Type.h revision 200fa53fd420aa8369586f569dbece04930ad6a3
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/ExceptionSpecificationType.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/Linkage.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Basic/Visibility.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/TemplateName.h"
25#include "llvm/Support/type_traits.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32#include "clang/Basic/LLVM.h"
33
34namespace clang {
35  enum {
36    TypeAlignmentInBits = 4,
37    TypeAlignment = 1 << TypeAlignmentInBits
38  };
39  class Type;
40  class ExtQuals;
41  class QualType;
42}
43
44namespace llvm {
45  template <typename T>
46  class PointerLikeTypeTraits;
47  template<>
48  class PointerLikeTypeTraits< ::clang::Type*> {
49  public:
50    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
51    static inline ::clang::Type *getFromVoidPointer(void *P) {
52      return static_cast< ::clang::Type*>(P);
53    }
54    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
55  };
56  template<>
57  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
58  public:
59    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
60    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
61      return static_cast< ::clang::ExtQuals*>(P);
62    }
63    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
64  };
65
66  template <>
67  struct isPodLike<clang::QualType> { static const bool value = true; };
68}
69
70namespace clang {
71  class ASTContext;
72  class TypedefNameDecl;
73  class TemplateDecl;
74  class TemplateTypeParmDecl;
75  class NonTypeTemplateParmDecl;
76  class TemplateTemplateParmDecl;
77  class TagDecl;
78  class RecordDecl;
79  class CXXRecordDecl;
80  class EnumDecl;
81  class FieldDecl;
82  class ObjCInterfaceDecl;
83  class ObjCProtocolDecl;
84  class ObjCMethodDecl;
85  class UnresolvedUsingTypenameDecl;
86  class Expr;
87  class Stmt;
88  class SourceLocation;
89  class StmtIteratorBase;
90  class TemplateArgument;
91  class TemplateArgumentLoc;
92  class TemplateArgumentListInfo;
93  class ElaboratedType;
94  class ExtQuals;
95  class ExtQualsTypeCommonBase;
96  struct PrintingPolicy;
97
98  template <typename> class CanQual;
99  typedef CanQual<Type> CanQualType;
100
101  // Provide forward declarations for all of the *Type classes
102#define TYPE(Class, Base) class Class##Type;
103#include "clang/AST/TypeNodes.def"
104
105/// Qualifiers - The collection of all-type qualifiers we support.
106/// Clang supports five independent qualifiers:
107/// * C99: const, volatile, and restrict
108/// * Embedded C (TR18037): address spaces
109/// * Objective C: the GC attributes (none, weak, or strong)
110class Qualifiers {
111public:
112  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
113    Const    = 0x1,
114    Restrict = 0x2,
115    Volatile = 0x4,
116    CVRMask = Const | Volatile | Restrict
117  };
118
119  enum GC {
120    GCNone = 0,
121    Weak,
122    Strong
123  };
124
125  enum ObjCLifetime {
126    /// There is no lifetime qualification on this type.
127    OCL_None,
128
129    /// This object can be modified without requiring retains or
130    /// releases.
131    OCL_ExplicitNone,
132
133    /// Assigning into this object requires the old value to be
134    /// released and the new value to be retained.  The timing of the
135    /// release of the old value is inexact: it may be moved to
136    /// immediately after the last known point where the value is
137    /// live.
138    OCL_Strong,
139
140    /// Reading or writing from this object requires a barrier call.
141    OCL_Weak,
142
143    /// Assigning into this object requires a lifetime extension.
144    OCL_Autoreleasing
145  };
146
147  enum {
148    /// The maximum supported address space number.
149    /// 24 bits should be enough for anyone.
150    MaxAddressSpace = 0xffffffu,
151
152    /// The width of the "fast" qualifier mask.
153    FastWidth = 3,
154
155    /// The fast qualifier mask.
156    FastMask = (1 << FastWidth) - 1
157  };
158
159  Qualifiers() : Mask(0) {}
160
161  static Qualifiers fromFastMask(unsigned Mask) {
162    Qualifiers Qs;
163    Qs.addFastQualifiers(Mask);
164    return Qs;
165  }
166
167  static Qualifiers fromCVRMask(unsigned CVR) {
168    Qualifiers Qs;
169    Qs.addCVRQualifiers(CVR);
170    return Qs;
171  }
172
173  // Deserialize qualifiers from an opaque representation.
174  static Qualifiers fromOpaqueValue(unsigned opaque) {
175    Qualifiers Qs;
176    Qs.Mask = opaque;
177    return Qs;
178  }
179
180  // Serialize these qualifiers into an opaque representation.
181  unsigned getAsOpaqueValue() const {
182    return Mask;
183  }
184
185  bool hasConst() const { return Mask & Const; }
186  void setConst(bool flag) {
187    Mask = (Mask & ~Const) | (flag ? Const : 0);
188  }
189  void removeConst() { Mask &= ~Const; }
190  void addConst() { Mask |= Const; }
191
192  bool hasVolatile() const { return Mask & Volatile; }
193  void setVolatile(bool flag) {
194    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
195  }
196  void removeVolatile() { Mask &= ~Volatile; }
197  void addVolatile() { Mask |= Volatile; }
198
199  bool hasRestrict() const { return Mask & Restrict; }
200  void setRestrict(bool flag) {
201    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
202  }
203  void removeRestrict() { Mask &= ~Restrict; }
204  void addRestrict() { Mask |= Restrict; }
205
206  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
207  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
208  void setCVRQualifiers(unsigned mask) {
209    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
210    Mask = (Mask & ~CVRMask) | mask;
211  }
212  void removeCVRQualifiers(unsigned mask) {
213    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
214    Mask &= ~mask;
215  }
216  void removeCVRQualifiers() {
217    removeCVRQualifiers(CVRMask);
218  }
219  void addCVRQualifiers(unsigned mask) {
220    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
221    Mask |= mask;
222  }
223
224  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
225  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
226  void setObjCGCAttr(GC type) {
227    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
228  }
229  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
230  void addObjCGCAttr(GC type) {
231    assert(type);
232    setObjCGCAttr(type);
233  }
234  Qualifiers withoutObjCGCAttr() const {
235    Qualifiers qs = *this;
236    qs.removeObjCGCAttr();
237    return qs;
238  }
239  Qualifiers withoutObjCLifetime() const {
240    Qualifiers qs = *this;
241    qs.removeObjCLifetime();
242    return qs;
243  }
244
245  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
246  ObjCLifetime getObjCLifetime() const {
247    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
248  }
249  void setObjCLifetime(ObjCLifetime type) {
250    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
251  }
252  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
253  void addObjCLifetime(ObjCLifetime type) {
254    assert(type);
255    assert(!hasObjCLifetime());
256    Mask |= (type << LifetimeShift);
257  }
258
259  /// True if the lifetime is neither None or ExplicitNone.
260  bool hasNonTrivialObjCLifetime() const {
261    ObjCLifetime lifetime = getObjCLifetime();
262    return (lifetime > OCL_ExplicitNone);
263  }
264
265  /// True if the lifetime is either strong or weak.
266  bool hasStrongOrWeakObjCLifetime() const {
267    ObjCLifetime lifetime = getObjCLifetime();
268    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
269  }
270
271  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
272  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
273  void setAddressSpace(unsigned space) {
274    assert(space <= MaxAddressSpace);
275    Mask = (Mask & ~AddressSpaceMask)
276         | (((uint32_t) space) << AddressSpaceShift);
277  }
278  void removeAddressSpace() { setAddressSpace(0); }
279  void addAddressSpace(unsigned space) {
280    assert(space);
281    setAddressSpace(space);
282  }
283
284  // Fast qualifiers are those that can be allocated directly
285  // on a QualType object.
286  bool hasFastQualifiers() const { return getFastQualifiers(); }
287  unsigned getFastQualifiers() const { return Mask & FastMask; }
288  void setFastQualifiers(unsigned mask) {
289    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
290    Mask = (Mask & ~FastMask) | mask;
291  }
292  void removeFastQualifiers(unsigned mask) {
293    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
294    Mask &= ~mask;
295  }
296  void removeFastQualifiers() {
297    removeFastQualifiers(FastMask);
298  }
299  void addFastQualifiers(unsigned mask) {
300    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
301    Mask |= mask;
302  }
303
304  /// hasNonFastQualifiers - Return true if the set contains any
305  /// qualifiers which require an ExtQuals node to be allocated.
306  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
307  Qualifiers getNonFastQualifiers() const {
308    Qualifiers Quals = *this;
309    Quals.setFastQualifiers(0);
310    return Quals;
311  }
312
313  /// hasQualifiers - Return true if the set contains any qualifiers.
314  bool hasQualifiers() const { return Mask; }
315  bool empty() const { return !Mask; }
316
317  /// \brief Add the qualifiers from the given set to this set.
318  void addQualifiers(Qualifiers Q) {
319    // If the other set doesn't have any non-boolean qualifiers, just
320    // bit-or it in.
321    if (!(Q.Mask & ~CVRMask))
322      Mask |= Q.Mask;
323    else {
324      Mask |= (Q.Mask & CVRMask);
325      if (Q.hasAddressSpace())
326        addAddressSpace(Q.getAddressSpace());
327      if (Q.hasObjCGCAttr())
328        addObjCGCAttr(Q.getObjCGCAttr());
329      if (Q.hasObjCLifetime())
330        addObjCLifetime(Q.getObjCLifetime());
331    }
332  }
333
334  /// \brief Add the qualifiers from the given set to this set, given that
335  /// they don't conflict.
336  void addConsistentQualifiers(Qualifiers qs) {
337    assert(getAddressSpace() == qs.getAddressSpace() ||
338           !hasAddressSpace() || !qs.hasAddressSpace());
339    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
340           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
341    assert(getObjCLifetime() == qs.getObjCLifetime() ||
342           !hasObjCLifetime() || !qs.hasObjCLifetime());
343    Mask |= qs.Mask;
344  }
345
346  /// \brief Determines if these qualifiers compatibly include another set.
347  /// Generally this answers the question of whether an object with the other
348  /// qualifiers can be safely used as an object with these qualifiers.
349  bool compatiblyIncludes(Qualifiers other) const {
350    return
351      // Address spaces must match exactly.
352      getAddressSpace() == other.getAddressSpace() &&
353      // ObjC GC qualifiers can match, be added, or be removed, but can't be
354      // changed.
355      (getObjCGCAttr() == other.getObjCGCAttr() ||
356       !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
357      // ObjC lifetime qualifiers must match exactly.
358      getObjCLifetime() == other.getObjCLifetime() &&
359      // CVR qualifiers may subset.
360      (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
361  }
362
363  /// \brief Determines if these qualifiers compatibly include another set of
364  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
365  ///
366  /// One set of Objective-C lifetime qualifiers compatibly includes the other
367  /// if the lifetime qualifiers match, or if both are non-__weak and the
368  /// including set also contains the 'const' qualifier.
369  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
370    if (getObjCLifetime() == other.getObjCLifetime())
371      return true;
372
373    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
374      return false;
375
376    return hasConst();
377  }
378
379  bool isSupersetOf(Qualifiers Other) const;
380
381  /// \brief Determine whether this set of qualifiers is a strict superset of
382  /// another set of qualifiers, not considering qualifier compatibility.
383  bool isStrictSupersetOf(Qualifiers Other) const;
384
385  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
386  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
387
388  operator bool() const { return hasQualifiers(); }
389
390  Qualifiers &operator+=(Qualifiers R) {
391    addQualifiers(R);
392    return *this;
393  }
394
395  // Union two qualifier sets.  If an enumerated qualifier appears
396  // in both sets, use the one from the right.
397  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
398    L += R;
399    return L;
400  }
401
402  Qualifiers &operator-=(Qualifiers R) {
403    Mask = Mask & ~(R.Mask);
404    return *this;
405  }
406
407  /// \brief Compute the difference between two qualifier sets.
408  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
409    L -= R;
410    return L;
411  }
412
413  std::string getAsString() const;
414  std::string getAsString(const PrintingPolicy &Policy) const {
415    std::string Buffer;
416    getAsStringInternal(Buffer, Policy);
417    return Buffer;
418  }
419  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
420
421  void Profile(llvm::FoldingSetNodeID &ID) const {
422    ID.AddInteger(Mask);
423  }
424
425private:
426
427  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
428  //           |C R V|GCAttr|Lifetime|AddressSpace|
429  uint32_t Mask;
430
431  static const uint32_t GCAttrMask = 0x18;
432  static const uint32_t GCAttrShift = 3;
433  static const uint32_t LifetimeMask = 0xE0;
434  static const uint32_t LifetimeShift = 5;
435  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
436  static const uint32_t AddressSpaceShift = 8;
437};
438
439/// CallingConv - Specifies the calling convention that a function uses.
440enum CallingConv {
441  CC_Default,
442  CC_C,           // __attribute__((cdecl))
443  CC_X86StdCall,  // __attribute__((stdcall))
444  CC_X86FastCall, // __attribute__((fastcall))
445  CC_X86ThisCall, // __attribute__((thiscall))
446  CC_X86Pascal,   // __attribute__((pascal))
447  CC_AAPCS,       // __attribute__((pcs("aapcs")))
448  CC_AAPCS_VFP    // __attribute__((pcs("aapcs-vfp")))
449};
450
451/// A std::pair-like structure for storing a qualified type split
452/// into its local qualifiers and its locally-unqualified type.
453struct SplitQualType {
454  /// The locally-unqualified type.
455  const Type *Ty;
456
457  /// The local qualifiers.
458  Qualifiers Quals;
459
460  SplitQualType() : Ty(0), Quals() {}
461  SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
462
463  SplitQualType getSingleStepDesugaredType() const; // end of this file
464
465  // Make llvm::tie work.
466  operator std::pair<const Type *,Qualifiers>() const {
467    return std::pair<const Type *,Qualifiers>(Ty, Quals);
468  }
469
470  friend bool operator==(SplitQualType a, SplitQualType b) {
471    return a.Ty == b.Ty && a.Quals == b.Quals;
472  }
473  friend bool operator!=(SplitQualType a, SplitQualType b) {
474    return a.Ty != b.Ty || a.Quals != b.Quals;
475  }
476};
477
478/// QualType - For efficiency, we don't store CV-qualified types as nodes on
479/// their own: instead each reference to a type stores the qualifiers.  This
480/// greatly reduces the number of nodes we need to allocate for types (for
481/// example we only need one for 'int', 'const int', 'volatile int',
482/// 'const volatile int', etc).
483///
484/// As an added efficiency bonus, instead of making this a pair, we
485/// just store the two bits we care about in the low bits of the
486/// pointer.  To handle the packing/unpacking, we make QualType be a
487/// simple wrapper class that acts like a smart pointer.  A third bit
488/// indicates whether there are extended qualifiers present, in which
489/// case the pointer points to a special structure.
490class QualType {
491  // Thankfully, these are efficiently composable.
492  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
493                       Qualifiers::FastWidth> Value;
494
495  const ExtQuals *getExtQualsUnsafe() const {
496    return Value.getPointer().get<const ExtQuals*>();
497  }
498
499  const Type *getTypePtrUnsafe() const {
500    return Value.getPointer().get<const Type*>();
501  }
502
503  const ExtQualsTypeCommonBase *getCommonPtr() const {
504    assert(!isNull() && "Cannot retrieve a NULL type pointer");
505    uintptr_t CommonPtrVal
506      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
507    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
508    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
509  }
510
511  friend class QualifierCollector;
512public:
513  QualType() {}
514
515  QualType(const Type *Ptr, unsigned Quals)
516    : Value(Ptr, Quals) {}
517  QualType(const ExtQuals *Ptr, unsigned Quals)
518    : Value(Ptr, Quals) {}
519
520  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
521  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
522
523  /// Retrieves a pointer to the underlying (unqualified) type.
524  /// This should really return a const Type, but it's not worth
525  /// changing all the users right now.
526  ///
527  /// This function requires that the type not be NULL. If the type might be
528  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
529  const Type *getTypePtr() const;
530
531  const Type *getTypePtrOrNull() const;
532
533  /// Retrieves a pointer to the name of the base type.
534  const IdentifierInfo *getBaseTypeIdentifier() const;
535
536  /// Divides a QualType into its unqualified type and a set of local
537  /// qualifiers.
538  SplitQualType split() const;
539
540  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
541  static QualType getFromOpaquePtr(const void *Ptr) {
542    QualType T;
543    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
544    return T;
545  }
546
547  const Type &operator*() const {
548    return *getTypePtr();
549  }
550
551  const Type *operator->() const {
552    return getTypePtr();
553  }
554
555  bool isCanonical() const;
556  bool isCanonicalAsParam() const;
557
558  /// isNull - Return true if this QualType doesn't point to a type yet.
559  bool isNull() const {
560    return Value.getPointer().isNull();
561  }
562
563  /// \brief Determine whether this particular QualType instance has the
564  /// "const" qualifier set, without looking through typedefs that may have
565  /// added "const" at a different level.
566  bool isLocalConstQualified() const {
567    return (getLocalFastQualifiers() & Qualifiers::Const);
568  }
569
570  /// \brief Determine whether this type is const-qualified.
571  bool isConstQualified() const;
572
573  /// \brief Determine whether this particular QualType instance has the
574  /// "restrict" qualifier set, without looking through typedefs that may have
575  /// added "restrict" at a different level.
576  bool isLocalRestrictQualified() const {
577    return (getLocalFastQualifiers() & Qualifiers::Restrict);
578  }
579
580  /// \brief Determine whether this type is restrict-qualified.
581  bool isRestrictQualified() const;
582
583  /// \brief Determine whether this particular QualType instance has the
584  /// "volatile" qualifier set, without looking through typedefs that may have
585  /// added "volatile" at a different level.
586  bool isLocalVolatileQualified() const {
587    return (getLocalFastQualifiers() & Qualifiers::Volatile);
588  }
589
590  /// \brief Determine whether this type is volatile-qualified.
591  bool isVolatileQualified() const;
592
593  /// \brief Determine whether this particular QualType instance has any
594  /// qualifiers, without looking through any typedefs that might add
595  /// qualifiers at a different level.
596  bool hasLocalQualifiers() const {
597    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
598  }
599
600  /// \brief Determine whether this type has any qualifiers.
601  bool hasQualifiers() const;
602
603  /// \brief Determine whether this particular QualType instance has any
604  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
605  /// instance.
606  bool hasLocalNonFastQualifiers() const {
607    return Value.getPointer().is<const ExtQuals*>();
608  }
609
610  /// \brief Retrieve the set of qualifiers local to this particular QualType
611  /// instance, not including any qualifiers acquired through typedefs or
612  /// other sugar.
613  Qualifiers getLocalQualifiers() const;
614
615  /// \brief Retrieve the set of qualifiers applied to this type.
616  Qualifiers getQualifiers() const;
617
618  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
619  /// local to this particular QualType instance, not including any qualifiers
620  /// acquired through typedefs or other sugar.
621  unsigned getLocalCVRQualifiers() const {
622    return getLocalFastQualifiers();
623  }
624
625  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
626  /// applied to this type.
627  unsigned getCVRQualifiers() const;
628
629  bool isConstant(ASTContext& Ctx) const {
630    return QualType::isConstant(*this, Ctx);
631  }
632
633  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
634  bool isPODType(ASTContext &Context) const;
635
636  /// isCXX11PODType() - Return true if this is a POD type according to the
637  /// more relaxed rules of the C++11 standard, regardless of the current
638  /// compilation's language.
639  /// (C++0x [basic.types]p9)
640  bool isCXX11PODType(ASTContext &Context) const;
641
642  /// isTrivialType - Return true if this is a trivial type
643  /// (C++0x [basic.types]p9)
644  bool isTrivialType(ASTContext &Context) const;
645
646  /// isTriviallyCopyableType - Return true if this is a trivially
647  /// copyable type (C++0x [basic.types]p9)
648  bool isTriviallyCopyableType(ASTContext &Context) const;
649
650  // Don't promise in the API that anything besides 'const' can be
651  // easily added.
652
653  /// addConst - add the specified type qualifier to this QualType.
654  void addConst() {
655    addFastQualifiers(Qualifiers::Const);
656  }
657  QualType withConst() const {
658    return withFastQualifiers(Qualifiers::Const);
659  }
660
661  /// addVolatile - add the specified type qualifier to this QualType.
662  void addVolatile() {
663    addFastQualifiers(Qualifiers::Volatile);
664  }
665  QualType withVolatile() const {
666    return withFastQualifiers(Qualifiers::Volatile);
667  }
668
669  /// Add the restrict qualifier to this QualType.
670  void addRestrict() {
671    addFastQualifiers(Qualifiers::Restrict);
672  }
673  QualType withRestrict() const {
674    return withFastQualifiers(Qualifiers::Restrict);
675  }
676
677  QualType withCVRQualifiers(unsigned CVR) const {
678    return withFastQualifiers(CVR);
679  }
680
681  void addFastQualifiers(unsigned TQs) {
682    assert(!(TQs & ~Qualifiers::FastMask)
683           && "non-fast qualifier bits set in mask!");
684    Value.setInt(Value.getInt() | TQs);
685  }
686
687  void removeLocalConst();
688  void removeLocalVolatile();
689  void removeLocalRestrict();
690  void removeLocalCVRQualifiers(unsigned Mask);
691
692  void removeLocalFastQualifiers() { Value.setInt(0); }
693  void removeLocalFastQualifiers(unsigned Mask) {
694    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
695    Value.setInt(Value.getInt() & ~Mask);
696  }
697
698  // Creates a type with the given qualifiers in addition to any
699  // qualifiers already on this type.
700  QualType withFastQualifiers(unsigned TQs) const {
701    QualType T = *this;
702    T.addFastQualifiers(TQs);
703    return T;
704  }
705
706  // Creates a type with exactly the given fast qualifiers, removing
707  // any existing fast qualifiers.
708  QualType withExactLocalFastQualifiers(unsigned TQs) const {
709    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
710  }
711
712  // Removes fast qualifiers, but leaves any extended qualifiers in place.
713  QualType withoutLocalFastQualifiers() const {
714    QualType T = *this;
715    T.removeLocalFastQualifiers();
716    return T;
717  }
718
719  QualType getCanonicalType() const;
720
721  /// \brief Return this type with all of the instance-specific qualifiers
722  /// removed, but without removing any qualifiers that may have been applied
723  /// through typedefs.
724  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
725
726  /// \brief Retrieve the unqualified variant of the given type,
727  /// removing as little sugar as possible.
728  ///
729  /// This routine looks through various kinds of sugar to find the
730  /// least-desugared type that is unqualified. For example, given:
731  ///
732  /// \code
733  /// typedef int Integer;
734  /// typedef const Integer CInteger;
735  /// typedef CInteger DifferenceType;
736  /// \endcode
737  ///
738  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
739  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
740  ///
741  /// The resulting type might still be qualified if it's an array
742  /// type.  To strip qualifiers even from within an array type, use
743  /// ASTContext::getUnqualifiedArrayType.
744  inline QualType getUnqualifiedType() const;
745
746  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
747  /// given type, removing as little sugar as possible.
748  ///
749  /// Like getUnqualifiedType(), but also returns the set of
750  /// qualifiers that were built up.
751  ///
752  /// The resulting type might still be qualified if it's an array
753  /// type.  To strip qualifiers even from within an array type, use
754  /// ASTContext::getUnqualifiedArrayType.
755  inline SplitQualType getSplitUnqualifiedType() const;
756
757  /// \brief Determine whether this type is more qualified than the other
758  /// given type, requiring exact equality for non-CVR qualifiers.
759  bool isMoreQualifiedThan(QualType Other) const;
760
761  /// \brief Determine whether this type is at least as qualified as the other
762  /// given type, requiring exact equality for non-CVR qualifiers.
763  bool isAtLeastAsQualifiedAs(QualType Other) const;
764
765  QualType getNonReferenceType() const;
766
767  /// \brief Determine the type of a (typically non-lvalue) expression with the
768  /// specified result type.
769  ///
770  /// This routine should be used for expressions for which the return type is
771  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
772  /// an lvalue. It removes a top-level reference (since there are no
773  /// expressions of reference type) and deletes top-level cvr-qualifiers
774  /// from non-class types (in C++) or all types (in C).
775  QualType getNonLValueExprType(ASTContext &Context) const;
776
777  /// getDesugaredType - Return the specified type with any "sugar" removed from
778  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
779  /// the type is already concrete, it returns it unmodified.  This is similar
780  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
781  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
782  /// concrete.
783  ///
784  /// Qualifiers are left in place.
785  QualType getDesugaredType(const ASTContext &Context) const {
786    return getDesugaredType(*this, Context);
787  }
788
789  SplitQualType getSplitDesugaredType() const {
790    return getSplitDesugaredType(*this);
791  }
792
793  /// \brief Return the specified type with one level of "sugar" removed from
794  /// the type.
795  ///
796  /// This routine takes off the first typedef, typeof, etc. If the outer level
797  /// of the type is already concrete, it returns it unmodified.
798  QualType getSingleStepDesugaredType(const ASTContext &Context) const {
799    return getSingleStepDesugaredTypeImpl(*this, Context);
800  }
801
802  /// IgnoreParens - Returns the specified type after dropping any
803  /// outer-level parentheses.
804  QualType IgnoreParens() const {
805    if (isa<ParenType>(*this))
806      return QualType::IgnoreParens(*this);
807    return *this;
808  }
809
810  /// operator==/!= - Indicate whether the specified types and qualifiers are
811  /// identical.
812  friend bool operator==(const QualType &LHS, const QualType &RHS) {
813    return LHS.Value == RHS.Value;
814  }
815  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
816    return LHS.Value != RHS.Value;
817  }
818  std::string getAsString() const {
819    return getAsString(split());
820  }
821  static std::string getAsString(SplitQualType split) {
822    return getAsString(split.Ty, split.Quals);
823  }
824  static std::string getAsString(const Type *ty, Qualifiers qs);
825
826  std::string getAsString(const PrintingPolicy &Policy) const {
827    std::string S;
828    getAsStringInternal(S, Policy);
829    return S;
830  }
831  void getAsStringInternal(std::string &Str,
832                           const PrintingPolicy &Policy) const {
833    return getAsStringInternal(split(), Str, Policy);
834  }
835  static void getAsStringInternal(SplitQualType split, std::string &out,
836                                  const PrintingPolicy &policy) {
837    return getAsStringInternal(split.Ty, split.Quals, out, policy);
838  }
839  static void getAsStringInternal(const Type *ty, Qualifiers qs,
840                                  std::string &out,
841                                  const PrintingPolicy &policy);
842
843  void dump(const char *s) const;
844  void dump() const;
845
846  void Profile(llvm::FoldingSetNodeID &ID) const {
847    ID.AddPointer(getAsOpaquePtr());
848  }
849
850  /// getAddressSpace - Return the address space of this type.
851  inline unsigned getAddressSpace() const;
852
853  /// getObjCGCAttr - Returns gc attribute of this type.
854  inline Qualifiers::GC getObjCGCAttr() const;
855
856  /// isObjCGCWeak true when Type is objc's weak.
857  bool isObjCGCWeak() const {
858    return getObjCGCAttr() == Qualifiers::Weak;
859  }
860
861  /// isObjCGCStrong true when Type is objc's strong.
862  bool isObjCGCStrong() const {
863    return getObjCGCAttr() == Qualifiers::Strong;
864  }
865
866  /// getObjCLifetime - Returns lifetime attribute of this type.
867  Qualifiers::ObjCLifetime getObjCLifetime() const {
868    return getQualifiers().getObjCLifetime();
869  }
870
871  bool hasNonTrivialObjCLifetime() const {
872    return getQualifiers().hasNonTrivialObjCLifetime();
873  }
874
875  bool hasStrongOrWeakObjCLifetime() const {
876    return getQualifiers().hasStrongOrWeakObjCLifetime();
877  }
878
879  enum DestructionKind {
880    DK_none,
881    DK_cxx_destructor,
882    DK_objc_strong_lifetime,
883    DK_objc_weak_lifetime
884  };
885
886  /// isDestructedType - nonzero if objects of this type require
887  /// non-trivial work to clean up after.  Non-zero because it's
888  /// conceivable that qualifiers (objc_gc(weak)?) could make
889  /// something require destruction.
890  DestructionKind isDestructedType() const {
891    return isDestructedTypeImpl(*this);
892  }
893
894  /// \brief Determine whether expressions of the given type are forbidden
895  /// from being lvalues in C.
896  ///
897  /// The expression types that are forbidden to be lvalues are:
898  ///   - 'void', but not qualified void
899  ///   - function types
900  ///
901  /// The exact rule here is C99 6.3.2.1:
902  ///   An lvalue is an expression with an object type or an incomplete
903  ///   type other than void.
904  bool isCForbiddenLValueType() const;
905
906  /// \brief Determine whether this type has trivial copy/move-assignment
907  ///        semantics.
908  bool hasTrivialAssignment(ASTContext &Context, bool Copying) const;
909
910private:
911  // These methods are implemented in a separate translation unit;
912  // "static"-ize them to avoid creating temporary QualTypes in the
913  // caller.
914  static bool isConstant(QualType T, ASTContext& Ctx);
915  static QualType getDesugaredType(QualType T, const ASTContext &Context);
916  static SplitQualType getSplitDesugaredType(QualType T);
917  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
918  static QualType getSingleStepDesugaredTypeImpl(QualType type,
919                                                 const ASTContext &C);
920  static QualType IgnoreParens(QualType T);
921  static DestructionKind isDestructedTypeImpl(QualType type);
922};
923
924} // end clang.
925
926namespace llvm {
927/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
928/// to a specific Type class.
929template<> struct simplify_type<const ::clang::QualType> {
930  typedef const ::clang::Type *SimpleType;
931  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
932    return Val.getTypePtr();
933  }
934};
935template<> struct simplify_type< ::clang::QualType>
936  : public simplify_type<const ::clang::QualType> {};
937
938// Teach SmallPtrSet that QualType is "basically a pointer".
939template<>
940class PointerLikeTypeTraits<clang::QualType> {
941public:
942  static inline void *getAsVoidPointer(clang::QualType P) {
943    return P.getAsOpaquePtr();
944  }
945  static inline clang::QualType getFromVoidPointer(void *P) {
946    return clang::QualType::getFromOpaquePtr(P);
947  }
948  // Various qualifiers go in low bits.
949  enum { NumLowBitsAvailable = 0 };
950};
951
952} // end namespace llvm
953
954namespace clang {
955
956/// \brief Base class that is common to both the \c ExtQuals and \c Type
957/// classes, which allows \c QualType to access the common fields between the
958/// two.
959///
960class ExtQualsTypeCommonBase {
961  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
962    : BaseType(baseType), CanonicalType(canon) {}
963
964  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
965  /// a self-referential pointer (for \c Type).
966  ///
967  /// This pointer allows an efficient mapping from a QualType to its
968  /// underlying type pointer.
969  const Type *const BaseType;
970
971  /// \brief The canonical type of this type.  A QualType.
972  QualType CanonicalType;
973
974  friend class QualType;
975  friend class Type;
976  friend class ExtQuals;
977};
978
979/// ExtQuals - We can encode up to four bits in the low bits of a
980/// type pointer, but there are many more type qualifiers that we want
981/// to be able to apply to an arbitrary type.  Therefore we have this
982/// struct, intended to be heap-allocated and used by QualType to
983/// store qualifiers.
984///
985/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
986/// in three low bits on the QualType pointer; a fourth bit records whether
987/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
988/// Objective-C GC attributes) are much more rare.
989class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
990  // NOTE: changing the fast qualifiers should be straightforward as
991  // long as you don't make 'const' non-fast.
992  // 1. Qualifiers:
993  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
994  //       Fast qualifiers must occupy the low-order bits.
995  //    b) Update Qualifiers::FastWidth and FastMask.
996  // 2. QualType:
997  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
998  //    b) Update remove{Volatile,Restrict}, defined near the end of
999  //       this header.
1000  // 3. ASTContext:
1001  //    a) Update get{Volatile,Restrict}Type.
1002
1003  /// Quals - the immutable set of qualifiers applied by this
1004  /// node;  always contains extended qualifiers.
1005  Qualifiers Quals;
1006
1007  ExtQuals *this_() { return this; }
1008
1009public:
1010  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1011    : ExtQualsTypeCommonBase(baseType,
1012                             canon.isNull() ? QualType(this_(), 0) : canon),
1013      Quals(quals)
1014  {
1015    assert(Quals.hasNonFastQualifiers()
1016           && "ExtQuals created with no fast qualifiers");
1017    assert(!Quals.hasFastQualifiers()
1018           && "ExtQuals created with fast qualifiers");
1019  }
1020
1021  Qualifiers getQualifiers() const { return Quals; }
1022
1023  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1024  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1025
1026  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1027  Qualifiers::ObjCLifetime getObjCLifetime() const {
1028    return Quals.getObjCLifetime();
1029  }
1030
1031  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1032  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
1033
1034  const Type *getBaseType() const { return BaseType; }
1035
1036public:
1037  void Profile(llvm::FoldingSetNodeID &ID) const {
1038    Profile(ID, getBaseType(), Quals);
1039  }
1040  static void Profile(llvm::FoldingSetNodeID &ID,
1041                      const Type *BaseType,
1042                      Qualifiers Quals) {
1043    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1044    ID.AddPointer(BaseType);
1045    Quals.Profile(ID);
1046  }
1047};
1048
1049/// \brief The kind of C++0x ref-qualifier associated with a function type,
1050/// which determines whether a member function's "this" object can be an
1051/// lvalue, rvalue, or neither.
1052enum RefQualifierKind {
1053  /// \brief No ref-qualifier was provided.
1054  RQ_None = 0,
1055  /// \brief An lvalue ref-qualifier was provided (\c &).
1056  RQ_LValue,
1057  /// \brief An rvalue ref-qualifier was provided (\c &&).
1058  RQ_RValue
1059};
1060
1061/// Type - This is the base class of the type hierarchy.  A central concept
1062/// with types is that each type always has a canonical type.  A canonical type
1063/// is the type with any typedef names stripped out of it or the types it
1064/// references.  For example, consider:
1065///
1066///  typedef int  foo;
1067///  typedef foo* bar;
1068///    'int *'    'foo *'    'bar'
1069///
1070/// There will be a Type object created for 'int'.  Since int is canonical, its
1071/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
1072/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1073/// there is a PointerType that represents 'int*', which, like 'int', is
1074/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1075/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1076/// is also 'int*'.
1077///
1078/// Non-canonical types are useful for emitting diagnostics, without losing
1079/// information about typedefs being used.  Canonical types are useful for type
1080/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1081/// about whether something has a particular form (e.g. is a function type),
1082/// because they implicitly, recursively, strip all typedefs out of a type.
1083///
1084/// Types, once created, are immutable.
1085///
1086class Type : public ExtQualsTypeCommonBase {
1087public:
1088  enum TypeClass {
1089#define TYPE(Class, Base) Class,
1090#define LAST_TYPE(Class) TypeLast = Class,
1091#define ABSTRACT_TYPE(Class, Base)
1092#include "clang/AST/TypeNodes.def"
1093    TagFirst = Record, TagLast = Enum
1094  };
1095
1096private:
1097  Type(const Type&);           // DO NOT IMPLEMENT.
1098  void operator=(const Type&); // DO NOT IMPLEMENT.
1099
1100  /// Bitfields required by the Type class.
1101  class TypeBitfields {
1102    friend class Type;
1103    template <class T> friend class TypePropertyCache;
1104
1105    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1106    unsigned TC : 8;
1107
1108    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
1109    /// Note that this should stay at the end of the ivars for Type so that
1110    /// subclasses can pack their bitfields into the same word.
1111    unsigned Dependent : 1;
1112
1113    /// \brief Whether this type somehow involves a template parameter, even
1114    /// if the resolution of the type does not depend on a template parameter.
1115    unsigned InstantiationDependent : 1;
1116
1117    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1118    unsigned VariablyModified : 1;
1119
1120    /// \brief Whether this type contains an unexpanded parameter pack
1121    /// (for C++0x variadic templates).
1122    unsigned ContainsUnexpandedParameterPack : 1;
1123
1124    /// \brief Nonzero if the cache (i.e. the bitfields here starting
1125    /// with 'Cache') is valid.  If so, then this is a
1126    /// LangOptions::VisibilityMode+1.
1127    mutable unsigned CacheValidAndVisibility : 2;
1128
1129    /// \brief True if the visibility was set explicitly in the source code.
1130    mutable unsigned CachedExplicitVisibility : 1;
1131
1132    /// \brief Linkage of this type.
1133    mutable unsigned CachedLinkage : 2;
1134
1135    /// \brief Whether this type involves and local or unnamed types.
1136    mutable unsigned CachedLocalOrUnnamed : 1;
1137
1138    /// \brief FromAST - Whether this type comes from an AST file.
1139    mutable unsigned FromAST : 1;
1140
1141    bool isCacheValid() const {
1142      return (CacheValidAndVisibility != 0);
1143    }
1144    Visibility getVisibility() const {
1145      assert(isCacheValid() && "getting linkage from invalid cache");
1146      return static_cast<Visibility>(CacheValidAndVisibility-1);
1147    }
1148    bool isVisibilityExplicit() const {
1149      assert(isCacheValid() && "getting linkage from invalid cache");
1150      return CachedExplicitVisibility;
1151    }
1152    Linkage getLinkage() const {
1153      assert(isCacheValid() && "getting linkage from invalid cache");
1154      return static_cast<Linkage>(CachedLinkage);
1155    }
1156    bool hasLocalOrUnnamedType() const {
1157      assert(isCacheValid() && "getting linkage from invalid cache");
1158      return CachedLocalOrUnnamed;
1159    }
1160  };
1161  enum { NumTypeBits = 19 };
1162
1163protected:
1164  // These classes allow subclasses to somewhat cleanly pack bitfields
1165  // into Type.
1166
1167  class ArrayTypeBitfields {
1168    friend class ArrayType;
1169
1170    unsigned : NumTypeBits;
1171
1172    /// IndexTypeQuals - CVR qualifiers from declarations like
1173    /// 'int X[static restrict 4]'. For function parameters only.
1174    unsigned IndexTypeQuals : 3;
1175
1176    /// SizeModifier - storage class qualifiers from declarations like
1177    /// 'int X[static restrict 4]'. For function parameters only.
1178    /// Actually an ArrayType::ArraySizeModifier.
1179    unsigned SizeModifier : 3;
1180  };
1181
1182  class BuiltinTypeBitfields {
1183    friend class BuiltinType;
1184
1185    unsigned : NumTypeBits;
1186
1187    /// The kind (BuiltinType::Kind) of builtin type this is.
1188    unsigned Kind : 8;
1189  };
1190
1191  class FunctionTypeBitfields {
1192    friend class FunctionType;
1193
1194    unsigned : NumTypeBits;
1195
1196    /// Extra information which affects how the function is called, like
1197    /// regparm and the calling convention.
1198    unsigned ExtInfo : 8;
1199
1200    /// Whether the function is variadic.  Only used by FunctionProtoType.
1201    unsigned Variadic : 1;
1202
1203    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1204    /// other bitfields.
1205    /// The qualifiers are part of FunctionProtoType because...
1206    ///
1207    /// C++ 8.3.5p4: The return type, the parameter type list and the
1208    /// cv-qualifier-seq, [...], are part of the function type.
1209    unsigned TypeQuals : 3;
1210
1211    /// \brief The ref-qualifier associated with a \c FunctionProtoType.
1212    ///
1213    /// This is a value of type \c RefQualifierKind.
1214    unsigned RefQualifier : 2;
1215  };
1216
1217  class ObjCObjectTypeBitfields {
1218    friend class ObjCObjectType;
1219
1220    unsigned : NumTypeBits;
1221
1222    /// NumProtocols - The number of protocols stored directly on this
1223    /// object type.
1224    unsigned NumProtocols : 32 - NumTypeBits;
1225  };
1226
1227  class ReferenceTypeBitfields {
1228    friend class ReferenceType;
1229
1230    unsigned : NumTypeBits;
1231
1232    /// True if the type was originally spelled with an lvalue sigil.
1233    /// This is never true of rvalue references but can also be false
1234    /// on lvalue references because of C++0x [dcl.typedef]p9,
1235    /// as follows:
1236    ///
1237    ///   typedef int &ref;    // lvalue, spelled lvalue
1238    ///   typedef int &&rvref; // rvalue
1239    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1240    ///   ref &&a;             // lvalue, inner ref
1241    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1242    ///   rvref &&a;           // rvalue, inner ref
1243    unsigned SpelledAsLValue : 1;
1244
1245    /// True if the inner type is a reference type.  This only happens
1246    /// in non-canonical forms.
1247    unsigned InnerRef : 1;
1248  };
1249
1250  class TypeWithKeywordBitfields {
1251    friend class TypeWithKeyword;
1252
1253    unsigned : NumTypeBits;
1254
1255    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1256    unsigned Keyword : 8;
1257  };
1258
1259  class VectorTypeBitfields {
1260    friend class VectorType;
1261
1262    unsigned : NumTypeBits;
1263
1264    /// VecKind - The kind of vector, either a generic vector type or some
1265    /// target-specific vector type such as for AltiVec or Neon.
1266    unsigned VecKind : 3;
1267
1268    /// NumElements - The number of elements in the vector.
1269    unsigned NumElements : 29 - NumTypeBits;
1270  };
1271
1272  class AttributedTypeBitfields {
1273    friend class AttributedType;
1274
1275    unsigned : NumTypeBits;
1276
1277    /// AttrKind - an AttributedType::Kind
1278    unsigned AttrKind : 32 - NumTypeBits;
1279  };
1280
1281  union {
1282    TypeBitfields TypeBits;
1283    ArrayTypeBitfields ArrayTypeBits;
1284    AttributedTypeBitfields AttributedTypeBits;
1285    BuiltinTypeBitfields BuiltinTypeBits;
1286    FunctionTypeBitfields FunctionTypeBits;
1287    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1288    ReferenceTypeBitfields ReferenceTypeBits;
1289    TypeWithKeywordBitfields TypeWithKeywordBits;
1290    VectorTypeBitfields VectorTypeBits;
1291  };
1292
1293private:
1294  /// \brief Set whether this type comes from an AST file.
1295  void setFromAST(bool V = true) const {
1296    TypeBits.FromAST = V;
1297  }
1298
1299  template <class T> friend class TypePropertyCache;
1300
1301protected:
1302  // silence VC++ warning C4355: 'this' : used in base member initializer list
1303  Type *this_() { return this; }
1304  Type(TypeClass tc, QualType canon, bool Dependent,
1305       bool InstantiationDependent, bool VariablyModified,
1306       bool ContainsUnexpandedParameterPack)
1307    : ExtQualsTypeCommonBase(this,
1308                             canon.isNull() ? QualType(this_(), 0) : canon) {
1309    TypeBits.TC = tc;
1310    TypeBits.Dependent = Dependent;
1311    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1312    TypeBits.VariablyModified = VariablyModified;
1313    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1314    TypeBits.CacheValidAndVisibility = 0;
1315    TypeBits.CachedExplicitVisibility = false;
1316    TypeBits.CachedLocalOrUnnamed = false;
1317    TypeBits.CachedLinkage = NoLinkage;
1318    TypeBits.FromAST = false;
1319  }
1320  friend class ASTContext;
1321
1322  void setDependent(bool D = true) {
1323    TypeBits.Dependent = D;
1324    if (D)
1325      TypeBits.InstantiationDependent = true;
1326  }
1327  void setInstantiationDependent(bool D = true) {
1328    TypeBits.InstantiationDependent = D; }
1329  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1330  }
1331  void setContainsUnexpandedParameterPack(bool PP = true) {
1332    TypeBits.ContainsUnexpandedParameterPack = PP;
1333  }
1334
1335public:
1336  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1337
1338  /// \brief Whether this type comes from an AST file.
1339  bool isFromAST() const { return TypeBits.FromAST; }
1340
1341  /// \brief Whether this type is or contains an unexpanded parameter
1342  /// pack, used to support C++0x variadic templates.
1343  ///
1344  /// A type that contains a parameter pack shall be expanded by the
1345  /// ellipsis operator at some point. For example, the typedef in the
1346  /// following example contains an unexpanded parameter pack 'T':
1347  ///
1348  /// \code
1349  /// template<typename ...T>
1350  /// struct X {
1351  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1352  /// };
1353  /// \endcode
1354  ///
1355  /// Note that this routine does not specify which
1356  bool containsUnexpandedParameterPack() const {
1357    return TypeBits.ContainsUnexpandedParameterPack;
1358  }
1359
1360  /// Determines if this type would be canonical if it had no further
1361  /// qualification.
1362  bool isCanonicalUnqualified() const {
1363    return CanonicalType == QualType(this, 0);
1364  }
1365
1366  /// Pull a single level of sugar off of this locally-unqualified type.
1367  /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1368  /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1369  QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1370
1371  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1372  /// object types, function types, and incomplete types.
1373
1374  /// isIncompleteType - Return true if this is an incomplete type.
1375  /// A type that can describe objects, but which lacks information needed to
1376  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1377  /// routine will need to determine if the size is actually required.
1378  ///
1379  /// \brief Def If non-NULL, and the type refers to some kind of declaration
1380  /// that can be completed (such as a C struct, C++ class, or Objective-C
1381  /// class), will be set to the declaration.
1382  bool isIncompleteType(NamedDecl **Def = 0) const;
1383
1384  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1385  /// type, in other words, not a function type.
1386  bool isIncompleteOrObjectType() const {
1387    return !isFunctionType();
1388  }
1389
1390  /// \brief Determine whether this type is an object type.
1391  bool isObjectType() const {
1392    // C++ [basic.types]p8:
1393    //   An object type is a (possibly cv-qualified) type that is not a
1394    //   function type, not a reference type, and not a void type.
1395    return !isReferenceType() && !isFunctionType() && !isVoidType();
1396  }
1397
1398  /// isLiteralType - Return true if this is a literal type
1399  /// (C++0x [basic.types]p10)
1400  bool isLiteralType() const;
1401
1402  /// \brief Test if this type is a standard-layout type.
1403  /// (C++0x [basic.type]p9)
1404  bool isStandardLayoutType() const;
1405
1406  /// Helper methods to distinguish type categories. All type predicates
1407  /// operate on the canonical type, ignoring typedefs and qualifiers.
1408
1409  /// isBuiltinType - returns true if the type is a builtin type.
1410  bool isBuiltinType() const;
1411
1412  /// isSpecificBuiltinType - Test for a particular builtin type.
1413  bool isSpecificBuiltinType(unsigned K) const;
1414
1415  /// isPlaceholderType - Test for a type which does not represent an
1416  /// actual type-system type but is instead used as a placeholder for
1417  /// various convenient purposes within Clang.  All such types are
1418  /// BuiltinTypes.
1419  bool isPlaceholderType() const;
1420  const BuiltinType *getAsPlaceholderType() const;
1421
1422  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1423  bool isSpecificPlaceholderType(unsigned K) const;
1424
1425  /// isNonOverloadPlaceholderType - Test for a placeholder type
1426  /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
1427  bool isNonOverloadPlaceholderType() const;
1428
1429  /// isIntegerType() does *not* include complex integers (a GCC extension).
1430  /// isComplexIntegerType() can be used to test for complex integers.
1431  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1432  bool isEnumeralType() const;
1433  bool isBooleanType() const;
1434  bool isCharType() const;
1435  bool isWideCharType() const;
1436  bool isChar16Type() const;
1437  bool isChar32Type() const;
1438  bool isAnyCharacterType() const;
1439  bool isIntegralType(ASTContext &Ctx) const;
1440
1441  /// \brief Determine whether this type is an integral or enumeration type.
1442  bool isIntegralOrEnumerationType() const;
1443  /// \brief Determine whether this type is an integral or unscoped enumeration
1444  /// type.
1445  bool isIntegralOrUnscopedEnumerationType() const;
1446
1447  /// Floating point categories.
1448  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1449  /// isComplexType() does *not* include complex integers (a GCC extension).
1450  /// isComplexIntegerType() can be used to test for complex integers.
1451  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1452  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1453  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1454  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1455  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1456  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1457  bool isVoidType() const;         // C99 6.2.5p19
1458  bool isDerivedType() const;      // C99 6.2.5p20
1459  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1460  bool isAggregateType() const;
1461  bool isFundamentalType() const;
1462  bool isCompoundType() const;
1463
1464  // Type Predicates: Check to see if this type is structurally the specified
1465  // type, ignoring typedefs and qualifiers.
1466  bool isFunctionType() const;
1467  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1468  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1469  bool isPointerType() const;
1470  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1471  bool isBlockPointerType() const;
1472  bool isVoidPointerType() const;
1473  bool isReferenceType() const;
1474  bool isLValueReferenceType() const;
1475  bool isRValueReferenceType() const;
1476  bool isFunctionPointerType() const;
1477  bool isMemberPointerType() const;
1478  bool isMemberFunctionPointerType() const;
1479  bool isMemberDataPointerType() const;
1480  bool isArrayType() const;
1481  bool isConstantArrayType() const;
1482  bool isIncompleteArrayType() const;
1483  bool isVariableArrayType() const;
1484  bool isDependentSizedArrayType() const;
1485  bool isRecordType() const;
1486  bool isClassType() const;
1487  bool isStructureType() const;
1488  bool isStructureOrClassType() const;
1489  bool isUnionType() const;
1490  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1491  bool isVectorType() const;                    // GCC vector type.
1492  bool isExtVectorType() const;                 // Extended vector type.
1493  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1494  bool isObjCRetainableType() const;            // ObjC object or block pointer
1495  bool isObjCLifetimeType() const;              // (array of)* retainable type
1496  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1497  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1498  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1499  // for the common case.
1500  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1501  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1502  bool isObjCQualifiedIdType() const;           // id<foo>
1503  bool isObjCQualifiedClassType() const;        // Class<foo>
1504  bool isObjCObjectOrInterfaceType() const;
1505  bool isObjCIdType() const;                    // id
1506  bool isObjCClassType() const;                 // Class
1507  bool isObjCSelType() const;                 // Class
1508  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1509  bool isObjCARCBridgableType() const;
1510  bool isCARCBridgableType() const;
1511  bool isTemplateTypeParmType() const;          // C++ template type parameter
1512  bool isNullPtrType() const;                   // C++0x nullptr_t
1513  bool isAtomicType() const;                    // C11 _Atomic()
1514
1515  /// Determines if this type, which must satisfy
1516  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1517  /// than implicitly __strong.
1518  bool isObjCARCImplicitlyUnretainedType() const;
1519
1520  /// Return the implicit lifetime for this type, which must not be dependent.
1521  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1522
1523  enum ScalarTypeKind {
1524    STK_CPointer,
1525    STK_BlockPointer,
1526    STK_ObjCObjectPointer,
1527    STK_MemberPointer,
1528    STK_Bool,
1529    STK_Integral,
1530    STK_Floating,
1531    STK_IntegralComplex,
1532    STK_FloatingComplex
1533  };
1534  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1535  ScalarTypeKind getScalarTypeKind() const;
1536
1537  /// isDependentType - Whether this type is a dependent type, meaning
1538  /// that its definition somehow depends on a template parameter
1539  /// (C++ [temp.dep.type]).
1540  bool isDependentType() const { return TypeBits.Dependent; }
1541
1542  /// \brief Determine whether this type is an instantiation-dependent type,
1543  /// meaning that the type involves a template parameter (even if the
1544  /// definition does not actually depend on the type substituted for that
1545  /// template parameter).
1546  bool isInstantiationDependentType() const {
1547    return TypeBits.InstantiationDependent;
1548  }
1549
1550  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1551  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1552
1553  /// \brief Whether this type involves a variable-length array type
1554  /// with a definite size.
1555  bool hasSizedVLAType() const;
1556
1557  /// \brief Whether this type is or contains a local or unnamed type.
1558  bool hasUnnamedOrLocalType() const;
1559
1560  bool isOverloadableType() const;
1561
1562  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1563  bool isElaboratedTypeSpecifier() const;
1564
1565  bool canDecayToPointerType() const;
1566
1567  /// hasPointerRepresentation - Whether this type is represented
1568  /// natively as a pointer; this includes pointers, references, block
1569  /// pointers, and Objective-C interface, qualified id, and qualified
1570  /// interface types, as well as nullptr_t.
1571  bool hasPointerRepresentation() const;
1572
1573  /// hasObjCPointerRepresentation - Whether this type can represent
1574  /// an objective pointer type for the purpose of GC'ability
1575  bool hasObjCPointerRepresentation() const;
1576
1577  /// \brief Determine whether this type has an integer representation
1578  /// of some sort, e.g., it is an integer type or a vector.
1579  bool hasIntegerRepresentation() const;
1580
1581  /// \brief Determine whether this type has an signed integer representation
1582  /// of some sort, e.g., it is an signed integer type or a vector.
1583  bool hasSignedIntegerRepresentation() const;
1584
1585  /// \brief Determine whether this type has an unsigned integer representation
1586  /// of some sort, e.g., it is an unsigned integer type or a vector.
1587  bool hasUnsignedIntegerRepresentation() const;
1588
1589  /// \brief Determine whether this type has a floating-point representation
1590  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1591  bool hasFloatingRepresentation() const;
1592
1593  // Type Checking Functions: Check to see if this type is structurally the
1594  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1595  // the best type we can.
1596  const RecordType *getAsStructureType() const;
1597  /// NOTE: getAs*ArrayType are methods on ASTContext.
1598  const RecordType *getAsUnionType() const;
1599  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1600  // The following is a convenience method that returns an ObjCObjectPointerType
1601  // for object declared using an interface.
1602  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1603  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1604  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1605  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1606  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
1607
1608  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1609  /// because the type is a RecordType or because it is the injected-class-name
1610  /// type of a class template or class template partial specialization.
1611  CXXRecordDecl *getAsCXXRecordDecl() const;
1612
1613  /// \brief Get the AutoType whose type will be deduced for a variable with
1614  /// an initializer of this type. This looks through declarators like pointer
1615  /// types, but not through decltype or typedefs.
1616  AutoType *getContainedAutoType() const;
1617
1618  /// Member-template getAs<specific type>'.  Look through sugar for
1619  /// an instance of <specific type>.   This scheme will eventually
1620  /// replace the specific getAsXXXX methods above.
1621  ///
1622  /// There are some specializations of this member template listed
1623  /// immediately following this class.
1624  template <typename T> const T *getAs() const;
1625
1626  /// A variant of getAs<> for array types which silently discards
1627  /// qualifiers from the outermost type.
1628  const ArrayType *getAsArrayTypeUnsafe() const;
1629
1630  /// Member-template castAs<specific type>.  Look through sugar for
1631  /// the underlying instance of <specific type>.
1632  ///
1633  /// This method has the same relationship to getAs<T> as cast<T> has
1634  /// to dyn_cast<T>; which is to say, the underlying type *must*
1635  /// have the intended type, and this method will never return null.
1636  template <typename T> const T *castAs() const;
1637
1638  /// A variant of castAs<> for array type which silently discards
1639  /// qualifiers from the outermost type.
1640  const ArrayType *castAsArrayTypeUnsafe() const;
1641
1642  /// getBaseElementTypeUnsafe - Get the base element type of this
1643  /// type, potentially discarding type qualifiers.  This method
1644  /// should never be used when type qualifiers are meaningful.
1645  const Type *getBaseElementTypeUnsafe() const;
1646
1647  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1648  /// element type of the array, potentially with type qualifiers missing.
1649  /// This method should never be used when type qualifiers are meaningful.
1650  const Type *getArrayElementTypeNoTypeQual() const;
1651
1652  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1653  /// pointer, this returns the respective pointee.
1654  QualType getPointeeType() const;
1655
1656  /// getUnqualifiedDesugaredType() - Return the specified type with
1657  /// any "sugar" removed from the type, removing any typedefs,
1658  /// typeofs, etc., as well as any qualifiers.
1659  const Type *getUnqualifiedDesugaredType() const;
1660
1661  /// More type predicates useful for type checking/promotion
1662  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1663
1664  /// isSignedIntegerType - Return true if this is an integer type that is
1665  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1666  /// or an enum decl which has a signed representation.
1667  bool isSignedIntegerType() const;
1668
1669  /// isUnsignedIntegerType - Return true if this is an integer type that is
1670  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1671  /// or an enum decl which has an unsigned representation.
1672  bool isUnsignedIntegerType() const;
1673
1674  /// Determines whether this is an integer type that is signed or an
1675  /// enumeration types whose underlying type is a signed integer type.
1676  bool isSignedIntegerOrEnumerationType() const;
1677
1678  /// Determines whether this is an integer type that is unsigned or an
1679  /// enumeration types whose underlying type is a unsigned integer type.
1680  bool isUnsignedIntegerOrEnumerationType() const;
1681
1682  /// isConstantSizeType - Return true if this is not a variable sized type,
1683  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1684  /// incomplete types.
1685  bool isConstantSizeType() const;
1686
1687  /// isSpecifierType - Returns true if this type can be represented by some
1688  /// set of type specifiers.
1689  bool isSpecifierType() const;
1690
1691  /// \brief Determine the linkage of this type.
1692  Linkage getLinkage() const;
1693
1694  /// \brief Determine the visibility of this type.
1695  Visibility getVisibility() const;
1696
1697  /// \brief Return true if the visibility was explicitly set is the code.
1698  bool isVisibilityExplicit() const;
1699
1700  /// \brief Determine the linkage and visibility of this type.
1701  std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
1702
1703  /// \brief Note that the linkage is no longer known.
1704  void ClearLinkageCache();
1705
1706  const char *getTypeClassName() const;
1707
1708  QualType getCanonicalTypeInternal() const {
1709    return CanonicalType;
1710  }
1711  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1712  void dump() const;
1713
1714  static bool classof(const Type *) { return true; }
1715
1716  friend class ASTReader;
1717  friend class ASTWriter;
1718};
1719
1720template <> inline const TypedefType *Type::getAs() const {
1721  return dyn_cast<TypedefType>(this);
1722}
1723
1724// We can do canonical leaf types faster, because we don't have to
1725// worry about preserving child type decoration.
1726#define TYPE(Class, Base)
1727#define LEAF_TYPE(Class) \
1728template <> inline const Class##Type *Type::getAs() const { \
1729  return dyn_cast<Class##Type>(CanonicalType); \
1730} \
1731template <> inline const Class##Type *Type::castAs() const { \
1732  return cast<Class##Type>(CanonicalType); \
1733}
1734#include "clang/AST/TypeNodes.def"
1735
1736
1737/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1738/// types are always canonical and have a literal name field.
1739class BuiltinType : public Type {
1740public:
1741  enum Kind {
1742#define BUILTIN_TYPE(Id, SingletonId) Id,
1743#define LAST_BUILTIN_TYPE(Id) LastKind = Id
1744#include "clang/AST/BuiltinTypes.def"
1745  };
1746
1747public:
1748  BuiltinType(Kind K)
1749    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1750           /*InstantiationDependent=*/(K == Dependent),
1751           /*VariablyModified=*/false,
1752           /*Unexpanded paramter pack=*/false) {
1753    BuiltinTypeBits.Kind = K;
1754  }
1755
1756  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1757  const char *getName(const PrintingPolicy &Policy) const;
1758
1759  bool isSugared() const { return false; }
1760  QualType desugar() const { return QualType(this, 0); }
1761
1762  bool isInteger() const {
1763    return getKind() >= Bool && getKind() <= Int128;
1764  }
1765
1766  bool isSignedInteger() const {
1767    return getKind() >= Char_S && getKind() <= Int128;
1768  }
1769
1770  bool isUnsignedInteger() const {
1771    return getKind() >= Bool && getKind() <= UInt128;
1772  }
1773
1774  bool isFloatingPoint() const {
1775    return getKind() >= Half && getKind() <= LongDouble;
1776  }
1777
1778  /// Determines whether the given kind corresponds to a placeholder type.
1779  static bool isPlaceholderTypeKind(Kind K) {
1780    return K >= Overload;
1781  }
1782
1783  /// Determines whether this type is a placeholder type, i.e. a type
1784  /// which cannot appear in arbitrary positions in a fully-formed
1785  /// expression.
1786  bool isPlaceholderType() const {
1787    return isPlaceholderTypeKind(getKind());
1788  }
1789
1790  /// Determines whether this type is a placeholder type other than
1791  /// Overload.  Most placeholder types require only syntactic
1792  /// information about their context in order to be resolved (e.g.
1793  /// whether it is a call expression), which means they can (and
1794  /// should) be resolved in an earlier "phase" of analysis.
1795  /// Overload expressions sometimes pick up further information
1796  /// from their context, like whether the context expects a
1797  /// specific function-pointer type, and so frequently need
1798  /// special treatment.
1799  bool isNonOverloadPlaceholderType() const {
1800    return getKind() > Overload;
1801  }
1802
1803  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1804  static bool classof(const BuiltinType *) { return true; }
1805};
1806
1807/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1808/// types (_Complex float etc) as well as the GCC integer complex extensions.
1809///
1810class ComplexType : public Type, public llvm::FoldingSetNode {
1811  QualType ElementType;
1812  ComplexType(QualType Element, QualType CanonicalPtr) :
1813    Type(Complex, CanonicalPtr, Element->isDependentType(),
1814         Element->isInstantiationDependentType(),
1815         Element->isVariablyModifiedType(),
1816         Element->containsUnexpandedParameterPack()),
1817    ElementType(Element) {
1818  }
1819  friend class ASTContext;  // ASTContext creates these.
1820
1821public:
1822  QualType getElementType() const { return ElementType; }
1823
1824  bool isSugared() const { return false; }
1825  QualType desugar() const { return QualType(this, 0); }
1826
1827  void Profile(llvm::FoldingSetNodeID &ID) {
1828    Profile(ID, getElementType());
1829  }
1830  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1831    ID.AddPointer(Element.getAsOpaquePtr());
1832  }
1833
1834  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1835  static bool classof(const ComplexType *) { return true; }
1836};
1837
1838/// ParenType - Sugar for parentheses used when specifying types.
1839///
1840class ParenType : public Type, public llvm::FoldingSetNode {
1841  QualType Inner;
1842
1843  ParenType(QualType InnerType, QualType CanonType) :
1844    Type(Paren, CanonType, InnerType->isDependentType(),
1845         InnerType->isInstantiationDependentType(),
1846         InnerType->isVariablyModifiedType(),
1847         InnerType->containsUnexpandedParameterPack()),
1848    Inner(InnerType) {
1849  }
1850  friend class ASTContext;  // ASTContext creates these.
1851
1852public:
1853
1854  QualType getInnerType() const { return Inner; }
1855
1856  bool isSugared() const { return true; }
1857  QualType desugar() const { return getInnerType(); }
1858
1859  void Profile(llvm::FoldingSetNodeID &ID) {
1860    Profile(ID, getInnerType());
1861  }
1862  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1863    Inner.Profile(ID);
1864  }
1865
1866  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1867  static bool classof(const ParenType *) { return true; }
1868};
1869
1870/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1871///
1872class PointerType : public Type, public llvm::FoldingSetNode {
1873  QualType PointeeType;
1874
1875  PointerType(QualType Pointee, QualType CanonicalPtr) :
1876    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1877         Pointee->isInstantiationDependentType(),
1878         Pointee->isVariablyModifiedType(),
1879         Pointee->containsUnexpandedParameterPack()),
1880    PointeeType(Pointee) {
1881  }
1882  friend class ASTContext;  // ASTContext creates these.
1883
1884public:
1885
1886  QualType getPointeeType() const { return PointeeType; }
1887
1888  bool isSugared() const { return false; }
1889  QualType desugar() const { return QualType(this, 0); }
1890
1891  void Profile(llvm::FoldingSetNodeID &ID) {
1892    Profile(ID, getPointeeType());
1893  }
1894  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1895    ID.AddPointer(Pointee.getAsOpaquePtr());
1896  }
1897
1898  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1899  static bool classof(const PointerType *) { return true; }
1900};
1901
1902/// BlockPointerType - pointer to a block type.
1903/// This type is to represent types syntactically represented as
1904/// "void (^)(int)", etc. Pointee is required to always be a function type.
1905///
1906class BlockPointerType : public Type, public llvm::FoldingSetNode {
1907  QualType PointeeType;  // Block is some kind of pointer type
1908  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1909    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1910         Pointee->isInstantiationDependentType(),
1911         Pointee->isVariablyModifiedType(),
1912         Pointee->containsUnexpandedParameterPack()),
1913    PointeeType(Pointee) {
1914  }
1915  friend class ASTContext;  // ASTContext creates these.
1916
1917public:
1918
1919  // Get the pointee type. Pointee is required to always be a function type.
1920  QualType getPointeeType() const { return PointeeType; }
1921
1922  bool isSugared() const { return false; }
1923  QualType desugar() const { return QualType(this, 0); }
1924
1925  void Profile(llvm::FoldingSetNodeID &ID) {
1926      Profile(ID, getPointeeType());
1927  }
1928  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1929      ID.AddPointer(Pointee.getAsOpaquePtr());
1930  }
1931
1932  static bool classof(const Type *T) {
1933    return T->getTypeClass() == BlockPointer;
1934  }
1935  static bool classof(const BlockPointerType *) { return true; }
1936};
1937
1938/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1939///
1940class ReferenceType : public Type, public llvm::FoldingSetNode {
1941  QualType PointeeType;
1942
1943protected:
1944  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1945                bool SpelledAsLValue) :
1946    Type(tc, CanonicalRef, Referencee->isDependentType(),
1947         Referencee->isInstantiationDependentType(),
1948         Referencee->isVariablyModifiedType(),
1949         Referencee->containsUnexpandedParameterPack()),
1950    PointeeType(Referencee)
1951  {
1952    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
1953    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
1954  }
1955
1956public:
1957  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
1958  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
1959
1960  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1961  QualType getPointeeType() const {
1962    // FIXME: this might strip inner qualifiers; okay?
1963    const ReferenceType *T = this;
1964    while (T->isInnerRef())
1965      T = T->PointeeType->castAs<ReferenceType>();
1966    return T->PointeeType;
1967  }
1968
1969  void Profile(llvm::FoldingSetNodeID &ID) {
1970    Profile(ID, PointeeType, isSpelledAsLValue());
1971  }
1972  static void Profile(llvm::FoldingSetNodeID &ID,
1973                      QualType Referencee,
1974                      bool SpelledAsLValue) {
1975    ID.AddPointer(Referencee.getAsOpaquePtr());
1976    ID.AddBoolean(SpelledAsLValue);
1977  }
1978
1979  static bool classof(const Type *T) {
1980    return T->getTypeClass() == LValueReference ||
1981           T->getTypeClass() == RValueReference;
1982  }
1983  static bool classof(const ReferenceType *) { return true; }
1984};
1985
1986/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1987///
1988class LValueReferenceType : public ReferenceType {
1989  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1990                      bool SpelledAsLValue) :
1991    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1992  {}
1993  friend class ASTContext; // ASTContext creates these
1994public:
1995  bool isSugared() const { return false; }
1996  QualType desugar() const { return QualType(this, 0); }
1997
1998  static bool classof(const Type *T) {
1999    return T->getTypeClass() == LValueReference;
2000  }
2001  static bool classof(const LValueReferenceType *) { return true; }
2002};
2003
2004/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
2005///
2006class RValueReferenceType : public ReferenceType {
2007  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
2008    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
2009  }
2010  friend class ASTContext; // ASTContext creates these
2011public:
2012  bool isSugared() const { return false; }
2013  QualType desugar() const { return QualType(this, 0); }
2014
2015  static bool classof(const Type *T) {
2016    return T->getTypeClass() == RValueReference;
2017  }
2018  static bool classof(const RValueReferenceType *) { return true; }
2019};
2020
2021/// MemberPointerType - C++ 8.3.3 - Pointers to members
2022///
2023class MemberPointerType : public Type, public llvm::FoldingSetNode {
2024  QualType PointeeType;
2025  /// The class of which the pointee is a member. Must ultimately be a
2026  /// RecordType, but could be a typedef or a template parameter too.
2027  const Type *Class;
2028
2029  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
2030    Type(MemberPointer, CanonicalPtr,
2031         Cls->isDependentType() || Pointee->isDependentType(),
2032         (Cls->isInstantiationDependentType() ||
2033          Pointee->isInstantiationDependentType()),
2034         Pointee->isVariablyModifiedType(),
2035         (Cls->containsUnexpandedParameterPack() ||
2036          Pointee->containsUnexpandedParameterPack())),
2037    PointeeType(Pointee), Class(Cls) {
2038  }
2039  friend class ASTContext; // ASTContext creates these.
2040
2041public:
2042  QualType getPointeeType() const { return PointeeType; }
2043
2044  /// Returns true if the member type (i.e. the pointee type) is a
2045  /// function type rather than a data-member type.
2046  bool isMemberFunctionPointer() const {
2047    return PointeeType->isFunctionProtoType();
2048  }
2049
2050  /// Returns true if the member type (i.e. the pointee type) is a
2051  /// data type rather than a function type.
2052  bool isMemberDataPointer() const {
2053    return !PointeeType->isFunctionProtoType();
2054  }
2055
2056  const Type *getClass() const { return Class; }
2057
2058  bool isSugared() const { return false; }
2059  QualType desugar() const { return QualType(this, 0); }
2060
2061  void Profile(llvm::FoldingSetNodeID &ID) {
2062    Profile(ID, getPointeeType(), getClass());
2063  }
2064  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2065                      const Type *Class) {
2066    ID.AddPointer(Pointee.getAsOpaquePtr());
2067    ID.AddPointer(Class);
2068  }
2069
2070  static bool classof(const Type *T) {
2071    return T->getTypeClass() == MemberPointer;
2072  }
2073  static bool classof(const MemberPointerType *) { return true; }
2074};
2075
2076/// ArrayType - C99 6.7.5.2 - Array Declarators.
2077///
2078class ArrayType : public Type, public llvm::FoldingSetNode {
2079public:
2080  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
2081  /// an array with a static size (e.g. int X[static 4]), or an array
2082  /// with a star size (e.g. int X[*]).
2083  /// 'static' is only allowed on function parameters.
2084  enum ArraySizeModifier {
2085    Normal, Static, Star
2086  };
2087private:
2088  /// ElementType - The element type of the array.
2089  QualType ElementType;
2090
2091protected:
2092  // C++ [temp.dep.type]p1:
2093  //   A type is dependent if it is...
2094  //     - an array type constructed from any dependent type or whose
2095  //       size is specified by a constant expression that is
2096  //       value-dependent,
2097  ArrayType(TypeClass tc, QualType et, QualType can,
2098            ArraySizeModifier sm, unsigned tq,
2099            bool ContainsUnexpandedParameterPack)
2100    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2101           et->isInstantiationDependentType() || tc == DependentSizedArray,
2102           (tc == VariableArray || et->isVariablyModifiedType()),
2103           ContainsUnexpandedParameterPack),
2104      ElementType(et) {
2105    ArrayTypeBits.IndexTypeQuals = tq;
2106    ArrayTypeBits.SizeModifier = sm;
2107  }
2108
2109  friend class ASTContext;  // ASTContext creates these.
2110
2111public:
2112  QualType getElementType() const { return ElementType; }
2113  ArraySizeModifier getSizeModifier() const {
2114    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2115  }
2116  Qualifiers getIndexTypeQualifiers() const {
2117    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2118  }
2119  unsigned getIndexTypeCVRQualifiers() const {
2120    return ArrayTypeBits.IndexTypeQuals;
2121  }
2122
2123  static bool classof(const Type *T) {
2124    return T->getTypeClass() == ConstantArray ||
2125           T->getTypeClass() == VariableArray ||
2126           T->getTypeClass() == IncompleteArray ||
2127           T->getTypeClass() == DependentSizedArray;
2128  }
2129  static bool classof(const ArrayType *) { return true; }
2130};
2131
2132/// ConstantArrayType - This class represents the canonical version of
2133/// C arrays with a specified constant size.  For example, the canonical
2134/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
2135/// type is 'int' and the size is 404.
2136class ConstantArrayType : public ArrayType {
2137  llvm::APInt Size; // Allows us to unique the type.
2138
2139  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2140                    ArraySizeModifier sm, unsigned tq)
2141    : ArrayType(ConstantArray, et, can, sm, tq,
2142                et->containsUnexpandedParameterPack()),
2143      Size(size) {}
2144protected:
2145  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2146                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2147    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2148      Size(size) {}
2149  friend class ASTContext;  // ASTContext creates these.
2150public:
2151  const llvm::APInt &getSize() const { return Size; }
2152  bool isSugared() const { return false; }
2153  QualType desugar() const { return QualType(this, 0); }
2154
2155
2156  /// \brief Determine the number of bits required to address a member of
2157  // an array with the given element type and number of elements.
2158  static unsigned getNumAddressingBits(ASTContext &Context,
2159                                       QualType ElementType,
2160                                       const llvm::APInt &NumElements);
2161
2162  /// \brief Determine the maximum number of active bits that an array's size
2163  /// can require, which limits the maximum size of the array.
2164  static unsigned getMaxSizeBits(ASTContext &Context);
2165
2166  void Profile(llvm::FoldingSetNodeID &ID) {
2167    Profile(ID, getElementType(), getSize(),
2168            getSizeModifier(), getIndexTypeCVRQualifiers());
2169  }
2170  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2171                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2172                      unsigned TypeQuals) {
2173    ID.AddPointer(ET.getAsOpaquePtr());
2174    ID.AddInteger(ArraySize.getZExtValue());
2175    ID.AddInteger(SizeMod);
2176    ID.AddInteger(TypeQuals);
2177  }
2178  static bool classof(const Type *T) {
2179    return T->getTypeClass() == ConstantArray;
2180  }
2181  static bool classof(const ConstantArrayType *) { return true; }
2182};
2183
2184/// IncompleteArrayType - This class represents C arrays with an unspecified
2185/// size.  For example 'int A[]' has an IncompleteArrayType where the element
2186/// type is 'int' and the size is unspecified.
2187class IncompleteArrayType : public ArrayType {
2188
2189  IncompleteArrayType(QualType et, QualType can,
2190                      ArraySizeModifier sm, unsigned tq)
2191    : ArrayType(IncompleteArray, et, can, sm, tq,
2192                et->containsUnexpandedParameterPack()) {}
2193  friend class ASTContext;  // ASTContext creates these.
2194public:
2195  bool isSugared() const { return false; }
2196  QualType desugar() const { return QualType(this, 0); }
2197
2198  static bool classof(const Type *T) {
2199    return T->getTypeClass() == IncompleteArray;
2200  }
2201  static bool classof(const IncompleteArrayType *) { return true; }
2202
2203  friend class StmtIteratorBase;
2204
2205  void Profile(llvm::FoldingSetNodeID &ID) {
2206    Profile(ID, getElementType(), getSizeModifier(),
2207            getIndexTypeCVRQualifiers());
2208  }
2209
2210  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2211                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2212    ID.AddPointer(ET.getAsOpaquePtr());
2213    ID.AddInteger(SizeMod);
2214    ID.AddInteger(TypeQuals);
2215  }
2216};
2217
2218/// VariableArrayType - This class represents C arrays with a specified size
2219/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
2220/// Since the size expression is an arbitrary expression, we store it as such.
2221///
2222/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2223/// should not be: two lexically equivalent variable array types could mean
2224/// different things, for example, these variables do not have the same type
2225/// dynamically:
2226///
2227/// void foo(int x) {
2228///   int Y[x];
2229///   ++x;
2230///   int Z[x];
2231/// }
2232///
2233class VariableArrayType : public ArrayType {
2234  /// SizeExpr - An assignment expression. VLA's are only permitted within
2235  /// a function block.
2236  Stmt *SizeExpr;
2237  /// Brackets - The left and right array brackets.
2238  SourceRange Brackets;
2239
2240  VariableArrayType(QualType et, QualType can, Expr *e,
2241                    ArraySizeModifier sm, unsigned tq,
2242                    SourceRange brackets)
2243    : ArrayType(VariableArray, et, can, sm, tq,
2244                et->containsUnexpandedParameterPack()),
2245      SizeExpr((Stmt*) e), Brackets(brackets) {}
2246  friend class ASTContext;  // ASTContext creates these.
2247
2248public:
2249  Expr *getSizeExpr() const {
2250    // We use C-style casts instead of cast<> here because we do not wish
2251    // to have a dependency of Type.h on Stmt.h/Expr.h.
2252    return (Expr*) SizeExpr;
2253  }
2254  SourceRange getBracketsRange() const { return Brackets; }
2255  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2256  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2257
2258  bool isSugared() const { return false; }
2259  QualType desugar() const { return QualType(this, 0); }
2260
2261  static bool classof(const Type *T) {
2262    return T->getTypeClass() == VariableArray;
2263  }
2264  static bool classof(const VariableArrayType *) { return true; }
2265
2266  friend class StmtIteratorBase;
2267
2268  void Profile(llvm::FoldingSetNodeID &ID) {
2269    llvm_unreachable("Cannot unique VariableArrayTypes.");
2270  }
2271};
2272
2273/// DependentSizedArrayType - This type represents an array type in
2274/// C++ whose size is a value-dependent expression. For example:
2275///
2276/// \code
2277/// template<typename T, int Size>
2278/// class array {
2279///   T data[Size];
2280/// };
2281/// \endcode
2282///
2283/// For these types, we won't actually know what the array bound is
2284/// until template instantiation occurs, at which point this will
2285/// become either a ConstantArrayType or a VariableArrayType.
2286class DependentSizedArrayType : public ArrayType {
2287  const ASTContext &Context;
2288
2289  /// \brief An assignment expression that will instantiate to the
2290  /// size of the array.
2291  ///
2292  /// The expression itself might be NULL, in which case the array
2293  /// type will have its size deduced from an initializer.
2294  Stmt *SizeExpr;
2295
2296  /// Brackets - The left and right array brackets.
2297  SourceRange Brackets;
2298
2299  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2300                          Expr *e, ArraySizeModifier sm, unsigned tq,
2301                          SourceRange brackets);
2302
2303  friend class ASTContext;  // ASTContext creates these.
2304
2305public:
2306  Expr *getSizeExpr() const {
2307    // We use C-style casts instead of cast<> here because we do not wish
2308    // to have a dependency of Type.h on Stmt.h/Expr.h.
2309    return (Expr*) SizeExpr;
2310  }
2311  SourceRange getBracketsRange() const { return Brackets; }
2312  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2313  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2314
2315  bool isSugared() const { return false; }
2316  QualType desugar() const { return QualType(this, 0); }
2317
2318  static bool classof(const Type *T) {
2319    return T->getTypeClass() == DependentSizedArray;
2320  }
2321  static bool classof(const DependentSizedArrayType *) { return true; }
2322
2323  friend class StmtIteratorBase;
2324
2325
2326  void Profile(llvm::FoldingSetNodeID &ID) {
2327    Profile(ID, Context, getElementType(),
2328            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2329  }
2330
2331  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2332                      QualType ET, ArraySizeModifier SizeMod,
2333                      unsigned TypeQuals, Expr *E);
2334};
2335
2336/// DependentSizedExtVectorType - This type represent an extended vector type
2337/// where either the type or size is dependent. For example:
2338/// @code
2339/// template<typename T, int Size>
2340/// class vector {
2341///   typedef T __attribute__((ext_vector_type(Size))) type;
2342/// }
2343/// @endcode
2344class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2345  const ASTContext &Context;
2346  Expr *SizeExpr;
2347  /// ElementType - The element type of the array.
2348  QualType ElementType;
2349  SourceLocation loc;
2350
2351  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2352                              QualType can, Expr *SizeExpr, SourceLocation loc);
2353
2354  friend class ASTContext;
2355
2356public:
2357  Expr *getSizeExpr() const { return SizeExpr; }
2358  QualType getElementType() const { return ElementType; }
2359  SourceLocation getAttributeLoc() const { return loc; }
2360
2361  bool isSugared() const { return false; }
2362  QualType desugar() const { return QualType(this, 0); }
2363
2364  static bool classof(const Type *T) {
2365    return T->getTypeClass() == DependentSizedExtVector;
2366  }
2367  static bool classof(const DependentSizedExtVectorType *) { return true; }
2368
2369  void Profile(llvm::FoldingSetNodeID &ID) {
2370    Profile(ID, Context, getElementType(), getSizeExpr());
2371  }
2372
2373  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2374                      QualType ElementType, Expr *SizeExpr);
2375};
2376
2377
2378/// VectorType - GCC generic vector type. This type is created using
2379/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2380/// bytes; or from an Altivec __vector or vector declaration.
2381/// Since the constructor takes the number of vector elements, the
2382/// client is responsible for converting the size into the number of elements.
2383class VectorType : public Type, public llvm::FoldingSetNode {
2384public:
2385  enum VectorKind {
2386    GenericVector,  // not a target-specific vector type
2387    AltiVecVector,  // is AltiVec vector
2388    AltiVecPixel,   // is AltiVec 'vector Pixel'
2389    AltiVecBool,    // is AltiVec 'vector bool ...'
2390    NeonVector,     // is ARM Neon vector
2391    NeonPolyVector  // is ARM Neon polynomial vector
2392  };
2393protected:
2394  /// ElementType - The element type of the vector.
2395  QualType ElementType;
2396
2397  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2398             VectorKind vecKind);
2399
2400  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2401             QualType canonType, VectorKind vecKind);
2402
2403  friend class ASTContext;  // ASTContext creates these.
2404
2405public:
2406
2407  QualType getElementType() const { return ElementType; }
2408  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2409
2410  bool isSugared() const { return false; }
2411  QualType desugar() const { return QualType(this, 0); }
2412
2413  VectorKind getVectorKind() const {
2414    return VectorKind(VectorTypeBits.VecKind);
2415  }
2416
2417  void Profile(llvm::FoldingSetNodeID &ID) {
2418    Profile(ID, getElementType(), getNumElements(),
2419            getTypeClass(), getVectorKind());
2420  }
2421  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2422                      unsigned NumElements, TypeClass TypeClass,
2423                      VectorKind VecKind) {
2424    ID.AddPointer(ElementType.getAsOpaquePtr());
2425    ID.AddInteger(NumElements);
2426    ID.AddInteger(TypeClass);
2427    ID.AddInteger(VecKind);
2428  }
2429
2430  static bool classof(const Type *T) {
2431    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2432  }
2433  static bool classof(const VectorType *) { return true; }
2434};
2435
2436/// ExtVectorType - Extended vector type. This type is created using
2437/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2438/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2439/// class enables syntactic extensions, like Vector Components for accessing
2440/// points, colors, and textures (modeled after OpenGL Shading Language).
2441class ExtVectorType : public VectorType {
2442  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2443    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2444  friend class ASTContext;  // ASTContext creates these.
2445public:
2446  static int getPointAccessorIdx(char c) {
2447    switch (c) {
2448    default: return -1;
2449    case 'x': return 0;
2450    case 'y': return 1;
2451    case 'z': return 2;
2452    case 'w': return 3;
2453    }
2454  }
2455  static int getNumericAccessorIdx(char c) {
2456    switch (c) {
2457      default: return -1;
2458      case '0': return 0;
2459      case '1': return 1;
2460      case '2': return 2;
2461      case '3': return 3;
2462      case '4': return 4;
2463      case '5': return 5;
2464      case '6': return 6;
2465      case '7': return 7;
2466      case '8': return 8;
2467      case '9': return 9;
2468      case 'A':
2469      case 'a': return 10;
2470      case 'B':
2471      case 'b': return 11;
2472      case 'C':
2473      case 'c': return 12;
2474      case 'D':
2475      case 'd': return 13;
2476      case 'E':
2477      case 'e': return 14;
2478      case 'F':
2479      case 'f': return 15;
2480    }
2481  }
2482
2483  static int getAccessorIdx(char c) {
2484    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2485    return getNumericAccessorIdx(c);
2486  }
2487
2488  bool isAccessorWithinNumElements(char c) const {
2489    if (int idx = getAccessorIdx(c)+1)
2490      return unsigned(idx-1) < getNumElements();
2491    return false;
2492  }
2493  bool isSugared() const { return false; }
2494  QualType desugar() const { return QualType(this, 0); }
2495
2496  static bool classof(const Type *T) {
2497    return T->getTypeClass() == ExtVector;
2498  }
2499  static bool classof(const ExtVectorType *) { return true; }
2500};
2501
2502/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2503/// class of FunctionNoProtoType and FunctionProtoType.
2504///
2505class FunctionType : public Type {
2506  // The type returned by the function.
2507  QualType ResultType;
2508
2509 public:
2510  /// ExtInfo - A class which abstracts out some details necessary for
2511  /// making a call.
2512  ///
2513  /// It is not actually used directly for storing this information in
2514  /// a FunctionType, although FunctionType does currently use the
2515  /// same bit-pattern.
2516  ///
2517  // If you add a field (say Foo), other than the obvious places (both,
2518  // constructors, compile failures), what you need to update is
2519  // * Operator==
2520  // * getFoo
2521  // * withFoo
2522  // * functionType. Add Foo, getFoo.
2523  // * ASTContext::getFooType
2524  // * ASTContext::mergeFunctionTypes
2525  // * FunctionNoProtoType::Profile
2526  // * FunctionProtoType::Profile
2527  // * TypePrinter::PrintFunctionProto
2528  // * AST read and write
2529  // * Codegen
2530  class ExtInfo {
2531    // Feel free to rearrange or add bits, but if you go over 8,
2532    // you'll need to adjust both the Bits field below and
2533    // Type::FunctionTypeBitfields.
2534
2535    //   |  CC  |noreturn|produces|regparm|
2536    //   |0 .. 2|   3    |    4   | 5 .. 7|
2537    //
2538    // regparm is either 0 (no regparm attribute) or the regparm value+1.
2539    enum { CallConvMask = 0x7 };
2540    enum { NoReturnMask = 0x8 };
2541    enum { ProducesResultMask = 0x10 };
2542    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2543           RegParmOffset = 5 }; // Assumed to be the last field
2544
2545    uint16_t Bits;
2546
2547    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2548
2549    friend class FunctionType;
2550
2551   public:
2552    // Constructor with no defaults. Use this when you know that you
2553    // have all the elements (when reading an AST file for example).
2554    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2555            bool producesResult) {
2556      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2557      Bits = ((unsigned) cc) |
2558             (noReturn ? NoReturnMask : 0) |
2559             (producesResult ? ProducesResultMask : 0) |
2560             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2561    }
2562
2563    // Constructor with all defaults. Use when for example creating a
2564    // function know to use defaults.
2565    ExtInfo() : Bits(0) {}
2566
2567    bool getNoReturn() const { return Bits & NoReturnMask; }
2568    bool getProducesResult() const { return Bits & ProducesResultMask; }
2569    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2570    unsigned getRegParm() const {
2571      unsigned RegParm = Bits >> RegParmOffset;
2572      if (RegParm > 0)
2573        --RegParm;
2574      return RegParm;
2575    }
2576    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2577
2578    bool operator==(ExtInfo Other) const {
2579      return Bits == Other.Bits;
2580    }
2581    bool operator!=(ExtInfo Other) const {
2582      return Bits != Other.Bits;
2583    }
2584
2585    // Note that we don't have setters. That is by design, use
2586    // the following with methods instead of mutating these objects.
2587
2588    ExtInfo withNoReturn(bool noReturn) const {
2589      if (noReturn)
2590        return ExtInfo(Bits | NoReturnMask);
2591      else
2592        return ExtInfo(Bits & ~NoReturnMask);
2593    }
2594
2595    ExtInfo withProducesResult(bool producesResult) const {
2596      if (producesResult)
2597        return ExtInfo(Bits | ProducesResultMask);
2598      else
2599        return ExtInfo(Bits & ~ProducesResultMask);
2600    }
2601
2602    ExtInfo withRegParm(unsigned RegParm) const {
2603      assert(RegParm < 7 && "Invalid regparm value");
2604      return ExtInfo((Bits & ~RegParmMask) |
2605                     ((RegParm + 1) << RegParmOffset));
2606    }
2607
2608    ExtInfo withCallingConv(CallingConv cc) const {
2609      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2610    }
2611
2612    void Profile(llvm::FoldingSetNodeID &ID) const {
2613      ID.AddInteger(Bits);
2614    }
2615  };
2616
2617protected:
2618  FunctionType(TypeClass tc, QualType res, bool variadic,
2619               unsigned typeQuals, RefQualifierKind RefQualifier,
2620               QualType Canonical, bool Dependent,
2621               bool InstantiationDependent,
2622               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2623               ExtInfo Info)
2624    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
2625           ContainsUnexpandedParameterPack),
2626      ResultType(res) {
2627    FunctionTypeBits.ExtInfo = Info.Bits;
2628    FunctionTypeBits.Variadic = variadic;
2629    FunctionTypeBits.TypeQuals = typeQuals;
2630    FunctionTypeBits.RefQualifier = static_cast<unsigned>(RefQualifier);
2631  }
2632  bool isVariadic() const { return FunctionTypeBits.Variadic; }
2633  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2634
2635  RefQualifierKind getRefQualifier() const {
2636    return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
2637  }
2638
2639public:
2640
2641  QualType getResultType() const { return ResultType; }
2642
2643  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2644  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2645  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2646  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2647  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2648
2649  /// \brief Determine the type of an expression that calls a function of
2650  /// this type.
2651  QualType getCallResultType(ASTContext &Context) const {
2652    return getResultType().getNonLValueExprType(Context);
2653  }
2654
2655  static StringRef getNameForCallConv(CallingConv CC);
2656
2657  static bool classof(const Type *T) {
2658    return T->getTypeClass() == FunctionNoProto ||
2659           T->getTypeClass() == FunctionProto;
2660  }
2661  static bool classof(const FunctionType *) { return true; }
2662};
2663
2664/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2665/// no information available about its arguments.
2666class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2667  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2668    : FunctionType(FunctionNoProto, Result, false, 0, RQ_None, Canonical,
2669                   /*Dependent=*/false, /*InstantiationDependent=*/false,
2670                   Result->isVariablyModifiedType(),
2671                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2672
2673  friend class ASTContext;  // ASTContext creates these.
2674
2675public:
2676  // No additional state past what FunctionType provides.
2677
2678  bool isSugared() const { return false; }
2679  QualType desugar() const { return QualType(this, 0); }
2680
2681  void Profile(llvm::FoldingSetNodeID &ID) {
2682    Profile(ID, getResultType(), getExtInfo());
2683  }
2684  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2685                      ExtInfo Info) {
2686    Info.Profile(ID);
2687    ID.AddPointer(ResultType.getAsOpaquePtr());
2688  }
2689
2690  static bool classof(const Type *T) {
2691    return T->getTypeClass() == FunctionNoProto;
2692  }
2693  static bool classof(const FunctionNoProtoType *) { return true; }
2694};
2695
2696/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2697/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2698/// arguments, not as having a single void argument. Such a type can have an
2699/// exception specification, but this specification is not part of the canonical
2700/// type.
2701class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2702public:
2703  /// ExtProtoInfo - Extra information about a function prototype.
2704  struct ExtProtoInfo {
2705    ExtProtoInfo() :
2706      Variadic(false), ExceptionSpecType(EST_None), TypeQuals(0),
2707      RefQualifier(RQ_None), NumExceptions(0), Exceptions(0), NoexceptExpr(0),
2708      ConsumedArguments(0) {}
2709
2710    FunctionType::ExtInfo ExtInfo;
2711    bool Variadic;
2712    ExceptionSpecificationType ExceptionSpecType;
2713    unsigned char TypeQuals;
2714    RefQualifierKind RefQualifier;
2715    unsigned NumExceptions;
2716    const QualType *Exceptions;
2717    Expr *NoexceptExpr;
2718    const bool *ConsumedArguments;
2719  };
2720
2721private:
2722  /// \brief Determine whether there are any argument types that
2723  /// contain an unexpanded parameter pack.
2724  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2725                                                 unsigned numArgs) {
2726    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2727      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2728        return true;
2729
2730    return false;
2731  }
2732
2733  FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
2734                    QualType canonical, const ExtProtoInfo &epi);
2735
2736  /// NumArgs - The number of arguments this function has, not counting '...'.
2737  unsigned NumArgs : 19;
2738
2739  /// NumExceptions - The number of types in the exception spec, if any.
2740  unsigned NumExceptions : 9;
2741
2742  /// ExceptionSpecType - The type of exception specification this function has.
2743  unsigned ExceptionSpecType : 3;
2744
2745  /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
2746  unsigned HasAnyConsumedArgs : 1;
2747
2748  // ArgInfo - There is an variable size array after the class in memory that
2749  // holds the argument types.
2750
2751  // Exceptions - There is another variable size array after ArgInfo that
2752  // holds the exception types.
2753
2754  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2755  // to the expression in the noexcept() specifier.
2756
2757  // ConsumedArgs - A variable size array, following Exceptions
2758  // and of length NumArgs, holding flags indicating which arguments
2759  // are consumed.  This only appears if HasAnyConsumedArgs is true.
2760
2761  friend class ASTContext;  // ASTContext creates these.
2762
2763  const bool *getConsumedArgsBuffer() const {
2764    assert(hasAnyConsumedArgs());
2765
2766    // Find the end of the exceptions.
2767    Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
2768    if (getExceptionSpecType() != EST_ComputedNoexcept)
2769      eh_end += NumExceptions;
2770    else
2771      eh_end += 1; // NoexceptExpr
2772
2773    return reinterpret_cast<const bool*>(eh_end);
2774  }
2775
2776public:
2777  unsigned getNumArgs() const { return NumArgs; }
2778  QualType getArgType(unsigned i) const {
2779    assert(i < NumArgs && "Invalid argument number!");
2780    return arg_type_begin()[i];
2781  }
2782
2783  ExtProtoInfo getExtProtoInfo() const {
2784    ExtProtoInfo EPI;
2785    EPI.ExtInfo = getExtInfo();
2786    EPI.Variadic = isVariadic();
2787    EPI.ExceptionSpecType = getExceptionSpecType();
2788    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2789    EPI.RefQualifier = getRefQualifier();
2790    if (EPI.ExceptionSpecType == EST_Dynamic) {
2791      EPI.NumExceptions = NumExceptions;
2792      EPI.Exceptions = exception_begin();
2793    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2794      EPI.NoexceptExpr = getNoexceptExpr();
2795    }
2796    if (hasAnyConsumedArgs())
2797      EPI.ConsumedArguments = getConsumedArgsBuffer();
2798    return EPI;
2799  }
2800
2801  /// \brief Get the kind of exception specification on this function.
2802  ExceptionSpecificationType getExceptionSpecType() const {
2803    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2804  }
2805  /// \brief Return whether this function has any kind of exception spec.
2806  bool hasExceptionSpec() const {
2807    return getExceptionSpecType() != EST_None;
2808  }
2809  /// \brief Return whether this function has a dynamic (throw) exception spec.
2810  bool hasDynamicExceptionSpec() const {
2811    return isDynamicExceptionSpec(getExceptionSpecType());
2812  }
2813  /// \brief Return whether this function has a noexcept exception spec.
2814  bool hasNoexceptExceptionSpec() const {
2815    return isNoexceptExceptionSpec(getExceptionSpecType());
2816  }
2817  /// \brief Result type of getNoexceptSpec().
2818  enum NoexceptResult {
2819    NR_NoNoexcept,  ///< There is no noexcept specifier.
2820    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2821    NR_Dependent,   ///< The noexcept specifier is dependent.
2822    NR_Throw,       ///< The noexcept specifier evaluates to false.
2823    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2824  };
2825  /// \brief Get the meaning of the noexcept spec on this function, if any.
2826  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2827  unsigned getNumExceptions() const { return NumExceptions; }
2828  QualType getExceptionType(unsigned i) const {
2829    assert(i < NumExceptions && "Invalid exception number!");
2830    return exception_begin()[i];
2831  }
2832  Expr *getNoexceptExpr() const {
2833    if (getExceptionSpecType() != EST_ComputedNoexcept)
2834      return 0;
2835    // NoexceptExpr sits where the arguments end.
2836    return *reinterpret_cast<Expr *const *>(arg_type_end());
2837  }
2838  bool isNothrow(ASTContext &Ctx) const {
2839    ExceptionSpecificationType EST = getExceptionSpecType();
2840    assert(EST != EST_Delayed);
2841    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2842      return true;
2843    if (EST != EST_ComputedNoexcept)
2844      return false;
2845    return getNoexceptSpec(Ctx) == NR_Nothrow;
2846  }
2847
2848  using FunctionType::isVariadic;
2849
2850  /// \brief Determines whether this function prototype contains a
2851  /// parameter pack at the end.
2852  ///
2853  /// A function template whose last parameter is a parameter pack can be
2854  /// called with an arbitrary number of arguments, much like a variadic
2855  /// function. However,
2856  bool isTemplateVariadic() const;
2857
2858  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2859
2860
2861  /// \brief Retrieve the ref-qualifier associated with this function type.
2862  RefQualifierKind getRefQualifier() const {
2863    return FunctionType::getRefQualifier();
2864  }
2865
2866  typedef const QualType *arg_type_iterator;
2867  arg_type_iterator arg_type_begin() const {
2868    return reinterpret_cast<const QualType *>(this+1);
2869  }
2870  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2871
2872  typedef const QualType *exception_iterator;
2873  exception_iterator exception_begin() const {
2874    // exceptions begin where arguments end
2875    return arg_type_end();
2876  }
2877  exception_iterator exception_end() const {
2878    if (getExceptionSpecType() != EST_Dynamic)
2879      return exception_begin();
2880    return exception_begin() + NumExceptions;
2881  }
2882
2883  bool hasAnyConsumedArgs() const {
2884    return HasAnyConsumedArgs;
2885  }
2886  bool isArgConsumed(unsigned I) const {
2887    assert(I < getNumArgs() && "argument index out of range!");
2888    if (hasAnyConsumedArgs())
2889      return getConsumedArgsBuffer()[I];
2890    return false;
2891  }
2892
2893  bool isSugared() const { return false; }
2894  QualType desugar() const { return QualType(this, 0); }
2895
2896  void printExceptionSpecification(std::string &S,
2897                                   PrintingPolicy Policy) const;
2898
2899  static bool classof(const Type *T) {
2900    return T->getTypeClass() == FunctionProto;
2901  }
2902  static bool classof(const FunctionProtoType *) { return true; }
2903
2904  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
2905  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2906                      arg_type_iterator ArgTys, unsigned NumArgs,
2907                      const ExtProtoInfo &EPI, const ASTContext &Context);
2908};
2909
2910
2911/// \brief Represents the dependent type named by a dependently-scoped
2912/// typename using declaration, e.g.
2913///   using typename Base<T>::foo;
2914/// Template instantiation turns these into the underlying type.
2915class UnresolvedUsingType : public Type {
2916  UnresolvedUsingTypenameDecl *Decl;
2917
2918  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2919    : Type(UnresolvedUsing, QualType(), true, true, false,
2920           /*ContainsUnexpandedParameterPack=*/false),
2921      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2922  friend class ASTContext; // ASTContext creates these.
2923public:
2924
2925  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2926
2927  bool isSugared() const { return false; }
2928  QualType desugar() const { return QualType(this, 0); }
2929
2930  static bool classof(const Type *T) {
2931    return T->getTypeClass() == UnresolvedUsing;
2932  }
2933  static bool classof(const UnresolvedUsingType *) { return true; }
2934
2935  void Profile(llvm::FoldingSetNodeID &ID) {
2936    return Profile(ID, Decl);
2937  }
2938  static void Profile(llvm::FoldingSetNodeID &ID,
2939                      UnresolvedUsingTypenameDecl *D) {
2940    ID.AddPointer(D);
2941  }
2942};
2943
2944
2945class TypedefType : public Type {
2946  TypedefNameDecl *Decl;
2947protected:
2948  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
2949    : Type(tc, can, can->isDependentType(),
2950           can->isInstantiationDependentType(),
2951           can->isVariablyModifiedType(),
2952           /*ContainsUnexpandedParameterPack=*/false),
2953      Decl(const_cast<TypedefNameDecl*>(D)) {
2954    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2955  }
2956  friend class ASTContext;  // ASTContext creates these.
2957public:
2958
2959  TypedefNameDecl *getDecl() const { return Decl; }
2960
2961  bool isSugared() const { return true; }
2962  QualType desugar() const;
2963
2964  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2965  static bool classof(const TypedefType *) { return true; }
2966};
2967
2968/// TypeOfExprType (GCC extension).
2969class TypeOfExprType : public Type {
2970  Expr *TOExpr;
2971
2972protected:
2973  TypeOfExprType(Expr *E, QualType can = QualType());
2974  friend class ASTContext;  // ASTContext creates these.
2975public:
2976  Expr *getUnderlyingExpr() const { return TOExpr; }
2977
2978  /// \brief Remove a single level of sugar.
2979  QualType desugar() const;
2980
2981  /// \brief Returns whether this type directly provides sugar.
2982  bool isSugared() const;
2983
2984  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2985  static bool classof(const TypeOfExprType *) { return true; }
2986};
2987
2988/// \brief Internal representation of canonical, dependent
2989/// typeof(expr) types.
2990///
2991/// This class is used internally by the ASTContext to manage
2992/// canonical, dependent types, only. Clients will only see instances
2993/// of this class via TypeOfExprType nodes.
2994class DependentTypeOfExprType
2995  : public TypeOfExprType, public llvm::FoldingSetNode {
2996  const ASTContext &Context;
2997
2998public:
2999  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
3000    : TypeOfExprType(E), Context(Context) { }
3001
3002  void Profile(llvm::FoldingSetNodeID &ID) {
3003    Profile(ID, Context, getUnderlyingExpr());
3004  }
3005
3006  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3007                      Expr *E);
3008};
3009
3010/// TypeOfType (GCC extension).
3011class TypeOfType : public Type {
3012  QualType TOType;
3013  TypeOfType(QualType T, QualType can)
3014    : Type(TypeOf, can, T->isDependentType(),
3015           T->isInstantiationDependentType(),
3016           T->isVariablyModifiedType(),
3017           T->containsUnexpandedParameterPack()),
3018      TOType(T) {
3019    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3020  }
3021  friend class ASTContext;  // ASTContext creates these.
3022public:
3023  QualType getUnderlyingType() const { return TOType; }
3024
3025  /// \brief Remove a single level of sugar.
3026  QualType desugar() const { return getUnderlyingType(); }
3027
3028  /// \brief Returns whether this type directly provides sugar.
3029  bool isSugared() const { return true; }
3030
3031  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
3032  static bool classof(const TypeOfType *) { return true; }
3033};
3034
3035/// DecltypeType (C++0x)
3036class DecltypeType : public Type {
3037  Expr *E;
3038
3039  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
3040  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
3041  // from it.
3042  QualType UnderlyingType;
3043
3044protected:
3045  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3046  friend class ASTContext;  // ASTContext creates these.
3047public:
3048  Expr *getUnderlyingExpr() const { return E; }
3049  QualType getUnderlyingType() const { return UnderlyingType; }
3050
3051  /// \brief Remove a single level of sugar.
3052  QualType desugar() const;
3053
3054  /// \brief Returns whether this type directly provides sugar.
3055  bool isSugared() const;
3056
3057  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3058  static bool classof(const DecltypeType *) { return true; }
3059};
3060
3061/// \brief Internal representation of canonical, dependent
3062/// decltype(expr) types.
3063///
3064/// This class is used internally by the ASTContext to manage
3065/// canonical, dependent types, only. Clients will only see instances
3066/// of this class via DecltypeType nodes.
3067class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3068  const ASTContext &Context;
3069
3070public:
3071  DependentDecltypeType(const ASTContext &Context, Expr *E);
3072
3073  void Profile(llvm::FoldingSetNodeID &ID) {
3074    Profile(ID, Context, getUnderlyingExpr());
3075  }
3076
3077  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3078                      Expr *E);
3079};
3080
3081/// \brief A unary type transform, which is a type constructed from another
3082class UnaryTransformType : public Type {
3083public:
3084  enum UTTKind {
3085    EnumUnderlyingType
3086  };
3087
3088private:
3089  /// The untransformed type.
3090  QualType BaseType;
3091  /// The transformed type if not dependent, otherwise the same as BaseType.
3092  QualType UnderlyingType;
3093
3094  UTTKind UKind;
3095protected:
3096  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3097                     QualType CanonicalTy);
3098  friend class ASTContext;
3099public:
3100  bool isSugared() const { return !isDependentType(); }
3101  QualType desugar() const { return UnderlyingType; }
3102
3103  QualType getUnderlyingType() const { return UnderlyingType; }
3104  QualType getBaseType() const { return BaseType; }
3105
3106  UTTKind getUTTKind() const { return UKind; }
3107
3108  static bool classof(const Type *T) {
3109    return T->getTypeClass() == UnaryTransform;
3110  }
3111  static bool classof(const UnaryTransformType *) { return true; }
3112};
3113
3114class TagType : public Type {
3115  /// Stores the TagDecl associated with this type. The decl may point to any
3116  /// TagDecl that declares the entity.
3117  TagDecl * decl;
3118
3119  friend class ASTReader;
3120
3121protected:
3122  TagType(TypeClass TC, const TagDecl *D, QualType can);
3123
3124public:
3125  TagDecl *getDecl() const;
3126
3127  /// @brief Determines whether this type is in the process of being
3128  /// defined.
3129  bool isBeingDefined() const;
3130
3131  static bool classof(const Type *T) {
3132    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3133  }
3134  static bool classof(const TagType *) { return true; }
3135};
3136
3137/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
3138/// to detect TagType objects of structs/unions/classes.
3139class RecordType : public TagType {
3140protected:
3141  explicit RecordType(const RecordDecl *D)
3142    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3143  explicit RecordType(TypeClass TC, RecordDecl *D)
3144    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3145  friend class ASTContext;   // ASTContext creates these.
3146public:
3147
3148  RecordDecl *getDecl() const {
3149    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3150  }
3151
3152  // FIXME: This predicate is a helper to QualType/Type. It needs to
3153  // recursively check all fields for const-ness. If any field is declared
3154  // const, it needs to return false.
3155  bool hasConstFields() const { return false; }
3156
3157  bool isSugared() const { return false; }
3158  QualType desugar() const { return QualType(this, 0); }
3159
3160  static bool classof(const Type *T) { return T->getTypeClass() == Record; }
3161  static bool classof(const RecordType *) { return true; }
3162};
3163
3164/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
3165/// to detect TagType objects of enums.
3166class EnumType : public TagType {
3167  explicit EnumType(const EnumDecl *D)
3168    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3169  friend class ASTContext;   // ASTContext creates these.
3170public:
3171
3172  EnumDecl *getDecl() const {
3173    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3174  }
3175
3176  bool isSugared() const { return false; }
3177  QualType desugar() const { return QualType(this, 0); }
3178
3179  static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
3180  static bool classof(const EnumType *) { return true; }
3181};
3182
3183/// AttributedType - An attributed type is a type to which a type
3184/// attribute has been applied.  The "modified type" is the
3185/// fully-sugared type to which the attributed type was applied;
3186/// generally it is not canonically equivalent to the attributed type.
3187/// The "equivalent type" is the minimally-desugared type which the
3188/// type is canonically equivalent to.
3189///
3190/// For example, in the following attributed type:
3191///     int32_t __attribute__((vector_size(16)))
3192///   - the modified type is the TypedefType for int32_t
3193///   - the equivalent type is VectorType(16, int32_t)
3194///   - the canonical type is VectorType(16, int)
3195class AttributedType : public Type, public llvm::FoldingSetNode {
3196public:
3197  // It is really silly to have yet another attribute-kind enum, but
3198  // clang::attr::Kind doesn't currently cover the pure type attrs.
3199  enum Kind {
3200    // Expression operand.
3201    attr_address_space,
3202    attr_regparm,
3203    attr_vector_size,
3204    attr_neon_vector_type,
3205    attr_neon_polyvector_type,
3206
3207    FirstExprOperandKind = attr_address_space,
3208    LastExprOperandKind = attr_neon_polyvector_type,
3209
3210    // Enumerated operand (string or keyword).
3211    attr_objc_gc,
3212    attr_objc_ownership,
3213    attr_pcs,
3214
3215    FirstEnumOperandKind = attr_objc_gc,
3216    LastEnumOperandKind = attr_pcs,
3217
3218    // No operand.
3219    attr_noreturn,
3220    attr_cdecl,
3221    attr_fastcall,
3222    attr_stdcall,
3223    attr_thiscall,
3224    attr_pascal
3225  };
3226
3227private:
3228  QualType ModifiedType;
3229  QualType EquivalentType;
3230
3231  friend class ASTContext; // creates these
3232
3233  AttributedType(QualType canon, Kind attrKind,
3234                 QualType modified, QualType equivalent)
3235    : Type(Attributed, canon, canon->isDependentType(),
3236           canon->isInstantiationDependentType(),
3237           canon->isVariablyModifiedType(),
3238           canon->containsUnexpandedParameterPack()),
3239      ModifiedType(modified), EquivalentType(equivalent) {
3240    AttributedTypeBits.AttrKind = attrKind;
3241  }
3242
3243public:
3244  Kind getAttrKind() const {
3245    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3246  }
3247
3248  QualType getModifiedType() const { return ModifiedType; }
3249  QualType getEquivalentType() const { return EquivalentType; }
3250
3251  bool isSugared() const { return true; }
3252  QualType desugar() const { return getEquivalentType(); }
3253
3254  void Profile(llvm::FoldingSetNodeID &ID) {
3255    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3256  }
3257
3258  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3259                      QualType modified, QualType equivalent) {
3260    ID.AddInteger(attrKind);
3261    ID.AddPointer(modified.getAsOpaquePtr());
3262    ID.AddPointer(equivalent.getAsOpaquePtr());
3263  }
3264
3265  static bool classof(const Type *T) {
3266    return T->getTypeClass() == Attributed;
3267  }
3268  static bool classof(const AttributedType *T) { return true; }
3269};
3270
3271class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3272  // Helper data collector for canonical types.
3273  struct CanonicalTTPTInfo {
3274    unsigned Depth : 15;
3275    unsigned ParameterPack : 1;
3276    unsigned Index : 16;
3277  };
3278
3279  union {
3280    // Info for the canonical type.
3281    CanonicalTTPTInfo CanTTPTInfo;
3282    // Info for the non-canonical type.
3283    TemplateTypeParmDecl *TTPDecl;
3284  };
3285
3286  /// Build a non-canonical type.
3287  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3288    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3289           /*InstantiationDependent=*/true,
3290           /*VariablyModified=*/false,
3291           Canon->containsUnexpandedParameterPack()),
3292      TTPDecl(TTPDecl) { }
3293
3294  /// Build the canonical type.
3295  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3296    : Type(TemplateTypeParm, QualType(this, 0),
3297           /*Dependent=*/true,
3298           /*InstantiationDependent=*/true,
3299           /*VariablyModified=*/false, PP) {
3300    CanTTPTInfo.Depth = D;
3301    CanTTPTInfo.Index = I;
3302    CanTTPTInfo.ParameterPack = PP;
3303  }
3304
3305  friend class ASTContext;  // ASTContext creates these
3306
3307  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3308    QualType Can = getCanonicalTypeInternal();
3309    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3310  }
3311
3312public:
3313  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3314  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3315  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3316
3317  TemplateTypeParmDecl *getDecl() const {
3318    return isCanonicalUnqualified() ? 0 : TTPDecl;
3319  }
3320
3321  IdentifierInfo *getIdentifier() const;
3322
3323  bool isSugared() const { return false; }
3324  QualType desugar() const { return QualType(this, 0); }
3325
3326  void Profile(llvm::FoldingSetNodeID &ID) {
3327    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3328  }
3329
3330  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3331                      unsigned Index, bool ParameterPack,
3332                      TemplateTypeParmDecl *TTPDecl) {
3333    ID.AddInteger(Depth);
3334    ID.AddInteger(Index);
3335    ID.AddBoolean(ParameterPack);
3336    ID.AddPointer(TTPDecl);
3337  }
3338
3339  static bool classof(const Type *T) {
3340    return T->getTypeClass() == TemplateTypeParm;
3341  }
3342  static bool classof(const TemplateTypeParmType *T) { return true; }
3343};
3344
3345/// \brief Represents the result of substituting a type for a template
3346/// type parameter.
3347///
3348/// Within an instantiated template, all template type parameters have
3349/// been replaced with these.  They are used solely to record that a
3350/// type was originally written as a template type parameter;
3351/// therefore they are never canonical.
3352class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3353  // The original type parameter.
3354  const TemplateTypeParmType *Replaced;
3355
3356  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3357    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3358           Canon->isInstantiationDependentType(),
3359           Canon->isVariablyModifiedType(),
3360           Canon->containsUnexpandedParameterPack()),
3361      Replaced(Param) { }
3362
3363  friend class ASTContext;
3364
3365public:
3366  /// Gets the template parameter that was substituted for.
3367  const TemplateTypeParmType *getReplacedParameter() const {
3368    return Replaced;
3369  }
3370
3371  /// Gets the type that was substituted for the template
3372  /// parameter.
3373  QualType getReplacementType() const {
3374    return getCanonicalTypeInternal();
3375  }
3376
3377  bool isSugared() const { return true; }
3378  QualType desugar() const { return getReplacementType(); }
3379
3380  void Profile(llvm::FoldingSetNodeID &ID) {
3381    Profile(ID, getReplacedParameter(), getReplacementType());
3382  }
3383  static void Profile(llvm::FoldingSetNodeID &ID,
3384                      const TemplateTypeParmType *Replaced,
3385                      QualType Replacement) {
3386    ID.AddPointer(Replaced);
3387    ID.AddPointer(Replacement.getAsOpaquePtr());
3388  }
3389
3390  static bool classof(const Type *T) {
3391    return T->getTypeClass() == SubstTemplateTypeParm;
3392  }
3393  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
3394};
3395
3396/// \brief Represents the result of substituting a set of types for a template
3397/// type parameter pack.
3398///
3399/// When a pack expansion in the source code contains multiple parameter packs
3400/// and those parameter packs correspond to different levels of template
3401/// parameter lists, this type node is used to represent a template type
3402/// parameter pack from an outer level, which has already had its argument pack
3403/// substituted but that still lives within a pack expansion that itself
3404/// could not be instantiated. When actually performing a substitution into
3405/// that pack expansion (e.g., when all template parameters have corresponding
3406/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3407/// at the current pack substitution index.
3408class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3409  /// \brief The original type parameter.
3410  const TemplateTypeParmType *Replaced;
3411
3412  /// \brief A pointer to the set of template arguments that this
3413  /// parameter pack is instantiated with.
3414  const TemplateArgument *Arguments;
3415
3416  /// \brief The number of template arguments in \c Arguments.
3417  unsigned NumArguments;
3418
3419  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3420                                QualType Canon,
3421                                const TemplateArgument &ArgPack);
3422
3423  friend class ASTContext;
3424
3425public:
3426  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
3427
3428  /// Gets the template parameter that was substituted for.
3429  const TemplateTypeParmType *getReplacedParameter() const {
3430    return Replaced;
3431  }
3432
3433  bool isSugared() const { return false; }
3434  QualType desugar() const { return QualType(this, 0); }
3435
3436  TemplateArgument getArgumentPack() const;
3437
3438  void Profile(llvm::FoldingSetNodeID &ID);
3439  static void Profile(llvm::FoldingSetNodeID &ID,
3440                      const TemplateTypeParmType *Replaced,
3441                      const TemplateArgument &ArgPack);
3442
3443  static bool classof(const Type *T) {
3444    return T->getTypeClass() == SubstTemplateTypeParmPack;
3445  }
3446  static bool classof(const SubstTemplateTypeParmPackType *T) { return true; }
3447};
3448
3449/// \brief Represents a C++0x auto type.
3450///
3451/// These types are usually a placeholder for a deduced type. However, within
3452/// templates and before the initializer is attached, there is no deduced type
3453/// and an auto type is type-dependent and canonical.
3454class AutoType : public Type, public llvm::FoldingSetNode {
3455  AutoType(QualType DeducedType)
3456    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3457           /*Dependent=*/DeducedType.isNull(),
3458           /*InstantiationDependent=*/DeducedType.isNull(),
3459           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3460    assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
3461           "deduced a dependent type for auto");
3462  }
3463
3464  friend class ASTContext;  // ASTContext creates these
3465
3466public:
3467  bool isSugared() const { return isDeduced(); }
3468  QualType desugar() const { return getCanonicalTypeInternal(); }
3469
3470  QualType getDeducedType() const {
3471    return isDeduced() ? getCanonicalTypeInternal() : QualType();
3472  }
3473  bool isDeduced() const {
3474    return !isDependentType();
3475  }
3476
3477  void Profile(llvm::FoldingSetNodeID &ID) {
3478    Profile(ID, getDeducedType());
3479  }
3480
3481  static void Profile(llvm::FoldingSetNodeID &ID,
3482                      QualType Deduced) {
3483    ID.AddPointer(Deduced.getAsOpaquePtr());
3484  }
3485
3486  static bool classof(const Type *T) {
3487    return T->getTypeClass() == Auto;
3488  }
3489  static bool classof(const AutoType *T) { return true; }
3490};
3491
3492/// \brief Represents a type template specialization; the template
3493/// must be a class template, a type alias template, or a template
3494/// template parameter.  A template which cannot be resolved to one of
3495/// these, e.g. because it is written with a dependent scope
3496/// specifier, is instead represented as a
3497/// @c DependentTemplateSpecializationType.
3498///
3499/// A non-dependent template specialization type is always "sugar",
3500/// typically for a @c RecordType.  For example, a class template
3501/// specialization type of @c vector<int> will refer to a tag type for
3502/// the instantiation @c std::vector<int, std::allocator<int>>
3503///
3504/// Template specializations are dependent if either the template or
3505/// any of the template arguments are dependent, in which case the
3506/// type may also be canonical.
3507///
3508/// Instances of this type are allocated with a trailing array of
3509/// TemplateArguments, followed by a QualType representing the
3510/// non-canonical aliased type when the template is a type alias
3511/// template.
3512class TemplateSpecializationType
3513  : public Type, public llvm::FoldingSetNode {
3514  /// \brief The name of the template being specialized.  This is
3515  /// either a TemplateName::Template (in which case it is a
3516  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
3517  /// TypeAliasTemplateDecl*), a
3518  /// TemplateName::SubstTemplateTemplateParmPack, or a
3519  /// TemplateName::SubstTemplateTemplateParm (in which case the
3520  /// replacement must, recursively, be one of these).
3521  TemplateName Template;
3522
3523  /// \brief - The number of template arguments named in this class
3524  /// template specialization.
3525  unsigned NumArgs : 31;
3526
3527  /// \brief Whether this template specialization type is a substituted
3528  /// type alias.
3529  bool TypeAlias : 1;
3530
3531  TemplateSpecializationType(TemplateName T,
3532                             const TemplateArgument *Args,
3533                             unsigned NumArgs, QualType Canon,
3534                             QualType Aliased);
3535
3536  friend class ASTContext;  // ASTContext creates these
3537
3538public:
3539  /// \brief Determine whether any of the given template arguments are
3540  /// dependent.
3541  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3542                                            unsigned NumArgs,
3543                                            bool &InstantiationDependent);
3544
3545  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3546                                            unsigned NumArgs,
3547                                            bool &InstantiationDependent);
3548
3549  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
3550                                            bool &InstantiationDependent);
3551
3552  /// \brief Print a template argument list, including the '<' and '>'
3553  /// enclosing the template arguments.
3554  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
3555                                               unsigned NumArgs,
3556                                               const PrintingPolicy &Policy,
3557                                               bool SkipBrackets = false);
3558
3559  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
3560                                               unsigned NumArgs,
3561                                               const PrintingPolicy &Policy);
3562
3563  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
3564                                               const PrintingPolicy &Policy);
3565
3566  /// True if this template specialization type matches a current
3567  /// instantiation in the context in which it is found.
3568  bool isCurrentInstantiation() const {
3569    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3570  }
3571
3572  /// \brief Determine if this template specialization type is for a type alias
3573  /// template that has been substituted.
3574  ///
3575  /// Nearly every template specialization type whose template is an alias
3576  /// template will be substituted. However, this is not the case when
3577  /// the specialization contains a pack expansion but the template alias
3578  /// does not have a corresponding parameter pack, e.g.,
3579  ///
3580  /// \code
3581  /// template<typename T, typename U, typename V> struct S;
3582  /// template<typename T, typename U> using A = S<T, int, U>;
3583  /// template<typename... Ts> struct X {
3584  ///   typedef A<Ts...> type; // not a type alias
3585  /// };
3586  /// \endcode
3587  bool isTypeAlias() const { return TypeAlias; }
3588
3589  /// Get the aliased type, if this is a specialization of a type alias
3590  /// template.
3591  QualType getAliasedType() const {
3592    assert(isTypeAlias() && "not a type alias template specialization");
3593    return *reinterpret_cast<const QualType*>(end());
3594  }
3595
3596  typedef const TemplateArgument * iterator;
3597
3598  iterator begin() const { return getArgs(); }
3599  iterator end() const; // defined inline in TemplateBase.h
3600
3601  /// \brief Retrieve the name of the template that we are specializing.
3602  TemplateName getTemplateName() const { return Template; }
3603
3604  /// \brief Retrieve the template arguments.
3605  const TemplateArgument *getArgs() const {
3606    return reinterpret_cast<const TemplateArgument *>(this + 1);
3607  }
3608
3609  /// \brief Retrieve the number of template arguments.
3610  unsigned getNumArgs() const { return NumArgs; }
3611
3612  /// \brief Retrieve a specific template argument as a type.
3613  /// \precondition @c isArgType(Arg)
3614  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3615
3616  bool isSugared() const {
3617    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
3618  }
3619  QualType desugar() const { return getCanonicalTypeInternal(); }
3620
3621  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3622    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3623    if (isTypeAlias())
3624      getAliasedType().Profile(ID);
3625  }
3626
3627  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3628                      const TemplateArgument *Args,
3629                      unsigned NumArgs,
3630                      const ASTContext &Context);
3631
3632  static bool classof(const Type *T) {
3633    return T->getTypeClass() == TemplateSpecialization;
3634  }
3635  static bool classof(const TemplateSpecializationType *T) { return true; }
3636};
3637
3638/// \brief The injected class name of a C++ class template or class
3639/// template partial specialization.  Used to record that a type was
3640/// spelled with a bare identifier rather than as a template-id; the
3641/// equivalent for non-templated classes is just RecordType.
3642///
3643/// Injected class name types are always dependent.  Template
3644/// instantiation turns these into RecordTypes.
3645///
3646/// Injected class name types are always canonical.  This works
3647/// because it is impossible to compare an injected class name type
3648/// with the corresponding non-injected template type, for the same
3649/// reason that it is impossible to directly compare template
3650/// parameters from different dependent contexts: injected class name
3651/// types can only occur within the scope of a particular templated
3652/// declaration, and within that scope every template specialization
3653/// will canonicalize to the injected class name (when appropriate
3654/// according to the rules of the language).
3655class InjectedClassNameType : public Type {
3656  CXXRecordDecl *Decl;
3657
3658  /// The template specialization which this type represents.
3659  /// For example, in
3660  ///   template <class T> class A { ... };
3661  /// this is A<T>, whereas in
3662  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3663  /// this is A<B<X,Y> >.
3664  ///
3665  /// It is always unqualified, always a template specialization type,
3666  /// and always dependent.
3667  QualType InjectedType;
3668
3669  friend class ASTContext; // ASTContext creates these.
3670  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3671                          // currently suitable for AST reading, too much
3672                          // interdependencies.
3673  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3674    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3675           /*InstantiationDependent=*/true,
3676           /*VariablyModified=*/false,
3677           /*ContainsUnexpandedParameterPack=*/false),
3678      Decl(D), InjectedType(TST) {
3679    assert(isa<TemplateSpecializationType>(TST));
3680    assert(!TST.hasQualifiers());
3681    assert(TST->isDependentType());
3682  }
3683
3684public:
3685  QualType getInjectedSpecializationType() const { return InjectedType; }
3686  const TemplateSpecializationType *getInjectedTST() const {
3687    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3688  }
3689
3690  CXXRecordDecl *getDecl() const;
3691
3692  bool isSugared() const { return false; }
3693  QualType desugar() const { return QualType(this, 0); }
3694
3695  static bool classof(const Type *T) {
3696    return T->getTypeClass() == InjectedClassName;
3697  }
3698  static bool classof(const InjectedClassNameType *T) { return true; }
3699};
3700
3701/// \brief The kind of a tag type.
3702enum TagTypeKind {
3703  /// \brief The "struct" keyword.
3704  TTK_Struct,
3705  /// \brief The "union" keyword.
3706  TTK_Union,
3707  /// \brief The "class" keyword.
3708  TTK_Class,
3709  /// \brief The "enum" keyword.
3710  TTK_Enum
3711};
3712
3713/// \brief The elaboration keyword that precedes a qualified type name or
3714/// introduces an elaborated-type-specifier.
3715enum ElaboratedTypeKeyword {
3716  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3717  ETK_Struct,
3718  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3719  ETK_Union,
3720  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3721  ETK_Class,
3722  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3723  ETK_Enum,
3724  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3725  /// \c typename T::type.
3726  ETK_Typename,
3727  /// \brief No keyword precedes the qualified type name.
3728  ETK_None
3729};
3730
3731/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3732/// The keyword in stored in the free bits of the base class.
3733/// Also provides a few static helpers for converting and printing
3734/// elaborated type keyword and tag type kind enumerations.
3735class TypeWithKeyword : public Type {
3736protected:
3737  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3738                  QualType Canonical, bool Dependent,
3739                  bool InstantiationDependent, bool VariablyModified,
3740                  bool ContainsUnexpandedParameterPack)
3741  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3742         ContainsUnexpandedParameterPack) {
3743    TypeWithKeywordBits.Keyword = Keyword;
3744  }
3745
3746public:
3747  ElaboratedTypeKeyword getKeyword() const {
3748    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3749  }
3750
3751  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3752  /// into an elaborated type keyword.
3753  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3754
3755  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3756  /// into a tag type kind.  It is an error to provide a type specifier
3757  /// which *isn't* a tag kind here.
3758  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3759
3760  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3761  /// elaborated type keyword.
3762  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3763
3764  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3765  // a TagTypeKind. It is an error to provide an elaborated type keyword
3766  /// which *isn't* a tag kind here.
3767  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3768
3769  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3770
3771  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3772
3773  static const char *getTagTypeKindName(TagTypeKind Kind) {
3774    return getKeywordName(getKeywordForTagTypeKind(Kind));
3775  }
3776
3777  class CannotCastToThisType {};
3778  static CannotCastToThisType classof(const Type *);
3779};
3780
3781/// \brief Represents a type that was referred to using an elaborated type
3782/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3783/// or both.
3784///
3785/// This type is used to keep track of a type name as written in the
3786/// source code, including tag keywords and any nested-name-specifiers.
3787/// The type itself is always "sugar", used to express what was written
3788/// in the source code but containing no additional semantic information.
3789class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3790
3791  /// \brief The nested name specifier containing the qualifier.
3792  NestedNameSpecifier *NNS;
3793
3794  /// \brief The type that this qualified name refers to.
3795  QualType NamedType;
3796
3797  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3798                 QualType NamedType, QualType CanonType)
3799    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3800                      NamedType->isDependentType(),
3801                      NamedType->isInstantiationDependentType(),
3802                      NamedType->isVariablyModifiedType(),
3803                      NamedType->containsUnexpandedParameterPack()),
3804      NNS(NNS), NamedType(NamedType) {
3805    assert(!(Keyword == ETK_None && NNS == 0) &&
3806           "ElaboratedType cannot have elaborated type keyword "
3807           "and name qualifier both null.");
3808  }
3809
3810  friend class ASTContext;  // ASTContext creates these
3811
3812public:
3813  ~ElaboratedType();
3814
3815  /// \brief Retrieve the qualification on this type.
3816  NestedNameSpecifier *getQualifier() const { return NNS; }
3817
3818  /// \brief Retrieve the type named by the qualified-id.
3819  QualType getNamedType() const { return NamedType; }
3820
3821  /// \brief Remove a single level of sugar.
3822  QualType desugar() const { return getNamedType(); }
3823
3824  /// \brief Returns whether this type directly provides sugar.
3825  bool isSugared() const { return true; }
3826
3827  void Profile(llvm::FoldingSetNodeID &ID) {
3828    Profile(ID, getKeyword(), NNS, NamedType);
3829  }
3830
3831  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3832                      NestedNameSpecifier *NNS, QualType NamedType) {
3833    ID.AddInteger(Keyword);
3834    ID.AddPointer(NNS);
3835    NamedType.Profile(ID);
3836  }
3837
3838  static bool classof(const Type *T) {
3839    return T->getTypeClass() == Elaborated;
3840  }
3841  static bool classof(const ElaboratedType *T) { return true; }
3842};
3843
3844/// \brief Represents a qualified type name for which the type name is
3845/// dependent.
3846///
3847/// DependentNameType represents a class of dependent types that involve a
3848/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3849/// name of a type. The DependentNameType may start with a "typename" (for a
3850/// typename-specifier), "class", "struct", "union", or "enum" (for a
3851/// dependent elaborated-type-specifier), or nothing (in contexts where we
3852/// know that we must be referring to a type, e.g., in a base class specifier).
3853class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3854
3855  /// \brief The nested name specifier containing the qualifier.
3856  NestedNameSpecifier *NNS;
3857
3858  /// \brief The type that this typename specifier refers to.
3859  const IdentifierInfo *Name;
3860
3861  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3862                    const IdentifierInfo *Name, QualType CanonType)
3863    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3864                      /*InstantiationDependent=*/true,
3865                      /*VariablyModified=*/false,
3866                      NNS->containsUnexpandedParameterPack()),
3867      NNS(NNS), Name(Name) {
3868    assert(NNS->isDependent() &&
3869           "DependentNameType requires a dependent nested-name-specifier");
3870  }
3871
3872  friend class ASTContext;  // ASTContext creates these
3873
3874public:
3875  /// \brief Retrieve the qualification on this type.
3876  NestedNameSpecifier *getQualifier() const { return NNS; }
3877
3878  /// \brief Retrieve the type named by the typename specifier as an
3879  /// identifier.
3880  ///
3881  /// This routine will return a non-NULL identifier pointer when the
3882  /// form of the original typename was terminated by an identifier,
3883  /// e.g., "typename T::type".
3884  const IdentifierInfo *getIdentifier() const {
3885    return Name;
3886  }
3887
3888  bool isSugared() const { return false; }
3889  QualType desugar() const { return QualType(this, 0); }
3890
3891  void Profile(llvm::FoldingSetNodeID &ID) {
3892    Profile(ID, getKeyword(), NNS, Name);
3893  }
3894
3895  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3896                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
3897    ID.AddInteger(Keyword);
3898    ID.AddPointer(NNS);
3899    ID.AddPointer(Name);
3900  }
3901
3902  static bool classof(const Type *T) {
3903    return T->getTypeClass() == DependentName;
3904  }
3905  static bool classof(const DependentNameType *T) { return true; }
3906};
3907
3908/// DependentTemplateSpecializationType - Represents a template
3909/// specialization type whose template cannot be resolved, e.g.
3910///   A<T>::template B<T>
3911class DependentTemplateSpecializationType :
3912  public TypeWithKeyword, public llvm::FoldingSetNode {
3913
3914  /// \brief The nested name specifier containing the qualifier.
3915  NestedNameSpecifier *NNS;
3916
3917  /// \brief The identifier of the template.
3918  const IdentifierInfo *Name;
3919
3920  /// \brief - The number of template arguments named in this class
3921  /// template specialization.
3922  unsigned NumArgs;
3923
3924  const TemplateArgument *getArgBuffer() const {
3925    return reinterpret_cast<const TemplateArgument*>(this+1);
3926  }
3927  TemplateArgument *getArgBuffer() {
3928    return reinterpret_cast<TemplateArgument*>(this+1);
3929  }
3930
3931  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
3932                                      NestedNameSpecifier *NNS,
3933                                      const IdentifierInfo *Name,
3934                                      unsigned NumArgs,
3935                                      const TemplateArgument *Args,
3936                                      QualType Canon);
3937
3938  friend class ASTContext;  // ASTContext creates these
3939
3940public:
3941  NestedNameSpecifier *getQualifier() const { return NNS; }
3942  const IdentifierInfo *getIdentifier() const { return Name; }
3943
3944  /// \brief Retrieve the template arguments.
3945  const TemplateArgument *getArgs() const {
3946    return getArgBuffer();
3947  }
3948
3949  /// \brief Retrieve the number of template arguments.
3950  unsigned getNumArgs() const { return NumArgs; }
3951
3952  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3953
3954  typedef const TemplateArgument * iterator;
3955  iterator begin() const { return getArgs(); }
3956  iterator end() const; // inline in TemplateBase.h
3957
3958  bool isSugared() const { return false; }
3959  QualType desugar() const { return QualType(this, 0); }
3960
3961  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
3962    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
3963  }
3964
3965  static void Profile(llvm::FoldingSetNodeID &ID,
3966                      const ASTContext &Context,
3967                      ElaboratedTypeKeyword Keyword,
3968                      NestedNameSpecifier *Qualifier,
3969                      const IdentifierInfo *Name,
3970                      unsigned NumArgs,
3971                      const TemplateArgument *Args);
3972
3973  static bool classof(const Type *T) {
3974    return T->getTypeClass() == DependentTemplateSpecialization;
3975  }
3976  static bool classof(const DependentTemplateSpecializationType *T) {
3977    return true;
3978  }
3979};
3980
3981/// \brief Represents a pack expansion of types.
3982///
3983/// Pack expansions are part of C++0x variadic templates. A pack
3984/// expansion contains a pattern, which itself contains one or more
3985/// "unexpanded" parameter packs. When instantiated, a pack expansion
3986/// produces a series of types, each instantiated from the pattern of
3987/// the expansion, where the Ith instantiation of the pattern uses the
3988/// Ith arguments bound to each of the unexpanded parameter packs. The
3989/// pack expansion is considered to "expand" these unexpanded
3990/// parameter packs.
3991///
3992/// \code
3993/// template<typename ...Types> struct tuple;
3994///
3995/// template<typename ...Types>
3996/// struct tuple_of_references {
3997///   typedef tuple<Types&...> type;
3998/// };
3999/// \endcode
4000///
4001/// Here, the pack expansion \c Types&... is represented via a
4002/// PackExpansionType whose pattern is Types&.
4003class PackExpansionType : public Type, public llvm::FoldingSetNode {
4004  /// \brief The pattern of the pack expansion.
4005  QualType Pattern;
4006
4007  /// \brief The number of expansions that this pack expansion will
4008  /// generate when substituted (+1), or indicates that
4009  ///
4010  /// This field will only have a non-zero value when some of the parameter
4011  /// packs that occur within the pattern have been substituted but others have
4012  /// not.
4013  unsigned NumExpansions;
4014
4015  PackExpansionType(QualType Pattern, QualType Canon,
4016                    llvm::Optional<unsigned> NumExpansions)
4017    : Type(PackExpansion, Canon, /*Dependent=*/true,
4018           /*InstantiationDependent=*/true,
4019           /*VariableModified=*/Pattern->isVariablyModifiedType(),
4020           /*ContainsUnexpandedParameterPack=*/false),
4021      Pattern(Pattern),
4022      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
4023
4024  friend class ASTContext;  // ASTContext creates these
4025
4026public:
4027  /// \brief Retrieve the pattern of this pack expansion, which is the
4028  /// type that will be repeatedly instantiated when instantiating the
4029  /// pack expansion itself.
4030  QualType getPattern() const { return Pattern; }
4031
4032  /// \brief Retrieve the number of expansions that this pack expansion will
4033  /// generate, if known.
4034  llvm::Optional<unsigned> getNumExpansions() const {
4035    if (NumExpansions)
4036      return NumExpansions - 1;
4037
4038    return llvm::Optional<unsigned>();
4039  }
4040
4041  bool isSugared() const { return false; }
4042  QualType desugar() const { return QualType(this, 0); }
4043
4044  void Profile(llvm::FoldingSetNodeID &ID) {
4045    Profile(ID, getPattern(), getNumExpansions());
4046  }
4047
4048  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
4049                      llvm::Optional<unsigned> NumExpansions) {
4050    ID.AddPointer(Pattern.getAsOpaquePtr());
4051    ID.AddBoolean(NumExpansions);
4052    if (NumExpansions)
4053      ID.AddInteger(*NumExpansions);
4054  }
4055
4056  static bool classof(const Type *T) {
4057    return T->getTypeClass() == PackExpansion;
4058  }
4059  static bool classof(const PackExpansionType *T) {
4060    return true;
4061  }
4062};
4063
4064/// ObjCObjectType - Represents a class type in Objective C.
4065/// Every Objective C type is a combination of a base type and a
4066/// list of protocols.
4067///
4068/// Given the following declarations:
4069///   @class C;
4070///   @protocol P;
4071///
4072/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4073/// with base C and no protocols.
4074///
4075/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
4076///
4077/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
4078/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4079/// and no protocols.
4080///
4081/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
4082/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4083/// this should get its own sugar class to better represent the source.
4084class ObjCObjectType : public Type {
4085  // ObjCObjectType.NumProtocols - the number of protocols stored
4086  // after the ObjCObjectPointerType node.
4087  //
4088  // These protocols are those written directly on the type.  If
4089  // protocol qualifiers ever become additive, the iterators will need
4090  // to get kindof complicated.
4091  //
4092  // In the canonical object type, these are sorted alphabetically
4093  // and uniqued.
4094
4095  /// Either a BuiltinType or an InterfaceType or sugar for either.
4096  QualType BaseType;
4097
4098  ObjCProtocolDecl * const *getProtocolStorage() const {
4099    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4100  }
4101
4102  ObjCProtocolDecl **getProtocolStorage();
4103
4104protected:
4105  ObjCObjectType(QualType Canonical, QualType Base,
4106                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
4107
4108  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4109  ObjCObjectType(enum Nonce_ObjCInterface)
4110        : Type(ObjCInterface, QualType(), false, false, false, false),
4111      BaseType(QualType(this_(), 0)) {
4112    ObjCObjectTypeBits.NumProtocols = 0;
4113  }
4114
4115public:
4116  /// getBaseType - Gets the base type of this object type.  This is
4117  /// always (possibly sugar for) one of:
4118  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4119  ///    user, which is a typedef for an ObjCPointerType)
4120  ///  - the 'Class' builtin type (same caveat)
4121  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4122  QualType getBaseType() const { return BaseType; }
4123
4124  bool isObjCId() const {
4125    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4126  }
4127  bool isObjCClass() const {
4128    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4129  }
4130  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4131  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4132  bool isObjCUnqualifiedIdOrClass() const {
4133    if (!qual_empty()) return false;
4134    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4135      return T->getKind() == BuiltinType::ObjCId ||
4136             T->getKind() == BuiltinType::ObjCClass;
4137    return false;
4138  }
4139  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4140  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4141
4142  /// Gets the interface declaration for this object type, if the base type
4143  /// really is an interface.
4144  ObjCInterfaceDecl *getInterface() const;
4145
4146  typedef ObjCProtocolDecl * const *qual_iterator;
4147
4148  qual_iterator qual_begin() const { return getProtocolStorage(); }
4149  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4150
4151  bool qual_empty() const { return getNumProtocols() == 0; }
4152
4153  /// getNumProtocols - Return the number of qualifying protocols in this
4154  /// interface type, or 0 if there are none.
4155  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4156
4157  /// \brief Fetch a protocol by index.
4158  ObjCProtocolDecl *getProtocol(unsigned I) const {
4159    assert(I < getNumProtocols() && "Out-of-range protocol access");
4160    return qual_begin()[I];
4161  }
4162
4163  bool isSugared() const { return false; }
4164  QualType desugar() const { return QualType(this, 0); }
4165
4166  static bool classof(const Type *T) {
4167    return T->getTypeClass() == ObjCObject ||
4168           T->getTypeClass() == ObjCInterface;
4169  }
4170  static bool classof(const ObjCObjectType *) { return true; }
4171};
4172
4173/// ObjCObjectTypeImpl - A class providing a concrete implementation
4174/// of ObjCObjectType, so as to not increase the footprint of
4175/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4176/// system should not reference this type.
4177class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4178  friend class ASTContext;
4179
4180  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4181  // will need to be modified.
4182
4183  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4184                     ObjCProtocolDecl * const *Protocols,
4185                     unsigned NumProtocols)
4186    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
4187
4188public:
4189  void Profile(llvm::FoldingSetNodeID &ID);
4190  static void Profile(llvm::FoldingSetNodeID &ID,
4191                      QualType Base,
4192                      ObjCProtocolDecl *const *protocols,
4193                      unsigned NumProtocols);
4194};
4195
4196inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4197  return reinterpret_cast<ObjCProtocolDecl**>(
4198            static_cast<ObjCObjectTypeImpl*>(this) + 1);
4199}
4200
4201/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
4202/// object oriented design.  They basically correspond to C++ classes.  There
4203/// are two kinds of interface types, normal interfaces like "NSString" and
4204/// qualified interfaces, which are qualified with a protocol list like
4205/// "NSString<NSCopyable, NSAmazing>".
4206///
4207/// ObjCInterfaceType guarantees the following properties when considered
4208/// as a subtype of its superclass, ObjCObjectType:
4209///   - There are no protocol qualifiers.  To reinforce this, code which
4210///     tries to invoke the protocol methods via an ObjCInterfaceType will
4211///     fail to compile.
4212///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4213///     T->getBaseType() == QualType(T, 0).
4214class ObjCInterfaceType : public ObjCObjectType {
4215  mutable ObjCInterfaceDecl *Decl;
4216
4217  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4218    : ObjCObjectType(Nonce_ObjCInterface),
4219      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4220  friend class ASTContext;  // ASTContext creates these.
4221  friend class ASTReader;
4222  friend class ObjCInterfaceDecl;
4223
4224public:
4225  /// getDecl - Get the declaration of this interface.
4226  ObjCInterfaceDecl *getDecl() const { return Decl; }
4227
4228  bool isSugared() const { return false; }
4229  QualType desugar() const { return QualType(this, 0); }
4230
4231  static bool classof(const Type *T) {
4232    return T->getTypeClass() == ObjCInterface;
4233  }
4234  static bool classof(const ObjCInterfaceType *) { return true; }
4235
4236  // Nonsense to "hide" certain members of ObjCObjectType within this
4237  // class.  People asking for protocols on an ObjCInterfaceType are
4238  // not going to get what they want: ObjCInterfaceTypes are
4239  // guaranteed to have no protocols.
4240  enum {
4241    qual_iterator,
4242    qual_begin,
4243    qual_end,
4244    getNumProtocols,
4245    getProtocol
4246  };
4247};
4248
4249inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4250  if (const ObjCInterfaceType *T =
4251        getBaseType()->getAs<ObjCInterfaceType>())
4252    return T->getDecl();
4253  return 0;
4254}
4255
4256/// ObjCObjectPointerType - Used to represent a pointer to an
4257/// Objective C object.  These are constructed from pointer
4258/// declarators when the pointee type is an ObjCObjectType (or sugar
4259/// for one).  In addition, the 'id' and 'Class' types are typedefs
4260/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
4261/// are translated into these.
4262///
4263/// Pointers to pointers to Objective C objects are still PointerTypes;
4264/// only the first level of pointer gets it own type implementation.
4265class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4266  QualType PointeeType;
4267
4268  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4269    : Type(ObjCObjectPointer, Canonical, false, false, false, false),
4270      PointeeType(Pointee) {}
4271  friend class ASTContext;  // ASTContext creates these.
4272
4273public:
4274  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
4275  /// The result will always be an ObjCObjectType or sugar thereof.
4276  QualType getPointeeType() const { return PointeeType; }
4277
4278  /// getObjCObjectType - Gets the type pointed to by this ObjC
4279  /// pointer.  This method always returns non-null.
4280  ///
4281  /// This method is equivalent to getPointeeType() except that
4282  /// it discards any typedefs (or other sugar) between this
4283  /// type and the "outermost" object type.  So for:
4284  ///   @class A; @protocol P; @protocol Q;
4285  ///   typedef A<P> AP;
4286  ///   typedef A A1;
4287  ///   typedef A1<P> A1P;
4288  ///   typedef A1P<Q> A1PQ;
4289  /// For 'A*', getObjectType() will return 'A'.
4290  /// For 'A<P>*', getObjectType() will return 'A<P>'.
4291  /// For 'AP*', getObjectType() will return 'A<P>'.
4292  /// For 'A1*', getObjectType() will return 'A'.
4293  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
4294  /// For 'A1P*', getObjectType() will return 'A1<P>'.
4295  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
4296  ///   adding protocols to a protocol-qualified base discards the
4297  ///   old qualifiers (for now).  But if it didn't, getObjectType()
4298  ///   would return 'A1P<Q>' (and we'd have to make iterating over
4299  ///   qualifiers more complicated).
4300  const ObjCObjectType *getObjectType() const {
4301    return PointeeType->castAs<ObjCObjectType>();
4302  }
4303
4304  /// getInterfaceType - If this pointer points to an Objective C
4305  /// @interface type, gets the type for that interface.  Any protocol
4306  /// qualifiers on the interface are ignored.
4307  ///
4308  /// \return null if the base type for this pointer is 'id' or 'Class'
4309  const ObjCInterfaceType *getInterfaceType() const {
4310    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
4311  }
4312
4313  /// getInterfaceDecl - If this pointer points to an Objective @interface
4314  /// type, gets the declaration for that interface.
4315  ///
4316  /// \return null if the base type for this pointer is 'id' or 'Class'
4317  ObjCInterfaceDecl *getInterfaceDecl() const {
4318    return getObjectType()->getInterface();
4319  }
4320
4321  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
4322  /// its object type is the primitive 'id' type with no protocols.
4323  bool isObjCIdType() const {
4324    return getObjectType()->isObjCUnqualifiedId();
4325  }
4326
4327  /// isObjCClassType - True if this is equivalent to the 'Class' type,
4328  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
4329  bool isObjCClassType() const {
4330    return getObjectType()->isObjCUnqualifiedClass();
4331  }
4332
4333  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
4334  /// non-empty set of protocols.
4335  bool isObjCQualifiedIdType() const {
4336    return getObjectType()->isObjCQualifiedId();
4337  }
4338
4339  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
4340  /// some non-empty set of protocols.
4341  bool isObjCQualifiedClassType() const {
4342    return getObjectType()->isObjCQualifiedClass();
4343  }
4344
4345  /// An iterator over the qualifiers on the object type.  Provided
4346  /// for convenience.  This will always iterate over the full set of
4347  /// protocols on a type, not just those provided directly.
4348  typedef ObjCObjectType::qual_iterator qual_iterator;
4349
4350  qual_iterator qual_begin() const {
4351    return getObjectType()->qual_begin();
4352  }
4353  qual_iterator qual_end() const {
4354    return getObjectType()->qual_end();
4355  }
4356  bool qual_empty() const { return getObjectType()->qual_empty(); }
4357
4358  /// getNumProtocols - Return the number of qualifying protocols on
4359  /// the object type.
4360  unsigned getNumProtocols() const {
4361    return getObjectType()->getNumProtocols();
4362  }
4363
4364  /// \brief Retrieve a qualifying protocol by index on the object
4365  /// type.
4366  ObjCProtocolDecl *getProtocol(unsigned I) const {
4367    return getObjectType()->getProtocol(I);
4368  }
4369
4370  bool isSugared() const { return false; }
4371  QualType desugar() const { return QualType(this, 0); }
4372
4373  void Profile(llvm::FoldingSetNodeID &ID) {
4374    Profile(ID, getPointeeType());
4375  }
4376  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4377    ID.AddPointer(T.getAsOpaquePtr());
4378  }
4379  static bool classof(const Type *T) {
4380    return T->getTypeClass() == ObjCObjectPointer;
4381  }
4382  static bool classof(const ObjCObjectPointerType *) { return true; }
4383};
4384
4385class AtomicType : public Type, public llvm::FoldingSetNode {
4386  QualType ValueType;
4387
4388  AtomicType(QualType ValTy, QualType Canonical)
4389    : Type(Atomic, Canonical, ValTy->isDependentType(),
4390           ValTy->isInstantiationDependentType(),
4391           ValTy->isVariablyModifiedType(),
4392           ValTy->containsUnexpandedParameterPack()),
4393      ValueType(ValTy) {}
4394  friend class ASTContext;  // ASTContext creates these.
4395
4396  public:
4397  /// getValueType - Gets the type contained by this atomic type, i.e.
4398  /// the type returned by performing an atomic load of this atomic type.
4399  QualType getValueType() const { return ValueType; }
4400
4401  bool isSugared() const { return false; }
4402  QualType desugar() const { return QualType(this, 0); }
4403
4404  void Profile(llvm::FoldingSetNodeID &ID) {
4405    Profile(ID, getValueType());
4406  }
4407  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4408    ID.AddPointer(T.getAsOpaquePtr());
4409  }
4410  static bool classof(const Type *T) {
4411    return T->getTypeClass() == Atomic;
4412  }
4413  static bool classof(const AtomicType *) { return true; }
4414};
4415
4416/// A qualifier set is used to build a set of qualifiers.
4417class QualifierCollector : public Qualifiers {
4418public:
4419  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4420
4421  /// Collect any qualifiers on the given type and return an
4422  /// unqualified type.  The qualifiers are assumed to be consistent
4423  /// with those already in the type.
4424  const Type *strip(QualType type) {
4425    addFastQualifiers(type.getLocalFastQualifiers());
4426    if (!type.hasLocalNonFastQualifiers())
4427      return type.getTypePtrUnsafe();
4428
4429    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4430    addConsistentQualifiers(extQuals->getQualifiers());
4431    return extQuals->getBaseType();
4432  }
4433
4434  /// Apply the collected qualifiers to the given type.
4435  QualType apply(const ASTContext &Context, QualType QT) const;
4436
4437  /// Apply the collected qualifiers to the given type.
4438  QualType apply(const ASTContext &Context, const Type* T) const;
4439};
4440
4441
4442// Inline function definitions.
4443
4444inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
4445  SplitQualType desugar =
4446    Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
4447  desugar.Quals.addConsistentQualifiers(Quals);
4448  return desugar;
4449}
4450
4451inline const Type *QualType::getTypePtr() const {
4452  return getCommonPtr()->BaseType;
4453}
4454
4455inline const Type *QualType::getTypePtrOrNull() const {
4456  return (isNull() ? 0 : getCommonPtr()->BaseType);
4457}
4458
4459inline SplitQualType QualType::split() const {
4460  if (!hasLocalNonFastQualifiers())
4461    return SplitQualType(getTypePtrUnsafe(),
4462                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4463
4464  const ExtQuals *eq = getExtQualsUnsafe();
4465  Qualifiers qs = eq->getQualifiers();
4466  qs.addFastQualifiers(getLocalFastQualifiers());
4467  return SplitQualType(eq->getBaseType(), qs);
4468}
4469
4470inline Qualifiers QualType::getLocalQualifiers() const {
4471  Qualifiers Quals;
4472  if (hasLocalNonFastQualifiers())
4473    Quals = getExtQualsUnsafe()->getQualifiers();
4474  Quals.addFastQualifiers(getLocalFastQualifiers());
4475  return Quals;
4476}
4477
4478inline Qualifiers QualType::getQualifiers() const {
4479  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4480  quals.addFastQualifiers(getLocalFastQualifiers());
4481  return quals;
4482}
4483
4484inline unsigned QualType::getCVRQualifiers() const {
4485  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4486  cvr |= getLocalCVRQualifiers();
4487  return cvr;
4488}
4489
4490inline QualType QualType::getCanonicalType() const {
4491  QualType canon = getCommonPtr()->CanonicalType;
4492  return canon.withFastQualifiers(getLocalFastQualifiers());
4493}
4494
4495inline bool QualType::isCanonical() const {
4496  return getTypePtr()->isCanonicalUnqualified();
4497}
4498
4499inline bool QualType::isCanonicalAsParam() const {
4500  if (!isCanonical()) return false;
4501  if (hasLocalQualifiers()) return false;
4502
4503  const Type *T = getTypePtr();
4504  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4505    return false;
4506
4507  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4508}
4509
4510inline bool QualType::isConstQualified() const {
4511  return isLocalConstQualified() ||
4512         getCommonPtr()->CanonicalType.isLocalConstQualified();
4513}
4514
4515inline bool QualType::isRestrictQualified() const {
4516  return isLocalRestrictQualified() ||
4517         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4518}
4519
4520
4521inline bool QualType::isVolatileQualified() const {
4522  return isLocalVolatileQualified() ||
4523         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4524}
4525
4526inline bool QualType::hasQualifiers() const {
4527  return hasLocalQualifiers() ||
4528         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4529}
4530
4531inline QualType QualType::getUnqualifiedType() const {
4532  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4533    return QualType(getTypePtr(), 0);
4534
4535  return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
4536}
4537
4538inline SplitQualType QualType::getSplitUnqualifiedType() const {
4539  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4540    return split();
4541
4542  return getSplitUnqualifiedTypeImpl(*this);
4543}
4544
4545inline void QualType::removeLocalConst() {
4546  removeLocalFastQualifiers(Qualifiers::Const);
4547}
4548
4549inline void QualType::removeLocalRestrict() {
4550  removeLocalFastQualifiers(Qualifiers::Restrict);
4551}
4552
4553inline void QualType::removeLocalVolatile() {
4554  removeLocalFastQualifiers(Qualifiers::Volatile);
4555}
4556
4557inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4558  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4559  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4560
4561  // Fast path: we don't need to touch the slow qualifiers.
4562  removeLocalFastQualifiers(Mask);
4563}
4564
4565/// getAddressSpace - Return the address space of this type.
4566inline unsigned QualType::getAddressSpace() const {
4567  return getQualifiers().getAddressSpace();
4568}
4569
4570/// getObjCGCAttr - Return the gc attribute of this type.
4571inline Qualifiers::GC QualType::getObjCGCAttr() const {
4572  return getQualifiers().getObjCGCAttr();
4573}
4574
4575inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4576  if (const PointerType *PT = t.getAs<PointerType>()) {
4577    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4578      return FT->getExtInfo();
4579  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4580    return FT->getExtInfo();
4581
4582  return FunctionType::ExtInfo();
4583}
4584
4585inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4586  return getFunctionExtInfo(*t);
4587}
4588
4589/// isMoreQualifiedThan - Determine whether this type is more
4590/// qualified than the Other type. For example, "const volatile int"
4591/// is more qualified than "const int", "volatile int", and
4592/// "int". However, it is not more qualified than "const volatile
4593/// int".
4594inline bool QualType::isMoreQualifiedThan(QualType other) const {
4595  Qualifiers myQuals = getQualifiers();
4596  Qualifiers otherQuals = other.getQualifiers();
4597  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4598}
4599
4600/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4601/// as qualified as the Other type. For example, "const volatile
4602/// int" is at least as qualified as "const int", "volatile int",
4603/// "int", and "const volatile int".
4604inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4605  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4606}
4607
4608/// getNonReferenceType - If Type is a reference type (e.g., const
4609/// int&), returns the type that the reference refers to ("const
4610/// int"). Otherwise, returns the type itself. This routine is used
4611/// throughout Sema to implement C++ 5p6:
4612///
4613///   If an expression initially has the type "reference to T" (8.3.2,
4614///   8.5.3), the type is adjusted to "T" prior to any further
4615///   analysis, the expression designates the object or function
4616///   denoted by the reference, and the expression is an lvalue.
4617inline QualType QualType::getNonReferenceType() const {
4618  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4619    return RefType->getPointeeType();
4620  else
4621    return *this;
4622}
4623
4624inline bool QualType::isCForbiddenLValueType() const {
4625  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
4626          getTypePtr()->isFunctionType());
4627}
4628
4629/// \brief Tests whether the type is categorized as a fundamental type.
4630///
4631/// \returns True for types specified in C++0x [basic.fundamental].
4632inline bool Type::isFundamentalType() const {
4633  return isVoidType() ||
4634         // FIXME: It's really annoying that we don't have an
4635         // 'isArithmeticType()' which agrees with the standard definition.
4636         (isArithmeticType() && !isEnumeralType());
4637}
4638
4639/// \brief Tests whether the type is categorized as a compound type.
4640///
4641/// \returns True for types specified in C++0x [basic.compound].
4642inline bool Type::isCompoundType() const {
4643  // C++0x [basic.compound]p1:
4644  //   Compound types can be constructed in the following ways:
4645  //    -- arrays of objects of a given type [...];
4646  return isArrayType() ||
4647  //    -- functions, which have parameters of given types [...];
4648         isFunctionType() ||
4649  //    -- pointers to void or objects or functions [...];
4650         isPointerType() ||
4651  //    -- references to objects or functions of a given type. [...]
4652         isReferenceType() ||
4653  //    -- classes containing a sequence of objects of various types, [...];
4654         isRecordType() ||
4655  //    -- unions, which are classes capable of containing objects of different
4656  //               types at different times;
4657         isUnionType() ||
4658  //    -- enumerations, which comprise a set of named constant values. [...];
4659         isEnumeralType() ||
4660  //    -- pointers to non-static class members, [...].
4661         isMemberPointerType();
4662}
4663
4664inline bool Type::isFunctionType() const {
4665  return isa<FunctionType>(CanonicalType);
4666}
4667inline bool Type::isPointerType() const {
4668  return isa<PointerType>(CanonicalType);
4669}
4670inline bool Type::isAnyPointerType() const {
4671  return isPointerType() || isObjCObjectPointerType();
4672}
4673inline bool Type::isBlockPointerType() const {
4674  return isa<BlockPointerType>(CanonicalType);
4675}
4676inline bool Type::isReferenceType() const {
4677  return isa<ReferenceType>(CanonicalType);
4678}
4679inline bool Type::isLValueReferenceType() const {
4680  return isa<LValueReferenceType>(CanonicalType);
4681}
4682inline bool Type::isRValueReferenceType() const {
4683  return isa<RValueReferenceType>(CanonicalType);
4684}
4685inline bool Type::isFunctionPointerType() const {
4686  if (const PointerType *T = getAs<PointerType>())
4687    return T->getPointeeType()->isFunctionType();
4688  else
4689    return false;
4690}
4691inline bool Type::isMemberPointerType() const {
4692  return isa<MemberPointerType>(CanonicalType);
4693}
4694inline bool Type::isMemberFunctionPointerType() const {
4695  if (const MemberPointerType* T = getAs<MemberPointerType>())
4696    return T->isMemberFunctionPointer();
4697  else
4698    return false;
4699}
4700inline bool Type::isMemberDataPointerType() const {
4701  if (const MemberPointerType* T = getAs<MemberPointerType>())
4702    return T->isMemberDataPointer();
4703  else
4704    return false;
4705}
4706inline bool Type::isArrayType() const {
4707  return isa<ArrayType>(CanonicalType);
4708}
4709inline bool Type::isConstantArrayType() const {
4710  return isa<ConstantArrayType>(CanonicalType);
4711}
4712inline bool Type::isIncompleteArrayType() const {
4713  return isa<IncompleteArrayType>(CanonicalType);
4714}
4715inline bool Type::isVariableArrayType() const {
4716  return isa<VariableArrayType>(CanonicalType);
4717}
4718inline bool Type::isDependentSizedArrayType() const {
4719  return isa<DependentSizedArrayType>(CanonicalType);
4720}
4721inline bool Type::isBuiltinType() const {
4722  return isa<BuiltinType>(CanonicalType);
4723}
4724inline bool Type::isRecordType() const {
4725  return isa<RecordType>(CanonicalType);
4726}
4727inline bool Type::isEnumeralType() const {
4728  return isa<EnumType>(CanonicalType);
4729}
4730inline bool Type::isAnyComplexType() const {
4731  return isa<ComplexType>(CanonicalType);
4732}
4733inline bool Type::isVectorType() const {
4734  return isa<VectorType>(CanonicalType);
4735}
4736inline bool Type::isExtVectorType() const {
4737  return isa<ExtVectorType>(CanonicalType);
4738}
4739inline bool Type::isObjCObjectPointerType() const {
4740  return isa<ObjCObjectPointerType>(CanonicalType);
4741}
4742inline bool Type::isObjCObjectType() const {
4743  return isa<ObjCObjectType>(CanonicalType);
4744}
4745inline bool Type::isObjCObjectOrInterfaceType() const {
4746  return isa<ObjCInterfaceType>(CanonicalType) ||
4747    isa<ObjCObjectType>(CanonicalType);
4748}
4749inline bool Type::isAtomicType() const {
4750  return isa<AtomicType>(CanonicalType);
4751}
4752
4753inline bool Type::isObjCQualifiedIdType() const {
4754  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4755    return OPT->isObjCQualifiedIdType();
4756  return false;
4757}
4758inline bool Type::isObjCQualifiedClassType() const {
4759  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4760    return OPT->isObjCQualifiedClassType();
4761  return false;
4762}
4763inline bool Type::isObjCIdType() const {
4764  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4765    return OPT->isObjCIdType();
4766  return false;
4767}
4768inline bool Type::isObjCClassType() const {
4769  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4770    return OPT->isObjCClassType();
4771  return false;
4772}
4773inline bool Type::isObjCSelType() const {
4774  if (const PointerType *OPT = getAs<PointerType>())
4775    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4776  return false;
4777}
4778inline bool Type::isObjCBuiltinType() const {
4779  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4780}
4781inline bool Type::isTemplateTypeParmType() const {
4782  return isa<TemplateTypeParmType>(CanonicalType);
4783}
4784
4785inline bool Type::isSpecificBuiltinType(unsigned K) const {
4786  if (const BuiltinType *BT = getAs<BuiltinType>())
4787    if (BT->getKind() == (BuiltinType::Kind) K)
4788      return true;
4789  return false;
4790}
4791
4792inline bool Type::isPlaceholderType() const {
4793  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4794    return BT->isPlaceholderType();
4795  return false;
4796}
4797
4798inline const BuiltinType *Type::getAsPlaceholderType() const {
4799  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4800    if (BT->isPlaceholderType())
4801      return BT;
4802  return 0;
4803}
4804
4805inline bool Type::isSpecificPlaceholderType(unsigned K) const {
4806  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
4807  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4808    return (BT->getKind() == (BuiltinType::Kind) K);
4809  return false;
4810}
4811
4812inline bool Type::isNonOverloadPlaceholderType() const {
4813  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4814    return BT->isNonOverloadPlaceholderType();
4815  return false;
4816}
4817
4818/// \brief Determines whether this is a type for which one can define
4819/// an overloaded operator.
4820inline bool Type::isOverloadableType() const {
4821  return isDependentType() || isRecordType() || isEnumeralType();
4822}
4823
4824/// \brief Determines whether this type can decay to a pointer type.
4825inline bool Type::canDecayToPointerType() const {
4826  return isFunctionType() || isArrayType();
4827}
4828
4829inline bool Type::hasPointerRepresentation() const {
4830  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
4831          isObjCObjectPointerType() || isNullPtrType());
4832}
4833
4834inline bool Type::hasObjCPointerRepresentation() const {
4835  return isObjCObjectPointerType();
4836}
4837
4838inline const Type *Type::getBaseElementTypeUnsafe() const {
4839  const Type *type = this;
4840  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
4841    type = arrayType->getElementType().getTypePtr();
4842  return type;
4843}
4844
4845/// Insertion operator for diagnostics.  This allows sending QualType's into a
4846/// diagnostic with <<.
4847inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
4848                                           QualType T) {
4849  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4850                  DiagnosticsEngine::ak_qualtype);
4851  return DB;
4852}
4853
4854/// Insertion operator for partial diagnostics.  This allows sending QualType's
4855/// into a diagnostic with <<.
4856inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
4857                                           QualType T) {
4858  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4859                  DiagnosticsEngine::ak_qualtype);
4860  return PD;
4861}
4862
4863// Helper class template that is used by Type::getAs to ensure that one does
4864// not try to look through a qualified type to get to an array type.
4865template<typename T,
4866         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
4867                             llvm::is_base_of<ArrayType, T>::value)>
4868struct ArrayType_cannot_be_used_with_getAs { };
4869
4870template<typename T>
4871struct ArrayType_cannot_be_used_with_getAs<T, true>;
4872
4873/// Member-template getAs<specific type>'.
4874template <typename T> const T *Type::getAs() const {
4875  ArrayType_cannot_be_used_with_getAs<T> at;
4876  (void)at;
4877
4878  // If this is directly a T type, return it.
4879  if (const T *Ty = dyn_cast<T>(this))
4880    return Ty;
4881
4882  // If the canonical form of this type isn't the right kind, reject it.
4883  if (!isa<T>(CanonicalType))
4884    return 0;
4885
4886  // If this is a typedef for the type, strip the typedef off without
4887  // losing all typedef information.
4888  return cast<T>(getUnqualifiedDesugaredType());
4889}
4890
4891inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
4892  // If this is directly an array type, return it.
4893  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
4894    return arr;
4895
4896  // If the canonical form of this type isn't the right kind, reject it.
4897  if (!isa<ArrayType>(CanonicalType))
4898    return 0;
4899
4900  // If this is a typedef for the type, strip the typedef off without
4901  // losing all typedef information.
4902  return cast<ArrayType>(getUnqualifiedDesugaredType());
4903}
4904
4905template <typename T> const T *Type::castAs() const {
4906  ArrayType_cannot_be_used_with_getAs<T> at;
4907  (void) at;
4908
4909  assert(isa<T>(CanonicalType));
4910  if (const T *ty = dyn_cast<T>(this)) return ty;
4911  return cast<T>(getUnqualifiedDesugaredType());
4912}
4913
4914inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
4915  assert(isa<ArrayType>(CanonicalType));
4916  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
4917  return cast<ArrayType>(getUnqualifiedDesugaredType());
4918}
4919
4920}  // end namespace clang
4921
4922#endif
4923