Type.h revision 1e75edda2f03c9416845f86c8f69dfaff6eb262b
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/type_traits.h"
25#include "llvm/ADT/APSInt.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/ADT/PointerIntPair.h"
28#include "llvm/ADT/PointerUnion.h"
29
30using llvm::isa;
31using llvm::cast;
32using llvm::cast_or_null;
33using llvm::dyn_cast;
34using llvm::dyn_cast_or_null;
35namespace clang {
36  enum {
37    TypeAlignmentInBits = 3,
38    TypeAlignment = 1 << TypeAlignmentInBits
39  };
40  class Type;
41  class ExtQuals;
42  class QualType;
43}
44
45namespace llvm {
46  template <typename T>
47  class PointerLikeTypeTraits;
48  template<>
49  class PointerLikeTypeTraits< ::clang::Type*> {
50  public:
51    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
52    static inline ::clang::Type *getFromVoidPointer(void *P) {
53      return static_cast< ::clang::Type*>(P);
54    }
55    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
56  };
57  template<>
58  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
59  public:
60    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
61    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
62      return static_cast< ::clang::ExtQuals*>(P);
63    }
64    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
65  };
66
67  template <>
68  struct isPodLike<clang::QualType> { static const bool value = true; };
69}
70
71namespace clang {
72  class ASTContext;
73  class TypedefDecl;
74  class TemplateDecl;
75  class TemplateTypeParmDecl;
76  class NonTypeTemplateParmDecl;
77  class TemplateTemplateParmDecl;
78  class TagDecl;
79  class RecordDecl;
80  class CXXRecordDecl;
81  class EnumDecl;
82  class FieldDecl;
83  class ObjCInterfaceDecl;
84  class ObjCProtocolDecl;
85  class ObjCMethodDecl;
86  class UnresolvedUsingTypenameDecl;
87  class Expr;
88  class Stmt;
89  class SourceLocation;
90  class StmtIteratorBase;
91  class TemplateArgument;
92  class TemplateArgumentLoc;
93  class TemplateArgumentListInfo;
94  class Type;
95  class ElaboratedType;
96  struct PrintingPolicy;
97
98  template <typename> class CanQual;
99  typedef CanQual<Type> CanQualType;
100
101  // Provide forward declarations for all of the *Type classes
102#define TYPE(Class, Base) class Class##Type;
103#include "clang/AST/TypeNodes.def"
104
105/// Qualifiers - The collection of all-type qualifiers we support.
106/// Clang supports five independent qualifiers:
107/// * C99: const, volatile, and restrict
108/// * Embedded C (TR18037): address spaces
109/// * Objective C: the GC attributes (none, weak, or strong)
110class Qualifiers {
111public:
112  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
113    Const    = 0x1,
114    Restrict = 0x2,
115    Volatile = 0x4,
116    CVRMask = Const | Volatile | Restrict
117  };
118
119  enum GC {
120    GCNone = 0,
121    Weak,
122    Strong
123  };
124
125  enum {
126    /// The maximum supported address space number.
127    /// 24 bits should be enough for anyone.
128    MaxAddressSpace = 0xffffffu,
129
130    /// The width of the "fast" qualifier mask.
131    FastWidth = 2,
132
133    /// The fast qualifier mask.
134    FastMask = (1 << FastWidth) - 1
135  };
136
137  Qualifiers() : Mask(0) {}
138
139  static Qualifiers fromFastMask(unsigned Mask) {
140    Qualifiers Qs;
141    Qs.addFastQualifiers(Mask);
142    return Qs;
143  }
144
145  static Qualifiers fromCVRMask(unsigned CVR) {
146    Qualifiers Qs;
147    Qs.addCVRQualifiers(CVR);
148    return Qs;
149  }
150
151  // Deserialize qualifiers from an opaque representation.
152  static Qualifiers fromOpaqueValue(unsigned opaque) {
153    Qualifiers Qs;
154    Qs.Mask = opaque;
155    return Qs;
156  }
157
158  // Serialize these qualifiers into an opaque representation.
159  unsigned getAsOpaqueValue() const {
160    return Mask;
161  }
162
163  bool hasConst() const { return Mask & Const; }
164  void setConst(bool flag) {
165    Mask = (Mask & ~Const) | (flag ? Const : 0);
166  }
167  void removeConst() { Mask &= ~Const; }
168  void addConst() { Mask |= Const; }
169
170  bool hasVolatile() const { return Mask & Volatile; }
171  void setVolatile(bool flag) {
172    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
173  }
174  void removeVolatile() { Mask &= ~Volatile; }
175  void addVolatile() { Mask |= Volatile; }
176
177  bool hasRestrict() const { return Mask & Restrict; }
178  void setRestrict(bool flag) {
179    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
180  }
181  void removeRestrict() { Mask &= ~Restrict; }
182  void addRestrict() { Mask |= Restrict; }
183
184  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
185  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
186  void setCVRQualifiers(unsigned mask) {
187    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
188    Mask = (Mask & ~CVRMask) | mask;
189  }
190  void removeCVRQualifiers(unsigned mask) {
191    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
192    Mask &= ~mask;
193  }
194  void removeCVRQualifiers() {
195    removeCVRQualifiers(CVRMask);
196  }
197  void addCVRQualifiers(unsigned mask) {
198    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
199    Mask |= mask;
200  }
201
202  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
203  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
204  void setObjCGCAttr(GC type) {
205    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
206  }
207  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
208  void addObjCGCAttr(GC type) {
209    assert(type);
210    setObjCGCAttr(type);
211  }
212
213  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
214  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
215  void setAddressSpace(unsigned space) {
216    assert(space <= MaxAddressSpace);
217    Mask = (Mask & ~AddressSpaceMask)
218         | (((uint32_t) space) << AddressSpaceShift);
219  }
220  void removeAddressSpace() { setAddressSpace(0); }
221  void addAddressSpace(unsigned space) {
222    assert(space);
223    setAddressSpace(space);
224  }
225
226  // Fast qualifiers are those that can be allocated directly
227  // on a QualType object.
228  bool hasFastQualifiers() const { return getFastQualifiers(); }
229  unsigned getFastQualifiers() const { return Mask & FastMask; }
230  void setFastQualifiers(unsigned mask) {
231    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
232    Mask = (Mask & ~FastMask) | mask;
233  }
234  void removeFastQualifiers(unsigned mask) {
235    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
236    Mask &= ~mask;
237  }
238  void removeFastQualifiers() {
239    removeFastQualifiers(FastMask);
240  }
241  void addFastQualifiers(unsigned mask) {
242    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
243    Mask |= mask;
244  }
245
246  /// hasNonFastQualifiers - Return true if the set contains any
247  /// qualifiers which require an ExtQuals node to be allocated.
248  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
249  Qualifiers getNonFastQualifiers() const {
250    Qualifiers Quals = *this;
251    Quals.setFastQualifiers(0);
252    return Quals;
253  }
254
255  /// hasQualifiers - Return true if the set contains any qualifiers.
256  bool hasQualifiers() const { return Mask; }
257  bool empty() const { return !Mask; }
258
259  /// \brief Add the qualifiers from the given set to this set.
260  void addQualifiers(Qualifiers Q) {
261    // If the other set doesn't have any non-boolean qualifiers, just
262    // bit-or it in.
263    if (!(Q.Mask & ~CVRMask))
264      Mask |= Q.Mask;
265    else {
266      Mask |= (Q.Mask & CVRMask);
267      if (Q.hasAddressSpace())
268        addAddressSpace(Q.getAddressSpace());
269      if (Q.hasObjCGCAttr())
270        addObjCGCAttr(Q.getObjCGCAttr());
271    }
272  }
273
274  bool isSupersetOf(Qualifiers Other) const;
275
276  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
277  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
278
279  operator bool() const { return hasQualifiers(); }
280
281  Qualifiers &operator+=(Qualifiers R) {
282    addQualifiers(R);
283    return *this;
284  }
285
286  // Union two qualifier sets.  If an enumerated qualifier appears
287  // in both sets, use the one from the right.
288  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
289    L += R;
290    return L;
291  }
292
293  Qualifiers &operator-=(Qualifiers R) {
294    Mask = Mask & ~(R.Mask);
295    return *this;
296  }
297
298  /// \brief Compute the difference between two qualifier sets.
299  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
300    L -= R;
301    return L;
302  }
303
304  std::string getAsString() const;
305  std::string getAsString(const PrintingPolicy &Policy) const {
306    std::string Buffer;
307    getAsStringInternal(Buffer, Policy);
308    return Buffer;
309  }
310  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
311
312  void Profile(llvm::FoldingSetNodeID &ID) const {
313    ID.AddInteger(Mask);
314  }
315
316private:
317
318  // bits:     |0 1 2|3 .. 4|5  ..  31|
319  //           |C R V|GCAttr|AddrSpace|
320  uint32_t Mask;
321
322  static const uint32_t GCAttrMask = 0x18;
323  static const uint32_t GCAttrShift = 3;
324  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
325  static const uint32_t AddressSpaceShift = 5;
326};
327
328
329/// ExtQuals - We can encode up to three bits in the low bits of a
330/// type pointer, but there are many more type qualifiers that we want
331/// to be able to apply to an arbitrary type.  Therefore we have this
332/// struct, intended to be heap-allocated and used by QualType to
333/// store qualifiers.
334///
335/// The current design tags the 'const' and 'restrict' qualifiers in
336/// two low bits on the QualType pointer; a third bit records whether
337/// the pointer is an ExtQuals node.  'const' was chosen because it is
338/// orders of magnitude more common than the other two qualifiers, in
339/// both library and user code.  It's relatively rare to see
340/// 'restrict' in user code, but many standard C headers are saturated
341/// with 'restrict' declarations, so that representing them efficiently
342/// is a critical goal of this representation.
343class ExtQuals : public llvm::FoldingSetNode {
344  // NOTE: changing the fast qualifiers should be straightforward as
345  // long as you don't make 'const' non-fast.
346  // 1. Qualifiers:
347  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
348  //       Fast qualifiers must occupy the low-order bits.
349  //    b) Update Qualifiers::FastWidth and FastMask.
350  // 2. QualType:
351  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
352  //    b) Update remove{Volatile,Restrict}, defined near the end of
353  //       this header.
354  // 3. ASTContext:
355  //    a) Update get{Volatile,Restrict}Type.
356
357  /// Context - the context to which this set belongs.  We save this
358  /// here so that QualifierCollector can use it to reapply extended
359  /// qualifiers to an arbitrary type without requiring a context to
360  /// be pushed through every single API dealing with qualifiers.
361  ASTContext& Context;
362
363  /// BaseType - the underlying type that this qualifies
364  const Type *BaseType;
365
366  /// Quals - the immutable set of qualifiers applied by this
367  /// node;  always contains extended qualifiers.
368  Qualifiers Quals;
369
370public:
371  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
372    : Context(Context), BaseType(Base), Quals(Quals)
373  {
374    assert(Quals.hasNonFastQualifiers()
375           && "ExtQuals created with no fast qualifiers");
376    assert(!Quals.hasFastQualifiers()
377           && "ExtQuals created with fast qualifiers");
378  }
379
380  Qualifiers getQualifiers() const { return Quals; }
381
382  bool hasVolatile() const { return Quals.hasVolatile(); }
383
384  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
385  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
386
387  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
388  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
389
390  const Type *getBaseType() const { return BaseType; }
391
392  ASTContext &getContext() const { return Context; }
393
394public:
395  void Profile(llvm::FoldingSetNodeID &ID) const {
396    Profile(ID, getBaseType(), Quals);
397  }
398  static void Profile(llvm::FoldingSetNodeID &ID,
399                      const Type *BaseType,
400                      Qualifiers Quals) {
401    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
402    ID.AddPointer(BaseType);
403    Quals.Profile(ID);
404  }
405};
406
407/// CallingConv - Specifies the calling convention that a function uses.
408enum CallingConv {
409  CC_Default,
410  CC_C,           // __attribute__((cdecl))
411  CC_X86StdCall,  // __attribute__((stdcall))
412  CC_X86FastCall, // __attribute__((fastcall))
413  CC_X86ThisCall, // __attribute__((thiscall))
414  CC_X86Pascal    // __attribute__((pascal))
415};
416
417
418/// QualType - For efficiency, we don't store CV-qualified types as nodes on
419/// their own: instead each reference to a type stores the qualifiers.  This
420/// greatly reduces the number of nodes we need to allocate for types (for
421/// example we only need one for 'int', 'const int', 'volatile int',
422/// 'const volatile int', etc).
423///
424/// As an added efficiency bonus, instead of making this a pair, we
425/// just store the two bits we care about in the low bits of the
426/// pointer.  To handle the packing/unpacking, we make QualType be a
427/// simple wrapper class that acts like a smart pointer.  A third bit
428/// indicates whether there are extended qualifiers present, in which
429/// case the pointer points to a special structure.
430class QualType {
431  // Thankfully, these are efficiently composable.
432  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
433                       Qualifiers::FastWidth> Value;
434
435  const ExtQuals *getExtQualsUnsafe() const {
436    return Value.getPointer().get<const ExtQuals*>();
437  }
438
439  const Type *getTypePtrUnsafe() const {
440    return Value.getPointer().get<const Type*>();
441  }
442
443  QualType getUnqualifiedTypeSlow() const;
444
445  friend class QualifierCollector;
446public:
447  QualType() {}
448
449  QualType(const Type *Ptr, unsigned Quals)
450    : Value(Ptr, Quals) {}
451  QualType(const ExtQuals *Ptr, unsigned Quals)
452    : Value(Ptr, Quals) {}
453
454  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
455  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
456
457  /// Retrieves a pointer to the underlying (unqualified) type.
458  /// This should really return a const Type, but it's not worth
459  /// changing all the users right now.
460  Type *getTypePtr() const {
461    if (hasLocalNonFastQualifiers())
462      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
463    return const_cast<Type*>(getTypePtrUnsafe());
464  }
465
466  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
467  static QualType getFromOpaquePtr(void *Ptr) {
468    QualType T;
469    T.Value.setFromOpaqueValue(Ptr);
470    return T;
471  }
472
473  Type &operator*() const {
474    return *getTypePtr();
475  }
476
477  Type *operator->() const {
478    return getTypePtr();
479  }
480
481  bool isCanonical() const;
482  bool isCanonicalAsParam() const;
483
484  /// isNull - Return true if this QualType doesn't point to a type yet.
485  bool isNull() const {
486    return Value.getPointer().isNull();
487  }
488
489  /// \brief Determine whether this particular QualType instance has the
490  /// "const" qualifier set, without looking through typedefs that may have
491  /// added "const" at a different level.
492  bool isLocalConstQualified() const {
493    return (getLocalFastQualifiers() & Qualifiers::Const);
494  }
495
496  /// \brief Determine whether this type is const-qualified.
497  bool isConstQualified() const;
498
499  /// \brief Determine whether this particular QualType instance has the
500  /// "restrict" qualifier set, without looking through typedefs that may have
501  /// added "restrict" at a different level.
502  bool isLocalRestrictQualified() const {
503    return (getLocalFastQualifiers() & Qualifiers::Restrict);
504  }
505
506  /// \brief Determine whether this type is restrict-qualified.
507  bool isRestrictQualified() const;
508
509  /// \brief Determine whether this particular QualType instance has the
510  /// "volatile" qualifier set, without looking through typedefs that may have
511  /// added "volatile" at a different level.
512  bool isLocalVolatileQualified() const {
513    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
514  }
515
516  /// \brief Determine whether this type is volatile-qualified.
517  bool isVolatileQualified() const;
518
519  /// \brief Determine whether this particular QualType instance has any
520  /// qualifiers, without looking through any typedefs that might add
521  /// qualifiers at a different level.
522  bool hasLocalQualifiers() const {
523    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
524  }
525
526  /// \brief Determine whether this type has any qualifiers.
527  bool hasQualifiers() const;
528
529  /// \brief Determine whether this particular QualType instance has any
530  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
531  /// instance.
532  bool hasLocalNonFastQualifiers() const {
533    return Value.getPointer().is<const ExtQuals*>();
534  }
535
536  /// \brief Retrieve the set of qualifiers local to this particular QualType
537  /// instance, not including any qualifiers acquired through typedefs or
538  /// other sugar.
539  Qualifiers getLocalQualifiers() const {
540    Qualifiers Quals;
541    if (hasLocalNonFastQualifiers())
542      Quals = getExtQualsUnsafe()->getQualifiers();
543    Quals.addFastQualifiers(getLocalFastQualifiers());
544    return Quals;
545  }
546
547  /// \brief Retrieve the set of qualifiers applied to this type.
548  Qualifiers getQualifiers() const;
549
550  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
551  /// local to this particular QualType instance, not including any qualifiers
552  /// acquired through typedefs or other sugar.
553  unsigned getLocalCVRQualifiers() const {
554    unsigned CVR = getLocalFastQualifiers();
555    if (isLocalVolatileQualified())
556      CVR |= Qualifiers::Volatile;
557    return CVR;
558  }
559
560  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
561  /// applied to this type.
562  unsigned getCVRQualifiers() const;
563
564  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
565  /// applied to this type, looking through any number of unqualified array
566  /// types to their element types' qualifiers.
567  unsigned getCVRQualifiersThroughArrayTypes() const;
568
569  bool isConstant(ASTContext& Ctx) const {
570    return QualType::isConstant(*this, Ctx);
571  }
572
573  // Don't promise in the API that anything besides 'const' can be
574  // easily added.
575
576  /// addConst - add the specified type qualifier to this QualType.
577  void addConst() {
578    addFastQualifiers(Qualifiers::Const);
579  }
580  QualType withConst() const {
581    return withFastQualifiers(Qualifiers::Const);
582  }
583
584  void addFastQualifiers(unsigned TQs) {
585    assert(!(TQs & ~Qualifiers::FastMask)
586           && "non-fast qualifier bits set in mask!");
587    Value.setInt(Value.getInt() | TQs);
588  }
589
590  // FIXME: The remove* functions are semantically broken, because they might
591  // not remove a qualifier stored on a typedef. Most of the with* functions
592  // have the same problem.
593  void removeConst();
594  void removeVolatile();
595  void removeRestrict();
596  void removeCVRQualifiers(unsigned Mask);
597
598  void removeFastQualifiers() { Value.setInt(0); }
599  void removeFastQualifiers(unsigned Mask) {
600    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
601    Value.setInt(Value.getInt() & ~Mask);
602  }
603
604  // Creates a type with the given qualifiers in addition to any
605  // qualifiers already on this type.
606  QualType withFastQualifiers(unsigned TQs) const {
607    QualType T = *this;
608    T.addFastQualifiers(TQs);
609    return T;
610  }
611
612  // Creates a type with exactly the given fast qualifiers, removing
613  // any existing fast qualifiers.
614  QualType withExactFastQualifiers(unsigned TQs) const {
615    return withoutFastQualifiers().withFastQualifiers(TQs);
616  }
617
618  // Removes fast qualifiers, but leaves any extended qualifiers in place.
619  QualType withoutFastQualifiers() const {
620    QualType T = *this;
621    T.removeFastQualifiers();
622    return T;
623  }
624
625  /// \brief Return this type with all of the instance-specific qualifiers
626  /// removed, but without removing any qualifiers that may have been applied
627  /// through typedefs.
628  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
629
630  /// \brief Return the unqualified form of the given type, which might be
631  /// desugared to eliminate qualifiers introduced via typedefs.
632  QualType getUnqualifiedType() const {
633    QualType T = getLocalUnqualifiedType();
634    if (!T.hasQualifiers())
635      return T;
636
637    return getUnqualifiedTypeSlow();
638  }
639
640  bool isMoreQualifiedThan(QualType Other) const;
641  bool isAtLeastAsQualifiedAs(QualType Other) const;
642  QualType getNonReferenceType() const;
643
644  /// \brief Determine the type of a (typically non-lvalue) expression with the
645  /// specified result type.
646  ///
647  /// This routine should be used for expressions for which the return type is
648  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
649  /// an lvalue. It removes a top-level reference (since there are no
650  /// expressions of reference type) and deletes top-level cvr-qualifiers
651  /// from non-class types (in C++) or all types (in C).
652  QualType getNonLValueExprType(ASTContext &Context) const;
653
654  /// getDesugaredType - Return the specified type with any "sugar" removed from
655  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
656  /// the type is already concrete, it returns it unmodified.  This is similar
657  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
658  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
659  /// concrete.
660  ///
661  /// Qualifiers are left in place.
662  QualType getDesugaredType() const {
663    return QualType::getDesugaredType(*this);
664  }
665
666  /// operator==/!= - Indicate whether the specified types and qualifiers are
667  /// identical.
668  friend bool operator==(const QualType &LHS, const QualType &RHS) {
669    return LHS.Value == RHS.Value;
670  }
671  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
672    return LHS.Value != RHS.Value;
673  }
674  std::string getAsString() const;
675
676  std::string getAsString(const PrintingPolicy &Policy) const {
677    std::string S;
678    getAsStringInternal(S, Policy);
679    return S;
680  }
681  void getAsStringInternal(std::string &Str,
682                           const PrintingPolicy &Policy) const;
683
684  void dump(const char *s) const;
685  void dump() const;
686
687  void Profile(llvm::FoldingSetNodeID &ID) const {
688    ID.AddPointer(getAsOpaquePtr());
689  }
690
691  /// getAddressSpace - Return the address space of this type.
692  inline unsigned getAddressSpace() const;
693
694  /// GCAttrTypesAttr - Returns gc attribute of this type.
695  inline Qualifiers::GC getObjCGCAttr() const;
696
697  /// isObjCGCWeak true when Type is objc's weak.
698  bool isObjCGCWeak() const {
699    return getObjCGCAttr() == Qualifiers::Weak;
700  }
701
702  /// isObjCGCStrong true when Type is objc's strong.
703  bool isObjCGCStrong() const {
704    return getObjCGCAttr() == Qualifiers::Strong;
705  }
706
707private:
708  // These methods are implemented in a separate translation unit;
709  // "static"-ize them to avoid creating temporary QualTypes in the
710  // caller.
711  static bool isConstant(QualType T, ASTContext& Ctx);
712  static QualType getDesugaredType(QualType T);
713};
714
715} // end clang.
716
717namespace llvm {
718/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
719/// to a specific Type class.
720template<> struct simplify_type<const ::clang::QualType> {
721  typedef ::clang::Type* SimpleType;
722  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
723    return Val.getTypePtr();
724  }
725};
726template<> struct simplify_type< ::clang::QualType>
727  : public simplify_type<const ::clang::QualType> {};
728
729// Teach SmallPtrSet that QualType is "basically a pointer".
730template<>
731class PointerLikeTypeTraits<clang::QualType> {
732public:
733  static inline void *getAsVoidPointer(clang::QualType P) {
734    return P.getAsOpaquePtr();
735  }
736  static inline clang::QualType getFromVoidPointer(void *P) {
737    return clang::QualType::getFromOpaquePtr(P);
738  }
739  // Various qualifiers go in low bits.
740  enum { NumLowBitsAvailable = 0 };
741};
742
743} // end namespace llvm
744
745namespace clang {
746
747/// Type - This is the base class of the type hierarchy.  A central concept
748/// with types is that each type always has a canonical type.  A canonical type
749/// is the type with any typedef names stripped out of it or the types it
750/// references.  For example, consider:
751///
752///  typedef int  foo;
753///  typedef foo* bar;
754///    'int *'    'foo *'    'bar'
755///
756/// There will be a Type object created for 'int'.  Since int is canonical, its
757/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
758/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
759/// there is a PointerType that represents 'int*', which, like 'int', is
760/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
761/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
762/// is also 'int*'.
763///
764/// Non-canonical types are useful for emitting diagnostics, without losing
765/// information about typedefs being used.  Canonical types are useful for type
766/// comparisons (they allow by-pointer equality tests) and useful for reasoning
767/// about whether something has a particular form (e.g. is a function type),
768/// because they implicitly, recursively, strip all typedefs out of a type.
769///
770/// Types, once created, are immutable.
771///
772class Type {
773public:
774  enum TypeClass {
775#define TYPE(Class, Base) Class,
776#define LAST_TYPE(Class) TypeLast = Class,
777#define ABSTRACT_TYPE(Class, Base)
778#include "clang/AST/TypeNodes.def"
779    TagFirst = Record, TagLast = Enum
780  };
781
782private:
783  Type(const Type&);           // DO NOT IMPLEMENT.
784  void operator=(const Type&); // DO NOT IMPLEMENT.
785
786  QualType CanonicalType;
787
788  /// Bitfields required by the Type class.
789  class TypeBitfields {
790    friend class Type;
791
792    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
793    unsigned TC : 8;
794
795    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
796    /// Note that this should stay at the end of the ivars for Type so that
797    /// subclasses can pack their bitfields into the same word.
798    unsigned Dependent : 1;
799
800    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
801    unsigned VariablyModified : 1;
802
803    /// \brief Whether the linkage of this type along with the presence of any
804    /// local or unnamed types is already known.
805    mutable unsigned LinkageKnown : 1;
806
807    /// \brief Linkage of this type.
808    mutable unsigned CachedLinkage : 2;
809
810    /// \brief Whether this type involves and local or unnamed types.
811    mutable unsigned CachedLocalOrUnnamed : 1;
812
813    /// \brief FromAST - Whether this type comes from an AST file.
814    mutable unsigned FromAST : 1;
815
816    unsigned SpareBit : 1;
817  };
818  enum { NumTypeBits = 16 };
819
820protected:
821  // These classes allow subclasses to somewhat cleanly pack bitfields
822  // into Type.
823
824  class ArrayTypeBitfields {
825    friend class ArrayType;
826
827    unsigned : NumTypeBits;
828
829    /// IndexTypeQuals - CVR qualifiers from declarations like
830    /// 'int X[static restrict 4]'. For function parameters only.
831    unsigned IndexTypeQuals : 3;
832
833    /// SizeModifier - storage class qualifiers from declarations like
834    /// 'int X[static restrict 4]'. For function parameters only.
835    /// Actually an ArrayType::ArraySizeModifier.
836    unsigned SizeModifier : 3;
837  };
838
839  class BuiltinTypeBitfields {
840    friend class BuiltinType;
841
842    unsigned : NumTypeBits;
843
844    /// The kind (BuiltinType::Kind) of builtin type this is.
845    unsigned Kind : 8;
846  };
847
848  class FunctionTypeBitfields {
849    friend class FunctionType;
850
851    unsigned : NumTypeBits;
852
853    /// Extra information which affects how the function is called, like
854    /// regparm and the calling convention.
855    unsigned ExtInfo : 8;
856
857    /// A bit to be used by the subclass.
858    unsigned SubclassInfo : 1;
859
860    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
861    /// other bitfields.
862    /// The qualifiers are part of FunctionProtoType because...
863    ///
864    /// C++ 8.3.5p4: The return type, the parameter type list and the
865    /// cv-qualifier-seq, [...], are part of the function type.
866    unsigned TypeQuals : 3;
867  };
868
869  class ObjCObjectTypeBitfields {
870    friend class ObjCObjectType;
871
872    unsigned : NumTypeBits;
873
874    /// NumProtocols - The number of protocols stored directly on this
875    /// object type.
876    unsigned NumProtocols : 32 - NumTypeBits;
877  };
878
879  class ReferenceTypeBitfields {
880    friend class ReferenceType;
881
882    unsigned : NumTypeBits;
883
884    /// True if the type was originally spelled with an lvalue sigil.
885    /// This is never true of rvalue references but can also be false
886    /// on lvalue references because of C++0x [dcl.typedef]p9,
887    /// as follows:
888    ///
889    ///   typedef int &ref;    // lvalue, spelled lvalue
890    ///   typedef int &&rvref; // rvalue
891    ///   ref &a;              // lvalue, inner ref, spelled lvalue
892    ///   ref &&a;             // lvalue, inner ref
893    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
894    ///   rvref &&a;           // rvalue, inner ref
895    unsigned SpelledAsLValue : 1;
896
897    /// True if the inner type is a reference type.  This only happens
898    /// in non-canonical forms.
899    unsigned InnerRef : 1;
900  };
901
902  class TypeWithKeywordBitfields {
903    friend class TypeWithKeyword;
904
905    unsigned : NumTypeBits;
906
907    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
908    unsigned Keyword : 8;
909  };
910
911  class VectorTypeBitfields {
912    friend class VectorType;
913
914    unsigned : NumTypeBits;
915
916    /// AltiVecSpec - AltiVec-specific vector information, used
917    /// to differentiate things like 'pixel'.
918    unsigned AltiVecSpec : 2;
919
920    /// NumElements - The number of elements in the vector.
921    unsigned NumElements : 30 - NumTypeBits;
922  };
923
924  union {
925    TypeBitfields TypeBits;
926    ArrayTypeBitfields ArrayTypeBits;
927    BuiltinTypeBitfields BuiltinTypeBits;
928    FunctionTypeBitfields FunctionTypeBits;
929    ObjCObjectTypeBitfields ObjCObjectTypeBits;
930    ReferenceTypeBitfields ReferenceTypeBits;
931    TypeWithKeywordBitfields TypeWithKeywordBits;
932    VectorTypeBitfields VectorTypeBits;
933  };
934
935private:
936  /// \brief Set whether this type comes from an AST file.
937  void setFromAST(bool V = true) const {
938    TypeBits.FromAST = V;
939  }
940
941protected:
942  /// \brief Compute the linkage of this type along with the presence of
943  /// any local or unnamed types.
944  virtual std::pair<Linkage, bool> getLinkageUnnamedLocalImpl() const;
945
946  // silence VC++ warning C4355: 'this' : used in base member initializer list
947  Type *this_() { return this; }
948  Type(TypeClass tc, QualType Canonical, bool Dependent, bool VariablyModified)
949    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical) {
950    TypeBits.TC = tc;
951    TypeBits.Dependent = Dependent;
952    TypeBits.VariablyModified = VariablyModified;
953    TypeBits.LinkageKnown = false;
954    TypeBits.CachedLocalOrUnnamed = false;
955    TypeBits.CachedLinkage = NoLinkage;
956    TypeBits.FromAST = false;
957  }
958  virtual ~Type();
959  friend class ASTContext;
960
961  void setDependent(bool D = true) { TypeBits.Dependent = D; }
962  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
963
964public:
965  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
966
967  /// \brief Whether this type comes from an AST file.
968  bool isFromAST() const { return TypeBits.FromAST; }
969
970  bool isCanonicalUnqualified() const {
971    return CanonicalType.getTypePtr() == this;
972  }
973
974  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
975  /// object types, function types, and incomplete types.
976
977  /// isIncompleteType - Return true if this is an incomplete type.
978  /// A type that can describe objects, but which lacks information needed to
979  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
980  /// routine will need to determine if the size is actually required.
981  bool isIncompleteType() const;
982
983  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
984  /// type, in other words, not a function type.
985  bool isIncompleteOrObjectType() const {
986    return !isFunctionType();
987  }
988
989  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
990  bool isPODType() const;
991
992  /// isLiteralType - Return true if this is a literal type
993  /// (C++0x [basic.types]p10)
994  bool isLiteralType() const;
995
996  /// Helper methods to distinguish type categories. All type predicates
997  /// operate on the canonical type, ignoring typedefs and qualifiers.
998
999  /// isBuiltinType - returns true if the type is a builtin type.
1000  bool isBuiltinType() const;
1001
1002  /// isSpecificBuiltinType - Test for a particular builtin type.
1003  bool isSpecificBuiltinType(unsigned K) const;
1004
1005  /// isPlaceholderType - Test for a type which does not represent an
1006  /// actual type-system type but is instead used as a placeholder for
1007  /// various convenient purposes within Clang.  All such types are
1008  /// BuiltinTypes.
1009  bool isPlaceholderType() const;
1010
1011  /// isIntegerType() does *not* include complex integers (a GCC extension).
1012  /// isComplexIntegerType() can be used to test for complex integers.
1013  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1014  bool isEnumeralType() const;
1015  bool isBooleanType() const;
1016  bool isCharType() const;
1017  bool isWideCharType() const;
1018  bool isAnyCharacterType() const;
1019  bool isIntegralType(ASTContext &Ctx) const;
1020
1021  /// \brief Determine whether this type is an integral or enumeration type.
1022  bool isIntegralOrEnumerationType() const;
1023  /// \brief Determine whether this type is an integral or unscoped enumeration
1024  /// type.
1025  bool isIntegralOrUnscopedEnumerationType() const;
1026
1027  /// Floating point categories.
1028  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1029  /// isComplexType() does *not* include complex integers (a GCC extension).
1030  /// isComplexIntegerType() can be used to test for complex integers.
1031  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1032  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1033  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1034  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1035  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1036  bool isVoidType() const;         // C99 6.2.5p19
1037  bool isDerivedType() const;      // C99 6.2.5p20
1038  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1039  bool isAggregateType() const;
1040
1041  // Type Predicates: Check to see if this type is structurally the specified
1042  // type, ignoring typedefs and qualifiers.
1043  bool isFunctionType() const;
1044  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1045  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1046  bool isPointerType() const;
1047  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1048  bool isBlockPointerType() const;
1049  bool isVoidPointerType() const;
1050  bool isReferenceType() const;
1051  bool isLValueReferenceType() const;
1052  bool isRValueReferenceType() const;
1053  bool isFunctionPointerType() const;
1054  bool isMemberPointerType() const;
1055  bool isMemberFunctionPointerType() const;
1056  bool isMemberDataPointerType() const;
1057  bool isArrayType() const;
1058  bool isConstantArrayType() const;
1059  bool isIncompleteArrayType() const;
1060  bool isVariableArrayType() const;
1061  bool isDependentSizedArrayType() const;
1062  bool isRecordType() const;
1063  bool isClassType() const;
1064  bool isStructureType() const;
1065  bool isStructureOrClassType() const;
1066  bool isUnionType() const;
1067  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1068  bool isVectorType() const;                    // GCC vector type.
1069  bool isExtVectorType() const;                 // Extended vector type.
1070  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
1071  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1072  // for the common case.
1073  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1074  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1075  bool isObjCQualifiedIdType() const;           // id<foo>
1076  bool isObjCQualifiedClassType() const;        // Class<foo>
1077  bool isObjCObjectOrInterfaceType() const;
1078  bool isObjCIdType() const;                    // id
1079  bool isObjCClassType() const;                 // Class
1080  bool isObjCSelType() const;                 // Class
1081  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1082  bool isTemplateTypeParmType() const;          // C++ template type parameter
1083  bool isNullPtrType() const;                   // C++0x nullptr_t
1084
1085  /// isDependentType - Whether this type is a dependent type, meaning
1086  /// that its definition somehow depends on a template parameter
1087  /// (C++ [temp.dep.type]).
1088  bool isDependentType() const { return TypeBits.Dependent; }
1089
1090  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1091  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1092
1093  /// \brief Whether this type is or contains a local or unnamed type.
1094  bool hasUnnamedOrLocalType() const;
1095
1096  bool isOverloadableType() const;
1097
1098  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1099  bool isElaboratedTypeSpecifier() const;
1100
1101  /// hasPointerRepresentation - Whether this type is represented
1102  /// natively as a pointer; this includes pointers, references, block
1103  /// pointers, and Objective-C interface, qualified id, and qualified
1104  /// interface types, as well as nullptr_t.
1105  bool hasPointerRepresentation() const;
1106
1107  /// hasObjCPointerRepresentation - Whether this type can represent
1108  /// an objective pointer type for the purpose of GC'ability
1109  bool hasObjCPointerRepresentation() const;
1110
1111  /// \brief Determine whether this type has an integer representation
1112  /// of some sort, e.g., it is an integer type or a vector.
1113  bool hasIntegerRepresentation() const;
1114
1115  /// \brief Determine whether this type has an signed integer representation
1116  /// of some sort, e.g., it is an signed integer type or a vector.
1117  bool hasSignedIntegerRepresentation() const;
1118
1119  /// \brief Determine whether this type has an unsigned integer representation
1120  /// of some sort, e.g., it is an unsigned integer type or a vector.
1121  bool hasUnsignedIntegerRepresentation() const;
1122
1123  /// \brief Determine whether this type has a floating-point representation
1124  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1125  bool hasFloatingRepresentation() const;
1126
1127  // Type Checking Functions: Check to see if this type is structurally the
1128  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1129  // the best type we can.
1130  const RecordType *getAsStructureType() const;
1131  /// NOTE: getAs*ArrayType are methods on ASTContext.
1132  const RecordType *getAsUnionType() const;
1133  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1134  // The following is a convenience method that returns an ObjCObjectPointerType
1135  // for object declared using an interface.
1136  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1137  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1138  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1139  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
1140
1141  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1142  /// because the type is a RecordType or because it is the injected-class-name
1143  /// type of a class template or class template partial specialization.
1144  CXXRecordDecl *getAsCXXRecordDecl() const;
1145
1146  // Member-template getAs<specific type>'.  Look through sugar for
1147  // an instance of <specific type>.   This scheme will eventually
1148  // replace the specific getAsXXXX methods above.
1149  //
1150  // There are some specializations of this member template listed
1151  // immediately following this class.
1152  template <typename T> const T *getAs() const;
1153
1154  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1155  /// element type of the array, potentially with type qualifiers missing.
1156  /// This method should never be used when type qualifiers are meaningful.
1157  const Type *getArrayElementTypeNoTypeQual() const;
1158
1159  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1160  /// pointer, this returns the respective pointee.
1161  QualType getPointeeType() const;
1162
1163  /// getUnqualifiedDesugaredType() - Return the specified type with
1164  /// any "sugar" removed from the type, removing any typedefs,
1165  /// typeofs, etc., as well as any qualifiers.
1166  const Type *getUnqualifiedDesugaredType() const;
1167
1168  /// More type predicates useful for type checking/promotion
1169  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1170
1171  /// isSignedIntegerType - Return true if this is an integer type that is
1172  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1173  /// an enum decl which has a signed representation, or a vector of signed
1174  /// integer element type.
1175  bool isSignedIntegerType() const;
1176
1177  /// isUnsignedIntegerType - Return true if this is an integer type that is
1178  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1179  /// decl which has an unsigned representation, or a vector of unsigned integer
1180  /// element type.
1181  bool isUnsignedIntegerType() const;
1182
1183  /// isConstantSizeType - Return true if this is not a variable sized type,
1184  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1185  /// incomplete types.
1186  bool isConstantSizeType() const;
1187
1188  /// isSpecifierType - Returns true if this type can be represented by some
1189  /// set of type specifiers.
1190  bool isSpecifierType() const;
1191
1192  /// \brief Determine the linkage of this type.
1193  Linkage getLinkage() const;
1194
1195  /// \brief Note that the linkage is no longer known.
1196  void ClearLinkageCache();
1197
1198  const char *getTypeClassName() const;
1199
1200  QualType getCanonicalTypeInternal() const {
1201    return CanonicalType;
1202  }
1203  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1204  void dump() const;
1205  static bool classof(const Type *) { return true; }
1206
1207  friend class ASTReader;
1208  friend class ASTWriter;
1209};
1210
1211template <> inline const TypedefType *Type::getAs() const {
1212  return dyn_cast<TypedefType>(this);
1213}
1214
1215// We can do canonical leaf types faster, because we don't have to
1216// worry about preserving child type decoration.
1217#define TYPE(Class, Base)
1218#define LEAF_TYPE(Class) \
1219template <> inline const Class##Type *Type::getAs() const { \
1220  return dyn_cast<Class##Type>(CanonicalType); \
1221}
1222#include "clang/AST/TypeNodes.def"
1223
1224
1225/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1226/// types are always canonical and have a literal name field.
1227class BuiltinType : public Type {
1228public:
1229  enum Kind {
1230    Void,
1231
1232    Bool,     // This is bool and/or _Bool.
1233    Char_U,   // This is 'char' for targets where char is unsigned.
1234    UChar,    // This is explicitly qualified unsigned char.
1235    Char16,   // This is 'char16_t' for C++.
1236    Char32,   // This is 'char32_t' for C++.
1237    UShort,
1238    UInt,
1239    ULong,
1240    ULongLong,
1241    UInt128,  // __uint128_t
1242
1243    Char_S,   // This is 'char' for targets where char is signed.
1244    SChar,    // This is explicitly qualified signed char.
1245    WChar,    // This is 'wchar_t' for C++.
1246    Short,
1247    Int,
1248    Long,
1249    LongLong,
1250    Int128,   // __int128_t
1251
1252    Float, Double, LongDouble,
1253
1254    NullPtr,  // This is the type of C++0x 'nullptr'.
1255
1256    /// This represents the type of an expression whose type is
1257    /// totally unknown, e.g. 'T::foo'.  It is permitted for this to
1258    /// appear in situations where the structure of the type is
1259    /// theoretically deducible.
1260    Dependent,
1261
1262    Overload,  // This represents the type of an overloaded function declaration.
1263
1264    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1265                   // that has not been deduced yet.
1266
1267    /// The primitive Objective C 'id' type.  The type pointed to by the
1268    /// user-visible 'id' type.  Only ever shows up in an AST as the base
1269    /// type of an ObjCObjectType.
1270    ObjCId,
1271
1272    /// The primitive Objective C 'Class' type.  The type pointed to by the
1273    /// user-visible 'Class' type.  Only ever shows up in an AST as the
1274    /// base type of an ObjCObjectType.
1275    ObjCClass,
1276
1277    ObjCSel    // This represents the ObjC 'SEL' type.
1278  };
1279
1280protected:
1281  virtual std::pair<Linkage, bool> getLinkageUnnamedLocalImpl() const;
1282
1283public:
1284  BuiltinType(Kind K)
1285    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1286           /*VariablyModified=*/false) {
1287    BuiltinTypeBits.Kind = K;
1288  }
1289
1290  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1291  const char *getName(const LangOptions &LO) const;
1292
1293  bool isSugared() const { return false; }
1294  QualType desugar() const { return QualType(this, 0); }
1295
1296  bool isInteger() const {
1297    return getKind() >= Bool && getKind() <= Int128;
1298  }
1299
1300  bool isSignedInteger() const {
1301    return getKind() >= Char_S && getKind() <= Int128;
1302  }
1303
1304  bool isUnsignedInteger() const {
1305    return getKind() >= Bool && getKind() <= UInt128;
1306  }
1307
1308  bool isFloatingPoint() const {
1309    return getKind() >= Float && getKind() <= LongDouble;
1310  }
1311
1312  /// Determines whether this type is a "forbidden" placeholder type,
1313  /// i.e. a type which cannot appear in arbitrary positions in a
1314  /// fully-formed expression.
1315  bool isPlaceholderType() const {
1316    return getKind() == Overload ||
1317           getKind() == UndeducedAuto;
1318  }
1319
1320  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1321  static bool classof(const BuiltinType *) { return true; }
1322};
1323
1324/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1325/// types (_Complex float etc) as well as the GCC integer complex extensions.
1326///
1327class ComplexType : public Type, public llvm::FoldingSetNode {
1328  QualType ElementType;
1329  ComplexType(QualType Element, QualType CanonicalPtr) :
1330    Type(Complex, CanonicalPtr, Element->isDependentType(),
1331         Element->isVariablyModifiedType()),
1332    ElementType(Element) {
1333  }
1334  friend class ASTContext;  // ASTContext creates these.
1335
1336protected:
1337  virtual std::pair<Linkage, bool> getLinkageUnnamedLocalImpl() const;
1338
1339public:
1340  QualType getElementType() const { return ElementType; }
1341
1342  bool isSugared() const { return false; }
1343  QualType desugar() const { return QualType(this, 0); }
1344
1345  void Profile(llvm::FoldingSetNodeID &ID) {
1346    Profile(ID, getElementType());
1347  }
1348  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1349    ID.AddPointer(Element.getAsOpaquePtr());
1350  }
1351
1352  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1353  static bool classof(const ComplexType *) { return true; }
1354};
1355
1356/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1357///
1358class PointerType : public Type, public llvm::FoldingSetNode {
1359  QualType PointeeType;
1360
1361  PointerType(QualType Pointee, QualType CanonicalPtr) :
1362    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1363         Pointee->isVariablyModifiedType()),
1364    PointeeType(Pointee) {
1365  }
1366  friend class ASTContext;  // ASTContext creates these.
1367
1368protected:
1369  virtual std::pair<Linkage, bool> getLinkageUnnamedLocalImpl() const;
1370
1371public:
1372
1373  QualType getPointeeType() const { return PointeeType; }
1374
1375  bool isSugared() const { return false; }
1376  QualType desugar() const { return QualType(this, 0); }
1377
1378  void Profile(llvm::FoldingSetNodeID &ID) {
1379    Profile(ID, getPointeeType());
1380  }
1381  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1382    ID.AddPointer(Pointee.getAsOpaquePtr());
1383  }
1384
1385  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1386  static bool classof(const PointerType *) { return true; }
1387};
1388
1389/// BlockPointerType - pointer to a block type.
1390/// This type is to represent types syntactically represented as
1391/// "void (^)(int)", etc. Pointee is required to always be a function type.
1392///
1393class BlockPointerType : public Type, public llvm::FoldingSetNode {
1394  QualType PointeeType;  // Block is some kind of pointer type
1395  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1396    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1397         Pointee->isVariablyModifiedType()),
1398    PointeeType(Pointee) {
1399  }
1400  friend class ASTContext;  // ASTContext creates these.
1401
1402protected:
1403  virtual std::pair<Linkage, bool> getLinkageUnnamedLocalImpl() const;
1404
1405public:
1406
1407  // Get the pointee type. Pointee is required to always be a function type.
1408  QualType getPointeeType() const { return PointeeType; }
1409
1410  bool isSugared() const { return false; }
1411  QualType desugar() const { return QualType(this, 0); }
1412
1413  void Profile(llvm::FoldingSetNodeID &ID) {
1414      Profile(ID, getPointeeType());
1415  }
1416  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1417      ID.AddPointer(Pointee.getAsOpaquePtr());
1418  }
1419
1420  static bool classof(const Type *T) {
1421    return T->getTypeClass() == BlockPointer;
1422  }
1423  static bool classof(const BlockPointerType *) { return true; }
1424};
1425
1426/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1427///
1428class ReferenceType : public Type, public llvm::FoldingSetNode {
1429  QualType PointeeType;
1430
1431protected:
1432  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1433                bool SpelledAsLValue) :
1434    Type(tc, CanonicalRef, Referencee->isDependentType(),
1435         Referencee->isVariablyModifiedType()), PointeeType(Referencee) {
1436    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
1437    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
1438  }
1439
1440  virtual std::pair<Linkage, bool> getLinkageUnnamedLocalImpl() const;
1441
1442public:
1443  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
1444  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
1445
1446  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1447  QualType getPointeeType() const {
1448    // FIXME: this might strip inner qualifiers; okay?
1449    const ReferenceType *T = this;
1450    while (T->isInnerRef())
1451      T = T->PointeeType->getAs<ReferenceType>();
1452    return T->PointeeType;
1453  }
1454
1455  void Profile(llvm::FoldingSetNodeID &ID) {
1456    Profile(ID, PointeeType, isSpelledAsLValue());
1457  }
1458  static void Profile(llvm::FoldingSetNodeID &ID,
1459                      QualType Referencee,
1460                      bool SpelledAsLValue) {
1461    ID.AddPointer(Referencee.getAsOpaquePtr());
1462    ID.AddBoolean(SpelledAsLValue);
1463  }
1464
1465  static bool classof(const Type *T) {
1466    return T->getTypeClass() == LValueReference ||
1467           T->getTypeClass() == RValueReference;
1468  }
1469  static bool classof(const ReferenceType *) { return true; }
1470};
1471
1472/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1473///
1474class LValueReferenceType : public ReferenceType {
1475  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1476                      bool SpelledAsLValue) :
1477    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1478  {}
1479  friend class ASTContext; // ASTContext creates these
1480public:
1481  bool isSugared() const { return false; }
1482  QualType desugar() const { return QualType(this, 0); }
1483
1484  static bool classof(const Type *T) {
1485    return T->getTypeClass() == LValueReference;
1486  }
1487  static bool classof(const LValueReferenceType *) { return true; }
1488};
1489
1490/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1491///
1492class RValueReferenceType : public ReferenceType {
1493  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1494    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1495  }
1496  friend class ASTContext; // ASTContext creates these
1497public:
1498  bool isSugared() const { return false; }
1499  QualType desugar() const { return QualType(this, 0); }
1500
1501  static bool classof(const Type *T) {
1502    return T->getTypeClass() == RValueReference;
1503  }
1504  static bool classof(const RValueReferenceType *) { return true; }
1505};
1506
1507/// MemberPointerType - C++ 8.3.3 - Pointers to members
1508///
1509class MemberPointerType : public Type, public llvm::FoldingSetNode {
1510  QualType PointeeType;
1511  /// The class of which the pointee is a member. Must ultimately be a
1512  /// RecordType, but could be a typedef or a template parameter too.
1513  const Type *Class;
1514
1515  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1516    Type(MemberPointer, CanonicalPtr,
1517         Cls->isDependentType() || Pointee->isDependentType(),
1518         Pointee->isVariablyModifiedType()),
1519    PointeeType(Pointee), Class(Cls) {
1520  }
1521  friend class ASTContext; // ASTContext creates these.
1522
1523protected:
1524  virtual std::pair<Linkage, bool> getLinkageUnnamedLocalImpl() const;
1525
1526public:
1527  QualType getPointeeType() const { return PointeeType; }
1528
1529  /// Returns true if the member type (i.e. the pointee type) is a
1530  /// function type rather than a data-member type.
1531  bool isMemberFunctionPointer() const {
1532    return PointeeType->isFunctionProtoType();
1533  }
1534
1535  /// Returns true if the member type (i.e. the pointee type) is a
1536  /// data type rather than a function type.
1537  bool isMemberDataPointer() const {
1538    return !PointeeType->isFunctionProtoType();
1539  }
1540
1541  const Type *getClass() const { return Class; }
1542
1543  bool isSugared() const { return false; }
1544  QualType desugar() const { return QualType(this, 0); }
1545
1546  void Profile(llvm::FoldingSetNodeID &ID) {
1547    Profile(ID, getPointeeType(), getClass());
1548  }
1549  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1550                      const Type *Class) {
1551    ID.AddPointer(Pointee.getAsOpaquePtr());
1552    ID.AddPointer(Class);
1553  }
1554
1555  static bool classof(const Type *T) {
1556    return T->getTypeClass() == MemberPointer;
1557  }
1558  static bool classof(const MemberPointerType *) { return true; }
1559};
1560
1561/// ArrayType - C99 6.7.5.2 - Array Declarators.
1562///
1563class ArrayType : public Type, public llvm::FoldingSetNode {
1564public:
1565  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1566  /// an array with a static size (e.g. int X[static 4]), or an array
1567  /// with a star size (e.g. int X[*]).
1568  /// 'static' is only allowed on function parameters.
1569  enum ArraySizeModifier {
1570    Normal, Static, Star
1571  };
1572private:
1573  /// ElementType - The element type of the array.
1574  QualType ElementType;
1575
1576protected:
1577  // C++ [temp.dep.type]p1:
1578  //   A type is dependent if it is...
1579  //     - an array type constructed from any dependent type or whose
1580  //       size is specified by a constant expression that is
1581  //       value-dependent,
1582  ArrayType(TypeClass tc, QualType et, QualType can,
1583            ArraySizeModifier sm, unsigned tq)
1584    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
1585           (tc == VariableArray || et->isVariablyModifiedType())),
1586      ElementType(et) {
1587    ArrayTypeBits.IndexTypeQuals = tq;
1588    ArrayTypeBits.SizeModifier = sm;
1589  }
1590
1591  friend class ASTContext;  // ASTContext creates these.
1592
1593  virtual std::pair<Linkage, bool> getLinkageUnnamedLocalImpl() const;
1594
1595public:
1596  QualType getElementType() const { return ElementType; }
1597  ArraySizeModifier getSizeModifier() const {
1598    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
1599  }
1600  Qualifiers getIndexTypeQualifiers() const {
1601    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
1602  }
1603  unsigned getIndexTypeCVRQualifiers() const {
1604    return ArrayTypeBits.IndexTypeQuals;
1605  }
1606
1607  static bool classof(const Type *T) {
1608    return T->getTypeClass() == ConstantArray ||
1609           T->getTypeClass() == VariableArray ||
1610           T->getTypeClass() == IncompleteArray ||
1611           T->getTypeClass() == DependentSizedArray;
1612  }
1613  static bool classof(const ArrayType *) { return true; }
1614};
1615
1616/// ConstantArrayType - This class represents the canonical version of
1617/// C arrays with a specified constant size.  For example, the canonical
1618/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1619/// type is 'int' and the size is 404.
1620class ConstantArrayType : public ArrayType {
1621  llvm::APInt Size; // Allows us to unique the type.
1622
1623  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1624                    ArraySizeModifier sm, unsigned tq)
1625    : ArrayType(ConstantArray, et, can, sm, tq),
1626      Size(size) {}
1627protected:
1628  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1629                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1630    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1631  friend class ASTContext;  // ASTContext creates these.
1632public:
1633  const llvm::APInt &getSize() const { return Size; }
1634  bool isSugared() const { return false; }
1635  QualType desugar() const { return QualType(this, 0); }
1636
1637
1638  /// \brief Determine the number of bits required to address a member of
1639  // an array with the given element type and number of elements.
1640  static unsigned getNumAddressingBits(ASTContext &Context,
1641                                       QualType ElementType,
1642                                       const llvm::APInt &NumElements);
1643
1644  /// \brief Determine the maximum number of active bits that an array's size
1645  /// can require, which limits the maximum size of the array.
1646  static unsigned getMaxSizeBits(ASTContext &Context);
1647
1648  void Profile(llvm::FoldingSetNodeID &ID) {
1649    Profile(ID, getElementType(), getSize(),
1650            getSizeModifier(), getIndexTypeCVRQualifiers());
1651  }
1652  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1653                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1654                      unsigned TypeQuals) {
1655    ID.AddPointer(ET.getAsOpaquePtr());
1656    ID.AddInteger(ArraySize.getZExtValue());
1657    ID.AddInteger(SizeMod);
1658    ID.AddInteger(TypeQuals);
1659  }
1660  static bool classof(const Type *T) {
1661    return T->getTypeClass() == ConstantArray;
1662  }
1663  static bool classof(const ConstantArrayType *) { return true; }
1664};
1665
1666/// IncompleteArrayType - This class represents C arrays with an unspecified
1667/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1668/// type is 'int' and the size is unspecified.
1669class IncompleteArrayType : public ArrayType {
1670
1671  IncompleteArrayType(QualType et, QualType can,
1672                      ArraySizeModifier sm, unsigned tq)
1673    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1674  friend class ASTContext;  // ASTContext creates these.
1675public:
1676  bool isSugared() const { return false; }
1677  QualType desugar() const { return QualType(this, 0); }
1678
1679  static bool classof(const Type *T) {
1680    return T->getTypeClass() == IncompleteArray;
1681  }
1682  static bool classof(const IncompleteArrayType *) { return true; }
1683
1684  friend class StmtIteratorBase;
1685
1686  void Profile(llvm::FoldingSetNodeID &ID) {
1687    Profile(ID, getElementType(), getSizeModifier(),
1688            getIndexTypeCVRQualifiers());
1689  }
1690
1691  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1692                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1693    ID.AddPointer(ET.getAsOpaquePtr());
1694    ID.AddInteger(SizeMod);
1695    ID.AddInteger(TypeQuals);
1696  }
1697};
1698
1699/// VariableArrayType - This class represents C arrays with a specified size
1700/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1701/// Since the size expression is an arbitrary expression, we store it as such.
1702///
1703/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1704/// should not be: two lexically equivalent variable array types could mean
1705/// different things, for example, these variables do not have the same type
1706/// dynamically:
1707///
1708/// void foo(int x) {
1709///   int Y[x];
1710///   ++x;
1711///   int Z[x];
1712/// }
1713///
1714class VariableArrayType : public ArrayType {
1715  /// SizeExpr - An assignment expression. VLA's are only permitted within
1716  /// a function block.
1717  Stmt *SizeExpr;
1718  /// Brackets - The left and right array brackets.
1719  SourceRange Brackets;
1720
1721  VariableArrayType(QualType et, QualType can, Expr *e,
1722                    ArraySizeModifier sm, unsigned tq,
1723                    SourceRange brackets)
1724    : ArrayType(VariableArray, et, can, sm, tq),
1725      SizeExpr((Stmt*) e), Brackets(brackets) {}
1726  friend class ASTContext;  // ASTContext creates these.
1727
1728public:
1729  Expr *getSizeExpr() const {
1730    // We use C-style casts instead of cast<> here because we do not wish
1731    // to have a dependency of Type.h on Stmt.h/Expr.h.
1732    return (Expr*) SizeExpr;
1733  }
1734  SourceRange getBracketsRange() const { return Brackets; }
1735  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1736  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1737
1738  bool isSugared() const { return false; }
1739  QualType desugar() const { return QualType(this, 0); }
1740
1741  static bool classof(const Type *T) {
1742    return T->getTypeClass() == VariableArray;
1743  }
1744  static bool classof(const VariableArrayType *) { return true; }
1745
1746  friend class StmtIteratorBase;
1747
1748  void Profile(llvm::FoldingSetNodeID &ID) {
1749    assert(0 && "Cannnot unique VariableArrayTypes.");
1750  }
1751};
1752
1753/// DependentSizedArrayType - This type represents an array type in
1754/// C++ whose size is a value-dependent expression. For example:
1755///
1756/// \code
1757/// template<typename T, int Size>
1758/// class array {
1759///   T data[Size];
1760/// };
1761/// \endcode
1762///
1763/// For these types, we won't actually know what the array bound is
1764/// until template instantiation occurs, at which point this will
1765/// become either a ConstantArrayType or a VariableArrayType.
1766class DependentSizedArrayType : public ArrayType {
1767  ASTContext &Context;
1768
1769  /// \brief An assignment expression that will instantiate to the
1770  /// size of the array.
1771  ///
1772  /// The expression itself might be NULL, in which case the array
1773  /// type will have its size deduced from an initializer.
1774  Stmt *SizeExpr;
1775
1776  /// Brackets - The left and right array brackets.
1777  SourceRange Brackets;
1778
1779  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1780                          Expr *e, ArraySizeModifier sm, unsigned tq,
1781                          SourceRange brackets)
1782    : ArrayType(DependentSizedArray, et, can, sm, tq),
1783      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1784  friend class ASTContext;  // ASTContext creates these.
1785
1786public:
1787  Expr *getSizeExpr() const {
1788    // We use C-style casts instead of cast<> here because we do not wish
1789    // to have a dependency of Type.h on Stmt.h/Expr.h.
1790    return (Expr*) SizeExpr;
1791  }
1792  SourceRange getBracketsRange() const { return Brackets; }
1793  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1794  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1795
1796  bool isSugared() const { return false; }
1797  QualType desugar() const { return QualType(this, 0); }
1798
1799  static bool classof(const Type *T) {
1800    return T->getTypeClass() == DependentSizedArray;
1801  }
1802  static bool classof(const DependentSizedArrayType *) { return true; }
1803
1804  friend class StmtIteratorBase;
1805
1806
1807  void Profile(llvm::FoldingSetNodeID &ID) {
1808    Profile(ID, Context, getElementType(),
1809            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1810  }
1811
1812  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1813                      QualType ET, ArraySizeModifier SizeMod,
1814                      unsigned TypeQuals, Expr *E);
1815};
1816
1817/// DependentSizedExtVectorType - This type represent an extended vector type
1818/// where either the type or size is dependent. For example:
1819/// @code
1820/// template<typename T, int Size>
1821/// class vector {
1822///   typedef T __attribute__((ext_vector_type(Size))) type;
1823/// }
1824/// @endcode
1825class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1826  ASTContext &Context;
1827  Expr *SizeExpr;
1828  /// ElementType - The element type of the array.
1829  QualType ElementType;
1830  SourceLocation loc;
1831
1832  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1833                              QualType can, Expr *SizeExpr, SourceLocation loc)
1834    : Type(DependentSizedExtVector, can, /*Dependent=*/true,
1835           ElementType->isVariablyModifiedType()),
1836      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1837      loc(loc) {}
1838  friend class ASTContext;
1839
1840public:
1841  Expr *getSizeExpr() const { return SizeExpr; }
1842  QualType getElementType() const { return ElementType; }
1843  SourceLocation getAttributeLoc() const { return loc; }
1844
1845  bool isSugared() const { return false; }
1846  QualType desugar() const { return QualType(this, 0); }
1847
1848  static bool classof(const Type *T) {
1849    return T->getTypeClass() == DependentSizedExtVector;
1850  }
1851  static bool classof(const DependentSizedExtVectorType *) { return true; }
1852
1853  void Profile(llvm::FoldingSetNodeID &ID) {
1854    Profile(ID, Context, getElementType(), getSizeExpr());
1855  }
1856
1857  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1858                      QualType ElementType, Expr *SizeExpr);
1859};
1860
1861
1862/// VectorType - GCC generic vector type. This type is created using
1863/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1864/// bytes; or from an Altivec __vector or vector declaration.
1865/// Since the constructor takes the number of vector elements, the
1866/// client is responsible for converting the size into the number of elements.
1867class VectorType : public Type, public llvm::FoldingSetNode {
1868public:
1869  enum AltiVecSpecific {
1870    NotAltiVec,  // is not AltiVec vector
1871    AltiVec,     // is AltiVec vector
1872    Pixel,       // is AltiVec 'vector Pixel'
1873    Bool         // is AltiVec 'vector bool ...'
1874  };
1875protected:
1876  /// ElementType - The element type of the vector.
1877  QualType ElementType;
1878
1879  VectorType(QualType vecType, unsigned nElements, QualType canonType,
1880      AltiVecSpecific altiVecSpec) :
1881    Type(Vector, canonType, vecType->isDependentType(),
1882         vecType->isVariablyModifiedType()), ElementType(vecType) {
1883    VectorTypeBits.AltiVecSpec = altiVecSpec;
1884    VectorTypeBits.NumElements = nElements;
1885  }
1886
1887  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1888             QualType canonType, AltiVecSpecific altiVecSpec)
1889    : Type(tc, canonType, vecType->isDependentType(),
1890           vecType->isVariablyModifiedType()), ElementType(vecType) {
1891    VectorTypeBits.AltiVecSpec = altiVecSpec;
1892    VectorTypeBits.NumElements = nElements;
1893  }
1894  friend class ASTContext;  // ASTContext creates these.
1895
1896  virtual std::pair<Linkage, bool> getLinkageUnnamedLocalImpl() const;
1897
1898public:
1899
1900  QualType getElementType() const { return ElementType; }
1901  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
1902
1903  bool isSugared() const { return false; }
1904  QualType desugar() const { return QualType(this, 0); }
1905
1906  AltiVecSpecific getAltiVecSpecific() const {
1907    return AltiVecSpecific(VectorTypeBits.AltiVecSpec);
1908  }
1909
1910  void Profile(llvm::FoldingSetNodeID &ID) {
1911    Profile(ID, getElementType(), getNumElements(),
1912            getTypeClass(), getAltiVecSpecific());
1913  }
1914  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1915                      unsigned NumElements, TypeClass TypeClass,
1916                      AltiVecSpecific AltiVecSpec) {
1917    ID.AddPointer(ElementType.getAsOpaquePtr());
1918    ID.AddInteger(NumElements);
1919    ID.AddInteger(TypeClass);
1920    ID.AddInteger(AltiVecSpec);
1921  }
1922
1923  static bool classof(const Type *T) {
1924    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1925  }
1926  static bool classof(const VectorType *) { return true; }
1927};
1928
1929/// ExtVectorType - Extended vector type. This type is created using
1930/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1931/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1932/// class enables syntactic extensions, like Vector Components for accessing
1933/// points, colors, and textures (modeled after OpenGL Shading Language).
1934class ExtVectorType : public VectorType {
1935  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1936    VectorType(ExtVector, vecType, nElements, canonType, NotAltiVec) {}
1937  friend class ASTContext;  // ASTContext creates these.
1938public:
1939  static int getPointAccessorIdx(char c) {
1940    switch (c) {
1941    default: return -1;
1942    case 'x': return 0;
1943    case 'y': return 1;
1944    case 'z': return 2;
1945    case 'w': return 3;
1946    }
1947  }
1948  static int getNumericAccessorIdx(char c) {
1949    switch (c) {
1950      default: return -1;
1951      case '0': return 0;
1952      case '1': return 1;
1953      case '2': return 2;
1954      case '3': return 3;
1955      case '4': return 4;
1956      case '5': return 5;
1957      case '6': return 6;
1958      case '7': return 7;
1959      case '8': return 8;
1960      case '9': return 9;
1961      case 'A':
1962      case 'a': return 10;
1963      case 'B':
1964      case 'b': return 11;
1965      case 'C':
1966      case 'c': return 12;
1967      case 'D':
1968      case 'd': return 13;
1969      case 'E':
1970      case 'e': return 14;
1971      case 'F':
1972      case 'f': return 15;
1973    }
1974  }
1975
1976  static int getAccessorIdx(char c) {
1977    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1978    return getNumericAccessorIdx(c);
1979  }
1980
1981  bool isAccessorWithinNumElements(char c) const {
1982    if (int idx = getAccessorIdx(c)+1)
1983      return unsigned(idx-1) < getNumElements();
1984    return false;
1985  }
1986  bool isSugared() const { return false; }
1987  QualType desugar() const { return QualType(this, 0); }
1988
1989  static bool classof(const Type *T) {
1990    return T->getTypeClass() == ExtVector;
1991  }
1992  static bool classof(const ExtVectorType *) { return true; }
1993};
1994
1995/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1996/// class of FunctionNoProtoType and FunctionProtoType.
1997///
1998class FunctionType : public Type {
1999  virtual void ANCHOR(); // Key function for FunctionType.
2000
2001  // The type returned by the function.
2002  QualType ResultType;
2003
2004 public:
2005  // This class is used for passing arround the information needed to
2006  // construct a call. It is not actually used for storage, just for
2007  // factoring together common arguments.
2008  // If you add a field (say Foo), other than the obvious places (both, constructors,
2009  // compile failures), what you need to update is
2010  // * Operetor==
2011  // * getFoo
2012  // * withFoo
2013  // * functionType. Add Foo, getFoo.
2014  // * ASTContext::getFooType
2015  // * ASTContext::mergeFunctionTypes
2016  // * FunctionNoProtoType::Profile
2017  // * FunctionProtoType::Profile
2018  // * TypePrinter::PrintFunctionProto
2019  // * AST read and write
2020  // * Codegen
2021
2022  class ExtInfo {
2023    enum { CallConvMask = 0x7 };
2024    enum { NoReturnMask = 0x8 };
2025    enum { RegParmMask = ~(CallConvMask | NoReturnMask),
2026           RegParmOffset = 4 };
2027
2028    unsigned Bits;
2029
2030    ExtInfo(unsigned Bits) : Bits(Bits) {}
2031
2032    friend class FunctionType;
2033
2034   public:
2035    // Constructor with no defaults. Use this when you know that you
2036    // have all the elements (when reading an AST file for example).
2037    ExtInfo(bool noReturn, unsigned regParm, CallingConv cc) {
2038      Bits = ((unsigned) cc) |
2039             (noReturn ? NoReturnMask : 0) |
2040             (regParm << RegParmOffset);
2041    }
2042
2043    // Constructor with all defaults. Use when for example creating a
2044    // function know to use defaults.
2045    ExtInfo() : Bits(0) {}
2046
2047    bool getNoReturn() const { return Bits & NoReturnMask; }
2048    unsigned getRegParm() const { return Bits >> RegParmOffset; }
2049    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2050
2051    bool operator==(ExtInfo Other) const {
2052      return Bits == Other.Bits;
2053    }
2054    bool operator!=(ExtInfo Other) const {
2055      return Bits != Other.Bits;
2056    }
2057
2058    // Note that we don't have setters. That is by design, use
2059    // the following with methods instead of mutating these objects.
2060
2061    ExtInfo withNoReturn(bool noReturn) const {
2062      if (noReturn)
2063        return ExtInfo(Bits | NoReturnMask);
2064      else
2065        return ExtInfo(Bits & ~NoReturnMask);
2066    }
2067
2068    ExtInfo withRegParm(unsigned RegParm) const {
2069      return ExtInfo((Bits & ~RegParmMask) | (RegParm << RegParmOffset));
2070    }
2071
2072    ExtInfo withCallingConv(CallingConv cc) const {
2073      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2074    }
2075
2076    void Profile(llvm::FoldingSetNodeID &ID) {
2077      ID.AddInteger(Bits);
2078    }
2079  };
2080
2081protected:
2082  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
2083               unsigned typeQuals, QualType Canonical, bool Dependent,
2084               bool VariablyModified, ExtInfo Info)
2085    : Type(tc, Canonical, Dependent, VariablyModified), ResultType(res) {
2086    FunctionTypeBits.ExtInfo = Info.Bits;
2087    FunctionTypeBits.SubclassInfo = SubclassInfo;
2088    FunctionTypeBits.TypeQuals = typeQuals;
2089  }
2090  bool getSubClassData() const { return FunctionTypeBits.SubclassInfo; }
2091  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2092public:
2093
2094  QualType getResultType() const { return ResultType; }
2095
2096  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2097  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2098  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2099  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2100
2101  /// \brief Determine the type of an expression that calls a function of
2102  /// this type.
2103  QualType getCallResultType(ASTContext &Context) const {
2104    return getResultType().getNonLValueExprType(Context);
2105  }
2106
2107  static llvm::StringRef getNameForCallConv(CallingConv CC);
2108
2109  static bool classof(const Type *T) {
2110    return T->getTypeClass() == FunctionNoProto ||
2111           T->getTypeClass() == FunctionProto;
2112  }
2113  static bool classof(const FunctionType *) { return true; }
2114};
2115
2116/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2117/// no information available about its arguments.
2118class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2119  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2120    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
2121                   /*Dependent=*/false, Result->isVariablyModifiedType(),
2122                   Info) {}
2123  friend class ASTContext;  // ASTContext creates these.
2124
2125protected:
2126  virtual std::pair<Linkage, bool> getLinkageUnnamedLocalImpl() const;
2127
2128public:
2129  // No additional state past what FunctionType provides.
2130
2131  bool isSugared() const { return false; }
2132  QualType desugar() const { return QualType(this, 0); }
2133
2134  void Profile(llvm::FoldingSetNodeID &ID) {
2135    Profile(ID, getResultType(), getExtInfo());
2136  }
2137  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2138                      ExtInfo Info) {
2139    Info.Profile(ID);
2140    ID.AddPointer(ResultType.getAsOpaquePtr());
2141  }
2142
2143  static bool classof(const Type *T) {
2144    return T->getTypeClass() == FunctionNoProto;
2145  }
2146  static bool classof(const FunctionNoProtoType *) { return true; }
2147};
2148
2149/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2150/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2151/// arguments, not as having a single void argument. Such a type can have an
2152/// exception specification, but this specification is not part of the canonical
2153/// type.
2154class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2155  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
2156                    bool isVariadic, unsigned typeQuals, bool hasExs,
2157                    bool hasAnyExs, const QualType *ExArray,
2158                    unsigned numExs, QualType Canonical,
2159                    const ExtInfo &Info);
2160
2161  /// NumArgs - The number of arguments this function has, not counting '...'.
2162  unsigned NumArgs : 20;
2163
2164  /// NumExceptions - The number of types in the exception spec, if any.
2165  unsigned NumExceptions : 10;
2166
2167  /// HasExceptionSpec - Whether this function has an exception spec at all.
2168  bool HasExceptionSpec : 1;
2169
2170  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
2171  bool AnyExceptionSpec : 1;
2172
2173  /// ArgInfo - There is an variable size array after the class in memory that
2174  /// holds the argument types.
2175
2176  /// Exceptions - There is another variable size array after ArgInfo that
2177  /// holds the exception types.
2178
2179  friend class ASTContext;  // ASTContext creates these.
2180
2181protected:
2182  virtual std::pair<Linkage, bool> getLinkageUnnamedLocalImpl() const;
2183
2184public:
2185  unsigned getNumArgs() const { return NumArgs; }
2186  QualType getArgType(unsigned i) const {
2187    assert(i < NumArgs && "Invalid argument number!");
2188    return arg_type_begin()[i];
2189  }
2190
2191  bool hasExceptionSpec() const { return HasExceptionSpec; }
2192  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
2193  unsigned getNumExceptions() const { return NumExceptions; }
2194  QualType getExceptionType(unsigned i) const {
2195    assert(i < NumExceptions && "Invalid exception number!");
2196    return exception_begin()[i];
2197  }
2198  bool hasEmptyExceptionSpec() const {
2199    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
2200      getNumExceptions() == 0;
2201  }
2202
2203  bool isVariadic() const { return getSubClassData(); }
2204  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2205
2206  typedef const QualType *arg_type_iterator;
2207  arg_type_iterator arg_type_begin() const {
2208    return reinterpret_cast<const QualType *>(this+1);
2209  }
2210  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2211
2212  typedef const QualType *exception_iterator;
2213  exception_iterator exception_begin() const {
2214    // exceptions begin where arguments end
2215    return arg_type_end();
2216  }
2217  exception_iterator exception_end() const {
2218    return exception_begin() + NumExceptions;
2219  }
2220
2221  bool isSugared() const { return false; }
2222  QualType desugar() const { return QualType(this, 0); }
2223
2224  static bool classof(const Type *T) {
2225    return T->getTypeClass() == FunctionProto;
2226  }
2227  static bool classof(const FunctionProtoType *) { return true; }
2228
2229  void Profile(llvm::FoldingSetNodeID &ID);
2230  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2231                      arg_type_iterator ArgTys, unsigned NumArgs,
2232                      bool isVariadic, unsigned TypeQuals,
2233                      bool hasExceptionSpec, bool anyExceptionSpec,
2234                      unsigned NumExceptions, exception_iterator Exs,
2235                      ExtInfo ExtInfo);
2236};
2237
2238
2239/// \brief Represents the dependent type named by a dependently-scoped
2240/// typename using declaration, e.g.
2241///   using typename Base<T>::foo;
2242/// Template instantiation turns these into the underlying type.
2243class UnresolvedUsingType : public Type {
2244  UnresolvedUsingTypenameDecl *Decl;
2245
2246  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2247    : Type(UnresolvedUsing, QualType(), true, false),
2248      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2249  friend class ASTContext; // ASTContext creates these.
2250public:
2251
2252  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2253
2254  bool isSugared() const { return false; }
2255  QualType desugar() const { return QualType(this, 0); }
2256
2257  static bool classof(const Type *T) {
2258    return T->getTypeClass() == UnresolvedUsing;
2259  }
2260  static bool classof(const UnresolvedUsingType *) { return true; }
2261
2262  void Profile(llvm::FoldingSetNodeID &ID) {
2263    return Profile(ID, Decl);
2264  }
2265  static void Profile(llvm::FoldingSetNodeID &ID,
2266                      UnresolvedUsingTypenameDecl *D) {
2267    ID.AddPointer(D);
2268  }
2269};
2270
2271
2272class TypedefType : public Type {
2273  TypedefDecl *Decl;
2274protected:
2275  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
2276    : Type(tc, can, can->isDependentType(), can->isVariablyModifiedType()),
2277      Decl(const_cast<TypedefDecl*>(D)) {
2278    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2279  }
2280  friend class ASTContext;  // ASTContext creates these.
2281public:
2282
2283  TypedefDecl *getDecl() const { return Decl; }
2284
2285  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
2286  /// potentially looking through *all* consecutive typedefs.  This returns the
2287  /// sum of the type qualifiers, so if you have:
2288  ///   typedef const int A;
2289  ///   typedef volatile A B;
2290  /// looking through the typedefs for B will give you "const volatile A".
2291  QualType LookThroughTypedefs() const;
2292
2293  bool isSugared() const { return true; }
2294  QualType desugar() const;
2295
2296  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2297  static bool classof(const TypedefType *) { return true; }
2298};
2299
2300/// TypeOfExprType (GCC extension).
2301class TypeOfExprType : public Type {
2302  Expr *TOExpr;
2303
2304protected:
2305  TypeOfExprType(Expr *E, QualType can = QualType());
2306  friend class ASTContext;  // ASTContext creates these.
2307public:
2308  Expr *getUnderlyingExpr() const { return TOExpr; }
2309
2310  /// \brief Remove a single level of sugar.
2311  QualType desugar() const;
2312
2313  /// \brief Returns whether this type directly provides sugar.
2314  bool isSugared() const { return true; }
2315
2316  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2317  static bool classof(const TypeOfExprType *) { return true; }
2318};
2319
2320/// \brief Internal representation of canonical, dependent
2321/// typeof(expr) types.
2322///
2323/// This class is used internally by the ASTContext to manage
2324/// canonical, dependent types, only. Clients will only see instances
2325/// of this class via TypeOfExprType nodes.
2326class DependentTypeOfExprType
2327  : public TypeOfExprType, public llvm::FoldingSetNode {
2328  ASTContext &Context;
2329
2330public:
2331  DependentTypeOfExprType(ASTContext &Context, Expr *E)
2332    : TypeOfExprType(E), Context(Context) { }
2333
2334  bool isSugared() const { return false; }
2335  QualType desugar() const { return QualType(this, 0); }
2336
2337  void Profile(llvm::FoldingSetNodeID &ID) {
2338    Profile(ID, Context, getUnderlyingExpr());
2339  }
2340
2341  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2342                      Expr *E);
2343};
2344
2345/// TypeOfType (GCC extension).
2346class TypeOfType : public Type {
2347  QualType TOType;
2348  TypeOfType(QualType T, QualType can)
2349    : Type(TypeOf, can, T->isDependentType(), T->isVariablyModifiedType()),
2350      TOType(T) {
2351    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2352  }
2353  friend class ASTContext;  // ASTContext creates these.
2354public:
2355  QualType getUnderlyingType() const { return TOType; }
2356
2357  /// \brief Remove a single level of sugar.
2358  QualType desugar() const { return getUnderlyingType(); }
2359
2360  /// \brief Returns whether this type directly provides sugar.
2361  bool isSugared() const { return true; }
2362
2363  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2364  static bool classof(const TypeOfType *) { return true; }
2365};
2366
2367/// DecltypeType (C++0x)
2368class DecltypeType : public Type {
2369  Expr *E;
2370
2371  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2372  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2373  // from it.
2374  QualType UnderlyingType;
2375
2376protected:
2377  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2378  friend class ASTContext;  // ASTContext creates these.
2379public:
2380  Expr *getUnderlyingExpr() const { return E; }
2381  QualType getUnderlyingType() const { return UnderlyingType; }
2382
2383  /// \brief Remove a single level of sugar.
2384  QualType desugar() const { return getUnderlyingType(); }
2385
2386  /// \brief Returns whether this type directly provides sugar.
2387  bool isSugared() const { return !isDependentType(); }
2388
2389  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2390  static bool classof(const DecltypeType *) { return true; }
2391};
2392
2393/// \brief Internal representation of canonical, dependent
2394/// decltype(expr) types.
2395///
2396/// This class is used internally by the ASTContext to manage
2397/// canonical, dependent types, only. Clients will only see instances
2398/// of this class via DecltypeType nodes.
2399class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2400  ASTContext &Context;
2401
2402public:
2403  DependentDecltypeType(ASTContext &Context, Expr *E);
2404
2405  bool isSugared() const { return false; }
2406  QualType desugar() const { return QualType(this, 0); }
2407
2408  void Profile(llvm::FoldingSetNodeID &ID) {
2409    Profile(ID, Context, getUnderlyingExpr());
2410  }
2411
2412  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2413                      Expr *E);
2414};
2415
2416class TagType : public Type {
2417  /// Stores the TagDecl associated with this type. The decl may point to any
2418  /// TagDecl that declares the entity.
2419  TagDecl * decl;
2420
2421protected:
2422  TagType(TypeClass TC, const TagDecl *D, QualType can);
2423
2424  virtual std::pair<Linkage, bool> getLinkageUnnamedLocalImpl() const;
2425
2426public:
2427  TagDecl *getDecl() const;
2428
2429  /// @brief Determines whether this type is in the process of being
2430  /// defined.
2431  bool isBeingDefined() const;
2432
2433  static bool classof(const Type *T) {
2434    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2435  }
2436  static bool classof(const TagType *) { return true; }
2437  static bool classof(const RecordType *) { return true; }
2438  static bool classof(const EnumType *) { return true; }
2439};
2440
2441/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2442/// to detect TagType objects of structs/unions/classes.
2443class RecordType : public TagType {
2444protected:
2445  explicit RecordType(const RecordDecl *D)
2446    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2447  explicit RecordType(TypeClass TC, RecordDecl *D)
2448    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2449  friend class ASTContext;   // ASTContext creates these.
2450public:
2451
2452  RecordDecl *getDecl() const {
2453    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2454  }
2455
2456  // FIXME: This predicate is a helper to QualType/Type. It needs to
2457  // recursively check all fields for const-ness. If any field is declared
2458  // const, it needs to return false.
2459  bool hasConstFields() const { return false; }
2460
2461  // FIXME: RecordType needs to check when it is created that all fields are in
2462  // the same address space, and return that.
2463  unsigned getAddressSpace() const { return 0; }
2464
2465  bool isSugared() const { return false; }
2466  QualType desugar() const { return QualType(this, 0); }
2467
2468  static bool classof(const TagType *T);
2469  static bool classof(const Type *T) {
2470    return isa<TagType>(T) && classof(cast<TagType>(T));
2471  }
2472  static bool classof(const RecordType *) { return true; }
2473};
2474
2475/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2476/// to detect TagType objects of enums.
2477class EnumType : public TagType {
2478  explicit EnumType(const EnumDecl *D)
2479    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2480  friend class ASTContext;   // ASTContext creates these.
2481public:
2482
2483  EnumDecl *getDecl() const {
2484    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2485  }
2486
2487  bool isSugared() const { return false; }
2488  QualType desugar() const { return QualType(this, 0); }
2489
2490  static bool classof(const TagType *T);
2491  static bool classof(const Type *T) {
2492    return isa<TagType>(T) && classof(cast<TagType>(T));
2493  }
2494  static bool classof(const EnumType *) { return true; }
2495};
2496
2497class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2498  unsigned Depth : 15;
2499  unsigned ParameterPack : 1;
2500  unsigned Index : 16;
2501  IdentifierInfo *Name;
2502
2503  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2504                       QualType Canon)
2505    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
2506           /*VariablyModified=*/false),
2507      Depth(D), ParameterPack(PP), Index(I), Name(N) { }
2508
2509  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2510    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true,
2511           /*VariablyModified=*/false),
2512      Depth(D), ParameterPack(PP), Index(I), Name(0) { }
2513
2514  friend class ASTContext;  // ASTContext creates these
2515
2516public:
2517  unsigned getDepth() const { return Depth; }
2518  unsigned getIndex() const { return Index; }
2519  bool isParameterPack() const { return ParameterPack; }
2520  IdentifierInfo *getName() const { return Name; }
2521
2522  bool isSugared() const { return false; }
2523  QualType desugar() const { return QualType(this, 0); }
2524
2525  void Profile(llvm::FoldingSetNodeID &ID) {
2526    Profile(ID, Depth, Index, ParameterPack, Name);
2527  }
2528
2529  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2530                      unsigned Index, bool ParameterPack,
2531                      IdentifierInfo *Name) {
2532    ID.AddInteger(Depth);
2533    ID.AddInteger(Index);
2534    ID.AddBoolean(ParameterPack);
2535    ID.AddPointer(Name);
2536  }
2537
2538  static bool classof(const Type *T) {
2539    return T->getTypeClass() == TemplateTypeParm;
2540  }
2541  static bool classof(const TemplateTypeParmType *T) { return true; }
2542};
2543
2544/// \brief Represents the result of substituting a type for a template
2545/// type parameter.
2546///
2547/// Within an instantiated template, all template type parameters have
2548/// been replaced with these.  They are used solely to record that a
2549/// type was originally written as a template type parameter;
2550/// therefore they are never canonical.
2551class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2552  // The original type parameter.
2553  const TemplateTypeParmType *Replaced;
2554
2555  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2556    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
2557           Canon->isVariablyModifiedType()),
2558      Replaced(Param) { }
2559
2560  friend class ASTContext;
2561
2562public:
2563  IdentifierInfo *getName() const { return Replaced->getName(); }
2564
2565  /// Gets the template parameter that was substituted for.
2566  const TemplateTypeParmType *getReplacedParameter() const {
2567    return Replaced;
2568  }
2569
2570  /// Gets the type that was substituted for the template
2571  /// parameter.
2572  QualType getReplacementType() const {
2573    return getCanonicalTypeInternal();
2574  }
2575
2576  bool isSugared() const { return true; }
2577  QualType desugar() const { return getReplacementType(); }
2578
2579  void Profile(llvm::FoldingSetNodeID &ID) {
2580    Profile(ID, getReplacedParameter(), getReplacementType());
2581  }
2582  static void Profile(llvm::FoldingSetNodeID &ID,
2583                      const TemplateTypeParmType *Replaced,
2584                      QualType Replacement) {
2585    ID.AddPointer(Replaced);
2586    ID.AddPointer(Replacement.getAsOpaquePtr());
2587  }
2588
2589  static bool classof(const Type *T) {
2590    return T->getTypeClass() == SubstTemplateTypeParm;
2591  }
2592  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2593};
2594
2595/// \brief Represents the type of a template specialization as written
2596/// in the source code.
2597///
2598/// Template specialization types represent the syntactic form of a
2599/// template-id that refers to a type, e.g., @c vector<int>. Some
2600/// template specialization types are syntactic sugar, whose canonical
2601/// type will point to some other type node that represents the
2602/// instantiation or class template specialization. For example, a
2603/// class template specialization type of @c vector<int> will refer to
2604/// a tag type for the instantiation
2605/// @c std::vector<int, std::allocator<int>>.
2606///
2607/// Other template specialization types, for which the template name
2608/// is dependent, may be canonical types. These types are always
2609/// dependent.
2610class TemplateSpecializationType
2611  : public Type, public llvm::FoldingSetNode {
2612  /// \brief The name of the template being specialized.
2613  TemplateName Template;
2614
2615  /// \brief - The number of template arguments named in this class
2616  /// template specialization.
2617  unsigned NumArgs;
2618
2619  TemplateSpecializationType(TemplateName T,
2620                             const TemplateArgument *Args,
2621                             unsigned NumArgs, QualType Canon);
2622
2623  friend class ASTContext;  // ASTContext creates these
2624
2625public:
2626  /// \brief Determine whether any of the given template arguments are
2627  /// dependent.
2628  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2629                                            unsigned NumArgs);
2630
2631  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2632                                            unsigned NumArgs);
2633
2634  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2635
2636  /// \brief Print a template argument list, including the '<' and '>'
2637  /// enclosing the template arguments.
2638  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2639                                               unsigned NumArgs,
2640                                               const PrintingPolicy &Policy);
2641
2642  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2643                                               unsigned NumArgs,
2644                                               const PrintingPolicy &Policy);
2645
2646  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2647                                               const PrintingPolicy &Policy);
2648
2649  /// True if this template specialization type matches a current
2650  /// instantiation in the context in which it is found.
2651  bool isCurrentInstantiation() const {
2652    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
2653  }
2654
2655  typedef const TemplateArgument * iterator;
2656
2657  iterator begin() const { return getArgs(); }
2658  iterator end() const; // defined inline in TemplateBase.h
2659
2660  /// \brief Retrieve the name of the template that we are specializing.
2661  TemplateName getTemplateName() const { return Template; }
2662
2663  /// \brief Retrieve the template arguments.
2664  const TemplateArgument *getArgs() const {
2665    return reinterpret_cast<const TemplateArgument *>(this + 1);
2666  }
2667
2668  /// \brief Retrieve the number of template arguments.
2669  unsigned getNumArgs() const { return NumArgs; }
2670
2671  /// \brief Retrieve a specific template argument as a type.
2672  /// \precondition @c isArgType(Arg)
2673  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
2674
2675  bool isSugared() const {
2676    return !isDependentType() || isCurrentInstantiation();
2677  }
2678  QualType desugar() const { return getCanonicalTypeInternal(); }
2679
2680  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Ctx) {
2681    Profile(ID, Template, getArgs(), NumArgs, Ctx);
2682  }
2683
2684  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2685                      const TemplateArgument *Args,
2686                      unsigned NumArgs,
2687                      ASTContext &Context);
2688
2689  static bool classof(const Type *T) {
2690    return T->getTypeClass() == TemplateSpecialization;
2691  }
2692  static bool classof(const TemplateSpecializationType *T) { return true; }
2693};
2694
2695/// \brief The injected class name of a C++ class template or class
2696/// template partial specialization.  Used to record that a type was
2697/// spelled with a bare identifier rather than as a template-id; the
2698/// equivalent for non-templated classes is just RecordType.
2699///
2700/// Injected class name types are always dependent.  Template
2701/// instantiation turns these into RecordTypes.
2702///
2703/// Injected class name types are always canonical.  This works
2704/// because it is impossible to compare an injected class name type
2705/// with the corresponding non-injected template type, for the same
2706/// reason that it is impossible to directly compare template
2707/// parameters from different dependent contexts: injected class name
2708/// types can only occur within the scope of a particular templated
2709/// declaration, and within that scope every template specialization
2710/// will canonicalize to the injected class name (when appropriate
2711/// according to the rules of the language).
2712class InjectedClassNameType : public Type {
2713  CXXRecordDecl *Decl;
2714
2715  /// The template specialization which this type represents.
2716  /// For example, in
2717  ///   template <class T> class A { ... };
2718  /// this is A<T>, whereas in
2719  ///   template <class X, class Y> class A<B<X,Y> > { ... };
2720  /// this is A<B<X,Y> >.
2721  ///
2722  /// It is always unqualified, always a template specialization type,
2723  /// and always dependent.
2724  QualType InjectedType;
2725
2726  friend class ASTContext; // ASTContext creates these.
2727  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
2728                          // currently suitable for AST reading, too much
2729                          // interdependencies.
2730  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
2731    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
2732           /*VariablyModified=*/false),
2733      Decl(D), InjectedType(TST) {
2734    assert(isa<TemplateSpecializationType>(TST));
2735    assert(!TST.hasQualifiers());
2736    assert(TST->isDependentType());
2737  }
2738
2739public:
2740  QualType getInjectedSpecializationType() const { return InjectedType; }
2741  const TemplateSpecializationType *getInjectedTST() const {
2742    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
2743  }
2744
2745  CXXRecordDecl *getDecl() const;
2746
2747  bool isSugared() const { return false; }
2748  QualType desugar() const { return QualType(this, 0); }
2749
2750  static bool classof(const Type *T) {
2751    return T->getTypeClass() == InjectedClassName;
2752  }
2753  static bool classof(const InjectedClassNameType *T) { return true; }
2754};
2755
2756/// \brief The kind of a tag type.
2757enum TagTypeKind {
2758  /// \brief The "struct" keyword.
2759  TTK_Struct,
2760  /// \brief The "union" keyword.
2761  TTK_Union,
2762  /// \brief The "class" keyword.
2763  TTK_Class,
2764  /// \brief The "enum" keyword.
2765  TTK_Enum
2766};
2767
2768/// \brief The elaboration keyword that precedes a qualified type name or
2769/// introduces an elaborated-type-specifier.
2770enum ElaboratedTypeKeyword {
2771  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
2772  ETK_Struct,
2773  /// \brief The "union" keyword introduces the elaborated-type-specifier.
2774  ETK_Union,
2775  /// \brief The "class" keyword introduces the elaborated-type-specifier.
2776  ETK_Class,
2777  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
2778  ETK_Enum,
2779  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
2780  /// \c typename T::type.
2781  ETK_Typename,
2782  /// \brief No keyword precedes the qualified type name.
2783  ETK_None
2784};
2785
2786/// A helper class for Type nodes having an ElaboratedTypeKeyword.
2787/// The keyword in stored in the free bits of the base class.
2788/// Also provides a few static helpers for converting and printing
2789/// elaborated type keyword and tag type kind enumerations.
2790class TypeWithKeyword : public Type {
2791protected:
2792  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
2793                  QualType Canonical, bool Dependent, bool VariablyModified)
2794    : Type(tc, Canonical, Dependent, VariablyModified) {
2795    TypeWithKeywordBits.Keyword = Keyword;
2796  }
2797
2798public:
2799  virtual ~TypeWithKeyword(); // pin vtable to Type.cpp
2800
2801  ElaboratedTypeKeyword getKeyword() const {
2802    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
2803  }
2804
2805  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
2806  /// into an elaborated type keyword.
2807  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
2808
2809  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
2810  /// into a tag type kind.  It is an error to provide a type specifier
2811  /// which *isn't* a tag kind here.
2812  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
2813
2814  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
2815  /// elaborated type keyword.
2816  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
2817
2818  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
2819  // a TagTypeKind. It is an error to provide an elaborated type keyword
2820  /// which *isn't* a tag kind here.
2821  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
2822
2823  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
2824
2825  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
2826
2827  static const char *getTagTypeKindName(TagTypeKind Kind) {
2828    return getKeywordName(getKeywordForTagTypeKind(Kind));
2829  }
2830
2831  class CannotCastToThisType {};
2832  static CannotCastToThisType classof(const Type *);
2833};
2834
2835/// \brief Represents a type that was referred to using an elaborated type
2836/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
2837/// or both.
2838///
2839/// This type is used to keep track of a type name as written in the
2840/// source code, including tag keywords and any nested-name-specifiers.
2841/// The type itself is always "sugar", used to express what was written
2842/// in the source code but containing no additional semantic information.
2843class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
2844
2845  /// \brief The nested name specifier containing the qualifier.
2846  NestedNameSpecifier *NNS;
2847
2848  /// \brief The type that this qualified name refers to.
2849  QualType NamedType;
2850
2851  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2852                 QualType NamedType, QualType CanonType)
2853    : TypeWithKeyword(Keyword, Elaborated, CanonType,
2854                      NamedType->isDependentType(),
2855                      NamedType->isVariablyModifiedType()),
2856      NNS(NNS), NamedType(NamedType) {
2857    assert(!(Keyword == ETK_None && NNS == 0) &&
2858           "ElaboratedType cannot have elaborated type keyword "
2859           "and name qualifier both null.");
2860  }
2861
2862  friend class ASTContext;  // ASTContext creates these
2863
2864public:
2865  ~ElaboratedType();
2866
2867  /// \brief Retrieve the qualification on this type.
2868  NestedNameSpecifier *getQualifier() const { return NNS; }
2869
2870  /// \brief Retrieve the type named by the qualified-id.
2871  QualType getNamedType() const { return NamedType; }
2872
2873  /// \brief Remove a single level of sugar.
2874  QualType desugar() const { return getNamedType(); }
2875
2876  /// \brief Returns whether this type directly provides sugar.
2877  bool isSugared() const { return true; }
2878
2879  void Profile(llvm::FoldingSetNodeID &ID) {
2880    Profile(ID, getKeyword(), NNS, NamedType);
2881  }
2882
2883  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2884                      NestedNameSpecifier *NNS, QualType NamedType) {
2885    ID.AddInteger(Keyword);
2886    ID.AddPointer(NNS);
2887    NamedType.Profile(ID);
2888  }
2889
2890  static bool classof(const Type *T) {
2891    return T->getTypeClass() == Elaborated;
2892  }
2893  static bool classof(const ElaboratedType *T) { return true; }
2894};
2895
2896/// \brief Represents a qualified type name for which the type name is
2897/// dependent.
2898///
2899/// DependentNameType represents a class of dependent types that involve a
2900/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
2901/// name of a type. The DependentNameType may start with a "typename" (for a
2902/// typename-specifier), "class", "struct", "union", or "enum" (for a
2903/// dependent elaborated-type-specifier), or nothing (in contexts where we
2904/// know that we must be referring to a type, e.g., in a base class specifier).
2905class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
2906
2907  /// \brief The nested name specifier containing the qualifier.
2908  NestedNameSpecifier *NNS;
2909
2910  /// \brief The type that this typename specifier refers to.
2911  const IdentifierInfo *Name;
2912
2913  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2914                    const IdentifierInfo *Name, QualType CanonType)
2915    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
2916                      /*VariablyModified=*/false),
2917      NNS(NNS), Name(Name) {
2918    assert(NNS->isDependent() &&
2919           "DependentNameType requires a dependent nested-name-specifier");
2920  }
2921
2922  friend class ASTContext;  // ASTContext creates these
2923
2924public:
2925  virtual ~DependentNameType();
2926
2927  /// \brief Retrieve the qualification on this type.
2928  NestedNameSpecifier *getQualifier() const { return NNS; }
2929
2930  /// \brief Retrieve the type named by the typename specifier as an
2931  /// identifier.
2932  ///
2933  /// This routine will return a non-NULL identifier pointer when the
2934  /// form of the original typename was terminated by an identifier,
2935  /// e.g., "typename T::type".
2936  const IdentifierInfo *getIdentifier() const {
2937    return Name;
2938  }
2939
2940  bool isSugared() const { return false; }
2941  QualType desugar() const { return QualType(this, 0); }
2942
2943  void Profile(llvm::FoldingSetNodeID &ID) {
2944    Profile(ID, getKeyword(), NNS, Name);
2945  }
2946
2947  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2948                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
2949    ID.AddInteger(Keyword);
2950    ID.AddPointer(NNS);
2951    ID.AddPointer(Name);
2952  }
2953
2954  static bool classof(const Type *T) {
2955    return T->getTypeClass() == DependentName;
2956  }
2957  static bool classof(const DependentNameType *T) { return true; }
2958};
2959
2960/// DependentTemplateSpecializationType - Represents a template
2961/// specialization type whose template cannot be resolved, e.g.
2962///   A<T>::template B<T>
2963class DependentTemplateSpecializationType :
2964  public TypeWithKeyword, public llvm::FoldingSetNode {
2965
2966  /// \brief The nested name specifier containing the qualifier.
2967  NestedNameSpecifier *NNS;
2968
2969  /// \brief The identifier of the template.
2970  const IdentifierInfo *Name;
2971
2972  /// \brief - The number of template arguments named in this class
2973  /// template specialization.
2974  unsigned NumArgs;
2975
2976  const TemplateArgument *getArgBuffer() const {
2977    return reinterpret_cast<const TemplateArgument*>(this+1);
2978  }
2979  TemplateArgument *getArgBuffer() {
2980    return reinterpret_cast<TemplateArgument*>(this+1);
2981  }
2982
2983  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
2984                                      NestedNameSpecifier *NNS,
2985                                      const IdentifierInfo *Name,
2986                                      unsigned NumArgs,
2987                                      const TemplateArgument *Args,
2988                                      QualType Canon);
2989
2990  friend class ASTContext;  // ASTContext creates these
2991
2992public:
2993  virtual ~DependentTemplateSpecializationType();
2994
2995  NestedNameSpecifier *getQualifier() const { return NNS; }
2996  const IdentifierInfo *getIdentifier() const { return Name; }
2997
2998  /// \brief Retrieve the template arguments.
2999  const TemplateArgument *getArgs() const {
3000    return getArgBuffer();
3001  }
3002
3003  /// \brief Retrieve the number of template arguments.
3004  unsigned getNumArgs() const { return NumArgs; }
3005
3006  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3007
3008  typedef const TemplateArgument * iterator;
3009  iterator begin() const { return getArgs(); }
3010  iterator end() const; // inline in TemplateBase.h
3011
3012  bool isSugared() const { return false; }
3013  QualType desugar() const { return QualType(this, 0); }
3014
3015  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context) {
3016    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
3017  }
3018
3019  static void Profile(llvm::FoldingSetNodeID &ID,
3020                      ASTContext &Context,
3021                      ElaboratedTypeKeyword Keyword,
3022                      NestedNameSpecifier *Qualifier,
3023                      const IdentifierInfo *Name,
3024                      unsigned NumArgs,
3025                      const TemplateArgument *Args);
3026
3027  static bool classof(const Type *T) {
3028    return T->getTypeClass() == DependentTemplateSpecialization;
3029  }
3030  static bool classof(const DependentTemplateSpecializationType *T) {
3031    return true;
3032  }
3033};
3034
3035/// ObjCObjectType - Represents a class type in Objective C.
3036/// Every Objective C type is a combination of a base type and a
3037/// list of protocols.
3038///
3039/// Given the following declarations:
3040///   @class C;
3041///   @protocol P;
3042///
3043/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
3044/// with base C and no protocols.
3045///
3046/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
3047///
3048/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
3049/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
3050/// and no protocols.
3051///
3052/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
3053/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
3054/// this should get its own sugar class to better represent the source.
3055class ObjCObjectType : public Type {
3056  // ObjCObjectType.NumProtocols - the number of protocols stored
3057  // after the ObjCObjectPointerType node.
3058  //
3059  // These protocols are those written directly on the type.  If
3060  // protocol qualifiers ever become additive, the iterators will need
3061  // to get kindof complicated.
3062  //
3063  // In the canonical object type, these are sorted alphabetically
3064  // and uniqued.
3065
3066  /// Either a BuiltinType or an InterfaceType or sugar for either.
3067  QualType BaseType;
3068
3069  ObjCProtocolDecl * const *getProtocolStorage() const {
3070    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
3071  }
3072
3073  ObjCProtocolDecl **getProtocolStorage();
3074
3075protected:
3076  ObjCObjectType(QualType Canonical, QualType Base,
3077                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
3078
3079  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
3080  ObjCObjectType(enum Nonce_ObjCInterface)
3081    : Type(ObjCInterface, QualType(), false, false),
3082      BaseType(QualType(this_(), 0)) {
3083    ObjCObjectTypeBits.NumProtocols = 0;
3084  }
3085
3086protected:
3087  std::pair<Linkage, bool> getLinkageUnnamedLocalImpl() const; // key function
3088
3089public:
3090  /// getBaseType - Gets the base type of this object type.  This is
3091  /// always (possibly sugar for) one of:
3092  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
3093  ///    user, which is a typedef for an ObjCPointerType)
3094  ///  - the 'Class' builtin type (same caveat)
3095  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
3096  QualType getBaseType() const { return BaseType; }
3097
3098  bool isObjCId() const {
3099    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
3100  }
3101  bool isObjCClass() const {
3102    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
3103  }
3104  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
3105  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
3106  bool isObjCUnqualifiedIdOrClass() const {
3107    if (!qual_empty()) return false;
3108    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
3109      return T->getKind() == BuiltinType::ObjCId ||
3110             T->getKind() == BuiltinType::ObjCClass;
3111    return false;
3112  }
3113  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
3114  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
3115
3116  /// Gets the interface declaration for this object type, if the base type
3117  /// really is an interface.
3118  ObjCInterfaceDecl *getInterface() const;
3119
3120  typedef ObjCProtocolDecl * const *qual_iterator;
3121
3122  qual_iterator qual_begin() const { return getProtocolStorage(); }
3123  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
3124
3125  bool qual_empty() const { return getNumProtocols() == 0; }
3126
3127  /// getNumProtocols - Return the number of qualifying protocols in this
3128  /// interface type, or 0 if there are none.
3129  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
3130
3131  /// \brief Fetch a protocol by index.
3132  ObjCProtocolDecl *getProtocol(unsigned I) const {
3133    assert(I < getNumProtocols() && "Out-of-range protocol access");
3134    return qual_begin()[I];
3135  }
3136
3137  bool isSugared() const { return false; }
3138  QualType desugar() const { return QualType(this, 0); }
3139
3140  static bool classof(const Type *T) {
3141    return T->getTypeClass() == ObjCObject ||
3142           T->getTypeClass() == ObjCInterface;
3143  }
3144  static bool classof(const ObjCObjectType *) { return true; }
3145};
3146
3147/// ObjCObjectTypeImpl - A class providing a concrete implementation
3148/// of ObjCObjectType, so as to not increase the footprint of
3149/// ObjCInterfaceType.  Code outside of ASTContext and the core type
3150/// system should not reference this type.
3151class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
3152  friend class ASTContext;
3153
3154  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
3155  // will need to be modified.
3156
3157  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
3158                     ObjCProtocolDecl * const *Protocols,
3159                     unsigned NumProtocols)
3160    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
3161
3162public:
3163  void Profile(llvm::FoldingSetNodeID &ID);
3164  static void Profile(llvm::FoldingSetNodeID &ID,
3165                      QualType Base,
3166                      ObjCProtocolDecl *const *protocols,
3167                      unsigned NumProtocols);
3168};
3169
3170inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
3171  return reinterpret_cast<ObjCProtocolDecl**>(
3172            static_cast<ObjCObjectTypeImpl*>(this) + 1);
3173}
3174
3175/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
3176/// object oriented design.  They basically correspond to C++ classes.  There
3177/// are two kinds of interface types, normal interfaces like "NSString" and
3178/// qualified interfaces, which are qualified with a protocol list like
3179/// "NSString<NSCopyable, NSAmazing>".
3180///
3181/// ObjCInterfaceType guarantees the following properties when considered
3182/// as a subtype of its superclass, ObjCObjectType:
3183///   - There are no protocol qualifiers.  To reinforce this, code which
3184///     tries to invoke the protocol methods via an ObjCInterfaceType will
3185///     fail to compile.
3186///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
3187///     T->getBaseType() == QualType(T, 0).
3188class ObjCInterfaceType : public ObjCObjectType {
3189  ObjCInterfaceDecl *Decl;
3190
3191  ObjCInterfaceType(const ObjCInterfaceDecl *D)
3192    : ObjCObjectType(Nonce_ObjCInterface),
3193      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
3194  friend class ASTContext;  // ASTContext creates these.
3195public:
3196  /// getDecl - Get the declaration of this interface.
3197  ObjCInterfaceDecl *getDecl() const { return Decl; }
3198
3199  bool isSugared() const { return false; }
3200  QualType desugar() const { return QualType(this, 0); }
3201
3202  static bool classof(const Type *T) {
3203    return T->getTypeClass() == ObjCInterface;
3204  }
3205  static bool classof(const ObjCInterfaceType *) { return true; }
3206
3207  // Nonsense to "hide" certain members of ObjCObjectType within this
3208  // class.  People asking for protocols on an ObjCInterfaceType are
3209  // not going to get what they want: ObjCInterfaceTypes are
3210  // guaranteed to have no protocols.
3211  enum {
3212    qual_iterator,
3213    qual_begin,
3214    qual_end,
3215    getNumProtocols,
3216    getProtocol
3217  };
3218};
3219
3220inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
3221  if (const ObjCInterfaceType *T =
3222        getBaseType()->getAs<ObjCInterfaceType>())
3223    return T->getDecl();
3224  return 0;
3225}
3226
3227/// ObjCObjectPointerType - Used to represent a pointer to an
3228/// Objective C object.  These are constructed from pointer
3229/// declarators when the pointee type is an ObjCObjectType (or sugar
3230/// for one).  In addition, the 'id' and 'Class' types are typedefs
3231/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
3232/// are translated into these.
3233///
3234/// Pointers to pointers to Objective C objects are still PointerTypes;
3235/// only the first level of pointer gets it own type implementation.
3236class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
3237  QualType PointeeType;
3238
3239  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
3240    : Type(ObjCObjectPointer, Canonical, false, false),
3241      PointeeType(Pointee) {}
3242  friend class ASTContext;  // ASTContext creates these.
3243
3244protected:
3245  virtual std::pair<Linkage, bool> getLinkageUnnamedLocalImpl() const;
3246
3247public:
3248  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
3249  /// The result will always be an ObjCObjectType or sugar thereof.
3250  QualType getPointeeType() const { return PointeeType; }
3251
3252  /// getObjCObjectType - Gets the type pointed to by this ObjC
3253  /// pointer.  This method always returns non-null.
3254  ///
3255  /// This method is equivalent to getPointeeType() except that
3256  /// it discards any typedefs (or other sugar) between this
3257  /// type and the "outermost" object type.  So for:
3258  ///   @class A; @protocol P; @protocol Q;
3259  ///   typedef A<P> AP;
3260  ///   typedef A A1;
3261  ///   typedef A1<P> A1P;
3262  ///   typedef A1P<Q> A1PQ;
3263  /// For 'A*', getObjectType() will return 'A'.
3264  /// For 'A<P>*', getObjectType() will return 'A<P>'.
3265  /// For 'AP*', getObjectType() will return 'A<P>'.
3266  /// For 'A1*', getObjectType() will return 'A'.
3267  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
3268  /// For 'A1P*', getObjectType() will return 'A1<P>'.
3269  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
3270  ///   adding protocols to a protocol-qualified base discards the
3271  ///   old qualifiers (for now).  But if it didn't, getObjectType()
3272  ///   would return 'A1P<Q>' (and we'd have to make iterating over
3273  ///   qualifiers more complicated).
3274  const ObjCObjectType *getObjectType() const {
3275    return PointeeType->getAs<ObjCObjectType>();
3276  }
3277
3278  /// getInterfaceType - If this pointer points to an Objective C
3279  /// @interface type, gets the type for that interface.  Any protocol
3280  /// qualifiers on the interface are ignored.
3281  ///
3282  /// \return null if the base type for this pointer is 'id' or 'Class'
3283  const ObjCInterfaceType *getInterfaceType() const {
3284    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
3285  }
3286
3287  /// getInterfaceDecl - If this pointer points to an Objective @interface
3288  /// type, gets the declaration for that interface.
3289  ///
3290  /// \return null if the base type for this pointer is 'id' or 'Class'
3291  ObjCInterfaceDecl *getInterfaceDecl() const {
3292    return getObjectType()->getInterface();
3293  }
3294
3295  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
3296  /// its object type is the primitive 'id' type with no protocols.
3297  bool isObjCIdType() const {
3298    return getObjectType()->isObjCUnqualifiedId();
3299  }
3300
3301  /// isObjCClassType - True if this is equivalent to the 'Class' type,
3302  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
3303  bool isObjCClassType() const {
3304    return getObjectType()->isObjCUnqualifiedClass();
3305  }
3306
3307  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
3308  /// non-empty set of protocols.
3309  bool isObjCQualifiedIdType() const {
3310    return getObjectType()->isObjCQualifiedId();
3311  }
3312
3313  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
3314  /// some non-empty set of protocols.
3315  bool isObjCQualifiedClassType() const {
3316    return getObjectType()->isObjCQualifiedClass();
3317  }
3318
3319  /// An iterator over the qualifiers on the object type.  Provided
3320  /// for convenience.  This will always iterate over the full set of
3321  /// protocols on a type, not just those provided directly.
3322  typedef ObjCObjectType::qual_iterator qual_iterator;
3323
3324  qual_iterator qual_begin() const {
3325    return getObjectType()->qual_begin();
3326  }
3327  qual_iterator qual_end() const {
3328    return getObjectType()->qual_end();
3329  }
3330  bool qual_empty() const { return getObjectType()->qual_empty(); }
3331
3332  /// getNumProtocols - Return the number of qualifying protocols on
3333  /// the object type.
3334  unsigned getNumProtocols() const {
3335    return getObjectType()->getNumProtocols();
3336  }
3337
3338  /// \brief Retrieve a qualifying protocol by index on the object
3339  /// type.
3340  ObjCProtocolDecl *getProtocol(unsigned I) const {
3341    return getObjectType()->getProtocol(I);
3342  }
3343
3344  bool isSugared() const { return false; }
3345  QualType desugar() const { return QualType(this, 0); }
3346
3347  void Profile(llvm::FoldingSetNodeID &ID) {
3348    Profile(ID, getPointeeType());
3349  }
3350  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
3351    ID.AddPointer(T.getAsOpaquePtr());
3352  }
3353  static bool classof(const Type *T) {
3354    return T->getTypeClass() == ObjCObjectPointer;
3355  }
3356  static bool classof(const ObjCObjectPointerType *) { return true; }
3357};
3358
3359/// A qualifier set is used to build a set of qualifiers.
3360class QualifierCollector : public Qualifiers {
3361  ASTContext *Context;
3362
3363public:
3364  QualifierCollector(Qualifiers Qs = Qualifiers())
3365    : Qualifiers(Qs), Context(0) {}
3366  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
3367    : Qualifiers(Qs), Context(&Context) {}
3368
3369  void setContext(ASTContext &C) { Context = &C; }
3370
3371  /// Collect any qualifiers on the given type and return an
3372  /// unqualified type.
3373  const Type *strip(QualType QT) {
3374    addFastQualifiers(QT.getLocalFastQualifiers());
3375    if (QT.hasLocalNonFastQualifiers()) {
3376      const ExtQuals *EQ = QT.getExtQualsUnsafe();
3377      Context = &EQ->getContext();
3378      addQualifiers(EQ->getQualifiers());
3379      return EQ->getBaseType();
3380    }
3381    return QT.getTypePtrUnsafe();
3382  }
3383
3384  /// Apply the collected qualifiers to the given type.
3385  QualType apply(QualType QT) const;
3386
3387  /// Apply the collected qualifiers to the given type.
3388  QualType apply(const Type* T) const;
3389
3390};
3391
3392
3393// Inline function definitions.
3394
3395inline bool QualType::isCanonical() const {
3396  const Type *T = getTypePtr();
3397  if (hasLocalQualifiers())
3398    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
3399  return T->isCanonicalUnqualified();
3400}
3401
3402inline bool QualType::isCanonicalAsParam() const {
3403  if (hasLocalQualifiers()) return false;
3404
3405  const Type *T = getTypePtr();
3406  if ((*this)->isPointerType()) {
3407    QualType BaseType = (*this)->getAs<PointerType>()->getPointeeType();
3408    if (isa<VariableArrayType>(BaseType)) {
3409      ArrayType *AT = dyn_cast<ArrayType>(BaseType);
3410      VariableArrayType *VAT = cast<VariableArrayType>(AT);
3411      if (VAT->getSizeExpr())
3412        T = BaseType.getTypePtr();
3413    }
3414  }
3415  return T->isCanonicalUnqualified() &&
3416           !isa<FunctionType>(T) && !isa<ArrayType>(T);
3417}
3418
3419inline bool QualType::isConstQualified() const {
3420  return isLocalConstQualified() ||
3421              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
3422}
3423
3424inline bool QualType::isRestrictQualified() const {
3425  return isLocalRestrictQualified() ||
3426            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
3427}
3428
3429
3430inline bool QualType::isVolatileQualified() const {
3431  return isLocalVolatileQualified() ||
3432  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
3433}
3434
3435inline bool QualType::hasQualifiers() const {
3436  return hasLocalQualifiers() ||
3437                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
3438}
3439
3440inline Qualifiers QualType::getQualifiers() const {
3441  Qualifiers Quals = getLocalQualifiers();
3442  Quals.addQualifiers(
3443                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
3444  return Quals;
3445}
3446
3447inline unsigned QualType::getCVRQualifiers() const {
3448  return getLocalCVRQualifiers() |
3449              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
3450}
3451
3452/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
3453/// type, returns them. Otherwise, if this is an array type, recurses
3454/// on the element type until some qualifiers have been found or a non-array
3455/// type reached.
3456inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
3457  if (unsigned Quals = getCVRQualifiers())
3458    return Quals;
3459  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3460  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3461    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
3462  return 0;
3463}
3464
3465inline void QualType::removeConst() {
3466  removeFastQualifiers(Qualifiers::Const);
3467}
3468
3469inline void QualType::removeRestrict() {
3470  removeFastQualifiers(Qualifiers::Restrict);
3471}
3472
3473inline void QualType::removeVolatile() {
3474  QualifierCollector Qc;
3475  const Type *Ty = Qc.strip(*this);
3476  if (Qc.hasVolatile()) {
3477    Qc.removeVolatile();
3478    *this = Qc.apply(Ty);
3479  }
3480}
3481
3482inline void QualType::removeCVRQualifiers(unsigned Mask) {
3483  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
3484
3485  // Fast path: we don't need to touch the slow qualifiers.
3486  if (!(Mask & ~Qualifiers::FastMask)) {
3487    removeFastQualifiers(Mask);
3488    return;
3489  }
3490
3491  QualifierCollector Qc;
3492  const Type *Ty = Qc.strip(*this);
3493  Qc.removeCVRQualifiers(Mask);
3494  *this = Qc.apply(Ty);
3495}
3496
3497/// getAddressSpace - Return the address space of this type.
3498inline unsigned QualType::getAddressSpace() const {
3499  if (hasLocalNonFastQualifiers()) {
3500    const ExtQuals *EQ = getExtQualsUnsafe();
3501    if (EQ->hasAddressSpace())
3502      return EQ->getAddressSpace();
3503  }
3504
3505  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3506  if (CT.hasLocalNonFastQualifiers()) {
3507    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3508    if (EQ->hasAddressSpace())
3509      return EQ->getAddressSpace();
3510  }
3511
3512  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3513    return AT->getElementType().getAddressSpace();
3514  if (const RecordType *RT = dyn_cast<RecordType>(CT))
3515    return RT->getAddressSpace();
3516  return 0;
3517}
3518
3519/// getObjCGCAttr - Return the gc attribute of this type.
3520inline Qualifiers::GC QualType::getObjCGCAttr() const {
3521  if (hasLocalNonFastQualifiers()) {
3522    const ExtQuals *EQ = getExtQualsUnsafe();
3523    if (EQ->hasObjCGCAttr())
3524      return EQ->getObjCGCAttr();
3525  }
3526
3527  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3528  if (CT.hasLocalNonFastQualifiers()) {
3529    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3530    if (EQ->hasObjCGCAttr())
3531      return EQ->getObjCGCAttr();
3532  }
3533
3534  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3535      return AT->getElementType().getObjCGCAttr();
3536  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
3537    return PT->getPointeeType().getObjCGCAttr();
3538  // We most look at all pointer types, not just pointer to interface types.
3539  if (const PointerType *PT = CT->getAs<PointerType>())
3540    return PT->getPointeeType().getObjCGCAttr();
3541  return Qualifiers::GCNone;
3542}
3543
3544inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
3545  if (const PointerType *PT = t.getAs<PointerType>()) {
3546    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
3547      return FT->getExtInfo();
3548  } else if (const FunctionType *FT = t.getAs<FunctionType>())
3549    return FT->getExtInfo();
3550
3551  return FunctionType::ExtInfo();
3552}
3553
3554inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
3555  return getFunctionExtInfo(*t);
3556}
3557
3558/// \brief Determine whether this set of qualifiers is a superset of the given
3559/// set of qualifiers.
3560inline bool Qualifiers::isSupersetOf(Qualifiers Other) const {
3561  return Mask != Other.Mask && (Mask | Other.Mask) == Mask;
3562}
3563
3564/// isMoreQualifiedThan - Determine whether this type is more
3565/// qualified than the Other type. For example, "const volatile int"
3566/// is more qualified than "const int", "volatile int", and
3567/// "int". However, it is not more qualified than "const volatile
3568/// int".
3569inline bool QualType::isMoreQualifiedThan(QualType Other) const {
3570  // FIXME: work on arbitrary qualifiers
3571  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3572  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3573  if (getAddressSpace() != Other.getAddressSpace())
3574    return false;
3575  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
3576}
3577
3578/// isAtLeastAsQualifiedAs - Determine whether this type is at last
3579/// as qualified as the Other type. For example, "const volatile
3580/// int" is at least as qualified as "const int", "volatile int",
3581/// "int", and "const volatile int".
3582inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
3583  // FIXME: work on arbitrary qualifiers
3584  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3585  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3586  if (getAddressSpace() != Other.getAddressSpace())
3587    return false;
3588  return (MyQuals | OtherQuals) == MyQuals;
3589}
3590
3591/// getNonReferenceType - If Type is a reference type (e.g., const
3592/// int&), returns the type that the reference refers to ("const
3593/// int"). Otherwise, returns the type itself. This routine is used
3594/// throughout Sema to implement C++ 5p6:
3595///
3596///   If an expression initially has the type "reference to T" (8.3.2,
3597///   8.5.3), the type is adjusted to "T" prior to any further
3598///   analysis, the expression designates the object or function
3599///   denoted by the reference, and the expression is an lvalue.
3600inline QualType QualType::getNonReferenceType() const {
3601  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
3602    return RefType->getPointeeType();
3603  else
3604    return *this;
3605}
3606
3607inline bool Type::isFunctionType() const {
3608  return isa<FunctionType>(CanonicalType);
3609}
3610inline bool Type::isPointerType() const {
3611  return isa<PointerType>(CanonicalType);
3612}
3613inline bool Type::isAnyPointerType() const {
3614  return isPointerType() || isObjCObjectPointerType();
3615}
3616inline bool Type::isBlockPointerType() const {
3617  return isa<BlockPointerType>(CanonicalType);
3618}
3619inline bool Type::isReferenceType() const {
3620  return isa<ReferenceType>(CanonicalType);
3621}
3622inline bool Type::isLValueReferenceType() const {
3623  return isa<LValueReferenceType>(CanonicalType);
3624}
3625inline bool Type::isRValueReferenceType() const {
3626  return isa<RValueReferenceType>(CanonicalType);
3627}
3628inline bool Type::isFunctionPointerType() const {
3629  if (const PointerType* T = getAs<PointerType>())
3630    return T->getPointeeType()->isFunctionType();
3631  else
3632    return false;
3633}
3634inline bool Type::isMemberPointerType() const {
3635  return isa<MemberPointerType>(CanonicalType);
3636}
3637inline bool Type::isMemberFunctionPointerType() const {
3638  if (const MemberPointerType* T = getAs<MemberPointerType>())
3639    return T->isMemberFunctionPointer();
3640  else
3641    return false;
3642}
3643inline bool Type::isMemberDataPointerType() const {
3644  if (const MemberPointerType* T = getAs<MemberPointerType>())
3645    return T->isMemberDataPointer();
3646  else
3647    return false;
3648}
3649inline bool Type::isArrayType() const {
3650  return isa<ArrayType>(CanonicalType);
3651}
3652inline bool Type::isConstantArrayType() const {
3653  return isa<ConstantArrayType>(CanonicalType);
3654}
3655inline bool Type::isIncompleteArrayType() const {
3656  return isa<IncompleteArrayType>(CanonicalType);
3657}
3658inline bool Type::isVariableArrayType() const {
3659  return isa<VariableArrayType>(CanonicalType);
3660}
3661inline bool Type::isDependentSizedArrayType() const {
3662  return isa<DependentSizedArrayType>(CanonicalType);
3663}
3664inline bool Type::isBuiltinType() const {
3665  return isa<BuiltinType>(CanonicalType);
3666}
3667inline bool Type::isRecordType() const {
3668  return isa<RecordType>(CanonicalType);
3669}
3670inline bool Type::isEnumeralType() const {
3671  return isa<EnumType>(CanonicalType);
3672}
3673inline bool Type::isAnyComplexType() const {
3674  return isa<ComplexType>(CanonicalType);
3675}
3676inline bool Type::isVectorType() const {
3677  return isa<VectorType>(CanonicalType);
3678}
3679inline bool Type::isExtVectorType() const {
3680  return isa<ExtVectorType>(CanonicalType);
3681}
3682inline bool Type::isObjCObjectPointerType() const {
3683  return isa<ObjCObjectPointerType>(CanonicalType);
3684}
3685inline bool Type::isObjCObjectType() const {
3686  return isa<ObjCObjectType>(CanonicalType);
3687}
3688inline bool Type::isObjCObjectOrInterfaceType() const {
3689  return isa<ObjCInterfaceType>(CanonicalType) ||
3690    isa<ObjCObjectType>(CanonicalType);
3691}
3692
3693inline bool Type::isObjCQualifiedIdType() const {
3694  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3695    return OPT->isObjCQualifiedIdType();
3696  return false;
3697}
3698inline bool Type::isObjCQualifiedClassType() const {
3699  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3700    return OPT->isObjCQualifiedClassType();
3701  return false;
3702}
3703inline bool Type::isObjCIdType() const {
3704  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3705    return OPT->isObjCIdType();
3706  return false;
3707}
3708inline bool Type::isObjCClassType() const {
3709  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3710    return OPT->isObjCClassType();
3711  return false;
3712}
3713inline bool Type::isObjCSelType() const {
3714  if (const PointerType *OPT = getAs<PointerType>())
3715    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3716  return false;
3717}
3718inline bool Type::isObjCBuiltinType() const {
3719  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3720}
3721inline bool Type::isTemplateTypeParmType() const {
3722  return isa<TemplateTypeParmType>(CanonicalType);
3723}
3724
3725inline bool Type::isSpecificBuiltinType(unsigned K) const {
3726  if (const BuiltinType *BT = getAs<BuiltinType>())
3727    if (BT->getKind() == (BuiltinType::Kind) K)
3728      return true;
3729  return false;
3730}
3731
3732inline bool Type::isPlaceholderType() const {
3733  if (const BuiltinType *BT = getAs<BuiltinType>())
3734    return BT->isPlaceholderType();
3735  return false;
3736}
3737
3738/// \brief Determines whether this is a type for which one can define
3739/// an overloaded operator.
3740inline bool Type::isOverloadableType() const {
3741  return isDependentType() || isRecordType() || isEnumeralType();
3742}
3743
3744inline bool Type::hasPointerRepresentation() const {
3745  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3746          isObjCObjectPointerType() || isNullPtrType());
3747}
3748
3749inline bool Type::hasObjCPointerRepresentation() const {
3750  return isObjCObjectPointerType();
3751}
3752
3753/// Insertion operator for diagnostics.  This allows sending QualType's into a
3754/// diagnostic with <<.
3755inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3756                                           QualType T) {
3757  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3758                  Diagnostic::ak_qualtype);
3759  return DB;
3760}
3761
3762/// Insertion operator for partial diagnostics.  This allows sending QualType's
3763/// into a diagnostic with <<.
3764inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
3765                                           QualType T) {
3766  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3767                  Diagnostic::ak_qualtype);
3768  return PD;
3769}
3770
3771// Helper class template that is used by Type::getAs to ensure that one does
3772// not try to look through a qualified type to get to an array type.
3773template<typename T,
3774         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3775                             llvm::is_base_of<ArrayType, T>::value)>
3776struct ArrayType_cannot_be_used_with_getAs { };
3777
3778template<typename T>
3779struct ArrayType_cannot_be_used_with_getAs<T, true>;
3780
3781/// Member-template getAs<specific type>'.
3782template <typename T> const T *Type::getAs() const {
3783  ArrayType_cannot_be_used_with_getAs<T> at;
3784  (void)at;
3785
3786  // If this is directly a T type, return it.
3787  if (const T *Ty = dyn_cast<T>(this))
3788    return Ty;
3789
3790  // If the canonical form of this type isn't the right kind, reject it.
3791  if (!isa<T>(CanonicalType))
3792    return 0;
3793
3794  // If this is a typedef for the type, strip the typedef off without
3795  // losing all typedef information.
3796  return cast<T>(getUnqualifiedDesugaredType());
3797}
3798
3799}  // end namespace clang
3800
3801#endif
3802