Type.h revision 2234873111009eb8655d63362cedc422eb9fc517
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/ExceptionSpecificationType.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/Linkage.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Basic/Visibility.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/TemplateName.h"
25#include "llvm/Support/Casting.h"
26#include "llvm/Support/type_traits.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32
33using llvm::isa;
34using llvm::cast;
35using llvm::cast_or_null;
36using llvm::dyn_cast;
37using llvm::dyn_cast_or_null;
38namespace clang {
39  enum {
40    TypeAlignmentInBits = 4,
41    TypeAlignment = 1 << TypeAlignmentInBits
42  };
43  class Type;
44  class ExtQuals;
45  class QualType;
46}
47
48namespace llvm {
49  template <typename T>
50  class PointerLikeTypeTraits;
51  template<>
52  class PointerLikeTypeTraits< ::clang::Type*> {
53  public:
54    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
55    static inline ::clang::Type *getFromVoidPointer(void *P) {
56      return static_cast< ::clang::Type*>(P);
57    }
58    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
59  };
60  template<>
61  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
62  public:
63    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
64    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
65      return static_cast< ::clang::ExtQuals*>(P);
66    }
67    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
68  };
69
70  template <>
71  struct isPodLike<clang::QualType> { static const bool value = true; };
72}
73
74namespace clang {
75  class ASTContext;
76  class TypedefDecl;
77  class TemplateDecl;
78  class TemplateTypeParmDecl;
79  class NonTypeTemplateParmDecl;
80  class TemplateTemplateParmDecl;
81  class TagDecl;
82  class RecordDecl;
83  class CXXRecordDecl;
84  class EnumDecl;
85  class FieldDecl;
86  class ObjCInterfaceDecl;
87  class ObjCProtocolDecl;
88  class ObjCMethodDecl;
89  class UnresolvedUsingTypenameDecl;
90  class Expr;
91  class Stmt;
92  class SourceLocation;
93  class StmtIteratorBase;
94  class TemplateArgument;
95  class TemplateArgumentLoc;
96  class TemplateArgumentListInfo;
97  class ElaboratedType;
98  class ExtQuals;
99  class ExtQualsTypeCommonBase;
100  struct PrintingPolicy;
101
102  template <typename> class CanQual;
103  typedef CanQual<Type> CanQualType;
104
105  // Provide forward declarations for all of the *Type classes
106#define TYPE(Class, Base) class Class##Type;
107#include "clang/AST/TypeNodes.def"
108
109/// Qualifiers - The collection of all-type qualifiers we support.
110/// Clang supports five independent qualifiers:
111/// * C99: const, volatile, and restrict
112/// * Embedded C (TR18037): address spaces
113/// * Objective C: the GC attributes (none, weak, or strong)
114class Qualifiers {
115public:
116  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
117    Const    = 0x1,
118    Restrict = 0x2,
119    Volatile = 0x4,
120    CVRMask = Const | Volatile | Restrict
121  };
122
123  enum GC {
124    GCNone = 0,
125    Weak,
126    Strong
127  };
128
129  enum {
130    /// The maximum supported address space number.
131    /// 24 bits should be enough for anyone.
132    MaxAddressSpace = 0xffffffu,
133
134    /// The width of the "fast" qualifier mask.
135    FastWidth = 3,
136
137    /// The fast qualifier mask.
138    FastMask = (1 << FastWidth) - 1
139  };
140
141  Qualifiers() : Mask(0) {}
142
143  static Qualifiers fromFastMask(unsigned Mask) {
144    Qualifiers Qs;
145    Qs.addFastQualifiers(Mask);
146    return Qs;
147  }
148
149  static Qualifiers fromCVRMask(unsigned CVR) {
150    Qualifiers Qs;
151    Qs.addCVRQualifiers(CVR);
152    return Qs;
153  }
154
155  // Deserialize qualifiers from an opaque representation.
156  static Qualifiers fromOpaqueValue(unsigned opaque) {
157    Qualifiers Qs;
158    Qs.Mask = opaque;
159    return Qs;
160  }
161
162  // Serialize these qualifiers into an opaque representation.
163  unsigned getAsOpaqueValue() const {
164    return Mask;
165  }
166
167  bool hasConst() const { return Mask & Const; }
168  void setConst(bool flag) {
169    Mask = (Mask & ~Const) | (flag ? Const : 0);
170  }
171  void removeConst() { Mask &= ~Const; }
172  void addConst() { Mask |= Const; }
173
174  bool hasVolatile() const { return Mask & Volatile; }
175  void setVolatile(bool flag) {
176    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
177  }
178  void removeVolatile() { Mask &= ~Volatile; }
179  void addVolatile() { Mask |= Volatile; }
180
181  bool hasRestrict() const { return Mask & Restrict; }
182  void setRestrict(bool flag) {
183    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
184  }
185  void removeRestrict() { Mask &= ~Restrict; }
186  void addRestrict() { Mask |= Restrict; }
187
188  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
189  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
190  void setCVRQualifiers(unsigned mask) {
191    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
192    Mask = (Mask & ~CVRMask) | mask;
193  }
194  void removeCVRQualifiers(unsigned mask) {
195    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
196    Mask &= ~mask;
197  }
198  void removeCVRQualifiers() {
199    removeCVRQualifiers(CVRMask);
200  }
201  void addCVRQualifiers(unsigned mask) {
202    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
203    Mask |= mask;
204  }
205
206  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
207  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
208  void setObjCGCAttr(GC type) {
209    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
210  }
211  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
212  void addObjCGCAttr(GC type) {
213    assert(type);
214    setObjCGCAttr(type);
215  }
216  Qualifiers withoutObjCGCAttr() const {
217    Qualifiers qs = *this;
218    qs.removeObjCGCAttr();
219    return qs;
220  }
221
222  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
223  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
224  void setAddressSpace(unsigned space) {
225    assert(space <= MaxAddressSpace);
226    Mask = (Mask & ~AddressSpaceMask)
227         | (((uint32_t) space) << AddressSpaceShift);
228  }
229  void removeAddressSpace() { setAddressSpace(0); }
230  void addAddressSpace(unsigned space) {
231    assert(space);
232    setAddressSpace(space);
233  }
234
235  // Fast qualifiers are those that can be allocated directly
236  // on a QualType object.
237  bool hasFastQualifiers() const { return getFastQualifiers(); }
238  unsigned getFastQualifiers() const { return Mask & FastMask; }
239  void setFastQualifiers(unsigned mask) {
240    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
241    Mask = (Mask & ~FastMask) | mask;
242  }
243  void removeFastQualifiers(unsigned mask) {
244    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
245    Mask &= ~mask;
246  }
247  void removeFastQualifiers() {
248    removeFastQualifiers(FastMask);
249  }
250  void addFastQualifiers(unsigned mask) {
251    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
252    Mask |= mask;
253  }
254
255  /// hasNonFastQualifiers - Return true if the set contains any
256  /// qualifiers which require an ExtQuals node to be allocated.
257  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
258  Qualifiers getNonFastQualifiers() const {
259    Qualifiers Quals = *this;
260    Quals.setFastQualifiers(0);
261    return Quals;
262  }
263
264  /// hasQualifiers - Return true if the set contains any qualifiers.
265  bool hasQualifiers() const { return Mask; }
266  bool empty() const { return !Mask; }
267
268  /// \brief Add the qualifiers from the given set to this set.
269  void addQualifiers(Qualifiers Q) {
270    // If the other set doesn't have any non-boolean qualifiers, just
271    // bit-or it in.
272    if (!(Q.Mask & ~CVRMask))
273      Mask |= Q.Mask;
274    else {
275      Mask |= (Q.Mask & CVRMask);
276      if (Q.hasAddressSpace())
277        addAddressSpace(Q.getAddressSpace());
278      if (Q.hasObjCGCAttr())
279        addObjCGCAttr(Q.getObjCGCAttr());
280    }
281  }
282
283  /// \brief Add the qualifiers from the given set to this set, given that
284  /// they don't conflict.
285  void addConsistentQualifiers(Qualifiers qs) {
286    assert(getAddressSpace() == qs.getAddressSpace() ||
287           !hasAddressSpace() || !qs.hasAddressSpace());
288    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
289           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
290    Mask |= qs.Mask;
291  }
292
293  /// \brief Determines if these qualifiers compatibly include another set.
294  /// Generally this answers the question of whether an object with the other
295  /// qualifiers can be safely used as an object with these qualifiers.
296  bool compatiblyIncludes(Qualifiers other) const {
297    // Non-CVR qualifiers must match exactly.  CVR qualifiers may subset.
298    return ((Mask & ~CVRMask) == (other.Mask & ~CVRMask)) &&
299           (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
300  }
301
302  bool isSupersetOf(Qualifiers Other) const;
303
304  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
305  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
306
307  operator bool() const { return hasQualifiers(); }
308
309  Qualifiers &operator+=(Qualifiers R) {
310    addQualifiers(R);
311    return *this;
312  }
313
314  // Union two qualifier sets.  If an enumerated qualifier appears
315  // in both sets, use the one from the right.
316  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
317    L += R;
318    return L;
319  }
320
321  Qualifiers &operator-=(Qualifiers R) {
322    Mask = Mask & ~(R.Mask);
323    return *this;
324  }
325
326  /// \brief Compute the difference between two qualifier sets.
327  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
328    L -= R;
329    return L;
330  }
331
332  std::string getAsString() const;
333  std::string getAsString(const PrintingPolicy &Policy) const {
334    std::string Buffer;
335    getAsStringInternal(Buffer, Policy);
336    return Buffer;
337  }
338  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
339
340  void Profile(llvm::FoldingSetNodeID &ID) const {
341    ID.AddInteger(Mask);
342  }
343
344private:
345
346  // bits:     |0 1 2|3 .. 4|5  ..  31|
347  //           |C R V|GCAttr|AddrSpace|
348  uint32_t Mask;
349
350  static const uint32_t GCAttrMask = 0x18;
351  static const uint32_t GCAttrShift = 3;
352  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
353  static const uint32_t AddressSpaceShift = 5;
354};
355
356/// CallingConv - Specifies the calling convention that a function uses.
357enum CallingConv {
358  CC_Default,
359  CC_C,           // __attribute__((cdecl))
360  CC_X86StdCall,  // __attribute__((stdcall))
361  CC_X86FastCall, // __attribute__((fastcall))
362  CC_X86ThisCall, // __attribute__((thiscall))
363  CC_X86Pascal    // __attribute__((pascal))
364};
365
366typedef std::pair<const Type*, Qualifiers> SplitQualType;
367
368/// QualType - For efficiency, we don't store CV-qualified types as nodes on
369/// their own: instead each reference to a type stores the qualifiers.  This
370/// greatly reduces the number of nodes we need to allocate for types (for
371/// example we only need one for 'int', 'const int', 'volatile int',
372/// 'const volatile int', etc).
373///
374/// As an added efficiency bonus, instead of making this a pair, we
375/// just store the two bits we care about in the low bits of the
376/// pointer.  To handle the packing/unpacking, we make QualType be a
377/// simple wrapper class that acts like a smart pointer.  A third bit
378/// indicates whether there are extended qualifiers present, in which
379/// case the pointer points to a special structure.
380class QualType {
381  // Thankfully, these are efficiently composable.
382  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
383                       Qualifiers::FastWidth> Value;
384
385  const ExtQuals *getExtQualsUnsafe() const {
386    return Value.getPointer().get<const ExtQuals*>();
387  }
388
389  const Type *getTypePtrUnsafe() const {
390    return Value.getPointer().get<const Type*>();
391  }
392
393  const ExtQualsTypeCommonBase *getCommonPtr() const {
394    assert(!isNull() && "Cannot retrieve a NULL type pointer");
395    uintptr_t CommonPtrVal
396      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
397    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
398    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
399  }
400
401  friend class QualifierCollector;
402public:
403  QualType() {}
404
405  QualType(const Type *Ptr, unsigned Quals)
406    : Value(Ptr, Quals) {}
407  QualType(const ExtQuals *Ptr, unsigned Quals)
408    : Value(Ptr, Quals) {}
409
410  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
411  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
412
413  /// Retrieves a pointer to the underlying (unqualified) type.
414  /// This should really return a const Type, but it's not worth
415  /// changing all the users right now.
416  ///
417  /// This function requires that the type not be NULL. If the type might be
418  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
419  const Type *getTypePtr() const;
420
421  const Type *getTypePtrOrNull() const;
422
423  /// Divides a QualType into its unqualified type and a set of local
424  /// qualifiers.
425  SplitQualType split() const;
426
427  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
428  static QualType getFromOpaquePtr(const void *Ptr) {
429    QualType T;
430    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
431    return T;
432  }
433
434  const Type &operator*() const {
435    return *getTypePtr();
436  }
437
438  const Type *operator->() const {
439    return getTypePtr();
440  }
441
442  bool isCanonical() const;
443  bool isCanonicalAsParam() const;
444
445  /// isNull - Return true if this QualType doesn't point to a type yet.
446  bool isNull() const {
447    return Value.getPointer().isNull();
448  }
449
450  /// \brief Determine whether this particular QualType instance has the
451  /// "const" qualifier set, without looking through typedefs that may have
452  /// added "const" at a different level.
453  bool isLocalConstQualified() const {
454    return (getLocalFastQualifiers() & Qualifiers::Const);
455  }
456
457  /// \brief Determine whether this type is const-qualified.
458  bool isConstQualified() const;
459
460  /// \brief Determine whether this particular QualType instance has the
461  /// "restrict" qualifier set, without looking through typedefs that may have
462  /// added "restrict" at a different level.
463  bool isLocalRestrictQualified() const {
464    return (getLocalFastQualifiers() & Qualifiers::Restrict);
465  }
466
467  /// \brief Determine whether this type is restrict-qualified.
468  bool isRestrictQualified() const;
469
470  /// \brief Determine whether this particular QualType instance has the
471  /// "volatile" qualifier set, without looking through typedefs that may have
472  /// added "volatile" at a different level.
473  bool isLocalVolatileQualified() const {
474    return (getLocalFastQualifiers() & Qualifiers::Volatile);
475  }
476
477  /// \brief Determine whether this type is volatile-qualified.
478  bool isVolatileQualified() const;
479
480  /// \brief Determine whether this particular QualType instance has any
481  /// qualifiers, without looking through any typedefs that might add
482  /// qualifiers at a different level.
483  bool hasLocalQualifiers() const {
484    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
485  }
486
487  /// \brief Determine whether this type has any qualifiers.
488  bool hasQualifiers() const;
489
490  /// \brief Determine whether this particular QualType instance has any
491  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
492  /// instance.
493  bool hasLocalNonFastQualifiers() const {
494    return Value.getPointer().is<const ExtQuals*>();
495  }
496
497  /// \brief Retrieve the set of qualifiers local to this particular QualType
498  /// instance, not including any qualifiers acquired through typedefs or
499  /// other sugar.
500  Qualifiers getLocalQualifiers() const;
501
502  /// \brief Retrieve the set of qualifiers applied to this type.
503  Qualifiers getQualifiers() const;
504
505  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
506  /// local to this particular QualType instance, not including any qualifiers
507  /// acquired through typedefs or other sugar.
508  unsigned getLocalCVRQualifiers() const {
509    return getLocalFastQualifiers();
510  }
511
512  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
513  /// applied to this type.
514  unsigned getCVRQualifiers() const;
515
516  bool isConstant(ASTContext& Ctx) const {
517    return QualType::isConstant(*this, Ctx);
518  }
519
520  // Don't promise in the API that anything besides 'const' can be
521  // easily added.
522
523  /// addConst - add the specified type qualifier to this QualType.
524  void addConst() {
525    addFastQualifiers(Qualifiers::Const);
526  }
527  QualType withConst() const {
528    return withFastQualifiers(Qualifiers::Const);
529  }
530
531  void addFastQualifiers(unsigned TQs) {
532    assert(!(TQs & ~Qualifiers::FastMask)
533           && "non-fast qualifier bits set in mask!");
534    Value.setInt(Value.getInt() | TQs);
535  }
536
537  void removeLocalConst();
538  void removeLocalVolatile();
539  void removeLocalRestrict();
540  void removeLocalCVRQualifiers(unsigned Mask);
541
542  void removeLocalFastQualifiers() { Value.setInt(0); }
543  void removeLocalFastQualifiers(unsigned Mask) {
544    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
545    Value.setInt(Value.getInt() & ~Mask);
546  }
547
548  // Creates a type with the given qualifiers in addition to any
549  // qualifiers already on this type.
550  QualType withFastQualifiers(unsigned TQs) const {
551    QualType T = *this;
552    T.addFastQualifiers(TQs);
553    return T;
554  }
555
556  // Creates a type with exactly the given fast qualifiers, removing
557  // any existing fast qualifiers.
558  QualType withExactLocalFastQualifiers(unsigned TQs) const {
559    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
560  }
561
562  // Removes fast qualifiers, but leaves any extended qualifiers in place.
563  QualType withoutLocalFastQualifiers() const {
564    QualType T = *this;
565    T.removeLocalFastQualifiers();
566    return T;
567  }
568
569  QualType getCanonicalType() const;
570
571  /// \brief Return this type with all of the instance-specific qualifiers
572  /// removed, but without removing any qualifiers that may have been applied
573  /// through typedefs.
574  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
575
576  /// \brief Retrieve the unqualified variant of the given type,
577  /// removing as little sugar as possible.
578  ///
579  /// This routine looks through various kinds of sugar to find the
580  /// least-desugared type that is unqualified. For example, given:
581  ///
582  /// \code
583  /// typedef int Integer;
584  /// typedef const Integer CInteger;
585  /// typedef CInteger DifferenceType;
586  /// \endcode
587  ///
588  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
589  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
590  ///
591  /// The resulting type might still be qualified if it's an array
592  /// type.  To strip qualifiers even from within an array type, use
593  /// ASTContext::getUnqualifiedArrayType.
594  inline QualType getUnqualifiedType() const;
595
596  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
597  /// given type, removing as little sugar as possible.
598  ///
599  /// Like getUnqualifiedType(), but also returns the set of
600  /// qualifiers that were built up.
601  ///
602  /// The resulting type might still be qualified if it's an array
603  /// type.  To strip qualifiers even from within an array type, use
604  /// ASTContext::getUnqualifiedArrayType.
605  inline SplitQualType getSplitUnqualifiedType() const;
606
607  bool isMoreQualifiedThan(QualType Other) const;
608  bool isAtLeastAsQualifiedAs(QualType Other) const;
609  QualType getNonReferenceType() const;
610
611  /// \brief Determine the type of a (typically non-lvalue) expression with the
612  /// specified result type.
613  ///
614  /// This routine should be used for expressions for which the return type is
615  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
616  /// an lvalue. It removes a top-level reference (since there are no
617  /// expressions of reference type) and deletes top-level cvr-qualifiers
618  /// from non-class types (in C++) or all types (in C).
619  QualType getNonLValueExprType(ASTContext &Context) const;
620
621  /// getDesugaredType - Return the specified type with any "sugar" removed from
622  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
623  /// the type is already concrete, it returns it unmodified.  This is similar
624  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
625  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
626  /// concrete.
627  ///
628  /// Qualifiers are left in place.
629  QualType getDesugaredType(const ASTContext &Context) const {
630    return getDesugaredType(*this, Context);
631  }
632
633  SplitQualType getSplitDesugaredType() const {
634    return getSplitDesugaredType(*this);
635  }
636
637  /// IgnoreParens - Returns the specified type after dropping any
638  /// outer-level parentheses.
639  QualType IgnoreParens() const {
640    if (isa<ParenType>(*this))
641      return QualType::IgnoreParens(*this);
642    return *this;
643  }
644
645  /// operator==/!= - Indicate whether the specified types and qualifiers are
646  /// identical.
647  friend bool operator==(const QualType &LHS, const QualType &RHS) {
648    return LHS.Value == RHS.Value;
649  }
650  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
651    return LHS.Value != RHS.Value;
652  }
653  std::string getAsString() const {
654    return getAsString(split());
655  }
656  static std::string getAsString(SplitQualType split) {
657    return getAsString(split.first, split.second);
658  }
659  static std::string getAsString(const Type *ty, Qualifiers qs);
660
661  std::string getAsString(const PrintingPolicy &Policy) const {
662    std::string S;
663    getAsStringInternal(S, Policy);
664    return S;
665  }
666  void getAsStringInternal(std::string &Str,
667                           const PrintingPolicy &Policy) const {
668    return getAsStringInternal(split(), Str, Policy);
669  }
670  static void getAsStringInternal(SplitQualType split, std::string &out,
671                                  const PrintingPolicy &policy) {
672    return getAsStringInternal(split.first, split.second, out, policy);
673  }
674  static void getAsStringInternal(const Type *ty, Qualifiers qs,
675                                  std::string &out,
676                                  const PrintingPolicy &policy);
677
678  void dump(const char *s) const;
679  void dump() const;
680
681  void Profile(llvm::FoldingSetNodeID &ID) const {
682    ID.AddPointer(getAsOpaquePtr());
683  }
684
685  /// getAddressSpace - Return the address space of this type.
686  inline unsigned getAddressSpace() const;
687
688  /// GCAttrTypesAttr - Returns gc attribute of this type.
689  inline Qualifiers::GC getObjCGCAttr() const;
690
691  /// isObjCGCWeak true when Type is objc's weak.
692  bool isObjCGCWeak() const {
693    return getObjCGCAttr() == Qualifiers::Weak;
694  }
695
696  /// isObjCGCStrong true when Type is objc's strong.
697  bool isObjCGCStrong() const {
698    return getObjCGCAttr() == Qualifiers::Strong;
699  }
700
701  enum DestructionKind {
702    DK_none,
703    DK_cxx_destructor
704  };
705
706  /// isDestructedType - nonzero if objects of this type require
707  /// non-trivial work to clean up after.  Non-zero because it's
708  /// conceivable that qualifiers (objc_gc(weak)?) could make
709  /// something require destruction.
710  DestructionKind isDestructedType() const {
711    return isDestructedTypeImpl(*this);
712  }
713
714private:
715  // These methods are implemented in a separate translation unit;
716  // "static"-ize them to avoid creating temporary QualTypes in the
717  // caller.
718  static bool isConstant(QualType T, ASTContext& Ctx);
719  static QualType getDesugaredType(QualType T, const ASTContext &Context);
720  static SplitQualType getSplitDesugaredType(QualType T);
721  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
722  static QualType IgnoreParens(QualType T);
723  static DestructionKind isDestructedTypeImpl(QualType type);
724};
725
726} // end clang.
727
728namespace llvm {
729/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
730/// to a specific Type class.
731template<> struct simplify_type<const ::clang::QualType> {
732  typedef const ::clang::Type *SimpleType;
733  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
734    return Val.getTypePtr();
735  }
736};
737template<> struct simplify_type< ::clang::QualType>
738  : public simplify_type<const ::clang::QualType> {};
739
740// Teach SmallPtrSet that QualType is "basically a pointer".
741template<>
742class PointerLikeTypeTraits<clang::QualType> {
743public:
744  static inline void *getAsVoidPointer(clang::QualType P) {
745    return P.getAsOpaquePtr();
746  }
747  static inline clang::QualType getFromVoidPointer(void *P) {
748    return clang::QualType::getFromOpaquePtr(P);
749  }
750  // Various qualifiers go in low bits.
751  enum { NumLowBitsAvailable = 0 };
752};
753
754} // end namespace llvm
755
756namespace clang {
757
758/// \brief Base class that is common to both the \c ExtQuals and \c Type
759/// classes, which allows \c QualType to access the common fields between the
760/// two.
761///
762class ExtQualsTypeCommonBase {
763  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
764    : BaseType(baseType), CanonicalType(canon) {}
765
766  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
767  /// a self-referential pointer (for \c Type).
768  ///
769  /// This pointer allows an efficient mapping from a QualType to its
770  /// underlying type pointer.
771  const Type *const BaseType;
772
773  /// \brief The canonical type of this type.  A QualType.
774  QualType CanonicalType;
775
776  friend class QualType;
777  friend class Type;
778  friend class ExtQuals;
779};
780
781/// ExtQuals - We can encode up to four bits in the low bits of a
782/// type pointer, but there are many more type qualifiers that we want
783/// to be able to apply to an arbitrary type.  Therefore we have this
784/// struct, intended to be heap-allocated and used by QualType to
785/// store qualifiers.
786///
787/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
788/// in three low bits on the QualType pointer; a fourth bit records whether
789/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
790/// Objective-C GC attributes) are much more rare.
791class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
792  // NOTE: changing the fast qualifiers should be straightforward as
793  // long as you don't make 'const' non-fast.
794  // 1. Qualifiers:
795  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
796  //       Fast qualifiers must occupy the low-order bits.
797  //    b) Update Qualifiers::FastWidth and FastMask.
798  // 2. QualType:
799  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
800  //    b) Update remove{Volatile,Restrict}, defined near the end of
801  //       this header.
802  // 3. ASTContext:
803  //    a) Update get{Volatile,Restrict}Type.
804
805  /// Quals - the immutable set of qualifiers applied by this
806  /// node;  always contains extended qualifiers.
807  Qualifiers Quals;
808
809  ExtQuals *this_() { return this; }
810
811public:
812  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
813    : ExtQualsTypeCommonBase(baseType,
814                             canon.isNull() ? QualType(this_(), 0) : canon),
815      Quals(quals)
816  {
817    assert(Quals.hasNonFastQualifiers()
818           && "ExtQuals created with no fast qualifiers");
819    assert(!Quals.hasFastQualifiers()
820           && "ExtQuals created with fast qualifiers");
821  }
822
823  Qualifiers getQualifiers() const { return Quals; }
824
825  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
826  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
827
828  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
829  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
830
831  const Type *getBaseType() const { return BaseType; }
832
833public:
834  void Profile(llvm::FoldingSetNodeID &ID) const {
835    Profile(ID, getBaseType(), Quals);
836  }
837  static void Profile(llvm::FoldingSetNodeID &ID,
838                      const Type *BaseType,
839                      Qualifiers Quals) {
840    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
841    ID.AddPointer(BaseType);
842    Quals.Profile(ID);
843  }
844};
845
846/// \brief The kind of C++0x ref-qualifier associated with a function type,
847/// which determines whether a member function's "this" object can be an
848/// lvalue, rvalue, or neither.
849enum RefQualifierKind {
850  /// \brief No ref-qualifier was provided.
851  RQ_None = 0,
852  /// \brief An lvalue ref-qualifier was provided (\c &).
853  RQ_LValue,
854  /// \brief An rvalue ref-qualifier was provided (\c &&).
855  RQ_RValue
856};
857
858/// Type - This is the base class of the type hierarchy.  A central concept
859/// with types is that each type always has a canonical type.  A canonical type
860/// is the type with any typedef names stripped out of it or the types it
861/// references.  For example, consider:
862///
863///  typedef int  foo;
864///  typedef foo* bar;
865///    'int *'    'foo *'    'bar'
866///
867/// There will be a Type object created for 'int'.  Since int is canonical, its
868/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
869/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
870/// there is a PointerType that represents 'int*', which, like 'int', is
871/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
872/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
873/// is also 'int*'.
874///
875/// Non-canonical types are useful for emitting diagnostics, without losing
876/// information about typedefs being used.  Canonical types are useful for type
877/// comparisons (they allow by-pointer equality tests) and useful for reasoning
878/// about whether something has a particular form (e.g. is a function type),
879/// because they implicitly, recursively, strip all typedefs out of a type.
880///
881/// Types, once created, are immutable.
882///
883class Type : public ExtQualsTypeCommonBase {
884public:
885  enum TypeClass {
886#define TYPE(Class, Base) Class,
887#define LAST_TYPE(Class) TypeLast = Class,
888#define ABSTRACT_TYPE(Class, Base)
889#include "clang/AST/TypeNodes.def"
890    TagFirst = Record, TagLast = Enum
891  };
892
893private:
894  Type(const Type&);           // DO NOT IMPLEMENT.
895  void operator=(const Type&); // DO NOT IMPLEMENT.
896
897  /// Bitfields required by the Type class.
898  class TypeBitfields {
899    friend class Type;
900    template <class T> friend class TypePropertyCache;
901
902    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
903    unsigned TC : 8;
904
905    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
906    /// Note that this should stay at the end of the ivars for Type so that
907    /// subclasses can pack their bitfields into the same word.
908    unsigned Dependent : 1;
909
910    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
911    unsigned VariablyModified : 1;
912
913    /// \brief Whether this type contains an unexpanded parameter pack
914    /// (for C++0x variadic templates).
915    unsigned ContainsUnexpandedParameterPack : 1;
916
917    /// \brief Nonzero if the cache (i.e. the bitfields here starting
918    /// with 'Cache') is valid.  If so, then this is a
919    /// LangOptions::VisibilityMode+1.
920    mutable unsigned CacheValidAndVisibility : 2;
921
922    /// \brief Linkage of this type.
923    mutable unsigned CachedLinkage : 2;
924
925    /// \brief Whether this type involves and local or unnamed types.
926    mutable unsigned CachedLocalOrUnnamed : 1;
927
928    /// \brief FromAST - Whether this type comes from an AST file.
929    mutable unsigned FromAST : 1;
930
931    bool isCacheValid() const {
932      return (CacheValidAndVisibility != 0);
933    }
934    Visibility getVisibility() const {
935      assert(isCacheValid() && "getting linkage from invalid cache");
936      return static_cast<Visibility>(CacheValidAndVisibility-1);
937    }
938    Linkage getLinkage() const {
939      assert(isCacheValid() && "getting linkage from invalid cache");
940      return static_cast<Linkage>(CachedLinkage);
941    }
942    bool hasLocalOrUnnamedType() const {
943      assert(isCacheValid() && "getting linkage from invalid cache");
944      return CachedLocalOrUnnamed;
945    }
946  };
947  enum { NumTypeBits = 17 };
948
949protected:
950  // These classes allow subclasses to somewhat cleanly pack bitfields
951  // into Type.
952
953  class ArrayTypeBitfields {
954    friend class ArrayType;
955
956    unsigned : NumTypeBits;
957
958    /// IndexTypeQuals - CVR qualifiers from declarations like
959    /// 'int X[static restrict 4]'. For function parameters only.
960    unsigned IndexTypeQuals : 3;
961
962    /// SizeModifier - storage class qualifiers from declarations like
963    /// 'int X[static restrict 4]'. For function parameters only.
964    /// Actually an ArrayType::ArraySizeModifier.
965    unsigned SizeModifier : 3;
966  };
967
968  class BuiltinTypeBitfields {
969    friend class BuiltinType;
970
971    unsigned : NumTypeBits;
972
973    /// The kind (BuiltinType::Kind) of builtin type this is.
974    unsigned Kind : 8;
975  };
976
977  class FunctionTypeBitfields {
978    friend class FunctionType;
979
980    unsigned : NumTypeBits;
981
982    /// Extra information which affects how the function is called, like
983    /// regparm and the calling convention.
984    unsigned ExtInfo : 8;
985
986    /// Whether the function is variadic.  Only used by FunctionProtoType.
987    unsigned Variadic : 1;
988
989    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
990    /// other bitfields.
991    /// The qualifiers are part of FunctionProtoType because...
992    ///
993    /// C++ 8.3.5p4: The return type, the parameter type list and the
994    /// cv-qualifier-seq, [...], are part of the function type.
995    unsigned TypeQuals : 3;
996
997    /// \brief The ref-qualifier associated with a \c FunctionProtoType.
998    ///
999    /// This is a value of type \c RefQualifierKind.
1000    unsigned RefQualifier : 2;
1001  };
1002
1003  class ObjCObjectTypeBitfields {
1004    friend class ObjCObjectType;
1005
1006    unsigned : NumTypeBits;
1007
1008    /// NumProtocols - The number of protocols stored directly on this
1009    /// object type.
1010    unsigned NumProtocols : 32 - NumTypeBits;
1011  };
1012
1013  class ReferenceTypeBitfields {
1014    friend class ReferenceType;
1015
1016    unsigned : NumTypeBits;
1017
1018    /// True if the type was originally spelled with an lvalue sigil.
1019    /// This is never true of rvalue references but can also be false
1020    /// on lvalue references because of C++0x [dcl.typedef]p9,
1021    /// as follows:
1022    ///
1023    ///   typedef int &ref;    // lvalue, spelled lvalue
1024    ///   typedef int &&rvref; // rvalue
1025    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1026    ///   ref &&a;             // lvalue, inner ref
1027    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1028    ///   rvref &&a;           // rvalue, inner ref
1029    unsigned SpelledAsLValue : 1;
1030
1031    /// True if the inner type is a reference type.  This only happens
1032    /// in non-canonical forms.
1033    unsigned InnerRef : 1;
1034  };
1035
1036  class TypeWithKeywordBitfields {
1037    friend class TypeWithKeyword;
1038
1039    unsigned : NumTypeBits;
1040
1041    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1042    unsigned Keyword : 8;
1043  };
1044
1045  class VectorTypeBitfields {
1046    friend class VectorType;
1047
1048    unsigned : NumTypeBits;
1049
1050    /// VecKind - The kind of vector, either a generic vector type or some
1051    /// target-specific vector type such as for AltiVec or Neon.
1052    unsigned VecKind : 3;
1053
1054    /// NumElements - The number of elements in the vector.
1055    unsigned NumElements : 29 - NumTypeBits;
1056  };
1057
1058  class AttributedTypeBitfields {
1059    friend class AttributedType;
1060
1061    unsigned : NumTypeBits;
1062
1063    /// AttrKind - an AttributedType::Kind
1064    unsigned AttrKind : 32 - NumTypeBits;
1065  };
1066
1067  union {
1068    TypeBitfields TypeBits;
1069    ArrayTypeBitfields ArrayTypeBits;
1070    AttributedTypeBitfields AttributedTypeBits;
1071    BuiltinTypeBitfields BuiltinTypeBits;
1072    FunctionTypeBitfields FunctionTypeBits;
1073    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1074    ReferenceTypeBitfields ReferenceTypeBits;
1075    TypeWithKeywordBitfields TypeWithKeywordBits;
1076    VectorTypeBitfields VectorTypeBits;
1077  };
1078
1079private:
1080  /// \brief Set whether this type comes from an AST file.
1081  void setFromAST(bool V = true) const {
1082    TypeBits.FromAST = V;
1083  }
1084
1085  template <class T> friend class TypePropertyCache;
1086
1087protected:
1088  // silence VC++ warning C4355: 'this' : used in base member initializer list
1089  Type *this_() { return this; }
1090  Type(TypeClass tc, QualType canon, bool Dependent, bool VariablyModified,
1091       bool ContainsUnexpandedParameterPack)
1092    : ExtQualsTypeCommonBase(this,
1093                             canon.isNull() ? QualType(this_(), 0) : canon) {
1094    TypeBits.TC = tc;
1095    TypeBits.Dependent = Dependent;
1096    TypeBits.VariablyModified = VariablyModified;
1097    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1098    TypeBits.CacheValidAndVisibility = 0;
1099    TypeBits.CachedLocalOrUnnamed = false;
1100    TypeBits.CachedLinkage = NoLinkage;
1101    TypeBits.FromAST = false;
1102  }
1103  friend class ASTContext;
1104
1105  void setDependent(bool D = true) { TypeBits.Dependent = D; }
1106  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1107  void setContainsUnexpandedParameterPack(bool PP = true) {
1108    TypeBits.ContainsUnexpandedParameterPack = PP;
1109  }
1110
1111public:
1112  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1113
1114  /// \brief Whether this type comes from an AST file.
1115  bool isFromAST() const { return TypeBits.FromAST; }
1116
1117  /// \brief Whether this type is or contains an unexpanded parameter
1118  /// pack, used to support C++0x variadic templates.
1119  ///
1120  /// A type that contains a parameter pack shall be expanded by the
1121  /// ellipsis operator at some point. For example, the typedef in the
1122  /// following example contains an unexpanded parameter pack 'T':
1123  ///
1124  /// \code
1125  /// template<typename ...T>
1126  /// struct X {
1127  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1128  /// };
1129  /// \endcode
1130  ///
1131  /// Note that this routine does not specify which
1132  bool containsUnexpandedParameterPack() const {
1133    return TypeBits.ContainsUnexpandedParameterPack;
1134  }
1135
1136  /// Determines if this type would be canonical if it had no further
1137  /// qualification.
1138  bool isCanonicalUnqualified() const {
1139    return CanonicalType == QualType(this, 0);
1140  }
1141
1142  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1143  /// object types, function types, and incomplete types.
1144
1145  /// isIncompleteType - Return true if this is an incomplete type.
1146  /// A type that can describe objects, but which lacks information needed to
1147  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1148  /// routine will need to determine if the size is actually required.
1149  bool isIncompleteType() const;
1150
1151  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1152  /// type, in other words, not a function type.
1153  bool isIncompleteOrObjectType() const {
1154    return !isFunctionType();
1155  }
1156
1157  /// \brief Determine whether this type is an object type.
1158  bool isObjectType() const {
1159    // C++ [basic.types]p8:
1160    //   An object type is a (possibly cv-qualified) type that is not a
1161    //   function type, not a reference type, and not a void type.
1162    return !isReferenceType() && !isFunctionType() && !isVoidType();
1163  }
1164
1165  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
1166  bool isPODType() const;
1167
1168  /// isLiteralType - Return true if this is a literal type
1169  /// (C++0x [basic.types]p10)
1170  bool isLiteralType() const;
1171
1172  /// Helper methods to distinguish type categories. All type predicates
1173  /// operate on the canonical type, ignoring typedefs and qualifiers.
1174
1175  /// isBuiltinType - returns true if the type is a builtin type.
1176  bool isBuiltinType() const;
1177
1178  /// isSpecificBuiltinType - Test for a particular builtin type.
1179  bool isSpecificBuiltinType(unsigned K) const;
1180
1181  /// isPlaceholderType - Test for a type which does not represent an
1182  /// actual type-system type but is instead used as a placeholder for
1183  /// various convenient purposes within Clang.  All such types are
1184  /// BuiltinTypes.
1185  bool isPlaceholderType() const;
1186
1187  /// isIntegerType() does *not* include complex integers (a GCC extension).
1188  /// isComplexIntegerType() can be used to test for complex integers.
1189  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1190  bool isEnumeralType() const;
1191  bool isBooleanType() const;
1192  bool isCharType() const;
1193  bool isWideCharType() const;
1194  bool isAnyCharacterType() const;
1195  bool isIntegralType(ASTContext &Ctx) const;
1196
1197  /// \brief Determine whether this type is an integral or enumeration type.
1198  bool isIntegralOrEnumerationType() const;
1199  /// \brief Determine whether this type is an integral or unscoped enumeration
1200  /// type.
1201  bool isIntegralOrUnscopedEnumerationType() const;
1202
1203  /// Floating point categories.
1204  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1205  /// isComplexType() does *not* include complex integers (a GCC extension).
1206  /// isComplexIntegerType() can be used to test for complex integers.
1207  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1208  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1209  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1210  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1211  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1212  bool isVoidType() const;         // C99 6.2.5p19
1213  bool isDerivedType() const;      // C99 6.2.5p20
1214  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1215  bool isAggregateType() const;
1216
1217  // Type Predicates: Check to see if this type is structurally the specified
1218  // type, ignoring typedefs and qualifiers.
1219  bool isFunctionType() const;
1220  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1221  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1222  bool isPointerType() const;
1223  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1224  bool isBlockPointerType() const;
1225  bool isVoidPointerType() const;
1226  bool isReferenceType() const;
1227  bool isLValueReferenceType() const;
1228  bool isRValueReferenceType() const;
1229  bool isFunctionPointerType() const;
1230  bool isMemberPointerType() const;
1231  bool isMemberFunctionPointerType() const;
1232  bool isMemberDataPointerType() const;
1233  bool isArrayType() const;
1234  bool isConstantArrayType() const;
1235  bool isIncompleteArrayType() const;
1236  bool isVariableArrayType() const;
1237  bool isDependentSizedArrayType() const;
1238  bool isRecordType() const;
1239  bool isClassType() const;
1240  bool isStructureType() const;
1241  bool isStructureOrClassType() const;
1242  bool isUnionType() const;
1243  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1244  bool isVectorType() const;                    // GCC vector type.
1245  bool isExtVectorType() const;                 // Extended vector type.
1246  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
1247  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1248  // for the common case.
1249  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1250  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1251  bool isObjCQualifiedIdType() const;           // id<foo>
1252  bool isObjCQualifiedClassType() const;        // Class<foo>
1253  bool isObjCObjectOrInterfaceType() const;
1254  bool isObjCIdType() const;                    // id
1255  bool isObjCClassType() const;                 // Class
1256  bool isObjCSelType() const;                 // Class
1257  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1258  bool isTemplateTypeParmType() const;          // C++ template type parameter
1259  bool isNullPtrType() const;                   // C++0x nullptr_t
1260
1261  enum ScalarTypeKind {
1262    STK_Pointer,
1263    STK_MemberPointer,
1264    STK_Bool,
1265    STK_Integral,
1266    STK_Floating,
1267    STK_IntegralComplex,
1268    STK_FloatingComplex
1269  };
1270  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1271  ScalarTypeKind getScalarTypeKind() const;
1272
1273  /// isDependentType - Whether this type is a dependent type, meaning
1274  /// that its definition somehow depends on a template parameter
1275  /// (C++ [temp.dep.type]).
1276  bool isDependentType() const { return TypeBits.Dependent; }
1277
1278  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1279  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1280
1281  /// \brief Whether this type involves a variable-length array type
1282  /// with a definite size.
1283  bool hasSizedVLAType() const;
1284
1285  /// \brief Whether this type is or contains a local or unnamed type.
1286  bool hasUnnamedOrLocalType() const;
1287
1288  bool isOverloadableType() const;
1289
1290  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1291  bool isElaboratedTypeSpecifier() const;
1292
1293  /// hasPointerRepresentation - Whether this type is represented
1294  /// natively as a pointer; this includes pointers, references, block
1295  /// pointers, and Objective-C interface, qualified id, and qualified
1296  /// interface types, as well as nullptr_t.
1297  bool hasPointerRepresentation() const;
1298
1299  /// hasObjCPointerRepresentation - Whether this type can represent
1300  /// an objective pointer type for the purpose of GC'ability
1301  bool hasObjCPointerRepresentation() const;
1302
1303  /// \brief Determine whether this type has an integer representation
1304  /// of some sort, e.g., it is an integer type or a vector.
1305  bool hasIntegerRepresentation() const;
1306
1307  /// \brief Determine whether this type has an signed integer representation
1308  /// of some sort, e.g., it is an signed integer type or a vector.
1309  bool hasSignedIntegerRepresentation() const;
1310
1311  /// \brief Determine whether this type has an unsigned integer representation
1312  /// of some sort, e.g., it is an unsigned integer type or a vector.
1313  bool hasUnsignedIntegerRepresentation() const;
1314
1315  /// \brief Determine whether this type has a floating-point representation
1316  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1317  bool hasFloatingRepresentation() const;
1318
1319  // Type Checking Functions: Check to see if this type is structurally the
1320  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1321  // the best type we can.
1322  const RecordType *getAsStructureType() const;
1323  /// NOTE: getAs*ArrayType are methods on ASTContext.
1324  const RecordType *getAsUnionType() const;
1325  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1326  // The following is a convenience method that returns an ObjCObjectPointerType
1327  // for object declared using an interface.
1328  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1329  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1330  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1331  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
1332
1333  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1334  /// because the type is a RecordType or because it is the injected-class-name
1335  /// type of a class template or class template partial specialization.
1336  CXXRecordDecl *getAsCXXRecordDecl() const;
1337
1338  /// \brief Get the AutoType whose type will be deduced for a variable with
1339  /// an initializer of this type. This looks through declarators like pointer
1340  /// types, but not through decltype or typedefs.
1341  AutoType *getContainedAutoType() const;
1342
1343  /// Member-template getAs<specific type>'.  Look through sugar for
1344  /// an instance of <specific type>.   This scheme will eventually
1345  /// replace the specific getAsXXXX methods above.
1346  ///
1347  /// There are some specializations of this member template listed
1348  /// immediately following this class.
1349  template <typename T> const T *getAs() const;
1350
1351  /// A variant of getAs<> for array types which silently discards
1352  /// qualifiers from the outermost type.
1353  const ArrayType *getAsArrayTypeUnsafe() const;
1354
1355  /// Member-template castAs<specific type>.  Look through sugar for
1356  /// the underlying instance of <specific type>.
1357  ///
1358  /// This method has the same relationship to getAs<T> as cast<T> has
1359  /// to dyn_cast<T>; which is to say, the underlying type *must*
1360  /// have the intended type, and this method will never return null.
1361  template <typename T> const T *castAs() const;
1362
1363  /// A variant of castAs<> for array type which silently discards
1364  /// qualifiers from the outermost type.
1365  const ArrayType *castAsArrayTypeUnsafe() const;
1366
1367  /// getBaseElementTypeUnsafe - Get the base element type of this
1368  /// type, potentially discarding type qualifiers.  This method
1369  /// should never be used when type qualifiers are meaningful.
1370  const Type *getBaseElementTypeUnsafe() const;
1371
1372  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1373  /// element type of the array, potentially with type qualifiers missing.
1374  /// This method should never be used when type qualifiers are meaningful.
1375  const Type *getArrayElementTypeNoTypeQual() const;
1376
1377  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1378  /// pointer, this returns the respective pointee.
1379  QualType getPointeeType() const;
1380
1381  /// getUnqualifiedDesugaredType() - Return the specified type with
1382  /// any "sugar" removed from the type, removing any typedefs,
1383  /// typeofs, etc., as well as any qualifiers.
1384  const Type *getUnqualifiedDesugaredType() const;
1385
1386  /// More type predicates useful for type checking/promotion
1387  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1388
1389  /// isSignedIntegerType - Return true if this is an integer type that is
1390  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1391  /// an enum decl which has a signed representation, or a vector of signed
1392  /// integer element type.
1393  bool isSignedIntegerType() const;
1394
1395  /// isUnsignedIntegerType - Return true if this is an integer type that is
1396  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1397  /// decl which has an unsigned representation, or a vector of unsigned integer
1398  /// element type.
1399  bool isUnsignedIntegerType() const;
1400
1401  /// isConstantSizeType - Return true if this is not a variable sized type,
1402  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1403  /// incomplete types.
1404  bool isConstantSizeType() const;
1405
1406  /// isSpecifierType - Returns true if this type can be represented by some
1407  /// set of type specifiers.
1408  bool isSpecifierType() const;
1409
1410  /// \brief Determine the linkage of this type.
1411  Linkage getLinkage() const;
1412
1413  /// \brief Determine the visibility of this type.
1414  Visibility getVisibility() const;
1415
1416  /// \brief Determine the linkage and visibility of this type.
1417  std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
1418
1419  /// \brief Note that the linkage is no longer known.
1420  void ClearLinkageCache();
1421
1422  const char *getTypeClassName() const;
1423
1424  QualType getCanonicalTypeInternal() const {
1425    return CanonicalType;
1426  }
1427  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1428  void dump() const;
1429  static bool classof(const Type *) { return true; }
1430
1431  friend class ASTReader;
1432  friend class ASTWriter;
1433};
1434
1435template <> inline const TypedefType *Type::getAs() const {
1436  return dyn_cast<TypedefType>(this);
1437}
1438
1439// We can do canonical leaf types faster, because we don't have to
1440// worry about preserving child type decoration.
1441#define TYPE(Class, Base)
1442#define LEAF_TYPE(Class) \
1443template <> inline const Class##Type *Type::getAs() const { \
1444  return dyn_cast<Class##Type>(CanonicalType); \
1445} \
1446template <> inline const Class##Type *Type::castAs() const { \
1447  return cast<Class##Type>(CanonicalType); \
1448}
1449#include "clang/AST/TypeNodes.def"
1450
1451
1452/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1453/// types are always canonical and have a literal name field.
1454class BuiltinType : public Type {
1455public:
1456  enum Kind {
1457    Void,
1458
1459    Bool,     // This is bool and/or _Bool.
1460    Char_U,   // This is 'char' for targets where char is unsigned.
1461    UChar,    // This is explicitly qualified unsigned char.
1462    WChar_U,  // This is 'wchar_t' for C++, when unsigned.
1463    Char16,   // This is 'char16_t' for C++.
1464    Char32,   // This is 'char32_t' for C++.
1465    UShort,
1466    UInt,
1467    ULong,
1468    ULongLong,
1469    UInt128,  // __uint128_t
1470
1471    Char_S,   // This is 'char' for targets where char is signed.
1472    SChar,    // This is explicitly qualified signed char.
1473    WChar_S,  // This is 'wchar_t' for C++, when signed.
1474    Short,
1475    Int,
1476    Long,
1477    LongLong,
1478    Int128,   // __int128_t
1479
1480    Float, Double, LongDouble,
1481
1482    NullPtr,  // This is the type of C++0x 'nullptr'.
1483
1484    /// This represents the type of an expression whose type is
1485    /// totally unknown, e.g. 'T::foo'.  It is permitted for this to
1486    /// appear in situations where the structure of the type is
1487    /// theoretically deducible.
1488    Dependent,
1489
1490    Overload,  // This represents the type of an overloaded function declaration.
1491
1492    /// The primitive Objective C 'id' type.  The type pointed to by the
1493    /// user-visible 'id' type.  Only ever shows up in an AST as the base
1494    /// type of an ObjCObjectType.
1495    ObjCId,
1496
1497    /// The primitive Objective C 'Class' type.  The type pointed to by the
1498    /// user-visible 'Class' type.  Only ever shows up in an AST as the
1499    /// base type of an ObjCObjectType.
1500    ObjCClass,
1501
1502    ObjCSel    // This represents the ObjC 'SEL' type.
1503  };
1504
1505public:
1506  BuiltinType(Kind K)
1507    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1508           /*VariablyModified=*/false,
1509           /*Unexpanded paramter pack=*/false) {
1510    BuiltinTypeBits.Kind = K;
1511  }
1512
1513  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1514  const char *getName(const LangOptions &LO) const;
1515
1516  bool isSugared() const { return false; }
1517  QualType desugar() const { return QualType(this, 0); }
1518
1519  bool isInteger() const {
1520    return getKind() >= Bool && getKind() <= Int128;
1521  }
1522
1523  bool isSignedInteger() const {
1524    return getKind() >= Char_S && getKind() <= Int128;
1525  }
1526
1527  bool isUnsignedInteger() const {
1528    return getKind() >= Bool && getKind() <= UInt128;
1529  }
1530
1531  bool isFloatingPoint() const {
1532    return getKind() >= Float && getKind() <= LongDouble;
1533  }
1534
1535  /// Determines whether this type is a "forbidden" placeholder type,
1536  /// i.e. a type which cannot appear in arbitrary positions in a
1537  /// fully-formed expression.
1538  bool isPlaceholderType() const {
1539    return getKind() == Overload;
1540  }
1541
1542  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1543  static bool classof(const BuiltinType *) { return true; }
1544};
1545
1546/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1547/// types (_Complex float etc) as well as the GCC integer complex extensions.
1548///
1549class ComplexType : public Type, public llvm::FoldingSetNode {
1550  QualType ElementType;
1551  ComplexType(QualType Element, QualType CanonicalPtr) :
1552    Type(Complex, CanonicalPtr, Element->isDependentType(),
1553         Element->isVariablyModifiedType(),
1554         Element->containsUnexpandedParameterPack()),
1555    ElementType(Element) {
1556  }
1557  friend class ASTContext;  // ASTContext creates these.
1558
1559public:
1560  QualType getElementType() const { return ElementType; }
1561
1562  bool isSugared() const { return false; }
1563  QualType desugar() const { return QualType(this, 0); }
1564
1565  void Profile(llvm::FoldingSetNodeID &ID) {
1566    Profile(ID, getElementType());
1567  }
1568  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1569    ID.AddPointer(Element.getAsOpaquePtr());
1570  }
1571
1572  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1573  static bool classof(const ComplexType *) { return true; }
1574};
1575
1576/// ParenType - Sugar for parentheses used when specifying types.
1577///
1578class ParenType : public Type, public llvm::FoldingSetNode {
1579  QualType Inner;
1580
1581  ParenType(QualType InnerType, QualType CanonType) :
1582    Type(Paren, CanonType, InnerType->isDependentType(),
1583         InnerType->isVariablyModifiedType(),
1584         InnerType->containsUnexpandedParameterPack()),
1585    Inner(InnerType) {
1586  }
1587  friend class ASTContext;  // ASTContext creates these.
1588
1589public:
1590
1591  QualType getInnerType() const { return Inner; }
1592
1593  bool isSugared() const { return true; }
1594  QualType desugar() const { return getInnerType(); }
1595
1596  void Profile(llvm::FoldingSetNodeID &ID) {
1597    Profile(ID, getInnerType());
1598  }
1599  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1600    Inner.Profile(ID);
1601  }
1602
1603  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1604  static bool classof(const ParenType *) { return true; }
1605};
1606
1607/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1608///
1609class PointerType : public Type, public llvm::FoldingSetNode {
1610  QualType PointeeType;
1611
1612  PointerType(QualType Pointee, QualType CanonicalPtr) :
1613    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1614         Pointee->isVariablyModifiedType(),
1615         Pointee->containsUnexpandedParameterPack()),
1616    PointeeType(Pointee) {
1617  }
1618  friend class ASTContext;  // ASTContext creates these.
1619
1620public:
1621
1622  QualType getPointeeType() const { return PointeeType; }
1623
1624  bool isSugared() const { return false; }
1625  QualType desugar() const { return QualType(this, 0); }
1626
1627  void Profile(llvm::FoldingSetNodeID &ID) {
1628    Profile(ID, getPointeeType());
1629  }
1630  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1631    ID.AddPointer(Pointee.getAsOpaquePtr());
1632  }
1633
1634  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1635  static bool classof(const PointerType *) { return true; }
1636};
1637
1638/// BlockPointerType - pointer to a block type.
1639/// This type is to represent types syntactically represented as
1640/// "void (^)(int)", etc. Pointee is required to always be a function type.
1641///
1642class BlockPointerType : public Type, public llvm::FoldingSetNode {
1643  QualType PointeeType;  // Block is some kind of pointer type
1644  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1645    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1646         Pointee->isVariablyModifiedType(),
1647         Pointee->containsUnexpandedParameterPack()),
1648    PointeeType(Pointee) {
1649  }
1650  friend class ASTContext;  // ASTContext creates these.
1651
1652public:
1653
1654  // Get the pointee type. Pointee is required to always be a function type.
1655  QualType getPointeeType() const { return PointeeType; }
1656
1657  bool isSugared() const { return false; }
1658  QualType desugar() const { return QualType(this, 0); }
1659
1660  void Profile(llvm::FoldingSetNodeID &ID) {
1661      Profile(ID, getPointeeType());
1662  }
1663  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1664      ID.AddPointer(Pointee.getAsOpaquePtr());
1665  }
1666
1667  static bool classof(const Type *T) {
1668    return T->getTypeClass() == BlockPointer;
1669  }
1670  static bool classof(const BlockPointerType *) { return true; }
1671};
1672
1673/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1674///
1675class ReferenceType : public Type, public llvm::FoldingSetNode {
1676  QualType PointeeType;
1677
1678protected:
1679  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1680                bool SpelledAsLValue) :
1681    Type(tc, CanonicalRef, Referencee->isDependentType(),
1682         Referencee->isVariablyModifiedType(),
1683         Referencee->containsUnexpandedParameterPack()),
1684    PointeeType(Referencee)
1685  {
1686    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
1687    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
1688  }
1689
1690public:
1691  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
1692  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
1693
1694  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1695  QualType getPointeeType() const {
1696    // FIXME: this might strip inner qualifiers; okay?
1697    const ReferenceType *T = this;
1698    while (T->isInnerRef())
1699      T = T->PointeeType->castAs<ReferenceType>();
1700    return T->PointeeType;
1701  }
1702
1703  void Profile(llvm::FoldingSetNodeID &ID) {
1704    Profile(ID, PointeeType, isSpelledAsLValue());
1705  }
1706  static void Profile(llvm::FoldingSetNodeID &ID,
1707                      QualType Referencee,
1708                      bool SpelledAsLValue) {
1709    ID.AddPointer(Referencee.getAsOpaquePtr());
1710    ID.AddBoolean(SpelledAsLValue);
1711  }
1712
1713  static bool classof(const Type *T) {
1714    return T->getTypeClass() == LValueReference ||
1715           T->getTypeClass() == RValueReference;
1716  }
1717  static bool classof(const ReferenceType *) { return true; }
1718};
1719
1720/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1721///
1722class LValueReferenceType : public ReferenceType {
1723  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1724                      bool SpelledAsLValue) :
1725    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1726  {}
1727  friend class ASTContext; // ASTContext creates these
1728public:
1729  bool isSugared() const { return false; }
1730  QualType desugar() const { return QualType(this, 0); }
1731
1732  static bool classof(const Type *T) {
1733    return T->getTypeClass() == LValueReference;
1734  }
1735  static bool classof(const LValueReferenceType *) { return true; }
1736};
1737
1738/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1739///
1740class RValueReferenceType : public ReferenceType {
1741  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1742    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1743  }
1744  friend class ASTContext; // ASTContext creates these
1745public:
1746  bool isSugared() const { return false; }
1747  QualType desugar() const { return QualType(this, 0); }
1748
1749  static bool classof(const Type *T) {
1750    return T->getTypeClass() == RValueReference;
1751  }
1752  static bool classof(const RValueReferenceType *) { return true; }
1753};
1754
1755/// MemberPointerType - C++ 8.3.3 - Pointers to members
1756///
1757class MemberPointerType : public Type, public llvm::FoldingSetNode {
1758  QualType PointeeType;
1759  /// The class of which the pointee is a member. Must ultimately be a
1760  /// RecordType, but could be a typedef or a template parameter too.
1761  const Type *Class;
1762
1763  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1764    Type(MemberPointer, CanonicalPtr,
1765         Cls->isDependentType() || Pointee->isDependentType(),
1766         Pointee->isVariablyModifiedType(),
1767         (Cls->containsUnexpandedParameterPack() ||
1768          Pointee->containsUnexpandedParameterPack())),
1769    PointeeType(Pointee), Class(Cls) {
1770  }
1771  friend class ASTContext; // ASTContext creates these.
1772
1773public:
1774  QualType getPointeeType() const { return PointeeType; }
1775
1776  /// Returns true if the member type (i.e. the pointee type) is a
1777  /// function type rather than a data-member type.
1778  bool isMemberFunctionPointer() const {
1779    return PointeeType->isFunctionProtoType();
1780  }
1781
1782  /// Returns true if the member type (i.e. the pointee type) is a
1783  /// data type rather than a function type.
1784  bool isMemberDataPointer() const {
1785    return !PointeeType->isFunctionProtoType();
1786  }
1787
1788  const Type *getClass() const { return Class; }
1789
1790  bool isSugared() const { return false; }
1791  QualType desugar() const { return QualType(this, 0); }
1792
1793  void Profile(llvm::FoldingSetNodeID &ID) {
1794    Profile(ID, getPointeeType(), getClass());
1795  }
1796  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1797                      const Type *Class) {
1798    ID.AddPointer(Pointee.getAsOpaquePtr());
1799    ID.AddPointer(Class);
1800  }
1801
1802  static bool classof(const Type *T) {
1803    return T->getTypeClass() == MemberPointer;
1804  }
1805  static bool classof(const MemberPointerType *) { return true; }
1806};
1807
1808/// ArrayType - C99 6.7.5.2 - Array Declarators.
1809///
1810class ArrayType : public Type, public llvm::FoldingSetNode {
1811public:
1812  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1813  /// an array with a static size (e.g. int X[static 4]), or an array
1814  /// with a star size (e.g. int X[*]).
1815  /// 'static' is only allowed on function parameters.
1816  enum ArraySizeModifier {
1817    Normal, Static, Star
1818  };
1819private:
1820  /// ElementType - The element type of the array.
1821  QualType ElementType;
1822
1823protected:
1824  // C++ [temp.dep.type]p1:
1825  //   A type is dependent if it is...
1826  //     - an array type constructed from any dependent type or whose
1827  //       size is specified by a constant expression that is
1828  //       value-dependent,
1829  ArrayType(TypeClass tc, QualType et, QualType can,
1830            ArraySizeModifier sm, unsigned tq,
1831            bool ContainsUnexpandedParameterPack)
1832    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
1833           (tc == VariableArray || et->isVariablyModifiedType()),
1834           ContainsUnexpandedParameterPack),
1835      ElementType(et) {
1836    ArrayTypeBits.IndexTypeQuals = tq;
1837    ArrayTypeBits.SizeModifier = sm;
1838  }
1839
1840  friend class ASTContext;  // ASTContext creates these.
1841
1842public:
1843  QualType getElementType() const { return ElementType; }
1844  ArraySizeModifier getSizeModifier() const {
1845    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
1846  }
1847  Qualifiers getIndexTypeQualifiers() const {
1848    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
1849  }
1850  unsigned getIndexTypeCVRQualifiers() const {
1851    return ArrayTypeBits.IndexTypeQuals;
1852  }
1853
1854  static bool classof(const Type *T) {
1855    return T->getTypeClass() == ConstantArray ||
1856           T->getTypeClass() == VariableArray ||
1857           T->getTypeClass() == IncompleteArray ||
1858           T->getTypeClass() == DependentSizedArray;
1859  }
1860  static bool classof(const ArrayType *) { return true; }
1861};
1862
1863/// ConstantArrayType - This class represents the canonical version of
1864/// C arrays with a specified constant size.  For example, the canonical
1865/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1866/// type is 'int' and the size is 404.
1867class ConstantArrayType : public ArrayType {
1868  llvm::APInt Size; // Allows us to unique the type.
1869
1870  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1871                    ArraySizeModifier sm, unsigned tq)
1872    : ArrayType(ConstantArray, et, can, sm, tq,
1873                et->containsUnexpandedParameterPack()),
1874      Size(size) {}
1875protected:
1876  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1877                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1878    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
1879      Size(size) {}
1880  friend class ASTContext;  // ASTContext creates these.
1881public:
1882  const llvm::APInt &getSize() const { return Size; }
1883  bool isSugared() const { return false; }
1884  QualType desugar() const { return QualType(this, 0); }
1885
1886
1887  /// \brief Determine the number of bits required to address a member of
1888  // an array with the given element type and number of elements.
1889  static unsigned getNumAddressingBits(ASTContext &Context,
1890                                       QualType ElementType,
1891                                       const llvm::APInt &NumElements);
1892
1893  /// \brief Determine the maximum number of active bits that an array's size
1894  /// can require, which limits the maximum size of the array.
1895  static unsigned getMaxSizeBits(ASTContext &Context);
1896
1897  void Profile(llvm::FoldingSetNodeID &ID) {
1898    Profile(ID, getElementType(), getSize(),
1899            getSizeModifier(), getIndexTypeCVRQualifiers());
1900  }
1901  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1902                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1903                      unsigned TypeQuals) {
1904    ID.AddPointer(ET.getAsOpaquePtr());
1905    ID.AddInteger(ArraySize.getZExtValue());
1906    ID.AddInteger(SizeMod);
1907    ID.AddInteger(TypeQuals);
1908  }
1909  static bool classof(const Type *T) {
1910    return T->getTypeClass() == ConstantArray;
1911  }
1912  static bool classof(const ConstantArrayType *) { return true; }
1913};
1914
1915/// IncompleteArrayType - This class represents C arrays with an unspecified
1916/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1917/// type is 'int' and the size is unspecified.
1918class IncompleteArrayType : public ArrayType {
1919
1920  IncompleteArrayType(QualType et, QualType can,
1921                      ArraySizeModifier sm, unsigned tq)
1922    : ArrayType(IncompleteArray, et, can, sm, tq,
1923                et->containsUnexpandedParameterPack()) {}
1924  friend class ASTContext;  // ASTContext creates these.
1925public:
1926  bool isSugared() const { return false; }
1927  QualType desugar() const { return QualType(this, 0); }
1928
1929  static bool classof(const Type *T) {
1930    return T->getTypeClass() == IncompleteArray;
1931  }
1932  static bool classof(const IncompleteArrayType *) { return true; }
1933
1934  friend class StmtIteratorBase;
1935
1936  void Profile(llvm::FoldingSetNodeID &ID) {
1937    Profile(ID, getElementType(), getSizeModifier(),
1938            getIndexTypeCVRQualifiers());
1939  }
1940
1941  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1942                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1943    ID.AddPointer(ET.getAsOpaquePtr());
1944    ID.AddInteger(SizeMod);
1945    ID.AddInteger(TypeQuals);
1946  }
1947};
1948
1949/// VariableArrayType - This class represents C arrays with a specified size
1950/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1951/// Since the size expression is an arbitrary expression, we store it as such.
1952///
1953/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1954/// should not be: two lexically equivalent variable array types could mean
1955/// different things, for example, these variables do not have the same type
1956/// dynamically:
1957///
1958/// void foo(int x) {
1959///   int Y[x];
1960///   ++x;
1961///   int Z[x];
1962/// }
1963///
1964class VariableArrayType : public ArrayType {
1965  /// SizeExpr - An assignment expression. VLA's are only permitted within
1966  /// a function block.
1967  Stmt *SizeExpr;
1968  /// Brackets - The left and right array brackets.
1969  SourceRange Brackets;
1970
1971  VariableArrayType(QualType et, QualType can, Expr *e,
1972                    ArraySizeModifier sm, unsigned tq,
1973                    SourceRange brackets)
1974    : ArrayType(VariableArray, et, can, sm, tq,
1975                et->containsUnexpandedParameterPack()),
1976      SizeExpr((Stmt*) e), Brackets(brackets) {}
1977  friend class ASTContext;  // ASTContext creates these.
1978
1979public:
1980  Expr *getSizeExpr() const {
1981    // We use C-style casts instead of cast<> here because we do not wish
1982    // to have a dependency of Type.h on Stmt.h/Expr.h.
1983    return (Expr*) SizeExpr;
1984  }
1985  SourceRange getBracketsRange() const { return Brackets; }
1986  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1987  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1988
1989  bool isSugared() const { return false; }
1990  QualType desugar() const { return QualType(this, 0); }
1991
1992  static bool classof(const Type *T) {
1993    return T->getTypeClass() == VariableArray;
1994  }
1995  static bool classof(const VariableArrayType *) { return true; }
1996
1997  friend class StmtIteratorBase;
1998
1999  void Profile(llvm::FoldingSetNodeID &ID) {
2000    assert(0 && "Cannnot unique VariableArrayTypes.");
2001  }
2002};
2003
2004/// DependentSizedArrayType - This type represents an array type in
2005/// C++ whose size is a value-dependent expression. For example:
2006///
2007/// \code
2008/// template<typename T, int Size>
2009/// class array {
2010///   T data[Size];
2011/// };
2012/// \endcode
2013///
2014/// For these types, we won't actually know what the array bound is
2015/// until template instantiation occurs, at which point this will
2016/// become either a ConstantArrayType or a VariableArrayType.
2017class DependentSizedArrayType : public ArrayType {
2018  const ASTContext &Context;
2019
2020  /// \brief An assignment expression that will instantiate to the
2021  /// size of the array.
2022  ///
2023  /// The expression itself might be NULL, in which case the array
2024  /// type will have its size deduced from an initializer.
2025  Stmt *SizeExpr;
2026
2027  /// Brackets - The left and right array brackets.
2028  SourceRange Brackets;
2029
2030  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2031                          Expr *e, ArraySizeModifier sm, unsigned tq,
2032                          SourceRange brackets);
2033
2034  friend class ASTContext;  // ASTContext creates these.
2035
2036public:
2037  Expr *getSizeExpr() const {
2038    // We use C-style casts instead of cast<> here because we do not wish
2039    // to have a dependency of Type.h on Stmt.h/Expr.h.
2040    return (Expr*) SizeExpr;
2041  }
2042  SourceRange getBracketsRange() const { return Brackets; }
2043  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2044  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2045
2046  bool isSugared() const { return false; }
2047  QualType desugar() const { return QualType(this, 0); }
2048
2049  static bool classof(const Type *T) {
2050    return T->getTypeClass() == DependentSizedArray;
2051  }
2052  static bool classof(const DependentSizedArrayType *) { return true; }
2053
2054  friend class StmtIteratorBase;
2055
2056
2057  void Profile(llvm::FoldingSetNodeID &ID) {
2058    Profile(ID, Context, getElementType(),
2059            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2060  }
2061
2062  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2063                      QualType ET, ArraySizeModifier SizeMod,
2064                      unsigned TypeQuals, Expr *E);
2065};
2066
2067/// DependentSizedExtVectorType - This type represent an extended vector type
2068/// where either the type or size is dependent. For example:
2069/// @code
2070/// template<typename T, int Size>
2071/// class vector {
2072///   typedef T __attribute__((ext_vector_type(Size))) type;
2073/// }
2074/// @endcode
2075class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2076  const ASTContext &Context;
2077  Expr *SizeExpr;
2078  /// ElementType - The element type of the array.
2079  QualType ElementType;
2080  SourceLocation loc;
2081
2082  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2083                              QualType can, Expr *SizeExpr, SourceLocation loc);
2084
2085  friend class ASTContext;
2086
2087public:
2088  Expr *getSizeExpr() const { return SizeExpr; }
2089  QualType getElementType() const { return ElementType; }
2090  SourceLocation getAttributeLoc() const { return loc; }
2091
2092  bool isSugared() const { return false; }
2093  QualType desugar() const { return QualType(this, 0); }
2094
2095  static bool classof(const Type *T) {
2096    return T->getTypeClass() == DependentSizedExtVector;
2097  }
2098  static bool classof(const DependentSizedExtVectorType *) { return true; }
2099
2100  void Profile(llvm::FoldingSetNodeID &ID) {
2101    Profile(ID, Context, getElementType(), getSizeExpr());
2102  }
2103
2104  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2105                      QualType ElementType, Expr *SizeExpr);
2106};
2107
2108
2109/// VectorType - GCC generic vector type. This type is created using
2110/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2111/// bytes; or from an Altivec __vector or vector declaration.
2112/// Since the constructor takes the number of vector elements, the
2113/// client is responsible for converting the size into the number of elements.
2114class VectorType : public Type, public llvm::FoldingSetNode {
2115public:
2116  enum VectorKind {
2117    GenericVector,  // not a target-specific vector type
2118    AltiVecVector,  // is AltiVec vector
2119    AltiVecPixel,   // is AltiVec 'vector Pixel'
2120    AltiVecBool,    // is AltiVec 'vector bool ...'
2121    NeonVector,     // is ARM Neon vector
2122    NeonPolyVector  // is ARM Neon polynomial vector
2123  };
2124protected:
2125  /// ElementType - The element type of the vector.
2126  QualType ElementType;
2127
2128  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2129             VectorKind vecKind);
2130
2131  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2132             QualType canonType, VectorKind vecKind);
2133
2134  friend class ASTContext;  // ASTContext creates these.
2135
2136public:
2137
2138  QualType getElementType() const { return ElementType; }
2139  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2140
2141  bool isSugared() const { return false; }
2142  QualType desugar() const { return QualType(this, 0); }
2143
2144  VectorKind getVectorKind() const {
2145    return VectorKind(VectorTypeBits.VecKind);
2146  }
2147
2148  void Profile(llvm::FoldingSetNodeID &ID) {
2149    Profile(ID, getElementType(), getNumElements(),
2150            getTypeClass(), getVectorKind());
2151  }
2152  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2153                      unsigned NumElements, TypeClass TypeClass,
2154                      VectorKind VecKind) {
2155    ID.AddPointer(ElementType.getAsOpaquePtr());
2156    ID.AddInteger(NumElements);
2157    ID.AddInteger(TypeClass);
2158    ID.AddInteger(VecKind);
2159  }
2160
2161  static bool classof(const Type *T) {
2162    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2163  }
2164  static bool classof(const VectorType *) { return true; }
2165};
2166
2167/// ExtVectorType - Extended vector type. This type is created using
2168/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2169/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2170/// class enables syntactic extensions, like Vector Components for accessing
2171/// points, colors, and textures (modeled after OpenGL Shading Language).
2172class ExtVectorType : public VectorType {
2173  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2174    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2175  friend class ASTContext;  // ASTContext creates these.
2176public:
2177  static int getPointAccessorIdx(char c) {
2178    switch (c) {
2179    default: return -1;
2180    case 'x': return 0;
2181    case 'y': return 1;
2182    case 'z': return 2;
2183    case 'w': return 3;
2184    }
2185  }
2186  static int getNumericAccessorIdx(char c) {
2187    switch (c) {
2188      default: return -1;
2189      case '0': return 0;
2190      case '1': return 1;
2191      case '2': return 2;
2192      case '3': return 3;
2193      case '4': return 4;
2194      case '5': return 5;
2195      case '6': return 6;
2196      case '7': return 7;
2197      case '8': return 8;
2198      case '9': return 9;
2199      case 'A':
2200      case 'a': return 10;
2201      case 'B':
2202      case 'b': return 11;
2203      case 'C':
2204      case 'c': return 12;
2205      case 'D':
2206      case 'd': return 13;
2207      case 'E':
2208      case 'e': return 14;
2209      case 'F':
2210      case 'f': return 15;
2211    }
2212  }
2213
2214  static int getAccessorIdx(char c) {
2215    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2216    return getNumericAccessorIdx(c);
2217  }
2218
2219  bool isAccessorWithinNumElements(char c) const {
2220    if (int idx = getAccessorIdx(c)+1)
2221      return unsigned(idx-1) < getNumElements();
2222    return false;
2223  }
2224  bool isSugared() const { return false; }
2225  QualType desugar() const { return QualType(this, 0); }
2226
2227  static bool classof(const Type *T) {
2228    return T->getTypeClass() == ExtVector;
2229  }
2230  static bool classof(const ExtVectorType *) { return true; }
2231};
2232
2233/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2234/// class of FunctionNoProtoType and FunctionProtoType.
2235///
2236class FunctionType : public Type {
2237  // The type returned by the function.
2238  QualType ResultType;
2239
2240 public:
2241  /// ExtInfo - A class which abstracts out some details necessary for
2242  /// making a call.
2243  ///
2244  /// It is not actually used directly for storing this information in
2245  /// a FunctionType, although FunctionType does currently use the
2246  /// same bit-pattern.
2247  ///
2248  // If you add a field (say Foo), other than the obvious places (both,
2249  // constructors, compile failures), what you need to update is
2250  // * Operator==
2251  // * getFoo
2252  // * withFoo
2253  // * functionType. Add Foo, getFoo.
2254  // * ASTContext::getFooType
2255  // * ASTContext::mergeFunctionTypes
2256  // * FunctionNoProtoType::Profile
2257  // * FunctionProtoType::Profile
2258  // * TypePrinter::PrintFunctionProto
2259  // * AST read and write
2260  // * Codegen
2261  class ExtInfo {
2262    // Feel free to rearrange or add bits, but if you go over 8,
2263    // you'll need to adjust both the Bits field below and
2264    // Type::FunctionTypeBitfields.
2265
2266    //   |  CC  |noreturn|regparm
2267    //   |0 .. 2|   3    |4 ..  6
2268    enum { CallConvMask = 0x7 };
2269    enum { NoReturnMask = 0x8 };
2270    enum { RegParmMask = ~(CallConvMask | NoReturnMask),
2271           RegParmOffset = 4 };
2272
2273    unsigned char Bits;
2274
2275    ExtInfo(unsigned Bits) : Bits(static_cast<unsigned char>(Bits)) {}
2276
2277    friend class FunctionType;
2278
2279   public:
2280    // Constructor with no defaults. Use this when you know that you
2281    // have all the elements (when reading an AST file for example).
2282    ExtInfo(bool noReturn, unsigned regParm, CallingConv cc) {
2283      Bits = ((unsigned) cc) |
2284             (noReturn ? NoReturnMask : 0) |
2285             (regParm << RegParmOffset);
2286    }
2287
2288    // Constructor with all defaults. Use when for example creating a
2289    // function know to use defaults.
2290    ExtInfo() : Bits(0) {}
2291
2292    bool getNoReturn() const { return Bits & NoReturnMask; }
2293    unsigned getRegParm() const { return Bits >> RegParmOffset; }
2294    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2295
2296    bool operator==(ExtInfo Other) const {
2297      return Bits == Other.Bits;
2298    }
2299    bool operator!=(ExtInfo Other) const {
2300      return Bits != Other.Bits;
2301    }
2302
2303    // Note that we don't have setters. That is by design, use
2304    // the following with methods instead of mutating these objects.
2305
2306    ExtInfo withNoReturn(bool noReturn) const {
2307      if (noReturn)
2308        return ExtInfo(Bits | NoReturnMask);
2309      else
2310        return ExtInfo(Bits & ~NoReturnMask);
2311    }
2312
2313    ExtInfo withRegParm(unsigned RegParm) const {
2314      return ExtInfo((Bits & ~RegParmMask) | (RegParm << RegParmOffset));
2315    }
2316
2317    ExtInfo withCallingConv(CallingConv cc) const {
2318      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2319    }
2320
2321    void Profile(llvm::FoldingSetNodeID &ID) const {
2322      ID.AddInteger(Bits);
2323    }
2324  };
2325
2326protected:
2327  FunctionType(TypeClass tc, QualType res, bool variadic,
2328               unsigned typeQuals, RefQualifierKind RefQualifier,
2329               QualType Canonical, bool Dependent,
2330               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2331               ExtInfo Info)
2332    : Type(tc, Canonical, Dependent, VariablyModified,
2333           ContainsUnexpandedParameterPack),
2334      ResultType(res) {
2335    FunctionTypeBits.ExtInfo = Info.Bits;
2336    FunctionTypeBits.Variadic = variadic;
2337    FunctionTypeBits.TypeQuals = typeQuals;
2338    FunctionTypeBits.RefQualifier = static_cast<unsigned>(RefQualifier);
2339  }
2340  bool isVariadic() const { return FunctionTypeBits.Variadic; }
2341  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2342
2343  RefQualifierKind getRefQualifier() const {
2344    return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
2345  }
2346
2347public:
2348
2349  QualType getResultType() const { return ResultType; }
2350
2351  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2352  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2353  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2354  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2355
2356  /// \brief Determine the type of an expression that calls a function of
2357  /// this type.
2358  QualType getCallResultType(ASTContext &Context) const {
2359    return getResultType().getNonLValueExprType(Context);
2360  }
2361
2362  static llvm::StringRef getNameForCallConv(CallingConv CC);
2363
2364  static bool classof(const Type *T) {
2365    return T->getTypeClass() == FunctionNoProto ||
2366           T->getTypeClass() == FunctionProto;
2367  }
2368  static bool classof(const FunctionType *) { return true; }
2369};
2370
2371/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2372/// no information available about its arguments.
2373class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2374  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2375    : FunctionType(FunctionNoProto, Result, false, 0, RQ_None, Canonical,
2376                   /*Dependent=*/false, Result->isVariablyModifiedType(),
2377                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2378
2379  friend class ASTContext;  // ASTContext creates these.
2380
2381public:
2382  // No additional state past what FunctionType provides.
2383
2384  bool isSugared() const { return false; }
2385  QualType desugar() const { return QualType(this, 0); }
2386
2387  void Profile(llvm::FoldingSetNodeID &ID) {
2388    Profile(ID, getResultType(), getExtInfo());
2389  }
2390  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2391                      ExtInfo Info) {
2392    Info.Profile(ID);
2393    ID.AddPointer(ResultType.getAsOpaquePtr());
2394  }
2395
2396  static bool classof(const Type *T) {
2397    return T->getTypeClass() == FunctionNoProto;
2398  }
2399  static bool classof(const FunctionNoProtoType *) { return true; }
2400};
2401
2402/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2403/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2404/// arguments, not as having a single void argument. Such a type can have an
2405/// exception specification, but this specification is not part of the canonical
2406/// type.
2407class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2408public:
2409  /// ExtProtoInfo - Extra information about a function prototype.
2410  struct ExtProtoInfo {
2411    ExtProtoInfo() :
2412      Variadic(false), ExceptionSpecType(EST_None), TypeQuals(0),
2413      RefQualifier(RQ_None), NumExceptions(0), Exceptions(0), NoexceptExpr(0) {}
2414
2415    FunctionType::ExtInfo ExtInfo;
2416    bool Variadic;
2417    ExceptionSpecificationType ExceptionSpecType;
2418    unsigned char TypeQuals;
2419    RefQualifierKind RefQualifier;
2420    unsigned NumExceptions;
2421    const QualType *Exceptions;
2422    Expr *NoexceptExpr;
2423  };
2424
2425private:
2426  /// \brief Determine whether there are any argument types that
2427  /// contain an unexpanded parameter pack.
2428  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2429                                                 unsigned numArgs) {
2430    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2431      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2432        return true;
2433
2434    return false;
2435  }
2436
2437  FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
2438                    QualType canonical, const ExtProtoInfo &epi);
2439
2440  /// NumArgs - The number of arguments this function has, not counting '...'.
2441  unsigned NumArgs : 20;
2442
2443  /// NumExceptions - The number of types in the exception spec, if any.
2444  unsigned NumExceptions : 9;
2445
2446  /// ExceptionSpecType - The type of exception specification this function has.
2447  unsigned ExceptionSpecType : 3;
2448
2449  /// ArgInfo - There is an variable size array after the class in memory that
2450  /// holds the argument types.
2451
2452  /// Exceptions - There is another variable size array after ArgInfo that
2453  /// holds the exception types.
2454
2455  /// NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2456  /// to the expression in the noexcept() specifier.
2457
2458  friend class ASTContext;  // ASTContext creates these.
2459
2460public:
2461  unsigned getNumArgs() const { return NumArgs; }
2462  QualType getArgType(unsigned i) const {
2463    assert(i < NumArgs && "Invalid argument number!");
2464    return arg_type_begin()[i];
2465  }
2466
2467  ExtProtoInfo getExtProtoInfo() const {
2468    ExtProtoInfo EPI;
2469    EPI.ExtInfo = getExtInfo();
2470    EPI.Variadic = isVariadic();
2471    EPI.ExceptionSpecType = getExceptionSpecType();
2472    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2473    EPI.RefQualifier = getRefQualifier();
2474    if (EPI.ExceptionSpecType == EST_Dynamic) {
2475      EPI.NumExceptions = NumExceptions;
2476      EPI.Exceptions = exception_begin();
2477    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2478      EPI.NoexceptExpr = getNoexceptExpr();
2479    }
2480    return EPI;
2481  }
2482
2483  /// \brief Get the kind of exception specification on this function.
2484  ExceptionSpecificationType getExceptionSpecType() const {
2485    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2486  }
2487  /// \brief Return whether this function has any kind of exception spec.
2488  bool hasExceptionSpec() const {
2489    return getExceptionSpecType() != EST_None;
2490  }
2491  /// \brief Return whether this function has a dynamic (throw) exception spec.
2492  bool hasDynamicExceptionSpec() const {
2493    return isDynamicExceptionSpec(getExceptionSpecType());
2494  }
2495  /// \brief Return whther this function has a noexcept exception spec.
2496  bool hasNoexceptExceptionSpec() const {
2497    return isNoexceptExceptionSpec(getExceptionSpecType());
2498  }
2499  /// \brief Result type of getNoexceptSpec().
2500  enum NoexceptResult {
2501    NR_NoNoexcept,  ///< There is no noexcept specifier.
2502    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2503    NR_Dependent,   ///< The noexcept specifier is dependent.
2504    NR_Throw,       ///< The noexcept specifier evaluates to false.
2505    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2506  };
2507  /// \brief Get the meaning of the noexcept spec on this function, if any.
2508  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2509  unsigned getNumExceptions() const { return NumExceptions; }
2510  QualType getExceptionType(unsigned i) const {
2511    assert(i < NumExceptions && "Invalid exception number!");
2512    return exception_begin()[i];
2513  }
2514  Expr *getNoexceptExpr() const {
2515    if (getExceptionSpecType() != EST_ComputedNoexcept)
2516      return 0;
2517    // NoexceptExpr sits where the arguments end.
2518    return *reinterpret_cast<Expr *const *>(arg_type_end());
2519  }
2520  bool isNothrow(ASTContext &Ctx) const {
2521    ExceptionSpecificationType EST = getExceptionSpecType();
2522    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2523      return true;
2524    if (EST != EST_ComputedNoexcept)
2525      return false;
2526    return getNoexceptSpec(Ctx) == NR_Nothrow;
2527  }
2528
2529  using FunctionType::isVariadic;
2530
2531  /// \brief Determines whether this function prototype contains a
2532  /// parameter pack at the end.
2533  ///
2534  /// A function template whose last parameter is a parameter pack can be
2535  /// called with an arbitrary number of arguments, much like a variadic
2536  /// function. However,
2537  bool isTemplateVariadic() const;
2538
2539  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2540
2541
2542  /// \brief Retrieve the ref-qualifier associated with this function type.
2543  RefQualifierKind getRefQualifier() const {
2544    return FunctionType::getRefQualifier();
2545  }
2546
2547  typedef const QualType *arg_type_iterator;
2548  arg_type_iterator arg_type_begin() const {
2549    return reinterpret_cast<const QualType *>(this+1);
2550  }
2551  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2552
2553  typedef const QualType *exception_iterator;
2554  exception_iterator exception_begin() const {
2555    // exceptions begin where arguments end
2556    return arg_type_end();
2557  }
2558  exception_iterator exception_end() const {
2559    if (getExceptionSpecType() != EST_Dynamic)
2560      return exception_begin();
2561    return exception_begin() + NumExceptions;
2562  }
2563
2564  bool isSugared() const { return false; }
2565  QualType desugar() const { return QualType(this, 0); }
2566
2567  static bool classof(const Type *T) {
2568    return T->getTypeClass() == FunctionProto;
2569  }
2570  static bool classof(const FunctionProtoType *) { return true; }
2571
2572  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
2573  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2574                      arg_type_iterator ArgTys, unsigned NumArgs,
2575                      const ExtProtoInfo &EPI, const ASTContext &Context);
2576};
2577
2578
2579/// \brief Represents the dependent type named by a dependently-scoped
2580/// typename using declaration, e.g.
2581///   using typename Base<T>::foo;
2582/// Template instantiation turns these into the underlying type.
2583class UnresolvedUsingType : public Type {
2584  UnresolvedUsingTypenameDecl *Decl;
2585
2586  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2587    : Type(UnresolvedUsing, QualType(), true, false,
2588           /*ContainsUnexpandedParameterPack=*/false),
2589      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2590  friend class ASTContext; // ASTContext creates these.
2591public:
2592
2593  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2594
2595  bool isSugared() const { return false; }
2596  QualType desugar() const { return QualType(this, 0); }
2597
2598  static bool classof(const Type *T) {
2599    return T->getTypeClass() == UnresolvedUsing;
2600  }
2601  static bool classof(const UnresolvedUsingType *) { return true; }
2602
2603  void Profile(llvm::FoldingSetNodeID &ID) {
2604    return Profile(ID, Decl);
2605  }
2606  static void Profile(llvm::FoldingSetNodeID &ID,
2607                      UnresolvedUsingTypenameDecl *D) {
2608    ID.AddPointer(D);
2609  }
2610};
2611
2612
2613class TypedefType : public Type {
2614  TypedefDecl *Decl;
2615protected:
2616  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
2617    : Type(tc, can, can->isDependentType(), can->isVariablyModifiedType(),
2618           /*ContainsUnexpandedParameterPack=*/false),
2619      Decl(const_cast<TypedefDecl*>(D)) {
2620    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2621  }
2622  friend class ASTContext;  // ASTContext creates these.
2623public:
2624
2625  TypedefDecl *getDecl() const { return Decl; }
2626
2627  bool isSugared() const { return true; }
2628  QualType desugar() const;
2629
2630  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2631  static bool classof(const TypedefType *) { return true; }
2632};
2633
2634/// TypeOfExprType (GCC extension).
2635class TypeOfExprType : public Type {
2636  Expr *TOExpr;
2637
2638protected:
2639  TypeOfExprType(Expr *E, QualType can = QualType());
2640  friend class ASTContext;  // ASTContext creates these.
2641public:
2642  Expr *getUnderlyingExpr() const { return TOExpr; }
2643
2644  /// \brief Remove a single level of sugar.
2645  QualType desugar() const;
2646
2647  /// \brief Returns whether this type directly provides sugar.
2648  bool isSugared() const { return true; }
2649
2650  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2651  static bool classof(const TypeOfExprType *) { return true; }
2652};
2653
2654/// \brief Internal representation of canonical, dependent
2655/// typeof(expr) types.
2656///
2657/// This class is used internally by the ASTContext to manage
2658/// canonical, dependent types, only. Clients will only see instances
2659/// of this class via TypeOfExprType nodes.
2660class DependentTypeOfExprType
2661  : public TypeOfExprType, public llvm::FoldingSetNode {
2662  const ASTContext &Context;
2663
2664public:
2665  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
2666    : TypeOfExprType(E), Context(Context) { }
2667
2668  bool isSugared() const { return false; }
2669  QualType desugar() const { return QualType(this, 0); }
2670
2671  void Profile(llvm::FoldingSetNodeID &ID) {
2672    Profile(ID, Context, getUnderlyingExpr());
2673  }
2674
2675  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2676                      Expr *E);
2677};
2678
2679/// TypeOfType (GCC extension).
2680class TypeOfType : public Type {
2681  QualType TOType;
2682  TypeOfType(QualType T, QualType can)
2683    : Type(TypeOf, can, T->isDependentType(), T->isVariablyModifiedType(),
2684           T->containsUnexpandedParameterPack()),
2685      TOType(T) {
2686    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2687  }
2688  friend class ASTContext;  // ASTContext creates these.
2689public:
2690  QualType getUnderlyingType() const { return TOType; }
2691
2692  /// \brief Remove a single level of sugar.
2693  QualType desugar() const { return getUnderlyingType(); }
2694
2695  /// \brief Returns whether this type directly provides sugar.
2696  bool isSugared() const { return true; }
2697
2698  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2699  static bool classof(const TypeOfType *) { return true; }
2700};
2701
2702/// DecltypeType (C++0x)
2703class DecltypeType : public Type {
2704  Expr *E;
2705
2706  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2707  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2708  // from it.
2709  QualType UnderlyingType;
2710
2711protected:
2712  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2713  friend class ASTContext;  // ASTContext creates these.
2714public:
2715  Expr *getUnderlyingExpr() const { return E; }
2716  QualType getUnderlyingType() const { return UnderlyingType; }
2717
2718  /// \brief Remove a single level of sugar.
2719  QualType desugar() const { return getUnderlyingType(); }
2720
2721  /// \brief Returns whether this type directly provides sugar.
2722  bool isSugared() const { return !isDependentType(); }
2723
2724  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2725  static bool classof(const DecltypeType *) { return true; }
2726};
2727
2728/// \brief Internal representation of canonical, dependent
2729/// decltype(expr) types.
2730///
2731/// This class is used internally by the ASTContext to manage
2732/// canonical, dependent types, only. Clients will only see instances
2733/// of this class via DecltypeType nodes.
2734class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2735  const ASTContext &Context;
2736
2737public:
2738  DependentDecltypeType(const ASTContext &Context, Expr *E);
2739
2740  bool isSugared() const { return false; }
2741  QualType desugar() const { return QualType(this, 0); }
2742
2743  void Profile(llvm::FoldingSetNodeID &ID) {
2744    Profile(ID, Context, getUnderlyingExpr());
2745  }
2746
2747  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2748                      Expr *E);
2749};
2750
2751class TagType : public Type {
2752  /// Stores the TagDecl associated with this type. The decl may point to any
2753  /// TagDecl that declares the entity.
2754  TagDecl * decl;
2755
2756protected:
2757  TagType(TypeClass TC, const TagDecl *D, QualType can);
2758
2759public:
2760  TagDecl *getDecl() const;
2761
2762  /// @brief Determines whether this type is in the process of being
2763  /// defined.
2764  bool isBeingDefined() const;
2765
2766  static bool classof(const Type *T) {
2767    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2768  }
2769  static bool classof(const TagType *) { return true; }
2770  static bool classof(const RecordType *) { return true; }
2771  static bool classof(const EnumType *) { return true; }
2772};
2773
2774/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2775/// to detect TagType objects of structs/unions/classes.
2776class RecordType : public TagType {
2777protected:
2778  explicit RecordType(const RecordDecl *D)
2779    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2780  explicit RecordType(TypeClass TC, RecordDecl *D)
2781    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2782  friend class ASTContext;   // ASTContext creates these.
2783public:
2784
2785  RecordDecl *getDecl() const {
2786    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2787  }
2788
2789  // FIXME: This predicate is a helper to QualType/Type. It needs to
2790  // recursively check all fields for const-ness. If any field is declared
2791  // const, it needs to return false.
2792  bool hasConstFields() const { return false; }
2793
2794  bool isSugared() const { return false; }
2795  QualType desugar() const { return QualType(this, 0); }
2796
2797  static bool classof(const TagType *T);
2798  static bool classof(const Type *T) {
2799    return isa<TagType>(T) && classof(cast<TagType>(T));
2800  }
2801  static bool classof(const RecordType *) { return true; }
2802};
2803
2804/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2805/// to detect TagType objects of enums.
2806class EnumType : public TagType {
2807  explicit EnumType(const EnumDecl *D)
2808    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2809  friend class ASTContext;   // ASTContext creates these.
2810public:
2811
2812  EnumDecl *getDecl() const {
2813    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2814  }
2815
2816  bool isSugared() const { return false; }
2817  QualType desugar() const { return QualType(this, 0); }
2818
2819  static bool classof(const TagType *T);
2820  static bool classof(const Type *T) {
2821    return isa<TagType>(T) && classof(cast<TagType>(T));
2822  }
2823  static bool classof(const EnumType *) { return true; }
2824};
2825
2826/// AttributedType - An attributed type is a type to which a type
2827/// attribute has been applied.  The "modified type" is the
2828/// fully-sugared type to which the attributed type was applied;
2829/// generally it is not canonically equivalent to the attributed type.
2830/// The "equivalent type" is the minimally-desugared type which the
2831/// type is canonically equivalent to.
2832///
2833/// For example, in the following attributed type:
2834///     int32_t __attribute__((vector_size(16)))
2835///   - the modified type is the TypedefType for int32_t
2836///   - the equivalent type is VectorType(16, int32_t)
2837///   - the canonical type is VectorType(16, int)
2838class AttributedType : public Type, public llvm::FoldingSetNode {
2839public:
2840  // It is really silly to have yet another attribute-kind enum, but
2841  // clang::attr::Kind doesn't currently cover the pure type attrs.
2842  enum Kind {
2843    // Expression operand.
2844    attr_address_space,
2845    attr_regparm,
2846    attr_vector_size,
2847    attr_neon_vector_type,
2848    attr_neon_polyvector_type,
2849
2850    FirstExprOperandKind = attr_address_space,
2851    LastExprOperandKind = attr_neon_polyvector_type,
2852
2853    // Enumerated operand (string or keyword).
2854    attr_objc_gc,
2855
2856    FirstEnumOperandKind = attr_objc_gc,
2857    LastEnumOperandKind = attr_objc_gc,
2858
2859    // No operand.
2860    attr_noreturn,
2861    attr_cdecl,
2862    attr_fastcall,
2863    attr_stdcall,
2864    attr_thiscall,
2865    attr_pascal
2866  };
2867
2868private:
2869  QualType ModifiedType;
2870  QualType EquivalentType;
2871
2872  friend class ASTContext; // creates these
2873
2874  AttributedType(QualType canon, Kind attrKind,
2875                 QualType modified, QualType equivalent)
2876    : Type(Attributed, canon, canon->isDependentType(),
2877           canon->isVariablyModifiedType(),
2878           canon->containsUnexpandedParameterPack()),
2879      ModifiedType(modified), EquivalentType(equivalent) {
2880    AttributedTypeBits.AttrKind = attrKind;
2881  }
2882
2883public:
2884  Kind getAttrKind() const {
2885    return static_cast<Kind>(AttributedTypeBits.AttrKind);
2886  }
2887
2888  QualType getModifiedType() const { return ModifiedType; }
2889  QualType getEquivalentType() const { return EquivalentType; }
2890
2891  bool isSugared() const { return true; }
2892  QualType desugar() const { return getEquivalentType(); }
2893
2894  void Profile(llvm::FoldingSetNodeID &ID) {
2895    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
2896  }
2897
2898  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
2899                      QualType modified, QualType equivalent) {
2900    ID.AddInteger(attrKind);
2901    ID.AddPointer(modified.getAsOpaquePtr());
2902    ID.AddPointer(equivalent.getAsOpaquePtr());
2903  }
2904
2905  static bool classof(const Type *T) {
2906    return T->getTypeClass() == Attributed;
2907  }
2908  static bool classof(const AttributedType *T) { return true; }
2909};
2910
2911class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2912  unsigned Depth : 15;
2913  unsigned ParameterPack : 1;
2914  unsigned Index : 16;
2915  IdentifierInfo *Name;
2916
2917  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2918                       QualType Canon)
2919    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
2920           /*VariablyModified=*/false, PP),
2921      Depth(D), ParameterPack(PP), Index(I), Name(N) { }
2922
2923  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2924    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true,
2925           /*VariablyModified=*/false, PP),
2926      Depth(D), ParameterPack(PP), Index(I), Name(0) { }
2927
2928  friend class ASTContext;  // ASTContext creates these
2929
2930public:
2931  unsigned getDepth() const { return Depth; }
2932  unsigned getIndex() const { return Index; }
2933  bool isParameterPack() const { return ParameterPack; }
2934  IdentifierInfo *getName() const { return Name; }
2935
2936  bool isSugared() const { return false; }
2937  QualType desugar() const { return QualType(this, 0); }
2938
2939  void Profile(llvm::FoldingSetNodeID &ID) {
2940    Profile(ID, Depth, Index, ParameterPack, Name);
2941  }
2942
2943  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2944                      unsigned Index, bool ParameterPack,
2945                      IdentifierInfo *Name) {
2946    ID.AddInteger(Depth);
2947    ID.AddInteger(Index);
2948    ID.AddBoolean(ParameterPack);
2949    ID.AddPointer(Name);
2950  }
2951
2952  static bool classof(const Type *T) {
2953    return T->getTypeClass() == TemplateTypeParm;
2954  }
2955  static bool classof(const TemplateTypeParmType *T) { return true; }
2956};
2957
2958/// \brief Represents the result of substituting a type for a template
2959/// type parameter.
2960///
2961/// Within an instantiated template, all template type parameters have
2962/// been replaced with these.  They are used solely to record that a
2963/// type was originally written as a template type parameter;
2964/// therefore they are never canonical.
2965class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2966  // The original type parameter.
2967  const TemplateTypeParmType *Replaced;
2968
2969  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2970    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
2971           Canon->isVariablyModifiedType(),
2972           Canon->containsUnexpandedParameterPack()),
2973      Replaced(Param) { }
2974
2975  friend class ASTContext;
2976
2977public:
2978  IdentifierInfo *getName() const { return Replaced->getName(); }
2979
2980  /// Gets the template parameter that was substituted for.
2981  const TemplateTypeParmType *getReplacedParameter() const {
2982    return Replaced;
2983  }
2984
2985  /// Gets the type that was substituted for the template
2986  /// parameter.
2987  QualType getReplacementType() const {
2988    return getCanonicalTypeInternal();
2989  }
2990
2991  bool isSugared() const { return true; }
2992  QualType desugar() const { return getReplacementType(); }
2993
2994  void Profile(llvm::FoldingSetNodeID &ID) {
2995    Profile(ID, getReplacedParameter(), getReplacementType());
2996  }
2997  static void Profile(llvm::FoldingSetNodeID &ID,
2998                      const TemplateTypeParmType *Replaced,
2999                      QualType Replacement) {
3000    ID.AddPointer(Replaced);
3001    ID.AddPointer(Replacement.getAsOpaquePtr());
3002  }
3003
3004  static bool classof(const Type *T) {
3005    return T->getTypeClass() == SubstTemplateTypeParm;
3006  }
3007  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
3008};
3009
3010/// \brief Represents the result of substituting a set of types for a template
3011/// type parameter pack.
3012///
3013/// When a pack expansion in the source code contains multiple parameter packs
3014/// and those parameter packs correspond to different levels of template
3015/// parameter lists, this type node is used to represent a template type
3016/// parameter pack from an outer level, which has already had its argument pack
3017/// substituted but that still lives within a pack expansion that itself
3018/// could not be instantiated. When actually performing a substitution into
3019/// that pack expansion (e.g., when all template parameters have corresponding
3020/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3021/// at the current pack substitution index.
3022class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3023  /// \brief The original type parameter.
3024  const TemplateTypeParmType *Replaced;
3025
3026  /// \brief A pointer to the set of template arguments that this
3027  /// parameter pack is instantiated with.
3028  const TemplateArgument *Arguments;
3029
3030  /// \brief The number of template arguments in \c Arguments.
3031  unsigned NumArguments;
3032
3033  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3034                                QualType Canon,
3035                                const TemplateArgument &ArgPack);
3036
3037  friend class ASTContext;
3038
3039public:
3040  IdentifierInfo *getName() const { return Replaced->getName(); }
3041
3042  /// Gets the template parameter that was substituted for.
3043  const TemplateTypeParmType *getReplacedParameter() const {
3044    return Replaced;
3045  }
3046
3047  bool isSugared() const { return false; }
3048  QualType desugar() const { return QualType(this, 0); }
3049
3050  TemplateArgument getArgumentPack() const;
3051
3052  void Profile(llvm::FoldingSetNodeID &ID);
3053  static void Profile(llvm::FoldingSetNodeID &ID,
3054                      const TemplateTypeParmType *Replaced,
3055                      const TemplateArgument &ArgPack);
3056
3057  static bool classof(const Type *T) {
3058    return T->getTypeClass() == SubstTemplateTypeParmPack;
3059  }
3060  static bool classof(const SubstTemplateTypeParmPackType *T) { return true; }
3061};
3062
3063/// \brief Represents a C++0x auto type.
3064///
3065/// These types are usually a placeholder for a deduced type. However, within
3066/// templates and before the initializer is attached, there is no deduced type
3067/// and an auto type is type-dependent and canonical.
3068class AutoType : public Type, public llvm::FoldingSetNode {
3069  AutoType(QualType DeducedType)
3070    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3071           /*Dependent=*/DeducedType.isNull(),
3072           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3073    assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
3074           "deduced a dependent type for auto");
3075  }
3076
3077  friend class ASTContext;  // ASTContext creates these
3078
3079public:
3080  bool isSugared() const { return isDeduced(); }
3081  QualType desugar() const { return getCanonicalTypeInternal(); }
3082
3083  QualType getDeducedType() const {
3084    return isDeduced() ? getCanonicalTypeInternal() : QualType();
3085  }
3086  bool isDeduced() const {
3087    return !isDependentType();
3088  }
3089
3090  void Profile(llvm::FoldingSetNodeID &ID) {
3091    Profile(ID, getDeducedType());
3092  }
3093
3094  static void Profile(llvm::FoldingSetNodeID &ID,
3095                      QualType Deduced) {
3096    ID.AddPointer(Deduced.getAsOpaquePtr());
3097  }
3098
3099  static bool classof(const Type *T) {
3100    return T->getTypeClass() == Auto;
3101  }
3102  static bool classof(const AutoType *T) { return true; }
3103};
3104
3105/// \brief Represents the type of a template specialization as written
3106/// in the source code.
3107///
3108/// Template specialization types represent the syntactic form of a
3109/// template-id that refers to a type, e.g., @c vector<int>. Some
3110/// template specialization types are syntactic sugar, whose canonical
3111/// type will point to some other type node that represents the
3112/// instantiation or class template specialization. For example, a
3113/// class template specialization type of @c vector<int> will refer to
3114/// a tag type for the instantiation
3115/// @c std::vector<int, std::allocator<int>>.
3116///
3117/// Other template specialization types, for which the template name
3118/// is dependent, may be canonical types. These types are always
3119/// dependent.
3120class TemplateSpecializationType
3121  : public Type, public llvm::FoldingSetNode {
3122  /// \brief The name of the template being specialized.
3123  TemplateName Template;
3124
3125  /// \brief - The number of template arguments named in this class
3126  /// template specialization.
3127  unsigned NumArgs;
3128
3129  TemplateSpecializationType(TemplateName T,
3130                             const TemplateArgument *Args,
3131                             unsigned NumArgs, QualType Canon);
3132
3133  friend class ASTContext;  // ASTContext creates these
3134
3135public:
3136  /// \brief Determine whether any of the given template arguments are
3137  /// dependent.
3138  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3139                                            unsigned NumArgs);
3140
3141  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3142                                            unsigned NumArgs);
3143
3144  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
3145
3146  /// \brief Print a template argument list, including the '<' and '>'
3147  /// enclosing the template arguments.
3148  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
3149                                               unsigned NumArgs,
3150                                               const PrintingPolicy &Policy,
3151                                               bool SkipBrackets = false);
3152
3153  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
3154                                               unsigned NumArgs,
3155                                               const PrintingPolicy &Policy);
3156
3157  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
3158                                               const PrintingPolicy &Policy);
3159
3160  /// True if this template specialization type matches a current
3161  /// instantiation in the context in which it is found.
3162  bool isCurrentInstantiation() const {
3163    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3164  }
3165
3166  typedef const TemplateArgument * iterator;
3167
3168  iterator begin() const { return getArgs(); }
3169  iterator end() const; // defined inline in TemplateBase.h
3170
3171  /// \brief Retrieve the name of the template that we are specializing.
3172  TemplateName getTemplateName() const { return Template; }
3173
3174  /// \brief Retrieve the template arguments.
3175  const TemplateArgument *getArgs() const {
3176    return reinterpret_cast<const TemplateArgument *>(this + 1);
3177  }
3178
3179  /// \brief Retrieve the number of template arguments.
3180  unsigned getNumArgs() const { return NumArgs; }
3181
3182  /// \brief Retrieve a specific template argument as a type.
3183  /// \precondition @c isArgType(Arg)
3184  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3185
3186  bool isSugared() const {
3187    return !isDependentType() || isCurrentInstantiation();
3188  }
3189  QualType desugar() const { return getCanonicalTypeInternal(); }
3190
3191  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3192    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3193  }
3194
3195  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3196                      const TemplateArgument *Args,
3197                      unsigned NumArgs,
3198                      const ASTContext &Context);
3199
3200  static bool classof(const Type *T) {
3201    return T->getTypeClass() == TemplateSpecialization;
3202  }
3203  static bool classof(const TemplateSpecializationType *T) { return true; }
3204};
3205
3206/// \brief The injected class name of a C++ class template or class
3207/// template partial specialization.  Used to record that a type was
3208/// spelled with a bare identifier rather than as a template-id; the
3209/// equivalent for non-templated classes is just RecordType.
3210///
3211/// Injected class name types are always dependent.  Template
3212/// instantiation turns these into RecordTypes.
3213///
3214/// Injected class name types are always canonical.  This works
3215/// because it is impossible to compare an injected class name type
3216/// with the corresponding non-injected template type, for the same
3217/// reason that it is impossible to directly compare template
3218/// parameters from different dependent contexts: injected class name
3219/// types can only occur within the scope of a particular templated
3220/// declaration, and within that scope every template specialization
3221/// will canonicalize to the injected class name (when appropriate
3222/// according to the rules of the language).
3223class InjectedClassNameType : public Type {
3224  CXXRecordDecl *Decl;
3225
3226  /// The template specialization which this type represents.
3227  /// For example, in
3228  ///   template <class T> class A { ... };
3229  /// this is A<T>, whereas in
3230  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3231  /// this is A<B<X,Y> >.
3232  ///
3233  /// It is always unqualified, always a template specialization type,
3234  /// and always dependent.
3235  QualType InjectedType;
3236
3237  friend class ASTContext; // ASTContext creates these.
3238  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3239                          // currently suitable for AST reading, too much
3240                          // interdependencies.
3241  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3242    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3243           /*VariablyModified=*/false,
3244           /*ContainsUnexpandedParameterPack=*/false),
3245      Decl(D), InjectedType(TST) {
3246    assert(isa<TemplateSpecializationType>(TST));
3247    assert(!TST.hasQualifiers());
3248    assert(TST->isDependentType());
3249  }
3250
3251public:
3252  QualType getInjectedSpecializationType() const { return InjectedType; }
3253  const TemplateSpecializationType *getInjectedTST() const {
3254    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3255  }
3256
3257  CXXRecordDecl *getDecl() const;
3258
3259  bool isSugared() const { return false; }
3260  QualType desugar() const { return QualType(this, 0); }
3261
3262  static bool classof(const Type *T) {
3263    return T->getTypeClass() == InjectedClassName;
3264  }
3265  static bool classof(const InjectedClassNameType *T) { return true; }
3266};
3267
3268/// \brief The kind of a tag type.
3269enum TagTypeKind {
3270  /// \brief The "struct" keyword.
3271  TTK_Struct,
3272  /// \brief The "union" keyword.
3273  TTK_Union,
3274  /// \brief The "class" keyword.
3275  TTK_Class,
3276  /// \brief The "enum" keyword.
3277  TTK_Enum
3278};
3279
3280/// \brief The elaboration keyword that precedes a qualified type name or
3281/// introduces an elaborated-type-specifier.
3282enum ElaboratedTypeKeyword {
3283  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3284  ETK_Struct,
3285  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3286  ETK_Union,
3287  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3288  ETK_Class,
3289  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3290  ETK_Enum,
3291  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3292  /// \c typename T::type.
3293  ETK_Typename,
3294  /// \brief No keyword precedes the qualified type name.
3295  ETK_None
3296};
3297
3298/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3299/// The keyword in stored in the free bits of the base class.
3300/// Also provides a few static helpers for converting and printing
3301/// elaborated type keyword and tag type kind enumerations.
3302class TypeWithKeyword : public Type {
3303protected:
3304  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3305                  QualType Canonical, bool Dependent, bool VariablyModified,
3306                  bool ContainsUnexpandedParameterPack)
3307  : Type(tc, Canonical, Dependent, VariablyModified,
3308         ContainsUnexpandedParameterPack) {
3309    TypeWithKeywordBits.Keyword = Keyword;
3310  }
3311
3312public:
3313  ElaboratedTypeKeyword getKeyword() const {
3314    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3315  }
3316
3317  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3318  /// into an elaborated type keyword.
3319  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3320
3321  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3322  /// into a tag type kind.  It is an error to provide a type specifier
3323  /// which *isn't* a tag kind here.
3324  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3325
3326  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3327  /// elaborated type keyword.
3328  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3329
3330  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3331  // a TagTypeKind. It is an error to provide an elaborated type keyword
3332  /// which *isn't* a tag kind here.
3333  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3334
3335  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3336
3337  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3338
3339  static const char *getTagTypeKindName(TagTypeKind Kind) {
3340    return getKeywordName(getKeywordForTagTypeKind(Kind));
3341  }
3342
3343  class CannotCastToThisType {};
3344  static CannotCastToThisType classof(const Type *);
3345};
3346
3347/// \brief Represents a type that was referred to using an elaborated type
3348/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3349/// or both.
3350///
3351/// This type is used to keep track of a type name as written in the
3352/// source code, including tag keywords and any nested-name-specifiers.
3353/// The type itself is always "sugar", used to express what was written
3354/// in the source code but containing no additional semantic information.
3355class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3356
3357  /// \brief The nested name specifier containing the qualifier.
3358  NestedNameSpecifier *NNS;
3359
3360  /// \brief The type that this qualified name refers to.
3361  QualType NamedType;
3362
3363  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3364                 QualType NamedType, QualType CanonType)
3365    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3366                      NamedType->isDependentType(),
3367                      NamedType->isVariablyModifiedType(),
3368                      NamedType->containsUnexpandedParameterPack()),
3369      NNS(NNS), NamedType(NamedType) {
3370    assert(!(Keyword == ETK_None && NNS == 0) &&
3371           "ElaboratedType cannot have elaborated type keyword "
3372           "and name qualifier both null.");
3373  }
3374
3375  friend class ASTContext;  // ASTContext creates these
3376
3377public:
3378  ~ElaboratedType();
3379
3380  /// \brief Retrieve the qualification on this type.
3381  NestedNameSpecifier *getQualifier() const { return NNS; }
3382
3383  /// \brief Retrieve the type named by the qualified-id.
3384  QualType getNamedType() const { return NamedType; }
3385
3386  /// \brief Remove a single level of sugar.
3387  QualType desugar() const { return getNamedType(); }
3388
3389  /// \brief Returns whether this type directly provides sugar.
3390  bool isSugared() const { return true; }
3391
3392  void Profile(llvm::FoldingSetNodeID &ID) {
3393    Profile(ID, getKeyword(), NNS, NamedType);
3394  }
3395
3396  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3397                      NestedNameSpecifier *NNS, QualType NamedType) {
3398    ID.AddInteger(Keyword);
3399    ID.AddPointer(NNS);
3400    NamedType.Profile(ID);
3401  }
3402
3403  static bool classof(const Type *T) {
3404    return T->getTypeClass() == Elaborated;
3405  }
3406  static bool classof(const ElaboratedType *T) { return true; }
3407};
3408
3409/// \brief Represents a qualified type name for which the type name is
3410/// dependent.
3411///
3412/// DependentNameType represents a class of dependent types that involve a
3413/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3414/// name of a type. The DependentNameType may start with a "typename" (for a
3415/// typename-specifier), "class", "struct", "union", or "enum" (for a
3416/// dependent elaborated-type-specifier), or nothing (in contexts where we
3417/// know that we must be referring to a type, e.g., in a base class specifier).
3418class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3419
3420  /// \brief The nested name specifier containing the qualifier.
3421  NestedNameSpecifier *NNS;
3422
3423  /// \brief The type that this typename specifier refers to.
3424  const IdentifierInfo *Name;
3425
3426  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3427                    const IdentifierInfo *Name, QualType CanonType)
3428    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3429                      /*VariablyModified=*/false,
3430                      NNS->containsUnexpandedParameterPack()),
3431      NNS(NNS), Name(Name) {
3432    assert(NNS->isDependent() &&
3433           "DependentNameType requires a dependent nested-name-specifier");
3434  }
3435
3436  friend class ASTContext;  // ASTContext creates these
3437
3438public:
3439  /// \brief Retrieve the qualification on this type.
3440  NestedNameSpecifier *getQualifier() const { return NNS; }
3441
3442  /// \brief Retrieve the type named by the typename specifier as an
3443  /// identifier.
3444  ///
3445  /// This routine will return a non-NULL identifier pointer when the
3446  /// form of the original typename was terminated by an identifier,
3447  /// e.g., "typename T::type".
3448  const IdentifierInfo *getIdentifier() const {
3449    return Name;
3450  }
3451
3452  bool isSugared() const { return false; }
3453  QualType desugar() const { return QualType(this, 0); }
3454
3455  void Profile(llvm::FoldingSetNodeID &ID) {
3456    Profile(ID, getKeyword(), NNS, Name);
3457  }
3458
3459  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3460                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
3461    ID.AddInteger(Keyword);
3462    ID.AddPointer(NNS);
3463    ID.AddPointer(Name);
3464  }
3465
3466  static bool classof(const Type *T) {
3467    return T->getTypeClass() == DependentName;
3468  }
3469  static bool classof(const DependentNameType *T) { return true; }
3470};
3471
3472/// DependentTemplateSpecializationType - Represents a template
3473/// specialization type whose template cannot be resolved, e.g.
3474///   A<T>::template B<T>
3475class DependentTemplateSpecializationType :
3476  public TypeWithKeyword, public llvm::FoldingSetNode {
3477
3478  /// \brief The nested name specifier containing the qualifier.
3479  NestedNameSpecifier *NNS;
3480
3481  /// \brief The identifier of the template.
3482  const IdentifierInfo *Name;
3483
3484  /// \brief - The number of template arguments named in this class
3485  /// template specialization.
3486  unsigned NumArgs;
3487
3488  const TemplateArgument *getArgBuffer() const {
3489    return reinterpret_cast<const TemplateArgument*>(this+1);
3490  }
3491  TemplateArgument *getArgBuffer() {
3492    return reinterpret_cast<TemplateArgument*>(this+1);
3493  }
3494
3495  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
3496                                      NestedNameSpecifier *NNS,
3497                                      const IdentifierInfo *Name,
3498                                      unsigned NumArgs,
3499                                      const TemplateArgument *Args,
3500                                      QualType Canon);
3501
3502  friend class ASTContext;  // ASTContext creates these
3503
3504public:
3505  NestedNameSpecifier *getQualifier() const { return NNS; }
3506  const IdentifierInfo *getIdentifier() const { return Name; }
3507
3508  /// \brief Retrieve the template arguments.
3509  const TemplateArgument *getArgs() const {
3510    return getArgBuffer();
3511  }
3512
3513  /// \brief Retrieve the number of template arguments.
3514  unsigned getNumArgs() const { return NumArgs; }
3515
3516  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3517
3518  typedef const TemplateArgument * iterator;
3519  iterator begin() const { return getArgs(); }
3520  iterator end() const; // inline in TemplateBase.h
3521
3522  bool isSugared() const { return false; }
3523  QualType desugar() const { return QualType(this, 0); }
3524
3525  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
3526    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
3527  }
3528
3529  static void Profile(llvm::FoldingSetNodeID &ID,
3530                      const ASTContext &Context,
3531                      ElaboratedTypeKeyword Keyword,
3532                      NestedNameSpecifier *Qualifier,
3533                      const IdentifierInfo *Name,
3534                      unsigned NumArgs,
3535                      const TemplateArgument *Args);
3536
3537  static bool classof(const Type *T) {
3538    return T->getTypeClass() == DependentTemplateSpecialization;
3539  }
3540  static bool classof(const DependentTemplateSpecializationType *T) {
3541    return true;
3542  }
3543};
3544
3545/// \brief Represents a pack expansion of types.
3546///
3547/// Pack expansions are part of C++0x variadic templates. A pack
3548/// expansion contains a pattern, which itself contains one or more
3549/// "unexpanded" parameter packs. When instantiated, a pack expansion
3550/// produces a series of types, each instantiated from the pattern of
3551/// the expansion, where the Ith instantiation of the pattern uses the
3552/// Ith arguments bound to each of the unexpanded parameter packs. The
3553/// pack expansion is considered to "expand" these unexpanded
3554/// parameter packs.
3555///
3556/// \code
3557/// template<typename ...Types> struct tuple;
3558///
3559/// template<typename ...Types>
3560/// struct tuple_of_references {
3561///   typedef tuple<Types&...> type;
3562/// };
3563/// \endcode
3564///
3565/// Here, the pack expansion \c Types&... is represented via a
3566/// PackExpansionType whose pattern is Types&.
3567class PackExpansionType : public Type, public llvm::FoldingSetNode {
3568  /// \brief The pattern of the pack expansion.
3569  QualType Pattern;
3570
3571  /// \brief The number of expansions that this pack expansion will
3572  /// generate when substituted (+1), or indicates that
3573  ///
3574  /// This field will only have a non-zero value when some of the parameter
3575  /// packs that occur within the pattern have been substituted but others have
3576  /// not.
3577  unsigned NumExpansions;
3578
3579  PackExpansionType(QualType Pattern, QualType Canon,
3580                    llvm::Optional<unsigned> NumExpansions)
3581    : Type(PackExpansion, Canon, /*Dependent=*/true,
3582           /*VariableModified=*/Pattern->isVariablyModifiedType(),
3583           /*ContainsUnexpandedParameterPack=*/false),
3584      Pattern(Pattern),
3585      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
3586
3587  friend class ASTContext;  // ASTContext creates these
3588
3589public:
3590  /// \brief Retrieve the pattern of this pack expansion, which is the
3591  /// type that will be repeatedly instantiated when instantiating the
3592  /// pack expansion itself.
3593  QualType getPattern() const { return Pattern; }
3594
3595  /// \brief Retrieve the number of expansions that this pack expansion will
3596  /// generate, if known.
3597  llvm::Optional<unsigned> getNumExpansions() const {
3598    if (NumExpansions)
3599      return NumExpansions - 1;
3600
3601    return llvm::Optional<unsigned>();
3602  }
3603
3604  bool isSugared() const { return false; }
3605  QualType desugar() const { return QualType(this, 0); }
3606
3607  void Profile(llvm::FoldingSetNodeID &ID) {
3608    Profile(ID, getPattern(), getNumExpansions());
3609  }
3610
3611  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
3612                      llvm::Optional<unsigned> NumExpansions) {
3613    ID.AddPointer(Pattern.getAsOpaquePtr());
3614    ID.AddBoolean(NumExpansions);
3615    if (NumExpansions)
3616      ID.AddInteger(*NumExpansions);
3617  }
3618
3619  static bool classof(const Type *T) {
3620    return T->getTypeClass() == PackExpansion;
3621  }
3622  static bool classof(const PackExpansionType *T) {
3623    return true;
3624  }
3625};
3626
3627/// ObjCObjectType - Represents a class type in Objective C.
3628/// Every Objective C type is a combination of a base type and a
3629/// list of protocols.
3630///
3631/// Given the following declarations:
3632///   @class C;
3633///   @protocol P;
3634///
3635/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
3636/// with base C and no protocols.
3637///
3638/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
3639///
3640/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
3641/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
3642/// and no protocols.
3643///
3644/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
3645/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
3646/// this should get its own sugar class to better represent the source.
3647class ObjCObjectType : public Type {
3648  // ObjCObjectType.NumProtocols - the number of protocols stored
3649  // after the ObjCObjectPointerType node.
3650  //
3651  // These protocols are those written directly on the type.  If
3652  // protocol qualifiers ever become additive, the iterators will need
3653  // to get kindof complicated.
3654  //
3655  // In the canonical object type, these are sorted alphabetically
3656  // and uniqued.
3657
3658  /// Either a BuiltinType or an InterfaceType or sugar for either.
3659  QualType BaseType;
3660
3661  ObjCProtocolDecl * const *getProtocolStorage() const {
3662    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
3663  }
3664
3665  ObjCProtocolDecl **getProtocolStorage();
3666
3667protected:
3668  ObjCObjectType(QualType Canonical, QualType Base,
3669                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
3670
3671  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
3672  ObjCObjectType(enum Nonce_ObjCInterface)
3673        : Type(ObjCInterface, QualType(), false, false, false),
3674      BaseType(QualType(this_(), 0)) {
3675    ObjCObjectTypeBits.NumProtocols = 0;
3676  }
3677
3678public:
3679  /// getBaseType - Gets the base type of this object type.  This is
3680  /// always (possibly sugar for) one of:
3681  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
3682  ///    user, which is a typedef for an ObjCPointerType)
3683  ///  - the 'Class' builtin type (same caveat)
3684  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
3685  QualType getBaseType() const { return BaseType; }
3686
3687  bool isObjCId() const {
3688    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
3689  }
3690  bool isObjCClass() const {
3691    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
3692  }
3693  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
3694  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
3695  bool isObjCUnqualifiedIdOrClass() const {
3696    if (!qual_empty()) return false;
3697    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
3698      return T->getKind() == BuiltinType::ObjCId ||
3699             T->getKind() == BuiltinType::ObjCClass;
3700    return false;
3701  }
3702  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
3703  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
3704
3705  /// Gets the interface declaration for this object type, if the base type
3706  /// really is an interface.
3707  ObjCInterfaceDecl *getInterface() const;
3708
3709  typedef ObjCProtocolDecl * const *qual_iterator;
3710
3711  qual_iterator qual_begin() const { return getProtocolStorage(); }
3712  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
3713
3714  bool qual_empty() const { return getNumProtocols() == 0; }
3715
3716  /// getNumProtocols - Return the number of qualifying protocols in this
3717  /// interface type, or 0 if there are none.
3718  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
3719
3720  /// \brief Fetch a protocol by index.
3721  ObjCProtocolDecl *getProtocol(unsigned I) const {
3722    assert(I < getNumProtocols() && "Out-of-range protocol access");
3723    return qual_begin()[I];
3724  }
3725
3726  bool isSugared() const { return false; }
3727  QualType desugar() const { return QualType(this, 0); }
3728
3729  static bool classof(const Type *T) {
3730    return T->getTypeClass() == ObjCObject ||
3731           T->getTypeClass() == ObjCInterface;
3732  }
3733  static bool classof(const ObjCObjectType *) { return true; }
3734};
3735
3736/// ObjCObjectTypeImpl - A class providing a concrete implementation
3737/// of ObjCObjectType, so as to not increase the footprint of
3738/// ObjCInterfaceType.  Code outside of ASTContext and the core type
3739/// system should not reference this type.
3740class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
3741  friend class ASTContext;
3742
3743  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
3744  // will need to be modified.
3745
3746  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
3747                     ObjCProtocolDecl * const *Protocols,
3748                     unsigned NumProtocols)
3749    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
3750
3751public:
3752  void Profile(llvm::FoldingSetNodeID &ID);
3753  static void Profile(llvm::FoldingSetNodeID &ID,
3754                      QualType Base,
3755                      ObjCProtocolDecl *const *protocols,
3756                      unsigned NumProtocols);
3757};
3758
3759inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
3760  return reinterpret_cast<ObjCProtocolDecl**>(
3761            static_cast<ObjCObjectTypeImpl*>(this) + 1);
3762}
3763
3764/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
3765/// object oriented design.  They basically correspond to C++ classes.  There
3766/// are two kinds of interface types, normal interfaces like "NSString" and
3767/// qualified interfaces, which are qualified with a protocol list like
3768/// "NSString<NSCopyable, NSAmazing>".
3769///
3770/// ObjCInterfaceType guarantees the following properties when considered
3771/// as a subtype of its superclass, ObjCObjectType:
3772///   - There are no protocol qualifiers.  To reinforce this, code which
3773///     tries to invoke the protocol methods via an ObjCInterfaceType will
3774///     fail to compile.
3775///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
3776///     T->getBaseType() == QualType(T, 0).
3777class ObjCInterfaceType : public ObjCObjectType {
3778  ObjCInterfaceDecl *Decl;
3779
3780  ObjCInterfaceType(const ObjCInterfaceDecl *D)
3781    : ObjCObjectType(Nonce_ObjCInterface),
3782      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
3783  friend class ASTContext;  // ASTContext creates these.
3784
3785public:
3786  /// getDecl - Get the declaration of this interface.
3787  ObjCInterfaceDecl *getDecl() const { return Decl; }
3788
3789  bool isSugared() const { return false; }
3790  QualType desugar() const { return QualType(this, 0); }
3791
3792  static bool classof(const Type *T) {
3793    return T->getTypeClass() == ObjCInterface;
3794  }
3795  static bool classof(const ObjCInterfaceType *) { return true; }
3796
3797  // Nonsense to "hide" certain members of ObjCObjectType within this
3798  // class.  People asking for protocols on an ObjCInterfaceType are
3799  // not going to get what they want: ObjCInterfaceTypes are
3800  // guaranteed to have no protocols.
3801  enum {
3802    qual_iterator,
3803    qual_begin,
3804    qual_end,
3805    getNumProtocols,
3806    getProtocol
3807  };
3808};
3809
3810inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
3811  if (const ObjCInterfaceType *T =
3812        getBaseType()->getAs<ObjCInterfaceType>())
3813    return T->getDecl();
3814  return 0;
3815}
3816
3817/// ObjCObjectPointerType - Used to represent a pointer to an
3818/// Objective C object.  These are constructed from pointer
3819/// declarators when the pointee type is an ObjCObjectType (or sugar
3820/// for one).  In addition, the 'id' and 'Class' types are typedefs
3821/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
3822/// are translated into these.
3823///
3824/// Pointers to pointers to Objective C objects are still PointerTypes;
3825/// only the first level of pointer gets it own type implementation.
3826class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
3827  QualType PointeeType;
3828
3829  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
3830    : Type(ObjCObjectPointer, Canonical, false, false, false),
3831      PointeeType(Pointee) {}
3832  friend class ASTContext;  // ASTContext creates these.
3833
3834public:
3835  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
3836  /// The result will always be an ObjCObjectType or sugar thereof.
3837  QualType getPointeeType() const { return PointeeType; }
3838
3839  /// getObjCObjectType - Gets the type pointed to by this ObjC
3840  /// pointer.  This method always returns non-null.
3841  ///
3842  /// This method is equivalent to getPointeeType() except that
3843  /// it discards any typedefs (or other sugar) between this
3844  /// type and the "outermost" object type.  So for:
3845  ///   @class A; @protocol P; @protocol Q;
3846  ///   typedef A<P> AP;
3847  ///   typedef A A1;
3848  ///   typedef A1<P> A1P;
3849  ///   typedef A1P<Q> A1PQ;
3850  /// For 'A*', getObjectType() will return 'A'.
3851  /// For 'A<P>*', getObjectType() will return 'A<P>'.
3852  /// For 'AP*', getObjectType() will return 'A<P>'.
3853  /// For 'A1*', getObjectType() will return 'A'.
3854  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
3855  /// For 'A1P*', getObjectType() will return 'A1<P>'.
3856  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
3857  ///   adding protocols to a protocol-qualified base discards the
3858  ///   old qualifiers (for now).  But if it didn't, getObjectType()
3859  ///   would return 'A1P<Q>' (and we'd have to make iterating over
3860  ///   qualifiers more complicated).
3861  const ObjCObjectType *getObjectType() const {
3862    return PointeeType->castAs<ObjCObjectType>();
3863  }
3864
3865  /// getInterfaceType - If this pointer points to an Objective C
3866  /// @interface type, gets the type for that interface.  Any protocol
3867  /// qualifiers on the interface are ignored.
3868  ///
3869  /// \return null if the base type for this pointer is 'id' or 'Class'
3870  const ObjCInterfaceType *getInterfaceType() const {
3871    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
3872  }
3873
3874  /// getInterfaceDecl - If this pointer points to an Objective @interface
3875  /// type, gets the declaration for that interface.
3876  ///
3877  /// \return null if the base type for this pointer is 'id' or 'Class'
3878  ObjCInterfaceDecl *getInterfaceDecl() const {
3879    return getObjectType()->getInterface();
3880  }
3881
3882  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
3883  /// its object type is the primitive 'id' type with no protocols.
3884  bool isObjCIdType() const {
3885    return getObjectType()->isObjCUnqualifiedId();
3886  }
3887
3888  /// isObjCClassType - True if this is equivalent to the 'Class' type,
3889  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
3890  bool isObjCClassType() const {
3891    return getObjectType()->isObjCUnqualifiedClass();
3892  }
3893
3894  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
3895  /// non-empty set of protocols.
3896  bool isObjCQualifiedIdType() const {
3897    return getObjectType()->isObjCQualifiedId();
3898  }
3899
3900  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
3901  /// some non-empty set of protocols.
3902  bool isObjCQualifiedClassType() const {
3903    return getObjectType()->isObjCQualifiedClass();
3904  }
3905
3906  /// An iterator over the qualifiers on the object type.  Provided
3907  /// for convenience.  This will always iterate over the full set of
3908  /// protocols on a type, not just those provided directly.
3909  typedef ObjCObjectType::qual_iterator qual_iterator;
3910
3911  qual_iterator qual_begin() const {
3912    return getObjectType()->qual_begin();
3913  }
3914  qual_iterator qual_end() const {
3915    return getObjectType()->qual_end();
3916  }
3917  bool qual_empty() const { return getObjectType()->qual_empty(); }
3918
3919  /// getNumProtocols - Return the number of qualifying protocols on
3920  /// the object type.
3921  unsigned getNumProtocols() const {
3922    return getObjectType()->getNumProtocols();
3923  }
3924
3925  /// \brief Retrieve a qualifying protocol by index on the object
3926  /// type.
3927  ObjCProtocolDecl *getProtocol(unsigned I) const {
3928    return getObjectType()->getProtocol(I);
3929  }
3930
3931  bool isSugared() const { return false; }
3932  QualType desugar() const { return QualType(this, 0); }
3933
3934  void Profile(llvm::FoldingSetNodeID &ID) {
3935    Profile(ID, getPointeeType());
3936  }
3937  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
3938    ID.AddPointer(T.getAsOpaquePtr());
3939  }
3940  static bool classof(const Type *T) {
3941    return T->getTypeClass() == ObjCObjectPointer;
3942  }
3943  static bool classof(const ObjCObjectPointerType *) { return true; }
3944};
3945
3946/// A qualifier set is used to build a set of qualifiers.
3947class QualifierCollector : public Qualifiers {
3948public:
3949  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
3950
3951  /// Collect any qualifiers on the given type and return an
3952  /// unqualified type.  The qualifiers are assumed to be consistent
3953  /// with those already in the type.
3954  const Type *strip(QualType type) {
3955    addFastQualifiers(type.getLocalFastQualifiers());
3956    if (!type.hasLocalNonFastQualifiers())
3957      return type.getTypePtrUnsafe();
3958
3959    const ExtQuals *extQuals = type.getExtQualsUnsafe();
3960    addConsistentQualifiers(extQuals->getQualifiers());
3961    return extQuals->getBaseType();
3962  }
3963
3964  /// Apply the collected qualifiers to the given type.
3965  QualType apply(const ASTContext &Context, QualType QT) const;
3966
3967  /// Apply the collected qualifiers to the given type.
3968  QualType apply(const ASTContext &Context, const Type* T) const;
3969};
3970
3971
3972// Inline function definitions.
3973
3974inline const Type *QualType::getTypePtr() const {
3975  return getCommonPtr()->BaseType;
3976}
3977
3978inline const Type *QualType::getTypePtrOrNull() const {
3979  return (isNull() ? 0 : getCommonPtr()->BaseType);
3980}
3981
3982inline SplitQualType QualType::split() const {
3983  if (!hasLocalNonFastQualifiers())
3984    return SplitQualType(getTypePtrUnsafe(),
3985                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
3986
3987  const ExtQuals *eq = getExtQualsUnsafe();
3988  Qualifiers qs = eq->getQualifiers();
3989  qs.addFastQualifiers(getLocalFastQualifiers());
3990  return SplitQualType(eq->getBaseType(), qs);
3991}
3992
3993inline Qualifiers QualType::getLocalQualifiers() const {
3994  Qualifiers Quals;
3995  if (hasLocalNonFastQualifiers())
3996    Quals = getExtQualsUnsafe()->getQualifiers();
3997  Quals.addFastQualifiers(getLocalFastQualifiers());
3998  return Quals;
3999}
4000
4001inline Qualifiers QualType::getQualifiers() const {
4002  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4003  quals.addFastQualifiers(getLocalFastQualifiers());
4004  return quals;
4005}
4006
4007inline unsigned QualType::getCVRQualifiers() const {
4008  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4009  cvr |= getLocalCVRQualifiers();
4010  return cvr;
4011}
4012
4013inline QualType QualType::getCanonicalType() const {
4014  QualType canon = getCommonPtr()->CanonicalType;
4015  return canon.withFastQualifiers(getLocalFastQualifiers());
4016}
4017
4018inline bool QualType::isCanonical() const {
4019  return getTypePtr()->isCanonicalUnqualified();
4020}
4021
4022inline bool QualType::isCanonicalAsParam() const {
4023  if (!isCanonical()) return false;
4024  if (hasLocalQualifiers()) return false;
4025
4026  const Type *T = getTypePtr();
4027  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4028    return false;
4029
4030  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4031}
4032
4033inline bool QualType::isConstQualified() const {
4034  return isLocalConstQualified() ||
4035         getCommonPtr()->CanonicalType.isLocalConstQualified();
4036}
4037
4038inline bool QualType::isRestrictQualified() const {
4039  return isLocalRestrictQualified() ||
4040         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4041}
4042
4043
4044inline bool QualType::isVolatileQualified() const {
4045  return isLocalVolatileQualified() ||
4046         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4047}
4048
4049inline bool QualType::hasQualifiers() const {
4050  return hasLocalQualifiers() ||
4051         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4052}
4053
4054inline QualType QualType::getUnqualifiedType() const {
4055  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4056    return QualType(getTypePtr(), 0);
4057
4058  return QualType(getSplitUnqualifiedTypeImpl(*this).first, 0);
4059}
4060
4061inline SplitQualType QualType::getSplitUnqualifiedType() const {
4062  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4063    return split();
4064
4065  return getSplitUnqualifiedTypeImpl(*this);
4066}
4067
4068inline void QualType::removeLocalConst() {
4069  removeLocalFastQualifiers(Qualifiers::Const);
4070}
4071
4072inline void QualType::removeLocalRestrict() {
4073  removeLocalFastQualifiers(Qualifiers::Restrict);
4074}
4075
4076inline void QualType::removeLocalVolatile() {
4077  removeLocalFastQualifiers(Qualifiers::Volatile);
4078}
4079
4080inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4081  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4082  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4083
4084  // Fast path: we don't need to touch the slow qualifiers.
4085  removeLocalFastQualifiers(Mask);
4086}
4087
4088/// getAddressSpace - Return the address space of this type.
4089inline unsigned QualType::getAddressSpace() const {
4090  return getQualifiers().getAddressSpace();
4091}
4092
4093/// getObjCGCAttr - Return the gc attribute of this type.
4094inline Qualifiers::GC QualType::getObjCGCAttr() const {
4095  return getQualifiers().getObjCGCAttr();
4096}
4097
4098inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4099  if (const PointerType *PT = t.getAs<PointerType>()) {
4100    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4101      return FT->getExtInfo();
4102  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4103    return FT->getExtInfo();
4104
4105  return FunctionType::ExtInfo();
4106}
4107
4108inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4109  return getFunctionExtInfo(*t);
4110}
4111
4112/// \brief Determine whether this set of qualifiers is a superset of the given
4113/// set of qualifiers.
4114inline bool Qualifiers::isSupersetOf(Qualifiers Other) const {
4115  return Mask != Other.Mask && (Mask | Other.Mask) == Mask;
4116}
4117
4118/// isMoreQualifiedThan - Determine whether this type is more
4119/// qualified than the Other type. For example, "const volatile int"
4120/// is more qualified than "const int", "volatile int", and
4121/// "int". However, it is not more qualified than "const volatile
4122/// int".
4123inline bool QualType::isMoreQualifiedThan(QualType other) const {
4124  Qualifiers myQuals = getQualifiers();
4125  Qualifiers otherQuals = other.getQualifiers();
4126  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4127}
4128
4129/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4130/// as qualified as the Other type. For example, "const volatile
4131/// int" is at least as qualified as "const int", "volatile int",
4132/// "int", and "const volatile int".
4133inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4134  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4135}
4136
4137/// getNonReferenceType - If Type is a reference type (e.g., const
4138/// int&), returns the type that the reference refers to ("const
4139/// int"). Otherwise, returns the type itself. This routine is used
4140/// throughout Sema to implement C++ 5p6:
4141///
4142///   If an expression initially has the type "reference to T" (8.3.2,
4143///   8.5.3), the type is adjusted to "T" prior to any further
4144///   analysis, the expression designates the object or function
4145///   denoted by the reference, and the expression is an lvalue.
4146inline QualType QualType::getNonReferenceType() const {
4147  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4148    return RefType->getPointeeType();
4149  else
4150    return *this;
4151}
4152
4153inline bool Type::isFunctionType() const {
4154  return isa<FunctionType>(CanonicalType);
4155}
4156inline bool Type::isPointerType() const {
4157  return isa<PointerType>(CanonicalType);
4158}
4159inline bool Type::isAnyPointerType() const {
4160  return isPointerType() || isObjCObjectPointerType();
4161}
4162inline bool Type::isBlockPointerType() const {
4163  return isa<BlockPointerType>(CanonicalType);
4164}
4165inline bool Type::isReferenceType() const {
4166  return isa<ReferenceType>(CanonicalType);
4167}
4168inline bool Type::isLValueReferenceType() const {
4169  return isa<LValueReferenceType>(CanonicalType);
4170}
4171inline bool Type::isRValueReferenceType() const {
4172  return isa<RValueReferenceType>(CanonicalType);
4173}
4174inline bool Type::isFunctionPointerType() const {
4175  if (const PointerType *T = getAs<PointerType>())
4176    return T->getPointeeType()->isFunctionType();
4177  else
4178    return false;
4179}
4180inline bool Type::isMemberPointerType() const {
4181  return isa<MemberPointerType>(CanonicalType);
4182}
4183inline bool Type::isMemberFunctionPointerType() const {
4184  if (const MemberPointerType* T = getAs<MemberPointerType>())
4185    return T->isMemberFunctionPointer();
4186  else
4187    return false;
4188}
4189inline bool Type::isMemberDataPointerType() const {
4190  if (const MemberPointerType* T = getAs<MemberPointerType>())
4191    return T->isMemberDataPointer();
4192  else
4193    return false;
4194}
4195inline bool Type::isArrayType() const {
4196  return isa<ArrayType>(CanonicalType);
4197}
4198inline bool Type::isConstantArrayType() const {
4199  return isa<ConstantArrayType>(CanonicalType);
4200}
4201inline bool Type::isIncompleteArrayType() const {
4202  return isa<IncompleteArrayType>(CanonicalType);
4203}
4204inline bool Type::isVariableArrayType() const {
4205  return isa<VariableArrayType>(CanonicalType);
4206}
4207inline bool Type::isDependentSizedArrayType() const {
4208  return isa<DependentSizedArrayType>(CanonicalType);
4209}
4210inline bool Type::isBuiltinType() const {
4211  return isa<BuiltinType>(CanonicalType);
4212}
4213inline bool Type::isRecordType() const {
4214  return isa<RecordType>(CanonicalType);
4215}
4216inline bool Type::isEnumeralType() const {
4217  return isa<EnumType>(CanonicalType);
4218}
4219inline bool Type::isAnyComplexType() const {
4220  return isa<ComplexType>(CanonicalType);
4221}
4222inline bool Type::isVectorType() const {
4223  return isa<VectorType>(CanonicalType);
4224}
4225inline bool Type::isExtVectorType() const {
4226  return isa<ExtVectorType>(CanonicalType);
4227}
4228inline bool Type::isObjCObjectPointerType() const {
4229  return isa<ObjCObjectPointerType>(CanonicalType);
4230}
4231inline bool Type::isObjCObjectType() const {
4232  return isa<ObjCObjectType>(CanonicalType);
4233}
4234inline bool Type::isObjCObjectOrInterfaceType() const {
4235  return isa<ObjCInterfaceType>(CanonicalType) ||
4236    isa<ObjCObjectType>(CanonicalType);
4237}
4238
4239inline bool Type::isObjCQualifiedIdType() const {
4240  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4241    return OPT->isObjCQualifiedIdType();
4242  return false;
4243}
4244inline bool Type::isObjCQualifiedClassType() const {
4245  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4246    return OPT->isObjCQualifiedClassType();
4247  return false;
4248}
4249inline bool Type::isObjCIdType() const {
4250  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4251    return OPT->isObjCIdType();
4252  return false;
4253}
4254inline bool Type::isObjCClassType() const {
4255  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4256    return OPT->isObjCClassType();
4257  return false;
4258}
4259inline bool Type::isObjCSelType() const {
4260  if (const PointerType *OPT = getAs<PointerType>())
4261    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4262  return false;
4263}
4264inline bool Type::isObjCBuiltinType() const {
4265  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4266}
4267inline bool Type::isTemplateTypeParmType() const {
4268  return isa<TemplateTypeParmType>(CanonicalType);
4269}
4270
4271inline bool Type::isSpecificBuiltinType(unsigned K) const {
4272  if (const BuiltinType *BT = getAs<BuiltinType>())
4273    if (BT->getKind() == (BuiltinType::Kind) K)
4274      return true;
4275  return false;
4276}
4277
4278inline bool Type::isPlaceholderType() const {
4279  if (const BuiltinType *BT = getAs<BuiltinType>())
4280    return BT->isPlaceholderType();
4281  return false;
4282}
4283
4284/// \brief Determines whether this is a type for which one can define
4285/// an overloaded operator.
4286inline bool Type::isOverloadableType() const {
4287  return isDependentType() || isRecordType() || isEnumeralType();
4288}
4289
4290inline bool Type::hasPointerRepresentation() const {
4291  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
4292          isObjCObjectPointerType() || isNullPtrType());
4293}
4294
4295inline bool Type::hasObjCPointerRepresentation() const {
4296  return isObjCObjectPointerType();
4297}
4298
4299inline const Type *Type::getBaseElementTypeUnsafe() const {
4300  const Type *type = this;
4301  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
4302    type = arrayType->getElementType().getTypePtr();
4303  return type;
4304}
4305
4306/// Insertion operator for diagnostics.  This allows sending QualType's into a
4307/// diagnostic with <<.
4308inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
4309                                           QualType T) {
4310  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4311                  Diagnostic::ak_qualtype);
4312  return DB;
4313}
4314
4315/// Insertion operator for partial diagnostics.  This allows sending QualType's
4316/// into a diagnostic with <<.
4317inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
4318                                           QualType T) {
4319  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4320                  Diagnostic::ak_qualtype);
4321  return PD;
4322}
4323
4324// Helper class template that is used by Type::getAs to ensure that one does
4325// not try to look through a qualified type to get to an array type.
4326template<typename T,
4327         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
4328                             llvm::is_base_of<ArrayType, T>::value)>
4329struct ArrayType_cannot_be_used_with_getAs { };
4330
4331template<typename T>
4332struct ArrayType_cannot_be_used_with_getAs<T, true>;
4333
4334/// Member-template getAs<specific type>'.
4335template <typename T> const T *Type::getAs() const {
4336  ArrayType_cannot_be_used_with_getAs<T> at;
4337  (void)at;
4338
4339  // If this is directly a T type, return it.
4340  if (const T *Ty = dyn_cast<T>(this))
4341    return Ty;
4342
4343  // If the canonical form of this type isn't the right kind, reject it.
4344  if (!isa<T>(CanonicalType))
4345    return 0;
4346
4347  // If this is a typedef for the type, strip the typedef off without
4348  // losing all typedef information.
4349  return cast<T>(getUnqualifiedDesugaredType());
4350}
4351
4352inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
4353  // If this is directly an array type, return it.
4354  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
4355    return arr;
4356
4357  // If the canonical form of this type isn't the right kind, reject it.
4358  if (!isa<ArrayType>(CanonicalType))
4359    return 0;
4360
4361  // If this is a typedef for the type, strip the typedef off without
4362  // losing all typedef information.
4363  return cast<ArrayType>(getUnqualifiedDesugaredType());
4364}
4365
4366template <typename T> const T *Type::castAs() const {
4367  ArrayType_cannot_be_used_with_getAs<T> at;
4368  (void) at;
4369
4370  assert(isa<T>(CanonicalType));
4371  if (const T *ty = dyn_cast<T>(this)) return ty;
4372  return cast<T>(getUnqualifiedDesugaredType());
4373}
4374
4375inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
4376  assert(isa<ArrayType>(CanonicalType));
4377  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
4378  return cast<ArrayType>(getUnqualifiedDesugaredType());
4379}
4380
4381}  // end namespace clang
4382
4383#endif
4384