Type.h revision 2767ce2e21d8bc17869b8436220bce719b3369e4
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/type_traits.h"
25#include "llvm/ADT/APSInt.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/ADT/PointerIntPair.h"
28#include "llvm/ADT/PointerUnion.h"
29
30using llvm::isa;
31using llvm::cast;
32using llvm::cast_or_null;
33using llvm::dyn_cast;
34using llvm::dyn_cast_or_null;
35namespace clang {
36  enum {
37    TypeAlignmentInBits = 3,
38    TypeAlignment = 1 << TypeAlignmentInBits
39  };
40  class Type;
41  class ExtQuals;
42  class QualType;
43}
44
45namespace llvm {
46  template <typename T>
47  class PointerLikeTypeTraits;
48  template<>
49  class PointerLikeTypeTraits< ::clang::Type*> {
50  public:
51    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
52    static inline ::clang::Type *getFromVoidPointer(void *P) {
53      return static_cast< ::clang::Type*>(P);
54    }
55    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
56  };
57  template<>
58  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
59  public:
60    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
61    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
62      return static_cast< ::clang::ExtQuals*>(P);
63    }
64    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
65  };
66
67  template <>
68  struct isPodLike<clang::QualType> { static const bool value = true; };
69}
70
71namespace clang {
72  class ASTContext;
73  class TypedefDecl;
74  class TemplateDecl;
75  class TemplateTypeParmDecl;
76  class NonTypeTemplateParmDecl;
77  class TemplateTemplateParmDecl;
78  class TagDecl;
79  class RecordDecl;
80  class CXXRecordDecl;
81  class EnumDecl;
82  class FieldDecl;
83  class ObjCInterfaceDecl;
84  class ObjCProtocolDecl;
85  class ObjCMethodDecl;
86  class UnresolvedUsingTypenameDecl;
87  class Expr;
88  class Stmt;
89  class SourceLocation;
90  class StmtIteratorBase;
91  class TemplateArgument;
92  class TemplateArgumentLoc;
93  class TemplateArgumentListInfo;
94  class Type;
95  class ElaboratedType;
96  struct PrintingPolicy;
97
98  template <typename> class CanQual;
99  typedef CanQual<Type> CanQualType;
100
101  // Provide forward declarations for all of the *Type classes
102#define TYPE(Class, Base) class Class##Type;
103#include "clang/AST/TypeNodes.def"
104
105/// Qualifiers - The collection of all-type qualifiers we support.
106/// Clang supports five independent qualifiers:
107/// * C99: const, volatile, and restrict
108/// * Embedded C (TR18037): address spaces
109/// * Objective C: the GC attributes (none, weak, or strong)
110class Qualifiers {
111public:
112  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
113    Const    = 0x1,
114    Restrict = 0x2,
115    Volatile = 0x4,
116    CVRMask = Const | Volatile | Restrict
117  };
118
119  enum GC {
120    GCNone = 0,
121    Weak,
122    Strong
123  };
124
125  enum {
126    /// The maximum supported address space number.
127    /// 24 bits should be enough for anyone.
128    MaxAddressSpace = 0xffffffu,
129
130    /// The width of the "fast" qualifier mask.
131    FastWidth = 2,
132
133    /// The fast qualifier mask.
134    FastMask = (1 << FastWidth) - 1
135  };
136
137  Qualifiers() : Mask(0) {}
138
139  static Qualifiers fromFastMask(unsigned Mask) {
140    Qualifiers Qs;
141    Qs.addFastQualifiers(Mask);
142    return Qs;
143  }
144
145  static Qualifiers fromCVRMask(unsigned CVR) {
146    Qualifiers Qs;
147    Qs.addCVRQualifiers(CVR);
148    return Qs;
149  }
150
151  // Deserialize qualifiers from an opaque representation.
152  static Qualifiers fromOpaqueValue(unsigned opaque) {
153    Qualifiers Qs;
154    Qs.Mask = opaque;
155    return Qs;
156  }
157
158  // Serialize these qualifiers into an opaque representation.
159  unsigned getAsOpaqueValue() const {
160    return Mask;
161  }
162
163  bool hasConst() const { return Mask & Const; }
164  void setConst(bool flag) {
165    Mask = (Mask & ~Const) | (flag ? Const : 0);
166  }
167  void removeConst() { Mask &= ~Const; }
168  void addConst() { Mask |= Const; }
169
170  bool hasVolatile() const { return Mask & Volatile; }
171  void setVolatile(bool flag) {
172    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
173  }
174  void removeVolatile() { Mask &= ~Volatile; }
175  void addVolatile() { Mask |= Volatile; }
176
177  bool hasRestrict() const { return Mask & Restrict; }
178  void setRestrict(bool flag) {
179    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
180  }
181  void removeRestrict() { Mask &= ~Restrict; }
182  void addRestrict() { Mask |= Restrict; }
183
184  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
185  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
186  void setCVRQualifiers(unsigned mask) {
187    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
188    Mask = (Mask & ~CVRMask) | mask;
189  }
190  void removeCVRQualifiers(unsigned mask) {
191    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
192    Mask &= ~mask;
193  }
194  void removeCVRQualifiers() {
195    removeCVRQualifiers(CVRMask);
196  }
197  void addCVRQualifiers(unsigned mask) {
198    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
199    Mask |= mask;
200  }
201
202  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
203  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
204  void setObjCGCAttr(GC type) {
205    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
206  }
207  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
208  void addObjCGCAttr(GC type) {
209    assert(type);
210    setObjCGCAttr(type);
211  }
212
213  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
214  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
215  void setAddressSpace(unsigned space) {
216    assert(space <= MaxAddressSpace);
217    Mask = (Mask & ~AddressSpaceMask)
218         | (((uint32_t) space) << AddressSpaceShift);
219  }
220  void removeAddressSpace() { setAddressSpace(0); }
221  void addAddressSpace(unsigned space) {
222    assert(space);
223    setAddressSpace(space);
224  }
225
226  // Fast qualifiers are those that can be allocated directly
227  // on a QualType object.
228  bool hasFastQualifiers() const { return getFastQualifiers(); }
229  unsigned getFastQualifiers() const { return Mask & FastMask; }
230  void setFastQualifiers(unsigned mask) {
231    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
232    Mask = (Mask & ~FastMask) | mask;
233  }
234  void removeFastQualifiers(unsigned mask) {
235    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
236    Mask &= ~mask;
237  }
238  void removeFastQualifiers() {
239    removeFastQualifiers(FastMask);
240  }
241  void addFastQualifiers(unsigned mask) {
242    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
243    Mask |= mask;
244  }
245
246  /// hasNonFastQualifiers - Return true if the set contains any
247  /// qualifiers which require an ExtQuals node to be allocated.
248  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
249  Qualifiers getNonFastQualifiers() const {
250    Qualifiers Quals = *this;
251    Quals.setFastQualifiers(0);
252    return Quals;
253  }
254
255  /// hasQualifiers - Return true if the set contains any qualifiers.
256  bool hasQualifiers() const { return Mask; }
257  bool empty() const { return !Mask; }
258
259  /// \brief Add the qualifiers from the given set to this set.
260  void addQualifiers(Qualifiers Q) {
261    // If the other set doesn't have any non-boolean qualifiers, just
262    // bit-or it in.
263    if (!(Q.Mask & ~CVRMask))
264      Mask |= Q.Mask;
265    else {
266      Mask |= (Q.Mask & CVRMask);
267      if (Q.hasAddressSpace())
268        addAddressSpace(Q.getAddressSpace());
269      if (Q.hasObjCGCAttr())
270        addObjCGCAttr(Q.getObjCGCAttr());
271    }
272  }
273
274  bool isSupersetOf(Qualifiers Other) const;
275
276  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
277  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
278
279  operator bool() const { return hasQualifiers(); }
280
281  Qualifiers &operator+=(Qualifiers R) {
282    addQualifiers(R);
283    return *this;
284  }
285
286  // Union two qualifier sets.  If an enumerated qualifier appears
287  // in both sets, use the one from the right.
288  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
289    L += R;
290    return L;
291  }
292
293  std::string getAsString() const;
294  std::string getAsString(const PrintingPolicy &Policy) const {
295    std::string Buffer;
296    getAsStringInternal(Buffer, Policy);
297    return Buffer;
298  }
299  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
300
301  void Profile(llvm::FoldingSetNodeID &ID) const {
302    ID.AddInteger(Mask);
303  }
304
305private:
306
307  // bits:     |0 1 2|3 .. 4|5  ..  31|
308  //           |C R V|GCAttr|AddrSpace|
309  uint32_t Mask;
310
311  static const uint32_t GCAttrMask = 0x18;
312  static const uint32_t GCAttrShift = 3;
313  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
314  static const uint32_t AddressSpaceShift = 5;
315};
316
317
318/// ExtQuals - We can encode up to three bits in the low bits of a
319/// type pointer, but there are many more type qualifiers that we want
320/// to be able to apply to an arbitrary type.  Therefore we have this
321/// struct, intended to be heap-allocated and used by QualType to
322/// store qualifiers.
323///
324/// The current design tags the 'const' and 'restrict' qualifiers in
325/// two low bits on the QualType pointer; a third bit records whether
326/// the pointer is an ExtQuals node.  'const' was chosen because it is
327/// orders of magnitude more common than the other two qualifiers, in
328/// both library and user code.  It's relatively rare to see
329/// 'restrict' in user code, but many standard C headers are saturated
330/// with 'restrict' declarations, so that representing them efficiently
331/// is a critical goal of this representation.
332class ExtQuals : public llvm::FoldingSetNode {
333  // NOTE: changing the fast qualifiers should be straightforward as
334  // long as you don't make 'const' non-fast.
335  // 1. Qualifiers:
336  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
337  //       Fast qualifiers must occupy the low-order bits.
338  //    b) Update Qualifiers::FastWidth and FastMask.
339  // 2. QualType:
340  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
341  //    b) Update remove{Volatile,Restrict}, defined near the end of
342  //       this header.
343  // 3. ASTContext:
344  //    a) Update get{Volatile,Restrict}Type.
345
346  /// Context - the context to which this set belongs.  We save this
347  /// here so that QualifierCollector can use it to reapply extended
348  /// qualifiers to an arbitrary type without requiring a context to
349  /// be pushed through every single API dealing with qualifiers.
350  ASTContext& Context;
351
352  /// BaseType - the underlying type that this qualifies
353  const Type *BaseType;
354
355  /// Quals - the immutable set of qualifiers applied by this
356  /// node;  always contains extended qualifiers.
357  Qualifiers Quals;
358
359public:
360  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
361    : Context(Context), BaseType(Base), Quals(Quals)
362  {
363    assert(Quals.hasNonFastQualifiers()
364           && "ExtQuals created with no fast qualifiers");
365    assert(!Quals.hasFastQualifiers()
366           && "ExtQuals created with fast qualifiers");
367  }
368
369  Qualifiers getQualifiers() const { return Quals; }
370
371  bool hasVolatile() const { return Quals.hasVolatile(); }
372
373  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
374  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
375
376  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
377  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
378
379  const Type *getBaseType() const { return BaseType; }
380
381  ASTContext &getContext() const { return Context; }
382
383public:
384  void Profile(llvm::FoldingSetNodeID &ID) const {
385    Profile(ID, getBaseType(), Quals);
386  }
387  static void Profile(llvm::FoldingSetNodeID &ID,
388                      const Type *BaseType,
389                      Qualifiers Quals) {
390    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
391    ID.AddPointer(BaseType);
392    Quals.Profile(ID);
393  }
394};
395
396/// CallingConv - Specifies the calling convention that a function uses.
397enum CallingConv {
398  CC_Default,
399  CC_C,           // __attribute__((cdecl))
400  CC_X86StdCall,  // __attribute__((stdcall))
401  CC_X86FastCall, // __attribute__((fastcall))
402  CC_X86ThisCall  // __attribute__((thiscall))
403};
404
405
406/// QualType - For efficiency, we don't store CV-qualified types as nodes on
407/// their own: instead each reference to a type stores the qualifiers.  This
408/// greatly reduces the number of nodes we need to allocate for types (for
409/// example we only need one for 'int', 'const int', 'volatile int',
410/// 'const volatile int', etc).
411///
412/// As an added efficiency bonus, instead of making this a pair, we
413/// just store the two bits we care about in the low bits of the
414/// pointer.  To handle the packing/unpacking, we make QualType be a
415/// simple wrapper class that acts like a smart pointer.  A third bit
416/// indicates whether there are extended qualifiers present, in which
417/// case the pointer points to a special structure.
418class QualType {
419  // Thankfully, these are efficiently composable.
420  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
421                       Qualifiers::FastWidth> Value;
422
423  const ExtQuals *getExtQualsUnsafe() const {
424    return Value.getPointer().get<const ExtQuals*>();
425  }
426
427  const Type *getTypePtrUnsafe() const {
428    return Value.getPointer().get<const Type*>();
429  }
430
431  QualType getUnqualifiedTypeSlow() const;
432
433  friend class QualifierCollector;
434public:
435  QualType() {}
436
437  QualType(const Type *Ptr, unsigned Quals)
438    : Value(Ptr, Quals) {}
439  QualType(const ExtQuals *Ptr, unsigned Quals)
440    : Value(Ptr, Quals) {}
441
442  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
443  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
444
445  /// Retrieves a pointer to the underlying (unqualified) type.
446  /// This should really return a const Type, but it's not worth
447  /// changing all the users right now.
448  Type *getTypePtr() const {
449    if (hasLocalNonFastQualifiers())
450      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
451    return const_cast<Type*>(getTypePtrUnsafe());
452  }
453
454  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
455  static QualType getFromOpaquePtr(void *Ptr) {
456    QualType T;
457    T.Value.setFromOpaqueValue(Ptr);
458    return T;
459  }
460
461  Type &operator*() const {
462    return *getTypePtr();
463  }
464
465  Type *operator->() const {
466    return getTypePtr();
467  }
468
469  bool isCanonical() const;
470  bool isCanonicalAsParam() const;
471
472  /// isNull - Return true if this QualType doesn't point to a type yet.
473  bool isNull() const {
474    return Value.getPointer().isNull();
475  }
476
477  /// \brief Determine whether this particular QualType instance has the
478  /// "const" qualifier set, without looking through typedefs that may have
479  /// added "const" at a different level.
480  bool isLocalConstQualified() const {
481    return (getLocalFastQualifiers() & Qualifiers::Const);
482  }
483
484  /// \brief Determine whether this type is const-qualified.
485  bool isConstQualified() const;
486
487  /// \brief Determine whether this particular QualType instance has the
488  /// "restrict" qualifier set, without looking through typedefs that may have
489  /// added "restrict" at a different level.
490  bool isLocalRestrictQualified() const {
491    return (getLocalFastQualifiers() & Qualifiers::Restrict);
492  }
493
494  /// \brief Determine whether this type is restrict-qualified.
495  bool isRestrictQualified() const;
496
497  /// \brief Determine whether this particular QualType instance has the
498  /// "volatile" qualifier set, without looking through typedefs that may have
499  /// added "volatile" at a different level.
500  bool isLocalVolatileQualified() const {
501    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
502  }
503
504  /// \brief Determine whether this type is volatile-qualified.
505  bool isVolatileQualified() const;
506
507  /// \brief Determine whether this particular QualType instance has any
508  /// qualifiers, without looking through any typedefs that might add
509  /// qualifiers at a different level.
510  bool hasLocalQualifiers() const {
511    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
512  }
513
514  /// \brief Determine whether this type has any qualifiers.
515  bool hasQualifiers() const;
516
517  /// \brief Determine whether this particular QualType instance has any
518  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
519  /// instance.
520  bool hasLocalNonFastQualifiers() const {
521    return Value.getPointer().is<const ExtQuals*>();
522  }
523
524  /// \brief Retrieve the set of qualifiers local to this particular QualType
525  /// instance, not including any qualifiers acquired through typedefs or
526  /// other sugar.
527  Qualifiers getLocalQualifiers() const {
528    Qualifiers Quals;
529    if (hasLocalNonFastQualifiers())
530      Quals = getExtQualsUnsafe()->getQualifiers();
531    Quals.addFastQualifiers(getLocalFastQualifiers());
532    return Quals;
533  }
534
535  /// \brief Retrieve the set of qualifiers applied to this type.
536  Qualifiers getQualifiers() const;
537
538  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
539  /// local to this particular QualType instance, not including any qualifiers
540  /// acquired through typedefs or other sugar.
541  unsigned getLocalCVRQualifiers() const {
542    unsigned CVR = getLocalFastQualifiers();
543    if (isLocalVolatileQualified())
544      CVR |= Qualifiers::Volatile;
545    return CVR;
546  }
547
548  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
549  /// applied to this type.
550  unsigned getCVRQualifiers() const;
551
552  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
553  /// applied to this type, looking through any number of unqualified array
554  /// types to their element types' qualifiers.
555  unsigned getCVRQualifiersThroughArrayTypes() const;
556
557  bool isConstant(ASTContext& Ctx) const {
558    return QualType::isConstant(*this, Ctx);
559  }
560
561  // Don't promise in the API that anything besides 'const' can be
562  // easily added.
563
564  /// addConst - add the specified type qualifier to this QualType.
565  void addConst() {
566    addFastQualifiers(Qualifiers::Const);
567  }
568  QualType withConst() const {
569    return withFastQualifiers(Qualifiers::Const);
570  }
571
572  void addFastQualifiers(unsigned TQs) {
573    assert(!(TQs & ~Qualifiers::FastMask)
574           && "non-fast qualifier bits set in mask!");
575    Value.setInt(Value.getInt() | TQs);
576  }
577
578  // FIXME: The remove* functions are semantically broken, because they might
579  // not remove a qualifier stored on a typedef. Most of the with* functions
580  // have the same problem.
581  void removeConst();
582  void removeVolatile();
583  void removeRestrict();
584  void removeCVRQualifiers(unsigned Mask);
585
586  void removeFastQualifiers() { Value.setInt(0); }
587  void removeFastQualifiers(unsigned Mask) {
588    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
589    Value.setInt(Value.getInt() & ~Mask);
590  }
591
592  // Creates a type with the given qualifiers in addition to any
593  // qualifiers already on this type.
594  QualType withFastQualifiers(unsigned TQs) const {
595    QualType T = *this;
596    T.addFastQualifiers(TQs);
597    return T;
598  }
599
600  // Creates a type with exactly the given fast qualifiers, removing
601  // any existing fast qualifiers.
602  QualType withExactFastQualifiers(unsigned TQs) const {
603    return withoutFastQualifiers().withFastQualifiers(TQs);
604  }
605
606  // Removes fast qualifiers, but leaves any extended qualifiers in place.
607  QualType withoutFastQualifiers() const {
608    QualType T = *this;
609    T.removeFastQualifiers();
610    return T;
611  }
612
613  /// \brief Return this type with all of the instance-specific qualifiers
614  /// removed, but without removing any qualifiers that may have been applied
615  /// through typedefs.
616  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
617
618  /// \brief Return the unqualified form of the given type, which might be
619  /// desugared to eliminate qualifiers introduced via typedefs.
620  QualType getUnqualifiedType() const {
621    QualType T = getLocalUnqualifiedType();
622    if (!T.hasQualifiers())
623      return T;
624
625    return getUnqualifiedTypeSlow();
626  }
627
628  bool isMoreQualifiedThan(QualType Other) const;
629  bool isAtLeastAsQualifiedAs(QualType Other) const;
630  QualType getNonReferenceType() const;
631
632  /// \brief Determine the type of a (typically non-lvalue) expression with the
633  /// specified result type.
634  ///
635  /// This routine should be used for expressions for which the return type is
636  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
637  /// an lvalue. It removes a top-level reference (since there are no
638  /// expressions of reference type) and deletes top-level cvr-qualifiers
639  /// from non-class types (in C++) or all types (in C).
640  QualType getNonLValueExprType(ASTContext &Context) const;
641
642  /// getDesugaredType - Return the specified type with any "sugar" removed from
643  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
644  /// the type is already concrete, it returns it unmodified.  This is similar
645  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
646  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
647  /// concrete.
648  ///
649  /// Qualifiers are left in place.
650  QualType getDesugaredType() const {
651    return QualType::getDesugaredType(*this);
652  }
653
654  /// operator==/!= - Indicate whether the specified types and qualifiers are
655  /// identical.
656  friend bool operator==(const QualType &LHS, const QualType &RHS) {
657    return LHS.Value == RHS.Value;
658  }
659  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
660    return LHS.Value != RHS.Value;
661  }
662  std::string getAsString() const;
663
664  std::string getAsString(const PrintingPolicy &Policy) const {
665    std::string S;
666    getAsStringInternal(S, Policy);
667    return S;
668  }
669  void getAsStringInternal(std::string &Str,
670                           const PrintingPolicy &Policy) const;
671
672  void dump(const char *s) const;
673  void dump() const;
674
675  void Profile(llvm::FoldingSetNodeID &ID) const {
676    ID.AddPointer(getAsOpaquePtr());
677  }
678
679  /// getAddressSpace - Return the address space of this type.
680  inline unsigned getAddressSpace() const;
681
682  /// GCAttrTypesAttr - Returns gc attribute of this type.
683  inline Qualifiers::GC getObjCGCAttr() const;
684
685  /// isObjCGCWeak true when Type is objc's weak.
686  bool isObjCGCWeak() const {
687    return getObjCGCAttr() == Qualifiers::Weak;
688  }
689
690  /// isObjCGCStrong true when Type is objc's strong.
691  bool isObjCGCStrong() const {
692    return getObjCGCAttr() == Qualifiers::Strong;
693  }
694
695private:
696  // These methods are implemented in a separate translation unit;
697  // "static"-ize them to avoid creating temporary QualTypes in the
698  // caller.
699  static bool isConstant(QualType T, ASTContext& Ctx);
700  static QualType getDesugaredType(QualType T);
701};
702
703} // end clang.
704
705namespace llvm {
706/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
707/// to a specific Type class.
708template<> struct simplify_type<const ::clang::QualType> {
709  typedef ::clang::Type* SimpleType;
710  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
711    return Val.getTypePtr();
712  }
713};
714template<> struct simplify_type< ::clang::QualType>
715  : public simplify_type<const ::clang::QualType> {};
716
717// Teach SmallPtrSet that QualType is "basically a pointer".
718template<>
719class PointerLikeTypeTraits<clang::QualType> {
720public:
721  static inline void *getAsVoidPointer(clang::QualType P) {
722    return P.getAsOpaquePtr();
723  }
724  static inline clang::QualType getFromVoidPointer(void *P) {
725    return clang::QualType::getFromOpaquePtr(P);
726  }
727  // Various qualifiers go in low bits.
728  enum { NumLowBitsAvailable = 0 };
729};
730
731} // end namespace llvm
732
733namespace clang {
734
735/// Type - This is the base class of the type hierarchy.  A central concept
736/// with types is that each type always has a canonical type.  A canonical type
737/// is the type with any typedef names stripped out of it or the types it
738/// references.  For example, consider:
739///
740///  typedef int  foo;
741///  typedef foo* bar;
742///    'int *'    'foo *'    'bar'
743///
744/// There will be a Type object created for 'int'.  Since int is canonical, its
745/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
746/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
747/// there is a PointerType that represents 'int*', which, like 'int', is
748/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
749/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
750/// is also 'int*'.
751///
752/// Non-canonical types are useful for emitting diagnostics, without losing
753/// information about typedefs being used.  Canonical types are useful for type
754/// comparisons (they allow by-pointer equality tests) and useful for reasoning
755/// about whether something has a particular form (e.g. is a function type),
756/// because they implicitly, recursively, strip all typedefs out of a type.
757///
758/// Types, once created, are immutable.
759///
760class Type {
761public:
762  enum TypeClass {
763#define TYPE(Class, Base) Class,
764#define LAST_TYPE(Class) TypeLast = Class,
765#define ABSTRACT_TYPE(Class, Base)
766#include "clang/AST/TypeNodes.def"
767    TagFirst = Record, TagLast = Enum
768  };
769
770private:
771  Type(const Type&);           // DO NOT IMPLEMENT.
772  void operator=(const Type&); // DO NOT IMPLEMENT.
773
774  QualType CanonicalType;
775
776  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
777  unsigned TC : 8;
778
779  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
780  /// Note that this should stay at the end of the ivars for Type so that
781  /// subclasses can pack their bitfields into the same word.
782  bool Dependent : 1;
783
784  /// \brief Whether the linkage of this type is already known.
785  mutable bool LinkageKnown : 1;
786
787  /// \brief Linkage of this type.
788  mutable unsigned CachedLinkage : 2;
789
790  /// \brief FromPCH - Whether this type comes from a PCH file.
791  mutable bool FromPCH : 1;
792
793  /// \brief Set whether this type comes from a PCH file.
794  void setFromPCH(bool V = true) const {
795    FromPCH = V;
796  }
797
798protected:
799  /// \brief Compute the linkage of this type.
800  virtual Linkage getLinkageImpl() const;
801
802  enum { BitsRemainingInType = 19 };
803
804  // silence VC++ warning C4355: 'this' : used in base member initializer list
805  Type *this_() { return this; }
806  Type(TypeClass tc, QualType Canonical, bool dependent)
807    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
808      TC(tc), Dependent(dependent), LinkageKnown(false),
809      CachedLinkage(NoLinkage), FromPCH(false) {}
810  virtual ~Type();
811  friend class ASTContext;
812
813public:
814  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
815
816  /// \brief Whether this type comes from a PCH file.
817  bool isFromPCH() const { return FromPCH; }
818
819  bool isCanonicalUnqualified() const {
820    return CanonicalType.getTypePtr() == this;
821  }
822
823  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
824  /// object types, function types, and incomplete types.
825
826  /// isIncompleteType - Return true if this is an incomplete type.
827  /// A type that can describe objects, but which lacks information needed to
828  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
829  /// routine will need to determine if the size is actually required.
830  bool isIncompleteType() const;
831
832  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
833  /// type, in other words, not a function type.
834  bool isIncompleteOrObjectType() const {
835    return !isFunctionType();
836  }
837
838  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
839  bool isPODType() const;
840
841  /// isLiteralType - Return true if this is a literal type
842  /// (C++0x [basic.types]p10)
843  bool isLiteralType() const;
844
845  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
846  /// types that have a non-constant expression. This does not include "[]".
847  bool isVariablyModifiedType() const;
848
849  /// Helper methods to distinguish type categories. All type predicates
850  /// operate on the canonical type, ignoring typedefs and qualifiers.
851
852  /// isBuiltinType - returns true if the type is a builtin type.
853  bool isBuiltinType() const;
854
855  /// isSpecificBuiltinType - Test for a particular builtin type.
856  bool isSpecificBuiltinType(unsigned K) const;
857
858  /// isIntegerType() does *not* include complex integers (a GCC extension).
859  /// isComplexIntegerType() can be used to test for complex integers.
860  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
861  bool isEnumeralType() const;
862  bool isBooleanType() const;
863  bool isCharType() const;
864  bool isWideCharType() const;
865  bool isAnyCharacterType() const;
866  bool isIntegralType(ASTContext &Ctx) const;
867
868  /// \brief Determine whether this type is an integral or enumeration type.
869  bool isIntegralOrEnumerationType() const;
870
871  /// Floating point categories.
872  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
873  /// isComplexType() does *not* include complex integers (a GCC extension).
874  /// isComplexIntegerType() can be used to test for complex integers.
875  bool isComplexType() const;      // C99 6.2.5p11 (complex)
876  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
877  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
878  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
879  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
880  bool isVoidType() const;         // C99 6.2.5p19
881  bool isDerivedType() const;      // C99 6.2.5p20
882  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
883  bool isAggregateType() const;
884
885  // Type Predicates: Check to see if this type is structurally the specified
886  // type, ignoring typedefs and qualifiers.
887  bool isFunctionType() const;
888  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
889  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
890  bool isPointerType() const;
891  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
892  bool isBlockPointerType() const;
893  bool isVoidPointerType() const;
894  bool isReferenceType() const;
895  bool isLValueReferenceType() const;
896  bool isRValueReferenceType() const;
897  bool isFunctionPointerType() const;
898  bool isMemberPointerType() const;
899  bool isMemberFunctionPointerType() const;
900  bool isArrayType() const;
901  bool isConstantArrayType() const;
902  bool isIncompleteArrayType() const;
903  bool isVariableArrayType() const;
904  bool isDependentSizedArrayType() const;
905  bool isRecordType() const;
906  bool isClassType() const;
907  bool isStructureType() const;
908  bool isStructureOrClassType() const;
909  bool isUnionType() const;
910  bool isComplexIntegerType() const;            // GCC _Complex integer type.
911  bool isVectorType() const;                    // GCC vector type.
912  bool isExtVectorType() const;                 // Extended vector type.
913  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
914  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
915  // for the common case.
916  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
917  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
918  bool isObjCQualifiedIdType() const;           // id<foo>
919  bool isObjCQualifiedClassType() const;        // Class<foo>
920  bool isObjCObjectOrInterfaceType() const;
921  bool isObjCIdType() const;                    // id
922  bool isObjCClassType() const;                 // Class
923  bool isObjCSelType() const;                 // Class
924  bool isObjCBuiltinType() const;               // 'id' or 'Class'
925  bool isTemplateTypeParmType() const;          // C++ template type parameter
926  bool isNullPtrType() const;                   // C++0x nullptr_t
927
928  /// isDependentType - Whether this type is a dependent type, meaning
929  /// that its definition somehow depends on a template parameter
930  /// (C++ [temp.dep.type]).
931  bool isDependentType() const { return Dependent; }
932  bool isOverloadableType() const;
933
934  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
935  bool isElaboratedTypeSpecifier() const;
936
937  /// hasPointerRepresentation - Whether this type is represented
938  /// natively as a pointer; this includes pointers, references, block
939  /// pointers, and Objective-C interface, qualified id, and qualified
940  /// interface types, as well as nullptr_t.
941  bool hasPointerRepresentation() const;
942
943  /// hasObjCPointerRepresentation - Whether this type can represent
944  /// an objective pointer type for the purpose of GC'ability
945  bool hasObjCPointerRepresentation() const;
946
947  /// \brief Determine whether this type has an integer representation
948  /// of some sort, e.g., it is an integer type or a vector.
949  bool hasIntegerRepresentation() const;
950
951  /// \brief Determine whether this type has an signed integer representation
952  /// of some sort, e.g., it is an signed integer type or a vector.
953  bool hasSignedIntegerRepresentation() const;
954
955  /// \brief Determine whether this type has an unsigned integer representation
956  /// of some sort, e.g., it is an unsigned integer type or a vector.
957  bool hasUnsignedIntegerRepresentation() const;
958
959  /// \brief Determine whether this type has a floating-point representation
960  /// of some sort, e.g., it is a floating-point type or a vector thereof.
961  bool hasFloatingRepresentation() const;
962
963  // Type Checking Functions: Check to see if this type is structurally the
964  // specified type, ignoring typedefs and qualifiers, and return a pointer to
965  // the best type we can.
966  const RecordType *getAsStructureType() const;
967  /// NOTE: getAs*ArrayType are methods on ASTContext.
968  const RecordType *getAsUnionType() const;
969  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
970  // The following is a convenience method that returns an ObjCObjectPointerType
971  // for object declared using an interface.
972  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
973  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
974  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
975  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
976
977  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
978  /// because the type is a RecordType or because it is the injected-class-name
979  /// type of a class template or class template partial specialization.
980  CXXRecordDecl *getAsCXXRecordDecl() const;
981
982  // Member-template getAs<specific type>'.  This scheme will eventually
983  // replace the specific getAsXXXX methods above.
984  //
985  // There are some specializations of this member template listed
986  // immediately following this class.
987  template <typename T> const T *getAs() const;
988
989  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
990  /// element type of the array, potentially with type qualifiers missing.
991  /// This method should never be used when type qualifiers are meaningful.
992  const Type *getArrayElementTypeNoTypeQual() const;
993
994  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
995  /// pointer, this returns the respective pointee.
996  QualType getPointeeType() const;
997
998  /// getUnqualifiedDesugaredType() - Return the specified type with
999  /// any "sugar" removed from the type, removing any typedefs,
1000  /// typeofs, etc., as well as any qualifiers.
1001  const Type *getUnqualifiedDesugaredType() const;
1002
1003  /// More type predicates useful for type checking/promotion
1004  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1005
1006  /// isSignedIntegerType - Return true if this is an integer type that is
1007  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1008  /// an enum decl which has a signed representation, or a vector of signed
1009  /// integer element type.
1010  bool isSignedIntegerType() const;
1011
1012  /// isUnsignedIntegerType - Return true if this is an integer type that is
1013  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1014  /// decl which has an unsigned representation, or a vector of unsigned integer
1015  /// element type.
1016  bool isUnsignedIntegerType() const;
1017
1018  /// isConstantSizeType - Return true if this is not a variable sized type,
1019  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1020  /// incomplete types.
1021  bool isConstantSizeType() const;
1022
1023  /// isSpecifierType - Returns true if this type can be represented by some
1024  /// set of type specifiers.
1025  bool isSpecifierType() const;
1026
1027  /// \brief Determine the linkage of this type.
1028  Linkage getLinkage() const;
1029
1030  /// \brief Note that the linkage is no longer known.
1031  void ClearLinkageCache();
1032
1033  const char *getTypeClassName() const;
1034
1035  QualType getCanonicalTypeInternal() const {
1036    return CanonicalType;
1037  }
1038  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1039  void dump() const;
1040  static bool classof(const Type *) { return true; }
1041
1042  friend class PCHReader;
1043  friend class PCHWriter;
1044};
1045
1046template <> inline const TypedefType *Type::getAs() const {
1047  return dyn_cast<TypedefType>(this);
1048}
1049
1050// We can do canonical leaf types faster, because we don't have to
1051// worry about preserving child type decoration.
1052#define TYPE(Class, Base)
1053#define LEAF_TYPE(Class) \
1054template <> inline const Class##Type *Type::getAs() const { \
1055  return dyn_cast<Class##Type>(CanonicalType); \
1056}
1057#include "clang/AST/TypeNodes.def"
1058
1059
1060/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1061/// types are always canonical and have a literal name field.
1062class BuiltinType : public Type {
1063public:
1064  enum Kind {
1065    Void,
1066
1067    Bool,     // This is bool and/or _Bool.
1068    Char_U,   // This is 'char' for targets where char is unsigned.
1069    UChar,    // This is explicitly qualified unsigned char.
1070    Char16,   // This is 'char16_t' for C++.
1071    Char32,   // This is 'char32_t' for C++.
1072    UShort,
1073    UInt,
1074    ULong,
1075    ULongLong,
1076    UInt128,  // __uint128_t
1077
1078    Char_S,   // This is 'char' for targets where char is signed.
1079    SChar,    // This is explicitly qualified signed char.
1080    WChar,    // This is 'wchar_t' for C++.
1081    Short,
1082    Int,
1083    Long,
1084    LongLong,
1085    Int128,   // __int128_t
1086
1087    Float, Double, LongDouble,
1088
1089    NullPtr,  // This is the type of C++0x 'nullptr'.
1090
1091    Overload,  // This represents the type of an overloaded function declaration.
1092    Dependent, // This represents the type of a type-dependent expression.
1093
1094    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1095                   // that has not been deduced yet.
1096
1097    /// The primitive Objective C 'id' type.  The type pointed to by the
1098    /// user-visible 'id' type.  Only ever shows up in an AST as the base
1099    /// type of an ObjCObjectType.
1100    ObjCId,
1101
1102    /// The primitive Objective C 'Class' type.  The type pointed to by the
1103    /// user-visible 'Class' type.  Only ever shows up in an AST as the
1104    /// base type of an ObjCObjectType.
1105    ObjCClass,
1106
1107    ObjCSel    // This represents the ObjC 'SEL' type.
1108  };
1109private:
1110  Kind TypeKind;
1111
1112protected:
1113  virtual Linkage getLinkageImpl() const;
1114
1115public:
1116  BuiltinType(Kind K)
1117    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
1118      TypeKind(K) {}
1119
1120  Kind getKind() const { return TypeKind; }
1121  const char *getName(const LangOptions &LO) const;
1122
1123  bool isSugared() const { return false; }
1124  QualType desugar() const { return QualType(this, 0); }
1125
1126  bool isInteger() const {
1127    return TypeKind >= Bool && TypeKind <= Int128;
1128  }
1129
1130  bool isSignedInteger() const {
1131    return TypeKind >= Char_S && TypeKind <= Int128;
1132  }
1133
1134  bool isUnsignedInteger() const {
1135    return TypeKind >= Bool && TypeKind <= UInt128;
1136  }
1137
1138  bool isFloatingPoint() const {
1139    return TypeKind >= Float && TypeKind <= LongDouble;
1140  }
1141
1142  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1143  static bool classof(const BuiltinType *) { return true; }
1144};
1145
1146/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1147/// types (_Complex float etc) as well as the GCC integer complex extensions.
1148///
1149class ComplexType : public Type, public llvm::FoldingSetNode {
1150  QualType ElementType;
1151  ComplexType(QualType Element, QualType CanonicalPtr) :
1152    Type(Complex, CanonicalPtr, Element->isDependentType()),
1153    ElementType(Element) {
1154  }
1155  friend class ASTContext;  // ASTContext creates these.
1156
1157protected:
1158  virtual Linkage getLinkageImpl() const;
1159
1160public:
1161  QualType getElementType() const { return ElementType; }
1162
1163  bool isSugared() const { return false; }
1164  QualType desugar() const { return QualType(this, 0); }
1165
1166  void Profile(llvm::FoldingSetNodeID &ID) {
1167    Profile(ID, getElementType());
1168  }
1169  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1170    ID.AddPointer(Element.getAsOpaquePtr());
1171  }
1172
1173  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1174  static bool classof(const ComplexType *) { return true; }
1175};
1176
1177/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1178///
1179class PointerType : public Type, public llvm::FoldingSetNode {
1180  QualType PointeeType;
1181
1182  PointerType(QualType Pointee, QualType CanonicalPtr) :
1183    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1184  }
1185  friend class ASTContext;  // ASTContext creates these.
1186
1187protected:
1188  virtual Linkage getLinkageImpl() const;
1189
1190public:
1191
1192  QualType getPointeeType() const { return PointeeType; }
1193
1194  bool isSugared() const { return false; }
1195  QualType desugar() const { return QualType(this, 0); }
1196
1197  void Profile(llvm::FoldingSetNodeID &ID) {
1198    Profile(ID, getPointeeType());
1199  }
1200  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1201    ID.AddPointer(Pointee.getAsOpaquePtr());
1202  }
1203
1204  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1205  static bool classof(const PointerType *) { return true; }
1206};
1207
1208/// BlockPointerType - pointer to a block type.
1209/// This type is to represent types syntactically represented as
1210/// "void (^)(int)", etc. Pointee is required to always be a function type.
1211///
1212class BlockPointerType : public Type, public llvm::FoldingSetNode {
1213  QualType PointeeType;  // Block is some kind of pointer type
1214  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1215    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1216    PointeeType(Pointee) {
1217  }
1218  friend class ASTContext;  // ASTContext creates these.
1219
1220protected:
1221  virtual Linkage getLinkageImpl() const;
1222
1223public:
1224
1225  // Get the pointee type. Pointee is required to always be a function type.
1226  QualType getPointeeType() const { return PointeeType; }
1227
1228  bool isSugared() const { return false; }
1229  QualType desugar() const { return QualType(this, 0); }
1230
1231  void Profile(llvm::FoldingSetNodeID &ID) {
1232      Profile(ID, getPointeeType());
1233  }
1234  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1235      ID.AddPointer(Pointee.getAsOpaquePtr());
1236  }
1237
1238  static bool classof(const Type *T) {
1239    return T->getTypeClass() == BlockPointer;
1240  }
1241  static bool classof(const BlockPointerType *) { return true; }
1242};
1243
1244/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1245///
1246class ReferenceType : public Type, public llvm::FoldingSetNode {
1247  QualType PointeeType;
1248
1249  /// True if the type was originally spelled with an lvalue sigil.
1250  /// This is never true of rvalue references but can also be false
1251  /// on lvalue references because of C++0x [dcl.typedef]p9,
1252  /// as follows:
1253  ///
1254  ///   typedef int &ref;    // lvalue, spelled lvalue
1255  ///   typedef int &&rvref; // rvalue
1256  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1257  ///   ref &&a;             // lvalue, inner ref
1258  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1259  ///   rvref &&a;           // rvalue, inner ref
1260  bool SpelledAsLValue;
1261
1262  /// True if the inner type is a reference type.  This only happens
1263  /// in non-canonical forms.
1264  bool InnerRef;
1265
1266protected:
1267  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1268                bool SpelledAsLValue) :
1269    Type(tc, CanonicalRef, Referencee->isDependentType()),
1270    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1271    InnerRef(Referencee->isReferenceType()) {
1272  }
1273
1274  virtual Linkage getLinkageImpl() const;
1275
1276public:
1277  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1278  bool isInnerRef() const { return InnerRef; }
1279
1280  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1281  QualType getPointeeType() const {
1282    // FIXME: this might strip inner qualifiers; okay?
1283    const ReferenceType *T = this;
1284    while (T->InnerRef)
1285      T = T->PointeeType->getAs<ReferenceType>();
1286    return T->PointeeType;
1287  }
1288
1289  void Profile(llvm::FoldingSetNodeID &ID) {
1290    Profile(ID, PointeeType, SpelledAsLValue);
1291  }
1292  static void Profile(llvm::FoldingSetNodeID &ID,
1293                      QualType Referencee,
1294                      bool SpelledAsLValue) {
1295    ID.AddPointer(Referencee.getAsOpaquePtr());
1296    ID.AddBoolean(SpelledAsLValue);
1297  }
1298
1299  static bool classof(const Type *T) {
1300    return T->getTypeClass() == LValueReference ||
1301           T->getTypeClass() == RValueReference;
1302  }
1303  static bool classof(const ReferenceType *) { return true; }
1304};
1305
1306/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1307///
1308class LValueReferenceType : public ReferenceType {
1309  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1310                      bool SpelledAsLValue) :
1311    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1312  {}
1313  friend class ASTContext; // ASTContext creates these
1314public:
1315  bool isSugared() const { return false; }
1316  QualType desugar() const { return QualType(this, 0); }
1317
1318  static bool classof(const Type *T) {
1319    return T->getTypeClass() == LValueReference;
1320  }
1321  static bool classof(const LValueReferenceType *) { return true; }
1322};
1323
1324/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1325///
1326class RValueReferenceType : public ReferenceType {
1327  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1328    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1329  }
1330  friend class ASTContext; // ASTContext creates these
1331public:
1332  bool isSugared() const { return false; }
1333  QualType desugar() const { return QualType(this, 0); }
1334
1335  static bool classof(const Type *T) {
1336    return T->getTypeClass() == RValueReference;
1337  }
1338  static bool classof(const RValueReferenceType *) { return true; }
1339};
1340
1341/// MemberPointerType - C++ 8.3.3 - Pointers to members
1342///
1343class MemberPointerType : public Type, public llvm::FoldingSetNode {
1344  QualType PointeeType;
1345  /// The class of which the pointee is a member. Must ultimately be a
1346  /// RecordType, but could be a typedef or a template parameter too.
1347  const Type *Class;
1348
1349  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1350    Type(MemberPointer, CanonicalPtr,
1351         Cls->isDependentType() || Pointee->isDependentType()),
1352    PointeeType(Pointee), Class(Cls) {
1353  }
1354  friend class ASTContext; // ASTContext creates these.
1355
1356protected:
1357  virtual Linkage getLinkageImpl() const;
1358
1359public:
1360
1361  QualType getPointeeType() const { return PointeeType; }
1362
1363  const Type *getClass() const { return Class; }
1364
1365  bool isSugared() const { return false; }
1366  QualType desugar() const { return QualType(this, 0); }
1367
1368  void Profile(llvm::FoldingSetNodeID &ID) {
1369    Profile(ID, getPointeeType(), getClass());
1370  }
1371  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1372                      const Type *Class) {
1373    ID.AddPointer(Pointee.getAsOpaquePtr());
1374    ID.AddPointer(Class);
1375  }
1376
1377  static bool classof(const Type *T) {
1378    return T->getTypeClass() == MemberPointer;
1379  }
1380  static bool classof(const MemberPointerType *) { return true; }
1381};
1382
1383/// ArrayType - C99 6.7.5.2 - Array Declarators.
1384///
1385class ArrayType : public Type, public llvm::FoldingSetNode {
1386public:
1387  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1388  /// an array with a static size (e.g. int X[static 4]), or an array
1389  /// with a star size (e.g. int X[*]).
1390  /// 'static' is only allowed on function parameters.
1391  enum ArraySizeModifier {
1392    Normal, Static, Star
1393  };
1394private:
1395  /// ElementType - The element type of the array.
1396  QualType ElementType;
1397
1398  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1399  /// NOTE: These fields are packed into the bitfields space in the Type class.
1400  unsigned SizeModifier : 2;
1401
1402  /// IndexTypeQuals - Capture qualifiers in declarations like:
1403  /// 'int X[static restrict 4]'. For function parameters only.
1404  unsigned IndexTypeQuals : 3;
1405
1406protected:
1407  // C++ [temp.dep.type]p1:
1408  //   A type is dependent if it is...
1409  //     - an array type constructed from any dependent type or whose
1410  //       size is specified by a constant expression that is
1411  //       value-dependent,
1412  ArrayType(TypeClass tc, QualType et, QualType can,
1413            ArraySizeModifier sm, unsigned tq)
1414    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1415      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1416
1417  friend class ASTContext;  // ASTContext creates these.
1418
1419  virtual Linkage getLinkageImpl() const;
1420
1421public:
1422  QualType getElementType() const { return ElementType; }
1423  ArraySizeModifier getSizeModifier() const {
1424    return ArraySizeModifier(SizeModifier);
1425  }
1426  Qualifiers getIndexTypeQualifiers() const {
1427    return Qualifiers::fromCVRMask(IndexTypeQuals);
1428  }
1429  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1430
1431  static bool classof(const Type *T) {
1432    return T->getTypeClass() == ConstantArray ||
1433           T->getTypeClass() == VariableArray ||
1434           T->getTypeClass() == IncompleteArray ||
1435           T->getTypeClass() == DependentSizedArray;
1436  }
1437  static bool classof(const ArrayType *) { return true; }
1438};
1439
1440/// ConstantArrayType - This class represents the canonical version of
1441/// C arrays with a specified constant size.  For example, the canonical
1442/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1443/// type is 'int' and the size is 404.
1444class ConstantArrayType : public ArrayType {
1445  llvm::APInt Size; // Allows us to unique the type.
1446
1447  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1448                    ArraySizeModifier sm, unsigned tq)
1449    : ArrayType(ConstantArray, et, can, sm, tq),
1450      Size(size) {}
1451protected:
1452  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1453                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1454    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1455  friend class ASTContext;  // ASTContext creates these.
1456public:
1457  const llvm::APInt &getSize() const { return Size; }
1458  bool isSugared() const { return false; }
1459  QualType desugar() const { return QualType(this, 0); }
1460
1461
1462  /// \brief Determine the number of bits required to address a member of
1463  // an array with the given element type and number of elements.
1464  static unsigned getNumAddressingBits(ASTContext &Context,
1465                                       QualType ElementType,
1466                                       const llvm::APInt &NumElements);
1467
1468  /// \brief Determine the maximum number of active bits that an array's size
1469  /// can require, which limits the maximum size of the array.
1470  static unsigned getMaxSizeBits(ASTContext &Context);
1471
1472  void Profile(llvm::FoldingSetNodeID &ID) {
1473    Profile(ID, getElementType(), getSize(),
1474            getSizeModifier(), getIndexTypeCVRQualifiers());
1475  }
1476  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1477                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1478                      unsigned TypeQuals) {
1479    ID.AddPointer(ET.getAsOpaquePtr());
1480    ID.AddInteger(ArraySize.getZExtValue());
1481    ID.AddInteger(SizeMod);
1482    ID.AddInteger(TypeQuals);
1483  }
1484  static bool classof(const Type *T) {
1485    return T->getTypeClass() == ConstantArray;
1486  }
1487  static bool classof(const ConstantArrayType *) { return true; }
1488};
1489
1490/// IncompleteArrayType - This class represents C arrays with an unspecified
1491/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1492/// type is 'int' and the size is unspecified.
1493class IncompleteArrayType : public ArrayType {
1494
1495  IncompleteArrayType(QualType et, QualType can,
1496                      ArraySizeModifier sm, unsigned tq)
1497    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1498  friend class ASTContext;  // ASTContext creates these.
1499public:
1500  bool isSugared() const { return false; }
1501  QualType desugar() const { return QualType(this, 0); }
1502
1503  static bool classof(const Type *T) {
1504    return T->getTypeClass() == IncompleteArray;
1505  }
1506  static bool classof(const IncompleteArrayType *) { return true; }
1507
1508  friend class StmtIteratorBase;
1509
1510  void Profile(llvm::FoldingSetNodeID &ID) {
1511    Profile(ID, getElementType(), getSizeModifier(),
1512            getIndexTypeCVRQualifiers());
1513  }
1514
1515  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1516                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1517    ID.AddPointer(ET.getAsOpaquePtr());
1518    ID.AddInteger(SizeMod);
1519    ID.AddInteger(TypeQuals);
1520  }
1521};
1522
1523/// VariableArrayType - This class represents C arrays with a specified size
1524/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1525/// Since the size expression is an arbitrary expression, we store it as such.
1526///
1527/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1528/// should not be: two lexically equivalent variable array types could mean
1529/// different things, for example, these variables do not have the same type
1530/// dynamically:
1531///
1532/// void foo(int x) {
1533///   int Y[x];
1534///   ++x;
1535///   int Z[x];
1536/// }
1537///
1538class VariableArrayType : public ArrayType {
1539  /// SizeExpr - An assignment expression. VLA's are only permitted within
1540  /// a function block.
1541  Stmt *SizeExpr;
1542  /// Brackets - The left and right array brackets.
1543  SourceRange Brackets;
1544
1545  VariableArrayType(QualType et, QualType can, Expr *e,
1546                    ArraySizeModifier sm, unsigned tq,
1547                    SourceRange brackets)
1548    : ArrayType(VariableArray, et, can, sm, tq),
1549      SizeExpr((Stmt*) e), Brackets(brackets) {}
1550  friend class ASTContext;  // ASTContext creates these.
1551
1552public:
1553  Expr *getSizeExpr() const {
1554    // We use C-style casts instead of cast<> here because we do not wish
1555    // to have a dependency of Type.h on Stmt.h/Expr.h.
1556    return (Expr*) SizeExpr;
1557  }
1558  SourceRange getBracketsRange() const { return Brackets; }
1559  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1560  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1561
1562  bool isSugared() const { return false; }
1563  QualType desugar() const { return QualType(this, 0); }
1564
1565  static bool classof(const Type *T) {
1566    return T->getTypeClass() == VariableArray;
1567  }
1568  static bool classof(const VariableArrayType *) { return true; }
1569
1570  friend class StmtIteratorBase;
1571
1572  void Profile(llvm::FoldingSetNodeID &ID) {
1573    assert(0 && "Cannnot unique VariableArrayTypes.");
1574  }
1575};
1576
1577/// DependentSizedArrayType - This type represents an array type in
1578/// C++ whose size is a value-dependent expression. For example:
1579///
1580/// \code
1581/// template<typename T, int Size>
1582/// class array {
1583///   T data[Size];
1584/// };
1585/// \endcode
1586///
1587/// For these types, we won't actually know what the array bound is
1588/// until template instantiation occurs, at which point this will
1589/// become either a ConstantArrayType or a VariableArrayType.
1590class DependentSizedArrayType : public ArrayType {
1591  ASTContext &Context;
1592
1593  /// \brief An assignment expression that will instantiate to the
1594  /// size of the array.
1595  ///
1596  /// The expression itself might be NULL, in which case the array
1597  /// type will have its size deduced from an initializer.
1598  Stmt *SizeExpr;
1599
1600  /// Brackets - The left and right array brackets.
1601  SourceRange Brackets;
1602
1603  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1604                          Expr *e, ArraySizeModifier sm, unsigned tq,
1605                          SourceRange brackets)
1606    : ArrayType(DependentSizedArray, et, can, sm, tq),
1607      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1608  friend class ASTContext;  // ASTContext creates these.
1609
1610public:
1611  Expr *getSizeExpr() const {
1612    // We use C-style casts instead of cast<> here because we do not wish
1613    // to have a dependency of Type.h on Stmt.h/Expr.h.
1614    return (Expr*) SizeExpr;
1615  }
1616  SourceRange getBracketsRange() const { return Brackets; }
1617  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1618  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1619
1620  bool isSugared() const { return false; }
1621  QualType desugar() const { return QualType(this, 0); }
1622
1623  static bool classof(const Type *T) {
1624    return T->getTypeClass() == DependentSizedArray;
1625  }
1626  static bool classof(const DependentSizedArrayType *) { return true; }
1627
1628  friend class StmtIteratorBase;
1629
1630
1631  void Profile(llvm::FoldingSetNodeID &ID) {
1632    Profile(ID, Context, getElementType(),
1633            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1634  }
1635
1636  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1637                      QualType ET, ArraySizeModifier SizeMod,
1638                      unsigned TypeQuals, Expr *E);
1639};
1640
1641/// DependentSizedExtVectorType - This type represent an extended vector type
1642/// where either the type or size is dependent. For example:
1643/// @code
1644/// template<typename T, int Size>
1645/// class vector {
1646///   typedef T __attribute__((ext_vector_type(Size))) type;
1647/// }
1648/// @endcode
1649class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1650  ASTContext &Context;
1651  Expr *SizeExpr;
1652  /// ElementType - The element type of the array.
1653  QualType ElementType;
1654  SourceLocation loc;
1655
1656  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1657                              QualType can, Expr *SizeExpr, SourceLocation loc)
1658    : Type (DependentSizedExtVector, can, true),
1659      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1660      loc(loc) {}
1661  friend class ASTContext;
1662
1663public:
1664  Expr *getSizeExpr() const { return SizeExpr; }
1665  QualType getElementType() const { return ElementType; }
1666  SourceLocation getAttributeLoc() const { return loc; }
1667
1668  bool isSugared() const { return false; }
1669  QualType desugar() const { return QualType(this, 0); }
1670
1671  static bool classof(const Type *T) {
1672    return T->getTypeClass() == DependentSizedExtVector;
1673  }
1674  static bool classof(const DependentSizedExtVectorType *) { return true; }
1675
1676  void Profile(llvm::FoldingSetNodeID &ID) {
1677    Profile(ID, Context, getElementType(), getSizeExpr());
1678  }
1679
1680  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1681                      QualType ElementType, Expr *SizeExpr);
1682};
1683
1684
1685/// VectorType - GCC generic vector type. This type is created using
1686/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1687/// bytes; or from an Altivec __vector or vector declaration.
1688/// Since the constructor takes the number of vector elements, the
1689/// client is responsible for converting the size into the number of elements.
1690class VectorType : public Type, public llvm::FoldingSetNode {
1691public:
1692  enum AltiVecSpecific {
1693    NotAltiVec,  // is not AltiVec vector
1694    AltiVec,     // is AltiVec vector
1695    Pixel,       // is AltiVec 'vector Pixel'
1696    Bool         // is AltiVec 'vector bool ...'
1697  };
1698protected:
1699  /// ElementType - The element type of the vector.
1700  QualType ElementType;
1701
1702  /// NumElements - The number of elements in the vector.
1703  unsigned NumElements;
1704
1705  AltiVecSpecific AltiVecSpec;
1706
1707  VectorType(QualType vecType, unsigned nElements, QualType canonType,
1708      AltiVecSpecific altiVecSpec) :
1709    Type(Vector, canonType, vecType->isDependentType()),
1710    ElementType(vecType), NumElements(nElements), AltiVecSpec(altiVecSpec) {}
1711  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1712             QualType canonType, AltiVecSpecific altiVecSpec)
1713    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1714      NumElements(nElements), AltiVecSpec(altiVecSpec) {}
1715  friend class ASTContext;  // ASTContext creates these.
1716
1717  virtual Linkage getLinkageImpl() const;
1718
1719public:
1720
1721  QualType getElementType() const { return ElementType; }
1722  unsigned getNumElements() const { return NumElements; }
1723
1724  bool isSugared() const { return false; }
1725  QualType desugar() const { return QualType(this, 0); }
1726
1727  AltiVecSpecific getAltiVecSpecific() const { return AltiVecSpec; }
1728
1729  void Profile(llvm::FoldingSetNodeID &ID) {
1730    Profile(ID, getElementType(), getNumElements(), getTypeClass(), AltiVecSpec);
1731  }
1732  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1733                      unsigned NumElements, TypeClass TypeClass,
1734                      unsigned AltiVecSpec) {
1735    ID.AddPointer(ElementType.getAsOpaquePtr());
1736    ID.AddInteger(NumElements);
1737    ID.AddInteger(TypeClass);
1738    ID.AddInteger(AltiVecSpec);
1739  }
1740
1741  static bool classof(const Type *T) {
1742    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1743  }
1744  static bool classof(const VectorType *) { return true; }
1745};
1746
1747/// ExtVectorType - Extended vector type. This type is created using
1748/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1749/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1750/// class enables syntactic extensions, like Vector Components for accessing
1751/// points, colors, and textures (modeled after OpenGL Shading Language).
1752class ExtVectorType : public VectorType {
1753  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1754    VectorType(ExtVector, vecType, nElements, canonType, NotAltiVec) {}
1755  friend class ASTContext;  // ASTContext creates these.
1756public:
1757  static int getPointAccessorIdx(char c) {
1758    switch (c) {
1759    default: return -1;
1760    case 'x': return 0;
1761    case 'y': return 1;
1762    case 'z': return 2;
1763    case 'w': return 3;
1764    }
1765  }
1766  static int getNumericAccessorIdx(char c) {
1767    switch (c) {
1768      default: return -1;
1769      case '0': return 0;
1770      case '1': return 1;
1771      case '2': return 2;
1772      case '3': return 3;
1773      case '4': return 4;
1774      case '5': return 5;
1775      case '6': return 6;
1776      case '7': return 7;
1777      case '8': return 8;
1778      case '9': return 9;
1779      case 'A':
1780      case 'a': return 10;
1781      case 'B':
1782      case 'b': return 11;
1783      case 'C':
1784      case 'c': return 12;
1785      case 'D':
1786      case 'd': return 13;
1787      case 'E':
1788      case 'e': return 14;
1789      case 'F':
1790      case 'f': return 15;
1791    }
1792  }
1793
1794  static int getAccessorIdx(char c) {
1795    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1796    return getNumericAccessorIdx(c);
1797  }
1798
1799  bool isAccessorWithinNumElements(char c) const {
1800    if (int idx = getAccessorIdx(c)+1)
1801      return unsigned(idx-1) < NumElements;
1802    return false;
1803  }
1804  bool isSugared() const { return false; }
1805  QualType desugar() const { return QualType(this, 0); }
1806
1807  static bool classof(const Type *T) {
1808    return T->getTypeClass() == ExtVector;
1809  }
1810  static bool classof(const ExtVectorType *) { return true; }
1811};
1812
1813/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1814/// class of FunctionNoProtoType and FunctionProtoType.
1815///
1816class FunctionType : public Type {
1817  virtual void ANCHOR(); // Key function for FunctionType.
1818
1819  /// SubClassData - This field is owned by the subclass, put here to pack
1820  /// tightly with the ivars in Type.
1821  bool SubClassData : 1;
1822
1823  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1824  /// other bitfields.
1825  /// The qualifiers are part of FunctionProtoType because...
1826  ///
1827  /// C++ 8.3.5p4: The return type, the parameter type list and the
1828  /// cv-qualifier-seq, [...], are part of the function type.
1829  ///
1830  unsigned TypeQuals : 3;
1831
1832  /// NoReturn - Indicates if the function type is attribute noreturn.
1833  unsigned NoReturn : 1;
1834
1835  /// RegParm - How many arguments to pass inreg.
1836  unsigned RegParm : 3;
1837
1838  /// CallConv - The calling convention used by the function.
1839  unsigned CallConv : 3;
1840
1841  // The type returned by the function.
1842  QualType ResultType;
1843
1844 public:
1845  // This class is used for passing arround the information needed to
1846  // construct a call. It is not actually used for storage, just for
1847  // factoring together common arguments.
1848  // If you add a field (say Foo), other than the obvious places (both, constructors,
1849  // compile failures), what you need to update is
1850  // * Operetor==
1851  // * getFoo
1852  // * withFoo
1853  // * functionType. Add Foo, getFoo.
1854  // * ASTContext::getFooType
1855  // * ASTContext::mergeFunctionTypes
1856  // * FunctionNoProtoType::Profile
1857  // * FunctionProtoType::Profile
1858  // * TypePrinter::PrintFunctionProto
1859  // * PCH read and write
1860  // * Codegen
1861
1862  class ExtInfo {
1863   public:
1864    // Constructor with no defaults. Use this when you know that you
1865    // have all the elements (when reading a PCH file for example).
1866    ExtInfo(bool noReturn, unsigned regParm, CallingConv cc) :
1867        NoReturn(noReturn), RegParm(regParm), CC(cc) {}
1868
1869    // Constructor with all defaults. Use when for example creating a
1870    // function know to use defaults.
1871    ExtInfo() : NoReturn(false), RegParm(0), CC(CC_Default) {}
1872
1873    bool getNoReturn() const { return NoReturn; }
1874    unsigned getRegParm() const { return RegParm; }
1875    CallingConv getCC() const { return CC; }
1876
1877    bool operator==(const ExtInfo &Other) const {
1878      return getNoReturn() == Other.getNoReturn() &&
1879          getRegParm() == Other.getRegParm() &&
1880          getCC() == Other.getCC();
1881    }
1882    bool operator!=(const ExtInfo &Other) const {
1883      return !(*this == Other);
1884    }
1885
1886    // Note that we don't have setters. That is by design, use
1887    // the following with methods instead of mutating these objects.
1888
1889    ExtInfo withNoReturn(bool noReturn) const {
1890      return ExtInfo(noReturn, getRegParm(), getCC());
1891    }
1892
1893    ExtInfo withRegParm(unsigned RegParm) const {
1894      return ExtInfo(getNoReturn(), RegParm, getCC());
1895    }
1896
1897    ExtInfo withCallingConv(CallingConv cc) const {
1898      return ExtInfo(getNoReturn(), getRegParm(), cc);
1899    }
1900
1901   private:
1902    // True if we have __attribute__((noreturn))
1903    bool NoReturn;
1904    // The value passed to __attribute__((regparm(x)))
1905    unsigned RegParm;
1906    // The calling convention as specified via
1907    // __attribute__((cdecl|stdcall|fastcall|thiscall))
1908    CallingConv CC;
1909  };
1910
1911protected:
1912  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1913               unsigned typeQuals, QualType Canonical, bool Dependent,
1914               const ExtInfo &Info)
1915    : Type(tc, Canonical, Dependent),
1916      SubClassData(SubclassInfo), TypeQuals(typeQuals),
1917      NoReturn(Info.getNoReturn()),
1918      RegParm(Info.getRegParm()), CallConv(Info.getCC()), ResultType(res) {}
1919  bool getSubClassData() const { return SubClassData; }
1920  unsigned getTypeQuals() const { return TypeQuals; }
1921public:
1922
1923  QualType getResultType() const { return ResultType; }
1924
1925  unsigned getRegParmType() const { return RegParm; }
1926  bool getNoReturnAttr() const { return NoReturn; }
1927  CallingConv getCallConv() const { return (CallingConv)CallConv; }
1928  ExtInfo getExtInfo() const {
1929    return ExtInfo(NoReturn, RegParm, (CallingConv)CallConv);
1930  }
1931
1932  /// \brief Determine the type of an expression that calls a function of
1933  /// this type.
1934  QualType getCallResultType(ASTContext &Context) const {
1935    return getResultType().getNonLValueExprType(Context);
1936  }
1937
1938  static llvm::StringRef getNameForCallConv(CallingConv CC);
1939
1940  static bool classof(const Type *T) {
1941    return T->getTypeClass() == FunctionNoProto ||
1942           T->getTypeClass() == FunctionProto;
1943  }
1944  static bool classof(const FunctionType *) { return true; }
1945};
1946
1947/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1948/// no information available about its arguments.
1949class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1950  FunctionNoProtoType(QualType Result, QualType Canonical,
1951                      const ExtInfo &Info)
1952    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1953                   /*Dependent=*/false, Info) {}
1954  friend class ASTContext;  // ASTContext creates these.
1955
1956protected:
1957  virtual Linkage getLinkageImpl() const;
1958
1959public:
1960  // No additional state past what FunctionType provides.
1961
1962  bool isSugared() const { return false; }
1963  QualType desugar() const { return QualType(this, 0); }
1964
1965  void Profile(llvm::FoldingSetNodeID &ID) {
1966    Profile(ID, getResultType(), getExtInfo());
1967  }
1968  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1969                      const ExtInfo &Info) {
1970    ID.AddInteger(Info.getCC());
1971    ID.AddInteger(Info.getRegParm());
1972    ID.AddInteger(Info.getNoReturn());
1973    ID.AddPointer(ResultType.getAsOpaquePtr());
1974  }
1975
1976  static bool classof(const Type *T) {
1977    return T->getTypeClass() == FunctionNoProto;
1978  }
1979  static bool classof(const FunctionNoProtoType *) { return true; }
1980};
1981
1982/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1983/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1984/// arguments, not as having a single void argument. Such a type can have an
1985/// exception specification, but this specification is not part of the canonical
1986/// type.
1987class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1988  /// hasAnyDependentType - Determine whether there are any dependent
1989  /// types within the arguments passed in.
1990  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1991    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1992      if (ArgArray[Idx]->isDependentType())
1993    return true;
1994
1995    return false;
1996  }
1997
1998  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1999                    bool isVariadic, unsigned typeQuals, bool hasExs,
2000                    bool hasAnyExs, const QualType *ExArray,
2001                    unsigned numExs, QualType Canonical,
2002                    const ExtInfo &Info)
2003    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
2004                   (Result->isDependentType() ||
2005                    hasAnyDependentType(ArgArray, numArgs)),
2006                   Info),
2007      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
2008      AnyExceptionSpec(hasAnyExs) {
2009    // Fill in the trailing argument array.
2010    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
2011    for (unsigned i = 0; i != numArgs; ++i)
2012      ArgInfo[i] = ArgArray[i];
2013    // Fill in the exception array.
2014    QualType *Ex = ArgInfo + numArgs;
2015    for (unsigned i = 0; i != numExs; ++i)
2016      Ex[i] = ExArray[i];
2017  }
2018
2019  /// NumArgs - The number of arguments this function has, not counting '...'.
2020  unsigned NumArgs : 20;
2021
2022  /// NumExceptions - The number of types in the exception spec, if any.
2023  unsigned NumExceptions : 10;
2024
2025  /// HasExceptionSpec - Whether this function has an exception spec at all.
2026  bool HasExceptionSpec : 1;
2027
2028  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
2029  bool AnyExceptionSpec : 1;
2030
2031  /// ArgInfo - There is an variable size array after the class in memory that
2032  /// holds the argument types.
2033
2034  /// Exceptions - There is another variable size array after ArgInfo that
2035  /// holds the exception types.
2036
2037  friend class ASTContext;  // ASTContext creates these.
2038
2039protected:
2040  virtual Linkage getLinkageImpl() const;
2041
2042public:
2043  unsigned getNumArgs() const { return NumArgs; }
2044  QualType getArgType(unsigned i) const {
2045    assert(i < NumArgs && "Invalid argument number!");
2046    return arg_type_begin()[i];
2047  }
2048
2049  bool hasExceptionSpec() const { return HasExceptionSpec; }
2050  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
2051  unsigned getNumExceptions() const { return NumExceptions; }
2052  QualType getExceptionType(unsigned i) const {
2053    assert(i < NumExceptions && "Invalid exception number!");
2054    return exception_begin()[i];
2055  }
2056  bool hasEmptyExceptionSpec() const {
2057    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
2058      getNumExceptions() == 0;
2059  }
2060
2061  bool isVariadic() const { return getSubClassData(); }
2062  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2063
2064  typedef const QualType *arg_type_iterator;
2065  arg_type_iterator arg_type_begin() const {
2066    return reinterpret_cast<const QualType *>(this+1);
2067  }
2068  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2069
2070  typedef const QualType *exception_iterator;
2071  exception_iterator exception_begin() const {
2072    // exceptions begin where arguments end
2073    return arg_type_end();
2074  }
2075  exception_iterator exception_end() const {
2076    return exception_begin() + NumExceptions;
2077  }
2078
2079  bool isSugared() const { return false; }
2080  QualType desugar() const { return QualType(this, 0); }
2081
2082  static bool classof(const Type *T) {
2083    return T->getTypeClass() == FunctionProto;
2084  }
2085  static bool classof(const FunctionProtoType *) { return true; }
2086
2087  void Profile(llvm::FoldingSetNodeID &ID);
2088  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2089                      arg_type_iterator ArgTys, unsigned NumArgs,
2090                      bool isVariadic, unsigned TypeQuals,
2091                      bool hasExceptionSpec, bool anyExceptionSpec,
2092                      unsigned NumExceptions, exception_iterator Exs,
2093                      const ExtInfo &ExtInfo);
2094};
2095
2096
2097/// \brief Represents the dependent type named by a dependently-scoped
2098/// typename using declaration, e.g.
2099///   using typename Base<T>::foo;
2100/// Template instantiation turns these into the underlying type.
2101class UnresolvedUsingType : public Type {
2102  UnresolvedUsingTypenameDecl *Decl;
2103
2104  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2105    : Type(UnresolvedUsing, QualType(), true),
2106      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2107  friend class ASTContext; // ASTContext creates these.
2108public:
2109
2110  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2111
2112  bool isSugared() const { return false; }
2113  QualType desugar() const { return QualType(this, 0); }
2114
2115  static bool classof(const Type *T) {
2116    return T->getTypeClass() == UnresolvedUsing;
2117  }
2118  static bool classof(const UnresolvedUsingType *) { return true; }
2119
2120  void Profile(llvm::FoldingSetNodeID &ID) {
2121    return Profile(ID, Decl);
2122  }
2123  static void Profile(llvm::FoldingSetNodeID &ID,
2124                      UnresolvedUsingTypenameDecl *D) {
2125    ID.AddPointer(D);
2126  }
2127};
2128
2129
2130class TypedefType : public Type {
2131  TypedefDecl *Decl;
2132protected:
2133  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
2134    : Type(tc, can, can->isDependentType()),
2135      Decl(const_cast<TypedefDecl*>(D)) {
2136    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2137  }
2138  friend class ASTContext;  // ASTContext creates these.
2139public:
2140
2141  TypedefDecl *getDecl() const { return Decl; }
2142
2143  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
2144  /// potentially looking through *all* consecutive typedefs.  This returns the
2145  /// sum of the type qualifiers, so if you have:
2146  ///   typedef const int A;
2147  ///   typedef volatile A B;
2148  /// looking through the typedefs for B will give you "const volatile A".
2149  QualType LookThroughTypedefs() const;
2150
2151  bool isSugared() const { return true; }
2152  QualType desugar() const;
2153
2154  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2155  static bool classof(const TypedefType *) { return true; }
2156};
2157
2158/// TypeOfExprType (GCC extension).
2159class TypeOfExprType : public Type {
2160  Expr *TOExpr;
2161
2162protected:
2163  TypeOfExprType(Expr *E, QualType can = QualType());
2164  friend class ASTContext;  // ASTContext creates these.
2165public:
2166  Expr *getUnderlyingExpr() const { return TOExpr; }
2167
2168  /// \brief Remove a single level of sugar.
2169  QualType desugar() const;
2170
2171  /// \brief Returns whether this type directly provides sugar.
2172  bool isSugared() const { return true; }
2173
2174  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2175  static bool classof(const TypeOfExprType *) { return true; }
2176};
2177
2178/// \brief Internal representation of canonical, dependent
2179/// typeof(expr) types.
2180///
2181/// This class is used internally by the ASTContext to manage
2182/// canonical, dependent types, only. Clients will only see instances
2183/// of this class via TypeOfExprType nodes.
2184class DependentTypeOfExprType
2185  : public TypeOfExprType, public llvm::FoldingSetNode {
2186  ASTContext &Context;
2187
2188public:
2189  DependentTypeOfExprType(ASTContext &Context, Expr *E)
2190    : TypeOfExprType(E), Context(Context) { }
2191
2192  bool isSugared() const { return false; }
2193  QualType desugar() const { return QualType(this, 0); }
2194
2195  void Profile(llvm::FoldingSetNodeID &ID) {
2196    Profile(ID, Context, getUnderlyingExpr());
2197  }
2198
2199  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2200                      Expr *E);
2201};
2202
2203/// TypeOfType (GCC extension).
2204class TypeOfType : public Type {
2205  QualType TOType;
2206  TypeOfType(QualType T, QualType can)
2207    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
2208    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2209  }
2210  friend class ASTContext;  // ASTContext creates these.
2211public:
2212  QualType getUnderlyingType() const { return TOType; }
2213
2214  /// \brief Remove a single level of sugar.
2215  QualType desugar() const { return getUnderlyingType(); }
2216
2217  /// \brief Returns whether this type directly provides sugar.
2218  bool isSugared() const { return true; }
2219
2220  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2221  static bool classof(const TypeOfType *) { return true; }
2222};
2223
2224/// DecltypeType (C++0x)
2225class DecltypeType : public Type {
2226  Expr *E;
2227
2228  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2229  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2230  // from it.
2231  QualType UnderlyingType;
2232
2233protected:
2234  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2235  friend class ASTContext;  // ASTContext creates these.
2236public:
2237  Expr *getUnderlyingExpr() const { return E; }
2238  QualType getUnderlyingType() const { return UnderlyingType; }
2239
2240  /// \brief Remove a single level of sugar.
2241  QualType desugar() const { return getUnderlyingType(); }
2242
2243  /// \brief Returns whether this type directly provides sugar.
2244  bool isSugared() const { return !isDependentType(); }
2245
2246  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2247  static bool classof(const DecltypeType *) { return true; }
2248};
2249
2250/// \brief Internal representation of canonical, dependent
2251/// decltype(expr) types.
2252///
2253/// This class is used internally by the ASTContext to manage
2254/// canonical, dependent types, only. Clients will only see instances
2255/// of this class via DecltypeType nodes.
2256class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2257  ASTContext &Context;
2258
2259public:
2260  DependentDecltypeType(ASTContext &Context, Expr *E);
2261
2262  bool isSugared() const { return false; }
2263  QualType desugar() const { return QualType(this, 0); }
2264
2265  void Profile(llvm::FoldingSetNodeID &ID) {
2266    Profile(ID, Context, getUnderlyingExpr());
2267  }
2268
2269  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2270                      Expr *E);
2271};
2272
2273class TagType : public Type {
2274  /// Stores the TagDecl associated with this type. The decl may point to any
2275  /// TagDecl that declares the entity.
2276  TagDecl * decl;
2277
2278protected:
2279  TagType(TypeClass TC, const TagDecl *D, QualType can);
2280
2281  virtual Linkage getLinkageImpl() const;
2282
2283public:
2284  TagDecl *getDecl() const;
2285
2286  /// @brief Determines whether this type is in the process of being
2287  /// defined.
2288  bool isBeingDefined() const;
2289
2290  static bool classof(const Type *T) {
2291    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2292  }
2293  static bool classof(const TagType *) { return true; }
2294  static bool classof(const RecordType *) { return true; }
2295  static bool classof(const EnumType *) { return true; }
2296};
2297
2298/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2299/// to detect TagType objects of structs/unions/classes.
2300class RecordType : public TagType {
2301protected:
2302  explicit RecordType(const RecordDecl *D)
2303    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2304  explicit RecordType(TypeClass TC, RecordDecl *D)
2305    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2306  friend class ASTContext;   // ASTContext creates these.
2307public:
2308
2309  RecordDecl *getDecl() const {
2310    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2311  }
2312
2313  // FIXME: This predicate is a helper to QualType/Type. It needs to
2314  // recursively check all fields for const-ness. If any field is declared
2315  // const, it needs to return false.
2316  bool hasConstFields() const { return false; }
2317
2318  // FIXME: RecordType needs to check when it is created that all fields are in
2319  // the same address space, and return that.
2320  unsigned getAddressSpace() const { return 0; }
2321
2322  bool isSugared() const { return false; }
2323  QualType desugar() const { return QualType(this, 0); }
2324
2325  static bool classof(const TagType *T);
2326  static bool classof(const Type *T) {
2327    return isa<TagType>(T) && classof(cast<TagType>(T));
2328  }
2329  static bool classof(const RecordType *) { return true; }
2330};
2331
2332/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2333/// to detect TagType objects of enums.
2334class EnumType : public TagType {
2335  explicit EnumType(const EnumDecl *D)
2336    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2337  friend class ASTContext;   // ASTContext creates these.
2338public:
2339
2340  EnumDecl *getDecl() const {
2341    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2342  }
2343
2344  bool isSugared() const { return false; }
2345  QualType desugar() const { return QualType(this, 0); }
2346
2347  static bool classof(const TagType *T);
2348  static bool classof(const Type *T) {
2349    return isa<TagType>(T) && classof(cast<TagType>(T));
2350  }
2351  static bool classof(const EnumType *) { return true; }
2352};
2353
2354class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2355  unsigned Depth : 15;
2356  unsigned Index : 16;
2357  unsigned ParameterPack : 1;
2358  IdentifierInfo *Name;
2359
2360  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2361                       QualType Canon)
2362    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2363      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2364
2365  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2366    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2367      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2368
2369  friend class ASTContext;  // ASTContext creates these
2370
2371public:
2372  unsigned getDepth() const { return Depth; }
2373  unsigned getIndex() const { return Index; }
2374  bool isParameterPack() const { return ParameterPack; }
2375  IdentifierInfo *getName() const { return Name; }
2376
2377  bool isSugared() const { return false; }
2378  QualType desugar() const { return QualType(this, 0); }
2379
2380  void Profile(llvm::FoldingSetNodeID &ID) {
2381    Profile(ID, Depth, Index, ParameterPack, Name);
2382  }
2383
2384  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2385                      unsigned Index, bool ParameterPack,
2386                      IdentifierInfo *Name) {
2387    ID.AddInteger(Depth);
2388    ID.AddInteger(Index);
2389    ID.AddBoolean(ParameterPack);
2390    ID.AddPointer(Name);
2391  }
2392
2393  static bool classof(const Type *T) {
2394    return T->getTypeClass() == TemplateTypeParm;
2395  }
2396  static bool classof(const TemplateTypeParmType *T) { return true; }
2397};
2398
2399/// \brief Represents the result of substituting a type for a template
2400/// type parameter.
2401///
2402/// Within an instantiated template, all template type parameters have
2403/// been replaced with these.  They are used solely to record that a
2404/// type was originally written as a template type parameter;
2405/// therefore they are never canonical.
2406class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2407  // The original type parameter.
2408  const TemplateTypeParmType *Replaced;
2409
2410  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2411    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2412      Replaced(Param) { }
2413
2414  friend class ASTContext;
2415
2416public:
2417  IdentifierInfo *getName() const { return Replaced->getName(); }
2418
2419  /// Gets the template parameter that was substituted for.
2420  const TemplateTypeParmType *getReplacedParameter() const {
2421    return Replaced;
2422  }
2423
2424  /// Gets the type that was substituted for the template
2425  /// parameter.
2426  QualType getReplacementType() const {
2427    return getCanonicalTypeInternal();
2428  }
2429
2430  bool isSugared() const { return true; }
2431  QualType desugar() const { return getReplacementType(); }
2432
2433  void Profile(llvm::FoldingSetNodeID &ID) {
2434    Profile(ID, getReplacedParameter(), getReplacementType());
2435  }
2436  static void Profile(llvm::FoldingSetNodeID &ID,
2437                      const TemplateTypeParmType *Replaced,
2438                      QualType Replacement) {
2439    ID.AddPointer(Replaced);
2440    ID.AddPointer(Replacement.getAsOpaquePtr());
2441  }
2442
2443  static bool classof(const Type *T) {
2444    return T->getTypeClass() == SubstTemplateTypeParm;
2445  }
2446  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2447};
2448
2449/// \brief Represents the type of a template specialization as written
2450/// in the source code.
2451///
2452/// Template specialization types represent the syntactic form of a
2453/// template-id that refers to a type, e.g., @c vector<int>. Some
2454/// template specialization types are syntactic sugar, whose canonical
2455/// type will point to some other type node that represents the
2456/// instantiation or class template specialization. For example, a
2457/// class template specialization type of @c vector<int> will refer to
2458/// a tag type for the instantiation
2459/// @c std::vector<int, std::allocator<int>>.
2460///
2461/// Other template specialization types, for which the template name
2462/// is dependent, may be canonical types. These types are always
2463/// dependent.
2464class TemplateSpecializationType
2465  : public Type, public llvm::FoldingSetNode {
2466  /// \brief The name of the template being specialized.
2467  TemplateName Template;
2468
2469  /// \brief - The number of template arguments named in this class
2470  /// template specialization.
2471  unsigned NumArgs;
2472
2473  TemplateSpecializationType(TemplateName T,
2474                             const TemplateArgument *Args,
2475                             unsigned NumArgs, QualType Canon);
2476
2477  friend class ASTContext;  // ASTContext creates these
2478
2479public:
2480  /// \brief Determine whether any of the given template arguments are
2481  /// dependent.
2482  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2483                                            unsigned NumArgs);
2484
2485  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2486                                            unsigned NumArgs);
2487
2488  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2489
2490  /// \brief Print a template argument list, including the '<' and '>'
2491  /// enclosing the template arguments.
2492  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2493                                               unsigned NumArgs,
2494                                               const PrintingPolicy &Policy);
2495
2496  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2497                                               unsigned NumArgs,
2498                                               const PrintingPolicy &Policy);
2499
2500  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2501                                               const PrintingPolicy &Policy);
2502
2503  /// True if this template specialization type matches a current
2504  /// instantiation in the context in which it is found.
2505  bool isCurrentInstantiation() const {
2506    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
2507  }
2508
2509  typedef const TemplateArgument * iterator;
2510
2511  iterator begin() const { return getArgs(); }
2512  iterator end() const; // defined inline in TemplateBase.h
2513
2514  /// \brief Retrieve the name of the template that we are specializing.
2515  TemplateName getTemplateName() const { return Template; }
2516
2517  /// \brief Retrieve the template arguments.
2518  const TemplateArgument *getArgs() const {
2519    return reinterpret_cast<const TemplateArgument *>(this + 1);
2520  }
2521
2522  /// \brief Retrieve the number of template arguments.
2523  unsigned getNumArgs() const { return NumArgs; }
2524
2525  /// \brief Retrieve a specific template argument as a type.
2526  /// \precondition @c isArgType(Arg)
2527  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
2528
2529  bool isSugared() const {
2530    return !isDependentType() || isCurrentInstantiation();
2531  }
2532  QualType desugar() const { return getCanonicalTypeInternal(); }
2533
2534  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Ctx) {
2535    Profile(ID, Template, getArgs(), NumArgs, Ctx);
2536  }
2537
2538  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2539                      const TemplateArgument *Args,
2540                      unsigned NumArgs,
2541                      ASTContext &Context);
2542
2543  static bool classof(const Type *T) {
2544    return T->getTypeClass() == TemplateSpecialization;
2545  }
2546  static bool classof(const TemplateSpecializationType *T) { return true; }
2547};
2548
2549/// \brief The injected class name of a C++ class template or class
2550/// template partial specialization.  Used to record that a type was
2551/// spelled with a bare identifier rather than as a template-id; the
2552/// equivalent for non-templated classes is just RecordType.
2553///
2554/// Injected class name types are always dependent.  Template
2555/// instantiation turns these into RecordTypes.
2556///
2557/// Injected class name types are always canonical.  This works
2558/// because it is impossible to compare an injected class name type
2559/// with the corresponding non-injected template type, for the same
2560/// reason that it is impossible to directly compare template
2561/// parameters from different dependent contexts: injected class name
2562/// types can only occur within the scope of a particular templated
2563/// declaration, and within that scope every template specialization
2564/// will canonicalize to the injected class name (when appropriate
2565/// according to the rules of the language).
2566class InjectedClassNameType : public Type {
2567  CXXRecordDecl *Decl;
2568
2569  /// The template specialization which this type represents.
2570  /// For example, in
2571  ///   template <class T> class A { ... };
2572  /// this is A<T>, whereas in
2573  ///   template <class X, class Y> class A<B<X,Y> > { ... };
2574  /// this is A<B<X,Y> >.
2575  ///
2576  /// It is always unqualified, always a template specialization type,
2577  /// and always dependent.
2578  QualType InjectedType;
2579
2580  friend class ASTContext; // ASTContext creates these.
2581  friend class PCHReader; // FIXME: ASTContext::getInjectedClassNameType is not
2582                          // currently suitable for PCH reading, too much
2583                          // interdependencies.
2584  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
2585    : Type(InjectedClassName, QualType(), true),
2586      Decl(D), InjectedType(TST) {
2587    assert(isa<TemplateSpecializationType>(TST));
2588    assert(!TST.hasQualifiers());
2589    assert(TST->isDependentType());
2590  }
2591
2592public:
2593  QualType getInjectedSpecializationType() const { return InjectedType; }
2594  const TemplateSpecializationType *getInjectedTST() const {
2595    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
2596  }
2597
2598  CXXRecordDecl *getDecl() const;
2599
2600  bool isSugared() const { return false; }
2601  QualType desugar() const { return QualType(this, 0); }
2602
2603  static bool classof(const Type *T) {
2604    return T->getTypeClass() == InjectedClassName;
2605  }
2606  static bool classof(const InjectedClassNameType *T) { return true; }
2607};
2608
2609/// \brief The kind of a tag type.
2610enum TagTypeKind {
2611  /// \brief The "struct" keyword.
2612  TTK_Struct,
2613  /// \brief The "union" keyword.
2614  TTK_Union,
2615  /// \brief The "class" keyword.
2616  TTK_Class,
2617  /// \brief The "enum" keyword.
2618  TTK_Enum
2619};
2620
2621/// \brief The elaboration keyword that precedes a qualified type name or
2622/// introduces an elaborated-type-specifier.
2623enum ElaboratedTypeKeyword {
2624  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
2625  ETK_Struct,
2626  /// \brief The "union" keyword introduces the elaborated-type-specifier.
2627  ETK_Union,
2628  /// \brief The "class" keyword introduces the elaborated-type-specifier.
2629  ETK_Class,
2630  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
2631  ETK_Enum,
2632  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
2633  /// \c typename T::type.
2634  ETK_Typename,
2635  /// \brief No keyword precedes the qualified type name.
2636  ETK_None
2637};
2638
2639/// A helper class for Type nodes having an ElaboratedTypeKeyword.
2640/// The keyword in stored in the free bits of the base class.
2641/// Also provides a few static helpers for converting and printing
2642/// elaborated type keyword and tag type kind enumerations.
2643class TypeWithKeyword : public Type {
2644  /// Keyword - Encodes an ElaboratedTypeKeyword enumeration constant.
2645  unsigned Keyword : 3;
2646
2647protected:
2648  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
2649                  QualType Canonical, bool dependent)
2650    : Type(tc, Canonical, dependent), Keyword(Keyword) {}
2651
2652public:
2653  virtual ~TypeWithKeyword(); // pin vtable to Type.cpp
2654
2655  ElaboratedTypeKeyword getKeyword() const {
2656    return static_cast<ElaboratedTypeKeyword>(Keyword);
2657  }
2658
2659  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
2660  /// into an elaborated type keyword.
2661  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
2662
2663  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
2664  /// into a tag type kind.  It is an error to provide a type specifier
2665  /// which *isn't* a tag kind here.
2666  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
2667
2668  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
2669  /// elaborated type keyword.
2670  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
2671
2672  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
2673  // a TagTypeKind. It is an error to provide an elaborated type keyword
2674  /// which *isn't* a tag kind here.
2675  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
2676
2677  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
2678
2679  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
2680
2681  static const char *getTagTypeKindName(TagTypeKind Kind) {
2682    return getKeywordName(getKeywordForTagTypeKind(Kind));
2683  }
2684
2685  class CannotCastToThisType {};
2686  static CannotCastToThisType classof(const Type *);
2687};
2688
2689/// \brief Represents a type that was referred to using an elaborated type
2690/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
2691/// or both.
2692///
2693/// This type is used to keep track of a type name as written in the
2694/// source code, including tag keywords and any nested-name-specifiers.
2695/// The type itself is always "sugar", used to express what was written
2696/// in the source code but containing no additional semantic information.
2697class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
2698
2699  /// \brief The nested name specifier containing the qualifier.
2700  NestedNameSpecifier *NNS;
2701
2702  /// \brief The type that this qualified name refers to.
2703  QualType NamedType;
2704
2705  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2706                 QualType NamedType, QualType CanonType)
2707    : TypeWithKeyword(Keyword, Elaborated, CanonType,
2708                      NamedType->isDependentType()),
2709      NNS(NNS), NamedType(NamedType) {
2710    assert(!(Keyword == ETK_None && NNS == 0) &&
2711           "ElaboratedType cannot have elaborated type keyword "
2712           "and name qualifier both null.");
2713  }
2714
2715  friend class ASTContext;  // ASTContext creates these
2716
2717public:
2718  ~ElaboratedType();
2719
2720  /// \brief Retrieve the qualification on this type.
2721  NestedNameSpecifier *getQualifier() const { return NNS; }
2722
2723  /// \brief Retrieve the type named by the qualified-id.
2724  QualType getNamedType() const { return NamedType; }
2725
2726  /// \brief Remove a single level of sugar.
2727  QualType desugar() const { return getNamedType(); }
2728
2729  /// \brief Returns whether this type directly provides sugar.
2730  bool isSugared() const { return true; }
2731
2732  void Profile(llvm::FoldingSetNodeID &ID) {
2733    Profile(ID, getKeyword(), NNS, NamedType);
2734  }
2735
2736  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2737                      NestedNameSpecifier *NNS, QualType NamedType) {
2738    ID.AddInteger(Keyword);
2739    ID.AddPointer(NNS);
2740    NamedType.Profile(ID);
2741  }
2742
2743  static bool classof(const Type *T) {
2744    return T->getTypeClass() == Elaborated;
2745  }
2746  static bool classof(const ElaboratedType *T) { return true; }
2747};
2748
2749/// \brief Represents a qualified type name for which the type name is
2750/// dependent.
2751///
2752/// DependentNameType represents a class of dependent types that involve a
2753/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
2754/// name of a type. The DependentNameType may start with a "typename" (for a
2755/// typename-specifier), "class", "struct", "union", or "enum" (for a
2756/// dependent elaborated-type-specifier), or nothing (in contexts where we
2757/// know that we must be referring to a type, e.g., in a base class specifier).
2758class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
2759
2760  /// \brief The nested name specifier containing the qualifier.
2761  NestedNameSpecifier *NNS;
2762
2763  /// \brief The type that this typename specifier refers to.
2764  const IdentifierInfo *Name;
2765
2766  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2767                    const IdentifierInfo *Name, QualType CanonType)
2768    : TypeWithKeyword(Keyword, DependentName, CanonType, true),
2769      NNS(NNS), Name(Name) {
2770    assert(NNS->isDependent() &&
2771           "DependentNameType requires a dependent nested-name-specifier");
2772  }
2773
2774  friend class ASTContext;  // ASTContext creates these
2775
2776public:
2777  virtual ~DependentNameType();
2778
2779  /// \brief Retrieve the qualification on this type.
2780  NestedNameSpecifier *getQualifier() const { return NNS; }
2781
2782  /// \brief Retrieve the type named by the typename specifier as an
2783  /// identifier.
2784  ///
2785  /// This routine will return a non-NULL identifier pointer when the
2786  /// form of the original typename was terminated by an identifier,
2787  /// e.g., "typename T::type".
2788  const IdentifierInfo *getIdentifier() const {
2789    return Name;
2790  }
2791
2792  bool isSugared() const { return false; }
2793  QualType desugar() const { return QualType(this, 0); }
2794
2795  void Profile(llvm::FoldingSetNodeID &ID) {
2796    Profile(ID, getKeyword(), NNS, Name);
2797  }
2798
2799  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2800                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
2801    ID.AddInteger(Keyword);
2802    ID.AddPointer(NNS);
2803    ID.AddPointer(Name);
2804  }
2805
2806  static bool classof(const Type *T) {
2807    return T->getTypeClass() == DependentName;
2808  }
2809  static bool classof(const DependentNameType *T) { return true; }
2810};
2811
2812/// DependentTemplateSpecializationType - Represents a template
2813/// specialization type whose template cannot be resolved, e.g.
2814///   A<T>::template B<T>
2815class DependentTemplateSpecializationType :
2816  public TypeWithKeyword, public llvm::FoldingSetNode {
2817
2818  /// \brief The nested name specifier containing the qualifier.
2819  NestedNameSpecifier *NNS;
2820
2821  /// \brief The identifier of the template.
2822  const IdentifierInfo *Name;
2823
2824  /// \brief - The number of template arguments named in this class
2825  /// template specialization.
2826  unsigned NumArgs;
2827
2828  const TemplateArgument *getArgBuffer() const {
2829    return reinterpret_cast<const TemplateArgument*>(this+1);
2830  }
2831  TemplateArgument *getArgBuffer() {
2832    return reinterpret_cast<TemplateArgument*>(this+1);
2833  }
2834
2835  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
2836                                      NestedNameSpecifier *NNS,
2837                                      const IdentifierInfo *Name,
2838                                      unsigned NumArgs,
2839                                      const TemplateArgument *Args,
2840                                      QualType Canon);
2841
2842  friend class ASTContext;  // ASTContext creates these
2843
2844public:
2845  virtual ~DependentTemplateSpecializationType();
2846
2847  NestedNameSpecifier *getQualifier() const { return NNS; }
2848  const IdentifierInfo *getIdentifier() const { return Name; }
2849
2850  /// \brief Retrieve the template arguments.
2851  const TemplateArgument *getArgs() const {
2852    return getArgBuffer();
2853  }
2854
2855  /// \brief Retrieve the number of template arguments.
2856  unsigned getNumArgs() const { return NumArgs; }
2857
2858  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
2859
2860  typedef const TemplateArgument * iterator;
2861  iterator begin() const { return getArgs(); }
2862  iterator end() const; // inline in TemplateBase.h
2863
2864  bool isSugared() const { return false; }
2865  QualType desugar() const { return QualType(this, 0); }
2866
2867  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context) {
2868    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
2869  }
2870
2871  static void Profile(llvm::FoldingSetNodeID &ID,
2872                      ASTContext &Context,
2873                      ElaboratedTypeKeyword Keyword,
2874                      NestedNameSpecifier *Qualifier,
2875                      const IdentifierInfo *Name,
2876                      unsigned NumArgs,
2877                      const TemplateArgument *Args);
2878
2879  static bool classof(const Type *T) {
2880    return T->getTypeClass() == DependentTemplateSpecialization;
2881  }
2882  static bool classof(const DependentTemplateSpecializationType *T) {
2883    return true;
2884  }
2885};
2886
2887/// ObjCObjectType - Represents a class type in Objective C.
2888/// Every Objective C type is a combination of a base type and a
2889/// list of protocols.
2890///
2891/// Given the following declarations:
2892///   @class C;
2893///   @protocol P;
2894///
2895/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
2896/// with base C and no protocols.
2897///
2898/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
2899///
2900/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
2901/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
2902/// and no protocols.
2903///
2904/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
2905/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
2906/// this should get its own sugar class to better represent the source.
2907class ObjCObjectType : public Type {
2908  // Pad the bit count up so that NumProtocols is 2-byte aligned
2909  unsigned : BitsRemainingInType - 16;
2910
2911  /// \brief The number of protocols stored after the
2912  /// ObjCObjectPointerType node.
2913  ///
2914  /// These protocols are those written directly on the type.  If
2915  /// protocol qualifiers ever become additive, the iterators will
2916  /// get kindof complicated.
2917  ///
2918  /// In the canonical object type, these are sorted alphabetically
2919  /// and uniqued.
2920  unsigned NumProtocols : 16;
2921
2922  /// Either a BuiltinType or an InterfaceType or sugar for either.
2923  QualType BaseType;
2924
2925  ObjCProtocolDecl * const *getProtocolStorage() const {
2926    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
2927  }
2928
2929  ObjCProtocolDecl **getProtocolStorage();
2930
2931protected:
2932  ObjCObjectType(QualType Canonical, QualType Base,
2933                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
2934
2935  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
2936  ObjCObjectType(enum Nonce_ObjCInterface)
2937    : Type(ObjCInterface, QualType(), false),
2938      NumProtocols(0),
2939      BaseType(QualType(this_(), 0)) {}
2940
2941protected:
2942  Linkage getLinkageImpl() const; // key function
2943
2944public:
2945  /// getBaseType - Gets the base type of this object type.  This is
2946  /// always (possibly sugar for) one of:
2947  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
2948  ///    user, which is a typedef for an ObjCPointerType)
2949  ///  - the 'Class' builtin type (same caveat)
2950  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
2951  QualType getBaseType() const { return BaseType; }
2952
2953  bool isObjCId() const {
2954    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
2955  }
2956  bool isObjCClass() const {
2957    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
2958  }
2959  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
2960  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
2961  bool isObjCUnqualifiedIdOrClass() const {
2962    if (!qual_empty()) return false;
2963    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
2964      return T->getKind() == BuiltinType::ObjCId ||
2965             T->getKind() == BuiltinType::ObjCClass;
2966    return false;
2967  }
2968  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
2969  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
2970
2971  /// Gets the interface declaration for this object type, if the base type
2972  /// really is an interface.
2973  ObjCInterfaceDecl *getInterface() const;
2974
2975  typedef ObjCProtocolDecl * const *qual_iterator;
2976
2977  qual_iterator qual_begin() const { return getProtocolStorage(); }
2978  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
2979
2980  bool qual_empty() const { return getNumProtocols() == 0; }
2981
2982  /// getNumProtocols - Return the number of qualifying protocols in this
2983  /// interface type, or 0 if there are none.
2984  unsigned getNumProtocols() const { return NumProtocols; }
2985
2986  /// \brief Fetch a protocol by index.
2987  ObjCProtocolDecl *getProtocol(unsigned I) const {
2988    assert(I < getNumProtocols() && "Out-of-range protocol access");
2989    return qual_begin()[I];
2990  }
2991
2992  bool isSugared() const { return false; }
2993  QualType desugar() const { return QualType(this, 0); }
2994
2995  static bool classof(const Type *T) {
2996    return T->getTypeClass() == ObjCObject ||
2997           T->getTypeClass() == ObjCInterface;
2998  }
2999  static bool classof(const ObjCObjectType *) { return true; }
3000};
3001
3002/// ObjCObjectTypeImpl - A class providing a concrete implementation
3003/// of ObjCObjectType, so as to not increase the footprint of
3004/// ObjCInterfaceType.  Code outside of ASTContext and the core type
3005/// system should not reference this type.
3006class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
3007  friend class ASTContext;
3008
3009  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
3010  // will need to be modified.
3011
3012  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
3013                     ObjCProtocolDecl * const *Protocols,
3014                     unsigned NumProtocols)
3015    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
3016
3017public:
3018  void Profile(llvm::FoldingSetNodeID &ID);
3019  static void Profile(llvm::FoldingSetNodeID &ID,
3020                      QualType Base,
3021                      ObjCProtocolDecl *const *protocols,
3022                      unsigned NumProtocols);
3023};
3024
3025inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
3026  return reinterpret_cast<ObjCProtocolDecl**>(
3027            static_cast<ObjCObjectTypeImpl*>(this) + 1);
3028}
3029
3030/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
3031/// object oriented design.  They basically correspond to C++ classes.  There
3032/// are two kinds of interface types, normal interfaces like "NSString" and
3033/// qualified interfaces, which are qualified with a protocol list like
3034/// "NSString<NSCopyable, NSAmazing>".
3035///
3036/// ObjCInterfaceType guarantees the following properties when considered
3037/// as a subtype of its superclass, ObjCObjectType:
3038///   - There are no protocol qualifiers.  To reinforce this, code which
3039///     tries to invoke the protocol methods via an ObjCInterfaceType will
3040///     fail to compile.
3041///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
3042///     T->getBaseType() == QualType(T, 0).
3043class ObjCInterfaceType : public ObjCObjectType {
3044  ObjCInterfaceDecl *Decl;
3045
3046  ObjCInterfaceType(const ObjCInterfaceDecl *D)
3047    : ObjCObjectType(Nonce_ObjCInterface),
3048      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
3049  friend class ASTContext;  // ASTContext creates these.
3050public:
3051  /// getDecl - Get the declaration of this interface.
3052  ObjCInterfaceDecl *getDecl() const { return Decl; }
3053
3054  bool isSugared() const { return false; }
3055  QualType desugar() const { return QualType(this, 0); }
3056
3057  static bool classof(const Type *T) {
3058    return T->getTypeClass() == ObjCInterface;
3059  }
3060  static bool classof(const ObjCInterfaceType *) { return true; }
3061
3062  // Nonsense to "hide" certain members of ObjCObjectType within this
3063  // class.  People asking for protocols on an ObjCInterfaceType are
3064  // not going to get what they want: ObjCInterfaceTypes are
3065  // guaranteed to have no protocols.
3066  enum {
3067    qual_iterator,
3068    qual_begin,
3069    qual_end,
3070    getNumProtocols,
3071    getProtocol
3072  };
3073};
3074
3075inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
3076  if (const ObjCInterfaceType *T =
3077        getBaseType()->getAs<ObjCInterfaceType>())
3078    return T->getDecl();
3079  return 0;
3080}
3081
3082/// ObjCObjectPointerType - Used to represent a pointer to an
3083/// Objective C object.  These are constructed from pointer
3084/// declarators when the pointee type is an ObjCObjectType (or sugar
3085/// for one).  In addition, the 'id' and 'Class' types are typedefs
3086/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
3087/// are translated into these.
3088///
3089/// Pointers to pointers to Objective C objects are still PointerTypes;
3090/// only the first level of pointer gets it own type implementation.
3091class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
3092  QualType PointeeType;
3093
3094  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
3095    : Type(ObjCObjectPointer, Canonical, false),
3096      PointeeType(Pointee) {}
3097  friend class ASTContext;  // ASTContext creates these.
3098
3099protected:
3100  virtual Linkage getLinkageImpl() const;
3101
3102public:
3103  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
3104  /// The result will always be an ObjCObjectType or sugar thereof.
3105  QualType getPointeeType() const { return PointeeType; }
3106
3107  /// getObjCObjectType - Gets the type pointed to by this ObjC
3108  /// pointer.  This method always returns non-null.
3109  ///
3110  /// This method is equivalent to getPointeeType() except that
3111  /// it discards any typedefs (or other sugar) between this
3112  /// type and the "outermost" object type.  So for:
3113  ///   @class A; @protocol P; @protocol Q;
3114  ///   typedef A<P> AP;
3115  ///   typedef A A1;
3116  ///   typedef A1<P> A1P;
3117  ///   typedef A1P<Q> A1PQ;
3118  /// For 'A*', getObjectType() will return 'A'.
3119  /// For 'A<P>*', getObjectType() will return 'A<P>'.
3120  /// For 'AP*', getObjectType() will return 'A<P>'.
3121  /// For 'A1*', getObjectType() will return 'A'.
3122  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
3123  /// For 'A1P*', getObjectType() will return 'A1<P>'.
3124  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
3125  ///   adding protocols to a protocol-qualified base discards the
3126  ///   old qualifiers (for now).  But if it didn't, getObjectType()
3127  ///   would return 'A1P<Q>' (and we'd have to make iterating over
3128  ///   qualifiers more complicated).
3129  const ObjCObjectType *getObjectType() const {
3130    return PointeeType->getAs<ObjCObjectType>();
3131  }
3132
3133  /// getInterfaceType - If this pointer points to an Objective C
3134  /// @interface type, gets the type for that interface.  Any protocol
3135  /// qualifiers on the interface are ignored.
3136  ///
3137  /// \return null if the base type for this pointer is 'id' or 'Class'
3138  const ObjCInterfaceType *getInterfaceType() const {
3139    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
3140  }
3141
3142  /// getInterfaceDecl - If this pointer points to an Objective @interface
3143  /// type, gets the declaration for that interface.
3144  ///
3145  /// \return null if the base type for this pointer is 'id' or 'Class'
3146  ObjCInterfaceDecl *getInterfaceDecl() const {
3147    return getObjectType()->getInterface();
3148  }
3149
3150  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
3151  /// its object type is the primitive 'id' type with no protocols.
3152  bool isObjCIdType() const {
3153    return getObjectType()->isObjCUnqualifiedId();
3154  }
3155
3156  /// isObjCClassType - True if this is equivalent to the 'Class' type,
3157  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
3158  bool isObjCClassType() const {
3159    return getObjectType()->isObjCUnqualifiedClass();
3160  }
3161
3162  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
3163  /// non-empty set of protocols.
3164  bool isObjCQualifiedIdType() const {
3165    return getObjectType()->isObjCQualifiedId();
3166  }
3167
3168  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
3169  /// some non-empty set of protocols.
3170  bool isObjCQualifiedClassType() const {
3171    return getObjectType()->isObjCQualifiedClass();
3172  }
3173
3174  /// An iterator over the qualifiers on the object type.  Provided
3175  /// for convenience.  This will always iterate over the full set of
3176  /// protocols on a type, not just those provided directly.
3177  typedef ObjCObjectType::qual_iterator qual_iterator;
3178
3179  qual_iterator qual_begin() const {
3180    return getObjectType()->qual_begin();
3181  }
3182  qual_iterator qual_end() const {
3183    return getObjectType()->qual_end();
3184  }
3185  bool qual_empty() const { return getObjectType()->qual_empty(); }
3186
3187  /// getNumProtocols - Return the number of qualifying protocols on
3188  /// the object type.
3189  unsigned getNumProtocols() const {
3190    return getObjectType()->getNumProtocols();
3191  }
3192
3193  /// \brief Retrieve a qualifying protocol by index on the object
3194  /// type.
3195  ObjCProtocolDecl *getProtocol(unsigned I) const {
3196    return getObjectType()->getProtocol(I);
3197  }
3198
3199  bool isSugared() const { return false; }
3200  QualType desugar() const { return QualType(this, 0); }
3201
3202  void Profile(llvm::FoldingSetNodeID &ID) {
3203    Profile(ID, getPointeeType());
3204  }
3205  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
3206    ID.AddPointer(T.getAsOpaquePtr());
3207  }
3208  static bool classof(const Type *T) {
3209    return T->getTypeClass() == ObjCObjectPointer;
3210  }
3211  static bool classof(const ObjCObjectPointerType *) { return true; }
3212};
3213
3214/// A qualifier set is used to build a set of qualifiers.
3215class QualifierCollector : public Qualifiers {
3216  ASTContext *Context;
3217
3218public:
3219  QualifierCollector(Qualifiers Qs = Qualifiers())
3220    : Qualifiers(Qs), Context(0) {}
3221  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
3222    : Qualifiers(Qs), Context(&Context) {}
3223
3224  void setContext(ASTContext &C) { Context = &C; }
3225
3226  /// Collect any qualifiers on the given type and return an
3227  /// unqualified type.
3228  const Type *strip(QualType QT) {
3229    addFastQualifiers(QT.getLocalFastQualifiers());
3230    if (QT.hasLocalNonFastQualifiers()) {
3231      const ExtQuals *EQ = QT.getExtQualsUnsafe();
3232      Context = &EQ->getContext();
3233      addQualifiers(EQ->getQualifiers());
3234      return EQ->getBaseType();
3235    }
3236    return QT.getTypePtrUnsafe();
3237  }
3238
3239  /// Apply the collected qualifiers to the given type.
3240  QualType apply(QualType QT) const;
3241
3242  /// Apply the collected qualifiers to the given type.
3243  QualType apply(const Type* T) const;
3244
3245};
3246
3247
3248// Inline function definitions.
3249
3250inline bool QualType::isCanonical() const {
3251  const Type *T = getTypePtr();
3252  if (hasLocalQualifiers())
3253    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
3254  return T->isCanonicalUnqualified();
3255}
3256
3257inline bool QualType::isCanonicalAsParam() const {
3258  if (hasLocalQualifiers()) return false;
3259  const Type *T = getTypePtr();
3260  return T->isCanonicalUnqualified() &&
3261           !isa<FunctionType>(T) && !isa<ArrayType>(T);
3262}
3263
3264inline bool QualType::isConstQualified() const {
3265  return isLocalConstQualified() ||
3266              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
3267}
3268
3269inline bool QualType::isRestrictQualified() const {
3270  return isLocalRestrictQualified() ||
3271            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
3272}
3273
3274
3275inline bool QualType::isVolatileQualified() const {
3276  return isLocalVolatileQualified() ||
3277  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
3278}
3279
3280inline bool QualType::hasQualifiers() const {
3281  return hasLocalQualifiers() ||
3282                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
3283}
3284
3285inline Qualifiers QualType::getQualifiers() const {
3286  Qualifiers Quals = getLocalQualifiers();
3287  Quals.addQualifiers(
3288                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
3289  return Quals;
3290}
3291
3292inline unsigned QualType::getCVRQualifiers() const {
3293  return getLocalCVRQualifiers() |
3294              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
3295}
3296
3297/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
3298/// type, returns them. Otherwise, if this is an array type, recurses
3299/// on the element type until some qualifiers have been found or a non-array
3300/// type reached.
3301inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
3302  if (unsigned Quals = getCVRQualifiers())
3303    return Quals;
3304  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3305  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3306    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
3307  return 0;
3308}
3309
3310inline void QualType::removeConst() {
3311  removeFastQualifiers(Qualifiers::Const);
3312}
3313
3314inline void QualType::removeRestrict() {
3315  removeFastQualifiers(Qualifiers::Restrict);
3316}
3317
3318inline void QualType::removeVolatile() {
3319  QualifierCollector Qc;
3320  const Type *Ty = Qc.strip(*this);
3321  if (Qc.hasVolatile()) {
3322    Qc.removeVolatile();
3323    *this = Qc.apply(Ty);
3324  }
3325}
3326
3327inline void QualType::removeCVRQualifiers(unsigned Mask) {
3328  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
3329
3330  // Fast path: we don't need to touch the slow qualifiers.
3331  if (!(Mask & ~Qualifiers::FastMask)) {
3332    removeFastQualifiers(Mask);
3333    return;
3334  }
3335
3336  QualifierCollector Qc;
3337  const Type *Ty = Qc.strip(*this);
3338  Qc.removeCVRQualifiers(Mask);
3339  *this = Qc.apply(Ty);
3340}
3341
3342/// getAddressSpace - Return the address space of this type.
3343inline unsigned QualType::getAddressSpace() const {
3344  if (hasLocalNonFastQualifiers()) {
3345    const ExtQuals *EQ = getExtQualsUnsafe();
3346    if (EQ->hasAddressSpace())
3347      return EQ->getAddressSpace();
3348  }
3349
3350  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3351  if (CT.hasLocalNonFastQualifiers()) {
3352    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3353    if (EQ->hasAddressSpace())
3354      return EQ->getAddressSpace();
3355  }
3356
3357  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3358    return AT->getElementType().getAddressSpace();
3359  if (const RecordType *RT = dyn_cast<RecordType>(CT))
3360    return RT->getAddressSpace();
3361  return 0;
3362}
3363
3364/// getObjCGCAttr - Return the gc attribute of this type.
3365inline Qualifiers::GC QualType::getObjCGCAttr() const {
3366  if (hasLocalNonFastQualifiers()) {
3367    const ExtQuals *EQ = getExtQualsUnsafe();
3368    if (EQ->hasObjCGCAttr())
3369      return EQ->getObjCGCAttr();
3370  }
3371
3372  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3373  if (CT.hasLocalNonFastQualifiers()) {
3374    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3375    if (EQ->hasObjCGCAttr())
3376      return EQ->getObjCGCAttr();
3377  }
3378
3379  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3380      return AT->getElementType().getObjCGCAttr();
3381  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
3382    return PT->getPointeeType().getObjCGCAttr();
3383  // We most look at all pointer types, not just pointer to interface types.
3384  if (const PointerType *PT = CT->getAs<PointerType>())
3385    return PT->getPointeeType().getObjCGCAttr();
3386  return Qualifiers::GCNone;
3387}
3388
3389inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
3390  if (const PointerType *PT = t.getAs<PointerType>()) {
3391    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
3392      return FT->getExtInfo();
3393  } else if (const FunctionType *FT = t.getAs<FunctionType>())
3394    return FT->getExtInfo();
3395
3396  return FunctionType::ExtInfo();
3397}
3398
3399inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
3400  return getFunctionExtInfo(*t);
3401}
3402
3403/// \brief Determine whether this set of qualifiers is a superset of the given
3404/// set of qualifiers.
3405inline bool Qualifiers::isSupersetOf(Qualifiers Other) const {
3406  return Mask != Other.Mask && (Mask | Other.Mask) == Mask;
3407}
3408
3409/// isMoreQualifiedThan - Determine whether this type is more
3410/// qualified than the Other type. For example, "const volatile int"
3411/// is more qualified than "const int", "volatile int", and
3412/// "int". However, it is not more qualified than "const volatile
3413/// int".
3414inline bool QualType::isMoreQualifiedThan(QualType Other) const {
3415  // FIXME: work on arbitrary qualifiers
3416  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3417  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3418  if (getAddressSpace() != Other.getAddressSpace())
3419    return false;
3420  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
3421}
3422
3423/// isAtLeastAsQualifiedAs - Determine whether this type is at last
3424/// as qualified as the Other type. For example, "const volatile
3425/// int" is at least as qualified as "const int", "volatile int",
3426/// "int", and "const volatile int".
3427inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
3428  // FIXME: work on arbitrary qualifiers
3429  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3430  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3431  if (getAddressSpace() != Other.getAddressSpace())
3432    return false;
3433  return (MyQuals | OtherQuals) == MyQuals;
3434}
3435
3436/// getNonReferenceType - If Type is a reference type (e.g., const
3437/// int&), returns the type that the reference refers to ("const
3438/// int"). Otherwise, returns the type itself. This routine is used
3439/// throughout Sema to implement C++ 5p6:
3440///
3441///   If an expression initially has the type "reference to T" (8.3.2,
3442///   8.5.3), the type is adjusted to "T" prior to any further
3443///   analysis, the expression designates the object or function
3444///   denoted by the reference, and the expression is an lvalue.
3445inline QualType QualType::getNonReferenceType() const {
3446  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
3447    return RefType->getPointeeType();
3448  else
3449    return *this;
3450}
3451
3452inline bool Type::isFunctionType() const {
3453  return isa<FunctionType>(CanonicalType);
3454}
3455inline bool Type::isPointerType() const {
3456  return isa<PointerType>(CanonicalType);
3457}
3458inline bool Type::isAnyPointerType() const {
3459  return isPointerType() || isObjCObjectPointerType();
3460}
3461inline bool Type::isBlockPointerType() const {
3462  return isa<BlockPointerType>(CanonicalType);
3463}
3464inline bool Type::isReferenceType() const {
3465  return isa<ReferenceType>(CanonicalType);
3466}
3467inline bool Type::isLValueReferenceType() const {
3468  return isa<LValueReferenceType>(CanonicalType);
3469}
3470inline bool Type::isRValueReferenceType() const {
3471  return isa<RValueReferenceType>(CanonicalType);
3472}
3473inline bool Type::isFunctionPointerType() const {
3474  if (const PointerType* T = getAs<PointerType>())
3475    return T->getPointeeType()->isFunctionType();
3476  else
3477    return false;
3478}
3479inline bool Type::isMemberPointerType() const {
3480  return isa<MemberPointerType>(CanonicalType);
3481}
3482inline bool Type::isMemberFunctionPointerType() const {
3483  if (const MemberPointerType* T = getAs<MemberPointerType>())
3484    return T->getPointeeType()->isFunctionType();
3485  else
3486    return false;
3487}
3488inline bool Type::isArrayType() const {
3489  return isa<ArrayType>(CanonicalType);
3490}
3491inline bool Type::isConstantArrayType() const {
3492  return isa<ConstantArrayType>(CanonicalType);
3493}
3494inline bool Type::isIncompleteArrayType() const {
3495  return isa<IncompleteArrayType>(CanonicalType);
3496}
3497inline bool Type::isVariableArrayType() const {
3498  return isa<VariableArrayType>(CanonicalType);
3499}
3500inline bool Type::isDependentSizedArrayType() const {
3501  return isa<DependentSizedArrayType>(CanonicalType);
3502}
3503inline bool Type::isRecordType() const {
3504  return isa<RecordType>(CanonicalType);
3505}
3506inline bool Type::isAnyComplexType() const {
3507  return isa<ComplexType>(CanonicalType);
3508}
3509inline bool Type::isVectorType() const {
3510  return isa<VectorType>(CanonicalType);
3511}
3512inline bool Type::isExtVectorType() const {
3513  return isa<ExtVectorType>(CanonicalType);
3514}
3515inline bool Type::isObjCObjectPointerType() const {
3516  return isa<ObjCObjectPointerType>(CanonicalType);
3517}
3518inline bool Type::isObjCObjectType() const {
3519  return isa<ObjCObjectType>(CanonicalType);
3520}
3521inline bool Type::isObjCObjectOrInterfaceType() const {
3522  return isa<ObjCInterfaceType>(CanonicalType) ||
3523    isa<ObjCObjectType>(CanonicalType);
3524}
3525
3526inline bool Type::isObjCQualifiedIdType() const {
3527  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3528    return OPT->isObjCQualifiedIdType();
3529  return false;
3530}
3531inline bool Type::isObjCQualifiedClassType() const {
3532  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3533    return OPT->isObjCQualifiedClassType();
3534  return false;
3535}
3536inline bool Type::isObjCIdType() const {
3537  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3538    return OPT->isObjCIdType();
3539  return false;
3540}
3541inline bool Type::isObjCClassType() const {
3542  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3543    return OPT->isObjCClassType();
3544  return false;
3545}
3546inline bool Type::isObjCSelType() const {
3547  if (const PointerType *OPT = getAs<PointerType>())
3548    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3549  return false;
3550}
3551inline bool Type::isObjCBuiltinType() const {
3552  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3553}
3554inline bool Type::isTemplateTypeParmType() const {
3555  return isa<TemplateTypeParmType>(CanonicalType);
3556}
3557
3558inline bool Type::isBuiltinType() const {
3559  return getAs<BuiltinType>();
3560}
3561
3562inline bool Type::isSpecificBuiltinType(unsigned K) const {
3563  if (const BuiltinType *BT = getAs<BuiltinType>())
3564    if (BT->getKind() == (BuiltinType::Kind) K)
3565      return true;
3566  return false;
3567}
3568
3569/// \brief Determines whether this is a type for which one can define
3570/// an overloaded operator.
3571inline bool Type::isOverloadableType() const {
3572  return isDependentType() || isRecordType() || isEnumeralType();
3573}
3574
3575inline bool Type::hasPointerRepresentation() const {
3576  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3577          isObjCObjectPointerType() || isNullPtrType());
3578}
3579
3580inline bool Type::hasObjCPointerRepresentation() const {
3581  return isObjCObjectPointerType();
3582}
3583
3584/// Insertion operator for diagnostics.  This allows sending QualType's into a
3585/// diagnostic with <<.
3586inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3587                                           QualType T) {
3588  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3589                  Diagnostic::ak_qualtype);
3590  return DB;
3591}
3592
3593/// Insertion operator for partial diagnostics.  This allows sending QualType's
3594/// into a diagnostic with <<.
3595inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
3596                                           QualType T) {
3597  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3598                  Diagnostic::ak_qualtype);
3599  return PD;
3600}
3601
3602// Helper class template that is used by Type::getAs to ensure that one does
3603// not try to look through a qualified type to get to an array type.
3604template<typename T,
3605         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3606                             llvm::is_base_of<ArrayType, T>::value)>
3607struct ArrayType_cannot_be_used_with_getAs { };
3608
3609template<typename T>
3610struct ArrayType_cannot_be_used_with_getAs<T, true>;
3611
3612/// Member-template getAs<specific type>'.
3613template <typename T> const T *Type::getAs() const {
3614  ArrayType_cannot_be_used_with_getAs<T> at;
3615  (void)at;
3616
3617  // If this is directly a T type, return it.
3618  if (const T *Ty = dyn_cast<T>(this))
3619    return Ty;
3620
3621  // If the canonical form of this type isn't the right kind, reject it.
3622  if (!isa<T>(CanonicalType))
3623    return 0;
3624
3625  // If this is a typedef for the type, strip the typedef off without
3626  // losing all typedef information.
3627  return cast<T>(getUnqualifiedDesugaredType());
3628}
3629
3630}  // end namespace clang
3631
3632#endif
3633