Type.h revision 1b60285d38b1d9c443b897cf42d85a7cfee54309
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "llvm/Support/Casting.h"
23#include "llvm/Support/type_traits.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/FoldingSet.h"
26#include "llvm/ADT/PointerIntPair.h"
27#include "llvm/ADT/PointerUnion.h"
28
29using llvm::isa;
30using llvm::cast;
31using llvm::cast_or_null;
32using llvm::dyn_cast;
33using llvm::dyn_cast_or_null;
34namespace clang {
35  enum {
36    TypeAlignmentInBits = 3,
37    TypeAlignment = 1 << TypeAlignmentInBits
38  };
39  class Type;
40  class ExtQuals;
41  class QualType;
42}
43
44namespace llvm {
45  template <typename T>
46  class PointerLikeTypeTraits;
47  template<>
48  class PointerLikeTypeTraits< ::clang::Type*> {
49  public:
50    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
51    static inline ::clang::Type *getFromVoidPointer(void *P) {
52      return static_cast< ::clang::Type*>(P);
53    }
54    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
55  };
56  template<>
57  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
58  public:
59    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
60    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
61      return static_cast< ::clang::ExtQuals*>(P);
62    }
63    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
64  };
65
66  template <>
67  struct isPodLike<clang::QualType> { static const bool value = true; };
68}
69
70namespace clang {
71  class ASTContext;
72  class TypedefDecl;
73  class TemplateDecl;
74  class TemplateTypeParmDecl;
75  class NonTypeTemplateParmDecl;
76  class TemplateTemplateParmDecl;
77  class TagDecl;
78  class RecordDecl;
79  class CXXRecordDecl;
80  class EnumDecl;
81  class FieldDecl;
82  class ObjCInterfaceDecl;
83  class ObjCProtocolDecl;
84  class ObjCMethodDecl;
85  class UnresolvedUsingTypenameDecl;
86  class Expr;
87  class Stmt;
88  class SourceLocation;
89  class StmtIteratorBase;
90  class TemplateArgument;
91  class TemplateArgumentLoc;
92  class TemplateArgumentListInfo;
93  class QualifiedNameType;
94  struct PrintingPolicy;
95
96  // Provide forward declarations for all of the *Type classes
97#define TYPE(Class, Base) class Class##Type;
98#include "clang/AST/TypeNodes.def"
99
100/// Qualifiers - The collection of all-type qualifiers we support.
101/// Clang supports five independent qualifiers:
102/// * C99: const, volatile, and restrict
103/// * Embedded C (TR18037): address spaces
104/// * Objective C: the GC attributes (none, weak, or strong)
105class Qualifiers {
106public:
107  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
108    Const    = 0x1,
109    Restrict = 0x2,
110    Volatile = 0x4,
111    CVRMask = Const | Volatile | Restrict
112  };
113
114  enum GC {
115    GCNone = 0,
116    Weak,
117    Strong
118  };
119
120  enum {
121    /// The maximum supported address space number.
122    /// 24 bits should be enough for anyone.
123    MaxAddressSpace = 0xffffffu,
124
125    /// The width of the "fast" qualifier mask.
126    FastWidth = 2,
127
128    /// The fast qualifier mask.
129    FastMask = (1 << FastWidth) - 1
130  };
131
132  Qualifiers() : Mask(0) {}
133
134  static Qualifiers fromFastMask(unsigned Mask) {
135    Qualifiers Qs;
136    Qs.addFastQualifiers(Mask);
137    return Qs;
138  }
139
140  static Qualifiers fromCVRMask(unsigned CVR) {
141    Qualifiers Qs;
142    Qs.addCVRQualifiers(CVR);
143    return Qs;
144  }
145
146  // Deserialize qualifiers from an opaque representation.
147  static Qualifiers fromOpaqueValue(unsigned opaque) {
148    Qualifiers Qs;
149    Qs.Mask = opaque;
150    return Qs;
151  }
152
153  // Serialize these qualifiers into an opaque representation.
154  unsigned getAsOpaqueValue() const {
155    return Mask;
156  }
157
158  bool hasConst() const { return Mask & Const; }
159  void setConst(bool flag) {
160    Mask = (Mask & ~Const) | (flag ? Const : 0);
161  }
162  void removeConst() { Mask &= ~Const; }
163  void addConst() { Mask |= Const; }
164
165  bool hasVolatile() const { return Mask & Volatile; }
166  void setVolatile(bool flag) {
167    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
168  }
169  void removeVolatile() { Mask &= ~Volatile; }
170  void addVolatile() { Mask |= Volatile; }
171
172  bool hasRestrict() const { return Mask & Restrict; }
173  void setRestrict(bool flag) {
174    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
175  }
176  void removeRestrict() { Mask &= ~Restrict; }
177  void addRestrict() { Mask |= Restrict; }
178
179  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
180  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
181  void setCVRQualifiers(unsigned mask) {
182    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
183    Mask = (Mask & ~CVRMask) | mask;
184  }
185  void removeCVRQualifiers(unsigned mask) {
186    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
187    Mask &= ~mask;
188  }
189  void removeCVRQualifiers() {
190    removeCVRQualifiers(CVRMask);
191  }
192  void addCVRQualifiers(unsigned mask) {
193    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
194    Mask |= mask;
195  }
196
197  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
198  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
199  void setObjCGCAttr(GC type) {
200    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
201  }
202  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
203  void addObjCGCAttr(GC type) {
204    assert(type);
205    setObjCGCAttr(type);
206  }
207
208  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
209  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
210  void setAddressSpace(unsigned space) {
211    assert(space <= MaxAddressSpace);
212    Mask = (Mask & ~AddressSpaceMask)
213         | (((uint32_t) space) << AddressSpaceShift);
214  }
215  void removeAddressSpace() { setAddressSpace(0); }
216  void addAddressSpace(unsigned space) {
217    assert(space);
218    setAddressSpace(space);
219  }
220
221  // Fast qualifiers are those that can be allocated directly
222  // on a QualType object.
223  bool hasFastQualifiers() const { return getFastQualifiers(); }
224  unsigned getFastQualifiers() const { return Mask & FastMask; }
225  void setFastQualifiers(unsigned mask) {
226    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
227    Mask = (Mask & ~FastMask) | mask;
228  }
229  void removeFastQualifiers(unsigned mask) {
230    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
231    Mask &= ~mask;
232  }
233  void removeFastQualifiers() {
234    removeFastQualifiers(FastMask);
235  }
236  void addFastQualifiers(unsigned mask) {
237    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
238    Mask |= mask;
239  }
240
241  /// hasNonFastQualifiers - Return true if the set contains any
242  /// qualifiers which require an ExtQuals node to be allocated.
243  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
244  Qualifiers getNonFastQualifiers() const {
245    Qualifiers Quals = *this;
246    Quals.setFastQualifiers(0);
247    return Quals;
248  }
249
250  /// hasQualifiers - Return true if the set contains any qualifiers.
251  bool hasQualifiers() const { return Mask; }
252  bool empty() const { return !Mask; }
253
254  /// \brief Add the qualifiers from the given set to this set.
255  void addQualifiers(Qualifiers Q) {
256    // If the other set doesn't have any non-boolean qualifiers, just
257    // bit-or it in.
258    if (!(Q.Mask & ~CVRMask))
259      Mask |= Q.Mask;
260    else {
261      Mask |= (Q.Mask & CVRMask);
262      if (Q.hasAddressSpace())
263        addAddressSpace(Q.getAddressSpace());
264      if (Q.hasObjCGCAttr())
265        addObjCGCAttr(Q.getObjCGCAttr());
266    }
267  }
268
269  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
270  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
271
272  operator bool() const { return hasQualifiers(); }
273
274  Qualifiers &operator+=(Qualifiers R) {
275    addQualifiers(R);
276    return *this;
277  }
278
279  // Union two qualifier sets.  If an enumerated qualifier appears
280  // in both sets, use the one from the right.
281  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
282    L += R;
283    return L;
284  }
285
286  std::string getAsString() const;
287  std::string getAsString(const PrintingPolicy &Policy) const {
288    std::string Buffer;
289    getAsStringInternal(Buffer, Policy);
290    return Buffer;
291  }
292  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
293
294  void Profile(llvm::FoldingSetNodeID &ID) const {
295    ID.AddInteger(Mask);
296  }
297
298private:
299
300  // bits:     |0 1 2|3 .. 4|5  ..  31|
301  //           |C R V|GCAttr|AddrSpace|
302  uint32_t Mask;
303
304  static const uint32_t GCAttrMask = 0x18;
305  static const uint32_t GCAttrShift = 3;
306  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
307  static const uint32_t AddressSpaceShift = 5;
308};
309
310
311/// ExtQuals - We can encode up to three bits in the low bits of a
312/// type pointer, but there are many more type qualifiers that we want
313/// to be able to apply to an arbitrary type.  Therefore we have this
314/// struct, intended to be heap-allocated and used by QualType to
315/// store qualifiers.
316///
317/// The current design tags the 'const' and 'restrict' qualifiers in
318/// two low bits on the QualType pointer; a third bit records whether
319/// the pointer is an ExtQuals node.  'const' was chosen because it is
320/// orders of magnitude more common than the other two qualifiers, in
321/// both library and user code.  It's relatively rare to see
322/// 'restrict' in user code, but many standard C headers are saturated
323/// with 'restrict' declarations, so that representing them efficiently
324/// is a critical goal of this representation.
325class ExtQuals : public llvm::FoldingSetNode {
326  // NOTE: changing the fast qualifiers should be straightforward as
327  // long as you don't make 'const' non-fast.
328  // 1. Qualifiers:
329  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
330  //       Fast qualifiers must occupy the low-order bits.
331  //    b) Update Qualifiers::FastWidth and FastMask.
332  // 2. QualType:
333  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
334  //    b) Update remove{Volatile,Restrict}, defined near the end of
335  //       this header.
336  // 3. ASTContext:
337  //    a) Update get{Volatile,Restrict}Type.
338
339  /// Context - the context to which this set belongs.  We save this
340  /// here so that QualifierCollector can use it to reapply extended
341  /// qualifiers to an arbitrary type without requiring a context to
342  /// be pushed through every single API dealing with qualifiers.
343  ASTContext& Context;
344
345  /// BaseType - the underlying type that this qualifies
346  const Type *BaseType;
347
348  /// Quals - the immutable set of qualifiers applied by this
349  /// node;  always contains extended qualifiers.
350  Qualifiers Quals;
351
352public:
353  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
354    : Context(Context), BaseType(Base), Quals(Quals)
355  {
356    assert(Quals.hasNonFastQualifiers()
357           && "ExtQuals created with no fast qualifiers");
358    assert(!Quals.hasFastQualifiers()
359           && "ExtQuals created with fast qualifiers");
360  }
361
362  Qualifiers getQualifiers() const { return Quals; }
363
364  bool hasVolatile() const { return Quals.hasVolatile(); }
365
366  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
367  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
368
369  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
370  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
371
372  const Type *getBaseType() const { return BaseType; }
373
374  ASTContext &getContext() const { return Context; }
375
376public:
377  void Profile(llvm::FoldingSetNodeID &ID) const {
378    Profile(ID, getBaseType(), Quals);
379  }
380  static void Profile(llvm::FoldingSetNodeID &ID,
381                      const Type *BaseType,
382                      Qualifiers Quals) {
383    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
384    ID.AddPointer(BaseType);
385    Quals.Profile(ID);
386  }
387};
388
389/// CallingConv - Specifies the calling convention that a function uses.
390enum CallingConv {
391  CC_Default,
392  CC_C,           // __attribute__((cdecl))
393  CC_X86StdCall,  // __attribute__((stdcall))
394  CC_X86FastCall  // __attribute__((fastcall))
395};
396
397
398/// QualType - For efficiency, we don't store CV-qualified types as nodes on
399/// their own: instead each reference to a type stores the qualifiers.  This
400/// greatly reduces the number of nodes we need to allocate for types (for
401/// example we only need one for 'int', 'const int', 'volatile int',
402/// 'const volatile int', etc).
403///
404/// As an added efficiency bonus, instead of making this a pair, we
405/// just store the two bits we care about in the low bits of the
406/// pointer.  To handle the packing/unpacking, we make QualType be a
407/// simple wrapper class that acts like a smart pointer.  A third bit
408/// indicates whether there are extended qualifiers present, in which
409/// case the pointer points to a special structure.
410class QualType {
411  // Thankfully, these are efficiently composable.
412  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
413                       Qualifiers::FastWidth> Value;
414
415  const ExtQuals *getExtQualsUnsafe() const {
416    return Value.getPointer().get<const ExtQuals*>();
417  }
418
419  const Type *getTypePtrUnsafe() const {
420    return Value.getPointer().get<const Type*>();
421  }
422
423  QualType getUnqualifiedTypeSlow() const;
424
425  friend class QualifierCollector;
426public:
427  QualType() {}
428
429  QualType(const Type *Ptr, unsigned Quals)
430    : Value(Ptr, Quals) {}
431  QualType(const ExtQuals *Ptr, unsigned Quals)
432    : Value(Ptr, Quals) {}
433
434  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
435  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
436
437  /// Retrieves a pointer to the underlying (unqualified) type.
438  /// This should really return a const Type, but it's not worth
439  /// changing all the users right now.
440  Type *getTypePtr() const {
441    if (hasLocalNonFastQualifiers())
442      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
443    return const_cast<Type*>(getTypePtrUnsafe());
444  }
445
446  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
447  static QualType getFromOpaquePtr(void *Ptr) {
448    QualType T;
449    T.Value.setFromOpaqueValue(Ptr);
450    return T;
451  }
452
453  Type &operator*() const {
454    return *getTypePtr();
455  }
456
457  Type *operator->() const {
458    return getTypePtr();
459  }
460
461  bool isCanonical() const;
462  bool isCanonicalAsParam() const;
463
464  /// isNull - Return true if this QualType doesn't point to a type yet.
465  bool isNull() const {
466    return Value.getPointer().isNull();
467  }
468
469  /// \brief Determine whether this particular QualType instance has the
470  /// "const" qualifier set, without looking through typedefs that may have
471  /// added "const" at a different level.
472  bool isLocalConstQualified() const {
473    return (getLocalFastQualifiers() & Qualifiers::Const);
474  }
475
476  /// \brief Determine whether this type is const-qualified.
477  bool isConstQualified() const;
478
479  /// \brief Determine whether this particular QualType instance has the
480  /// "restrict" qualifier set, without looking through typedefs that may have
481  /// added "restrict" at a different level.
482  bool isLocalRestrictQualified() const {
483    return (getLocalFastQualifiers() & Qualifiers::Restrict);
484  }
485
486  /// \brief Determine whether this type is restrict-qualified.
487  bool isRestrictQualified() const;
488
489  /// \brief Determine whether this particular QualType instance has the
490  /// "volatile" qualifier set, without looking through typedefs that may have
491  /// added "volatile" at a different level.
492  bool isLocalVolatileQualified() const {
493    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
494  }
495
496  /// \brief Determine whether this type is volatile-qualified.
497  bool isVolatileQualified() const;
498
499  /// \brief Determine whether this particular QualType instance has any
500  /// qualifiers, without looking through any typedefs that might add
501  /// qualifiers at a different level.
502  bool hasLocalQualifiers() const {
503    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
504  }
505
506  /// \brief Determine whether this type has any qualifiers.
507  bool hasQualifiers() const;
508
509  /// \brief Determine whether this particular QualType instance has any
510  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
511  /// instance.
512  bool hasLocalNonFastQualifiers() const {
513    return Value.getPointer().is<const ExtQuals*>();
514  }
515
516  /// \brief Retrieve the set of qualifiers local to this particular QualType
517  /// instance, not including any qualifiers acquired through typedefs or
518  /// other sugar.
519  Qualifiers getLocalQualifiers() const {
520    Qualifiers Quals;
521    if (hasLocalNonFastQualifiers())
522      Quals = getExtQualsUnsafe()->getQualifiers();
523    Quals.addFastQualifiers(getLocalFastQualifiers());
524    return Quals;
525  }
526
527  /// \brief Retrieve the set of qualifiers applied to this type.
528  Qualifiers getQualifiers() const;
529
530  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
531  /// local to this particular QualType instance, not including any qualifiers
532  /// acquired through typedefs or other sugar.
533  unsigned getLocalCVRQualifiers() const {
534    unsigned CVR = getLocalFastQualifiers();
535    if (isLocalVolatileQualified())
536      CVR |= Qualifiers::Volatile;
537    return CVR;
538  }
539
540  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
541  /// applied to this type.
542  unsigned getCVRQualifiers() const;
543
544  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
545  /// applied to this type, looking through any number of unqualified array
546  /// types to their element types' qualifiers.
547  unsigned getCVRQualifiersThroughArrayTypes() const;
548
549  bool isConstant(ASTContext& Ctx) const {
550    return QualType::isConstant(*this, Ctx);
551  }
552
553  // Don't promise in the API that anything besides 'const' can be
554  // easily added.
555
556  /// addConst - add the specified type qualifier to this QualType.
557  void addConst() {
558    addFastQualifiers(Qualifiers::Const);
559  }
560  QualType withConst() const {
561    return withFastQualifiers(Qualifiers::Const);
562  }
563
564  void addFastQualifiers(unsigned TQs) {
565    assert(!(TQs & ~Qualifiers::FastMask)
566           && "non-fast qualifier bits set in mask!");
567    Value.setInt(Value.getInt() | TQs);
568  }
569
570  // FIXME: The remove* functions are semantically broken, because they might
571  // not remove a qualifier stored on a typedef. Most of the with* functions
572  // have the same problem.
573  void removeConst();
574  void removeVolatile();
575  void removeRestrict();
576  void removeCVRQualifiers(unsigned Mask);
577
578  void removeFastQualifiers() { Value.setInt(0); }
579  void removeFastQualifiers(unsigned Mask) {
580    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
581    Value.setInt(Value.getInt() & ~Mask);
582  }
583
584  // Creates a type with the given qualifiers in addition to any
585  // qualifiers already on this type.
586  QualType withFastQualifiers(unsigned TQs) const {
587    QualType T = *this;
588    T.addFastQualifiers(TQs);
589    return T;
590  }
591
592  // Creates a type with exactly the given fast qualifiers, removing
593  // any existing fast qualifiers.
594  QualType withExactFastQualifiers(unsigned TQs) const {
595    return withoutFastQualifiers().withFastQualifiers(TQs);
596  }
597
598  // Removes fast qualifiers, but leaves any extended qualifiers in place.
599  QualType withoutFastQualifiers() const {
600    QualType T = *this;
601    T.removeFastQualifiers();
602    return T;
603  }
604
605  /// \brief Return this type with all of the instance-specific qualifiers
606  /// removed, but without removing any qualifiers that may have been applied
607  /// through typedefs.
608  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
609
610  /// \brief Return the unqualified form of the given type, which might be
611  /// desugared to eliminate qualifiers introduced via typedefs.
612  QualType getUnqualifiedType() const {
613    QualType T = getLocalUnqualifiedType();
614    if (!T.hasQualifiers())
615      return T;
616
617    return getUnqualifiedTypeSlow();
618  }
619
620  bool isMoreQualifiedThan(QualType Other) const;
621  bool isAtLeastAsQualifiedAs(QualType Other) const;
622  QualType getNonReferenceType() const;
623
624  /// getDesugaredType - Return the specified type with any "sugar" removed from
625  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
626  /// the type is already concrete, it returns it unmodified.  This is similar
627  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
628  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
629  /// concrete.
630  ///
631  /// Qualifiers are left in place.
632  QualType getDesugaredType() const {
633    return QualType::getDesugaredType(*this);
634  }
635
636  /// operator==/!= - Indicate whether the specified types and qualifiers are
637  /// identical.
638  friend bool operator==(const QualType &LHS, const QualType &RHS) {
639    return LHS.Value == RHS.Value;
640  }
641  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
642    return LHS.Value != RHS.Value;
643  }
644  std::string getAsString() const;
645
646  std::string getAsString(const PrintingPolicy &Policy) const {
647    std::string S;
648    getAsStringInternal(S, Policy);
649    return S;
650  }
651  void getAsStringInternal(std::string &Str,
652                           const PrintingPolicy &Policy) const;
653
654  void dump(const char *s) const;
655  void dump() const;
656
657  void Profile(llvm::FoldingSetNodeID &ID) const {
658    ID.AddPointer(getAsOpaquePtr());
659  }
660
661  /// getAddressSpace - Return the address space of this type.
662  inline unsigned getAddressSpace() const;
663
664  /// GCAttrTypesAttr - Returns gc attribute of this type.
665  inline Qualifiers::GC getObjCGCAttr() const;
666
667  /// isObjCGCWeak true when Type is objc's weak.
668  bool isObjCGCWeak() const {
669    return getObjCGCAttr() == Qualifiers::Weak;
670  }
671
672  /// isObjCGCStrong true when Type is objc's strong.
673  bool isObjCGCStrong() const {
674    return getObjCGCAttr() == Qualifiers::Strong;
675  }
676
677  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
678  /// false otherwise.
679  bool getNoReturnAttr() const;
680
681  /// getCallConv - Returns the calling convention of the type if the type
682  /// is a function type, CC_Default otherwise.
683  CallingConv getCallConv() const;
684
685private:
686  // These methods are implemented in a separate translation unit;
687  // "static"-ize them to avoid creating temporary QualTypes in the
688  // caller.
689  static bool isConstant(QualType T, ASTContext& Ctx);
690  static QualType getDesugaredType(QualType T);
691};
692
693} // end clang.
694
695namespace llvm {
696/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
697/// to a specific Type class.
698template<> struct simplify_type<const ::clang::QualType> {
699  typedef ::clang::Type* SimpleType;
700  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
701    return Val.getTypePtr();
702  }
703};
704template<> struct simplify_type< ::clang::QualType>
705  : public simplify_type<const ::clang::QualType> {};
706
707// Teach SmallPtrSet that QualType is "basically a pointer".
708template<>
709class PointerLikeTypeTraits<clang::QualType> {
710public:
711  static inline void *getAsVoidPointer(clang::QualType P) {
712    return P.getAsOpaquePtr();
713  }
714  static inline clang::QualType getFromVoidPointer(void *P) {
715    return clang::QualType::getFromOpaquePtr(P);
716  }
717  // Various qualifiers go in low bits.
718  enum { NumLowBitsAvailable = 0 };
719};
720
721} // end namespace llvm
722
723namespace clang {
724
725/// Type - This is the base class of the type hierarchy.  A central concept
726/// with types is that each type always has a canonical type.  A canonical type
727/// is the type with any typedef names stripped out of it or the types it
728/// references.  For example, consider:
729///
730///  typedef int  foo;
731///  typedef foo* bar;
732///    'int *'    'foo *'    'bar'
733///
734/// There will be a Type object created for 'int'.  Since int is canonical, its
735/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
736/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
737/// there is a PointerType that represents 'int*', which, like 'int', is
738/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
739/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
740/// is also 'int*'.
741///
742/// Non-canonical types are useful for emitting diagnostics, without losing
743/// information about typedefs being used.  Canonical types are useful for type
744/// comparisons (they allow by-pointer equality tests) and useful for reasoning
745/// about whether something has a particular form (e.g. is a function type),
746/// because they implicitly, recursively, strip all typedefs out of a type.
747///
748/// Types, once created, are immutable.
749///
750class Type {
751public:
752  enum TypeClass {
753#define TYPE(Class, Base) Class,
754#define ABSTRACT_TYPE(Class, Base)
755#include "clang/AST/TypeNodes.def"
756    TagFirst = Record, TagLast = Enum
757  };
758
759protected:
760  enum { TypeClassBitSize = 6 };
761
762private:
763  QualType CanonicalType;
764
765  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
766  bool Dependent : 1;
767
768  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
769  /// Note that this should stay at the end of the ivars for Type so that
770  /// subclasses can pack their bitfields into the same word.
771  unsigned TC : TypeClassBitSize;
772
773  Type(const Type&);           // DO NOT IMPLEMENT.
774  void operator=(const Type&); // DO NOT IMPLEMENT.
775protected:
776  // silence VC++ warning C4355: 'this' : used in base member initializer list
777  Type *this_() { return this; }
778  Type(TypeClass tc, QualType Canonical, bool dependent)
779    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
780      Dependent(dependent), TC(tc) {}
781  virtual ~Type() {}
782  virtual void Destroy(ASTContext& C);
783  friend class ASTContext;
784
785public:
786  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
787
788  bool isCanonicalUnqualified() const {
789    return CanonicalType.getTypePtr() == this;
790  }
791
792  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
793  /// object types, function types, and incomplete types.
794
795  /// \brief Determines whether the type describes an object in memory.
796  ///
797  /// Note that this definition of object type corresponds to the C++
798  /// definition of object type, which includes incomplete types, as
799  /// opposed to the C definition (which does not include incomplete
800  /// types).
801  bool isObjectType() const;
802
803  /// isIncompleteType - Return true if this is an incomplete type.
804  /// A type that can describe objects, but which lacks information needed to
805  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
806  /// routine will need to determine if the size is actually required.
807  bool isIncompleteType() const;
808
809  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
810  /// type, in other words, not a function type.
811  bool isIncompleteOrObjectType() const {
812    return !isFunctionType();
813  }
814
815  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
816  bool isPODType() const;
817
818  /// isLiteralType - Return true if this is a literal type
819  /// (C++0x [basic.types]p10)
820  bool isLiteralType() const;
821
822  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
823  /// types that have a non-constant expression. This does not include "[]".
824  bool isVariablyModifiedType() const;
825
826  /// Helper methods to distinguish type categories. All type predicates
827  /// operate on the canonical type, ignoring typedefs and qualifiers.
828
829  /// isSpecificBuiltinType - Test for a particular builtin type.
830  bool isSpecificBuiltinType(unsigned K) const;
831
832  /// isIntegerType() does *not* include complex integers (a GCC extension).
833  /// isComplexIntegerType() can be used to test for complex integers.
834  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
835  bool isEnumeralType() const;
836  bool isBooleanType() const;
837  bool isCharType() const;
838  bool isWideCharType() const;
839  bool isAnyCharacterType() const;
840  bool isIntegralType() const;
841
842  /// Floating point categories.
843  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
844  /// isComplexType() does *not* include complex integers (a GCC extension).
845  /// isComplexIntegerType() can be used to test for complex integers.
846  bool isComplexType() const;      // C99 6.2.5p11 (complex)
847  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
848  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
849  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
850  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
851  bool isVoidType() const;         // C99 6.2.5p19
852  bool isDerivedType() const;      // C99 6.2.5p20
853  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
854  bool isAggregateType() const;
855
856  // Type Predicates: Check to see if this type is structurally the specified
857  // type, ignoring typedefs and qualifiers.
858  bool isFunctionType() const;
859  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
860  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
861  bool isPointerType() const;
862  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
863  bool isBlockPointerType() const;
864  bool isVoidPointerType() const;
865  bool isReferenceType() const;
866  bool isLValueReferenceType() const;
867  bool isRValueReferenceType() const;
868  bool isFunctionPointerType() const;
869  bool isMemberPointerType() const;
870  bool isMemberFunctionPointerType() const;
871  bool isArrayType() const;
872  bool isConstantArrayType() const;
873  bool isIncompleteArrayType() const;
874  bool isVariableArrayType() const;
875  bool isDependentSizedArrayType() const;
876  bool isRecordType() const;
877  bool isClassType() const;
878  bool isStructureType() const;
879  bool isUnionType() const;
880  bool isComplexIntegerType() const;            // GCC _Complex integer type.
881  bool isVectorType() const;                    // GCC vector type.
882  bool isExtVectorType() const;                 // Extended vector type.
883  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
884  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
885  // for the common case.
886  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
887  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
888  bool isObjCQualifiedIdType() const;           // id<foo>
889  bool isObjCQualifiedClassType() const;        // Class<foo>
890  bool isObjCIdType() const;                    // id
891  bool isObjCClassType() const;                 // Class
892  bool isObjCSelType() const;                 // Class
893  bool isObjCBuiltinType() const;               // 'id' or 'Class'
894  bool isTemplateTypeParmType() const;          // C++ template type parameter
895  bool isNullPtrType() const;                   // C++0x nullptr_t
896
897  /// isDependentType - Whether this type is a dependent type, meaning
898  /// that its definition somehow depends on a template parameter
899  /// (C++ [temp.dep.type]).
900  bool isDependentType() const { return Dependent; }
901  bool isOverloadableType() const;
902
903  /// hasPointerRepresentation - Whether this type is represented
904  /// natively as a pointer; this includes pointers, references, block
905  /// pointers, and Objective-C interface, qualified id, and qualified
906  /// interface types, as well as nullptr_t.
907  bool hasPointerRepresentation() const;
908
909  /// hasObjCPointerRepresentation - Whether this type can represent
910  /// an objective pointer type for the purpose of GC'ability
911  bool hasObjCPointerRepresentation() const;
912
913  // Type Checking Functions: Check to see if this type is structurally the
914  // specified type, ignoring typedefs and qualifiers, and return a pointer to
915  // the best type we can.
916  const RecordType *getAsStructureType() const;
917  /// NOTE: getAs*ArrayType are methods on ASTContext.
918  const RecordType *getAsUnionType() const;
919  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
920  // The following is a convenience method that returns an ObjCObjectPointerType
921  // for object declared using an interface.
922  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
923  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
924  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
925  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
926
927  // Member-template getAs<specific type>'.  This scheme will eventually
928  // replace the specific getAsXXXX methods above.
929  //
930  // There are some specializations of this member template listed
931  // immediately following this class.
932  template <typename T> const T *getAs() const;
933
934  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
935  /// interface, return the interface type, otherwise return null.
936  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
937
938  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
939  /// element type of the array, potentially with type qualifiers missing.
940  /// This method should never be used when type qualifiers are meaningful.
941  const Type *getArrayElementTypeNoTypeQual() const;
942
943  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
944  /// pointer, this returns the respective pointee.
945  QualType getPointeeType() const;
946
947  /// getUnqualifiedDesugaredType() - Return the specified type with
948  /// any "sugar" removed from the type, removing any typedefs,
949  /// typeofs, etc., as well as any qualifiers.
950  const Type *getUnqualifiedDesugaredType() const;
951
952  /// More type predicates useful for type checking/promotion
953  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
954
955  /// isSignedIntegerType - Return true if this is an integer type that is
956  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
957  /// an enum decl which has a signed representation, or a vector of signed
958  /// integer element type.
959  bool isSignedIntegerType() const;
960
961  /// isUnsignedIntegerType - Return true if this is an integer type that is
962  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
963  /// decl which has an unsigned representation, or a vector of unsigned integer
964  /// element type.
965  bool isUnsignedIntegerType() const;
966
967  /// isConstantSizeType - Return true if this is not a variable sized type,
968  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
969  /// incomplete types.
970  bool isConstantSizeType() const;
971
972  /// isSpecifierType - Returns true if this type can be represented by some
973  /// set of type specifiers.
974  bool isSpecifierType() const;
975
976  const char *getTypeClassName() const;
977
978  /// \brief Determine the linkage of this type.
979  virtual Linkage getLinkage() const;
980
981  QualType getCanonicalTypeInternal() const { return CanonicalType; }
982  void dump() const;
983  static bool classof(const Type *) { return true; }
984};
985
986template <> inline const TypedefType *Type::getAs() const {
987  return dyn_cast<TypedefType>(this);
988}
989
990// We can do canonical leaf types faster, because we don't have to
991// worry about preserving child type decoration.
992#define TYPE(Class, Base)
993#define LEAF_TYPE(Class) \
994template <> inline const Class##Type *Type::getAs() const { \
995  return dyn_cast<Class##Type>(CanonicalType); \
996}
997#include "clang/AST/TypeNodes.def"
998
999
1000/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1001/// types are always canonical and have a literal name field.
1002class BuiltinType : public Type {
1003public:
1004  enum Kind {
1005    Void,
1006
1007    Bool,     // This is bool and/or _Bool.
1008    Char_U,   // This is 'char' for targets where char is unsigned.
1009    UChar,    // This is explicitly qualified unsigned char.
1010    Char16,   // This is 'char16_t' for C++.
1011    Char32,   // This is 'char32_t' for C++.
1012    UShort,
1013    UInt,
1014    ULong,
1015    ULongLong,
1016    UInt128,  // __uint128_t
1017
1018    Char_S,   // This is 'char' for targets where char is signed.
1019    SChar,    // This is explicitly qualified signed char.
1020    WChar,    // This is 'wchar_t' for C++.
1021    Short,
1022    Int,
1023    Long,
1024    LongLong,
1025    Int128,   // __int128_t
1026
1027    Float, Double, LongDouble,
1028
1029    NullPtr,  // This is the type of C++0x 'nullptr'.
1030
1031    Overload,  // This represents the type of an overloaded function declaration.
1032    Dependent, // This represents the type of a type-dependent expression.
1033
1034    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1035                   // that has not been deduced yet.
1036    ObjCId,    // This represents the ObjC 'id' type.
1037    ObjCClass, // This represents the ObjC 'Class' type.
1038    ObjCSel    // This represents the ObjC 'SEL' type.
1039  };
1040private:
1041  Kind TypeKind;
1042public:
1043  BuiltinType(Kind K)
1044    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
1045      TypeKind(K) {}
1046
1047  Kind getKind() const { return TypeKind; }
1048  const char *getName(const LangOptions &LO) const;
1049
1050  bool isSugared() const { return false; }
1051  QualType desugar() const { return QualType(this, 0); }
1052
1053  bool isInteger() const {
1054    return TypeKind >= Bool && TypeKind <= Int128;
1055  }
1056
1057  bool isSignedInteger() const {
1058    return TypeKind >= Char_S && TypeKind <= Int128;
1059  }
1060
1061  bool isUnsignedInteger() const {
1062    return TypeKind >= Bool && TypeKind <= UInt128;
1063  }
1064
1065  bool isFloatingPoint() const {
1066    return TypeKind >= Float && TypeKind <= LongDouble;
1067  }
1068
1069  virtual Linkage getLinkage() const;
1070
1071  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1072  static bool classof(const BuiltinType *) { return true; }
1073};
1074
1075/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1076/// types (_Complex float etc) as well as the GCC integer complex extensions.
1077///
1078class ComplexType : public Type, public llvm::FoldingSetNode {
1079  QualType ElementType;
1080  ComplexType(QualType Element, QualType CanonicalPtr) :
1081    Type(Complex, CanonicalPtr, Element->isDependentType()),
1082    ElementType(Element) {
1083  }
1084  friend class ASTContext;  // ASTContext creates these.
1085public:
1086  QualType getElementType() const { return ElementType; }
1087
1088  bool isSugared() const { return false; }
1089  QualType desugar() const { return QualType(this, 0); }
1090
1091  void Profile(llvm::FoldingSetNodeID &ID) {
1092    Profile(ID, getElementType());
1093  }
1094  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1095    ID.AddPointer(Element.getAsOpaquePtr());
1096  }
1097
1098  virtual Linkage getLinkage() const;
1099
1100  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1101  static bool classof(const ComplexType *) { return true; }
1102};
1103
1104/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1105///
1106class PointerType : public Type, public llvm::FoldingSetNode {
1107  QualType PointeeType;
1108
1109  PointerType(QualType Pointee, QualType CanonicalPtr) :
1110    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1111  }
1112  friend class ASTContext;  // ASTContext creates these.
1113public:
1114
1115  QualType getPointeeType() const { return PointeeType; }
1116
1117  bool isSugared() const { return false; }
1118  QualType desugar() const { return QualType(this, 0); }
1119
1120  void Profile(llvm::FoldingSetNodeID &ID) {
1121    Profile(ID, getPointeeType());
1122  }
1123  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1124    ID.AddPointer(Pointee.getAsOpaquePtr());
1125  }
1126
1127  virtual Linkage getLinkage() const;
1128
1129  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1130  static bool classof(const PointerType *) { return true; }
1131};
1132
1133/// BlockPointerType - pointer to a block type.
1134/// This type is to represent types syntactically represented as
1135/// "void (^)(int)", etc. Pointee is required to always be a function type.
1136///
1137class BlockPointerType : public Type, public llvm::FoldingSetNode {
1138  QualType PointeeType;  // Block is some kind of pointer type
1139  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1140    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1141    PointeeType(Pointee) {
1142  }
1143  friend class ASTContext;  // ASTContext creates these.
1144public:
1145
1146  // Get the pointee type. Pointee is required to always be a function type.
1147  QualType getPointeeType() const { return PointeeType; }
1148
1149  bool isSugared() const { return false; }
1150  QualType desugar() const { return QualType(this, 0); }
1151
1152  void Profile(llvm::FoldingSetNodeID &ID) {
1153      Profile(ID, getPointeeType());
1154  }
1155  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1156      ID.AddPointer(Pointee.getAsOpaquePtr());
1157  }
1158
1159  virtual Linkage getLinkage() const;
1160
1161  static bool classof(const Type *T) {
1162    return T->getTypeClass() == BlockPointer;
1163  }
1164  static bool classof(const BlockPointerType *) { return true; }
1165};
1166
1167/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1168///
1169class ReferenceType : public Type, public llvm::FoldingSetNode {
1170  QualType PointeeType;
1171
1172  /// True if the type was originally spelled with an lvalue sigil.
1173  /// This is never true of rvalue references but can also be false
1174  /// on lvalue references because of C++0x [dcl.typedef]p9,
1175  /// as follows:
1176  ///
1177  ///   typedef int &ref;    // lvalue, spelled lvalue
1178  ///   typedef int &&rvref; // rvalue
1179  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1180  ///   ref &&a;             // lvalue, inner ref
1181  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1182  ///   rvref &&a;           // rvalue, inner ref
1183  bool SpelledAsLValue;
1184
1185  /// True if the inner type is a reference type.  This only happens
1186  /// in non-canonical forms.
1187  bool InnerRef;
1188
1189protected:
1190  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1191                bool SpelledAsLValue) :
1192    Type(tc, CanonicalRef, Referencee->isDependentType()),
1193    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1194    InnerRef(Referencee->isReferenceType()) {
1195  }
1196public:
1197  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1198
1199  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1200  QualType getPointeeType() const {
1201    // FIXME: this might strip inner qualifiers; okay?
1202    const ReferenceType *T = this;
1203    while (T->InnerRef)
1204      T = T->PointeeType->getAs<ReferenceType>();
1205    return T->PointeeType;
1206  }
1207
1208  void Profile(llvm::FoldingSetNodeID &ID) {
1209    Profile(ID, PointeeType, SpelledAsLValue);
1210  }
1211  static void Profile(llvm::FoldingSetNodeID &ID,
1212                      QualType Referencee,
1213                      bool SpelledAsLValue) {
1214    ID.AddPointer(Referencee.getAsOpaquePtr());
1215    ID.AddBoolean(SpelledAsLValue);
1216  }
1217
1218  virtual Linkage getLinkage() const;
1219
1220  static bool classof(const Type *T) {
1221    return T->getTypeClass() == LValueReference ||
1222           T->getTypeClass() == RValueReference;
1223  }
1224  static bool classof(const ReferenceType *) { return true; }
1225};
1226
1227/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1228///
1229class LValueReferenceType : public ReferenceType {
1230  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1231                      bool SpelledAsLValue) :
1232    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1233  {}
1234  friend class ASTContext; // ASTContext creates these
1235public:
1236  bool isSugared() const { return false; }
1237  QualType desugar() const { return QualType(this, 0); }
1238
1239  static bool classof(const Type *T) {
1240    return T->getTypeClass() == LValueReference;
1241  }
1242  static bool classof(const LValueReferenceType *) { return true; }
1243};
1244
1245/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1246///
1247class RValueReferenceType : public ReferenceType {
1248  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1249    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1250  }
1251  friend class ASTContext; // ASTContext creates these
1252public:
1253  bool isSugared() const { return false; }
1254  QualType desugar() const { return QualType(this, 0); }
1255
1256  static bool classof(const Type *T) {
1257    return T->getTypeClass() == RValueReference;
1258  }
1259  static bool classof(const RValueReferenceType *) { return true; }
1260};
1261
1262/// MemberPointerType - C++ 8.3.3 - Pointers to members
1263///
1264class MemberPointerType : public Type, public llvm::FoldingSetNode {
1265  QualType PointeeType;
1266  /// The class of which the pointee is a member. Must ultimately be a
1267  /// RecordType, but could be a typedef or a template parameter too.
1268  const Type *Class;
1269
1270  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1271    Type(MemberPointer, CanonicalPtr,
1272         Cls->isDependentType() || Pointee->isDependentType()),
1273    PointeeType(Pointee), Class(Cls) {
1274  }
1275  friend class ASTContext; // ASTContext creates these.
1276public:
1277
1278  QualType getPointeeType() const { return PointeeType; }
1279
1280  const Type *getClass() const { return Class; }
1281
1282  bool isSugared() const { return false; }
1283  QualType desugar() const { return QualType(this, 0); }
1284
1285  void Profile(llvm::FoldingSetNodeID &ID) {
1286    Profile(ID, getPointeeType(), getClass());
1287  }
1288  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1289                      const Type *Class) {
1290    ID.AddPointer(Pointee.getAsOpaquePtr());
1291    ID.AddPointer(Class);
1292  }
1293
1294  virtual Linkage getLinkage() const;
1295
1296  static bool classof(const Type *T) {
1297    return T->getTypeClass() == MemberPointer;
1298  }
1299  static bool classof(const MemberPointerType *) { return true; }
1300};
1301
1302/// ArrayType - C99 6.7.5.2 - Array Declarators.
1303///
1304class ArrayType : public Type, public llvm::FoldingSetNode {
1305public:
1306  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1307  /// an array with a static size (e.g. int X[static 4]), or an array
1308  /// with a star size (e.g. int X[*]).
1309  /// 'static' is only allowed on function parameters.
1310  enum ArraySizeModifier {
1311    Normal, Static, Star
1312  };
1313private:
1314  /// ElementType - The element type of the array.
1315  QualType ElementType;
1316
1317  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1318  /// NOTE: These fields are packed into the bitfields space in the Type class.
1319  unsigned SizeModifier : 2;
1320
1321  /// IndexTypeQuals - Capture qualifiers in declarations like:
1322  /// 'int X[static restrict 4]'. For function parameters only.
1323  unsigned IndexTypeQuals : 3;
1324
1325protected:
1326  // C++ [temp.dep.type]p1:
1327  //   A type is dependent if it is...
1328  //     - an array type constructed from any dependent type or whose
1329  //       size is specified by a constant expression that is
1330  //       value-dependent,
1331  ArrayType(TypeClass tc, QualType et, QualType can,
1332            ArraySizeModifier sm, unsigned tq)
1333    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1334      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1335
1336  friend class ASTContext;  // ASTContext creates these.
1337public:
1338  QualType getElementType() const { return ElementType; }
1339  ArraySizeModifier getSizeModifier() const {
1340    return ArraySizeModifier(SizeModifier);
1341  }
1342  Qualifiers getIndexTypeQualifiers() const {
1343    return Qualifiers::fromCVRMask(IndexTypeQuals);
1344  }
1345  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1346
1347  virtual Linkage getLinkage() const;
1348
1349  static bool classof(const Type *T) {
1350    return T->getTypeClass() == ConstantArray ||
1351           T->getTypeClass() == VariableArray ||
1352           T->getTypeClass() == IncompleteArray ||
1353           T->getTypeClass() == DependentSizedArray;
1354  }
1355  static bool classof(const ArrayType *) { return true; }
1356};
1357
1358/// ConstantArrayType - This class represents the canonical version of
1359/// C arrays with a specified constant size.  For example, the canonical
1360/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1361/// type is 'int' and the size is 404.
1362class ConstantArrayType : public ArrayType {
1363  llvm::APInt Size; // Allows us to unique the type.
1364
1365  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1366                    ArraySizeModifier sm, unsigned tq)
1367    : ArrayType(ConstantArray, et, can, sm, tq),
1368      Size(size) {}
1369protected:
1370  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1371                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1372    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1373  friend class ASTContext;  // ASTContext creates these.
1374public:
1375  const llvm::APInt &getSize() const { return Size; }
1376  bool isSugared() const { return false; }
1377  QualType desugar() const { return QualType(this, 0); }
1378
1379  void Profile(llvm::FoldingSetNodeID &ID) {
1380    Profile(ID, getElementType(), getSize(),
1381            getSizeModifier(), getIndexTypeCVRQualifiers());
1382  }
1383  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1384                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1385                      unsigned TypeQuals) {
1386    ID.AddPointer(ET.getAsOpaquePtr());
1387    ID.AddInteger(ArraySize.getZExtValue());
1388    ID.AddInteger(SizeMod);
1389    ID.AddInteger(TypeQuals);
1390  }
1391  static bool classof(const Type *T) {
1392    return T->getTypeClass() == ConstantArray;
1393  }
1394  static bool classof(const ConstantArrayType *) { return true; }
1395};
1396
1397/// IncompleteArrayType - This class represents C arrays with an unspecified
1398/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1399/// type is 'int' and the size is unspecified.
1400class IncompleteArrayType : public ArrayType {
1401
1402  IncompleteArrayType(QualType et, QualType can,
1403                      ArraySizeModifier sm, unsigned tq)
1404    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1405  friend class ASTContext;  // ASTContext creates these.
1406public:
1407  bool isSugared() const { return false; }
1408  QualType desugar() const { return QualType(this, 0); }
1409
1410  static bool classof(const Type *T) {
1411    return T->getTypeClass() == IncompleteArray;
1412  }
1413  static bool classof(const IncompleteArrayType *) { return true; }
1414
1415  friend class StmtIteratorBase;
1416
1417  void Profile(llvm::FoldingSetNodeID &ID) {
1418    Profile(ID, getElementType(), getSizeModifier(),
1419            getIndexTypeCVRQualifiers());
1420  }
1421
1422  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1423                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1424    ID.AddPointer(ET.getAsOpaquePtr());
1425    ID.AddInteger(SizeMod);
1426    ID.AddInteger(TypeQuals);
1427  }
1428};
1429
1430/// VariableArrayType - This class represents C arrays with a specified size
1431/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1432/// Since the size expression is an arbitrary expression, we store it as such.
1433///
1434/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1435/// should not be: two lexically equivalent variable array types could mean
1436/// different things, for example, these variables do not have the same type
1437/// dynamically:
1438///
1439/// void foo(int x) {
1440///   int Y[x];
1441///   ++x;
1442///   int Z[x];
1443/// }
1444///
1445class VariableArrayType : public ArrayType {
1446  /// SizeExpr - An assignment expression. VLA's are only permitted within
1447  /// a function block.
1448  Stmt *SizeExpr;
1449  /// Brackets - The left and right array brackets.
1450  SourceRange Brackets;
1451
1452  VariableArrayType(QualType et, QualType can, Expr *e,
1453                    ArraySizeModifier sm, unsigned tq,
1454                    SourceRange brackets)
1455    : ArrayType(VariableArray, et, can, sm, tq),
1456      SizeExpr((Stmt*) e), Brackets(brackets) {}
1457  friend class ASTContext;  // ASTContext creates these.
1458  virtual void Destroy(ASTContext& C);
1459
1460public:
1461  Expr *getSizeExpr() const {
1462    // We use C-style casts instead of cast<> here because we do not wish
1463    // to have a dependency of Type.h on Stmt.h/Expr.h.
1464    return (Expr*) SizeExpr;
1465  }
1466  SourceRange getBracketsRange() const { return Brackets; }
1467  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1468  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1469
1470  bool isSugared() const { return false; }
1471  QualType desugar() const { return QualType(this, 0); }
1472
1473  static bool classof(const Type *T) {
1474    return T->getTypeClass() == VariableArray;
1475  }
1476  static bool classof(const VariableArrayType *) { return true; }
1477
1478  friend class StmtIteratorBase;
1479
1480  void Profile(llvm::FoldingSetNodeID &ID) {
1481    assert(0 && "Cannnot unique VariableArrayTypes.");
1482  }
1483};
1484
1485/// DependentSizedArrayType - This type represents an array type in
1486/// C++ whose size is a value-dependent expression. For example:
1487///
1488/// \code
1489/// template<typename T, int Size>
1490/// class array {
1491///   T data[Size];
1492/// };
1493/// \endcode
1494///
1495/// For these types, we won't actually know what the array bound is
1496/// until template instantiation occurs, at which point this will
1497/// become either a ConstantArrayType or a VariableArrayType.
1498class DependentSizedArrayType : public ArrayType {
1499  ASTContext &Context;
1500
1501  /// \brief An assignment expression that will instantiate to the
1502  /// size of the array.
1503  ///
1504  /// The expression itself might be NULL, in which case the array
1505  /// type will have its size deduced from an initializer.
1506  Stmt *SizeExpr;
1507
1508  /// Brackets - The left and right array brackets.
1509  SourceRange Brackets;
1510
1511  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1512                          Expr *e, ArraySizeModifier sm, unsigned tq,
1513                          SourceRange brackets)
1514    : ArrayType(DependentSizedArray, et, can, sm, tq),
1515      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1516  friend class ASTContext;  // ASTContext creates these.
1517  virtual void Destroy(ASTContext& C);
1518
1519public:
1520  Expr *getSizeExpr() const {
1521    // We use C-style casts instead of cast<> here because we do not wish
1522    // to have a dependency of Type.h on Stmt.h/Expr.h.
1523    return (Expr*) SizeExpr;
1524  }
1525  SourceRange getBracketsRange() const { return Brackets; }
1526  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1527  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1528
1529  bool isSugared() const { return false; }
1530  QualType desugar() const { return QualType(this, 0); }
1531
1532  static bool classof(const Type *T) {
1533    return T->getTypeClass() == DependentSizedArray;
1534  }
1535  static bool classof(const DependentSizedArrayType *) { return true; }
1536
1537  friend class StmtIteratorBase;
1538
1539
1540  void Profile(llvm::FoldingSetNodeID &ID) {
1541    Profile(ID, Context, getElementType(),
1542            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1543  }
1544
1545  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1546                      QualType ET, ArraySizeModifier SizeMod,
1547                      unsigned TypeQuals, Expr *E);
1548};
1549
1550/// DependentSizedExtVectorType - This type represent an extended vector type
1551/// where either the type or size is dependent. For example:
1552/// @code
1553/// template<typename T, int Size>
1554/// class vector {
1555///   typedef T __attribute__((ext_vector_type(Size))) type;
1556/// }
1557/// @endcode
1558class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1559  ASTContext &Context;
1560  Expr *SizeExpr;
1561  /// ElementType - The element type of the array.
1562  QualType ElementType;
1563  SourceLocation loc;
1564
1565  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1566                              QualType can, Expr *SizeExpr, SourceLocation loc)
1567    : Type (DependentSizedExtVector, can, true),
1568      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1569      loc(loc) {}
1570  friend class ASTContext;
1571  virtual void Destroy(ASTContext& C);
1572
1573public:
1574  Expr *getSizeExpr() const { return SizeExpr; }
1575  QualType getElementType() const { return ElementType; }
1576  SourceLocation getAttributeLoc() const { return loc; }
1577
1578  bool isSugared() const { return false; }
1579  QualType desugar() const { return QualType(this, 0); }
1580
1581  static bool classof(const Type *T) {
1582    return T->getTypeClass() == DependentSizedExtVector;
1583  }
1584  static bool classof(const DependentSizedExtVectorType *) { return true; }
1585
1586  void Profile(llvm::FoldingSetNodeID &ID) {
1587    Profile(ID, Context, getElementType(), getSizeExpr());
1588  }
1589
1590  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1591                      QualType ElementType, Expr *SizeExpr);
1592};
1593
1594
1595/// VectorType - GCC generic vector type. This type is created using
1596/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1597/// bytes; or from an Altivec __vector or vector declaration.
1598/// Since the constructor takes the number of vector elements, the
1599/// client is responsible for converting the size into the number of elements.
1600class VectorType : public Type, public llvm::FoldingSetNode {
1601protected:
1602  /// ElementType - The element type of the vector.
1603  QualType ElementType;
1604
1605  /// NumElements - The number of elements in the vector.
1606  unsigned NumElements;
1607
1608  /// AltiVec - True if this is for an Altivec vector.
1609  bool AltiVec;
1610
1611  /// Pixel - True if this is for an Altivec vector pixel.
1612  bool Pixel;
1613
1614  VectorType(QualType vecType, unsigned nElements, QualType canonType,
1615      bool isAltiVec, bool isPixel) :
1616    Type(Vector, canonType, vecType->isDependentType()),
1617    ElementType(vecType), NumElements(nElements),
1618    AltiVec(isAltiVec), Pixel(isPixel) {}
1619  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1620             QualType canonType, bool isAltiVec, bool isPixel)
1621    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1622      NumElements(nElements), AltiVec(isAltiVec), Pixel(isPixel) {}
1623  friend class ASTContext;  // ASTContext creates these.
1624public:
1625
1626  QualType getElementType() const { return ElementType; }
1627  unsigned getNumElements() const { return NumElements; }
1628
1629  bool isSugared() const { return false; }
1630  QualType desugar() const { return QualType(this, 0); }
1631
1632  bool isAltiVec() const { return AltiVec; }
1633
1634  bool isPixel() const { return Pixel; }
1635
1636  void Profile(llvm::FoldingSetNodeID &ID) {
1637    Profile(ID, getElementType(), getNumElements(), getTypeClass(),
1638      AltiVec, Pixel);
1639  }
1640  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1641                      unsigned NumElements, TypeClass TypeClass,
1642                      bool isAltiVec, bool isPixel) {
1643    ID.AddPointer(ElementType.getAsOpaquePtr());
1644    ID.AddInteger(NumElements);
1645    ID.AddInteger(TypeClass);
1646    ID.AddBoolean(isAltiVec);
1647    ID.AddBoolean(isPixel);
1648  }
1649
1650  virtual Linkage getLinkage() const;
1651
1652  static bool classof(const Type *T) {
1653    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1654  }
1655  static bool classof(const VectorType *) { return true; }
1656};
1657
1658/// ExtVectorType - Extended vector type. This type is created using
1659/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1660/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1661/// class enables syntactic extensions, like Vector Components for accessing
1662/// points, colors, and textures (modeled after OpenGL Shading Language).
1663class ExtVectorType : public VectorType {
1664  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1665    VectorType(ExtVector, vecType, nElements, canonType, false, false) {}
1666  friend class ASTContext;  // ASTContext creates these.
1667public:
1668  static int getPointAccessorIdx(char c) {
1669    switch (c) {
1670    default: return -1;
1671    case 'x': return 0;
1672    case 'y': return 1;
1673    case 'z': return 2;
1674    case 'w': return 3;
1675    }
1676  }
1677  static int getNumericAccessorIdx(char c) {
1678    switch (c) {
1679      default: return -1;
1680      case '0': return 0;
1681      case '1': return 1;
1682      case '2': return 2;
1683      case '3': return 3;
1684      case '4': return 4;
1685      case '5': return 5;
1686      case '6': return 6;
1687      case '7': return 7;
1688      case '8': return 8;
1689      case '9': return 9;
1690      case 'A':
1691      case 'a': return 10;
1692      case 'B':
1693      case 'b': return 11;
1694      case 'C':
1695      case 'c': return 12;
1696      case 'D':
1697      case 'd': return 13;
1698      case 'E':
1699      case 'e': return 14;
1700      case 'F':
1701      case 'f': return 15;
1702    }
1703  }
1704
1705  static int getAccessorIdx(char c) {
1706    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1707    return getNumericAccessorIdx(c);
1708  }
1709
1710  bool isAccessorWithinNumElements(char c) const {
1711    if (int idx = getAccessorIdx(c)+1)
1712      return unsigned(idx-1) < NumElements;
1713    return false;
1714  }
1715  bool isSugared() const { return false; }
1716  QualType desugar() const { return QualType(this, 0); }
1717
1718  static bool classof(const Type *T) {
1719    return T->getTypeClass() == ExtVector;
1720  }
1721  static bool classof(const ExtVectorType *) { return true; }
1722};
1723
1724/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1725/// class of FunctionNoProtoType and FunctionProtoType.
1726///
1727class FunctionType : public Type {
1728  /// SubClassData - This field is owned by the subclass, put here to pack
1729  /// tightly with the ivars in Type.
1730  bool SubClassData : 1;
1731
1732  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1733  /// other bitfields.
1734  /// The qualifiers are part of FunctionProtoType because...
1735  ///
1736  /// C++ 8.3.5p4: The return type, the parameter type list and the
1737  /// cv-qualifier-seq, [...], are part of the function type.
1738  ///
1739  unsigned TypeQuals : 3;
1740
1741  /// NoReturn - Indicates if the function type is attribute noreturn.
1742  unsigned NoReturn : 1;
1743
1744  /// CallConv - The calling convention used by the function.
1745  unsigned CallConv : 2;
1746
1747  // The type returned by the function.
1748  QualType ResultType;
1749protected:
1750  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1751               unsigned typeQuals, QualType Canonical, bool Dependent,
1752               bool noReturn = false, CallingConv callConv = CC_Default)
1753    : Type(tc, Canonical, Dependent),
1754      SubClassData(SubclassInfo), TypeQuals(typeQuals), NoReturn(noReturn),
1755      CallConv(callConv), ResultType(res) {}
1756  bool getSubClassData() const { return SubClassData; }
1757  unsigned getTypeQuals() const { return TypeQuals; }
1758public:
1759
1760  QualType getResultType() const { return ResultType; }
1761  bool getNoReturnAttr() const { return NoReturn; }
1762  CallingConv getCallConv() const { return (CallingConv)CallConv; }
1763
1764  static llvm::StringRef getNameForCallConv(CallingConv CC);
1765
1766  static bool classof(const Type *T) {
1767    return T->getTypeClass() == FunctionNoProto ||
1768           T->getTypeClass() == FunctionProto;
1769  }
1770  static bool classof(const FunctionType *) { return true; }
1771};
1772
1773/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1774/// no information available about its arguments.
1775class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1776  FunctionNoProtoType(QualType Result, QualType Canonical,
1777                      bool NoReturn = false, CallingConv CallConv = CC_Default)
1778    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1779                   /*Dependent=*/false, NoReturn, CallConv) {}
1780  friend class ASTContext;  // ASTContext creates these.
1781public:
1782  // No additional state past what FunctionType provides.
1783
1784  bool isSugared() const { return false; }
1785  QualType desugar() const { return QualType(this, 0); }
1786
1787  void Profile(llvm::FoldingSetNodeID &ID) {
1788    Profile(ID, getResultType(), getNoReturnAttr(), getCallConv());
1789  }
1790  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1791                      bool NoReturn, CallingConv CallConv) {
1792    ID.AddInteger(CallConv);
1793    ID.AddInteger(NoReturn);
1794    ID.AddPointer(ResultType.getAsOpaquePtr());
1795  }
1796
1797  virtual Linkage getLinkage() const;
1798
1799  static bool classof(const Type *T) {
1800    return T->getTypeClass() == FunctionNoProto;
1801  }
1802  static bool classof(const FunctionNoProtoType *) { return true; }
1803};
1804
1805/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1806/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1807/// arguments, not as having a single void argument. Such a type can have an
1808/// exception specification, but this specification is not part of the canonical
1809/// type.
1810class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1811  /// hasAnyDependentType - Determine whether there are any dependent
1812  /// types within the arguments passed in.
1813  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1814    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1815      if (ArgArray[Idx]->isDependentType())
1816    return true;
1817
1818    return false;
1819  }
1820
1821  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1822                    bool isVariadic, unsigned typeQuals, bool hasExs,
1823                    bool hasAnyExs, const QualType *ExArray,
1824                    unsigned numExs, QualType Canonical, bool NoReturn,
1825                    CallingConv CallConv)
1826    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1827                   (Result->isDependentType() ||
1828                    hasAnyDependentType(ArgArray, numArgs)), NoReturn,
1829                   CallConv),
1830      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1831      AnyExceptionSpec(hasAnyExs) {
1832    // Fill in the trailing argument array.
1833    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1834    for (unsigned i = 0; i != numArgs; ++i)
1835      ArgInfo[i] = ArgArray[i];
1836    // Fill in the exception array.
1837    QualType *Ex = ArgInfo + numArgs;
1838    for (unsigned i = 0; i != numExs; ++i)
1839      Ex[i] = ExArray[i];
1840  }
1841
1842  /// NumArgs - The number of arguments this function has, not counting '...'.
1843  unsigned NumArgs : 20;
1844
1845  /// NumExceptions - The number of types in the exception spec, if any.
1846  unsigned NumExceptions : 10;
1847
1848  /// HasExceptionSpec - Whether this function has an exception spec at all.
1849  bool HasExceptionSpec : 1;
1850
1851  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1852  bool AnyExceptionSpec : 1;
1853
1854  /// ArgInfo - There is an variable size array after the class in memory that
1855  /// holds the argument types.
1856
1857  /// Exceptions - There is another variable size array after ArgInfo that
1858  /// holds the exception types.
1859
1860  friend class ASTContext;  // ASTContext creates these.
1861
1862public:
1863  unsigned getNumArgs() const { return NumArgs; }
1864  QualType getArgType(unsigned i) const {
1865    assert(i < NumArgs && "Invalid argument number!");
1866    return arg_type_begin()[i];
1867  }
1868
1869  bool hasExceptionSpec() const { return HasExceptionSpec; }
1870  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1871  unsigned getNumExceptions() const { return NumExceptions; }
1872  QualType getExceptionType(unsigned i) const {
1873    assert(i < NumExceptions && "Invalid exception number!");
1874    return exception_begin()[i];
1875  }
1876  bool hasEmptyExceptionSpec() const {
1877    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1878      getNumExceptions() == 0;
1879  }
1880
1881  bool isVariadic() const { return getSubClassData(); }
1882  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1883
1884  typedef const QualType *arg_type_iterator;
1885  arg_type_iterator arg_type_begin() const {
1886    return reinterpret_cast<const QualType *>(this+1);
1887  }
1888  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1889
1890  typedef const QualType *exception_iterator;
1891  exception_iterator exception_begin() const {
1892    // exceptions begin where arguments end
1893    return arg_type_end();
1894  }
1895  exception_iterator exception_end() const {
1896    return exception_begin() + NumExceptions;
1897  }
1898
1899  bool isSugared() const { return false; }
1900  QualType desugar() const { return QualType(this, 0); }
1901
1902  virtual Linkage getLinkage() const;
1903
1904  static bool classof(const Type *T) {
1905    return T->getTypeClass() == FunctionProto;
1906  }
1907  static bool classof(const FunctionProtoType *) { return true; }
1908
1909  void Profile(llvm::FoldingSetNodeID &ID);
1910  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1911                      arg_type_iterator ArgTys, unsigned NumArgs,
1912                      bool isVariadic, unsigned TypeQuals,
1913                      bool hasExceptionSpec, bool anyExceptionSpec,
1914                      unsigned NumExceptions, exception_iterator Exs,
1915                      bool NoReturn, CallingConv CallConv);
1916};
1917
1918
1919/// \brief Represents the dependent type named by a dependently-scoped
1920/// typename using declaration, e.g.
1921///   using typename Base<T>::foo;
1922/// Template instantiation turns these into the underlying type.
1923class UnresolvedUsingType : public Type {
1924  UnresolvedUsingTypenameDecl *Decl;
1925
1926  UnresolvedUsingType(UnresolvedUsingTypenameDecl *D)
1927    : Type(UnresolvedUsing, QualType(), true), Decl(D) {}
1928  friend class ASTContext; // ASTContext creates these.
1929public:
1930
1931  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
1932
1933  bool isSugared() const { return false; }
1934  QualType desugar() const { return QualType(this, 0); }
1935
1936  static bool classof(const Type *T) {
1937    return T->getTypeClass() == UnresolvedUsing;
1938  }
1939  static bool classof(const UnresolvedUsingType *) { return true; }
1940
1941  void Profile(llvm::FoldingSetNodeID &ID) {
1942    return Profile(ID, Decl);
1943  }
1944  static void Profile(llvm::FoldingSetNodeID &ID,
1945                      UnresolvedUsingTypenameDecl *D) {
1946    ID.AddPointer(D);
1947  }
1948};
1949
1950
1951class TypedefType : public Type {
1952  TypedefDecl *Decl;
1953protected:
1954  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1955    : Type(tc, can, can->isDependentType()), Decl(D) {
1956    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1957  }
1958  friend class ASTContext;  // ASTContext creates these.
1959public:
1960
1961  TypedefDecl *getDecl() const { return Decl; }
1962
1963  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1964  /// potentially looking through *all* consecutive typedefs.  This returns the
1965  /// sum of the type qualifiers, so if you have:
1966  ///   typedef const int A;
1967  ///   typedef volatile A B;
1968  /// looking through the typedefs for B will give you "const volatile A".
1969  QualType LookThroughTypedefs() const;
1970
1971  bool isSugared() const { return true; }
1972  QualType desugar() const;
1973
1974  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1975  static bool classof(const TypedefType *) { return true; }
1976};
1977
1978/// TypeOfExprType (GCC extension).
1979class TypeOfExprType : public Type {
1980  Expr *TOExpr;
1981
1982protected:
1983  TypeOfExprType(Expr *E, QualType can = QualType());
1984  friend class ASTContext;  // ASTContext creates these.
1985public:
1986  Expr *getUnderlyingExpr() const { return TOExpr; }
1987
1988  /// \brief Remove a single level of sugar.
1989  QualType desugar() const;
1990
1991  /// \brief Returns whether this type directly provides sugar.
1992  bool isSugared() const { return true; }
1993
1994  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1995  static bool classof(const TypeOfExprType *) { return true; }
1996};
1997
1998/// Subclass of TypeOfExprType that is used for canonical, dependent
1999/// typeof(expr) types.
2000class DependentTypeOfExprType
2001  : public TypeOfExprType, public llvm::FoldingSetNode {
2002  ASTContext &Context;
2003
2004public:
2005  DependentTypeOfExprType(ASTContext &Context, Expr *E)
2006    : TypeOfExprType(E), Context(Context) { }
2007
2008  bool isSugared() const { return false; }
2009  QualType desugar() const { return QualType(this, 0); }
2010
2011  void Profile(llvm::FoldingSetNodeID &ID) {
2012    Profile(ID, Context, getUnderlyingExpr());
2013  }
2014
2015  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2016                      Expr *E);
2017};
2018
2019/// TypeOfType (GCC extension).
2020class TypeOfType : public Type {
2021  QualType TOType;
2022  TypeOfType(QualType T, QualType can)
2023    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
2024    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2025  }
2026  friend class ASTContext;  // ASTContext creates these.
2027public:
2028  QualType getUnderlyingType() const { return TOType; }
2029
2030  /// \brief Remove a single level of sugar.
2031  QualType desugar() const { return getUnderlyingType(); }
2032
2033  /// \brief Returns whether this type directly provides sugar.
2034  bool isSugared() const { return true; }
2035
2036  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2037  static bool classof(const TypeOfType *) { return true; }
2038};
2039
2040/// DecltypeType (C++0x)
2041class DecltypeType : public Type {
2042  Expr *E;
2043
2044  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2045  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2046  // from it.
2047  QualType UnderlyingType;
2048
2049protected:
2050  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2051  friend class ASTContext;  // ASTContext creates these.
2052public:
2053  Expr *getUnderlyingExpr() const { return E; }
2054  QualType getUnderlyingType() const { return UnderlyingType; }
2055
2056  /// \brief Remove a single level of sugar.
2057  QualType desugar() const { return getUnderlyingType(); }
2058
2059  /// \brief Returns whether this type directly provides sugar.
2060  bool isSugared() const { return !isDependentType(); }
2061
2062  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2063  static bool classof(const DecltypeType *) { return true; }
2064};
2065
2066/// Subclass of DecltypeType that is used for canonical, dependent
2067/// C++0x decltype types.
2068class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2069  ASTContext &Context;
2070
2071public:
2072  DependentDecltypeType(ASTContext &Context, Expr *E);
2073
2074  bool isSugared() const { return false; }
2075  QualType desugar() const { return QualType(this, 0); }
2076
2077  void Profile(llvm::FoldingSetNodeID &ID) {
2078    Profile(ID, Context, getUnderlyingExpr());
2079  }
2080
2081  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2082                      Expr *E);
2083};
2084
2085class TagType : public Type {
2086  /// Stores the TagDecl associated with this type. The decl will
2087  /// point to the TagDecl that actually defines the entity (or is a
2088  /// definition in progress), if there is such a definition. The
2089  /// single-bit value will be non-zero when this tag is in the
2090  /// process of being defined.
2091  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
2092  friend class ASTContext;
2093  friend class TagDecl;
2094
2095protected:
2096  TagType(TypeClass TC, TagDecl *D, QualType can);
2097
2098public:
2099  TagDecl *getDecl() const { return decl.getPointer(); }
2100
2101  /// @brief Determines whether this type is in the process of being
2102  /// defined.
2103  bool isBeingDefined() const { return decl.getInt(); }
2104  void setBeingDefined(bool Def) const { decl.setInt(Def? 1 : 0); }
2105
2106  virtual Linkage getLinkage() const;
2107
2108  static bool classof(const Type *T) {
2109    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2110  }
2111  static bool classof(const TagType *) { return true; }
2112  static bool classof(const RecordType *) { return true; }
2113  static bool classof(const EnumType *) { return true; }
2114};
2115
2116/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2117/// to detect TagType objects of structs/unions/classes.
2118class RecordType : public TagType {
2119protected:
2120  explicit RecordType(RecordDecl *D)
2121    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
2122  explicit RecordType(TypeClass TC, RecordDecl *D)
2123    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
2124  friend class ASTContext;   // ASTContext creates these.
2125public:
2126
2127  RecordDecl *getDecl() const {
2128    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2129  }
2130
2131  // FIXME: This predicate is a helper to QualType/Type. It needs to
2132  // recursively check all fields for const-ness. If any field is declared
2133  // const, it needs to return false.
2134  bool hasConstFields() const { return false; }
2135
2136  // FIXME: RecordType needs to check when it is created that all fields are in
2137  // the same address space, and return that.
2138  unsigned getAddressSpace() const { return 0; }
2139
2140  bool isSugared() const { return false; }
2141  QualType desugar() const { return QualType(this, 0); }
2142
2143  static bool classof(const TagType *T);
2144  static bool classof(const Type *T) {
2145    return isa<TagType>(T) && classof(cast<TagType>(T));
2146  }
2147  static bool classof(const RecordType *) { return true; }
2148};
2149
2150/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2151/// to detect TagType objects of enums.
2152class EnumType : public TagType {
2153  explicit EnumType(EnumDecl *D)
2154    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
2155  friend class ASTContext;   // ASTContext creates these.
2156public:
2157
2158  EnumDecl *getDecl() const {
2159    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2160  }
2161
2162  bool isSugared() const { return false; }
2163  QualType desugar() const { return QualType(this, 0); }
2164
2165  static bool classof(const TagType *T);
2166  static bool classof(const Type *T) {
2167    return isa<TagType>(T) && classof(cast<TagType>(T));
2168  }
2169  static bool classof(const EnumType *) { return true; }
2170};
2171
2172/// ElaboratedType - A non-canonical type used to represents uses of
2173/// elaborated type specifiers in C++.  For example:
2174///
2175///   void foo(union MyUnion);
2176///            ^^^^^^^^^^^^^
2177///
2178/// At the moment, for efficiency we do not create elaborated types in
2179/// C, since outside of typedefs all references to structs would
2180/// necessarily be elaborated.
2181class ElaboratedType : public Type, public llvm::FoldingSetNode {
2182public:
2183  enum TagKind {
2184    TK_struct,
2185    TK_union,
2186    TK_class,
2187    TK_enum
2188  };
2189
2190private:
2191  /// The tag that was used in this elaborated type specifier.
2192  TagKind Tag;
2193
2194  /// The underlying type.
2195  QualType UnderlyingType;
2196
2197  explicit ElaboratedType(QualType Ty, TagKind Tag, QualType Canon)
2198    : Type(Elaborated, Canon, Canon->isDependentType()),
2199      Tag(Tag), UnderlyingType(Ty) { }
2200  friend class ASTContext;   // ASTContext creates these.
2201
2202public:
2203  TagKind getTagKind() const { return Tag; }
2204  QualType getUnderlyingType() const { return UnderlyingType; }
2205
2206  /// \brief Remove a single level of sugar.
2207  QualType desugar() const { return getUnderlyingType(); }
2208
2209  /// \brief Returns whether this type directly provides sugar.
2210  bool isSugared() const { return true; }
2211
2212  static const char *getNameForTagKind(TagKind Kind) {
2213    switch (Kind) {
2214    default: assert(0 && "Unknown TagKind!");
2215    case TK_struct: return "struct";
2216    case TK_union:  return "union";
2217    case TK_class:  return "class";
2218    case TK_enum:   return "enum";
2219    }
2220  }
2221
2222  void Profile(llvm::FoldingSetNodeID &ID) {
2223    Profile(ID, getUnderlyingType(), getTagKind());
2224  }
2225  static void Profile(llvm::FoldingSetNodeID &ID, QualType T, TagKind Tag) {
2226    ID.AddPointer(T.getAsOpaquePtr());
2227    ID.AddInteger(Tag);
2228  }
2229
2230  static bool classof(const ElaboratedType*) { return true; }
2231  static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
2232};
2233
2234class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2235  unsigned Depth : 15;
2236  unsigned Index : 16;
2237  unsigned ParameterPack : 1;
2238  IdentifierInfo *Name;
2239
2240  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2241                       QualType Canon)
2242    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2243      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2244
2245  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2246    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2247      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2248
2249  friend class ASTContext;  // ASTContext creates these
2250
2251public:
2252  unsigned getDepth() const { return Depth; }
2253  unsigned getIndex() const { return Index; }
2254  bool isParameterPack() const { return ParameterPack; }
2255  IdentifierInfo *getName() const { return Name; }
2256
2257  bool isSugared() const { return false; }
2258  QualType desugar() const { return QualType(this, 0); }
2259
2260  void Profile(llvm::FoldingSetNodeID &ID) {
2261    Profile(ID, Depth, Index, ParameterPack, Name);
2262  }
2263
2264  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2265                      unsigned Index, bool ParameterPack,
2266                      IdentifierInfo *Name) {
2267    ID.AddInteger(Depth);
2268    ID.AddInteger(Index);
2269    ID.AddBoolean(ParameterPack);
2270    ID.AddPointer(Name);
2271  }
2272
2273  static bool classof(const Type *T) {
2274    return T->getTypeClass() == TemplateTypeParm;
2275  }
2276  static bool classof(const TemplateTypeParmType *T) { return true; }
2277};
2278
2279/// \brief Represents the result of substituting a type for a template
2280/// type parameter.
2281///
2282/// Within an instantiated template, all template type parameters have
2283/// been replaced with these.  They are used solely to record that a
2284/// type was originally written as a template type parameter;
2285/// therefore they are never canonical.
2286class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2287  // The original type parameter.
2288  const TemplateTypeParmType *Replaced;
2289
2290  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2291    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2292      Replaced(Param) { }
2293
2294  friend class ASTContext;
2295
2296public:
2297  IdentifierInfo *getName() const { return Replaced->getName(); }
2298
2299  /// Gets the template parameter that was substituted for.
2300  const TemplateTypeParmType *getReplacedParameter() const {
2301    return Replaced;
2302  }
2303
2304  /// Gets the type that was substituted for the template
2305  /// parameter.
2306  QualType getReplacementType() const {
2307    return getCanonicalTypeInternal();
2308  }
2309
2310  bool isSugared() const { return true; }
2311  QualType desugar() const { return getReplacementType(); }
2312
2313  void Profile(llvm::FoldingSetNodeID &ID) {
2314    Profile(ID, getReplacedParameter(), getReplacementType());
2315  }
2316  static void Profile(llvm::FoldingSetNodeID &ID,
2317                      const TemplateTypeParmType *Replaced,
2318                      QualType Replacement) {
2319    ID.AddPointer(Replaced);
2320    ID.AddPointer(Replacement.getAsOpaquePtr());
2321  }
2322
2323  static bool classof(const Type *T) {
2324    return T->getTypeClass() == SubstTemplateTypeParm;
2325  }
2326  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2327};
2328
2329/// \brief Represents the type of a template specialization as written
2330/// in the source code.
2331///
2332/// Template specialization types represent the syntactic form of a
2333/// template-id that refers to a type, e.g., @c vector<int>. Some
2334/// template specialization types are syntactic sugar, whose canonical
2335/// type will point to some other type node that represents the
2336/// instantiation or class template specialization. For example, a
2337/// class template specialization type of @c vector<int> will refer to
2338/// a tag type for the instantiation
2339/// @c std::vector<int, std::allocator<int>>.
2340///
2341/// Other template specialization types, for which the template name
2342/// is dependent, may be canonical types. These types are always
2343/// dependent.
2344class TemplateSpecializationType
2345  : public Type, public llvm::FoldingSetNode {
2346
2347  // FIXME: Currently needed for profiling expressions; can we avoid this?
2348  ASTContext &Context;
2349
2350    /// \brief The name of the template being specialized.
2351  TemplateName Template;
2352
2353  /// \brief - The number of template arguments named in this class
2354  /// template specialization.
2355  unsigned NumArgs;
2356
2357  TemplateSpecializationType(ASTContext &Context,
2358                             TemplateName T,
2359                             const TemplateArgument *Args,
2360                             unsigned NumArgs, QualType Canon);
2361
2362  virtual void Destroy(ASTContext& C);
2363
2364  friend class ASTContext;  // ASTContext creates these
2365
2366public:
2367  /// \brief Determine whether any of the given template arguments are
2368  /// dependent.
2369  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2370                                            unsigned NumArgs);
2371
2372  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2373                                            unsigned NumArgs);
2374
2375  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2376
2377  /// \brief Print a template argument list, including the '<' and '>'
2378  /// enclosing the template arguments.
2379  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2380                                               unsigned NumArgs,
2381                                               const PrintingPolicy &Policy);
2382
2383  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2384                                               unsigned NumArgs,
2385                                               const PrintingPolicy &Policy);
2386
2387  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2388                                               const PrintingPolicy &Policy);
2389
2390  typedef const TemplateArgument * iterator;
2391
2392  iterator begin() const { return getArgs(); }
2393  iterator end() const;
2394
2395  /// \brief Retrieve the name of the template that we are specializing.
2396  TemplateName getTemplateName() const { return Template; }
2397
2398  /// \brief Retrieve the template arguments.
2399  const TemplateArgument *getArgs() const {
2400    return reinterpret_cast<const TemplateArgument *>(this + 1);
2401  }
2402
2403  /// \brief Retrieve the number of template arguments.
2404  unsigned getNumArgs() const { return NumArgs; }
2405
2406  /// \brief Retrieve a specific template argument as a type.
2407  /// \precondition @c isArgType(Arg)
2408  const TemplateArgument &getArg(unsigned Idx) const;
2409
2410  bool isSugared() const { return !isDependentType(); }
2411  QualType desugar() const { return getCanonicalTypeInternal(); }
2412
2413  void Profile(llvm::FoldingSetNodeID &ID) {
2414    Profile(ID, Template, getArgs(), NumArgs, Context);
2415  }
2416
2417  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2418                      const TemplateArgument *Args, unsigned NumArgs,
2419                      ASTContext &Context);
2420
2421  static bool classof(const Type *T) {
2422    return T->getTypeClass() == TemplateSpecialization;
2423  }
2424  static bool classof(const TemplateSpecializationType *T) { return true; }
2425};
2426
2427/// \brief Represents a type that was referred to via a qualified
2428/// name, e.g., N::M::type.
2429///
2430/// This type is used to keep track of a type name as written in the
2431/// source code, including any nested-name-specifiers. The type itself
2432/// is always "sugar", used to express what was written in the source
2433/// code but containing no additional semantic information.
2434class QualifiedNameType : public Type, public llvm::FoldingSetNode {
2435  /// \brief The nested name specifier containing the qualifier.
2436  NestedNameSpecifier *NNS;
2437
2438  /// \brief The type that this qualified name refers to.
2439  QualType NamedType;
2440
2441  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
2442                    QualType CanonType)
2443    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
2444      NNS(NNS), NamedType(NamedType) { }
2445
2446  friend class ASTContext;  // ASTContext creates these
2447
2448public:
2449  /// \brief Retrieve the qualification on this type.
2450  NestedNameSpecifier *getQualifier() const { return NNS; }
2451
2452  /// \brief Retrieve the type named by the qualified-id.
2453  QualType getNamedType() const { return NamedType; }
2454
2455  /// \brief Remove a single level of sugar.
2456  QualType desugar() const { return getNamedType(); }
2457
2458  /// \brief Returns whether this type directly provides sugar.
2459  bool isSugared() const { return true; }
2460
2461  void Profile(llvm::FoldingSetNodeID &ID) {
2462    Profile(ID, NNS, NamedType);
2463  }
2464
2465  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2466                      QualType NamedType) {
2467    ID.AddPointer(NNS);
2468    NamedType.Profile(ID);
2469  }
2470
2471  static bool classof(const Type *T) {
2472    return T->getTypeClass() == QualifiedName;
2473  }
2474  static bool classof(const QualifiedNameType *T) { return true; }
2475};
2476
2477/// \brief Represents a 'typename' specifier that names a type within
2478/// a dependent type, e.g., "typename T::type".
2479///
2480/// TypenameType has a very similar structure to QualifiedNameType,
2481/// which also involves a nested-name-specifier following by a type,
2482/// and (FIXME!) both can even be prefixed by the 'typename'
2483/// keyword. However, the two types serve very different roles:
2484/// QualifiedNameType is a non-semantic type that serves only as sugar
2485/// to show how a particular type was written in the source
2486/// code. TypenameType, on the other hand, only occurs when the
2487/// nested-name-specifier is dependent, such that we cannot resolve
2488/// the actual type until after instantiation.
2489class TypenameType : public Type, public llvm::FoldingSetNode {
2490  /// \brief The nested name specifier containing the qualifier.
2491  NestedNameSpecifier *NNS;
2492
2493  typedef llvm::PointerUnion<const IdentifierInfo *,
2494                             const TemplateSpecializationType *> NameType;
2495
2496  /// \brief The type that this typename specifier refers to.
2497  NameType Name;
2498
2499  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
2500               QualType CanonType)
2501    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
2502    assert(NNS->isDependent() &&
2503           "TypenameType requires a dependent nested-name-specifier");
2504  }
2505
2506  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
2507               QualType CanonType)
2508    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
2509    assert(NNS->isDependent() &&
2510           "TypenameType requires a dependent nested-name-specifier");
2511  }
2512
2513  friend class ASTContext;  // ASTContext creates these
2514
2515public:
2516  /// \brief Retrieve the qualification on this type.
2517  NestedNameSpecifier *getQualifier() const { return NNS; }
2518
2519  /// \brief Retrieve the type named by the typename specifier as an
2520  /// identifier.
2521  ///
2522  /// This routine will return a non-NULL identifier pointer when the
2523  /// form of the original typename was terminated by an identifier,
2524  /// e.g., "typename T::type".
2525  const IdentifierInfo *getIdentifier() const {
2526    return Name.dyn_cast<const IdentifierInfo *>();
2527  }
2528
2529  /// \brief Retrieve the type named by the typename specifier as a
2530  /// type specialization.
2531  const TemplateSpecializationType *getTemplateId() const {
2532    return Name.dyn_cast<const TemplateSpecializationType *>();
2533  }
2534
2535  bool isSugared() const { return false; }
2536  QualType desugar() const { return QualType(this, 0); }
2537
2538  void Profile(llvm::FoldingSetNodeID &ID) {
2539    Profile(ID, NNS, Name);
2540  }
2541
2542  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2543                      NameType Name) {
2544    ID.AddPointer(NNS);
2545    ID.AddPointer(Name.getOpaqueValue());
2546  }
2547
2548  static bool classof(const Type *T) {
2549    return T->getTypeClass() == Typename;
2550  }
2551  static bool classof(const TypenameType *T) { return true; }
2552};
2553
2554/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
2555/// object oriented design.  They basically correspond to C++ classes.  There
2556/// are two kinds of interface types, normal interfaces like "NSString" and
2557/// qualified interfaces, which are qualified with a protocol list like
2558/// "NSString<NSCopyable, NSAmazing>".
2559class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
2560  ObjCInterfaceDecl *Decl;
2561
2562  /// \brief The number of protocols stored after the ObjCInterfaceType node.
2563  /// The list of protocols is sorted on protocol name. No protocol is enterred
2564  /// more than once.
2565  unsigned NumProtocols;
2566
2567  ObjCInterfaceType(QualType Canonical, ObjCInterfaceDecl *D,
2568                    ObjCProtocolDecl **Protos, unsigned NumP);
2569  friend class ASTContext;  // ASTContext creates these.
2570public:
2571  void Destroy(ASTContext& C);
2572
2573  ObjCInterfaceDecl *getDecl() const { return Decl; }
2574
2575  /// getNumProtocols - Return the number of qualifying protocols in this
2576  /// interface type, or 0 if there are none.
2577  unsigned getNumProtocols() const { return NumProtocols; }
2578
2579  /// qual_iterator and friends: this provides access to the (potentially empty)
2580  /// list of protocols qualifying this interface.
2581  typedef ObjCProtocolDecl*  const * qual_iterator;
2582  qual_iterator qual_begin() const {
2583    return reinterpret_cast<qual_iterator>(this + 1);
2584  }
2585  qual_iterator qual_end() const   {
2586    return qual_begin() + NumProtocols;
2587  }
2588  bool qual_empty() const { return NumProtocols == 0; }
2589
2590  bool isSugared() const { return false; }
2591  QualType desugar() const { return QualType(this, 0); }
2592
2593  void Profile(llvm::FoldingSetNodeID &ID);
2594  static void Profile(llvm::FoldingSetNodeID &ID,
2595                      const ObjCInterfaceDecl *Decl,
2596                      ObjCProtocolDecl * const *protocols,
2597                      unsigned NumProtocols);
2598
2599  virtual Linkage getLinkage() const;
2600
2601  static bool classof(const Type *T) {
2602    return T->getTypeClass() == ObjCInterface;
2603  }
2604  static bool classof(const ObjCInterfaceType *) { return true; }
2605};
2606
2607/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
2608/// and 'Interface <p> *'.
2609///
2610/// Duplicate protocols are removed and protocol list is canonicalized to be in
2611/// alphabetical order.
2612class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
2613  QualType PointeeType; // A builtin or interface type.
2614
2615  /// \brief The number of protocols stored after the ObjCObjectPointerType
2616  /// node.
2617  ///
2618  /// The list of protocols is sorted on protocol name. No protocol is enterred
2619  /// more than once.
2620  unsigned NumProtocols;
2621
2622  ObjCObjectPointerType(QualType Canonical, QualType T,
2623                        ObjCProtocolDecl **Protos, unsigned NumP);
2624  friend class ASTContext;  // ASTContext creates these.
2625
2626public:
2627  void Destroy(ASTContext& C);
2628
2629  // Get the pointee type. Pointee will either be:
2630  // - a built-in type (for 'id' and 'Class').
2631  // - an interface type (for user-defined types).
2632  // - a TypedefType whose canonical type is an interface (as in 'T' below).
2633  //   For example: typedef NSObject T; T *var;
2634  QualType getPointeeType() const { return PointeeType; }
2635
2636  const ObjCInterfaceType *getInterfaceType() const {
2637    return PointeeType->getAs<ObjCInterfaceType>();
2638  }
2639  /// getInterfaceDecl - returns an interface decl for user-defined types.
2640  ObjCInterfaceDecl *getInterfaceDecl() const {
2641    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
2642  }
2643  /// isObjCIdType - true for "id".
2644  bool isObjCIdType() const {
2645    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2646           !NumProtocols;
2647  }
2648  /// isObjCClassType - true for "Class".
2649  bool isObjCClassType() const {
2650    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2651           !NumProtocols;
2652  }
2653
2654  /// isObjCQualifiedIdType - true for "id <p>".
2655  bool isObjCQualifiedIdType() const {
2656    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2657           NumProtocols;
2658  }
2659  /// isObjCQualifiedClassType - true for "Class <p>".
2660  bool isObjCQualifiedClassType() const {
2661    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2662           NumProtocols;
2663  }
2664  /// qual_iterator and friends: this provides access to the (potentially empty)
2665  /// list of protocols qualifying this interface.
2666  typedef ObjCProtocolDecl*  const * qual_iterator;
2667
2668  qual_iterator qual_begin() const {
2669    return reinterpret_cast<qual_iterator> (this + 1);
2670  }
2671  qual_iterator qual_end() const   {
2672    return qual_begin() + NumProtocols;
2673  }
2674  bool qual_empty() const { return NumProtocols == 0; }
2675
2676  /// getNumProtocols - Return the number of qualifying protocols in this
2677  /// interface type, or 0 if there are none.
2678  unsigned getNumProtocols() const { return NumProtocols; }
2679
2680  bool isSugared() const { return false; }
2681  QualType desugar() const { return QualType(this, 0); }
2682
2683  virtual Linkage getLinkage() const;
2684
2685  void Profile(llvm::FoldingSetNodeID &ID);
2686  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2687                      ObjCProtocolDecl *const *protocols,
2688                      unsigned NumProtocols);
2689  static bool classof(const Type *T) {
2690    return T->getTypeClass() == ObjCObjectPointer;
2691  }
2692  static bool classof(const ObjCObjectPointerType *) { return true; }
2693};
2694
2695/// A qualifier set is used to build a set of qualifiers.
2696class QualifierCollector : public Qualifiers {
2697  ASTContext *Context;
2698
2699public:
2700  QualifierCollector(Qualifiers Qs = Qualifiers())
2701    : Qualifiers(Qs), Context(0) {}
2702  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
2703    : Qualifiers(Qs), Context(&Context) {}
2704
2705  void setContext(ASTContext &C) { Context = &C; }
2706
2707  /// Collect any qualifiers on the given type and return an
2708  /// unqualified type.
2709  const Type *strip(QualType QT) {
2710    addFastQualifiers(QT.getLocalFastQualifiers());
2711    if (QT.hasLocalNonFastQualifiers()) {
2712      const ExtQuals *EQ = QT.getExtQualsUnsafe();
2713      Context = &EQ->getContext();
2714      addQualifiers(EQ->getQualifiers());
2715      return EQ->getBaseType();
2716    }
2717    return QT.getTypePtrUnsafe();
2718  }
2719
2720  /// Apply the collected qualifiers to the given type.
2721  QualType apply(QualType QT) const;
2722
2723  /// Apply the collected qualifiers to the given type.
2724  QualType apply(const Type* T) const;
2725
2726};
2727
2728
2729// Inline function definitions.
2730
2731inline bool QualType::isCanonical() const {
2732  const Type *T = getTypePtr();
2733  if (hasLocalQualifiers())
2734    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
2735  return T->isCanonicalUnqualified();
2736}
2737
2738inline bool QualType::isCanonicalAsParam() const {
2739  if (hasLocalQualifiers()) return false;
2740  const Type *T = getTypePtr();
2741  return T->isCanonicalUnqualified() &&
2742           !isa<FunctionType>(T) && !isa<ArrayType>(T);
2743}
2744
2745inline bool QualType::isConstQualified() const {
2746  return isLocalConstQualified() ||
2747              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
2748}
2749
2750inline bool QualType::isRestrictQualified() const {
2751  return isLocalRestrictQualified() ||
2752            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
2753}
2754
2755
2756inline bool QualType::isVolatileQualified() const {
2757  return isLocalVolatileQualified() ||
2758  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
2759}
2760
2761inline bool QualType::hasQualifiers() const {
2762  return hasLocalQualifiers() ||
2763                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
2764}
2765
2766inline Qualifiers QualType::getQualifiers() const {
2767  Qualifiers Quals = getLocalQualifiers();
2768  Quals.addQualifiers(
2769                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
2770  return Quals;
2771}
2772
2773inline unsigned QualType::getCVRQualifiers() const {
2774  return getLocalCVRQualifiers() |
2775              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
2776}
2777
2778/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
2779/// type, returns them. Otherwise, if this is an array type, recurses
2780/// on the element type until some qualifiers have been found or a non-array
2781/// type reached.
2782inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
2783  if (unsigned Quals = getCVRQualifiers())
2784    return Quals;
2785  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2786  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2787    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
2788  return 0;
2789}
2790
2791inline void QualType::removeConst() {
2792  removeFastQualifiers(Qualifiers::Const);
2793}
2794
2795inline void QualType::removeRestrict() {
2796  removeFastQualifiers(Qualifiers::Restrict);
2797}
2798
2799inline void QualType::removeVolatile() {
2800  QualifierCollector Qc;
2801  const Type *Ty = Qc.strip(*this);
2802  if (Qc.hasVolatile()) {
2803    Qc.removeVolatile();
2804    *this = Qc.apply(Ty);
2805  }
2806}
2807
2808inline void QualType::removeCVRQualifiers(unsigned Mask) {
2809  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
2810
2811  // Fast path: we don't need to touch the slow qualifiers.
2812  if (!(Mask & ~Qualifiers::FastMask)) {
2813    removeFastQualifiers(Mask);
2814    return;
2815  }
2816
2817  QualifierCollector Qc;
2818  const Type *Ty = Qc.strip(*this);
2819  Qc.removeCVRQualifiers(Mask);
2820  *this = Qc.apply(Ty);
2821}
2822
2823/// getAddressSpace - Return the address space of this type.
2824inline unsigned QualType::getAddressSpace() const {
2825  if (hasLocalNonFastQualifiers()) {
2826    const ExtQuals *EQ = getExtQualsUnsafe();
2827    if (EQ->hasAddressSpace())
2828      return EQ->getAddressSpace();
2829  }
2830
2831  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2832  if (CT.hasLocalNonFastQualifiers()) {
2833    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2834    if (EQ->hasAddressSpace())
2835      return EQ->getAddressSpace();
2836  }
2837
2838  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2839    return AT->getElementType().getAddressSpace();
2840  if (const RecordType *RT = dyn_cast<RecordType>(CT))
2841    return RT->getAddressSpace();
2842  return 0;
2843}
2844
2845/// getObjCGCAttr - Return the gc attribute of this type.
2846inline Qualifiers::GC QualType::getObjCGCAttr() const {
2847  if (hasLocalNonFastQualifiers()) {
2848    const ExtQuals *EQ = getExtQualsUnsafe();
2849    if (EQ->hasObjCGCAttr())
2850      return EQ->getObjCGCAttr();
2851  }
2852
2853  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2854  if (CT.hasLocalNonFastQualifiers()) {
2855    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2856    if (EQ->hasObjCGCAttr())
2857      return EQ->getObjCGCAttr();
2858  }
2859
2860  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2861      return AT->getElementType().getObjCGCAttr();
2862  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
2863    return PT->getPointeeType().getObjCGCAttr();
2864  // We most look at all pointer types, not just pointer to interface types.
2865  if (const PointerType *PT = CT->getAs<PointerType>())
2866    return PT->getPointeeType().getObjCGCAttr();
2867  return Qualifiers::GCNone;
2868}
2869
2870  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
2871  /// false otherwise.
2872inline bool QualType::getNoReturnAttr() const {
2873  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2874  if (const PointerType *PT = getTypePtr()->getAs<PointerType>()) {
2875    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
2876      return FT->getNoReturnAttr();
2877  } else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
2878    return FT->getNoReturnAttr();
2879
2880  return false;
2881}
2882
2883/// getCallConv - Returns the calling convention of the type if the type
2884/// is a function type, CC_Default otherwise.
2885inline CallingConv QualType::getCallConv() const {
2886  if (const PointerType *PT = getTypePtr()->getAs<PointerType>())
2887    return PT->getPointeeType().getCallConv();
2888  else if (const ReferenceType *RT = getTypePtr()->getAs<ReferenceType>())
2889    return RT->getPointeeType().getCallConv();
2890  else if (const MemberPointerType *MPT =
2891           getTypePtr()->getAs<MemberPointerType>())
2892    return MPT->getPointeeType().getCallConv();
2893  else if (const BlockPointerType *BPT =
2894           getTypePtr()->getAs<BlockPointerType>()) {
2895    if (const FunctionType *FT = BPT->getPointeeType()->getAs<FunctionType>())
2896      return FT->getCallConv();
2897  } else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
2898    return FT->getCallConv();
2899
2900  return CC_Default;
2901}
2902
2903/// isMoreQualifiedThan - Determine whether this type is more
2904/// qualified than the Other type. For example, "const volatile int"
2905/// is more qualified than "const int", "volatile int", and
2906/// "int". However, it is not more qualified than "const volatile
2907/// int".
2908inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2909  // FIXME: work on arbitrary qualifiers
2910  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
2911  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
2912  if (getAddressSpace() != Other.getAddressSpace())
2913    return false;
2914  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2915}
2916
2917/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2918/// as qualified as the Other type. For example, "const volatile
2919/// int" is at least as qualified as "const int", "volatile int",
2920/// "int", and "const volatile int".
2921inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2922  // FIXME: work on arbitrary qualifiers
2923  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
2924  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
2925  if (getAddressSpace() != Other.getAddressSpace())
2926    return false;
2927  return (MyQuals | OtherQuals) == MyQuals;
2928}
2929
2930/// getNonReferenceType - If Type is a reference type (e.g., const
2931/// int&), returns the type that the reference refers to ("const
2932/// int"). Otherwise, returns the type itself. This routine is used
2933/// throughout Sema to implement C++ 5p6:
2934///
2935///   If an expression initially has the type "reference to T" (8.3.2,
2936///   8.5.3), the type is adjusted to "T" prior to any further
2937///   analysis, the expression designates the object or function
2938///   denoted by the reference, and the expression is an lvalue.
2939inline QualType QualType::getNonReferenceType() const {
2940  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
2941    return RefType->getPointeeType();
2942  else
2943    return *this;
2944}
2945
2946inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
2947  if (const PointerType *PT = getAs<PointerType>())
2948    return PT->getPointeeType()->getAs<ObjCInterfaceType>();
2949  return 0;
2950}
2951
2952inline bool Type::isFunctionType() const {
2953  return isa<FunctionType>(CanonicalType);
2954}
2955inline bool Type::isPointerType() const {
2956  return isa<PointerType>(CanonicalType);
2957}
2958inline bool Type::isAnyPointerType() const {
2959  return isPointerType() || isObjCObjectPointerType();
2960}
2961inline bool Type::isBlockPointerType() const {
2962  return isa<BlockPointerType>(CanonicalType);
2963}
2964inline bool Type::isReferenceType() const {
2965  return isa<ReferenceType>(CanonicalType);
2966}
2967inline bool Type::isLValueReferenceType() const {
2968  return isa<LValueReferenceType>(CanonicalType);
2969}
2970inline bool Type::isRValueReferenceType() const {
2971  return isa<RValueReferenceType>(CanonicalType);
2972}
2973inline bool Type::isFunctionPointerType() const {
2974  if (const PointerType* T = getAs<PointerType>())
2975    return T->getPointeeType()->isFunctionType();
2976  else
2977    return false;
2978}
2979inline bool Type::isMemberPointerType() const {
2980  return isa<MemberPointerType>(CanonicalType);
2981}
2982inline bool Type::isMemberFunctionPointerType() const {
2983  if (const MemberPointerType* T = getAs<MemberPointerType>())
2984    return T->getPointeeType()->isFunctionType();
2985  else
2986    return false;
2987}
2988inline bool Type::isArrayType() const {
2989  return isa<ArrayType>(CanonicalType);
2990}
2991inline bool Type::isConstantArrayType() const {
2992  return isa<ConstantArrayType>(CanonicalType);
2993}
2994inline bool Type::isIncompleteArrayType() const {
2995  return isa<IncompleteArrayType>(CanonicalType);
2996}
2997inline bool Type::isVariableArrayType() const {
2998  return isa<VariableArrayType>(CanonicalType);
2999}
3000inline bool Type::isDependentSizedArrayType() const {
3001  return isa<DependentSizedArrayType>(CanonicalType);
3002}
3003inline bool Type::isRecordType() const {
3004  return isa<RecordType>(CanonicalType);
3005}
3006inline bool Type::isAnyComplexType() const {
3007  return isa<ComplexType>(CanonicalType);
3008}
3009inline bool Type::isVectorType() const {
3010  return isa<VectorType>(CanonicalType);
3011}
3012inline bool Type::isExtVectorType() const {
3013  return isa<ExtVectorType>(CanonicalType);
3014}
3015inline bool Type::isObjCObjectPointerType() const {
3016  return isa<ObjCObjectPointerType>(CanonicalType);
3017}
3018inline bool Type::isObjCInterfaceType() const {
3019  return isa<ObjCInterfaceType>(CanonicalType);
3020}
3021inline bool Type::isObjCQualifiedIdType() const {
3022  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3023    return OPT->isObjCQualifiedIdType();
3024  return false;
3025}
3026inline bool Type::isObjCQualifiedClassType() const {
3027  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3028    return OPT->isObjCQualifiedClassType();
3029  return false;
3030}
3031inline bool Type::isObjCIdType() const {
3032  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3033    return OPT->isObjCIdType();
3034  return false;
3035}
3036inline bool Type::isObjCClassType() const {
3037  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3038    return OPT->isObjCClassType();
3039  return false;
3040}
3041inline bool Type::isObjCSelType() const {
3042  if (const PointerType *OPT = getAs<PointerType>())
3043    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3044  return false;
3045}
3046inline bool Type::isObjCBuiltinType() const {
3047  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3048}
3049inline bool Type::isTemplateTypeParmType() const {
3050  return isa<TemplateTypeParmType>(CanonicalType);
3051}
3052
3053inline bool Type::isSpecificBuiltinType(unsigned K) const {
3054  if (const BuiltinType *BT = getAs<BuiltinType>())
3055    if (BT->getKind() == (BuiltinType::Kind) K)
3056      return true;
3057  return false;
3058}
3059
3060/// \brief Determines whether this is a type for which one can define
3061/// an overloaded operator.
3062inline bool Type::isOverloadableType() const {
3063  return isDependentType() || isRecordType() || isEnumeralType();
3064}
3065
3066inline bool Type::hasPointerRepresentation() const {
3067  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3068          isObjCInterfaceType() || isObjCObjectPointerType() ||
3069          isObjCQualifiedInterfaceType() || isNullPtrType());
3070}
3071
3072inline bool Type::hasObjCPointerRepresentation() const {
3073  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
3074          isObjCQualifiedInterfaceType());
3075}
3076
3077/// Insertion operator for diagnostics.  This allows sending QualType's into a
3078/// diagnostic with <<.
3079inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3080                                           QualType T) {
3081  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3082                  Diagnostic::ak_qualtype);
3083  return DB;
3084}
3085
3086// Helper class template that is used by Type::getAs to ensure that one does
3087// not try to look through a qualified type to get to an array type.
3088template<typename T,
3089         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3090                             llvm::is_base_of<ArrayType, T>::value)>
3091struct ArrayType_cannot_be_used_with_getAs { };
3092
3093template<typename T>
3094struct ArrayType_cannot_be_used_with_getAs<T, true>;
3095
3096/// Member-template getAs<specific type>'.
3097template <typename T> const T *Type::getAs() const {
3098  ArrayType_cannot_be_used_with_getAs<T> at;
3099  (void)at;
3100
3101  // If this is directly a T type, return it.
3102  if (const T *Ty = dyn_cast<T>(this))
3103    return Ty;
3104
3105  // If the canonical form of this type isn't the right kind, reject it.
3106  if (!isa<T>(CanonicalType))
3107    return 0;
3108
3109  // If this is a typedef for the type, strip the typedef off without
3110  // losing all typedef information.
3111  return cast<T>(getUnqualifiedDesugaredType());
3112}
3113
3114}  // end namespace clang
3115
3116#endif
3117