Type.h revision 2a2e0405001f22e9026cb0dec219146996d1e7b6
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/AST/TemplateName.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/ADT/APSInt.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/PointerUnion.h"
26
27using llvm::isa;
28using llvm::cast;
29using llvm::cast_or_null;
30using llvm::dyn_cast;
31using llvm::dyn_cast_or_null;
32namespace clang { class Type; }
33
34namespace llvm {
35  template <typename T>
36  class PointerLikeTypeTraits;
37  template<>
38  class PointerLikeTypeTraits< ::clang::Type*> {
39  public:
40    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
41    static inline ::clang::Type *getFromVoidPointer(void *P) {
42      return static_cast< ::clang::Type*>(P);
43    }
44    enum { NumLowBitsAvailable = 3 };
45  };
46}
47
48namespace clang {
49  class ASTContext;
50  class TypedefDecl;
51  class TemplateDecl;
52  class TemplateTypeParmDecl;
53  class NonTypeTemplateParmDecl;
54  class TemplateTemplateParmDecl;
55  class TagDecl;
56  class RecordDecl;
57  class CXXRecordDecl;
58  class EnumDecl;
59  class FieldDecl;
60  class ObjCInterfaceDecl;
61  class ObjCProtocolDecl;
62  class ObjCMethodDecl;
63  class Expr;
64  class Stmt;
65  class SourceLocation;
66  class StmtIteratorBase;
67  class TemplateArgument;
68  class QualifiedNameType;
69  class PrintingPolicy;
70
71  // Provide forward declarations for all of the *Type classes
72#define TYPE(Class, Base) class Class##Type;
73#include "clang/AST/TypeNodes.def"
74
75/// QualType - For efficiency, we don't store CVR-qualified types as nodes on
76/// their own: instead each reference to a type stores the qualifiers.  This
77/// greatly reduces the number of nodes we need to allocate for types (for
78/// example we only need one for 'int', 'const int', 'volatile int',
79/// 'const volatile int', etc).
80///
81/// As an added efficiency bonus, instead of making this a pair, we just store
82/// the three bits we care about in the low bits of the pointer.  To handle the
83/// packing/unpacking, we make QualType be a simple wrapper class that acts like
84/// a smart pointer.
85class QualType {
86  llvm::PointerIntPair<Type*, 3> Value;
87public:
88  enum TQ {   // NOTE: These flags must be kept in sync with DeclSpec::TQ.
89    Const    = 0x1,
90    Restrict = 0x2,
91    Volatile = 0x4,
92    CVRFlags = Const|Restrict|Volatile
93  };
94
95  enum GCAttrTypes {
96    GCNone = 0,
97    Weak,
98    Strong
99  };
100
101  QualType() {}
102
103  QualType(const Type *Ptr, unsigned Quals)
104    : Value(const_cast<Type*>(Ptr), Quals) {}
105
106  unsigned getCVRQualifiers() const { return Value.getInt(); }
107  void setCVRQualifiers(unsigned Quals) { Value.setInt(Quals); }
108  Type *getTypePtr() const { return Value.getPointer(); }
109
110  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
111  static QualType getFromOpaquePtr(void *Ptr) {
112    QualType T;
113    T.Value.setFromOpaqueValue(Ptr);
114    return T;
115  }
116
117  Type &operator*() const {
118    return *getTypePtr();
119  }
120
121  Type *operator->() const {
122    return getTypePtr();
123  }
124
125  /// isNull - Return true if this QualType doesn't point to a type yet.
126  bool isNull() const {
127    return getTypePtr() == 0;
128  }
129
130  bool isConstQualified() const {
131    return (getCVRQualifiers() & Const) ? true : false;
132  }
133  bool isVolatileQualified() const {
134    return (getCVRQualifiers() & Volatile) ? true : false;
135  }
136  bool isRestrictQualified() const {
137    return (getCVRQualifiers() & Restrict) ? true : false;
138  }
139
140  bool isConstant(ASTContext& Ctx) const;
141
142  /// addConst/addVolatile/addRestrict - add the specified type qual to this
143  /// QualType.
144  void addConst()    { Value.setInt(Value.getInt() | Const); }
145  void addVolatile() { Value.setInt(Value.getInt() | Volatile); }
146  void addRestrict() { Value.setInt(Value.getInt() | Restrict); }
147
148  void removeConst()    { Value.setInt(Value.getInt() & ~Const); }
149  void removeVolatile() { Value.setInt(Value.getInt() & ~Volatile); }
150  void removeRestrict() { Value.setInt(Value.getInt() & ~Restrict); }
151
152  QualType getQualifiedType(unsigned TQs) const {
153    return QualType(getTypePtr(), TQs);
154  }
155  QualType getWithAdditionalQualifiers(unsigned TQs) const {
156    return QualType(getTypePtr(), TQs|getCVRQualifiers());
157  }
158
159  QualType withConst() const { return getWithAdditionalQualifiers(Const); }
160  QualType withVolatile() const { return getWithAdditionalQualifiers(Volatile);}
161  QualType withRestrict() const { return getWithAdditionalQualifiers(Restrict);}
162
163  QualType getUnqualifiedType() const;
164  bool isMoreQualifiedThan(QualType Other) const;
165  bool isAtLeastAsQualifiedAs(QualType Other) const;
166  QualType getNonReferenceType() const;
167
168  /// getDesugaredType - Return the specified type with any "sugar" removed from
169  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
170  /// the type is already concrete, it returns it unmodified.  This is similar
171  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
172  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
173  /// concrete.
174  QualType getDesugaredType(bool ForDisplay = false) const;
175
176  /// operator==/!= - Indicate whether the specified types and qualifiers are
177  /// identical.
178  bool operator==(const QualType &RHS) const {
179    return Value == RHS.Value;
180  }
181  bool operator!=(const QualType &RHS) const {
182    return Value != RHS.Value;
183  }
184  std::string getAsString() const;
185
186  std::string getAsString(const PrintingPolicy &Policy) const {
187    std::string S;
188    getAsStringInternal(S, Policy);
189    return S;
190  }
191  void getAsStringInternal(std::string &Str, const PrintingPolicy &Policy) const;
192
193  void dump(const char *s) const;
194  void dump() const;
195
196  void Profile(llvm::FoldingSetNodeID &ID) const {
197    ID.AddPointer(getAsOpaquePtr());
198  }
199
200public:
201
202  /// getAddressSpace - Return the address space of this type.
203  inline unsigned getAddressSpace() const;
204
205  /// GCAttrTypesAttr - Returns gc attribute of this type.
206  inline QualType::GCAttrTypes getObjCGCAttr() const;
207
208  /// isObjCGCWeak true when Type is objc's weak.
209  bool isObjCGCWeak() const {
210    return getObjCGCAttr() == Weak;
211  }
212
213  /// isObjCGCStrong true when Type is objc's strong.
214  bool isObjCGCStrong() const {
215    return getObjCGCAttr() == Strong;
216  }
217};
218
219} // end clang.
220
221namespace llvm {
222/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
223/// to a specific Type class.
224template<> struct simplify_type<const ::clang::QualType> {
225  typedef ::clang::Type* SimpleType;
226  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
227    return Val.getTypePtr();
228  }
229};
230template<> struct simplify_type< ::clang::QualType>
231  : public simplify_type<const ::clang::QualType> {};
232
233// Teach SmallPtrSet that QualType is "basically a pointer".
234template<>
235class PointerLikeTypeTraits<clang::QualType> {
236public:
237  static inline void *getAsVoidPointer(clang::QualType P) {
238    return P.getAsOpaquePtr();
239  }
240  static inline clang::QualType getFromVoidPointer(void *P) {
241    return clang::QualType::getFromOpaquePtr(P);
242  }
243  // CVR qualifiers go in low bits.
244  enum { NumLowBitsAvailable = 0 };
245};
246} // end namespace llvm
247
248namespace clang {
249
250/// Type - This is the base class of the type hierarchy.  A central concept
251/// with types is that each type always has a canonical type.  A canonical type
252/// is the type with any typedef names stripped out of it or the types it
253/// references.  For example, consider:
254///
255///  typedef int  foo;
256///  typedef foo* bar;
257///    'int *'    'foo *'    'bar'
258///
259/// There will be a Type object created for 'int'.  Since int is canonical, its
260/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
261/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
262/// there is a PointerType that represents 'int*', which, like 'int', is
263/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
264/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
265/// is also 'int*'.
266///
267/// Non-canonical types are useful for emitting diagnostics, without losing
268/// information about typedefs being used.  Canonical types are useful for type
269/// comparisons (they allow by-pointer equality tests) and useful for reasoning
270/// about whether something has a particular form (e.g. is a function type),
271/// because they implicitly, recursively, strip all typedefs out of a type.
272///
273/// Types, once created, are immutable.
274///
275class Type {
276public:
277  enum TypeClass {
278#define TYPE(Class, Base) Class,
279#define ABSTRACT_TYPE(Class, Base)
280#include "clang/AST/TypeNodes.def"
281    TagFirst = Record, TagLast = Enum
282  };
283
284private:
285  QualType CanonicalType;
286
287  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
288  bool Dependent : 1;
289
290  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
291  /// Note that this should stay at the end of the ivars for Type so that
292  /// subclasses can pack their bitfields into the same word.
293  unsigned TC : 5;
294
295  Type(const Type&);           // DO NOT IMPLEMENT.
296  void operator=(const Type&); // DO NOT IMPLEMENT.
297protected:
298  // silence VC++ warning C4355: 'this' : used in base member initializer list
299  Type *this_() { return this; }
300  Type(TypeClass tc, QualType Canonical, bool dependent)
301    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
302      Dependent(dependent), TC(tc) {}
303  virtual ~Type() {}
304  virtual void Destroy(ASTContext& C);
305  friend class ASTContext;
306
307public:
308  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
309
310  bool isCanonical() const { return CanonicalType.getTypePtr() == this; }
311
312  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
313  /// object types, function types, and incomplete types.
314
315  /// \brief Determines whether the type describes an object in memory.
316  ///
317  /// Note that this definition of object type corresponds to the C++
318  /// definition of object type, which includes incomplete types, as
319  /// opposed to the C definition (which does not include incomplete
320  /// types).
321  bool isObjectType() const;
322
323  /// isIncompleteType - Return true if this is an incomplete type.
324  /// A type that can describe objects, but which lacks information needed to
325  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
326  /// routine will need to determine if the size is actually required.
327  bool isIncompleteType() const;
328
329  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
330  /// type, in other words, not a function type.
331  bool isIncompleteOrObjectType() const {
332    return !isFunctionType();
333  }
334
335  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
336  bool isPODType() const;
337
338  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
339  /// types that have a non-constant expression. This does not include "[]".
340  bool isVariablyModifiedType() const;
341
342  /// Helper methods to distinguish type categories. All type predicates
343  /// operate on the canonical type, ignoring typedefs and qualifiers.
344
345  /// isSpecificBuiltinType - Test for a particular builtin type.
346  bool isSpecificBuiltinType(unsigned K) const;
347
348  /// isIntegerType() does *not* include complex integers (a GCC extension).
349  /// isComplexIntegerType() can be used to test for complex integers.
350  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
351  bool isEnumeralType() const;
352  bool isBooleanType() const;
353  bool isCharType() const;
354  bool isWideCharType() const;
355  bool isIntegralType() const;
356
357  /// Floating point categories.
358  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
359  /// isComplexType() does *not* include complex integers (a GCC extension).
360  /// isComplexIntegerType() can be used to test for complex integers.
361  bool isComplexType() const;      // C99 6.2.5p11 (complex)
362  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
363  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
364  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
365  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
366  bool isVoidType() const;         // C99 6.2.5p19
367  bool isDerivedType() const;      // C99 6.2.5p20
368  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
369  bool isAggregateType() const;
370
371  // Type Predicates: Check to see if this type is structurally the specified
372  // type, ignoring typedefs and qualifiers.
373  bool isFunctionType() const;
374  bool isFunctionNoProtoType() const { return getAsFunctionNoProtoType() != 0; }
375  bool isFunctionProtoType() const { return getAsFunctionProtoType() != 0; }
376  bool isPointerType() const;
377  bool isBlockPointerType() const;
378  bool isReferenceType() const;
379  bool isLValueReferenceType() const;
380  bool isRValueReferenceType() const;
381  bool isFunctionPointerType() const;
382  bool isMemberPointerType() const;
383  bool isMemberFunctionPointerType() const;
384  bool isArrayType() const;
385  bool isConstantArrayType() const;
386  bool isIncompleteArrayType() const;
387  bool isVariableArrayType() const;
388  bool isDependentSizedArrayType() const;
389  bool isRecordType() const;
390  bool isClassType() const;
391  bool isStructureType() const;
392  bool isUnionType() const;
393  bool isComplexIntegerType() const;            // GCC _Complex integer type.
394  bool isVectorType() const;                    // GCC vector type.
395  bool isExtVectorType() const;                 // Extended vector type.
396  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
397  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
398  bool isObjCQualifiedIdType() const;           // id<foo>
399  bool isTemplateTypeParmType() const;          // C++ template type parameter
400  bool isNullPtrType() const;                   // C++0x nullptr_t
401
402  /// isDependentType - Whether this type is a dependent type, meaning
403  /// that its definition somehow depends on a template parameter
404  /// (C++ [temp.dep.type]).
405  bool isDependentType() const { return Dependent; }
406  bool isOverloadableType() const;
407
408  /// hasPointerRepresentation - Whether this type is represented
409  /// natively as a pointer; this includes pointers, references, block
410  /// pointers, and Objective-C interface, qualified id, and qualified
411  /// interface types, as well as nullptr_t.
412  bool hasPointerRepresentation() const;
413
414  /// hasObjCPointerRepresentation - Whether this type can represent
415  /// an objective pointer type for the purpose of GC'ability
416  bool hasObjCPointerRepresentation() const;
417
418  // Type Checking Functions: Check to see if this type is structurally the
419  // specified type, ignoring typedefs and qualifiers, and return a pointer to
420  // the best type we can.
421  const BuiltinType *getAsBuiltinType() const;
422  const FunctionType *getAsFunctionType() const;
423  const FunctionNoProtoType *getAsFunctionNoProtoType() const;
424  const FunctionProtoType *getAsFunctionProtoType() const;
425  const PointerType *getAsPointerType() const;
426  const BlockPointerType *getAsBlockPointerType() const;
427  const ReferenceType *getAsReferenceType() const;
428  const LValueReferenceType *getAsLValueReferenceType() const;
429  const RValueReferenceType *getAsRValueReferenceType() const;
430  const MemberPointerType *getAsMemberPointerType() const;
431  const TagType *getAsTagType() const;
432  const RecordType *getAsRecordType() const;
433  const RecordType *getAsStructureType() const;
434  /// NOTE: getAs*ArrayType are methods on ASTContext.
435  const TypedefType *getAsTypedefType() const;
436  const RecordType *getAsUnionType() const;
437  const EnumType *getAsEnumType() const;
438  const VectorType *getAsVectorType() const; // GCC vector type.
439  const ComplexType *getAsComplexType() const;
440  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
441  const ExtVectorType *getAsExtVectorType() const; // Extended vector type.
442  const ObjCInterfaceType *getAsObjCInterfaceType() const;
443  const ObjCQualifiedInterfaceType *getAsObjCQualifiedInterfaceType() const;
444  const ObjCQualifiedIdType *getAsObjCQualifiedIdType() const;
445  const TemplateTypeParmType *getAsTemplateTypeParmType() const;
446
447  const TemplateSpecializationType *
448    getAsTemplateSpecializationType() const;
449
450  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
451  /// interface, return the interface type, otherwise return null.
452  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
453
454  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
455  /// element type of the array, potentially with type qualifiers missing.
456  /// This method should never be used when type qualifiers are meaningful.
457  const Type *getArrayElementTypeNoTypeQual() const;
458
459  /// getDesugaredType - Return the specified type with any "sugar" removed from
460  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
461  /// the type is already concrete, it returns it unmodified.  This is similar
462  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
463  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
464  /// concrete.
465  QualType getDesugaredType(bool ForDisplay = false) const;
466
467  /// More type predicates useful for type checking/promotion
468  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
469
470  /// isSignedIntegerType - Return true if this is an integer type that is
471  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
472  /// an enum decl which has a signed representation, or a vector of signed
473  /// integer element type.
474  bool isSignedIntegerType() const;
475
476  /// isUnsignedIntegerType - Return true if this is an integer type that is
477  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
478  /// decl which has an unsigned representation, or a vector of unsigned integer
479  /// element type.
480  bool isUnsignedIntegerType() const;
481
482  /// isConstantSizeType - Return true if this is not a variable sized type,
483  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
484  /// incomplete types.
485  bool isConstantSizeType() const;
486
487  /// isSpecifierType - Returns true if this type can be represented by some
488  /// set of type specifiers.
489  bool isSpecifierType() const;
490
491  QualType getCanonicalTypeInternal() const { return CanonicalType; }
492  void dump() const;
493  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const = 0;
494  static bool classof(const Type *) { return true; }
495};
496
497/// ExtQualType - TR18037 (C embedded extensions) 6.2.5p26
498/// This supports all kinds of type attributes; including,
499/// address space qualified types, objective-c's __weak and
500/// __strong attributes.
501///
502class ExtQualType : public Type, public llvm::FoldingSetNode {
503  /// BaseType - This is the underlying type that this qualifies.  All CVR
504  /// qualifiers are stored on the QualType that references this type, so we
505  /// can't have any here.
506  Type *BaseType;
507
508  /// Address Space ID - The address space ID this type is qualified with.
509  unsigned AddressSpace;
510  /// GC __weak/__strong attributes
511  QualType::GCAttrTypes GCAttrType;
512
513  ExtQualType(Type *Base, QualType CanonicalPtr, unsigned AddrSpace,
514              QualType::GCAttrTypes gcAttr) :
515      Type(ExtQual, CanonicalPtr, Base->isDependentType()), BaseType(Base),
516      AddressSpace(AddrSpace), GCAttrType(gcAttr) {
517    assert(!isa<ExtQualType>(BaseType) &&
518           "Cannot have ExtQualType of ExtQualType");
519  }
520  friend class ASTContext;  // ASTContext creates these.
521public:
522  Type *getBaseType() const { return BaseType; }
523  QualType::GCAttrTypes getObjCGCAttr() const { return GCAttrType; }
524  unsigned getAddressSpace() const { return AddressSpace; }
525
526  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
527
528  void Profile(llvm::FoldingSetNodeID &ID) {
529    Profile(ID, getBaseType(), AddressSpace, GCAttrType);
530  }
531  static void Profile(llvm::FoldingSetNodeID &ID, Type *Base,
532                      unsigned AddrSpace, QualType::GCAttrTypes gcAttr) {
533    ID.AddPointer(Base);
534    ID.AddInteger(AddrSpace);
535    ID.AddInteger(gcAttr);
536  }
537
538  static bool classof(const Type *T) { return T->getTypeClass() == ExtQual; }
539  static bool classof(const ExtQualType *) { return true; }
540};
541
542
543/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
544/// types are always canonical and have a literal name field.
545class BuiltinType : public Type {
546public:
547  enum Kind {
548    Void,
549
550    Bool,     // This is bool and/or _Bool.
551    Char_U,   // This is 'char' for targets where char is unsigned.
552    UChar,    // This is explicitly qualified unsigned char.
553    UShort,
554    UInt,
555    ULong,
556    ULongLong,
557    UInt128,  // __uint128_t
558
559    Char_S,   // This is 'char' for targets where char is signed.
560    SChar,    // This is explicitly qualified signed char.
561    WChar,    // This is 'wchar_t' for C++.
562    Short,
563    Int,
564    Long,
565    LongLong,
566    Int128,   // __int128_t
567
568    Float, Double, LongDouble,
569
570    NullPtr,  // This is the type of C++0x 'nullptr'.
571
572    Overload,  // This represents the type of an overloaded function declaration.
573    Dependent  // This represents the type of a type-dependent expression.
574  };
575private:
576  Kind TypeKind;
577public:
578  BuiltinType(Kind K)
579    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
580      TypeKind(K) {}
581
582  Kind getKind() const { return TypeKind; }
583  const char *getName(bool CPlusPlus) const;
584
585  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
586
587  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
588  static bool classof(const BuiltinType *) { return true; }
589};
590
591/// FixedWidthIntType - Used for arbitrary width types that we either don't
592/// want to or can't map to named integer types.  These always have a lower
593/// integer rank than builtin types of the same width.
594class FixedWidthIntType : public Type {
595private:
596  unsigned Width;
597  bool Signed;
598public:
599  FixedWidthIntType(unsigned W, bool S) : Type(FixedWidthInt, QualType(), false),
600                                          Width(W), Signed(S) {}
601
602  unsigned getWidth() const { return Width; }
603  bool isSigned() const { return Signed; }
604  const char *getName() const;
605
606  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
607
608  static bool classof(const Type *T) { return T->getTypeClass() == FixedWidthInt; }
609  static bool classof(const FixedWidthIntType *) { return true; }
610};
611
612/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
613/// types (_Complex float etc) as well as the GCC integer complex extensions.
614///
615class ComplexType : public Type, public llvm::FoldingSetNode {
616  QualType ElementType;
617  ComplexType(QualType Element, QualType CanonicalPtr) :
618    Type(Complex, CanonicalPtr, Element->isDependentType()),
619    ElementType(Element) {
620  }
621  friend class ASTContext;  // ASTContext creates these.
622public:
623  QualType getElementType() const { return ElementType; }
624
625  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
626
627  void Profile(llvm::FoldingSetNodeID &ID) {
628    Profile(ID, getElementType());
629  }
630  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
631    ID.AddPointer(Element.getAsOpaquePtr());
632  }
633
634  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
635  static bool classof(const ComplexType *) { return true; }
636};
637
638/// PointerType - C99 6.7.5.1 - Pointer Declarators.
639///
640class PointerType : public Type, public llvm::FoldingSetNode {
641  QualType PointeeType;
642
643  PointerType(QualType Pointee, QualType CanonicalPtr) :
644    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
645  }
646  friend class ASTContext;  // ASTContext creates these.
647public:
648
649  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
650
651  QualType getPointeeType() const { return PointeeType; }
652
653  void Profile(llvm::FoldingSetNodeID &ID) {
654    Profile(ID, getPointeeType());
655  }
656  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
657    ID.AddPointer(Pointee.getAsOpaquePtr());
658  }
659
660  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
661  static bool classof(const PointerType *) { return true; }
662};
663
664/// BlockPointerType - pointer to a block type.
665/// This type is to represent types syntactically represented as
666/// "void (^)(int)", etc. Pointee is required to always be a function type.
667///
668class BlockPointerType : public Type, public llvm::FoldingSetNode {
669  QualType PointeeType;  // Block is some kind of pointer type
670  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
671    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
672    PointeeType(Pointee) {
673  }
674  friend class ASTContext;  // ASTContext creates these.
675public:
676
677  // Get the pointee type. Pointee is required to always be a function type.
678  QualType getPointeeType() const { return PointeeType; }
679
680  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
681
682  void Profile(llvm::FoldingSetNodeID &ID) {
683      Profile(ID, getPointeeType());
684  }
685  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
686      ID.AddPointer(Pointee.getAsOpaquePtr());
687  }
688
689  static bool classof(const Type *T) {
690    return T->getTypeClass() == BlockPointer;
691  }
692  static bool classof(const BlockPointerType *) { return true; }
693};
694
695/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
696///
697class ReferenceType : public Type, public llvm::FoldingSetNode {
698  QualType PointeeType;
699
700protected:
701  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef) :
702    Type(tc, CanonicalRef, Referencee->isDependentType()),
703    PointeeType(Referencee) {
704  }
705public:
706  QualType getPointeeType() const { return PointeeType; }
707
708  void Profile(llvm::FoldingSetNodeID &ID) {
709    Profile(ID, getPointeeType());
710  }
711  static void Profile(llvm::FoldingSetNodeID &ID, QualType Referencee) {
712    ID.AddPointer(Referencee.getAsOpaquePtr());
713  }
714
715  static bool classof(const Type *T) {
716    return T->getTypeClass() == LValueReference ||
717           T->getTypeClass() == RValueReference;
718  }
719  static bool classof(const ReferenceType *) { return true; }
720};
721
722/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
723///
724class LValueReferenceType : public ReferenceType {
725  LValueReferenceType(QualType Referencee, QualType CanonicalRef) :
726    ReferenceType(LValueReference, Referencee, CanonicalRef) {
727  }
728  friend class ASTContext; // ASTContext creates these
729public:
730  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
731
732  static bool classof(const Type *T) {
733    return T->getTypeClass() == LValueReference;
734  }
735  static bool classof(const LValueReferenceType *) { return true; }
736};
737
738/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
739///
740class RValueReferenceType : public ReferenceType {
741  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
742    ReferenceType(RValueReference, Referencee, CanonicalRef) {
743  }
744  friend class ASTContext; // ASTContext creates these
745public:
746  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
747
748  static bool classof(const Type *T) {
749    return T->getTypeClass() == RValueReference;
750  }
751  static bool classof(const RValueReferenceType *) { return true; }
752};
753
754/// MemberPointerType - C++ 8.3.3 - Pointers to members
755///
756class MemberPointerType : public Type, public llvm::FoldingSetNode {
757  QualType PointeeType;
758  /// The class of which the pointee is a member. Must ultimately be a
759  /// RecordType, but could be a typedef or a template parameter too.
760  const Type *Class;
761
762  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
763    Type(MemberPointer, CanonicalPtr,
764         Cls->isDependentType() || Pointee->isDependentType()),
765    PointeeType(Pointee), Class(Cls) {
766  }
767  friend class ASTContext; // ASTContext creates these.
768public:
769
770  QualType getPointeeType() const { return PointeeType; }
771
772  const Type *getClass() const { return Class; }
773
774  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
775
776  void Profile(llvm::FoldingSetNodeID &ID) {
777    Profile(ID, getPointeeType(), getClass());
778  }
779  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
780                      const Type *Class) {
781    ID.AddPointer(Pointee.getAsOpaquePtr());
782    ID.AddPointer(Class);
783  }
784
785  static bool classof(const Type *T) {
786    return T->getTypeClass() == MemberPointer;
787  }
788  static bool classof(const MemberPointerType *) { return true; }
789};
790
791/// ArrayType - C99 6.7.5.2 - Array Declarators.
792///
793class ArrayType : public Type, public llvm::FoldingSetNode {
794public:
795  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
796  /// an array with a static size (e.g. int X[static 4]), or an array
797  /// with a star size (e.g. int X[*]).
798  /// 'static' is only allowed on function parameters.
799  enum ArraySizeModifier {
800    Normal, Static, Star
801  };
802private:
803  /// ElementType - The element type of the array.
804  QualType ElementType;
805
806  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
807  /// NOTE: These fields are packed into the bitfields space in the Type class.
808  unsigned SizeModifier : 2;
809
810  /// IndexTypeQuals - Capture qualifiers in declarations like:
811  /// 'int X[static restrict 4]'. For function parameters only.
812  unsigned IndexTypeQuals : 3;
813
814protected:
815  // C++ [temp.dep.type]p1:
816  //   A type is dependent if it is...
817  //     - an array type constructed from any dependent type or whose
818  //       size is specified by a constant expression that is
819  //       value-dependent,
820  ArrayType(TypeClass tc, QualType et, QualType can,
821            ArraySizeModifier sm, unsigned tq)
822    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
823      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
824
825  friend class ASTContext;  // ASTContext creates these.
826public:
827  QualType getElementType() const { return ElementType; }
828  ArraySizeModifier getSizeModifier() const {
829    return ArraySizeModifier(SizeModifier);
830  }
831  unsigned getIndexTypeQualifier() const { return IndexTypeQuals; }
832
833  static bool classof(const Type *T) {
834    return T->getTypeClass() == ConstantArray ||
835           T->getTypeClass() == VariableArray ||
836           T->getTypeClass() == IncompleteArray ||
837           T->getTypeClass() == DependentSizedArray;
838  }
839  static bool classof(const ArrayType *) { return true; }
840};
841
842/// ConstantArrayType - This class represents C arrays with a specified constant
843/// size.  For example 'int A[100]' has ConstantArrayType where the element type
844/// is 'int' and the size is 100.
845class ConstantArrayType : public ArrayType {
846  llvm::APInt Size; // Allows us to unique the type.
847
848  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
849                    ArraySizeModifier sm, unsigned tq)
850    : ArrayType(ConstantArray, et, can, sm, tq), Size(size) {}
851  friend class ASTContext;  // ASTContext creates these.
852public:
853  const llvm::APInt &getSize() const { return Size; }
854  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
855
856  void Profile(llvm::FoldingSetNodeID &ID) {
857    Profile(ID, getElementType(), getSize(),
858            getSizeModifier(), getIndexTypeQualifier());
859  }
860  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
861                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
862                      unsigned TypeQuals) {
863    ID.AddPointer(ET.getAsOpaquePtr());
864    ID.AddInteger(ArraySize.getZExtValue());
865    ID.AddInteger(SizeMod);
866    ID.AddInteger(TypeQuals);
867  }
868  static bool classof(const Type *T) {
869    return T->getTypeClass() == ConstantArray;
870  }
871  static bool classof(const ConstantArrayType *) { return true; }
872};
873
874/// IncompleteArrayType - This class represents C arrays with an unspecified
875/// size.  For example 'int A[]' has an IncompleteArrayType where the element
876/// type is 'int' and the size is unspecified.
877class IncompleteArrayType : public ArrayType {
878  IncompleteArrayType(QualType et, QualType can,
879                    ArraySizeModifier sm, unsigned tq)
880    : ArrayType(IncompleteArray, et, can, sm, tq) {}
881  friend class ASTContext;  // ASTContext creates these.
882public:
883
884  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
885
886  static bool classof(const Type *T) {
887    return T->getTypeClass() == IncompleteArray;
888  }
889  static bool classof(const IncompleteArrayType *) { return true; }
890
891  friend class StmtIteratorBase;
892
893  void Profile(llvm::FoldingSetNodeID &ID) {
894    Profile(ID, getElementType(), getSizeModifier(), getIndexTypeQualifier());
895  }
896
897  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
898                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
899    ID.AddPointer(ET.getAsOpaquePtr());
900    ID.AddInteger(SizeMod);
901    ID.AddInteger(TypeQuals);
902  }
903};
904
905/// VariableArrayType - This class represents C arrays with a specified size
906/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
907/// Since the size expression is an arbitrary expression, we store it as such.
908///
909/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
910/// should not be: two lexically equivalent variable array types could mean
911/// different things, for example, these variables do not have the same type
912/// dynamically:
913///
914/// void foo(int x) {
915///   int Y[x];
916///   ++x;
917///   int Z[x];
918/// }
919///
920class VariableArrayType : public ArrayType {
921  /// SizeExpr - An assignment expression. VLA's are only permitted within
922  /// a function block.
923  Stmt *SizeExpr;
924
925  VariableArrayType(QualType et, QualType can, Expr *e,
926                    ArraySizeModifier sm, unsigned tq)
927    : ArrayType(VariableArray, et, can, sm, tq), SizeExpr((Stmt*) e) {}
928  friend class ASTContext;  // ASTContext creates these.
929  virtual void Destroy(ASTContext& C);
930
931public:
932  Expr *getSizeExpr() const {
933    // We use C-style casts instead of cast<> here because we do not wish
934    // to have a dependency of Type.h on Stmt.h/Expr.h.
935    return (Expr*) SizeExpr;
936  }
937
938  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
939
940  static bool classof(const Type *T) {
941    return T->getTypeClass() == VariableArray;
942  }
943  static bool classof(const VariableArrayType *) { return true; }
944
945  friend class StmtIteratorBase;
946
947  void Profile(llvm::FoldingSetNodeID &ID) {
948    assert(0 && "Cannnot unique VariableArrayTypes.");
949  }
950};
951
952/// DependentSizedArrayType - This type represents an array type in
953/// C++ whose size is a value-dependent expression. For example:
954/// @code
955/// template<typename T, int Size>
956/// class array {
957///   T data[Size];
958/// };
959/// @endcode
960/// For these types, we won't actually know what the array bound is
961/// until template instantiation occurs, at which point this will
962/// become either a ConstantArrayType or a VariableArrayType.
963class DependentSizedArrayType : public ArrayType {
964  /// SizeExpr - An assignment expression that will instantiate to the
965  /// size of the array.
966  Stmt *SizeExpr;
967
968  DependentSizedArrayType(QualType et, QualType can, Expr *e,
969			  ArraySizeModifier sm, unsigned tq)
970    : ArrayType(DependentSizedArray, et, can, sm, tq), SizeExpr((Stmt*) e) {}
971  friend class ASTContext;  // ASTContext creates these.
972  virtual void Destroy(ASTContext& C);
973
974public:
975  Expr *getSizeExpr() const {
976    // We use C-style casts instead of cast<> here because we do not wish
977    // to have a dependency of Type.h on Stmt.h/Expr.h.
978    return (Expr*) SizeExpr;
979  }
980
981  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
982
983  static bool classof(const Type *T) {
984    return T->getTypeClass() == DependentSizedArray;
985  }
986  static bool classof(const DependentSizedArrayType *) { return true; }
987
988  friend class StmtIteratorBase;
989
990  void Profile(llvm::FoldingSetNodeID &ID) {
991    assert(0 && "Cannnot unique DependentSizedArrayTypes.");
992  }
993};
994
995/// DependentSizedExtVectorType - This type represent an ext vectory type
996/// where either the type or size is dependent. For example:
997/// @code
998/// template<typename T, int Size>
999/// class vector {
1000///   typedef T __attribute__((ext_vector_type(Size))) type;
1001/// }
1002/// @endcode
1003class DependentSizedExtVectorType : public Type {
1004  Expr *SizeExpr;
1005  /// ElementType - The element type of the array.
1006  QualType ElementType;
1007  SourceLocation loc;
1008
1009  DependentSizedExtVectorType(QualType ElementType, QualType can,
1010                              Expr *SizeExpr, SourceLocation loc)
1011    : Type (DependentSizedExtVector, can, true),
1012    SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {}
1013  friend class ASTContext;
1014  virtual void Destroy(ASTContext& C);
1015
1016public:
1017  Expr *getSizeExpr() const { return SizeExpr; }
1018  QualType getElementType() const { return ElementType; }
1019  SourceLocation getAttributeLoc() const { return loc; }
1020
1021  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1022
1023  static bool classof(const Type *T) {
1024    return T->getTypeClass() == DependentSizedExtVector;
1025  }
1026  static bool classof(const DependentSizedExtVectorType *) { return true; }
1027};
1028
1029
1030/// VectorType - GCC generic vector type. This type is created using
1031/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1032/// bytes. Since the constructor takes the number of vector elements, the
1033/// client is responsible for converting the size into the number of elements.
1034class VectorType : public Type, public llvm::FoldingSetNode {
1035protected:
1036  /// ElementType - The element type of the vector.
1037  QualType ElementType;
1038
1039  /// NumElements - The number of elements in the vector.
1040  unsigned NumElements;
1041
1042  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1043    Type(Vector, canonType, vecType->isDependentType()),
1044    ElementType(vecType), NumElements(nElements) {}
1045  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1046             QualType canonType)
1047    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1048      NumElements(nElements) {}
1049  friend class ASTContext;  // ASTContext creates these.
1050public:
1051
1052  QualType getElementType() const { return ElementType; }
1053  unsigned getNumElements() const { return NumElements; }
1054
1055  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1056
1057  void Profile(llvm::FoldingSetNodeID &ID) {
1058    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1059  }
1060  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1061                      unsigned NumElements, TypeClass TypeClass) {
1062    ID.AddPointer(ElementType.getAsOpaquePtr());
1063    ID.AddInteger(NumElements);
1064    ID.AddInteger(TypeClass);
1065  }
1066  static bool classof(const Type *T) {
1067    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1068  }
1069  static bool classof(const VectorType *) { return true; }
1070};
1071
1072/// ExtVectorType - Extended vector type. This type is created using
1073/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1074/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1075/// class enables syntactic extensions, like Vector Components for accessing
1076/// points, colors, and textures (modeled after OpenGL Shading Language).
1077class ExtVectorType : public VectorType {
1078  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1079    VectorType(ExtVector, vecType, nElements, canonType) {}
1080  friend class ASTContext;  // ASTContext creates these.
1081public:
1082  static int getPointAccessorIdx(char c) {
1083    switch (c) {
1084    default: return -1;
1085    case 'x': return 0;
1086    case 'y': return 1;
1087    case 'z': return 2;
1088    case 'w': return 3;
1089    }
1090  }
1091  static int getNumericAccessorIdx(char c) {
1092    switch (c) {
1093      default: return -1;
1094      case '0': return 0;
1095      case '1': return 1;
1096      case '2': return 2;
1097      case '3': return 3;
1098      case '4': return 4;
1099      case '5': return 5;
1100      case '6': return 6;
1101      case '7': return 7;
1102      case '8': return 8;
1103      case '9': return 9;
1104      case 'a': return 10;
1105      case 'b': return 11;
1106      case 'c': return 12;
1107      case 'd': return 13;
1108      case 'e': return 14;
1109      case 'f': return 15;
1110    }
1111  }
1112
1113  static int getAccessorIdx(char c) {
1114    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1115    return getNumericAccessorIdx(c);
1116  }
1117
1118  bool isAccessorWithinNumElements(char c) const {
1119    if (int idx = getAccessorIdx(c)+1)
1120      return unsigned(idx-1) < NumElements;
1121    return false;
1122  }
1123  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1124
1125  static bool classof(const Type *T) {
1126    return T->getTypeClass() == ExtVector;
1127  }
1128  static bool classof(const ExtVectorType *) { return true; }
1129};
1130
1131/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1132/// class of FunctionNoProtoType and FunctionProtoType.
1133///
1134class FunctionType : public Type {
1135  /// SubClassData - This field is owned by the subclass, put here to pack
1136  /// tightly with the ivars in Type.
1137  bool SubClassData : 1;
1138
1139  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1140  /// other bitfields.
1141  /// The qualifiers are part of FunctionProtoType because...
1142  ///
1143  /// C++ 8.3.5p4: The return type, the parameter type list and the
1144  /// cv-qualifier-seq, [...], are part of the function type.
1145  ///
1146  unsigned TypeQuals : 3;
1147
1148  // The type returned by the function.
1149  QualType ResultType;
1150protected:
1151  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1152               unsigned typeQuals, QualType Canonical, bool Dependent)
1153    : Type(tc, Canonical, Dependent),
1154      SubClassData(SubclassInfo), TypeQuals(typeQuals), ResultType(res) {}
1155  bool getSubClassData() const { return SubClassData; }
1156  unsigned getTypeQuals() const { return TypeQuals; }
1157public:
1158
1159  QualType getResultType() const { return ResultType; }
1160
1161
1162  static bool classof(const Type *T) {
1163    return T->getTypeClass() == FunctionNoProto ||
1164           T->getTypeClass() == FunctionProto;
1165  }
1166  static bool classof(const FunctionType *) { return true; }
1167};
1168
1169/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1170/// no information available about its arguments.
1171class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1172  FunctionNoProtoType(QualType Result, QualType Canonical)
1173    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1174                   /*Dependent=*/false) {}
1175  friend class ASTContext;  // ASTContext creates these.
1176public:
1177  // No additional state past what FunctionType provides.
1178
1179  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1180
1181  void Profile(llvm::FoldingSetNodeID &ID) {
1182    Profile(ID, getResultType());
1183  }
1184  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType) {
1185    ID.AddPointer(ResultType.getAsOpaquePtr());
1186  }
1187
1188  static bool classof(const Type *T) {
1189    return T->getTypeClass() == FunctionNoProto;
1190  }
1191  static bool classof(const FunctionNoProtoType *) { return true; }
1192};
1193
1194/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1195/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1196/// arguments, not as having a single void argument. Such a type can have an
1197/// exception specification, but this specification is not part of the canonical
1198/// type.
1199class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1200  /// hasAnyDependentType - Determine whether there are any dependent
1201  /// types within the arguments passed in.
1202  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1203    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1204      if (ArgArray[Idx]->isDependentType())
1205    return true;
1206
1207    return false;
1208  }
1209
1210  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1211                    bool isVariadic, unsigned typeQuals, bool hasExs,
1212                    bool hasAnyExs, const QualType *ExArray,
1213                    unsigned numExs, QualType Canonical)
1214    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1215                   (Result->isDependentType() ||
1216                    hasAnyDependentType(ArgArray, numArgs))),
1217      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1218      AnyExceptionSpec(hasAnyExs) {
1219    // Fill in the trailing argument array.
1220    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1221    for (unsigned i = 0; i != numArgs; ++i)
1222      ArgInfo[i] = ArgArray[i];
1223    // Fill in the exception array.
1224    QualType *Ex = ArgInfo + numArgs;
1225    for (unsigned i = 0; i != numExs; ++i)
1226      Ex[i] = ExArray[i];
1227  }
1228
1229  /// NumArgs - The number of arguments this function has, not counting '...'.
1230  unsigned NumArgs : 20;
1231
1232  /// NumExceptions - The number of types in the exception spec, if any.
1233  unsigned NumExceptions : 10;
1234
1235  /// HasExceptionSpec - Whether this function has an exception spec at all.
1236  bool HasExceptionSpec : 1;
1237
1238  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1239  bool AnyExceptionSpec : 1;
1240
1241  /// ArgInfo - There is an variable size array after the class in memory that
1242  /// holds the argument types.
1243
1244  /// Exceptions - There is another variable size array after ArgInfo that
1245  /// holds the exception types.
1246
1247  friend class ASTContext;  // ASTContext creates these.
1248
1249public:
1250  unsigned getNumArgs() const { return NumArgs; }
1251  QualType getArgType(unsigned i) const {
1252    assert(i < NumArgs && "Invalid argument number!");
1253    return arg_type_begin()[i];
1254  }
1255
1256  bool hasExceptionSpec() const { return HasExceptionSpec; }
1257  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1258  unsigned getNumExceptions() const { return NumExceptions; }
1259  QualType getExceptionType(unsigned i) const {
1260    assert(i < NumExceptions && "Invalid exception number!");
1261    return exception_begin()[i];
1262  }
1263  bool hasEmptyExceptionSpec() const {
1264    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1265      getNumExceptions() == 0;
1266  }
1267
1268  bool isVariadic() const { return getSubClassData(); }
1269  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1270
1271  typedef const QualType *arg_type_iterator;
1272  arg_type_iterator arg_type_begin() const {
1273    return reinterpret_cast<const QualType *>(this+1);
1274  }
1275  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1276
1277  typedef const QualType *exception_iterator;
1278  exception_iterator exception_begin() const {
1279    // exceptions begin where arguments end
1280    return arg_type_end();
1281  }
1282  exception_iterator exception_end() const {
1283    return exception_begin() + NumExceptions;
1284  }
1285
1286  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1287
1288  static bool classof(const Type *T) {
1289    return T->getTypeClass() == FunctionProto;
1290  }
1291  static bool classof(const FunctionProtoType *) { return true; }
1292
1293  void Profile(llvm::FoldingSetNodeID &ID);
1294  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1295                      arg_type_iterator ArgTys, unsigned NumArgs,
1296                      bool isVariadic, unsigned TypeQuals,
1297                      bool hasExceptionSpec, bool anyExceptionSpec,
1298                      unsigned NumExceptions, exception_iterator Exs);
1299};
1300
1301
1302class TypedefType : public Type {
1303  TypedefDecl *Decl;
1304protected:
1305  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1306    : Type(tc, can, can->isDependentType()), Decl(D) {
1307    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1308  }
1309  friend class ASTContext;  // ASTContext creates these.
1310public:
1311
1312  TypedefDecl *getDecl() const { return Decl; }
1313
1314  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1315  /// potentially looking through *all* consecutive typedefs.  This returns the
1316  /// sum of the type qualifiers, so if you have:
1317  ///   typedef const int A;
1318  ///   typedef volatile A B;
1319  /// looking through the typedefs for B will give you "const volatile A".
1320  QualType LookThroughTypedefs() const;
1321
1322  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1323
1324  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1325  static bool classof(const TypedefType *) { return true; }
1326};
1327
1328/// TypeOfExprType (GCC extension).
1329class TypeOfExprType : public Type {
1330  Expr *TOExpr;
1331  TypeOfExprType(Expr *E, QualType can);
1332  friend class ASTContext;  // ASTContext creates these.
1333public:
1334  Expr *getUnderlyingExpr() const { return TOExpr; }
1335
1336  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1337
1338  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1339  static bool classof(const TypeOfExprType *) { return true; }
1340};
1341
1342/// TypeOfType (GCC extension).
1343class TypeOfType : public Type {
1344  QualType TOType;
1345  TypeOfType(QualType T, QualType can)
1346    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
1347    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1348  }
1349  friend class ASTContext;  // ASTContext creates these.
1350public:
1351  QualType getUnderlyingType() const { return TOType; }
1352
1353  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1354
1355  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
1356  static bool classof(const TypeOfType *) { return true; }
1357};
1358
1359class TagType : public Type {
1360  /// Stores the TagDecl associated with this type. The decl will
1361  /// point to the TagDecl that actually defines the entity (or is a
1362  /// definition in progress), if there is such a definition. The
1363  /// single-bit value will be non-zero when this tag is in the
1364  /// process of being defined.
1365  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
1366  friend class ASTContext;
1367  friend class TagDecl;
1368
1369protected:
1370  TagType(TypeClass TC, TagDecl *D, QualType can);
1371
1372public:
1373  TagDecl *getDecl() const { return decl.getPointer(); }
1374
1375  /// @brief Determines whether this type is in the process of being
1376  /// defined.
1377  bool isBeingDefined() const { return decl.getInt(); }
1378  void setBeingDefined(bool Def) { decl.setInt(Def? 1 : 0); }
1379
1380  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1381
1382  static bool classof(const Type *T) {
1383    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
1384  }
1385  static bool classof(const TagType *) { return true; }
1386  static bool classof(const RecordType *) { return true; }
1387  static bool classof(const EnumType *) { return true; }
1388};
1389
1390/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
1391/// to detect TagType objects of structs/unions/classes.
1392class RecordType : public TagType {
1393protected:
1394  explicit RecordType(RecordDecl *D)
1395    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
1396  explicit RecordType(TypeClass TC, RecordDecl *D)
1397    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
1398  friend class ASTContext;   // ASTContext creates these.
1399public:
1400
1401  RecordDecl *getDecl() const {
1402    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
1403  }
1404
1405  // FIXME: This predicate is a helper to QualType/Type. It needs to
1406  // recursively check all fields for const-ness. If any field is declared
1407  // const, it needs to return false.
1408  bool hasConstFields() const { return false; }
1409
1410  // FIXME: RecordType needs to check when it is created that all fields are in
1411  // the same address space, and return that.
1412  unsigned getAddressSpace() const { return 0; }
1413
1414  static bool classof(const TagType *T);
1415  static bool classof(const Type *T) {
1416    return isa<TagType>(T) && classof(cast<TagType>(T));
1417  }
1418  static bool classof(const RecordType *) { return true; }
1419};
1420
1421/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
1422/// to detect TagType objects of enums.
1423class EnumType : public TagType {
1424  explicit EnumType(EnumDecl *D)
1425    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
1426  friend class ASTContext;   // ASTContext creates these.
1427public:
1428
1429  EnumDecl *getDecl() const {
1430    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
1431  }
1432
1433  static bool classof(const TagType *T);
1434  static bool classof(const Type *T) {
1435    return isa<TagType>(T) && classof(cast<TagType>(T));
1436  }
1437  static bool classof(const EnumType *) { return true; }
1438};
1439
1440class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
1441  unsigned Depth : 15;
1442  unsigned Index : 16;
1443  unsigned ParameterPack : 1;
1444  IdentifierInfo *Name;
1445
1446  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
1447                       QualType Canon)
1448    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
1449      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
1450
1451  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
1452    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
1453      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
1454
1455  friend class ASTContext;  // ASTContext creates these
1456
1457public:
1458  unsigned getDepth() const { return Depth; }
1459  unsigned getIndex() const { return Index; }
1460  bool isParameterPack() const { return ParameterPack; }
1461  IdentifierInfo *getName() const { return Name; }
1462
1463  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1464
1465  void Profile(llvm::FoldingSetNodeID &ID) {
1466    Profile(ID, Depth, Index, ParameterPack, Name);
1467  }
1468
1469  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
1470                      unsigned Index, bool ParameterPack,
1471                      IdentifierInfo *Name) {
1472    ID.AddInteger(Depth);
1473    ID.AddInteger(Index);
1474    ID.AddBoolean(ParameterPack);
1475    ID.AddPointer(Name);
1476  }
1477
1478  static bool classof(const Type *T) {
1479    return T->getTypeClass() == TemplateTypeParm;
1480  }
1481  static bool classof(const TemplateTypeParmType *T) { return true; }
1482};
1483
1484/// \brief Represents the type of a template specialization as written
1485/// in the source code.
1486///
1487/// Template specialization types represent the syntactic form of a
1488/// template-id that refers to a type, e.g., @c vector<int>. Some
1489/// template specialization types are syntactic sugar, whose canonical
1490/// type will point to some other type node that represents the
1491/// instantiation or class template specialization. For example, a
1492/// class template specialization type of @c vector<int> will refer to
1493/// a tag type for the instantiation
1494/// @c std::vector<int, std::allocator<int>>.
1495///
1496/// Other template specialization types, for which the template name
1497/// is dependent, may be canonical types. These types are always
1498/// dependent.
1499class TemplateSpecializationType
1500  : public Type, public llvm::FoldingSetNode {
1501
1502  /// \brief The name of the template being specialized.
1503  TemplateName Template;
1504
1505  /// \brief - The number of template arguments named in this class
1506  /// template specialization.
1507  unsigned NumArgs;
1508
1509  TemplateSpecializationType(TemplateName T,
1510                             const TemplateArgument *Args,
1511                             unsigned NumArgs, QualType Canon);
1512
1513  virtual void Destroy(ASTContext& C);
1514
1515  friend class ASTContext;  // ASTContext creates these
1516
1517public:
1518  /// \brief Determine whether any of the given template arguments are
1519  /// dependent.
1520  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
1521                                            unsigned NumArgs);
1522
1523  /// \brief Print a template argument list, including the '<' and '>'
1524  /// enclosing the template arguments.
1525  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
1526                                               unsigned NumArgs,
1527                                               const PrintingPolicy &Policy);
1528
1529  typedef const TemplateArgument * iterator;
1530
1531  iterator begin() const { return getArgs(); }
1532  iterator end() const;
1533
1534  /// \brief Retrieve the name of the template that we are specializing.
1535  TemplateName getTemplateName() const { return Template; }
1536
1537  /// \brief Retrieve the template arguments.
1538  const TemplateArgument *getArgs() const {
1539    return reinterpret_cast<const TemplateArgument *>(this + 1);
1540  }
1541
1542  /// \brief Retrieve the number of template arguments.
1543  unsigned getNumArgs() const { return NumArgs; }
1544
1545  /// \brief Retrieve a specific template argument as a type.
1546  /// \precondition @c isArgType(Arg)
1547  const TemplateArgument &getArg(unsigned Idx) const;
1548
1549  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1550
1551  void Profile(llvm::FoldingSetNodeID &ID) {
1552    Profile(ID, Template, getArgs(), NumArgs);
1553  }
1554
1555  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
1556                      const TemplateArgument *Args, unsigned NumArgs);
1557
1558  static bool classof(const Type *T) {
1559    return T->getTypeClass() == TemplateSpecialization;
1560  }
1561  static bool classof(const TemplateSpecializationType *T) { return true; }
1562};
1563
1564/// \brief Represents a type that was referred to via a qualified
1565/// name, e.g., N::M::type.
1566///
1567/// This type is used to keep track of a type name as written in the
1568/// source code, including any nested-name-specifiers. The type itself
1569/// is always "sugar", used to express what was written in the source
1570/// code but containing no additional semantic information.
1571class QualifiedNameType : public Type, public llvm::FoldingSetNode {
1572  /// \brief The nested name specifier containing the qualifier.
1573  NestedNameSpecifier *NNS;
1574
1575  /// \brief The type that this qualified name refers to.
1576  QualType NamedType;
1577
1578  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
1579                    QualType CanonType)
1580    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
1581      NNS(NNS), NamedType(NamedType) { }
1582
1583  friend class ASTContext;  // ASTContext creates these
1584
1585public:
1586  /// \brief Retrieve the qualification on this type.
1587  NestedNameSpecifier *getQualifier() const { return NNS; }
1588
1589  /// \brief Retrieve the type named by the qualified-id.
1590  QualType getNamedType() const { return NamedType; }
1591
1592  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1593
1594  void Profile(llvm::FoldingSetNodeID &ID) {
1595    Profile(ID, NNS, NamedType);
1596  }
1597
1598  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1599                      QualType NamedType) {
1600    ID.AddPointer(NNS);
1601    NamedType.Profile(ID);
1602  }
1603
1604  static bool classof(const Type *T) {
1605    return T->getTypeClass() == QualifiedName;
1606  }
1607  static bool classof(const QualifiedNameType *T) { return true; }
1608};
1609
1610/// \brief Represents a 'typename' specifier that names a type within
1611/// a dependent type, e.g., "typename T::type".
1612///
1613/// TypenameType has a very similar structure to QualifiedNameType,
1614/// which also involves a nested-name-specifier following by a type,
1615/// and (FIXME!) both can even be prefixed by the 'typename'
1616/// keyword. However, the two types serve very different roles:
1617/// QualifiedNameType is a non-semantic type that serves only as sugar
1618/// to show how a particular type was written in the source
1619/// code. TypenameType, on the other hand, only occurs when the
1620/// nested-name-specifier is dependent, such that we cannot resolve
1621/// the actual type until after instantiation.
1622class TypenameType : public Type, public llvm::FoldingSetNode {
1623  /// \brief The nested name specifier containing the qualifier.
1624  NestedNameSpecifier *NNS;
1625
1626  typedef llvm::PointerUnion<const IdentifierInfo *,
1627                             const TemplateSpecializationType *> NameType;
1628
1629  /// \brief The type that this typename specifier refers to.
1630  NameType Name;
1631
1632  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1633               QualType CanonType)
1634    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
1635    assert(NNS->isDependent() &&
1636           "TypenameType requires a dependent nested-name-specifier");
1637  }
1638
1639  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
1640               QualType CanonType)
1641    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
1642    assert(NNS->isDependent() &&
1643           "TypenameType requires a dependent nested-name-specifier");
1644  }
1645
1646  friend class ASTContext;  // ASTContext creates these
1647
1648public:
1649  /// \brief Retrieve the qualification on this type.
1650  NestedNameSpecifier *getQualifier() const { return NNS; }
1651
1652  /// \brief Retrieve the type named by the typename specifier as an
1653  /// identifier.
1654  ///
1655  /// This routine will return a non-NULL identifier pointer when the
1656  /// form of the original typename was terminated by an identifier,
1657  /// e.g., "typename T::type".
1658  const IdentifierInfo *getIdentifier() const {
1659    return Name.dyn_cast<const IdentifierInfo *>();
1660  }
1661
1662  /// \brief Retrieve the type named by the typename specifier as a
1663  /// type specialization.
1664  const TemplateSpecializationType *getTemplateId() const {
1665    return Name.dyn_cast<const TemplateSpecializationType *>();
1666  }
1667
1668  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1669
1670  void Profile(llvm::FoldingSetNodeID &ID) {
1671    Profile(ID, NNS, Name);
1672  }
1673
1674  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1675                      NameType Name) {
1676    ID.AddPointer(NNS);
1677    ID.AddPointer(Name.getOpaqueValue());
1678  }
1679
1680  static bool classof(const Type *T) {
1681    return T->getTypeClass() == Typename;
1682  }
1683  static bool classof(const TypenameType *T) { return true; }
1684};
1685
1686/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
1687/// object oriented design.  They basically correspond to C++ classes.  There
1688/// are two kinds of interface types, normal interfaces like "NSString" and
1689/// qualified interfaces, which are qualified with a protocol list like
1690/// "NSString<NSCopyable, NSAmazing>".  Qualified interface types are instances
1691/// of ObjCQualifiedInterfaceType, which is a subclass of ObjCInterfaceType.
1692class ObjCInterfaceType : public Type {
1693  ObjCInterfaceDecl *Decl;
1694protected:
1695  ObjCInterfaceType(TypeClass tc, ObjCInterfaceDecl *D) :
1696    Type(tc, QualType(), /*Dependent=*/false), Decl(D) { }
1697  friend class ASTContext;  // ASTContext creates these.
1698public:
1699
1700  ObjCInterfaceDecl *getDecl() const { return Decl; }
1701
1702  /// qual_iterator and friends: this provides access to the (potentially empty)
1703  /// list of protocols qualifying this interface.  If this is an instance of
1704  /// ObjCQualifiedInterfaceType it returns the list, otherwise it returns an
1705  /// empty list if there are no qualifying protocols.
1706  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
1707  inline qual_iterator qual_begin() const;
1708  inline qual_iterator qual_end() const;
1709  bool qual_empty() const { return getTypeClass() != ObjCQualifiedInterface; }
1710
1711  /// getNumProtocols - Return the number of qualifying protocols in this
1712  /// interface type, or 0 if there are none.
1713  inline unsigned getNumProtocols() const;
1714
1715  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1716  static bool classof(const Type *T) {
1717    return T->getTypeClass() == ObjCInterface ||
1718           T->getTypeClass() == ObjCQualifiedInterface;
1719  }
1720  static bool classof(const ObjCInterfaceType *) { return true; }
1721};
1722
1723/// ObjCQualifiedInterfaceType - This class represents interface types
1724/// conforming to a list of protocols, such as INTF<Proto1, Proto2, Proto1>.
1725///
1726/// Duplicate protocols are removed and protocol list is canonicalized to be in
1727/// alphabetical order.
1728class ObjCQualifiedInterfaceType : public ObjCInterfaceType,
1729                                   public llvm::FoldingSetNode {
1730
1731  // List of protocols for this protocol conforming object type
1732  // List is sorted on protocol name. No protocol is enterred more than once.
1733  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;
1734
1735  ObjCQualifiedInterfaceType(ObjCInterfaceDecl *D,
1736                             ObjCProtocolDecl **Protos, unsigned NumP) :
1737    ObjCInterfaceType(ObjCQualifiedInterface, D),
1738    Protocols(Protos, Protos+NumP) { }
1739  friend class ASTContext;  // ASTContext creates these.
1740public:
1741
1742  unsigned getNumProtocols() const {
1743    return Protocols.size();
1744  }
1745
1746  qual_iterator qual_begin() const { return Protocols.begin(); }
1747  qual_iterator qual_end() const   { return Protocols.end(); }
1748
1749  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1750
1751  void Profile(llvm::FoldingSetNodeID &ID);
1752  static void Profile(llvm::FoldingSetNodeID &ID,
1753                      const ObjCInterfaceDecl *Decl,
1754                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
1755
1756  static bool classof(const Type *T) {
1757    return T->getTypeClass() == ObjCQualifiedInterface;
1758  }
1759  static bool classof(const ObjCQualifiedInterfaceType *) { return true; }
1760};
1761
1762inline ObjCInterfaceType::qual_iterator ObjCInterfaceType::qual_begin() const {
1763  if (const ObjCQualifiedInterfaceType *QIT =
1764         dyn_cast<ObjCQualifiedInterfaceType>(this))
1765    return QIT->qual_begin();
1766  return 0;
1767}
1768inline ObjCInterfaceType::qual_iterator ObjCInterfaceType::qual_end() const {
1769  if (const ObjCQualifiedInterfaceType *QIT =
1770         dyn_cast<ObjCQualifiedInterfaceType>(this))
1771    return QIT->qual_end();
1772  return 0;
1773}
1774
1775/// getNumProtocols - Return the number of qualifying protocols in this
1776/// interface type, or 0 if there are none.
1777inline unsigned ObjCInterfaceType::getNumProtocols() const {
1778  if (const ObjCQualifiedInterfaceType *QIT =
1779        dyn_cast<ObjCQualifiedInterfaceType>(this))
1780    return QIT->getNumProtocols();
1781  return 0;
1782}
1783
1784/// ObjCQualifiedIdType - to represent id<protocol-list>.
1785///
1786/// Duplicate protocols are removed and protocol list is canonicalized to be in
1787/// alphabetical order.
1788class ObjCQualifiedIdType : public Type,
1789                            public llvm::FoldingSetNode {
1790  // List of protocols for this protocol conforming 'id' type
1791  // List is sorted on protocol name. No protocol is enterred more than once.
1792  llvm::SmallVector<ObjCProtocolDecl*, 8> Protocols;
1793
1794  ObjCQualifiedIdType(ObjCProtocolDecl **Protos, unsigned NumP)
1795    : Type(ObjCQualifiedId, QualType()/*these are always canonical*/,
1796           /*Dependent=*/false),
1797  Protocols(Protos, Protos+NumP) { }
1798  friend class ASTContext;  // ASTContext creates these.
1799public:
1800
1801  unsigned getNumProtocols() const {
1802    return Protocols.size();
1803  }
1804
1805  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
1806  qual_iterator qual_begin() const { return Protocols.begin(); }
1807  qual_iterator qual_end() const   { return Protocols.end(); }
1808
1809  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1810
1811  void Profile(llvm::FoldingSetNodeID &ID);
1812  static void Profile(llvm::FoldingSetNodeID &ID,
1813                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
1814
1815  static bool classof(const Type *T) {
1816    return T->getTypeClass() == ObjCQualifiedId;
1817  }
1818  static bool classof(const ObjCQualifiedIdType *) { return true; }
1819
1820};
1821
1822// Inline function definitions.
1823
1824/// getUnqualifiedType - Return the type without any qualifiers.
1825inline QualType QualType::getUnqualifiedType() const {
1826  Type *TP = getTypePtr();
1827  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(TP))
1828    TP = EXTQT->getBaseType();
1829  return QualType(TP, 0);
1830}
1831
1832/// getAddressSpace - Return the address space of this type.
1833inline unsigned QualType::getAddressSpace() const {
1834  QualType CT = getTypePtr()->getCanonicalTypeInternal();
1835  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
1836    return AT->getElementType().getAddressSpace();
1837  if (const RecordType *RT = dyn_cast<RecordType>(CT))
1838    return RT->getAddressSpace();
1839  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
1840    return EXTQT->getAddressSpace();
1841  return 0;
1842}
1843
1844/// getObjCGCAttr - Return the gc attribute of this type.
1845inline QualType::GCAttrTypes QualType::getObjCGCAttr() const {
1846  QualType CT = getTypePtr()->getCanonicalTypeInternal();
1847  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
1848      return AT->getElementType().getObjCGCAttr();
1849  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
1850    return EXTQT->getObjCGCAttr();
1851  if (const PointerType *PT = CT->getAsPointerType())
1852    return PT->getPointeeType().getObjCGCAttr();
1853  return GCNone;
1854}
1855
1856/// isMoreQualifiedThan - Determine whether this type is more
1857/// qualified than the Other type. For example, "const volatile int"
1858/// is more qualified than "const int", "volatile int", and
1859/// "int". However, it is not more qualified than "const volatile
1860/// int".
1861inline bool QualType::isMoreQualifiedThan(QualType Other) const {
1862  unsigned MyQuals = this->getCVRQualifiers();
1863  unsigned OtherQuals = Other.getCVRQualifiers();
1864  if (getAddressSpace() != Other.getAddressSpace())
1865    return false;
1866  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
1867}
1868
1869/// isAtLeastAsQualifiedAs - Determine whether this type is at last
1870/// as qualified as the Other type. For example, "const volatile
1871/// int" is at least as qualified as "const int", "volatile int",
1872/// "int", and "const volatile int".
1873inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
1874  unsigned MyQuals = this->getCVRQualifiers();
1875  unsigned OtherQuals = Other.getCVRQualifiers();
1876  if (getAddressSpace() != Other.getAddressSpace())
1877    return false;
1878  return (MyQuals | OtherQuals) == MyQuals;
1879}
1880
1881/// getNonReferenceType - If Type is a reference type (e.g., const
1882/// int&), returns the type that the reference refers to ("const
1883/// int"). Otherwise, returns the type itself. This routine is used
1884/// throughout Sema to implement C++ 5p6:
1885///
1886///   If an expression initially has the type "reference to T" (8.3.2,
1887///   8.5.3), the type is adjusted to "T" prior to any further
1888///   analysis, the expression designates the object or function
1889///   denoted by the reference, and the expression is an lvalue.
1890inline QualType QualType::getNonReferenceType() const {
1891  if (const ReferenceType *RefType = (*this)->getAsReferenceType())
1892    return RefType->getPointeeType();
1893  else
1894    return *this;
1895}
1896
1897inline const TypedefType* Type::getAsTypedefType() const {
1898  return dyn_cast<TypedefType>(this);
1899}
1900inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
1901  if (const PointerType *PT = getAsPointerType())
1902    return PT->getPointeeType()->getAsObjCInterfaceType();
1903  return 0;
1904}
1905
1906// NOTE: All of these methods use "getUnqualifiedType" to strip off address
1907// space qualifiers if present.
1908inline bool Type::isFunctionType() const {
1909  return isa<FunctionType>(CanonicalType.getUnqualifiedType());
1910}
1911inline bool Type::isPointerType() const {
1912  return isa<PointerType>(CanonicalType.getUnqualifiedType());
1913}
1914inline bool Type::isBlockPointerType() const {
1915  return isa<BlockPointerType>(CanonicalType.getUnqualifiedType());
1916}
1917inline bool Type::isReferenceType() const {
1918  return isa<ReferenceType>(CanonicalType.getUnqualifiedType());
1919}
1920inline bool Type::isLValueReferenceType() const {
1921  return isa<LValueReferenceType>(CanonicalType.getUnqualifiedType());
1922}
1923inline bool Type::isRValueReferenceType() const {
1924  return isa<RValueReferenceType>(CanonicalType.getUnqualifiedType());
1925}
1926inline bool Type::isFunctionPointerType() const {
1927  if (const PointerType* T = getAsPointerType())
1928    return T->getPointeeType()->isFunctionType();
1929  else
1930    return false;
1931}
1932inline bool Type::isMemberPointerType() const {
1933  return isa<MemberPointerType>(CanonicalType.getUnqualifiedType());
1934}
1935inline bool Type::isMemberFunctionPointerType() const {
1936  if (const MemberPointerType* T = getAsMemberPointerType())
1937    return T->getPointeeType()->isFunctionType();
1938  else
1939    return false;
1940}
1941inline bool Type::isArrayType() const {
1942  return isa<ArrayType>(CanonicalType.getUnqualifiedType());
1943}
1944inline bool Type::isConstantArrayType() const {
1945  return isa<ConstantArrayType>(CanonicalType.getUnqualifiedType());
1946}
1947inline bool Type::isIncompleteArrayType() const {
1948  return isa<IncompleteArrayType>(CanonicalType.getUnqualifiedType());
1949}
1950inline bool Type::isVariableArrayType() const {
1951  return isa<VariableArrayType>(CanonicalType.getUnqualifiedType());
1952}
1953inline bool Type::isDependentSizedArrayType() const {
1954  return isa<DependentSizedArrayType>(CanonicalType.getUnqualifiedType());
1955}
1956inline bool Type::isRecordType() const {
1957  return isa<RecordType>(CanonicalType.getUnqualifiedType());
1958}
1959inline bool Type::isAnyComplexType() const {
1960  return isa<ComplexType>(CanonicalType.getUnqualifiedType());
1961}
1962inline bool Type::isVectorType() const {
1963  return isa<VectorType>(CanonicalType.getUnqualifiedType());
1964}
1965inline bool Type::isExtVectorType() const {
1966  return isa<ExtVectorType>(CanonicalType.getUnqualifiedType());
1967}
1968inline bool Type::isObjCInterfaceType() const {
1969  return isa<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
1970}
1971inline bool Type::isObjCQualifiedInterfaceType() const {
1972  return isa<ObjCQualifiedInterfaceType>(CanonicalType.getUnqualifiedType());
1973}
1974inline bool Type::isObjCQualifiedIdType() const {
1975  return isa<ObjCQualifiedIdType>(CanonicalType.getUnqualifiedType());
1976}
1977inline bool Type::isTemplateTypeParmType() const {
1978  return isa<TemplateTypeParmType>(CanonicalType.getUnqualifiedType());
1979}
1980
1981inline bool Type::isSpecificBuiltinType(unsigned K) const {
1982  if (const BuiltinType *BT = getAsBuiltinType())
1983    if (BT->getKind() == (BuiltinType::Kind) K)
1984      return true;
1985  return false;
1986}
1987
1988/// \brief Determines whether this is a type for which one can define
1989/// an overloaded operator.
1990inline bool Type::isOverloadableType() const {
1991  return isDependentType() || isRecordType() || isEnumeralType();
1992}
1993
1994inline bool Type::hasPointerRepresentation() const {
1995  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
1996          isObjCInterfaceType() || isObjCQualifiedIdType() ||
1997          isObjCQualifiedInterfaceType() || isNullPtrType());
1998}
1999
2000inline bool Type::hasObjCPointerRepresentation() const {
2001  return (isObjCInterfaceType() || isObjCQualifiedIdType() ||
2002          isObjCQualifiedInterfaceType());
2003}
2004
2005/// Insertion operator for diagnostics.  This allows sending QualType's into a
2006/// diagnostic with <<.
2007inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2008                                           QualType T) {
2009  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
2010                  Diagnostic::ak_qualtype);
2011  return DB;
2012}
2013
2014}  // end namespace clang
2015
2016#endif
2017