1167protected:
1168  /// ElementType - The element type of the vector.
1169  QualType ElementType;
1170
1171  /// NumElements - The number of elements in the vector.
1172  unsigned NumElements;
1173
1174  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1175    Type(Vector, canonType, vecType->isDependentType()),
1176    ElementType(vecType), NumElements(nElements) {}
1177  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1178             QualType canonType)
1179    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1180      NumElements(nElements) {}
1181  friend class ASTContext;  // ASTContext creates these.
1182public:
1183
1184  QualType getElementType() const { return ElementType; }
1185  unsigned getNumElements() const { return NumElements; }
1186
1187  virtual void getAsStringInternal(std::string &InnerString,
1188                                   const PrintingPolicy &Policy) const;
1189
1190  void Profile(llvm::FoldingSetNodeID &ID) {
1191    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1192  }
1193  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1194                      unsigned NumElements, TypeClass TypeClass) {
1195    ID.AddPointer(ElementType.getAsOpaquePtr());
1196    ID.AddInteger(NumElements);
1197    ID.AddInteger(TypeClass);
1198  }
1199  static bool classof(const Type *T) {
1200    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1201  }
1202  static bool classof(const VectorType *) { return true; }
1203};
1204
1205/// ExtVectorType - Extended vector type. This type is created using
1206/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1207/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1208/// class enables syntactic extensions, like Vector Components for accessing
1209/// points, colors, and textures (modeled after OpenGL Shading Language).
1210class ExtVectorType : public VectorType {
1211  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1212    VectorType(ExtVector, vecType, nElements, canonType) {}
1213  friend class ASTContext;  // ASTContext creates these.
1214public:
1215  static int getPointAccessorIdx(char c) {
1216    switch (c) {
1217    default: return -1;
1218    case 'x': return 0;
1219    case 'y': return 1;
1220    case 'z': return 2;
1221    case 'w': return 3;
1222    }
1223  }
1224  static int getNumericAccessorIdx(char c) {
1225    switch (c) {
1226      default: return -1;
1227      case '0': return 0;
1228      case '1': return 1;
1229      case '2': return 2;
1230      case '3': return 3;
1231      case '4': return 4;
1232      case '5': return 5;
1233      case '6': return 6;
1234      case '7': return 7;
1235      case '8': return 8;
1236      case '9': return 9;
1237      case 'A':
1238      case 'a': return 10;
1239      case 'B':
1240      case 'b': return 11;
1241      case 'C':
1242      case 'c': return 12;
1243      case 'D':
1244      case 'd': return 13;
1245      case 'E':
1246      case 'e': return 14;
1247      case 'F':
1248      case 'f': return 15;
1249    }
1250  }
1251
1252  static int getAccessorIdx(char c) {
1253    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1254    return getNumericAccessorIdx(c);
1255  }
1256
1257  bool isAccessorWithinNumElements(char c) const {
1258    if (int idx = getAccessorIdx(c)+1)
1259      return unsigned(idx-1) < NumElements;
1260    return false;
1261  }
1262  virtual void getAsStringInternal(std::string &InnerString,
1263                                   const PrintingPolicy &Policy) const;
1264
1265  static bool classof(const Type *T) {
1266    return T->getTypeClass() == ExtVector;
1267  }
1268  static bool classof(const ExtVectorType *) { return true; }
1269};
1270
1271/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1272/// class of FunctionNoProtoType and FunctionProtoType.
1273///
1274class FunctionType : public Type {
1275  /// SubClassData - This field is owned by the subclass, put here to pack
1276  /// tightly with the ivars in Type.
1277  bool SubClassData : 1;
1278
1279  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1280  /// other bitfields.
1281  /// The qualifiers are part of FunctionProtoType because...
1282  ///
1283  /// C++ 8.3.5p4: The return type, the parameter type list and the
1284  /// cv-qualifier-seq, [...], are part of the function type.
1285  ///
1286  unsigned TypeQuals : 3;
1287
1288  // The type returned by the function.
1289  QualType ResultType;
1290protected:
1291  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1292               unsigned typeQuals, QualType Canonical, bool Dependent)
1293    : Type(tc, Canonical, Dependent),
1294      SubClassData(SubclassInfo), TypeQuals(typeQuals), ResultType(res) {}
1295  bool getSubClassData() const { return SubClassData; }
1296  unsigned getTypeQuals() const { return TypeQuals; }
1297public:
1298
1299  QualType getResultType() const { return ResultType; }
1300
1301
1302  static bool classof(const Type *T) {
1303    return T->getTypeClass() == FunctionNoProto ||
1304           T->getTypeClass() == FunctionProto;
1305  }
1306  static bool classof(const FunctionType *) { return true; }
1307};
1308
1309/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1310/// no information available about its arguments.
1311class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1312  FunctionNoProtoType(QualType Result, QualType Canonical)
1313    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1314                   /*Dependent=*/false) {}
1315  friend class ASTContext;  // ASTContext creates these.
1316public:
1317  // No additional state past what FunctionType provides.
1318
1319  virtual void getAsStringInternal(std::string &InnerString,
1320                                   const PrintingPolicy &Policy) const;
1321
1322  void Profile(llvm::FoldingSetNodeID &ID) {
1323    Profile(ID, getResultType());
1324  }
1325  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType) {
1326    ID.AddPointer(ResultType.getAsOpaquePtr());
1327  }
1328
1329  static bool classof(const Type *T) {
1330    return T->getTypeClass() == FunctionNoProto;
1331  }
1332  static bool classof(const FunctionNoProtoType *) { return true; }
1333};
1334
1335/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1336/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1337/// arguments, not as having a single void argument. Such a type can have an
1338/// exception specification, but this specification is not part of the canonical
1339/// type.
1340class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1341  /// hasAnyDependentType - Determine whether there are any dependent
1342  /// types within the arguments passed in.
1343  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1344    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1345      if (ArgArray[Idx]->isDependentType())
1346    return true;
1347
1348    return false;
1349  }
1350
1351  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1352                    bool isVariadic, unsigned typeQuals, bool hasExs,
1353                    bool hasAnyExs, const QualType *ExArray,
1354                    unsigned numExs, QualType Canonical)
1355    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1356                   (Result->isDependentType() ||
1357                    hasAnyDependentType(ArgArray, numArgs))),
1358      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1359      AnyExceptionSpec(hasAnyExs) {
1360    // Fill in the trailing argument array.
1361    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1362    for (unsigned i = 0; i != numArgs; ++i)
1363      ArgInfo[i] = ArgArray[i];
1364    // Fill in the exception array.
1365    QualType *Ex = ArgInfo + numArgs;
1366    for (unsigned i = 0; i != numExs; ++i)
1367      Ex[i] = ExArray[i];
1368  }
1369
1370  /// NumArgs - The number of arguments this function has, not counting '...'.
1371  unsigned NumArgs : 20;
1372
1373  /// NumExceptions - The number of types in the exception spec, if any.
1374  unsigned NumExceptions : 10;
1375
1376  /// HasExceptionSpec - Whether this function has an exception spec at all.
1377  bool HasExceptionSpec : 1;
1378
1379  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1380  bool AnyExceptionSpec : 1;
1381
1382  /// ArgInfo - There is an variable size array after the class in memory that
1383  /// holds the argument types.
1384
1385  /// Exceptions - There is another variable size array after ArgInfo that
1386  /// holds the exception types.
1387
1388  friend class ASTContext;  // ASTContext creates these.
1389
1390public:
1391  unsigned getNumArgs() const { return NumArgs; }
1392  QualType getArgType(unsigned i) const {
1393    assert(i < NumArgs && "Invalid argument number!");
1394    return arg_type_begin()[i];
1395  }
1396
1397  bool hasExceptionSpec() const { return HasExceptionSpec; }
1398  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1399  unsigned getNumExceptions() const { return NumExceptions; }
1400  QualType getExceptionType(unsigned i) const {
1401    assert(i < NumExceptions && "Invalid exception number!");
1402    return exception_begin()[i];
1403  }
1404  bool hasEmptyExceptionSpec() const {
1405    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1406      getNumExceptions() == 0;
1407  }
1408
1409  bool isVariadic() const { return getSubClassData(); }
1410  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1411
1412  typedef const QualType *arg_type_iterator;
1413  arg_type_iterator arg_type_begin() const {
1414    return reinterpret_cast<const QualType *>(this+1);
1415  }
1416  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1417
1418  typedef const QualType *exception_iterator;
1419  exception_iterator exception_begin() const {
1420    // exceptions begin where arguments end
1421    return arg_type_end();
1422  }
1423  exception_iterator exception_end() const {
1424    return exception_begin() + NumExceptions;
1425  }
1426
1427  virtual void getAsStringInternal(std::string &InnerString,
1428                                   const PrintingPolicy &Policy) const;
1429
1430  static bool classof(const Type *T) {
1431    return T->getTypeClass() == FunctionProto;
1432  }
1433  static bool classof(const FunctionProtoType *) { return true; }
1434
1435  void Profile(llvm::FoldingSetNodeID &ID);
1436  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1437                      arg_type_iterator ArgTys, unsigned NumArgs,
1438                      bool isVariadic, unsigned TypeQuals,
1439                      bool hasExceptionSpec, bool anyExceptionSpec,
1440                      unsigned NumExceptions, exception_iterator Exs);
1441};
1442
1443
1444class TypedefType : public Type {
1445  TypedefDecl *Decl;
1446protected:
1447  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1448    : Type(tc, can, can->isDependentType()), Decl(D) {
1449    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1450  }
1451  friend class ASTContext;  // ASTContext creates these.
1452public:
1453
1454  TypedefDecl *getDecl() const { return Decl; }
1455
1456  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1457  /// potentially looking through *all* consecutive typedefs.  This returns the
1458  /// sum of the type qualifiers, so if you have:
1459  ///   typedef const int A;
1460  ///   typedef volatile A B;
1461  /// looking through the typedefs for B will give you "const volatile A".
1462  QualType LookThroughTypedefs() const;
1463
1464  virtual void getAsStringInternal(std::string &InnerString,
1465                                   const PrintingPolicy &Policy) const;
1466
1467  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1468  static bool classof(const TypedefType *) { return true; }
1469};
1470
1471/// TypeOfExprType (GCC extension).
1472class TypeOfExprType : public Type {
1473  Expr *TOExpr;
1474  TypeOfExprType(Expr *E, QualType can = QualType());
1475  friend class ASTContext;  // ASTContext creates these.
1476public:
1477  Expr *getUnderlyingExpr() const { return TOExpr; }
1478
1479  virtual void getAsStringInternal(std::string &InnerString,
1480                                   const PrintingPolicy &Policy) const;
1481
1482  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1483  static bool classof(const TypeOfExprType *) { return true; }
1484};
1485
1486/// TypeOfType (GCC extension).
1487class TypeOfType : public Type {
1488  QualType TOType;
1489  TypeOfType(QualType T, QualType can)
1490    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
1491    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1492  }
1493  friend class ASTContext;  // ASTContext creates these.
1494public:
1495  QualType getUnderlyingType() const { return TOType; }
1496
1497  virtual void getAsStringInternal(std::string &InnerString,
1498                                   const PrintingPolicy &Policy) const;
1499
1500  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
1501  static bool classof(const TypeOfType *) { return true; }
1502};
1503
1504/// DecltypeType (C++0x)
1505class DecltypeType : public Type {
1506  Expr *E;
1507
1508  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
1509  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
1510  // from it.
1511  QualType UnderlyingType;
1512
1513  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
1514  friend class ASTContext;  // ASTContext creates these.
1515public:
1516  Expr *getUnderlyingExpr() const { return E; }
1517  QualType getUnderlyingType() const { return UnderlyingType; }
1518
1519  virtual void getAsStringInternal(std::string &InnerString,
1520                                   const PrintingPolicy &Policy) const;
1521
1522  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
1523  static bool classof(const DecltypeType *) { return true; }
1524};
1525
1526class TagType : public Type {
1527  /// Stores the TagDecl associated with this type. The decl will
1528  /// point to the TagDecl that actually defines the entity (or is a
1529  /// definition in progress), if there is such a definition. The
1530  /// single-bit value will be non-zero when this tag is in the
1531  /// process of being defined.
1532  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
1533  friend class ASTContext;
1534  friend class TagDecl;
1535
1536protected:
1537  TagType(TypeClass TC, TagDecl *D, QualType can);
1538
1539public:
1540  TagDecl *getDecl() const { return decl.getPointer(); }
1541
1542  /// @brief Determines whether this type is in the process of being
1543  /// defined.
1544  bool isBeingDefined() const { return decl.getInt(); }
1545  void setBeingDefined(bool Def) { decl.setInt(Def? 1 : 0); }
1546
1547  virtual void getAsStringInternal(std::string &InnerString,
1548                                   const PrintingPolicy &Policy) const;
1549
1550  static bool classof(const Type *T) {
1551    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
1552  }
1553  static bool classof(const TagType *) { return true; }
1554  static bool classof(const RecordType *) { return true; }
1555  static bool classof(const EnumType *) { return true; }
1556};
1557
1558/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
1559/// to detect TagType objects of structs/unions/classes.
1560class RecordType : public TagType {
1561protected:
1562  explicit RecordType(RecordDecl *D)
1563    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
1564  explicit RecordType(TypeClass TC, RecordDecl *D)
1565    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
1566  friend class ASTContext;   // ASTContext creates these.
1567public:
1568
1569  RecordDecl *getDecl() const {
1570    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
1571  }
1572
1573  // FIXME: This predicate is a helper to QualType/Type. It needs to
1574  // recursively check all fields for const-ness. If any field is declared
1575  // const, it needs to return false.
1576  bool hasConstFields() const { return false; }
1577
1578  // FIXME: RecordType needs to check when it is created that all fields are in
1579  // the same address space, and return that.
1580  unsigned getAddressSpace() const { return 0; }
1581
1582  static bool classof(const TagType *T);
1583  static bool classof(const Type *T) {
1584    return isa<TagType>(T) && classof(cast<TagType>(T));
1585  }
1586  static bool classof(const RecordType *) { return true; }
1587};
1588
1589/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
1590/// to detect TagType objects of enums.
1591class EnumType : public TagType {
1592  explicit EnumType(EnumDecl *D)
1593    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
1594  friend class ASTContext;   // ASTContext creates these.
1595public:
1596
1597  EnumDecl *getDecl() const {
1598    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
1599  }
1600
1601  static bool classof(const TagType *T);
1602  static bool classof(const Type *T) {
1603    return isa<TagType>(T) && classof(cast<TagType>(T));
1604  }
1605  static bool classof(const EnumType *) { return true; }
1606};
1607
1608class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
1609  unsigned Depth : 15;
1610  unsigned Index : 16;
1611  unsigned ParameterPack : 1;
1612  IdentifierInfo *Name;
1613
1614  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
1615                       QualType Canon)
1616    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
1617      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
1618
1619  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
1620    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
1621      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
1622
1623  friend class ASTContext;  // ASTContext creates these
1624
1625public:
1626  unsigned getDepth() const { return Depth; }
1627  unsigned getIndex() const { return Index; }
1628  bool isParameterPack() const { return ParameterPack; }
1629  IdentifierInfo *getName() const { return Name; }
1630
1631  virtual void getAsStringInternal(std::string &InnerString,
1632                                   const PrintingPolicy &Policy) const;
1633
1634  void Profile(llvm::FoldingSetNodeID &ID) {
1635    Profile(ID, Depth, Index, ParameterPack, Name);
1636  }
1637
1638  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
1639                      unsigned Index, bool ParameterPack,
1640                      IdentifierInfo *Name) {
1641    ID.AddInteger(Depth);
1642    ID.AddInteger(Index);
1643    ID.AddBoolean(ParameterPack);
1644    ID.AddPointer(Name);
1645  }
1646
1647  static bool classof(const Type *T) {
1648    return T->getTypeClass() == TemplateTypeParm;
1649  }
1650  static bool classof(const TemplateTypeParmType *T) { return true; }
1651};
1652
1653/// \brief Represents the type of a template specialization as written
1654/// in the source code.
1655///
1656/// Template specialization types represent the syntactic form of a
1657/// template-id that refers to a type, e.g., @c vector<int>. Some
1658/// template specialization types are syntactic sugar, whose canonical
1659/// type will point to some other type node that represents the
1660/// instantiation or class template specialization. For example, a
1661/// class template specialization type of @c vector<int> will refer to
1662/// a tag type for the instantiation
1663/// @c std::vector<int, std::allocator<int>>.
1664///
1665/// Other template specialization types, for which the template name
1666/// is dependent, may be canonical types. These types are always
1667/// dependent.
1668class TemplateSpecializationType
1669  : public Type, public llvm::FoldingSetNode {
1670
1671  /// \brief The name of the template being specialized.
1672  TemplateName Template;
1673
1674  /// \brief - The number of template arguments named in this class
1675  /// template specialization.
1676  unsigned NumArgs;
1677
1678  TemplateSpecializationType(TemplateName T,
1679                             const TemplateArgument *Args,
1680                             unsigned NumArgs, QualType Canon);
1681
1682  virtual void Destroy(ASTContext& C);
1683
1684  friend class ASTContext;  // ASTContext creates these
1685
1686public:
1687  /// \brief Determine whether any of the given template arguments are
1688  /// dependent.
1689  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
1690                                            unsigned NumArgs);
1691
1692  /// \brief Print a template argument list, including the '<' and '>'
1693  /// enclosing the template arguments.
1694  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
1695                                               unsigned NumArgs,
1696                                               const PrintingPolicy &Policy);
1697
1698  typedef const TemplateArgument * iterator;
1699
1700  iterator begin() const { return getArgs(); }
1701  iterator end() const;
1702
1703  /// \brief Retrieve the name of the template that we are specializing.
1704  TemplateName getTemplateName() const { return Template; }
1705
1706  /// \brief Retrieve the template arguments.
1707  const TemplateArgument *getArgs() const {
1708    return reinterpret_cast<const TemplateArgument *>(this + 1);
1709  }
1710
1711  /// \brief Retrieve the number of template arguments.
1712  unsigned getNumArgs() const { return NumArgs; }
1713
1714  /// \brief Retrieve a specific template argument as a type.
1715  /// \precondition @c isArgType(Arg)
1716  const TemplateArgument &getArg(unsigned Idx) const;
1717
1718  virtual void getAsStringInternal(std::string &InnerString,
1719                                   const PrintingPolicy &Policy) const;
1720
1721  void Profile(llvm::FoldingSetNodeID &ID) {
1722    Profile(ID, Template, getArgs(), NumArgs);
1723  }
1724
1725  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
1726                      const TemplateArgument *Args, unsigned NumArgs);
1727
1728  static bool classof(const Type *T) {
1729    return T->getTypeClass() == TemplateSpecialization;
1730  }
1731  static bool classof(const TemplateSpecializationType *T) { return true; }
1732};
1733
1734/// \brief Represents a type that was referred to via a qualified
1735/// name, e.g., N::M::type.
1736///
1737/// This type is used to keep track of a type name as written in the
1738/// source code, including any nested-name-specifiers. The type itself
1739/// is always "sugar", used to express what was written in the source
1740/// code but containing no additional semantic information.
1741class QualifiedNameType : public Type, public llvm::FoldingSetNode {
1742  /// \brief The nested name specifier containing the qualifier.
1743  NestedNameSpecifier *NNS;
1744
1745  /// \brief The type that this qualified name refers to.
1746  QualType NamedType;
1747
1748  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
1749                    QualType CanonType)
1750    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
1751      NNS(NNS), NamedType(NamedType) { }
1752
1753  friend class ASTContext;  // ASTContext creates these
1754
1755public:
1756  /// \brief Retrieve the qualification on this type.
1757  NestedNameSpecifier *getQualifier() const { return NNS; }
1758
1759  /// \brief Retrieve the type named by the qualified-id.
1760  QualType getNamedType() const { return NamedType; }
1761
1762  virtual void getAsStringInternal(std::string &InnerString,
1763                                   const PrintingPolicy &Policy) const;
1764
1765  void Profile(llvm::FoldingSetNodeID &ID) {
1766    Profile(ID, NNS, NamedType);
1767  }
1768
1769  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1770                      QualType NamedType) {
1771    ID.AddPointer(NNS);
1772    NamedType.Profile(ID);
1773  }
1774
1775  static bool classof(const Type *T) {
1776    return T->getTypeClass() == QualifiedName;
1777  }
1778  static bool classof(const QualifiedNameType *T) { return true; }
1779};
1780
1781/// \brief Represents a 'typename' specifier that names a type within
1782/// a dependent type, e.g., "typename T::type".
1783///
1784/// TypenameType has a very similar structure to QualifiedNameType,
1785/// which also involves a nested-name-specifier following by a type,
1786/// and (FIXME!) both can even be prefixed by the 'typename'
1787/// keyword. However, the two types serve very different roles:
1788/// QualifiedNameType is a non-semantic type that serves only as sugar
1789/// to show how a particular type was written in the source
1790/// code. TypenameType, on the other hand, only occurs when the
1791/// nested-name-specifier is dependent, such that we cannot resolve
1792/// the actual type until after instantiation.
1793class TypenameType : public Type, public llvm::FoldingSetNode {
1794  /// \brief The nested name specifier containing the qualifier.
1795  NestedNameSpecifier *NNS;
1796
1797  typedef llvm::PointerUnion<const IdentifierInfo *,
1798                             const TemplateSpecializationType *> NameType;
1799
1800  /// \brief The type that this typename specifier refers to.
1801  NameType Name;
1802
1803  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1804               QualType CanonType)
1805    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
1806    assert(NNS->isDependent() &&
1807           "TypenameType requires a dependent nested-name-specifier");
1808  }
1809
1810  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
1811               QualType CanonType)
1812    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
1813    assert(NNS->isDependent() &&
1814           "TypenameType requires a dependent nested-name-specifier");
1815  }
1816
1817  friend class ASTContext;  // ASTContext creates these
1818
1819public:
1820  /// \brief Retrieve the qualification on this type.
1821  NestedNameSpecifier *getQualifier() const { return NNS; }
1822
1823  /// \brief Retrieve the type named by the typename specifier as an
1824  /// identifier.
1825  ///
1826  /// This routine will return a non-NULL identifier pointer when the
1827  /// form of the original typename was terminated by an identifier,
1828  /// e.g., "typename T::type".
1829  const IdentifierInfo *getIdentifier() const {
1830    return Name.dyn_cast<const IdentifierInfo *>();
1831  }
1832
1833  /// \brief Retrieve the type named by the typename specifier as a
1834  /// type specialization.
1835  const TemplateSpecializationType *getTemplateId() const {
1836    return Name.dyn_cast<const TemplateSpecializationType *>();
1837  }
1838
1839  virtual void getAsStringInternal(std::string &InnerString,
1840                                   const PrintingPolicy &Policy) const;
1841
1842  void Profile(llvm::FoldingSetNodeID &ID) {
1843    Profile(ID, NNS, Name);
1844  }
1845
1846  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1847                      NameType Name) {
1848    ID.AddPointer(NNS);
1849    ID.AddPointer(Name.getOpaqueValue());
1850  }
1851
1852  static bool classof(const Type *T) {
1853    return T->getTypeClass() == Typename;
1854  }
1855  static bool classof(const TypenameType *T) { return true; }
1856};
1857
1858/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
1859/// object oriented design.  They basically correspond to C++ classes.  There
1860/// are two kinds of interface types, normal interfaces like "NSString" and
1861/// qualified interfaces, which are qualified with a protocol list like
1862/// "NSString<NSCopyable, NSAmazing>".  Qualified interface types are instances
1863/// of ObjCQualifiedInterfaceType, which is a subclass of ObjCInterfaceType.
1864class ObjCInterfaceType : public Type {
1865  ObjCInterfaceDecl *Decl;
1866protected:
1867  ObjCInterfaceType(TypeClass tc, ObjCInterfaceDecl *D) :
1868    Type(tc, QualType(), /*Dependent=*/false), Decl(D) { }
1869  friend class ASTContext;  // ASTContext creates these.
1870
1871  // FIXME: These can go away when we move ASTContext::canAssignObjCInterfaces
1872  // to this class (as a static helper).
1873  bool isObjCIdInterface() const;
1874  bool isObjCClassInterface() const;
1875public:
1876
1877  ObjCInterfaceDecl *getDecl() const { return Decl; }
1878
1879  /// qual_iterator and friends: this provides access to the (potentially empty)
1880  /// list of protocols qualifying this interface.  If this is an instance of
1881  /// ObjCQualifiedInterfaceType it returns the list, otherwise it returns an
1882  /// empty list if there are no qualifying protocols.
1883  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
1884  inline qual_iterator qual_begin() const;
1885  inline qual_iterator qual_end() const;
1886  bool qual_empty() const { return getTypeClass() != ObjCQualifiedInterface; }
1887
1888  /// getNumProtocols - Return the number of qualifying protocols in this
1889  /// interface type, or 0 if there are none.
1890  inline unsigned getNumProtocols() const;
1891
1892  virtual void getAsStringInternal(std::string &InnerString,
1893                                   const PrintingPolicy &Policy) const;
1894  static bool classof(const Type *T) {
1895    return T->getTypeClass() == ObjCInterface ||
1896           T->getTypeClass() == ObjCQualifiedInterface;
1897  }
1898  static bool classof(const ObjCInterfaceType *) { return true; }
1899};
1900
1901/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
1902/// and 'Interface <p> *'.
1903///
1904/// Duplicate protocols are removed and protocol list is canonicalized to be in
1905/// alphabetical order.
1906class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
1907  QualType PointeeType; // A builtin or interface type.
1908
1909  // List of protocols for this protocol conforming object type
1910  // List is sorted on protocol name. No protocol is entered more than once.
1911  llvm::SmallVector<ObjCProtocolDecl*, 8> Protocols;
1912
1913  ObjCObjectPointerType(QualType T, ObjCProtocolDecl **Protos, unsigned NumP) :
1914    Type(ObjCObjectPointer, QualType(), /*Dependent=*/false),
1915    PointeeType(T), Protocols(Protos, Protos+NumP) { }
1916  friend class ASTContext;  // ASTContext creates these.
1917
1918public:
1919  // Get the pointee type. Pointee will either be:
1920  // - a built-in type (for 'id' and 'Class').
1921  // - an interface type (for user-defined types).
1922  // - a TypedefType whose canonical type is an interface (as in 'T' below).
1923  //   For example: typedef NSObject T; T *var;
1924  QualType getPointeeType() const { return PointeeType; }
1925
1926  const ObjCInterfaceType *getInterfaceType() const {
1927    return PointeeType->getAsObjCInterfaceType();
1928  }
1929  /// getInterfaceDecl - returns an interface decl for user-defined types.
1930  ObjCInterfaceDecl *getInterfaceDecl() const {
1931    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
1932  }
1933  /// isObjCIdType - true for "id".
1934  bool isObjCIdType() const {
1935    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
1936           !Protocols.size();
1937  }
1938  /// isObjCClassType - true for "Class".
1939  bool isObjCClassType() const {
1940    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
1941           !Protocols.size();
1942  }
1943  /// isObjCQualifiedIdType - true for "id <p>".
1944  bool isObjCQualifiedIdType() const {
1945    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
1946           Protocols.size();
1947  }
1948  /// isObjCQualifiedClassType - true for "Class <p>".
1949  bool isQualifiedClassType() const {
1950    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
1951           Protocols.size();
1952  }
1953  /// qual_iterator and friends: this provides access to the (potentially empty)
1954  /// list of protocols qualifying this interface.
1955  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
1956
1957  qual_iterator qual_begin() const { return Protocols.begin(); }
1958  qual_iterator qual_end() const   { return Protocols.end(); }
1959  bool qual_empty() const { return Protocols.size() == 0; }
1960
1961  /// getNumProtocols - Return the number of qualifying protocols in this
1962  /// interface type, or 0 if there are none.
1963  unsigned getNumProtocols() const { return Protocols.size(); }
1964
1965  void Profile(llvm::FoldingSetNodeID &ID);
1966  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
1967                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
1968  virtual void getAsStringInternal(std::string &InnerString,
1969                                   const PrintingPolicy &Policy) const;
1970  static bool classof(const Type *T) {
1971    return T->getTypeClass() == ObjCObjectPointer;
1972  }
1973  static bool classof(const ObjCObjectPointerType *) { return true; }
1974};
1975
1976/// ObjCQualifiedInterfaceType - This class represents interface types
1977/// conforming to a list of protocols, such as INTF<Proto1, Proto2, Proto1>.
1978///
1979/// Duplicate protocols are removed and protocol list is canonicalized to be in
1980/// alphabetical order.
1981/// FIXME: Remove this class (converting uses to ObjCObjectPointerType).
1982class ObjCQualifiedInterfaceType : public ObjCInterfaceType,
1983                                   public llvm::FoldingSetNode {
1984
1985  // List of protocols for this protocol conforming object type
1986  // List is sorted on protocol name. No protocol is enterred more than once.
1987  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;
1988
1989  ObjCQualifiedInterfaceType(ObjCInterfaceDecl *D,
1990                             ObjCProtocolDecl **Protos, unsigned NumP) :
1991    ObjCInterfaceType(ObjCQualifiedInterface, D),
1992    Protocols(Protos, Protos+NumP) { }
1993  friend class ASTContext;  // ASTContext creates these.
1994public:
1995
1996  unsigned getNumProtocols() const {
1997    return Protocols.size();
1998  }
1999
2000  qual_iterator qual_begin() const { return Protocols.begin(); }
2001  qual_iterator qual_end() const   { return Protocols.end(); }
2002
2003  virtual void getAsStringInternal(std::string &InnerString,
2004                                   const PrintingPolicy &Policy) const;
2005
2006  void Profile(llvm::FoldingSetNodeID &ID);
2007  static void Profile(llvm::FoldingSetNodeID &ID,
2008                      const ObjCInterfaceDecl *Decl,
2009                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2010
2011  static bool classof(const Type *T) {
2012    return T->getTypeClass() == ObjCQualifiedInterface;
2013  }
2014  static bool classof(const ObjCQualifiedInterfaceType *) { return true; }
2015};
2016
2017inline ObjCInterfaceType::qual_iterator ObjCInterfaceType::qual_begin() const {
2018  if (const ObjCQualifiedInterfaceType *QIT =
2019         dyn_cast<ObjCQualifiedInterfaceType>(this))
2020    return QIT->qual_begin();
2021  return 0;
2022}
2023inline ObjCInterfaceType::qual_iterator ObjCInterfaceType::qual_end() const {
2024  if (const ObjCQualifiedInterfaceType *QIT =
2025         dyn_cast<ObjCQualifiedInterfaceType>(this))
2026    return QIT->qual_end();
2027  return 0;
2028}
2029
2030/// getNumProtocols - Return the number of qualifying protocols in this
2031/// interface type, or 0 if there are none.
2032inline unsigned ObjCInterfaceType::getNumProtocols() const {
2033  if (const ObjCQualifiedInterfaceType *QIT =
2034        dyn_cast<ObjCQualifiedInterfaceType>(this))
2035    return QIT->getNumProtocols();
2036  return 0;
2037}
2038
2039// Inline function definitions.
2040
2041/// getUnqualifiedType - Return the type without any qualifiers.
2042inline QualType QualType::getUnqualifiedType() const {
2043  Type *TP = getTypePtr();
2044  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(TP))
2045    TP = EXTQT->getBaseType();
2046  return QualType(TP, 0);
2047}
2048
2049/// getAddressSpace - Return the address space of this type.
2050inline unsigned QualType::getAddressSpace() const {
2051  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2052  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2053    return AT->getElementType().getAddressSpace();
2054  if (const RecordType *RT = dyn_cast<RecordType>(CT))
2055    return RT->getAddressSpace();
2056  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
2057    return EXTQT->getAddressSpace();
2058  return 0;
2059}
2060
2061/// getObjCGCAttr - Return the gc attribute of this type.
2062inline QualType::GCAttrTypes QualType::getObjCGCAttr() const {
2063  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2064  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2065      return AT->getElementType().getObjCGCAttr();
2066  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
2067    return EXTQT->getObjCGCAttr();
2068  if (const ObjCObjectPointerType *PT = CT->getAsObjCObjectPointerType())
2069    return PT->getPointeeType().getObjCGCAttr();
2070  return GCNone;
2071}
2072
2073/// isMoreQualifiedThan - Determine whether this type is more
2074/// qualified than the Other type. For example, "const volatile int"
2075/// is more qualified than "const int", "volatile int", and
2076/// "int". However, it is not more qualified than "const volatile
2077/// int".
2078inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2079  unsigned MyQuals = this->getCVRQualifiers();
2080  unsigned OtherQuals = Other.getCVRQualifiers();
2081  if (getAddressSpace() != Other.getAddressSpace())
2082    return false;
2083  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2084}
2085
2086/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2087/// as qualified as the Other type. For example, "const volatile
2088/// int" is at least as qualified as "const int", "volatile int",
2089/// "int", and "const volatile int".
2090inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2091  unsigned MyQuals = this->getCVRQualifiers();
2092  unsigned OtherQuals = Other.getCVRQualifiers();
2093  if (getAddressSpace() != Other.getAddressSpace())
2094    return false;
2095  return (MyQuals | OtherQuals) == MyQuals;
2096}
2097
2098/// getNonReferenceType - If Type is a reference type (e.g., const
2099/// int&), returns the type that the reference refers to ("const
2100/// int"). Otherwise, returns the type itself. This routine is used
2101/// throughout Sema to implement C++ 5p6:
2102///
2103///   If an expression initially has the type "reference to T" (8.3.2,
2104///   8.5.3), the type is adjusted to "T" prior to any further
2105///   analysis, the expression designates the object or function
2106///   denoted by the reference, and the expression is an lvalue.
2107inline QualType QualType::getNonReferenceType() const {
2108  if (const ReferenceType *RefType = (*this)->getAsReferenceType())
2109    return RefType->getPointeeType();
2110  else
2111    return *this;
2112}
2113
2114inline const TypedefType* Type::getAsTypedefType() const {
2115  return dyn_cast<TypedefType>(this);
2116}
2117inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
2118  if (const PointerType *PT = getAs<PointerType>())
2119    return PT->getPointeeType()->getAsObjCInterfaceType();
2120  return 0;
2121}
2122
2123// NOTE: All of these methods use "getUnqualifiedType" to strip off address
2124// space qualifiers if present.
2125inline bool Type::isFunctionType() const {
2126  return isa<FunctionType>(CanonicalType.getUnqualifiedType());
2127}
2128inline bool Type::isPointerType() const {
2129  return isa<PointerType>(CanonicalType.getUnqualifiedType());
2130}
2131inline bool Type::isAnyPointerType() const {
2132  return isPointerType() || isObjCObjectPointerType();
2133}
2134inline bool Type::isBlockPointerType() const {
2135  return isa<BlockPointerType>(CanonicalType.getUnqualifiedType());
2136}
2137inline bool Type::isReferenceType() const {
2138  return isa<ReferenceType>(CanonicalType.getUnqualifiedType());
2139}
2140inline bool Type::isLValueReferenceType() const {
2141  return isa<LValueReferenceType>(CanonicalType.getUnqualifiedType());
2142}
2143inline bool Type::isRValueReferenceType() const {
2144  return isa<RValueReferenceType>(CanonicalType.getUnqualifiedType());
2145}
2146inline bool Type::isFunctionPointerType() const {
2147  if (const PointerType* T = getAs<PointerType>())
2148    return T->getPointeeType()->isFunctionType();
2149  else
2150    return false;
2151}
2152inline bool Type::isMemberPointerType() const {
2153  return isa<MemberPointerType>(CanonicalType.getUnqualifiedType());
2154}
2155inline bool Type::isMemberFunctionPointerType() const {
2156  if (const MemberPointerType* T = getAsMemberPointerType())
2157    return T->getPointeeType()->isFunctionType();
2158  else
2159    return false;
2160}
2161inline bool Type::isArrayType() const {
2162  return isa<ArrayType>(CanonicalType.getUnqualifiedType());
2163}
2164inline bool Type::isConstantArrayType() const {
2165  return isa<ConstantArrayType>(CanonicalType.getUnqualifiedType());
2166}
2167inline bool Type::isIncompleteArrayType() const {
2168  return isa<IncompleteArrayType>(CanonicalType.getUnqualifiedType());
2169}
2170inline bool Type::isVariableArrayType() const {
2171  return isa<VariableArrayType>(CanonicalType.getUnqualifiedType());
2172}
2173inline bool Type::isDependentSizedArrayType() const {
2174  return isa<DependentSizedArrayType>(CanonicalType.getUnqualifiedType());
2175}
2176inline bool Type::isRecordType() const {
2177  return isa<RecordType>(CanonicalType.getUnqualifiedType());
2178}
2179inline bool Type::isAnyComplexType() const {
2180  return isa<ComplexType>(CanonicalType.getUnqualifiedType());
2181}
2182inline bool Type::isVectorType() const {
2183  return isa<VectorType>(CanonicalType.getUnqualifiedType());
2184}
2185inline bool Type::isExtVectorType() const {
2186  return isa<ExtVectorType>(CanonicalType.getUnqualifiedType());
2187}
2188inline bool Type::isObjCObjectPointerType() const {
2189  return isa<ObjCObjectPointerType>(CanonicalType.getUnqualifiedType());
2190}
2191inline bool Type::isObjCInterfaceType() const {
2192  return isa<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
2193}
2194inline bool Type::isObjCQualifiedInterfaceType() const {
2195  return isa<ObjCQualifiedInterfaceType>(CanonicalType.getUnqualifiedType());
2196}
2197inline bool Type::isObjCQualifiedIdType() const {
2198  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2199    return OPT->isObjCQualifiedIdType();
2200  return false;
2201}
2202inline bool Type::isObjCIdType() const {
2203  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2204    return OPT->isObjCIdType();
2205  return false;
2206}
2207inline bool Type::isObjCClassType() const {
2208  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2209    return OPT->isObjCClassType();
2210  return false;
2211}
2212inline bool Type::isObjCBuiltinType() const {
2213  return isObjCIdType() || isObjCClassType();
2214}
2215
2216inline bool Type::isTemplateTypeParmType() const {
2217  return isa<TemplateTypeParmType>(CanonicalType.getUnqualifiedType());
2218}
2219
2220inline bool Type::isSpecificBuiltinType(unsigned K) const {
2221  if (const BuiltinType *BT = getAsBuiltinType())
2222    if (BT->getKind() == (BuiltinType::Kind) K)
2223      return true;
2224  return false;
2225}
2226
2227/// \brief Determines whether this is a type for which one can define
2228/// an overloaded operator.
2229inline bool Type::isOverloadableType() const {
2230  return isDependentType() || isRecordType() || isEnumeralType();
2231}
2232
2233inline bool Type::hasPointerRepresentation() const {
2234  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
2235          isObjCInterfaceType() || isObjCObjectPointerType() ||
2236          isObjCQualifiedInterfaceType() || isNullPtrType());
2237}
2238
2239inline bool Type::hasObjCPointerRepresentation() const {
2240  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
2241          isObjCQualifiedInterfaceType());
2242}
2243
2244/// Insertion operator for diagnostics.  This allows sending QualType's into a
2245/// diagnostic with <<.
2246inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2247                                           QualType T) {
2248  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
2249                  Diagnostic::ak_qualtype);
2250  return DB;
2251}
2252
2253/// Member-template getAs<specific type>'.
2254template <typename T> const T *Type::getAs() const {
2255  // If this is directly a T type, return it.
2256  if (const T *Ty = dyn_cast<T>(this))
2257    return Ty;
2258
2259  // If the canonical form of this type isn't the right kind, reject it.
2260  if (!isa<T>(CanonicalType)) {
2261    // Look through type qualifiers
2262    if (isa<T>(CanonicalType.getUnqualifiedType()))
2263      return CanonicalType.getUnqualifiedType()->getAs<T>();
2264    return 0;
2265  }
2266
2267  // If this is a typedef for a pointer type, strip the typedef off without
2268  // losing all typedef information.
2269  return cast<T>(getDesugaredType());
2270}
2271
2272}  // end namespace clang
2273
2274#endif
2275