Type.h revision 2d1b09641ecf2e754bf3fd244dc45dbf3e460c1b
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/AST/NestedNameSpecifier.h"
18#include "clang/AST/TemplateName.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Basic/ExceptionSpecificationType.h"
21#include "clang/Basic/IdentifierTable.h"
22#include "clang/Basic/LLVM.h"
23#include "clang/Basic/Linkage.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/Specifiers.h"
26#include "clang/Basic/Visibility.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32#include "llvm/ADT/Twine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/type_traits.h"
35
36namespace clang {
37  enum {
38    TypeAlignmentInBits = 4,
39    TypeAlignment = 1 << TypeAlignmentInBits
40  };
41  class Type;
42  class ExtQuals;
43  class QualType;
44}
45
46namespace llvm {
47  template <typename T>
48  class PointerLikeTypeTraits;
49  template<>
50  class PointerLikeTypeTraits< ::clang::Type*> {
51  public:
52    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
53    static inline ::clang::Type *getFromVoidPointer(void *P) {
54      return static_cast< ::clang::Type*>(P);
55    }
56    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
57  };
58  template<>
59  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
60  public:
61    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
62    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
63      return static_cast< ::clang::ExtQuals*>(P);
64    }
65    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
66  };
67
68  template <>
69  struct isPodLike<clang::QualType> { static const bool value = true; };
70}
71
72namespace clang {
73  class ASTContext;
74  class TypedefNameDecl;
75  class TemplateDecl;
76  class TemplateTypeParmDecl;
77  class NonTypeTemplateParmDecl;
78  class TemplateTemplateParmDecl;
79  class TagDecl;
80  class RecordDecl;
81  class CXXRecordDecl;
82  class EnumDecl;
83  class FieldDecl;
84  class FunctionDecl;
85  class ObjCInterfaceDecl;
86  class ObjCProtocolDecl;
87  class ObjCMethodDecl;
88  class UnresolvedUsingTypenameDecl;
89  class Expr;
90  class Stmt;
91  class SourceLocation;
92  class StmtIteratorBase;
93  class TemplateArgument;
94  class TemplateArgumentLoc;
95  class TemplateArgumentListInfo;
96  class ElaboratedType;
97  class ExtQuals;
98  class ExtQualsTypeCommonBase;
99  struct PrintingPolicy;
100
101  template <typename> class CanQual;
102  typedef CanQual<Type> CanQualType;
103
104  // Provide forward declarations for all of the *Type classes
105#define TYPE(Class, Base) class Class##Type;
106#include "clang/AST/TypeNodes.def"
107
108/// Qualifiers - The collection of all-type qualifiers we support.
109/// Clang supports five independent qualifiers:
110/// * C99: const, volatile, and restrict
111/// * Embedded C (TR18037): address spaces
112/// * Objective C: the GC attributes (none, weak, or strong)
113class Qualifiers {
114public:
115  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
116    Const    = 0x1,
117    Restrict = 0x2,
118    Volatile = 0x4,
119    CVRMask = Const | Volatile | Restrict
120  };
121
122  enum GC {
123    GCNone = 0,
124    Weak,
125    Strong
126  };
127
128  enum ObjCLifetime {
129    /// There is no lifetime qualification on this type.
130    OCL_None,
131
132    /// This object can be modified without requiring retains or
133    /// releases.
134    OCL_ExplicitNone,
135
136    /// Assigning into this object requires the old value to be
137    /// released and the new value to be retained.  The timing of the
138    /// release of the old value is inexact: it may be moved to
139    /// immediately after the last known point where the value is
140    /// live.
141    OCL_Strong,
142
143    /// Reading or writing from this object requires a barrier call.
144    OCL_Weak,
145
146    /// Assigning into this object requires a lifetime extension.
147    OCL_Autoreleasing
148  };
149
150  enum {
151    /// The maximum supported address space number.
152    /// 24 bits should be enough for anyone.
153    MaxAddressSpace = 0xffffffu,
154
155    /// The width of the "fast" qualifier mask.
156    FastWidth = 3,
157
158    /// The fast qualifier mask.
159    FastMask = (1 << FastWidth) - 1
160  };
161
162  Qualifiers() : Mask(0) {}
163
164  /// \brief Returns the common set of qualifiers while removing them from
165  /// the given sets.
166  static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
167    // If both are only CVR-qualified, bit operations are sufficient.
168    if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
169      Qualifiers Q;
170      Q.Mask = L.Mask & R.Mask;
171      L.Mask &= ~Q.Mask;
172      R.Mask &= ~Q.Mask;
173      return Q;
174    }
175
176    Qualifiers Q;
177    unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
178    Q.addCVRQualifiers(CommonCRV);
179    L.removeCVRQualifiers(CommonCRV);
180    R.removeCVRQualifiers(CommonCRV);
181
182    if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
183      Q.setObjCGCAttr(L.getObjCGCAttr());
184      L.removeObjCGCAttr();
185      R.removeObjCGCAttr();
186    }
187
188    if (L.getObjCLifetime() == R.getObjCLifetime()) {
189      Q.setObjCLifetime(L.getObjCLifetime());
190      L.removeObjCLifetime();
191      R.removeObjCLifetime();
192    }
193
194    if (L.getAddressSpace() == R.getAddressSpace()) {
195      Q.setAddressSpace(L.getAddressSpace());
196      L.removeAddressSpace();
197      R.removeAddressSpace();
198    }
199    return Q;
200  }
201
202  static Qualifiers fromFastMask(unsigned Mask) {
203    Qualifiers Qs;
204    Qs.addFastQualifiers(Mask);
205    return Qs;
206  }
207
208  static Qualifiers fromCVRMask(unsigned CVR) {
209    Qualifiers Qs;
210    Qs.addCVRQualifiers(CVR);
211    return Qs;
212  }
213
214  // Deserialize qualifiers from an opaque representation.
215  static Qualifiers fromOpaqueValue(unsigned opaque) {
216    Qualifiers Qs;
217    Qs.Mask = opaque;
218    return Qs;
219  }
220
221  // Serialize these qualifiers into an opaque representation.
222  unsigned getAsOpaqueValue() const {
223    return Mask;
224  }
225
226  bool hasConst() const { return Mask & Const; }
227  void setConst(bool flag) {
228    Mask = (Mask & ~Const) | (flag ? Const : 0);
229  }
230  void removeConst() { Mask &= ~Const; }
231  void addConst() { Mask |= Const; }
232
233  bool hasVolatile() const { return Mask & Volatile; }
234  void setVolatile(bool flag) {
235    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
236  }
237  void removeVolatile() { Mask &= ~Volatile; }
238  void addVolatile() { Mask |= Volatile; }
239
240  bool hasRestrict() const { return Mask & Restrict; }
241  void setRestrict(bool flag) {
242    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
243  }
244  void removeRestrict() { Mask &= ~Restrict; }
245  void addRestrict() { Mask |= Restrict; }
246
247  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
248  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
249  void setCVRQualifiers(unsigned mask) {
250    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
251    Mask = (Mask & ~CVRMask) | mask;
252  }
253  void removeCVRQualifiers(unsigned mask) {
254    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
255    Mask &= ~mask;
256  }
257  void removeCVRQualifiers() {
258    removeCVRQualifiers(CVRMask);
259  }
260  void addCVRQualifiers(unsigned mask) {
261    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
262    Mask |= mask;
263  }
264
265  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
266  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
267  void setObjCGCAttr(GC type) {
268    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
269  }
270  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
271  void addObjCGCAttr(GC type) {
272    assert(type);
273    setObjCGCAttr(type);
274  }
275  Qualifiers withoutObjCGCAttr() const {
276    Qualifiers qs = *this;
277    qs.removeObjCGCAttr();
278    return qs;
279  }
280  Qualifiers withoutObjCLifetime() const {
281    Qualifiers qs = *this;
282    qs.removeObjCLifetime();
283    return qs;
284  }
285
286  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
287  ObjCLifetime getObjCLifetime() const {
288    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
289  }
290  void setObjCLifetime(ObjCLifetime type) {
291    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
292  }
293  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
294  void addObjCLifetime(ObjCLifetime type) {
295    assert(type);
296    assert(!hasObjCLifetime());
297    Mask |= (type << LifetimeShift);
298  }
299
300  /// True if the lifetime is neither None or ExplicitNone.
301  bool hasNonTrivialObjCLifetime() const {
302    ObjCLifetime lifetime = getObjCLifetime();
303    return (lifetime > OCL_ExplicitNone);
304  }
305
306  /// True if the lifetime is either strong or weak.
307  bool hasStrongOrWeakObjCLifetime() const {
308    ObjCLifetime lifetime = getObjCLifetime();
309    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
310  }
311
312  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
313  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
314  void setAddressSpace(unsigned space) {
315    assert(space <= MaxAddressSpace);
316    Mask = (Mask & ~AddressSpaceMask)
317         | (((uint32_t) space) << AddressSpaceShift);
318  }
319  void removeAddressSpace() { setAddressSpace(0); }
320  void addAddressSpace(unsigned space) {
321    assert(space);
322    setAddressSpace(space);
323  }
324
325  // Fast qualifiers are those that can be allocated directly
326  // on a QualType object.
327  bool hasFastQualifiers() const { return getFastQualifiers(); }
328  unsigned getFastQualifiers() const { return Mask & FastMask; }
329  void setFastQualifiers(unsigned mask) {
330    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
331    Mask = (Mask & ~FastMask) | mask;
332  }
333  void removeFastQualifiers(unsigned mask) {
334    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
335    Mask &= ~mask;
336  }
337  void removeFastQualifiers() {
338    removeFastQualifiers(FastMask);
339  }
340  void addFastQualifiers(unsigned mask) {
341    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
342    Mask |= mask;
343  }
344
345  /// hasNonFastQualifiers - Return true if the set contains any
346  /// qualifiers which require an ExtQuals node to be allocated.
347  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
348  Qualifiers getNonFastQualifiers() const {
349    Qualifiers Quals = *this;
350    Quals.setFastQualifiers(0);
351    return Quals;
352  }
353
354  /// hasQualifiers - Return true if the set contains any qualifiers.
355  bool hasQualifiers() const { return Mask; }
356  bool empty() const { return !Mask; }
357
358  /// \brief Add the qualifiers from the given set to this set.
359  void addQualifiers(Qualifiers Q) {
360    // If the other set doesn't have any non-boolean qualifiers, just
361    // bit-or it in.
362    if (!(Q.Mask & ~CVRMask))
363      Mask |= Q.Mask;
364    else {
365      Mask |= (Q.Mask & CVRMask);
366      if (Q.hasAddressSpace())
367        addAddressSpace(Q.getAddressSpace());
368      if (Q.hasObjCGCAttr())
369        addObjCGCAttr(Q.getObjCGCAttr());
370      if (Q.hasObjCLifetime())
371        addObjCLifetime(Q.getObjCLifetime());
372    }
373  }
374
375  /// \brief Remove the qualifiers from the given set from this set.
376  void removeQualifiers(Qualifiers Q) {
377    // If the other set doesn't have any non-boolean qualifiers, just
378    // bit-and the inverse in.
379    if (!(Q.Mask & ~CVRMask))
380      Mask &= ~Q.Mask;
381    else {
382      Mask &= ~(Q.Mask & CVRMask);
383      if (getObjCGCAttr() == Q.getObjCGCAttr())
384        removeObjCGCAttr();
385      if (getObjCLifetime() == Q.getObjCLifetime())
386        removeObjCLifetime();
387      if (getAddressSpace() == Q.getAddressSpace())
388        removeAddressSpace();
389    }
390  }
391
392  /// \brief Add the qualifiers from the given set to this set, given that
393  /// they don't conflict.
394  void addConsistentQualifiers(Qualifiers qs) {
395    assert(getAddressSpace() == qs.getAddressSpace() ||
396           !hasAddressSpace() || !qs.hasAddressSpace());
397    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
398           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
399    assert(getObjCLifetime() == qs.getObjCLifetime() ||
400           !hasObjCLifetime() || !qs.hasObjCLifetime());
401    Mask |= qs.Mask;
402  }
403
404  /// \brief Determines if these qualifiers compatibly include another set.
405  /// Generally this answers the question of whether an object with the other
406  /// qualifiers can be safely used as an object with these qualifiers.
407  bool compatiblyIncludes(Qualifiers other) const {
408    return
409      // Address spaces must match exactly.
410      getAddressSpace() == other.getAddressSpace() &&
411      // ObjC GC qualifiers can match, be added, or be removed, but can't be
412      // changed.
413      (getObjCGCAttr() == other.getObjCGCAttr() ||
414       !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
415      // ObjC lifetime qualifiers must match exactly.
416      getObjCLifetime() == other.getObjCLifetime() &&
417      // CVR qualifiers may subset.
418      (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
419  }
420
421  /// \brief Determines if these qualifiers compatibly include another set of
422  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
423  ///
424  /// One set of Objective-C lifetime qualifiers compatibly includes the other
425  /// if the lifetime qualifiers match, or if both are non-__weak and the
426  /// including set also contains the 'const' qualifier.
427  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
428    if (getObjCLifetime() == other.getObjCLifetime())
429      return true;
430
431    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
432      return false;
433
434    return hasConst();
435  }
436
437  /// \brief Determine whether this set of qualifiers is a strict superset of
438  /// another set of qualifiers, not considering qualifier compatibility.
439  bool isStrictSupersetOf(Qualifiers Other) const;
440
441  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
442  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
443
444  operator bool() const { return hasQualifiers(); }
445
446  Qualifiers &operator+=(Qualifiers R) {
447    addQualifiers(R);
448    return *this;
449  }
450
451  // Union two qualifier sets.  If an enumerated qualifier appears
452  // in both sets, use the one from the right.
453  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
454    L += R;
455    return L;
456  }
457
458  Qualifiers &operator-=(Qualifiers R) {
459    removeQualifiers(R);
460    return *this;
461  }
462
463  /// \brief Compute the difference between two qualifier sets.
464  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
465    L -= R;
466    return L;
467  }
468
469  std::string getAsString() const;
470  std::string getAsString(const PrintingPolicy &Policy) const;
471
472  bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
473  void print(raw_ostream &OS, const PrintingPolicy &Policy,
474             bool appendSpaceIfNonEmpty = false) const;
475
476  void Profile(llvm::FoldingSetNodeID &ID) const {
477    ID.AddInteger(Mask);
478  }
479
480private:
481
482  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
483  //           |C R V|GCAttr|Lifetime|AddressSpace|
484  uint32_t Mask;
485
486  static const uint32_t GCAttrMask = 0x18;
487  static const uint32_t GCAttrShift = 3;
488  static const uint32_t LifetimeMask = 0xE0;
489  static const uint32_t LifetimeShift = 5;
490  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
491  static const uint32_t AddressSpaceShift = 8;
492};
493
494/// A std::pair-like structure for storing a qualified type split
495/// into its local qualifiers and its locally-unqualified type.
496struct SplitQualType {
497  /// The locally-unqualified type.
498  const Type *Ty;
499
500  /// The local qualifiers.
501  Qualifiers Quals;
502
503  SplitQualType() : Ty(0), Quals() {}
504  SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
505
506  SplitQualType getSingleStepDesugaredType() const; // end of this file
507
508  // Make llvm::tie work.
509  operator std::pair<const Type *,Qualifiers>() const {
510    return std::pair<const Type *,Qualifiers>(Ty, Quals);
511  }
512
513  friend bool operator==(SplitQualType a, SplitQualType b) {
514    return a.Ty == b.Ty && a.Quals == b.Quals;
515  }
516  friend bool operator!=(SplitQualType a, SplitQualType b) {
517    return a.Ty != b.Ty || a.Quals != b.Quals;
518  }
519};
520
521/// QualType - For efficiency, we don't store CV-qualified types as nodes on
522/// their own: instead each reference to a type stores the qualifiers.  This
523/// greatly reduces the number of nodes we need to allocate for types (for
524/// example we only need one for 'int', 'const int', 'volatile int',
525/// 'const volatile int', etc).
526///
527/// As an added efficiency bonus, instead of making this a pair, we
528/// just store the two bits we care about in the low bits of the
529/// pointer.  To handle the packing/unpacking, we make QualType be a
530/// simple wrapper class that acts like a smart pointer.  A third bit
531/// indicates whether there are extended qualifiers present, in which
532/// case the pointer points to a special structure.
533class QualType {
534  // Thankfully, these are efficiently composable.
535  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
536                       Qualifiers::FastWidth> Value;
537
538  const ExtQuals *getExtQualsUnsafe() const {
539    return Value.getPointer().get<const ExtQuals*>();
540  }
541
542  const Type *getTypePtrUnsafe() const {
543    return Value.getPointer().get<const Type*>();
544  }
545
546  const ExtQualsTypeCommonBase *getCommonPtr() const {
547    assert(!isNull() && "Cannot retrieve a NULL type pointer");
548    uintptr_t CommonPtrVal
549      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
550    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
551    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
552  }
553
554  friend class QualifierCollector;
555public:
556  QualType() {}
557
558  QualType(const Type *Ptr, unsigned Quals)
559    : Value(Ptr, Quals) {}
560  QualType(const ExtQuals *Ptr, unsigned Quals)
561    : Value(Ptr, Quals) {}
562
563  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
564  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
565
566  /// Retrieves a pointer to the underlying (unqualified) type.
567  ///
568  /// This function requires that the type not be NULL. If the type might be
569  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
570  const Type *getTypePtr() const;
571
572  const Type *getTypePtrOrNull() const;
573
574  /// Retrieves a pointer to the name of the base type.
575  const IdentifierInfo *getBaseTypeIdentifier() const;
576
577  /// Divides a QualType into its unqualified type and a set of local
578  /// qualifiers.
579  SplitQualType split() const;
580
581  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
582  static QualType getFromOpaquePtr(const void *Ptr) {
583    QualType T;
584    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
585    return T;
586  }
587
588  const Type &operator*() const {
589    return *getTypePtr();
590  }
591
592  const Type *operator->() const {
593    return getTypePtr();
594  }
595
596  bool isCanonical() const;
597  bool isCanonicalAsParam() const;
598
599  /// isNull - Return true if this QualType doesn't point to a type yet.
600  bool isNull() const {
601    return Value.getPointer().isNull();
602  }
603
604  /// \brief Determine whether this particular QualType instance has the
605  /// "const" qualifier set, without looking through typedefs that may have
606  /// added "const" at a different level.
607  bool isLocalConstQualified() const {
608    return (getLocalFastQualifiers() & Qualifiers::Const);
609  }
610
611  /// \brief Determine whether this type is const-qualified.
612  bool isConstQualified() const;
613
614  /// \brief Determine whether this particular QualType instance has the
615  /// "restrict" qualifier set, without looking through typedefs that may have
616  /// added "restrict" at a different level.
617  bool isLocalRestrictQualified() const {
618    return (getLocalFastQualifiers() & Qualifiers::Restrict);
619  }
620
621  /// \brief Determine whether this type is restrict-qualified.
622  bool isRestrictQualified() const;
623
624  /// \brief Determine whether this particular QualType instance has the
625  /// "volatile" qualifier set, without looking through typedefs that may have
626  /// added "volatile" at a different level.
627  bool isLocalVolatileQualified() const {
628    return (getLocalFastQualifiers() & Qualifiers::Volatile);
629  }
630
631  /// \brief Determine whether this type is volatile-qualified.
632  bool isVolatileQualified() const;
633
634  /// \brief Determine whether this particular QualType instance has any
635  /// qualifiers, without looking through any typedefs that might add
636  /// qualifiers at a different level.
637  bool hasLocalQualifiers() const {
638    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
639  }
640
641  /// \brief Determine whether this type has any qualifiers.
642  bool hasQualifiers() const;
643
644  /// \brief Determine whether this particular QualType instance has any
645  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
646  /// instance.
647  bool hasLocalNonFastQualifiers() const {
648    return Value.getPointer().is<const ExtQuals*>();
649  }
650
651  /// \brief Retrieve the set of qualifiers local to this particular QualType
652  /// instance, not including any qualifiers acquired through typedefs or
653  /// other sugar.
654  Qualifiers getLocalQualifiers() const;
655
656  /// \brief Retrieve the set of qualifiers applied to this type.
657  Qualifiers getQualifiers() const;
658
659  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
660  /// local to this particular QualType instance, not including any qualifiers
661  /// acquired through typedefs or other sugar.
662  unsigned getLocalCVRQualifiers() const {
663    return getLocalFastQualifiers();
664  }
665
666  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
667  /// applied to this type.
668  unsigned getCVRQualifiers() const;
669
670  bool isConstant(ASTContext& Ctx) const {
671    return QualType::isConstant(*this, Ctx);
672  }
673
674  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
675  bool isPODType(ASTContext &Context) const;
676
677  /// isCXX98PODType() - Return true if this is a POD type according to the
678  /// rules of the C++98 standard, regardless of the current compilation's
679  /// language.
680  bool isCXX98PODType(ASTContext &Context) const;
681
682  /// isCXX11PODType() - Return true if this is a POD type according to the
683  /// more relaxed rules of the C++11 standard, regardless of the current
684  /// compilation's language.
685  /// (C++0x [basic.types]p9)
686  bool isCXX11PODType(ASTContext &Context) const;
687
688  /// isTrivialType - Return true if this is a trivial type
689  /// (C++0x [basic.types]p9)
690  bool isTrivialType(ASTContext &Context) const;
691
692  /// isTriviallyCopyableType - Return true if this is a trivially
693  /// copyable type (C++0x [basic.types]p9)
694  bool isTriviallyCopyableType(ASTContext &Context) const;
695
696  // Don't promise in the API that anything besides 'const' can be
697  // easily added.
698
699  /// addConst - add the specified type qualifier to this QualType.
700  void addConst() {
701    addFastQualifiers(Qualifiers::Const);
702  }
703  QualType withConst() const {
704    return withFastQualifiers(Qualifiers::Const);
705  }
706
707  /// addVolatile - add the specified type qualifier to this QualType.
708  void addVolatile() {
709    addFastQualifiers(Qualifiers::Volatile);
710  }
711  QualType withVolatile() const {
712    return withFastQualifiers(Qualifiers::Volatile);
713  }
714
715  /// Add the restrict qualifier to this QualType.
716  void addRestrict() {
717    addFastQualifiers(Qualifiers::Restrict);
718  }
719  QualType withRestrict() const {
720    return withFastQualifiers(Qualifiers::Restrict);
721  }
722
723  QualType withCVRQualifiers(unsigned CVR) const {
724    return withFastQualifiers(CVR);
725  }
726
727  void addFastQualifiers(unsigned TQs) {
728    assert(!(TQs & ~Qualifiers::FastMask)
729           && "non-fast qualifier bits set in mask!");
730    Value.setInt(Value.getInt() | TQs);
731  }
732
733  void removeLocalConst();
734  void removeLocalVolatile();
735  void removeLocalRestrict();
736  void removeLocalCVRQualifiers(unsigned Mask);
737
738  void removeLocalFastQualifiers() { Value.setInt(0); }
739  void removeLocalFastQualifiers(unsigned Mask) {
740    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
741    Value.setInt(Value.getInt() & ~Mask);
742  }
743
744  // Creates a type with the given qualifiers in addition to any
745  // qualifiers already on this type.
746  QualType withFastQualifiers(unsigned TQs) const {
747    QualType T = *this;
748    T.addFastQualifiers(TQs);
749    return T;
750  }
751
752  // Creates a type with exactly the given fast qualifiers, removing
753  // any existing fast qualifiers.
754  QualType withExactLocalFastQualifiers(unsigned TQs) const {
755    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
756  }
757
758  // Removes fast qualifiers, but leaves any extended qualifiers in place.
759  QualType withoutLocalFastQualifiers() const {
760    QualType T = *this;
761    T.removeLocalFastQualifiers();
762    return T;
763  }
764
765  QualType getCanonicalType() const;
766
767  /// \brief Return this type with all of the instance-specific qualifiers
768  /// removed, but without removing any qualifiers that may have been applied
769  /// through typedefs.
770  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
771
772  /// \brief Retrieve the unqualified variant of the given type,
773  /// removing as little sugar as possible.
774  ///
775  /// This routine looks through various kinds of sugar to find the
776  /// least-desugared type that is unqualified. For example, given:
777  ///
778  /// \code
779  /// typedef int Integer;
780  /// typedef const Integer CInteger;
781  /// typedef CInteger DifferenceType;
782  /// \endcode
783  ///
784  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
785  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
786  ///
787  /// The resulting type might still be qualified if it's sugar for an array
788  /// type.  To strip qualifiers even from within a sugared array type, use
789  /// ASTContext::getUnqualifiedArrayType.
790  inline QualType getUnqualifiedType() const;
791
792  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
793  /// given type, removing as little sugar as possible.
794  ///
795  /// Like getUnqualifiedType(), but also returns the set of
796  /// qualifiers that were built up.
797  ///
798  /// The resulting type might still be qualified if it's sugar for an array
799  /// type.  To strip qualifiers even from within a sugared array type, use
800  /// ASTContext::getUnqualifiedArrayType.
801  inline SplitQualType getSplitUnqualifiedType() const;
802
803  /// \brief Determine whether this type is more qualified than the other
804  /// given type, requiring exact equality for non-CVR qualifiers.
805  bool isMoreQualifiedThan(QualType Other) const;
806
807  /// \brief Determine whether this type is at least as qualified as the other
808  /// given type, requiring exact equality for non-CVR qualifiers.
809  bool isAtLeastAsQualifiedAs(QualType Other) const;
810
811  QualType getNonReferenceType() const;
812
813  /// \brief Determine the type of a (typically non-lvalue) expression with the
814  /// specified result type.
815  ///
816  /// This routine should be used for expressions for which the return type is
817  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
818  /// an lvalue. It removes a top-level reference (since there are no
819  /// expressions of reference type) and deletes top-level cvr-qualifiers
820  /// from non-class types (in C++) or all types (in C).
821  QualType getNonLValueExprType(ASTContext &Context) const;
822
823  /// getDesugaredType - Return the specified type with any "sugar" removed from
824  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
825  /// the type is already concrete, it returns it unmodified.  This is similar
826  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
827  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
828  /// concrete.
829  ///
830  /// Qualifiers are left in place.
831  QualType getDesugaredType(const ASTContext &Context) const {
832    return getDesugaredType(*this, Context);
833  }
834
835  SplitQualType getSplitDesugaredType() const {
836    return getSplitDesugaredType(*this);
837  }
838
839  /// \brief Return the specified type with one level of "sugar" removed from
840  /// the type.
841  ///
842  /// This routine takes off the first typedef, typeof, etc. If the outer level
843  /// of the type is already concrete, it returns it unmodified.
844  QualType getSingleStepDesugaredType(const ASTContext &Context) const {
845    return getSingleStepDesugaredTypeImpl(*this, Context);
846  }
847
848  /// IgnoreParens - Returns the specified type after dropping any
849  /// outer-level parentheses.
850  QualType IgnoreParens() const {
851    if (isa<ParenType>(*this))
852      return QualType::IgnoreParens(*this);
853    return *this;
854  }
855
856  /// operator==/!= - Indicate whether the specified types and qualifiers are
857  /// identical.
858  friend bool operator==(const QualType &LHS, const QualType &RHS) {
859    return LHS.Value == RHS.Value;
860  }
861  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
862    return LHS.Value != RHS.Value;
863  }
864  std::string getAsString() const {
865    return getAsString(split());
866  }
867  static std::string getAsString(SplitQualType split) {
868    return getAsString(split.Ty, split.Quals);
869  }
870  static std::string getAsString(const Type *ty, Qualifiers qs);
871
872  std::string getAsString(const PrintingPolicy &Policy) const;
873
874  void print(raw_ostream &OS, const PrintingPolicy &Policy,
875             const Twine &PlaceHolder = Twine()) const {
876    print(split(), OS, Policy, PlaceHolder);
877  }
878  static void print(SplitQualType split, raw_ostream &OS,
879                    const PrintingPolicy &policy, const Twine &PlaceHolder) {
880    return print(split.Ty, split.Quals, OS, policy, PlaceHolder);
881  }
882  static void print(const Type *ty, Qualifiers qs,
883                    raw_ostream &OS, const PrintingPolicy &policy,
884                    const Twine &PlaceHolder);
885
886  void getAsStringInternal(std::string &Str,
887                           const PrintingPolicy &Policy) const {
888    return getAsStringInternal(split(), Str, Policy);
889  }
890  static void getAsStringInternal(SplitQualType split, std::string &out,
891                                  const PrintingPolicy &policy) {
892    return getAsStringInternal(split.Ty, split.Quals, out, policy);
893  }
894  static void getAsStringInternal(const Type *ty, Qualifiers qs,
895                                  std::string &out,
896                                  const PrintingPolicy &policy);
897
898  class StreamedQualTypeHelper {
899    const QualType &T;
900    const PrintingPolicy &Policy;
901    const Twine &PlaceHolder;
902  public:
903    StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
904                           const Twine &PlaceHolder)
905      : T(T), Policy(Policy), PlaceHolder(PlaceHolder) { }
906
907    friend raw_ostream &operator<<(raw_ostream &OS,
908                                   const StreamedQualTypeHelper &SQT) {
909      SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder);
910      return OS;
911    }
912  };
913
914  StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
915                                const Twine &PlaceHolder = Twine()) const {
916    return StreamedQualTypeHelper(*this, Policy, PlaceHolder);
917  }
918
919  void dump(const char *s) const;
920  void dump() const;
921
922  void Profile(llvm::FoldingSetNodeID &ID) const {
923    ID.AddPointer(getAsOpaquePtr());
924  }
925
926  /// getAddressSpace - Return the address space of this type.
927  inline unsigned getAddressSpace() const;
928
929  /// getObjCGCAttr - Returns gc attribute of this type.
930  inline Qualifiers::GC getObjCGCAttr() const;
931
932  /// isObjCGCWeak true when Type is objc's weak.
933  bool isObjCGCWeak() const {
934    return getObjCGCAttr() == Qualifiers::Weak;
935  }
936
937  /// isObjCGCStrong true when Type is objc's strong.
938  bool isObjCGCStrong() const {
939    return getObjCGCAttr() == Qualifiers::Strong;
940  }
941
942  /// getObjCLifetime - Returns lifetime attribute of this type.
943  Qualifiers::ObjCLifetime getObjCLifetime() const {
944    return getQualifiers().getObjCLifetime();
945  }
946
947  bool hasNonTrivialObjCLifetime() const {
948    return getQualifiers().hasNonTrivialObjCLifetime();
949  }
950
951  bool hasStrongOrWeakObjCLifetime() const {
952    return getQualifiers().hasStrongOrWeakObjCLifetime();
953  }
954
955  enum DestructionKind {
956    DK_none,
957    DK_cxx_destructor,
958    DK_objc_strong_lifetime,
959    DK_objc_weak_lifetime
960  };
961
962  /// isDestructedType - nonzero if objects of this type require
963  /// non-trivial work to clean up after.  Non-zero because it's
964  /// conceivable that qualifiers (objc_gc(weak)?) could make
965  /// something require destruction.
966  DestructionKind isDestructedType() const {
967    return isDestructedTypeImpl(*this);
968  }
969
970  /// \brief Determine whether expressions of the given type are forbidden
971  /// from being lvalues in C.
972  ///
973  /// The expression types that are forbidden to be lvalues are:
974  ///   - 'void', but not qualified void
975  ///   - function types
976  ///
977  /// The exact rule here is C99 6.3.2.1:
978  ///   An lvalue is an expression with an object type or an incomplete
979  ///   type other than void.
980  bool isCForbiddenLValueType() const;
981
982private:
983  // These methods are implemented in a separate translation unit;
984  // "static"-ize them to avoid creating temporary QualTypes in the
985  // caller.
986  static bool isConstant(QualType T, ASTContext& Ctx);
987  static QualType getDesugaredType(QualType T, const ASTContext &Context);
988  static SplitQualType getSplitDesugaredType(QualType T);
989  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
990  static QualType getSingleStepDesugaredTypeImpl(QualType type,
991                                                 const ASTContext &C);
992  static QualType IgnoreParens(QualType T);
993  static DestructionKind isDestructedTypeImpl(QualType type);
994};
995
996} // end clang.
997
998namespace llvm {
999/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1000/// to a specific Type class.
1001template<> struct simplify_type<const ::clang::QualType> {
1002  typedef const ::clang::Type *SimpleType;
1003  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
1004    return Val.getTypePtr();
1005  }
1006};
1007template<> struct simplify_type< ::clang::QualType>
1008  : public simplify_type<const ::clang::QualType> {};
1009
1010// Teach SmallPtrSet that QualType is "basically a pointer".
1011template<>
1012class PointerLikeTypeTraits<clang::QualType> {
1013public:
1014  static inline void *getAsVoidPointer(clang::QualType P) {
1015    return P.getAsOpaquePtr();
1016  }
1017  static inline clang::QualType getFromVoidPointer(void *P) {
1018    return clang::QualType::getFromOpaquePtr(P);
1019  }
1020  // Various qualifiers go in low bits.
1021  enum { NumLowBitsAvailable = 0 };
1022};
1023
1024} // end namespace llvm
1025
1026namespace clang {
1027
1028/// \brief Base class that is common to both the \c ExtQuals and \c Type
1029/// classes, which allows \c QualType to access the common fields between the
1030/// two.
1031///
1032class ExtQualsTypeCommonBase {
1033  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1034    : BaseType(baseType), CanonicalType(canon) {}
1035
1036  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
1037  /// a self-referential pointer (for \c Type).
1038  ///
1039  /// This pointer allows an efficient mapping from a QualType to its
1040  /// underlying type pointer.
1041  const Type *const BaseType;
1042
1043  /// \brief The canonical type of this type.  A QualType.
1044  QualType CanonicalType;
1045
1046  friend class QualType;
1047  friend class Type;
1048  friend class ExtQuals;
1049};
1050
1051/// ExtQuals - We can encode up to four bits in the low bits of a
1052/// type pointer, but there are many more type qualifiers that we want
1053/// to be able to apply to an arbitrary type.  Therefore we have this
1054/// struct, intended to be heap-allocated and used by QualType to
1055/// store qualifiers.
1056///
1057/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1058/// in three low bits on the QualType pointer; a fourth bit records whether
1059/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1060/// Objective-C GC attributes) are much more rare.
1061class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1062  // NOTE: changing the fast qualifiers should be straightforward as
1063  // long as you don't make 'const' non-fast.
1064  // 1. Qualifiers:
1065  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1066  //       Fast qualifiers must occupy the low-order bits.
1067  //    b) Update Qualifiers::FastWidth and FastMask.
1068  // 2. QualType:
1069  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
1070  //    b) Update remove{Volatile,Restrict}, defined near the end of
1071  //       this header.
1072  // 3. ASTContext:
1073  //    a) Update get{Volatile,Restrict}Type.
1074
1075  /// Quals - the immutable set of qualifiers applied by this
1076  /// node;  always contains extended qualifiers.
1077  Qualifiers Quals;
1078
1079  ExtQuals *this_() { return this; }
1080
1081public:
1082  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1083    : ExtQualsTypeCommonBase(baseType,
1084                             canon.isNull() ? QualType(this_(), 0) : canon),
1085      Quals(quals)
1086  {
1087    assert(Quals.hasNonFastQualifiers()
1088           && "ExtQuals created with no fast qualifiers");
1089    assert(!Quals.hasFastQualifiers()
1090           && "ExtQuals created with fast qualifiers");
1091  }
1092
1093  Qualifiers getQualifiers() const { return Quals; }
1094
1095  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1096  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1097
1098  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1099  Qualifiers::ObjCLifetime getObjCLifetime() const {
1100    return Quals.getObjCLifetime();
1101  }
1102
1103  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1104  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
1105
1106  const Type *getBaseType() const { return BaseType; }
1107
1108public:
1109  void Profile(llvm::FoldingSetNodeID &ID) const {
1110    Profile(ID, getBaseType(), Quals);
1111  }
1112  static void Profile(llvm::FoldingSetNodeID &ID,
1113                      const Type *BaseType,
1114                      Qualifiers Quals) {
1115    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1116    ID.AddPointer(BaseType);
1117    Quals.Profile(ID);
1118  }
1119};
1120
1121/// \brief The kind of C++0x ref-qualifier associated with a function type,
1122/// which determines whether a member function's "this" object can be an
1123/// lvalue, rvalue, or neither.
1124enum RefQualifierKind {
1125  /// \brief No ref-qualifier was provided.
1126  RQ_None = 0,
1127  /// \brief An lvalue ref-qualifier was provided (\c &).
1128  RQ_LValue,
1129  /// \brief An rvalue ref-qualifier was provided (\c &&).
1130  RQ_RValue
1131};
1132
1133/// Type - This is the base class of the type hierarchy.  A central concept
1134/// with types is that each type always has a canonical type.  A canonical type
1135/// is the type with any typedef names stripped out of it or the types it
1136/// references.  For example, consider:
1137///
1138///  typedef int  foo;
1139///  typedef foo* bar;
1140///    'int *'    'foo *'    'bar'
1141///
1142/// There will be a Type object created for 'int'.  Since int is canonical, its
1143/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
1144/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1145/// there is a PointerType that represents 'int*', which, like 'int', is
1146/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1147/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1148/// is also 'int*'.
1149///
1150/// Non-canonical types are useful for emitting diagnostics, without losing
1151/// information about typedefs being used.  Canonical types are useful for type
1152/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1153/// about whether something has a particular form (e.g. is a function type),
1154/// because they implicitly, recursively, strip all typedefs out of a type.
1155///
1156/// Types, once created, are immutable.
1157///
1158class Type : public ExtQualsTypeCommonBase {
1159public:
1160  enum TypeClass {
1161#define TYPE(Class, Base) Class,
1162#define LAST_TYPE(Class) TypeLast = Class,
1163#define ABSTRACT_TYPE(Class, Base)
1164#include "clang/AST/TypeNodes.def"
1165    TagFirst = Record, TagLast = Enum
1166  };
1167
1168private:
1169  Type(const Type &) LLVM_DELETED_FUNCTION;
1170  void operator=(const Type &) LLVM_DELETED_FUNCTION;
1171
1172  /// Bitfields required by the Type class.
1173  class TypeBitfields {
1174    friend class Type;
1175    template <class T> friend class TypePropertyCache;
1176
1177    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1178    unsigned TC : 8;
1179
1180    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
1181    unsigned Dependent : 1;
1182
1183    /// \brief Whether this type somehow involves a template parameter, even
1184    /// if the resolution of the type does not depend on a template parameter.
1185    unsigned InstantiationDependent : 1;
1186
1187    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1188    unsigned VariablyModified : 1;
1189
1190    /// \brief Whether this type contains an unexpanded parameter pack
1191    /// (for C++0x variadic templates).
1192    unsigned ContainsUnexpandedParameterPack : 1;
1193
1194    /// \brief True if the cache (i.e. the bitfields here starting with
1195    /// 'Cache') is valid.
1196    mutable unsigned CacheValid : 1;
1197
1198    /// \brief Linkage of this type.
1199    mutable unsigned CachedLinkage : 2;
1200
1201    /// \brief Whether this type involves and local or unnamed types.
1202    mutable unsigned CachedLocalOrUnnamed : 1;
1203
1204    /// \brief FromAST - Whether this type comes from an AST file.
1205    mutable unsigned FromAST : 1;
1206
1207    bool isCacheValid() const {
1208      return CacheValid;
1209    }
1210    Linkage getLinkage() const {
1211      assert(isCacheValid() && "getting linkage from invalid cache");
1212      return static_cast<Linkage>(CachedLinkage);
1213    }
1214    bool hasLocalOrUnnamedType() const {
1215      assert(isCacheValid() && "getting linkage from invalid cache");
1216      return CachedLocalOrUnnamed;
1217    }
1218  };
1219  enum { NumTypeBits = 19 };
1220
1221protected:
1222  // These classes allow subclasses to somewhat cleanly pack bitfields
1223  // into Type.
1224
1225  class ArrayTypeBitfields {
1226    friend class ArrayType;
1227
1228    unsigned : NumTypeBits;
1229
1230    /// IndexTypeQuals - CVR qualifiers from declarations like
1231    /// 'int X[static restrict 4]'. For function parameters only.
1232    unsigned IndexTypeQuals : 3;
1233
1234    /// SizeModifier - storage class qualifiers from declarations like
1235    /// 'int X[static restrict 4]'. For function parameters only.
1236    /// Actually an ArrayType::ArraySizeModifier.
1237    unsigned SizeModifier : 3;
1238  };
1239
1240  class BuiltinTypeBitfields {
1241    friend class BuiltinType;
1242
1243    unsigned : NumTypeBits;
1244
1245    /// The kind (BuiltinType::Kind) of builtin type this is.
1246    unsigned Kind : 8;
1247  };
1248
1249  class FunctionTypeBitfields {
1250    friend class FunctionType;
1251
1252    unsigned : NumTypeBits;
1253
1254    /// Extra information which affects how the function is called, like
1255    /// regparm and the calling convention.
1256    unsigned ExtInfo : 9;
1257
1258    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1259    /// other bitfields.
1260    /// The qualifiers are part of FunctionProtoType because...
1261    ///
1262    /// C++ 8.3.5p4: The return type, the parameter type list and the
1263    /// cv-qualifier-seq, [...], are part of the function type.
1264    unsigned TypeQuals : 3;
1265  };
1266
1267  class ObjCObjectTypeBitfields {
1268    friend class ObjCObjectType;
1269
1270    unsigned : NumTypeBits;
1271
1272    /// NumProtocols - The number of protocols stored directly on this
1273    /// object type.
1274    unsigned NumProtocols : 32 - NumTypeBits;
1275  };
1276
1277  class ReferenceTypeBitfields {
1278    friend class ReferenceType;
1279
1280    unsigned : NumTypeBits;
1281
1282    /// True if the type was originally spelled with an lvalue sigil.
1283    /// This is never true of rvalue references but can also be false
1284    /// on lvalue references because of C++0x [dcl.typedef]p9,
1285    /// as follows:
1286    ///
1287    ///   typedef int &ref;    // lvalue, spelled lvalue
1288    ///   typedef int &&rvref; // rvalue
1289    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1290    ///   ref &&a;             // lvalue, inner ref
1291    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1292    ///   rvref &&a;           // rvalue, inner ref
1293    unsigned SpelledAsLValue : 1;
1294
1295    /// True if the inner type is a reference type.  This only happens
1296    /// in non-canonical forms.
1297    unsigned InnerRef : 1;
1298  };
1299
1300  class TypeWithKeywordBitfields {
1301    friend class TypeWithKeyword;
1302
1303    unsigned : NumTypeBits;
1304
1305    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1306    unsigned Keyword : 8;
1307  };
1308
1309  class VectorTypeBitfields {
1310    friend class VectorType;
1311
1312    unsigned : NumTypeBits;
1313
1314    /// VecKind - The kind of vector, either a generic vector type or some
1315    /// target-specific vector type such as for AltiVec or Neon.
1316    unsigned VecKind : 3;
1317
1318    /// NumElements - The number of elements in the vector.
1319    unsigned NumElements : 29 - NumTypeBits;
1320  };
1321
1322  class AttributedTypeBitfields {
1323    friend class AttributedType;
1324
1325    unsigned : NumTypeBits;
1326
1327    /// AttrKind - an AttributedType::Kind
1328    unsigned AttrKind : 32 - NumTypeBits;
1329  };
1330
1331  union {
1332    TypeBitfields TypeBits;
1333    ArrayTypeBitfields ArrayTypeBits;
1334    AttributedTypeBitfields AttributedTypeBits;
1335    BuiltinTypeBitfields BuiltinTypeBits;
1336    FunctionTypeBitfields FunctionTypeBits;
1337    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1338    ReferenceTypeBitfields ReferenceTypeBits;
1339    TypeWithKeywordBitfields TypeWithKeywordBits;
1340    VectorTypeBitfields VectorTypeBits;
1341  };
1342
1343private:
1344  /// \brief Set whether this type comes from an AST file.
1345  void setFromAST(bool V = true) const {
1346    TypeBits.FromAST = V;
1347  }
1348
1349  template <class T> friend class TypePropertyCache;
1350
1351protected:
1352  // silence VC++ warning C4355: 'this' : used in base member initializer list
1353  Type *this_() { return this; }
1354  Type(TypeClass tc, QualType canon, bool Dependent,
1355       bool InstantiationDependent, bool VariablyModified,
1356       bool ContainsUnexpandedParameterPack)
1357    : ExtQualsTypeCommonBase(this,
1358                             canon.isNull() ? QualType(this_(), 0) : canon) {
1359    TypeBits.TC = tc;
1360    TypeBits.Dependent = Dependent;
1361    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1362    TypeBits.VariablyModified = VariablyModified;
1363    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1364    TypeBits.CacheValid = false;
1365    TypeBits.CachedLocalOrUnnamed = false;
1366    TypeBits.CachedLinkage = NoLinkage;
1367    TypeBits.FromAST = false;
1368  }
1369  friend class ASTContext;
1370
1371  void setDependent(bool D = true) {
1372    TypeBits.Dependent = D;
1373    if (D)
1374      TypeBits.InstantiationDependent = true;
1375  }
1376  void setInstantiationDependent(bool D = true) {
1377    TypeBits.InstantiationDependent = D; }
1378  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1379  }
1380  void setContainsUnexpandedParameterPack(bool PP = true) {
1381    TypeBits.ContainsUnexpandedParameterPack = PP;
1382  }
1383
1384public:
1385  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1386
1387  /// \brief Whether this type comes from an AST file.
1388  bool isFromAST() const { return TypeBits.FromAST; }
1389
1390  /// \brief Whether this type is or contains an unexpanded parameter
1391  /// pack, used to support C++0x variadic templates.
1392  ///
1393  /// A type that contains a parameter pack shall be expanded by the
1394  /// ellipsis operator at some point. For example, the typedef in the
1395  /// following example contains an unexpanded parameter pack 'T':
1396  ///
1397  /// \code
1398  /// template<typename ...T>
1399  /// struct X {
1400  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1401  /// };
1402  /// \endcode
1403  ///
1404  /// Note that this routine does not specify which
1405  bool containsUnexpandedParameterPack() const {
1406    return TypeBits.ContainsUnexpandedParameterPack;
1407  }
1408
1409  /// Determines if this type would be canonical if it had no further
1410  /// qualification.
1411  bool isCanonicalUnqualified() const {
1412    return CanonicalType == QualType(this, 0);
1413  }
1414
1415  /// Pull a single level of sugar off of this locally-unqualified type.
1416  /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1417  /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1418  QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1419
1420  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1421  /// object types, function types, and incomplete types.
1422
1423  /// isIncompleteType - Return true if this is an incomplete type.
1424  /// A type that can describe objects, but which lacks information needed to
1425  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1426  /// routine will need to determine if the size is actually required.
1427  ///
1428  /// \brief Def If non-NULL, and the type refers to some kind of declaration
1429  /// that can be completed (such as a C struct, C++ class, or Objective-C
1430  /// class), will be set to the declaration.
1431  bool isIncompleteType(NamedDecl **Def = 0) const;
1432
1433  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1434  /// type, in other words, not a function type.
1435  bool isIncompleteOrObjectType() const {
1436    return !isFunctionType();
1437  }
1438
1439  /// \brief Determine whether this type is an object type.
1440  bool isObjectType() const {
1441    // C++ [basic.types]p8:
1442    //   An object type is a (possibly cv-qualified) type that is not a
1443    //   function type, not a reference type, and not a void type.
1444    return !isReferenceType() && !isFunctionType() && !isVoidType();
1445  }
1446
1447  /// isLiteralType - Return true if this is a literal type
1448  /// (C++0x [basic.types]p10)
1449  bool isLiteralType() const;
1450
1451  /// \brief Test if this type is a standard-layout type.
1452  /// (C++0x [basic.type]p9)
1453  bool isStandardLayoutType() const;
1454
1455  /// Helper methods to distinguish type categories. All type predicates
1456  /// operate on the canonical type, ignoring typedefs and qualifiers.
1457
1458  /// isBuiltinType - returns true if the type is a builtin type.
1459  bool isBuiltinType() const;
1460
1461  /// isSpecificBuiltinType - Test for a particular builtin type.
1462  bool isSpecificBuiltinType(unsigned K) const;
1463
1464  /// isPlaceholderType - Test for a type which does not represent an
1465  /// actual type-system type but is instead used as a placeholder for
1466  /// various convenient purposes within Clang.  All such types are
1467  /// BuiltinTypes.
1468  bool isPlaceholderType() const;
1469  const BuiltinType *getAsPlaceholderType() const;
1470
1471  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1472  bool isSpecificPlaceholderType(unsigned K) const;
1473
1474  /// isNonOverloadPlaceholderType - Test for a placeholder type
1475  /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
1476  bool isNonOverloadPlaceholderType() const;
1477
1478  /// isIntegerType() does *not* include complex integers (a GCC extension).
1479  /// isComplexIntegerType() can be used to test for complex integers.
1480  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1481  bool isEnumeralType() const;
1482  bool isBooleanType() const;
1483  bool isCharType() const;
1484  bool isWideCharType() const;
1485  bool isChar16Type() const;
1486  bool isChar32Type() const;
1487  bool isAnyCharacterType() const;
1488  bool isIntegralType(ASTContext &Ctx) const;
1489
1490  /// \brief Determine whether this type is an integral or enumeration type.
1491  bool isIntegralOrEnumerationType() const;
1492  /// \brief Determine whether this type is an integral or unscoped enumeration
1493  /// type.
1494  bool isIntegralOrUnscopedEnumerationType() const;
1495
1496  /// Floating point categories.
1497  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1498  /// isComplexType() does *not* include complex integers (a GCC extension).
1499  /// isComplexIntegerType() can be used to test for complex integers.
1500  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1501  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1502  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1503  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1504  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1505  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1506  bool isVoidType() const;         // C99 6.2.5p19
1507  bool isDerivedType() const;      // C99 6.2.5p20
1508  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1509  bool isAggregateType() const;
1510  bool isFundamentalType() const;
1511  bool isCompoundType() const;
1512
1513  // Type Predicates: Check to see if this type is structurally the specified
1514  // type, ignoring typedefs and qualifiers.
1515  bool isFunctionType() const;
1516  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1517  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1518  bool isPointerType() const;
1519  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1520  bool isBlockPointerType() const;
1521  bool isVoidPointerType() const;
1522  bool isReferenceType() const;
1523  bool isLValueReferenceType() const;
1524  bool isRValueReferenceType() const;
1525  bool isFunctionPointerType() const;
1526  bool isMemberPointerType() const;
1527  bool isMemberFunctionPointerType() const;
1528  bool isMemberDataPointerType() const;
1529  bool isArrayType() const;
1530  bool isConstantArrayType() const;
1531  bool isIncompleteArrayType() const;
1532  bool isVariableArrayType() const;
1533  bool isDependentSizedArrayType() const;
1534  bool isRecordType() const;
1535  bool isClassType() const;
1536  bool isStructureType() const;
1537  bool isInterfaceType() const;
1538  bool isStructureOrClassType() const;
1539  bool isUnionType() const;
1540  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1541  bool isVectorType() const;                    // GCC vector type.
1542  bool isExtVectorType() const;                 // Extended vector type.
1543  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1544  bool isObjCRetainableType() const;            // ObjC object or block pointer
1545  bool isObjCLifetimeType() const;              // (array of)* retainable type
1546  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1547  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1548  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1549  // for the common case.
1550  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1551  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1552  bool isObjCQualifiedIdType() const;           // id<foo>
1553  bool isObjCQualifiedClassType() const;        // Class<foo>
1554  bool isObjCObjectOrInterfaceType() const;
1555  bool isObjCIdType() const;                    // id
1556  bool isObjCClassType() const;                 // Class
1557  bool isObjCSelType() const;                 // Class
1558  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1559  bool isObjCARCBridgableType() const;
1560  bool isCARCBridgableType() const;
1561  bool isTemplateTypeParmType() const;          // C++ template type parameter
1562  bool isNullPtrType() const;                   // C++0x nullptr_t
1563  bool isAtomicType() const;                    // C11 _Atomic()
1564
1565  bool isImage1dT() const;                      // OpenCL image1d_t
1566  bool isImage1dArrayT() const;                 // OpenCL image1d_array_t
1567  bool isImage1dBufferT() const;                // OpenCL image1d_buffer_t
1568  bool isImage2dT() const;                      // OpenCL image2d_t
1569  bool isImage2dArrayT() const;                 // OpenCL image2d_array_t
1570  bool isImage3dT() const;                      // OpenCL image3d_t
1571
1572  bool isImageType() const;                     // Any OpenCL image type
1573
1574  bool isSamplerT() const;                      // OpenCL sampler_t
1575  bool isEventT() const;                        // OpenCL event_t
1576
1577  bool isOpenCLSpecificType() const;            // Any OpenCL specific type
1578
1579  /// Determines if this type, which must satisfy
1580  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1581  /// than implicitly __strong.
1582  bool isObjCARCImplicitlyUnretainedType() const;
1583
1584  /// Return the implicit lifetime for this type, which must not be dependent.
1585  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1586
1587  enum ScalarTypeKind {
1588    STK_CPointer,
1589    STK_BlockPointer,
1590    STK_ObjCObjectPointer,
1591    STK_MemberPointer,
1592    STK_Bool,
1593    STK_Integral,
1594    STK_Floating,
1595    STK_IntegralComplex,
1596    STK_FloatingComplex
1597  };
1598  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1599  ScalarTypeKind getScalarTypeKind() const;
1600
1601  /// isDependentType - Whether this type is a dependent type, meaning
1602  /// that its definition somehow depends on a template parameter
1603  /// (C++ [temp.dep.type]).
1604  bool isDependentType() const { return TypeBits.Dependent; }
1605
1606  /// \brief Determine whether this type is an instantiation-dependent type,
1607  /// meaning that the type involves a template parameter (even if the
1608  /// definition does not actually depend on the type substituted for that
1609  /// template parameter).
1610  bool isInstantiationDependentType() const {
1611    return TypeBits.InstantiationDependent;
1612  }
1613
1614  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1615  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1616
1617  /// \brief Whether this type involves a variable-length array type
1618  /// with a definite size.
1619  bool hasSizedVLAType() const;
1620
1621  /// \brief Whether this type is or contains a local or unnamed type.
1622  bool hasUnnamedOrLocalType() const;
1623
1624  bool isOverloadableType() const;
1625
1626  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1627  bool isElaboratedTypeSpecifier() const;
1628
1629  bool canDecayToPointerType() const;
1630
1631  /// hasPointerRepresentation - Whether this type is represented
1632  /// natively as a pointer; this includes pointers, references, block
1633  /// pointers, and Objective-C interface, qualified id, and qualified
1634  /// interface types, as well as nullptr_t.
1635  bool hasPointerRepresentation() const;
1636
1637  /// hasObjCPointerRepresentation - Whether this type can represent
1638  /// an objective pointer type for the purpose of GC'ability
1639  bool hasObjCPointerRepresentation() const;
1640
1641  /// \brief Determine whether this type has an integer representation
1642  /// of some sort, e.g., it is an integer type or a vector.
1643  bool hasIntegerRepresentation() const;
1644
1645  /// \brief Determine whether this type has an signed integer representation
1646  /// of some sort, e.g., it is an signed integer type or a vector.
1647  bool hasSignedIntegerRepresentation() const;
1648
1649  /// \brief Determine whether this type has an unsigned integer representation
1650  /// of some sort, e.g., it is an unsigned integer type or a vector.
1651  bool hasUnsignedIntegerRepresentation() const;
1652
1653  /// \brief Determine whether this type has a floating-point representation
1654  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1655  bool hasFloatingRepresentation() const;
1656
1657  // Type Checking Functions: Check to see if this type is structurally the
1658  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1659  // the best type we can.
1660  const RecordType *getAsStructureType() const;
1661  /// NOTE: getAs*ArrayType are methods on ASTContext.
1662  const RecordType *getAsUnionType() const;
1663  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1664  // The following is a convenience method that returns an ObjCObjectPointerType
1665  // for object declared using an interface.
1666  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1667  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1668  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1669  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1670
1671  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1672  /// because the type is a RecordType or because it is the injected-class-name
1673  /// type of a class template or class template partial specialization.
1674  CXXRecordDecl *getAsCXXRecordDecl() const;
1675
1676  /// If this is a pointer or reference to a RecordType, return the
1677  /// CXXRecordDecl that that type refers to.
1678  ///
1679  /// If this is not a pointer or reference, or the type being pointed to does
1680  /// not refer to a CXXRecordDecl, returns NULL.
1681  const CXXRecordDecl *getPointeeCXXRecordDecl() const;
1682
1683  /// \brief Get the AutoType whose type will be deduced for a variable with
1684  /// an initializer of this type. This looks through declarators like pointer
1685  /// types, but not through decltype or typedefs.
1686  AutoType *getContainedAutoType() const;
1687
1688  /// Member-template getAs<specific type>'.  Look through sugar for
1689  /// an instance of \<specific type>.   This scheme will eventually
1690  /// replace the specific getAsXXXX methods above.
1691  ///
1692  /// There are some specializations of this member template listed
1693  /// immediately following this class.
1694  template <typename T> const T *getAs() const;
1695
1696  /// A variant of getAs<> for array types which silently discards
1697  /// qualifiers from the outermost type.
1698  const ArrayType *getAsArrayTypeUnsafe() const;
1699
1700  /// Member-template castAs<specific type>.  Look through sugar for
1701  /// the underlying instance of \<specific type>.
1702  ///
1703  /// This method has the same relationship to getAs<T> as cast<T> has
1704  /// to dyn_cast<T>; which is to say, the underlying type *must*
1705  /// have the intended type, and this method will never return null.
1706  template <typename T> const T *castAs() const;
1707
1708  /// A variant of castAs<> for array type which silently discards
1709  /// qualifiers from the outermost type.
1710  const ArrayType *castAsArrayTypeUnsafe() const;
1711
1712  /// getBaseElementTypeUnsafe - Get the base element type of this
1713  /// type, potentially discarding type qualifiers.  This method
1714  /// should never be used when type qualifiers are meaningful.
1715  const Type *getBaseElementTypeUnsafe() const;
1716
1717  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1718  /// element type of the array, potentially with type qualifiers missing.
1719  /// This method should never be used when type qualifiers are meaningful.
1720  const Type *getArrayElementTypeNoTypeQual() const;
1721
1722  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1723  /// pointer, this returns the respective pointee.
1724  QualType getPointeeType() const;
1725
1726  /// getUnqualifiedDesugaredType() - Return the specified type with
1727  /// any "sugar" removed from the type, removing any typedefs,
1728  /// typeofs, etc., as well as any qualifiers.
1729  const Type *getUnqualifiedDesugaredType() const;
1730
1731  /// More type predicates useful for type checking/promotion
1732  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1733
1734  /// isSignedIntegerType - Return true if this is an integer type that is
1735  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1736  /// or an enum decl which has a signed representation.
1737  bool isSignedIntegerType() const;
1738
1739  /// isUnsignedIntegerType - Return true if this is an integer type that is
1740  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1741  /// or an enum decl which has an unsigned representation.
1742  bool isUnsignedIntegerType() const;
1743
1744  /// Determines whether this is an integer type that is signed or an
1745  /// enumeration types whose underlying type is a signed integer type.
1746  bool isSignedIntegerOrEnumerationType() const;
1747
1748  /// Determines whether this is an integer type that is unsigned or an
1749  /// enumeration types whose underlying type is a unsigned integer type.
1750  bool isUnsignedIntegerOrEnumerationType() const;
1751
1752  /// isConstantSizeType - Return true if this is not a variable sized type,
1753  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1754  /// incomplete types.
1755  bool isConstantSizeType() const;
1756
1757  /// isSpecifierType - Returns true if this type can be represented by some
1758  /// set of type specifiers.
1759  bool isSpecifierType() const;
1760
1761  /// \brief Determine the linkage of this type.
1762  Linkage getLinkage() const;
1763
1764  /// \brief Determine the visibility of this type.
1765  Visibility getVisibility() const {
1766    return getLinkageAndVisibility().getVisibility();
1767  }
1768
1769  /// \brief Return true if the visibility was explicitly set is the code.
1770  bool isVisibilityExplicit() const {
1771    return getLinkageAndVisibility().isVisibilityExplicit();
1772  }
1773
1774  /// \brief Determine the linkage and visibility of this type.
1775  LinkageInfo getLinkageAndVisibility() const;
1776
1777  /// \brief True if the computed linkage is valid. Used for consistency
1778  /// checking. Should always return true.
1779  bool isLinkageValid() const;
1780
1781  const char *getTypeClassName() const;
1782
1783  QualType getCanonicalTypeInternal() const {
1784    return CanonicalType;
1785  }
1786  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1787  LLVM_ATTRIBUTE_USED void dump() const;
1788
1789  friend class ASTReader;
1790  friend class ASTWriter;
1791};
1792
1793/// \brief This will check for a TypedefType by removing any existing sugar
1794/// until it reaches a TypedefType or a non-sugared type.
1795template <> const TypedefType *Type::getAs() const;
1796
1797/// \brief This will check for a TemplateSpecializationType by removing any
1798/// existing sugar until it reaches a TemplateSpecializationType or a
1799/// non-sugared type.
1800template <> const TemplateSpecializationType *Type::getAs() const;
1801
1802// We can do canonical leaf types faster, because we don't have to
1803// worry about preserving child type decoration.
1804#define TYPE(Class, Base)
1805#define LEAF_TYPE(Class) \
1806template <> inline const Class##Type *Type::getAs() const { \
1807  return dyn_cast<Class##Type>(CanonicalType); \
1808} \
1809template <> inline const Class##Type *Type::castAs() const { \
1810  return cast<Class##Type>(CanonicalType); \
1811}
1812#include "clang/AST/TypeNodes.def"
1813
1814
1815/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1816/// types are always canonical and have a literal name field.
1817class BuiltinType : public Type {
1818public:
1819  enum Kind {
1820#define BUILTIN_TYPE(Id, SingletonId) Id,
1821#define LAST_BUILTIN_TYPE(Id) LastKind = Id
1822#include "clang/AST/BuiltinTypes.def"
1823  };
1824
1825public:
1826  BuiltinType(Kind K)
1827    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1828           /*InstantiationDependent=*/(K == Dependent),
1829           /*VariablyModified=*/false,
1830           /*Unexpanded paramter pack=*/false) {
1831    BuiltinTypeBits.Kind = K;
1832  }
1833
1834  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1835  StringRef getName(const PrintingPolicy &Policy) const;
1836  const char *getNameAsCString(const PrintingPolicy &Policy) const {
1837    // The StringRef is null-terminated.
1838    StringRef str = getName(Policy);
1839    assert(!str.empty() && str.data()[str.size()] == '\0');
1840    return str.data();
1841  }
1842
1843  bool isSugared() const { return false; }
1844  QualType desugar() const { return QualType(this, 0); }
1845
1846  bool isInteger() const {
1847    return getKind() >= Bool && getKind() <= Int128;
1848  }
1849
1850  bool isSignedInteger() const {
1851    return getKind() >= Char_S && getKind() <= Int128;
1852  }
1853
1854  bool isUnsignedInteger() const {
1855    return getKind() >= Bool && getKind() <= UInt128;
1856  }
1857
1858  bool isFloatingPoint() const {
1859    return getKind() >= Half && getKind() <= LongDouble;
1860  }
1861
1862  /// Determines whether the given kind corresponds to a placeholder type.
1863  static bool isPlaceholderTypeKind(Kind K) {
1864    return K >= Overload;
1865  }
1866
1867  /// Determines whether this type is a placeholder type, i.e. a type
1868  /// which cannot appear in arbitrary positions in a fully-formed
1869  /// expression.
1870  bool isPlaceholderType() const {
1871    return isPlaceholderTypeKind(getKind());
1872  }
1873
1874  /// Determines whether this type is a placeholder type other than
1875  /// Overload.  Most placeholder types require only syntactic
1876  /// information about their context in order to be resolved (e.g.
1877  /// whether it is a call expression), which means they can (and
1878  /// should) be resolved in an earlier "phase" of analysis.
1879  /// Overload expressions sometimes pick up further information
1880  /// from their context, like whether the context expects a
1881  /// specific function-pointer type, and so frequently need
1882  /// special treatment.
1883  bool isNonOverloadPlaceholderType() const {
1884    return getKind() > Overload;
1885  }
1886
1887  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1888};
1889
1890/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1891/// types (_Complex float etc) as well as the GCC integer complex extensions.
1892///
1893class ComplexType : public Type, public llvm::FoldingSetNode {
1894  QualType ElementType;
1895  ComplexType(QualType Element, QualType CanonicalPtr) :
1896    Type(Complex, CanonicalPtr, Element->isDependentType(),
1897         Element->isInstantiationDependentType(),
1898         Element->isVariablyModifiedType(),
1899         Element->containsUnexpandedParameterPack()),
1900    ElementType(Element) {
1901  }
1902  friend class ASTContext;  // ASTContext creates these.
1903
1904public:
1905  QualType getElementType() const { return ElementType; }
1906
1907  bool isSugared() const { return false; }
1908  QualType desugar() const { return QualType(this, 0); }
1909
1910  void Profile(llvm::FoldingSetNodeID &ID) {
1911    Profile(ID, getElementType());
1912  }
1913  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1914    ID.AddPointer(Element.getAsOpaquePtr());
1915  }
1916
1917  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1918};
1919
1920/// ParenType - Sugar for parentheses used when specifying types.
1921///
1922class ParenType : public Type, public llvm::FoldingSetNode {
1923  QualType Inner;
1924
1925  ParenType(QualType InnerType, QualType CanonType) :
1926    Type(Paren, CanonType, InnerType->isDependentType(),
1927         InnerType->isInstantiationDependentType(),
1928         InnerType->isVariablyModifiedType(),
1929         InnerType->containsUnexpandedParameterPack()),
1930    Inner(InnerType) {
1931  }
1932  friend class ASTContext;  // ASTContext creates these.
1933
1934public:
1935
1936  QualType getInnerType() const { return Inner; }
1937
1938  bool isSugared() const { return true; }
1939  QualType desugar() const { return getInnerType(); }
1940
1941  void Profile(llvm::FoldingSetNodeID &ID) {
1942    Profile(ID, getInnerType());
1943  }
1944  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1945    Inner.Profile(ID);
1946  }
1947
1948  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1949};
1950
1951/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1952///
1953class PointerType : public Type, public llvm::FoldingSetNode {
1954  QualType PointeeType;
1955
1956  PointerType(QualType Pointee, QualType CanonicalPtr) :
1957    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1958         Pointee->isInstantiationDependentType(),
1959         Pointee->isVariablyModifiedType(),
1960         Pointee->containsUnexpandedParameterPack()),
1961    PointeeType(Pointee) {
1962  }
1963  friend class ASTContext;  // ASTContext creates these.
1964
1965public:
1966
1967  QualType getPointeeType() const { return PointeeType; }
1968
1969  bool isSugared() const { return false; }
1970  QualType desugar() const { return QualType(this, 0); }
1971
1972  void Profile(llvm::FoldingSetNodeID &ID) {
1973    Profile(ID, getPointeeType());
1974  }
1975  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1976    ID.AddPointer(Pointee.getAsOpaquePtr());
1977  }
1978
1979  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1980};
1981
1982/// BlockPointerType - pointer to a block type.
1983/// This type is to represent types syntactically represented as
1984/// "void (^)(int)", etc. Pointee is required to always be a function type.
1985///
1986class BlockPointerType : public Type, public llvm::FoldingSetNode {
1987  QualType PointeeType;  // Block is some kind of pointer type
1988  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1989    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1990         Pointee->isInstantiationDependentType(),
1991         Pointee->isVariablyModifiedType(),
1992         Pointee->containsUnexpandedParameterPack()),
1993    PointeeType(Pointee) {
1994  }
1995  friend class ASTContext;  // ASTContext creates these.
1996
1997public:
1998
1999  // Get the pointee type. Pointee is required to always be a function type.
2000  QualType getPointeeType() const { return PointeeType; }
2001
2002  bool isSugared() const { return false; }
2003  QualType desugar() const { return QualType(this, 0); }
2004
2005  void Profile(llvm::FoldingSetNodeID &ID) {
2006      Profile(ID, getPointeeType());
2007  }
2008  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2009      ID.AddPointer(Pointee.getAsOpaquePtr());
2010  }
2011
2012  static bool classof(const Type *T) {
2013    return T->getTypeClass() == BlockPointer;
2014  }
2015};
2016
2017/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
2018///
2019class ReferenceType : public Type, public llvm::FoldingSetNode {
2020  QualType PointeeType;
2021
2022protected:
2023  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2024                bool SpelledAsLValue) :
2025    Type(tc, CanonicalRef, Referencee->isDependentType(),
2026         Referencee->isInstantiationDependentType(),
2027         Referencee->isVariablyModifiedType(),
2028         Referencee->containsUnexpandedParameterPack()),
2029    PointeeType(Referencee)
2030  {
2031    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2032    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2033  }
2034
2035public:
2036  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2037  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2038
2039  QualType getPointeeTypeAsWritten() const { return PointeeType; }
2040  QualType getPointeeType() const {
2041    // FIXME: this might strip inner qualifiers; okay?
2042    const ReferenceType *T = this;
2043    while (T->isInnerRef())
2044      T = T->PointeeType->castAs<ReferenceType>();
2045    return T->PointeeType;
2046  }
2047
2048  void Profile(llvm::FoldingSetNodeID &ID) {
2049    Profile(ID, PointeeType, isSpelledAsLValue());
2050  }
2051  static void Profile(llvm::FoldingSetNodeID &ID,
2052                      QualType Referencee,
2053                      bool SpelledAsLValue) {
2054    ID.AddPointer(Referencee.getAsOpaquePtr());
2055    ID.AddBoolean(SpelledAsLValue);
2056  }
2057
2058  static bool classof(const Type *T) {
2059    return T->getTypeClass() == LValueReference ||
2060           T->getTypeClass() == RValueReference;
2061  }
2062};
2063
2064/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
2065///
2066class LValueReferenceType : public ReferenceType {
2067  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2068                      bool SpelledAsLValue) :
2069    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
2070  {}
2071  friend class ASTContext; // ASTContext creates these
2072public:
2073  bool isSugared() const { return false; }
2074  QualType desugar() const { return QualType(this, 0); }
2075
2076  static bool classof(const Type *T) {
2077    return T->getTypeClass() == LValueReference;
2078  }
2079};
2080
2081/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
2082///
2083class RValueReferenceType : public ReferenceType {
2084  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
2085    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
2086  }
2087  friend class ASTContext; // ASTContext creates these
2088public:
2089  bool isSugared() const { return false; }
2090  QualType desugar() const { return QualType(this, 0); }
2091
2092  static bool classof(const Type *T) {
2093    return T->getTypeClass() == RValueReference;
2094  }
2095};
2096
2097/// MemberPointerType - C++ 8.3.3 - Pointers to members
2098///
2099class MemberPointerType : public Type, public llvm::FoldingSetNode {
2100  QualType PointeeType;
2101  /// The class of which the pointee is a member. Must ultimately be a
2102  /// RecordType, but could be a typedef or a template parameter too.
2103  const Type *Class;
2104
2105  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
2106    Type(MemberPointer, CanonicalPtr,
2107         Cls->isDependentType() || Pointee->isDependentType(),
2108         (Cls->isInstantiationDependentType() ||
2109          Pointee->isInstantiationDependentType()),
2110         Pointee->isVariablyModifiedType(),
2111         (Cls->containsUnexpandedParameterPack() ||
2112          Pointee->containsUnexpandedParameterPack())),
2113    PointeeType(Pointee), Class(Cls) {
2114  }
2115  friend class ASTContext; // ASTContext creates these.
2116
2117public:
2118  QualType getPointeeType() const { return PointeeType; }
2119
2120  /// Returns true if the member type (i.e. the pointee type) is a
2121  /// function type rather than a data-member type.
2122  bool isMemberFunctionPointer() const {
2123    return PointeeType->isFunctionProtoType();
2124  }
2125
2126  /// Returns true if the member type (i.e. the pointee type) is a
2127  /// data type rather than a function type.
2128  bool isMemberDataPointer() const {
2129    return !PointeeType->isFunctionProtoType();
2130  }
2131
2132  const Type *getClass() const { return Class; }
2133
2134  bool isSugared() const { return false; }
2135  QualType desugar() const { return QualType(this, 0); }
2136
2137  void Profile(llvm::FoldingSetNodeID &ID) {
2138    Profile(ID, getPointeeType(), getClass());
2139  }
2140  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2141                      const Type *Class) {
2142    ID.AddPointer(Pointee.getAsOpaquePtr());
2143    ID.AddPointer(Class);
2144  }
2145
2146  static bool classof(const Type *T) {
2147    return T->getTypeClass() == MemberPointer;
2148  }
2149};
2150
2151/// ArrayType - C99 6.7.5.2 - Array Declarators.
2152///
2153class ArrayType : public Type, public llvm::FoldingSetNode {
2154public:
2155  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
2156  /// an array with a static size (e.g. int X[static 4]), or an array
2157  /// with a star size (e.g. int X[*]).
2158  /// 'static' is only allowed on function parameters.
2159  enum ArraySizeModifier {
2160    Normal, Static, Star
2161  };
2162private:
2163  /// ElementType - The element type of the array.
2164  QualType ElementType;
2165
2166protected:
2167  // C++ [temp.dep.type]p1:
2168  //   A type is dependent if it is...
2169  //     - an array type constructed from any dependent type or whose
2170  //       size is specified by a constant expression that is
2171  //       value-dependent,
2172  ArrayType(TypeClass tc, QualType et, QualType can,
2173            ArraySizeModifier sm, unsigned tq,
2174            bool ContainsUnexpandedParameterPack)
2175    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2176           et->isInstantiationDependentType() || tc == DependentSizedArray,
2177           (tc == VariableArray || et->isVariablyModifiedType()),
2178           ContainsUnexpandedParameterPack),
2179      ElementType(et) {
2180    ArrayTypeBits.IndexTypeQuals = tq;
2181    ArrayTypeBits.SizeModifier = sm;
2182  }
2183
2184  friend class ASTContext;  // ASTContext creates these.
2185
2186public:
2187  QualType getElementType() const { return ElementType; }
2188  ArraySizeModifier getSizeModifier() const {
2189    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2190  }
2191  Qualifiers getIndexTypeQualifiers() const {
2192    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2193  }
2194  unsigned getIndexTypeCVRQualifiers() const {
2195    return ArrayTypeBits.IndexTypeQuals;
2196  }
2197
2198  static bool classof(const Type *T) {
2199    return T->getTypeClass() == ConstantArray ||
2200           T->getTypeClass() == VariableArray ||
2201           T->getTypeClass() == IncompleteArray ||
2202           T->getTypeClass() == DependentSizedArray;
2203  }
2204};
2205
2206/// ConstantArrayType - This class represents the canonical version of
2207/// C arrays with a specified constant size.  For example, the canonical
2208/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
2209/// type is 'int' and the size is 404.
2210class ConstantArrayType : public ArrayType {
2211  llvm::APInt Size; // Allows us to unique the type.
2212
2213  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2214                    ArraySizeModifier sm, unsigned tq)
2215    : ArrayType(ConstantArray, et, can, sm, tq,
2216                et->containsUnexpandedParameterPack()),
2217      Size(size) {}
2218protected:
2219  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2220                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2221    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2222      Size(size) {}
2223  friend class ASTContext;  // ASTContext creates these.
2224public:
2225  const llvm::APInt &getSize() const { return Size; }
2226  bool isSugared() const { return false; }
2227  QualType desugar() const { return QualType(this, 0); }
2228
2229
2230  /// \brief Determine the number of bits required to address a member of
2231  // an array with the given element type and number of elements.
2232  static unsigned getNumAddressingBits(ASTContext &Context,
2233                                       QualType ElementType,
2234                                       const llvm::APInt &NumElements);
2235
2236  /// \brief Determine the maximum number of active bits that an array's size
2237  /// can require, which limits the maximum size of the array.
2238  static unsigned getMaxSizeBits(ASTContext &Context);
2239
2240  void Profile(llvm::FoldingSetNodeID &ID) {
2241    Profile(ID, getElementType(), getSize(),
2242            getSizeModifier(), getIndexTypeCVRQualifiers());
2243  }
2244  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2245                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2246                      unsigned TypeQuals) {
2247    ID.AddPointer(ET.getAsOpaquePtr());
2248    ID.AddInteger(ArraySize.getZExtValue());
2249    ID.AddInteger(SizeMod);
2250    ID.AddInteger(TypeQuals);
2251  }
2252  static bool classof(const Type *T) {
2253    return T->getTypeClass() == ConstantArray;
2254  }
2255};
2256
2257/// IncompleteArrayType - This class represents C arrays with an unspecified
2258/// size.  For example 'int A[]' has an IncompleteArrayType where the element
2259/// type is 'int' and the size is unspecified.
2260class IncompleteArrayType : public ArrayType {
2261
2262  IncompleteArrayType(QualType et, QualType can,
2263                      ArraySizeModifier sm, unsigned tq)
2264    : ArrayType(IncompleteArray, et, can, sm, tq,
2265                et->containsUnexpandedParameterPack()) {}
2266  friend class ASTContext;  // ASTContext creates these.
2267public:
2268  bool isSugared() const { return false; }
2269  QualType desugar() const { return QualType(this, 0); }
2270
2271  static bool classof(const Type *T) {
2272    return T->getTypeClass() == IncompleteArray;
2273  }
2274
2275  friend class StmtIteratorBase;
2276
2277  void Profile(llvm::FoldingSetNodeID &ID) {
2278    Profile(ID, getElementType(), getSizeModifier(),
2279            getIndexTypeCVRQualifiers());
2280  }
2281
2282  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2283                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2284    ID.AddPointer(ET.getAsOpaquePtr());
2285    ID.AddInteger(SizeMod);
2286    ID.AddInteger(TypeQuals);
2287  }
2288};
2289
2290/// VariableArrayType - This class represents C arrays with a specified size
2291/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
2292/// Since the size expression is an arbitrary expression, we store it as such.
2293///
2294/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2295/// should not be: two lexically equivalent variable array types could mean
2296/// different things, for example, these variables do not have the same type
2297/// dynamically:
2298///
2299/// void foo(int x) {
2300///   int Y[x];
2301///   ++x;
2302///   int Z[x];
2303/// }
2304///
2305class VariableArrayType : public ArrayType {
2306  /// SizeExpr - An assignment expression. VLA's are only permitted within
2307  /// a function block.
2308  Stmt *SizeExpr;
2309  /// Brackets - The left and right array brackets.
2310  SourceRange Brackets;
2311
2312  VariableArrayType(QualType et, QualType can, Expr *e,
2313                    ArraySizeModifier sm, unsigned tq,
2314                    SourceRange brackets)
2315    : ArrayType(VariableArray, et, can, sm, tq,
2316                et->containsUnexpandedParameterPack()),
2317      SizeExpr((Stmt*) e), Brackets(brackets) {}
2318  friend class ASTContext;  // ASTContext creates these.
2319
2320public:
2321  Expr *getSizeExpr() const {
2322    // We use C-style casts instead of cast<> here because we do not wish
2323    // to have a dependency of Type.h on Stmt.h/Expr.h.
2324    return (Expr*) SizeExpr;
2325  }
2326  SourceRange getBracketsRange() const { return Brackets; }
2327  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2328  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2329
2330  bool isSugared() const { return false; }
2331  QualType desugar() const { return QualType(this, 0); }
2332
2333  static bool classof(const Type *T) {
2334    return T->getTypeClass() == VariableArray;
2335  }
2336
2337  friend class StmtIteratorBase;
2338
2339  void Profile(llvm::FoldingSetNodeID &ID) {
2340    llvm_unreachable("Cannot unique VariableArrayTypes.");
2341  }
2342};
2343
2344/// DependentSizedArrayType - This type represents an array type in
2345/// C++ whose size is a value-dependent expression. For example:
2346///
2347/// \code
2348/// template<typename T, int Size>
2349/// class array {
2350///   T data[Size];
2351/// };
2352/// \endcode
2353///
2354/// For these types, we won't actually know what the array bound is
2355/// until template instantiation occurs, at which point this will
2356/// become either a ConstantArrayType or a VariableArrayType.
2357class DependentSizedArrayType : public ArrayType {
2358  const ASTContext &Context;
2359
2360  /// \brief An assignment expression that will instantiate to the
2361  /// size of the array.
2362  ///
2363  /// The expression itself might be NULL, in which case the array
2364  /// type will have its size deduced from an initializer.
2365  Stmt *SizeExpr;
2366
2367  /// Brackets - The left and right array brackets.
2368  SourceRange Brackets;
2369
2370  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2371                          Expr *e, ArraySizeModifier sm, unsigned tq,
2372                          SourceRange brackets);
2373
2374  friend class ASTContext;  // ASTContext creates these.
2375
2376public:
2377  Expr *getSizeExpr() const {
2378    // We use C-style casts instead of cast<> here because we do not wish
2379    // to have a dependency of Type.h on Stmt.h/Expr.h.
2380    return (Expr*) SizeExpr;
2381  }
2382  SourceRange getBracketsRange() const { return Brackets; }
2383  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2384  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2385
2386  bool isSugared() const { return false; }
2387  QualType desugar() const { return QualType(this, 0); }
2388
2389  static bool classof(const Type *T) {
2390    return T->getTypeClass() == DependentSizedArray;
2391  }
2392
2393  friend class StmtIteratorBase;
2394
2395
2396  void Profile(llvm::FoldingSetNodeID &ID) {
2397    Profile(ID, Context, getElementType(),
2398            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2399  }
2400
2401  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2402                      QualType ET, ArraySizeModifier SizeMod,
2403                      unsigned TypeQuals, Expr *E);
2404};
2405
2406/// DependentSizedExtVectorType - This type represent an extended vector type
2407/// where either the type or size is dependent. For example:
2408/// @code
2409/// template<typename T, int Size>
2410/// class vector {
2411///   typedef T __attribute__((ext_vector_type(Size))) type;
2412/// }
2413/// @endcode
2414class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2415  const ASTContext &Context;
2416  Expr *SizeExpr;
2417  /// ElementType - The element type of the array.
2418  QualType ElementType;
2419  SourceLocation loc;
2420
2421  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2422                              QualType can, Expr *SizeExpr, SourceLocation loc);
2423
2424  friend class ASTContext;
2425
2426public:
2427  Expr *getSizeExpr() const { return SizeExpr; }
2428  QualType getElementType() const { return ElementType; }
2429  SourceLocation getAttributeLoc() const { return loc; }
2430
2431  bool isSugared() const { return false; }
2432  QualType desugar() const { return QualType(this, 0); }
2433
2434  static bool classof(const Type *T) {
2435    return T->getTypeClass() == DependentSizedExtVector;
2436  }
2437
2438  void Profile(llvm::FoldingSetNodeID &ID) {
2439    Profile(ID, Context, getElementType(), getSizeExpr());
2440  }
2441
2442  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2443                      QualType ElementType, Expr *SizeExpr);
2444};
2445
2446
2447/// VectorType - GCC generic vector type. This type is created using
2448/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2449/// bytes; or from an Altivec __vector or vector declaration.
2450/// Since the constructor takes the number of vector elements, the
2451/// client is responsible for converting the size into the number of elements.
2452class VectorType : public Type, public llvm::FoldingSetNode {
2453public:
2454  enum VectorKind {
2455    GenericVector,  // not a target-specific vector type
2456    AltiVecVector,  // is AltiVec vector
2457    AltiVecPixel,   // is AltiVec 'vector Pixel'
2458    AltiVecBool,    // is AltiVec 'vector bool ...'
2459    NeonVector,     // is ARM Neon vector
2460    NeonPolyVector  // is ARM Neon polynomial vector
2461  };
2462protected:
2463  /// ElementType - The element type of the vector.
2464  QualType ElementType;
2465
2466  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2467             VectorKind vecKind);
2468
2469  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2470             QualType canonType, VectorKind vecKind);
2471
2472  friend class ASTContext;  // ASTContext creates these.
2473
2474public:
2475
2476  QualType getElementType() const { return ElementType; }
2477  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2478
2479  bool isSugared() const { return false; }
2480  QualType desugar() const { return QualType(this, 0); }
2481
2482  VectorKind getVectorKind() const {
2483    return VectorKind(VectorTypeBits.VecKind);
2484  }
2485
2486  void Profile(llvm::FoldingSetNodeID &ID) {
2487    Profile(ID, getElementType(), getNumElements(),
2488            getTypeClass(), getVectorKind());
2489  }
2490  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2491                      unsigned NumElements, TypeClass TypeClass,
2492                      VectorKind VecKind) {
2493    ID.AddPointer(ElementType.getAsOpaquePtr());
2494    ID.AddInteger(NumElements);
2495    ID.AddInteger(TypeClass);
2496    ID.AddInteger(VecKind);
2497  }
2498
2499  static bool classof(const Type *T) {
2500    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2501  }
2502};
2503
2504/// ExtVectorType - Extended vector type. This type is created using
2505/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2506/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2507/// class enables syntactic extensions, like Vector Components for accessing
2508/// points, colors, and textures (modeled after OpenGL Shading Language).
2509class ExtVectorType : public VectorType {
2510  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2511    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2512  friend class ASTContext;  // ASTContext creates these.
2513public:
2514  static int getPointAccessorIdx(char c) {
2515    switch (c) {
2516    default: return -1;
2517    case 'x': return 0;
2518    case 'y': return 1;
2519    case 'z': return 2;
2520    case 'w': return 3;
2521    }
2522  }
2523  static int getNumericAccessorIdx(char c) {
2524    switch (c) {
2525      default: return -1;
2526      case '0': return 0;
2527      case '1': return 1;
2528      case '2': return 2;
2529      case '3': return 3;
2530      case '4': return 4;
2531      case '5': return 5;
2532      case '6': return 6;
2533      case '7': return 7;
2534      case '8': return 8;
2535      case '9': return 9;
2536      case 'A':
2537      case 'a': return 10;
2538      case 'B':
2539      case 'b': return 11;
2540      case 'C':
2541      case 'c': return 12;
2542      case 'D':
2543      case 'd': return 13;
2544      case 'E':
2545      case 'e': return 14;
2546      case 'F':
2547      case 'f': return 15;
2548    }
2549  }
2550
2551  static int getAccessorIdx(char c) {
2552    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2553    return getNumericAccessorIdx(c);
2554  }
2555
2556  bool isAccessorWithinNumElements(char c) const {
2557    if (int idx = getAccessorIdx(c)+1)
2558      return unsigned(idx-1) < getNumElements();
2559    return false;
2560  }
2561  bool isSugared() const { return false; }
2562  QualType desugar() const { return QualType(this, 0); }
2563
2564  static bool classof(const Type *T) {
2565    return T->getTypeClass() == ExtVector;
2566  }
2567};
2568
2569/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2570/// class of FunctionNoProtoType and FunctionProtoType.
2571///
2572class FunctionType : public Type {
2573  // The type returned by the function.
2574  QualType ResultType;
2575
2576 public:
2577  /// ExtInfo - A class which abstracts out some details necessary for
2578  /// making a call.
2579  ///
2580  /// It is not actually used directly for storing this information in
2581  /// a FunctionType, although FunctionType does currently use the
2582  /// same bit-pattern.
2583  ///
2584  // If you add a field (say Foo), other than the obvious places (both,
2585  // constructors, compile failures), what you need to update is
2586  // * Operator==
2587  // * getFoo
2588  // * withFoo
2589  // * functionType. Add Foo, getFoo.
2590  // * ASTContext::getFooType
2591  // * ASTContext::mergeFunctionTypes
2592  // * FunctionNoProtoType::Profile
2593  // * FunctionProtoType::Profile
2594  // * TypePrinter::PrintFunctionProto
2595  // * AST read and write
2596  // * Codegen
2597  class ExtInfo {
2598    // Feel free to rearrange or add bits, but if you go over 9,
2599    // you'll need to adjust both the Bits field below and
2600    // Type::FunctionTypeBitfields.
2601
2602    //   |  CC  |noreturn|produces|regparm|
2603    //   |0 .. 3|   4    |    5   | 6 .. 8|
2604    //
2605    // regparm is either 0 (no regparm attribute) or the regparm value+1.
2606    enum { CallConvMask = 0xF };
2607    enum { NoReturnMask = 0x10 };
2608    enum { ProducesResultMask = 0x20 };
2609    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2610           RegParmOffset = 6 }; // Assumed to be the last field
2611
2612    uint16_t Bits;
2613
2614    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2615
2616    friend class FunctionType;
2617
2618   public:
2619    // Constructor with no defaults. Use this when you know that you
2620    // have all the elements (when reading an AST file for example).
2621    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2622            bool producesResult) {
2623      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2624      Bits = ((unsigned) cc) |
2625             (noReturn ? NoReturnMask : 0) |
2626             (producesResult ? ProducesResultMask : 0) |
2627             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2628    }
2629
2630    // Constructor with all defaults. Use when for example creating a
2631    // function know to use defaults.
2632    ExtInfo() : Bits(0) {}
2633
2634    bool getNoReturn() const { return Bits & NoReturnMask; }
2635    bool getProducesResult() const { return Bits & ProducesResultMask; }
2636    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2637    unsigned getRegParm() const {
2638      unsigned RegParm = Bits >> RegParmOffset;
2639      if (RegParm > 0)
2640        --RegParm;
2641      return RegParm;
2642    }
2643    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2644
2645    bool operator==(ExtInfo Other) const {
2646      return Bits == Other.Bits;
2647    }
2648    bool operator!=(ExtInfo Other) const {
2649      return Bits != Other.Bits;
2650    }
2651
2652    // Note that we don't have setters. That is by design, use
2653    // the following with methods instead of mutating these objects.
2654
2655    ExtInfo withNoReturn(bool noReturn) const {
2656      if (noReturn)
2657        return ExtInfo(Bits | NoReturnMask);
2658      else
2659        return ExtInfo(Bits & ~NoReturnMask);
2660    }
2661
2662    ExtInfo withProducesResult(bool producesResult) const {
2663      if (producesResult)
2664        return ExtInfo(Bits | ProducesResultMask);
2665      else
2666        return ExtInfo(Bits & ~ProducesResultMask);
2667    }
2668
2669    ExtInfo withRegParm(unsigned RegParm) const {
2670      assert(RegParm < 7 && "Invalid regparm value");
2671      return ExtInfo((Bits & ~RegParmMask) |
2672                     ((RegParm + 1) << RegParmOffset));
2673    }
2674
2675    ExtInfo withCallingConv(CallingConv cc) const {
2676      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2677    }
2678
2679    void Profile(llvm::FoldingSetNodeID &ID) const {
2680      ID.AddInteger(Bits);
2681    }
2682  };
2683
2684protected:
2685  FunctionType(TypeClass tc, QualType res,
2686               unsigned typeQuals, QualType Canonical, bool Dependent,
2687               bool InstantiationDependent,
2688               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2689               ExtInfo Info)
2690    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
2691           ContainsUnexpandedParameterPack),
2692      ResultType(res) {
2693    FunctionTypeBits.ExtInfo = Info.Bits;
2694    FunctionTypeBits.TypeQuals = typeQuals;
2695  }
2696  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2697
2698public:
2699
2700  QualType getResultType() const { return ResultType; }
2701
2702  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2703  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2704  /// \brief Determine whether this function type includes the GNU noreturn
2705  /// attribute. The C++11 [[noreturn]] attribute does not affect the function
2706  /// type.
2707  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2708  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2709  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2710  bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
2711  bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
2712  bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
2713
2714  /// \brief Determine the type of an expression that calls a function of
2715  /// this type.
2716  QualType getCallResultType(ASTContext &Context) const {
2717    return getResultType().getNonLValueExprType(Context);
2718  }
2719
2720  static StringRef getNameForCallConv(CallingConv CC);
2721
2722  static bool classof(const Type *T) {
2723    return T->getTypeClass() == FunctionNoProto ||
2724           T->getTypeClass() == FunctionProto;
2725  }
2726};
2727
2728/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2729/// no information available about its arguments.
2730class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2731  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2732    : FunctionType(FunctionNoProto, Result, 0, Canonical,
2733                   /*Dependent=*/false, /*InstantiationDependent=*/false,
2734                   Result->isVariablyModifiedType(),
2735                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2736
2737  friend class ASTContext;  // ASTContext creates these.
2738
2739public:
2740  // No additional state past what FunctionType provides.
2741
2742  bool isSugared() const { return false; }
2743  QualType desugar() const { return QualType(this, 0); }
2744
2745  void Profile(llvm::FoldingSetNodeID &ID) {
2746    Profile(ID, getResultType(), getExtInfo());
2747  }
2748  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2749                      ExtInfo Info) {
2750    Info.Profile(ID);
2751    ID.AddPointer(ResultType.getAsOpaquePtr());
2752  }
2753
2754  static bool classof(const Type *T) {
2755    return T->getTypeClass() == FunctionNoProto;
2756  }
2757};
2758
2759/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2760/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2761/// arguments, not as having a single void argument. Such a type can have an
2762/// exception specification, but this specification is not part of the canonical
2763/// type.
2764class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2765public:
2766  /// ExtProtoInfo - Extra information about a function prototype.
2767  struct ExtProtoInfo {
2768    ExtProtoInfo() :
2769      Variadic(false), HasTrailingReturn(false), TypeQuals(0),
2770      ExceptionSpecType(EST_None), RefQualifier(RQ_None),
2771      NumExceptions(0), Exceptions(0), NoexceptExpr(0),
2772      ExceptionSpecDecl(0), ExceptionSpecTemplate(0),
2773      ConsumedArguments(0) {}
2774
2775    FunctionType::ExtInfo ExtInfo;
2776    bool Variadic : 1;
2777    bool HasTrailingReturn : 1;
2778    unsigned char TypeQuals;
2779    ExceptionSpecificationType ExceptionSpecType;
2780    RefQualifierKind RefQualifier;
2781    unsigned NumExceptions;
2782    const QualType *Exceptions;
2783    Expr *NoexceptExpr;
2784    FunctionDecl *ExceptionSpecDecl;
2785    FunctionDecl *ExceptionSpecTemplate;
2786    const bool *ConsumedArguments;
2787  };
2788
2789private:
2790  /// \brief Determine whether there are any argument types that
2791  /// contain an unexpanded parameter pack.
2792  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2793                                                 unsigned numArgs) {
2794    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2795      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2796        return true;
2797
2798    return false;
2799  }
2800
2801  FunctionProtoType(QualType result, ArrayRef<QualType> args,
2802                    QualType canonical, const ExtProtoInfo &epi);
2803
2804  /// NumArgs - The number of arguments this function has, not counting '...'.
2805  unsigned NumArgs : 15;
2806
2807  /// NumExceptions - The number of types in the exception spec, if any.
2808  unsigned NumExceptions : 9;
2809
2810  /// ExceptionSpecType - The type of exception specification this function has.
2811  unsigned ExceptionSpecType : 3;
2812
2813  /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
2814  unsigned HasAnyConsumedArgs : 1;
2815
2816  /// Variadic - Whether the function is variadic.
2817  unsigned Variadic : 1;
2818
2819  /// HasTrailingReturn - Whether this function has a trailing return type.
2820  unsigned HasTrailingReturn : 1;
2821
2822  /// \brief The ref-qualifier associated with a \c FunctionProtoType.
2823  ///
2824  /// This is a value of type \c RefQualifierKind.
2825  unsigned RefQualifier : 2;
2826
2827  // ArgInfo - There is an variable size array after the class in memory that
2828  // holds the argument types.
2829
2830  // Exceptions - There is another variable size array after ArgInfo that
2831  // holds the exception types.
2832
2833  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2834  // to the expression in the noexcept() specifier.
2835
2836  // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
2837  // be a pair of FunctionDecl* pointing to the function which should be used to
2838  // instantiate this function type's exception specification, and the function
2839  // from which it should be instantiated.
2840
2841  // ConsumedArgs - A variable size array, following Exceptions
2842  // and of length NumArgs, holding flags indicating which arguments
2843  // are consumed.  This only appears if HasAnyConsumedArgs is true.
2844
2845  friend class ASTContext;  // ASTContext creates these.
2846
2847  const bool *getConsumedArgsBuffer() const {
2848    assert(hasAnyConsumedArgs());
2849
2850    // Find the end of the exceptions.
2851    Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
2852    if (getExceptionSpecType() != EST_ComputedNoexcept)
2853      eh_end += NumExceptions;
2854    else
2855      eh_end += 1; // NoexceptExpr
2856
2857    return reinterpret_cast<const bool*>(eh_end);
2858  }
2859
2860public:
2861  unsigned getNumArgs() const { return NumArgs; }
2862  QualType getArgType(unsigned i) const {
2863    assert(i < NumArgs && "Invalid argument number!");
2864    return arg_type_begin()[i];
2865  }
2866
2867  ExtProtoInfo getExtProtoInfo() const {
2868    ExtProtoInfo EPI;
2869    EPI.ExtInfo = getExtInfo();
2870    EPI.Variadic = isVariadic();
2871    EPI.HasTrailingReturn = hasTrailingReturn();
2872    EPI.ExceptionSpecType = getExceptionSpecType();
2873    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2874    EPI.RefQualifier = getRefQualifier();
2875    if (EPI.ExceptionSpecType == EST_Dynamic) {
2876      EPI.NumExceptions = NumExceptions;
2877      EPI.Exceptions = exception_begin();
2878    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2879      EPI.NoexceptExpr = getNoexceptExpr();
2880    } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2881      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2882      EPI.ExceptionSpecTemplate = getExceptionSpecTemplate();
2883    } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2884      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2885    }
2886    if (hasAnyConsumedArgs())
2887      EPI.ConsumedArguments = getConsumedArgsBuffer();
2888    return EPI;
2889  }
2890
2891  /// \brief Get the kind of exception specification on this function.
2892  ExceptionSpecificationType getExceptionSpecType() const {
2893    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2894  }
2895  /// \brief Return whether this function has any kind of exception spec.
2896  bool hasExceptionSpec() const {
2897    return getExceptionSpecType() != EST_None;
2898  }
2899  /// \brief Return whether this function has a dynamic (throw) exception spec.
2900  bool hasDynamicExceptionSpec() const {
2901    return isDynamicExceptionSpec(getExceptionSpecType());
2902  }
2903  /// \brief Return whether this function has a noexcept exception spec.
2904  bool hasNoexceptExceptionSpec() const {
2905    return isNoexceptExceptionSpec(getExceptionSpecType());
2906  }
2907  /// \brief Result type of getNoexceptSpec().
2908  enum NoexceptResult {
2909    NR_NoNoexcept,  ///< There is no noexcept specifier.
2910    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2911    NR_Dependent,   ///< The noexcept specifier is dependent.
2912    NR_Throw,       ///< The noexcept specifier evaluates to false.
2913    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2914  };
2915  /// \brief Get the meaning of the noexcept spec on this function, if any.
2916  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2917  unsigned getNumExceptions() const { return NumExceptions; }
2918  QualType getExceptionType(unsigned i) const {
2919    assert(i < NumExceptions && "Invalid exception number!");
2920    return exception_begin()[i];
2921  }
2922  Expr *getNoexceptExpr() const {
2923    if (getExceptionSpecType() != EST_ComputedNoexcept)
2924      return 0;
2925    // NoexceptExpr sits where the arguments end.
2926    return *reinterpret_cast<Expr *const *>(arg_type_end());
2927  }
2928  /// \brief If this function type has an exception specification which hasn't
2929  /// been determined yet (either because it has not been evaluated or because
2930  /// it has not been instantiated), this is the function whose exception
2931  /// specification is represented by this type.
2932  FunctionDecl *getExceptionSpecDecl() const {
2933    if (getExceptionSpecType() != EST_Uninstantiated &&
2934        getExceptionSpecType() != EST_Unevaluated)
2935      return 0;
2936    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[0];
2937  }
2938  /// \brief If this function type has an uninstantiated exception
2939  /// specification, this is the function whose exception specification
2940  /// should be instantiated to find the exception specification for
2941  /// this type.
2942  FunctionDecl *getExceptionSpecTemplate() const {
2943    if (getExceptionSpecType() != EST_Uninstantiated)
2944      return 0;
2945    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[1];
2946  }
2947  bool isNothrow(ASTContext &Ctx) const {
2948    ExceptionSpecificationType EST = getExceptionSpecType();
2949    assert(EST != EST_Unevaluated && EST != EST_Uninstantiated);
2950    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2951      return true;
2952    if (EST != EST_ComputedNoexcept)
2953      return false;
2954    return getNoexceptSpec(Ctx) == NR_Nothrow;
2955  }
2956
2957  bool isVariadic() const { return Variadic; }
2958
2959  /// \brief Determines whether this function prototype contains a
2960  /// parameter pack at the end.
2961  ///
2962  /// A function template whose last parameter is a parameter pack can be
2963  /// called with an arbitrary number of arguments, much like a variadic
2964  /// function.
2965  bool isTemplateVariadic() const;
2966
2967  bool hasTrailingReturn() const { return HasTrailingReturn; }
2968
2969  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2970
2971
2972  /// \brief Retrieve the ref-qualifier associated with this function type.
2973  RefQualifierKind getRefQualifier() const {
2974    return static_cast<RefQualifierKind>(RefQualifier);
2975  }
2976
2977  typedef const QualType *arg_type_iterator;
2978  arg_type_iterator arg_type_begin() const {
2979    return reinterpret_cast<const QualType *>(this+1);
2980  }
2981  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2982
2983  typedef const QualType *exception_iterator;
2984  exception_iterator exception_begin() const {
2985    // exceptions begin where arguments end
2986    return arg_type_end();
2987  }
2988  exception_iterator exception_end() const {
2989    if (getExceptionSpecType() != EST_Dynamic)
2990      return exception_begin();
2991    return exception_begin() + NumExceptions;
2992  }
2993
2994  bool hasAnyConsumedArgs() const {
2995    return HasAnyConsumedArgs;
2996  }
2997  bool isArgConsumed(unsigned I) const {
2998    assert(I < getNumArgs() && "argument index out of range!");
2999    if (hasAnyConsumedArgs())
3000      return getConsumedArgsBuffer()[I];
3001    return false;
3002  }
3003
3004  bool isSugared() const { return false; }
3005  QualType desugar() const { return QualType(this, 0); }
3006
3007  void printExceptionSpecification(raw_ostream &OS,
3008                                   const PrintingPolicy &Policy) const;
3009
3010  static bool classof(const Type *T) {
3011    return T->getTypeClass() == FunctionProto;
3012  }
3013
3014  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
3015  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3016                      arg_type_iterator ArgTys, unsigned NumArgs,
3017                      const ExtProtoInfo &EPI, const ASTContext &Context);
3018};
3019
3020
3021/// \brief Represents the dependent type named by a dependently-scoped
3022/// typename using declaration, e.g.
3023///   using typename Base<T>::foo;
3024/// Template instantiation turns these into the underlying type.
3025class UnresolvedUsingType : public Type {
3026  UnresolvedUsingTypenameDecl *Decl;
3027
3028  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
3029    : Type(UnresolvedUsing, QualType(), true, true, false,
3030           /*ContainsUnexpandedParameterPack=*/false),
3031      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
3032  friend class ASTContext; // ASTContext creates these.
3033public:
3034
3035  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
3036
3037  bool isSugared() const { return false; }
3038  QualType desugar() const { return QualType(this, 0); }
3039
3040  static bool classof(const Type *T) {
3041    return T->getTypeClass() == UnresolvedUsing;
3042  }
3043
3044  void Profile(llvm::FoldingSetNodeID &ID) {
3045    return Profile(ID, Decl);
3046  }
3047  static void Profile(llvm::FoldingSetNodeID &ID,
3048                      UnresolvedUsingTypenameDecl *D) {
3049    ID.AddPointer(D);
3050  }
3051};
3052
3053
3054class TypedefType : public Type {
3055  TypedefNameDecl *Decl;
3056protected:
3057  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
3058    : Type(tc, can, can->isDependentType(),
3059           can->isInstantiationDependentType(),
3060           can->isVariablyModifiedType(),
3061           /*ContainsUnexpandedParameterPack=*/false),
3062      Decl(const_cast<TypedefNameDecl*>(D)) {
3063    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3064  }
3065  friend class ASTContext;  // ASTContext creates these.
3066public:
3067
3068  TypedefNameDecl *getDecl() const { return Decl; }
3069
3070  bool isSugared() const { return true; }
3071  QualType desugar() const;
3072
3073  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
3074};
3075
3076/// TypeOfExprType (GCC extension).
3077class TypeOfExprType : public Type {
3078  Expr *TOExpr;
3079
3080protected:
3081  TypeOfExprType(Expr *E, QualType can = QualType());
3082  friend class ASTContext;  // ASTContext creates these.
3083public:
3084  Expr *getUnderlyingExpr() const { return TOExpr; }
3085
3086  /// \brief Remove a single level of sugar.
3087  QualType desugar() const;
3088
3089  /// \brief Returns whether this type directly provides sugar.
3090  bool isSugared() const;
3091
3092  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
3093};
3094
3095/// \brief Internal representation of canonical, dependent
3096/// typeof(expr) types.
3097///
3098/// This class is used internally by the ASTContext to manage
3099/// canonical, dependent types, only. Clients will only see instances
3100/// of this class via TypeOfExprType nodes.
3101class DependentTypeOfExprType
3102  : public TypeOfExprType, public llvm::FoldingSetNode {
3103  const ASTContext &Context;
3104
3105public:
3106  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
3107    : TypeOfExprType(E), Context(Context) { }
3108
3109  void Profile(llvm::FoldingSetNodeID &ID) {
3110    Profile(ID, Context, getUnderlyingExpr());
3111  }
3112
3113  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3114                      Expr *E);
3115};
3116
3117/// TypeOfType (GCC extension).
3118class TypeOfType : public Type {
3119  QualType TOType;
3120  TypeOfType(QualType T, QualType can)
3121    : Type(TypeOf, can, T->isDependentType(),
3122           T->isInstantiationDependentType(),
3123           T->isVariablyModifiedType(),
3124           T->containsUnexpandedParameterPack()),
3125      TOType(T) {
3126    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3127  }
3128  friend class ASTContext;  // ASTContext creates these.
3129public:
3130  QualType getUnderlyingType() const { return TOType; }
3131
3132  /// \brief Remove a single level of sugar.
3133  QualType desugar() const { return getUnderlyingType(); }
3134
3135  /// \brief Returns whether this type directly provides sugar.
3136  bool isSugared() const { return true; }
3137
3138  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
3139};
3140
3141/// DecltypeType (C++0x)
3142class DecltypeType : public Type {
3143  Expr *E;
3144  QualType UnderlyingType;
3145
3146protected:
3147  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3148  friend class ASTContext;  // ASTContext creates these.
3149public:
3150  Expr *getUnderlyingExpr() const { return E; }
3151  QualType getUnderlyingType() const { return UnderlyingType; }
3152
3153  /// \brief Remove a single level of sugar.
3154  QualType desugar() const;
3155
3156  /// \brief Returns whether this type directly provides sugar.
3157  bool isSugared() const;
3158
3159  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3160};
3161
3162/// \brief Internal representation of canonical, dependent
3163/// decltype(expr) types.
3164///
3165/// This class is used internally by the ASTContext to manage
3166/// canonical, dependent types, only. Clients will only see instances
3167/// of this class via DecltypeType nodes.
3168class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3169  const ASTContext &Context;
3170
3171public:
3172  DependentDecltypeType(const ASTContext &Context, Expr *E);
3173
3174  void Profile(llvm::FoldingSetNodeID &ID) {
3175    Profile(ID, Context, getUnderlyingExpr());
3176  }
3177
3178  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3179                      Expr *E);
3180};
3181
3182/// \brief A unary type transform, which is a type constructed from another
3183class UnaryTransformType : public Type {
3184public:
3185  enum UTTKind {
3186    EnumUnderlyingType
3187  };
3188
3189private:
3190  /// The untransformed type.
3191  QualType BaseType;
3192  /// The transformed type if not dependent, otherwise the same as BaseType.
3193  QualType UnderlyingType;
3194
3195  UTTKind UKind;
3196protected:
3197  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3198                     QualType CanonicalTy);
3199  friend class ASTContext;
3200public:
3201  bool isSugared() const { return !isDependentType(); }
3202  QualType desugar() const { return UnderlyingType; }
3203
3204  QualType getUnderlyingType() const { return UnderlyingType; }
3205  QualType getBaseType() const { return BaseType; }
3206
3207  UTTKind getUTTKind() const { return UKind; }
3208
3209  static bool classof(const Type *T) {
3210    return T->getTypeClass() == UnaryTransform;
3211  }
3212};
3213
3214class TagType : public Type {
3215  /// Stores the TagDecl associated with this type. The decl may point to any
3216  /// TagDecl that declares the entity.
3217  TagDecl * decl;
3218
3219  friend class ASTReader;
3220
3221protected:
3222  TagType(TypeClass TC, const TagDecl *D, QualType can);
3223
3224public:
3225  TagDecl *getDecl() const;
3226
3227  /// @brief Determines whether this type is in the process of being
3228  /// defined.
3229  bool isBeingDefined() const;
3230
3231  static bool classof(const Type *T) {
3232    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3233  }
3234};
3235
3236/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
3237/// to detect TagType objects of structs/unions/classes.
3238class RecordType : public TagType {
3239protected:
3240  explicit RecordType(const RecordDecl *D)
3241    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3242  explicit RecordType(TypeClass TC, RecordDecl *D)
3243    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3244  friend class ASTContext;   // ASTContext creates these.
3245public:
3246
3247  RecordDecl *getDecl() const {
3248    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3249  }
3250
3251  // FIXME: This predicate is a helper to QualType/Type. It needs to
3252  // recursively check all fields for const-ness. If any field is declared
3253  // const, it needs to return false.
3254  bool hasConstFields() const { return false; }
3255
3256  bool isSugared() const { return false; }
3257  QualType desugar() const { return QualType(this, 0); }
3258
3259  static bool classof(const Type *T) { return T->getTypeClass() == Record; }
3260};
3261
3262/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
3263/// to detect TagType objects of enums.
3264class EnumType : public TagType {
3265  explicit EnumType(const EnumDecl *D)
3266    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3267  friend class ASTContext;   // ASTContext creates these.
3268public:
3269
3270  EnumDecl *getDecl() const {
3271    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3272  }
3273
3274  bool isSugared() const { return false; }
3275  QualType desugar() const { return QualType(this, 0); }
3276
3277  static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
3278};
3279
3280/// AttributedType - An attributed type is a type to which a type
3281/// attribute has been applied.  The "modified type" is the
3282/// fully-sugared type to which the attributed type was applied;
3283/// generally it is not canonically equivalent to the attributed type.
3284/// The "equivalent type" is the minimally-desugared type which the
3285/// type is canonically equivalent to.
3286///
3287/// For example, in the following attributed type:
3288///     int32_t __attribute__((vector_size(16)))
3289///   - the modified type is the TypedefType for int32_t
3290///   - the equivalent type is VectorType(16, int32_t)
3291///   - the canonical type is VectorType(16, int)
3292class AttributedType : public Type, public llvm::FoldingSetNode {
3293public:
3294  // It is really silly to have yet another attribute-kind enum, but
3295  // clang::attr::Kind doesn't currently cover the pure type attrs.
3296  enum Kind {
3297    // Expression operand.
3298    attr_address_space,
3299    attr_regparm,
3300    attr_vector_size,
3301    attr_neon_vector_type,
3302    attr_neon_polyvector_type,
3303
3304    FirstExprOperandKind = attr_address_space,
3305    LastExprOperandKind = attr_neon_polyvector_type,
3306
3307    // Enumerated operand (string or keyword).
3308    attr_objc_gc,
3309    attr_objc_ownership,
3310    attr_pcs,
3311
3312    FirstEnumOperandKind = attr_objc_gc,
3313    LastEnumOperandKind = attr_pcs,
3314
3315    // No operand.
3316    attr_noreturn,
3317    attr_cdecl,
3318    attr_fastcall,
3319    attr_stdcall,
3320    attr_thiscall,
3321    attr_pascal,
3322    attr_pnaclcall,
3323    attr_inteloclbicc
3324  };
3325
3326private:
3327  QualType ModifiedType;
3328  QualType EquivalentType;
3329
3330  friend class ASTContext; // creates these
3331
3332  AttributedType(QualType canon, Kind attrKind,
3333                 QualType modified, QualType equivalent)
3334    : Type(Attributed, canon, canon->isDependentType(),
3335           canon->isInstantiationDependentType(),
3336           canon->isVariablyModifiedType(),
3337           canon->containsUnexpandedParameterPack()),
3338      ModifiedType(modified), EquivalentType(equivalent) {
3339    AttributedTypeBits.AttrKind = attrKind;
3340  }
3341
3342public:
3343  Kind getAttrKind() const {
3344    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3345  }
3346
3347  QualType getModifiedType() const { return ModifiedType; }
3348  QualType getEquivalentType() const { return EquivalentType; }
3349
3350  bool isSugared() const { return true; }
3351  QualType desugar() const { return getEquivalentType(); }
3352
3353  void Profile(llvm::FoldingSetNodeID &ID) {
3354    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3355  }
3356
3357  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3358                      QualType modified, QualType equivalent) {
3359    ID.AddInteger(attrKind);
3360    ID.AddPointer(modified.getAsOpaquePtr());
3361    ID.AddPointer(equivalent.getAsOpaquePtr());
3362  }
3363
3364  static bool classof(const Type *T) {
3365    return T->getTypeClass() == Attributed;
3366  }
3367};
3368
3369class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3370  // Helper data collector for canonical types.
3371  struct CanonicalTTPTInfo {
3372    unsigned Depth : 15;
3373    unsigned ParameterPack : 1;
3374    unsigned Index : 16;
3375  };
3376
3377  union {
3378    // Info for the canonical type.
3379    CanonicalTTPTInfo CanTTPTInfo;
3380    // Info for the non-canonical type.
3381    TemplateTypeParmDecl *TTPDecl;
3382  };
3383
3384  /// Build a non-canonical type.
3385  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3386    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3387           /*InstantiationDependent=*/true,
3388           /*VariablyModified=*/false,
3389           Canon->containsUnexpandedParameterPack()),
3390      TTPDecl(TTPDecl) { }
3391
3392  /// Build the canonical type.
3393  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3394    : Type(TemplateTypeParm, QualType(this, 0),
3395           /*Dependent=*/true,
3396           /*InstantiationDependent=*/true,
3397           /*VariablyModified=*/false, PP) {
3398    CanTTPTInfo.Depth = D;
3399    CanTTPTInfo.Index = I;
3400    CanTTPTInfo.ParameterPack = PP;
3401  }
3402
3403  friend class ASTContext;  // ASTContext creates these
3404
3405  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3406    QualType Can = getCanonicalTypeInternal();
3407    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3408  }
3409
3410public:
3411  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3412  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3413  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3414
3415  TemplateTypeParmDecl *getDecl() const {
3416    return isCanonicalUnqualified() ? 0 : TTPDecl;
3417  }
3418
3419  IdentifierInfo *getIdentifier() const;
3420
3421  bool isSugared() const { return false; }
3422  QualType desugar() const { return QualType(this, 0); }
3423
3424  void Profile(llvm::FoldingSetNodeID &ID) {
3425    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3426  }
3427
3428  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3429                      unsigned Index, bool ParameterPack,
3430                      TemplateTypeParmDecl *TTPDecl) {
3431    ID.AddInteger(Depth);
3432    ID.AddInteger(Index);
3433    ID.AddBoolean(ParameterPack);
3434    ID.AddPointer(TTPDecl);
3435  }
3436
3437  static bool classof(const Type *T) {
3438    return T->getTypeClass() == TemplateTypeParm;
3439  }
3440};
3441
3442/// \brief Represents the result of substituting a type for a template
3443/// type parameter.
3444///
3445/// Within an instantiated template, all template type parameters have
3446/// been replaced with these.  They are used solely to record that a
3447/// type was originally written as a template type parameter;
3448/// therefore they are never canonical.
3449class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3450  // The original type parameter.
3451  const TemplateTypeParmType *Replaced;
3452
3453  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3454    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3455           Canon->isInstantiationDependentType(),
3456           Canon->isVariablyModifiedType(),
3457           Canon->containsUnexpandedParameterPack()),
3458      Replaced(Param) { }
3459
3460  friend class ASTContext;
3461
3462public:
3463  /// Gets the template parameter that was substituted for.
3464  const TemplateTypeParmType *getReplacedParameter() const {
3465    return Replaced;
3466  }
3467
3468  /// Gets the type that was substituted for the template
3469  /// parameter.
3470  QualType getReplacementType() const {
3471    return getCanonicalTypeInternal();
3472  }
3473
3474  bool isSugared() const { return true; }
3475  QualType desugar() const { return getReplacementType(); }
3476
3477  void Profile(llvm::FoldingSetNodeID &ID) {
3478    Profile(ID, getReplacedParameter(), getReplacementType());
3479  }
3480  static void Profile(llvm::FoldingSetNodeID &ID,
3481                      const TemplateTypeParmType *Replaced,
3482                      QualType Replacement) {
3483    ID.AddPointer(Replaced);
3484    ID.AddPointer(Replacement.getAsOpaquePtr());
3485  }
3486
3487  static bool classof(const Type *T) {
3488    return T->getTypeClass() == SubstTemplateTypeParm;
3489  }
3490};
3491
3492/// \brief Represents the result of substituting a set of types for a template
3493/// type parameter pack.
3494///
3495/// When a pack expansion in the source code contains multiple parameter packs
3496/// and those parameter packs correspond to different levels of template
3497/// parameter lists, this type node is used to represent a template type
3498/// parameter pack from an outer level, which has already had its argument pack
3499/// substituted but that still lives within a pack expansion that itself
3500/// could not be instantiated. When actually performing a substitution into
3501/// that pack expansion (e.g., when all template parameters have corresponding
3502/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3503/// at the current pack substitution index.
3504class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3505  /// \brief The original type parameter.
3506  const TemplateTypeParmType *Replaced;
3507
3508  /// \brief A pointer to the set of template arguments that this
3509  /// parameter pack is instantiated with.
3510  const TemplateArgument *Arguments;
3511
3512  /// \brief The number of template arguments in \c Arguments.
3513  unsigned NumArguments;
3514
3515  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3516                                QualType Canon,
3517                                const TemplateArgument &ArgPack);
3518
3519  friend class ASTContext;
3520
3521public:
3522  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
3523
3524  /// Gets the template parameter that was substituted for.
3525  const TemplateTypeParmType *getReplacedParameter() const {
3526    return Replaced;
3527  }
3528
3529  bool isSugared() const { return false; }
3530  QualType desugar() const { return QualType(this, 0); }
3531
3532  TemplateArgument getArgumentPack() const;
3533
3534  void Profile(llvm::FoldingSetNodeID &ID);
3535  static void Profile(llvm::FoldingSetNodeID &ID,
3536                      const TemplateTypeParmType *Replaced,
3537                      const TemplateArgument &ArgPack);
3538
3539  static bool classof(const Type *T) {
3540    return T->getTypeClass() == SubstTemplateTypeParmPack;
3541  }
3542};
3543
3544/// \brief Represents a C++0x auto type.
3545///
3546/// These types are usually a placeholder for a deduced type. However, within
3547/// templates and before the initializer is attached, there is no deduced type
3548/// and an auto type is type-dependent and canonical.
3549class AutoType : public Type, public llvm::FoldingSetNode {
3550  AutoType(QualType DeducedType)
3551    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3552           /*Dependent=*/DeducedType.isNull(),
3553           /*InstantiationDependent=*/DeducedType.isNull(),
3554           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3555    assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
3556           "deduced a dependent type for auto");
3557  }
3558
3559  friend class ASTContext;  // ASTContext creates these
3560
3561public:
3562  bool isSugared() const { return isDeduced(); }
3563  QualType desugar() const { return getCanonicalTypeInternal(); }
3564
3565  QualType getDeducedType() const {
3566    return isDeduced() ? getCanonicalTypeInternal() : QualType();
3567  }
3568  bool isDeduced() const {
3569    return !isDependentType();
3570  }
3571
3572  void Profile(llvm::FoldingSetNodeID &ID) {
3573    Profile(ID, getDeducedType());
3574  }
3575
3576  static void Profile(llvm::FoldingSetNodeID &ID,
3577                      QualType Deduced) {
3578    ID.AddPointer(Deduced.getAsOpaquePtr());
3579  }
3580
3581  static bool classof(const Type *T) {
3582    return T->getTypeClass() == Auto;
3583  }
3584};
3585
3586/// \brief Represents a type template specialization; the template
3587/// must be a class template, a type alias template, or a template
3588/// template parameter.  A template which cannot be resolved to one of
3589/// these, e.g. because it is written with a dependent scope
3590/// specifier, is instead represented as a
3591/// @c DependentTemplateSpecializationType.
3592///
3593/// A non-dependent template specialization type is always "sugar",
3594/// typically for a @c RecordType.  For example, a class template
3595/// specialization type of @c vector<int> will refer to a tag type for
3596/// the instantiation @c std::vector<int, std::allocator<int>>
3597///
3598/// Template specializations are dependent if either the template or
3599/// any of the template arguments are dependent, in which case the
3600/// type may also be canonical.
3601///
3602/// Instances of this type are allocated with a trailing array of
3603/// TemplateArguments, followed by a QualType representing the
3604/// non-canonical aliased type when the template is a type alias
3605/// template.
3606class TemplateSpecializationType
3607  : public Type, public llvm::FoldingSetNode {
3608  /// \brief The name of the template being specialized.  This is
3609  /// either a TemplateName::Template (in which case it is a
3610  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
3611  /// TypeAliasTemplateDecl*), a
3612  /// TemplateName::SubstTemplateTemplateParmPack, or a
3613  /// TemplateName::SubstTemplateTemplateParm (in which case the
3614  /// replacement must, recursively, be one of these).
3615  TemplateName Template;
3616
3617  /// \brief - The number of template arguments named in this class
3618  /// template specialization.
3619  unsigned NumArgs : 31;
3620
3621  /// \brief Whether this template specialization type is a substituted
3622  /// type alias.
3623  bool TypeAlias : 1;
3624
3625  TemplateSpecializationType(TemplateName T,
3626                             const TemplateArgument *Args,
3627                             unsigned NumArgs, QualType Canon,
3628                             QualType Aliased);
3629
3630  friend class ASTContext;  // ASTContext creates these
3631
3632public:
3633  /// \brief Determine whether any of the given template arguments are
3634  /// dependent.
3635  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3636                                            unsigned NumArgs,
3637                                            bool &InstantiationDependent);
3638
3639  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3640                                            unsigned NumArgs,
3641                                            bool &InstantiationDependent);
3642
3643  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
3644                                            bool &InstantiationDependent);
3645
3646  /// \brief Print a template argument list, including the '<' and '>'
3647  /// enclosing the template arguments.
3648  static void PrintTemplateArgumentList(raw_ostream &OS,
3649                                        const TemplateArgument *Args,
3650                                        unsigned NumArgs,
3651                                        const PrintingPolicy &Policy,
3652                                        bool SkipBrackets = false);
3653
3654  static void PrintTemplateArgumentList(raw_ostream &OS,
3655                                        const TemplateArgumentLoc *Args,
3656                                        unsigned NumArgs,
3657                                        const PrintingPolicy &Policy);
3658
3659  static void PrintTemplateArgumentList(raw_ostream &OS,
3660                                        const TemplateArgumentListInfo &,
3661                                        const PrintingPolicy &Policy);
3662
3663  /// True if this template specialization type matches a current
3664  /// instantiation in the context in which it is found.
3665  bool isCurrentInstantiation() const {
3666    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3667  }
3668
3669  /// \brief Determine if this template specialization type is for a type alias
3670  /// template that has been substituted.
3671  ///
3672  /// Nearly every template specialization type whose template is an alias
3673  /// template will be substituted. However, this is not the case when
3674  /// the specialization contains a pack expansion but the template alias
3675  /// does not have a corresponding parameter pack, e.g.,
3676  ///
3677  /// \code
3678  /// template<typename T, typename U, typename V> struct S;
3679  /// template<typename T, typename U> using A = S<T, int, U>;
3680  /// template<typename... Ts> struct X {
3681  ///   typedef A<Ts...> type; // not a type alias
3682  /// };
3683  /// \endcode
3684  bool isTypeAlias() const { return TypeAlias; }
3685
3686  /// Get the aliased type, if this is a specialization of a type alias
3687  /// template.
3688  QualType getAliasedType() const {
3689    assert(isTypeAlias() && "not a type alias template specialization");
3690    return *reinterpret_cast<const QualType*>(end());
3691  }
3692
3693  typedef const TemplateArgument * iterator;
3694
3695  iterator begin() const { return getArgs(); }
3696  iterator end() const; // defined inline in TemplateBase.h
3697
3698  /// \brief Retrieve the name of the template that we are specializing.
3699  TemplateName getTemplateName() const { return Template; }
3700
3701  /// \brief Retrieve the template arguments.
3702  const TemplateArgument *getArgs() const {
3703    return reinterpret_cast<const TemplateArgument *>(this + 1);
3704  }
3705
3706  /// \brief Retrieve the number of template arguments.
3707  unsigned getNumArgs() const { return NumArgs; }
3708
3709  /// \brief Retrieve a specific template argument as a type.
3710  /// \pre @c isArgType(Arg)
3711  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3712
3713  bool isSugared() const {
3714    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
3715  }
3716  QualType desugar() const { return getCanonicalTypeInternal(); }
3717
3718  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3719    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3720    if (isTypeAlias())
3721      getAliasedType().Profile(ID);
3722  }
3723
3724  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3725                      const TemplateArgument *Args,
3726                      unsigned NumArgs,
3727                      const ASTContext &Context);
3728
3729  static bool classof(const Type *T) {
3730    return T->getTypeClass() == TemplateSpecialization;
3731  }
3732};
3733
3734/// \brief The injected class name of a C++ class template or class
3735/// template partial specialization.  Used to record that a type was
3736/// spelled with a bare identifier rather than as a template-id; the
3737/// equivalent for non-templated classes is just RecordType.
3738///
3739/// Injected class name types are always dependent.  Template
3740/// instantiation turns these into RecordTypes.
3741///
3742/// Injected class name types are always canonical.  This works
3743/// because it is impossible to compare an injected class name type
3744/// with the corresponding non-injected template type, for the same
3745/// reason that it is impossible to directly compare template
3746/// parameters from different dependent contexts: injected class name
3747/// types can only occur within the scope of a particular templated
3748/// declaration, and within that scope every template specialization
3749/// will canonicalize to the injected class name (when appropriate
3750/// according to the rules of the language).
3751class InjectedClassNameType : public Type {
3752  CXXRecordDecl *Decl;
3753
3754  /// The template specialization which this type represents.
3755  /// For example, in
3756  ///   template <class T> class A { ... };
3757  /// this is A<T>, whereas in
3758  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3759  /// this is A<B<X,Y> >.
3760  ///
3761  /// It is always unqualified, always a template specialization type,
3762  /// and always dependent.
3763  QualType InjectedType;
3764
3765  friend class ASTContext; // ASTContext creates these.
3766  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3767                          // currently suitable for AST reading, too much
3768                          // interdependencies.
3769  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3770    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3771           /*InstantiationDependent=*/true,
3772           /*VariablyModified=*/false,
3773           /*ContainsUnexpandedParameterPack=*/false),
3774      Decl(D), InjectedType(TST) {
3775    assert(isa<TemplateSpecializationType>(TST));
3776    assert(!TST.hasQualifiers());
3777    assert(TST->isDependentType());
3778  }
3779
3780public:
3781  QualType getInjectedSpecializationType() const { return InjectedType; }
3782  const TemplateSpecializationType *getInjectedTST() const {
3783    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3784  }
3785
3786  CXXRecordDecl *getDecl() const;
3787
3788  bool isSugared() const { return false; }
3789  QualType desugar() const { return QualType(this, 0); }
3790
3791  static bool classof(const Type *T) {
3792    return T->getTypeClass() == InjectedClassName;
3793  }
3794};
3795
3796/// \brief The kind of a tag type.
3797enum TagTypeKind {
3798  /// \brief The "struct" keyword.
3799  TTK_Struct,
3800  /// \brief The "__interface" keyword.
3801  TTK_Interface,
3802  /// \brief The "union" keyword.
3803  TTK_Union,
3804  /// \brief The "class" keyword.
3805  TTK_Class,
3806  /// \brief The "enum" keyword.
3807  TTK_Enum
3808};
3809
3810/// \brief The elaboration keyword that precedes a qualified type name or
3811/// introduces an elaborated-type-specifier.
3812enum ElaboratedTypeKeyword {
3813  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3814  ETK_Struct,
3815  /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
3816  ETK_Interface,
3817  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3818  ETK_Union,
3819  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3820  ETK_Class,
3821  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3822  ETK_Enum,
3823  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3824  /// \c typename T::type.
3825  ETK_Typename,
3826  /// \brief No keyword precedes the qualified type name.
3827  ETK_None
3828};
3829
3830/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3831/// The keyword in stored in the free bits of the base class.
3832/// Also provides a few static helpers for converting and printing
3833/// elaborated type keyword and tag type kind enumerations.
3834class TypeWithKeyword : public Type {
3835protected:
3836  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3837                  QualType Canonical, bool Dependent,
3838                  bool InstantiationDependent, bool VariablyModified,
3839                  bool ContainsUnexpandedParameterPack)
3840  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3841         ContainsUnexpandedParameterPack) {
3842    TypeWithKeywordBits.Keyword = Keyword;
3843  }
3844
3845public:
3846  ElaboratedTypeKeyword getKeyword() const {
3847    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3848  }
3849
3850  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3851  /// into an elaborated type keyword.
3852  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3853
3854  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3855  /// into a tag type kind.  It is an error to provide a type specifier
3856  /// which *isn't* a tag kind here.
3857  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3858
3859  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3860  /// elaborated type keyword.
3861  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3862
3863  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3864  // a TagTypeKind. It is an error to provide an elaborated type keyword
3865  /// which *isn't* a tag kind here.
3866  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3867
3868  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3869
3870  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3871
3872  static const char *getTagTypeKindName(TagTypeKind Kind) {
3873    return getKeywordName(getKeywordForTagTypeKind(Kind));
3874  }
3875
3876  class CannotCastToThisType {};
3877  static CannotCastToThisType classof(const Type *);
3878};
3879
3880/// \brief Represents a type that was referred to using an elaborated type
3881/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3882/// or both.
3883///
3884/// This type is used to keep track of a type name as written in the
3885/// source code, including tag keywords and any nested-name-specifiers.
3886/// The type itself is always "sugar", used to express what was written
3887/// in the source code but containing no additional semantic information.
3888class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3889
3890  /// \brief The nested name specifier containing the qualifier.
3891  NestedNameSpecifier *NNS;
3892
3893  /// \brief The type that this qualified name refers to.
3894  QualType NamedType;
3895
3896  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3897                 QualType NamedType, QualType CanonType)
3898    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3899                      NamedType->isDependentType(),
3900                      NamedType->isInstantiationDependentType(),
3901                      NamedType->isVariablyModifiedType(),
3902                      NamedType->containsUnexpandedParameterPack()),
3903      NNS(NNS), NamedType(NamedType) {
3904    assert(!(Keyword == ETK_None && NNS == 0) &&
3905           "ElaboratedType cannot have elaborated type keyword "
3906           "and name qualifier both null.");
3907  }
3908
3909  friend class ASTContext;  // ASTContext creates these
3910
3911public:
3912  ~ElaboratedType();
3913
3914  /// \brief Retrieve the qualification on this type.
3915  NestedNameSpecifier *getQualifier() const { return NNS; }
3916
3917  /// \brief Retrieve the type named by the qualified-id.
3918  QualType getNamedType() const { return NamedType; }
3919
3920  /// \brief Remove a single level of sugar.
3921  QualType desugar() const { return getNamedType(); }
3922
3923  /// \brief Returns whether this type directly provides sugar.
3924  bool isSugared() const { return true; }
3925
3926  void Profile(llvm::FoldingSetNodeID &ID) {
3927    Profile(ID, getKeyword(), NNS, NamedType);
3928  }
3929
3930  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3931                      NestedNameSpecifier *NNS, QualType NamedType) {
3932    ID.AddInteger(Keyword);
3933    ID.AddPointer(NNS);
3934    NamedType.Profile(ID);
3935  }
3936
3937  static bool classof(const Type *T) {
3938    return T->getTypeClass() == Elaborated;
3939  }
3940};
3941
3942/// \brief Represents a qualified type name for which the type name is
3943/// dependent.
3944///
3945/// DependentNameType represents a class of dependent types that involve a
3946/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3947/// name of a type. The DependentNameType may start with a "typename" (for a
3948/// typename-specifier), "class", "struct", "union", or "enum" (for a
3949/// dependent elaborated-type-specifier), or nothing (in contexts where we
3950/// know that we must be referring to a type, e.g., in a base class specifier).
3951class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3952
3953  /// \brief The nested name specifier containing the qualifier.
3954  NestedNameSpecifier *NNS;
3955
3956  /// \brief The type that this typename specifier refers to.
3957  const IdentifierInfo *Name;
3958
3959  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3960                    const IdentifierInfo *Name, QualType CanonType)
3961    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3962                      /*InstantiationDependent=*/true,
3963                      /*VariablyModified=*/false,
3964                      NNS->containsUnexpandedParameterPack()),
3965      NNS(NNS), Name(Name) {
3966    assert(NNS->isDependent() &&
3967           "DependentNameType requires a dependent nested-name-specifier");
3968  }
3969
3970  friend class ASTContext;  // ASTContext creates these
3971
3972public:
3973  /// \brief Retrieve the qualification on this type.
3974  NestedNameSpecifier *getQualifier() const { return NNS; }
3975
3976  /// \brief Retrieve the type named by the typename specifier as an
3977  /// identifier.
3978  ///
3979  /// This routine will return a non-NULL identifier pointer when the
3980  /// form of the original typename was terminated by an identifier,
3981  /// e.g., "typename T::type".
3982  const IdentifierInfo *getIdentifier() const {
3983    return Name;
3984  }
3985
3986  bool isSugared() const { return false; }
3987  QualType desugar() const { return QualType(this, 0); }
3988
3989  void Profile(llvm::FoldingSetNodeID &ID) {
3990    Profile(ID, getKeyword(), NNS, Name);
3991  }
3992
3993  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3994                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
3995    ID.AddInteger(Keyword);
3996    ID.AddPointer(NNS);
3997    ID.AddPointer(Name);
3998  }
3999
4000  static bool classof(const Type *T) {
4001    return T->getTypeClass() == DependentName;
4002  }
4003};
4004
4005/// DependentTemplateSpecializationType - Represents a template
4006/// specialization type whose template cannot be resolved, e.g.
4007///   A<T>::template B<T>
4008class DependentTemplateSpecializationType :
4009  public TypeWithKeyword, public llvm::FoldingSetNode {
4010
4011  /// \brief The nested name specifier containing the qualifier.
4012  NestedNameSpecifier *NNS;
4013
4014  /// \brief The identifier of the template.
4015  const IdentifierInfo *Name;
4016
4017  /// \brief - The number of template arguments named in this class
4018  /// template specialization.
4019  unsigned NumArgs;
4020
4021  const TemplateArgument *getArgBuffer() const {
4022    return reinterpret_cast<const TemplateArgument*>(this+1);
4023  }
4024  TemplateArgument *getArgBuffer() {
4025    return reinterpret_cast<TemplateArgument*>(this+1);
4026  }
4027
4028  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
4029                                      NestedNameSpecifier *NNS,
4030                                      const IdentifierInfo *Name,
4031                                      unsigned NumArgs,
4032                                      const TemplateArgument *Args,
4033                                      QualType Canon);
4034
4035  friend class ASTContext;  // ASTContext creates these
4036
4037public:
4038  NestedNameSpecifier *getQualifier() const { return NNS; }
4039  const IdentifierInfo *getIdentifier() const { return Name; }
4040
4041  /// \brief Retrieve the template arguments.
4042  const TemplateArgument *getArgs() const {
4043    return getArgBuffer();
4044  }
4045
4046  /// \brief Retrieve the number of template arguments.
4047  unsigned getNumArgs() const { return NumArgs; }
4048
4049  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4050
4051  typedef const TemplateArgument * iterator;
4052  iterator begin() const { return getArgs(); }
4053  iterator end() const; // inline in TemplateBase.h
4054
4055  bool isSugared() const { return false; }
4056  QualType desugar() const { return QualType(this, 0); }
4057
4058  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
4059    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
4060  }
4061
4062  static void Profile(llvm::FoldingSetNodeID &ID,
4063                      const ASTContext &Context,
4064                      ElaboratedTypeKeyword Keyword,
4065                      NestedNameSpecifier *Qualifier,
4066                      const IdentifierInfo *Name,
4067                      unsigned NumArgs,
4068                      const TemplateArgument *Args);
4069
4070  static bool classof(const Type *T) {
4071    return T->getTypeClass() == DependentTemplateSpecialization;
4072  }
4073};
4074
4075/// \brief Represents a pack expansion of types.
4076///
4077/// Pack expansions are part of C++0x variadic templates. A pack
4078/// expansion contains a pattern, which itself contains one or more
4079/// "unexpanded" parameter packs. When instantiated, a pack expansion
4080/// produces a series of types, each instantiated from the pattern of
4081/// the expansion, where the Ith instantiation of the pattern uses the
4082/// Ith arguments bound to each of the unexpanded parameter packs. The
4083/// pack expansion is considered to "expand" these unexpanded
4084/// parameter packs.
4085///
4086/// \code
4087/// template<typename ...Types> struct tuple;
4088///
4089/// template<typename ...Types>
4090/// struct tuple_of_references {
4091///   typedef tuple<Types&...> type;
4092/// };
4093/// \endcode
4094///
4095/// Here, the pack expansion \c Types&... is represented via a
4096/// PackExpansionType whose pattern is Types&.
4097class PackExpansionType : public Type, public llvm::FoldingSetNode {
4098  /// \brief The pattern of the pack expansion.
4099  QualType Pattern;
4100
4101  /// \brief The number of expansions that this pack expansion will
4102  /// generate when substituted (+1), or indicates that
4103  ///
4104  /// This field will only have a non-zero value when some of the parameter
4105  /// packs that occur within the pattern have been substituted but others have
4106  /// not.
4107  unsigned NumExpansions;
4108
4109  PackExpansionType(QualType Pattern, QualType Canon,
4110                    Optional<unsigned> NumExpansions)
4111    : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
4112           /*InstantiationDependent=*/true,
4113           /*VariableModified=*/Pattern->isVariablyModifiedType(),
4114           /*ContainsUnexpandedParameterPack=*/false),
4115      Pattern(Pattern),
4116      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
4117
4118  friend class ASTContext;  // ASTContext creates these
4119
4120public:
4121  /// \brief Retrieve the pattern of this pack expansion, which is the
4122  /// type that will be repeatedly instantiated when instantiating the
4123  /// pack expansion itself.
4124  QualType getPattern() const { return Pattern; }
4125
4126  /// \brief Retrieve the number of expansions that this pack expansion will
4127  /// generate, if known.
4128  Optional<unsigned> getNumExpansions() const {
4129    if (NumExpansions)
4130      return NumExpansions - 1;
4131
4132    return None;
4133  }
4134
4135  bool isSugared() const { return false; }
4136  QualType desugar() const { return QualType(this, 0); }
4137
4138  void Profile(llvm::FoldingSetNodeID &ID) {
4139    Profile(ID, getPattern(), getNumExpansions());
4140  }
4141
4142  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
4143                      Optional<unsigned> NumExpansions) {
4144    ID.AddPointer(Pattern.getAsOpaquePtr());
4145    ID.AddBoolean(NumExpansions.hasValue());
4146    if (NumExpansions)
4147      ID.AddInteger(*NumExpansions);
4148  }
4149
4150  static bool classof(const Type *T) {
4151    return T->getTypeClass() == PackExpansion;
4152  }
4153};
4154
4155/// ObjCObjectType - Represents a class type in Objective C.
4156/// Every Objective C type is a combination of a base type and a
4157/// list of protocols.
4158///
4159/// Given the following declarations:
4160/// \code
4161///   \@class C;
4162///   \@protocol P;
4163/// \endcode
4164///
4165/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4166/// with base C and no protocols.
4167///
4168/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
4169///
4170/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
4171/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4172/// and no protocols.
4173///
4174/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
4175/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4176/// this should get its own sugar class to better represent the source.
4177class ObjCObjectType : public Type {
4178  // ObjCObjectType.NumProtocols - the number of protocols stored
4179  // after the ObjCObjectPointerType node.
4180  //
4181  // These protocols are those written directly on the type.  If
4182  // protocol qualifiers ever become additive, the iterators will need
4183  // to get kindof complicated.
4184  //
4185  // In the canonical object type, these are sorted alphabetically
4186  // and uniqued.
4187
4188  /// Either a BuiltinType or an InterfaceType or sugar for either.
4189  QualType BaseType;
4190
4191  ObjCProtocolDecl * const *getProtocolStorage() const {
4192    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4193  }
4194
4195  ObjCProtocolDecl **getProtocolStorage();
4196
4197protected:
4198  ObjCObjectType(QualType Canonical, QualType Base,
4199                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
4200
4201  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4202  ObjCObjectType(enum Nonce_ObjCInterface)
4203        : Type(ObjCInterface, QualType(), false, false, false, false),
4204      BaseType(QualType(this_(), 0)) {
4205    ObjCObjectTypeBits.NumProtocols = 0;
4206  }
4207
4208public:
4209  /// getBaseType - Gets the base type of this object type.  This is
4210  /// always (possibly sugar for) one of:
4211  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4212  ///    user, which is a typedef for an ObjCPointerType)
4213  ///  - the 'Class' builtin type (same caveat)
4214  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4215  QualType getBaseType() const { return BaseType; }
4216
4217  bool isObjCId() const {
4218    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4219  }
4220  bool isObjCClass() const {
4221    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4222  }
4223  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4224  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4225  bool isObjCUnqualifiedIdOrClass() const {
4226    if (!qual_empty()) return false;
4227    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4228      return T->getKind() == BuiltinType::ObjCId ||
4229             T->getKind() == BuiltinType::ObjCClass;
4230    return false;
4231  }
4232  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4233  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4234
4235  /// Gets the interface declaration for this object type, if the base type
4236  /// really is an interface.
4237  ObjCInterfaceDecl *getInterface() const;
4238
4239  typedef ObjCProtocolDecl * const *qual_iterator;
4240
4241  qual_iterator qual_begin() const { return getProtocolStorage(); }
4242  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4243
4244  bool qual_empty() const { return getNumProtocols() == 0; }
4245
4246  /// getNumProtocols - Return the number of qualifying protocols in this
4247  /// interface type, or 0 if there are none.
4248  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4249
4250  /// \brief Fetch a protocol by index.
4251  ObjCProtocolDecl *getProtocol(unsigned I) const {
4252    assert(I < getNumProtocols() && "Out-of-range protocol access");
4253    return qual_begin()[I];
4254  }
4255
4256  bool isSugared() const { return false; }
4257  QualType desugar() const { return QualType(this, 0); }
4258
4259  static bool classof(const Type *T) {
4260    return T->getTypeClass() == ObjCObject ||
4261           T->getTypeClass() == ObjCInterface;
4262  }
4263};
4264
4265/// ObjCObjectTypeImpl - A class providing a concrete implementation
4266/// of ObjCObjectType, so as to not increase the footprint of
4267/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4268/// system should not reference this type.
4269class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4270  friend class ASTContext;
4271
4272  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4273  // will need to be modified.
4274
4275  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4276                     ObjCProtocolDecl * const *Protocols,
4277                     unsigned NumProtocols)
4278    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
4279
4280public:
4281  void Profile(llvm::FoldingSetNodeID &ID);
4282  static void Profile(llvm::FoldingSetNodeID &ID,
4283                      QualType Base,
4284                      ObjCProtocolDecl *const *protocols,
4285                      unsigned NumProtocols);
4286};
4287
4288inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4289  return reinterpret_cast<ObjCProtocolDecl**>(
4290            static_cast<ObjCObjectTypeImpl*>(this) + 1);
4291}
4292
4293/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
4294/// object oriented design.  They basically correspond to C++ classes.  There
4295/// are two kinds of interface types, normal interfaces like "NSString" and
4296/// qualified interfaces, which are qualified with a protocol list like
4297/// "NSString<NSCopyable, NSAmazing>".
4298///
4299/// ObjCInterfaceType guarantees the following properties when considered
4300/// as a subtype of its superclass, ObjCObjectType:
4301///   - There are no protocol qualifiers.  To reinforce this, code which
4302///     tries to invoke the protocol methods via an ObjCInterfaceType will
4303///     fail to compile.
4304///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4305///     T->getBaseType() == QualType(T, 0).
4306class ObjCInterfaceType : public ObjCObjectType {
4307  mutable ObjCInterfaceDecl *Decl;
4308
4309  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4310    : ObjCObjectType(Nonce_ObjCInterface),
4311      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4312  friend class ASTContext;  // ASTContext creates these.
4313  friend class ASTReader;
4314  friend class ObjCInterfaceDecl;
4315
4316public:
4317  /// getDecl - Get the declaration of this interface.
4318  ObjCInterfaceDecl *getDecl() const { return Decl; }
4319
4320  bool isSugared() const { return false; }
4321  QualType desugar() const { return QualType(this, 0); }
4322
4323  static bool classof(const Type *T) {
4324    return T->getTypeClass() == ObjCInterface;
4325  }
4326
4327  // Nonsense to "hide" certain members of ObjCObjectType within this
4328  // class.  People asking for protocols on an ObjCInterfaceType are
4329  // not going to get what they want: ObjCInterfaceTypes are
4330  // guaranteed to have no protocols.
4331  enum {
4332    qual_iterator,
4333    qual_begin,
4334    qual_end,
4335    getNumProtocols,
4336    getProtocol
4337  };
4338};
4339
4340inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4341  if (const ObjCInterfaceType *T =
4342        getBaseType()->getAs<ObjCInterfaceType>())
4343    return T->getDecl();
4344  return 0;
4345}
4346
4347/// ObjCObjectPointerType - Used to represent a pointer to an
4348/// Objective C object.  These are constructed from pointer
4349/// declarators when the pointee type is an ObjCObjectType (or sugar
4350/// for one).  In addition, the 'id' and 'Class' types are typedefs
4351/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
4352/// are translated into these.
4353///
4354/// Pointers to pointers to Objective C objects are still PointerTypes;
4355/// only the first level of pointer gets it own type implementation.
4356class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4357  QualType PointeeType;
4358
4359  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4360    : Type(ObjCObjectPointer, Canonical, false, false, false, false),
4361      PointeeType(Pointee) {}
4362  friend class ASTContext;  // ASTContext creates these.
4363
4364public:
4365  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
4366  /// The result will always be an ObjCObjectType or sugar thereof.
4367  QualType getPointeeType() const { return PointeeType; }
4368
4369  /// getObjCObjectType - Gets the type pointed to by this ObjC
4370  /// pointer.  This method always returns non-null.
4371  ///
4372  /// This method is equivalent to getPointeeType() except that
4373  /// it discards any typedefs (or other sugar) between this
4374  /// type and the "outermost" object type.  So for:
4375  /// \code
4376  ///   \@class A; \@protocol P; \@protocol Q;
4377  ///   typedef A<P> AP;
4378  ///   typedef A A1;
4379  ///   typedef A1<P> A1P;
4380  ///   typedef A1P<Q> A1PQ;
4381  /// \endcode
4382  /// For 'A*', getObjectType() will return 'A'.
4383  /// For 'A<P>*', getObjectType() will return 'A<P>'.
4384  /// For 'AP*', getObjectType() will return 'A<P>'.
4385  /// For 'A1*', getObjectType() will return 'A'.
4386  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
4387  /// For 'A1P*', getObjectType() will return 'A1<P>'.
4388  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
4389  ///   adding protocols to a protocol-qualified base discards the
4390  ///   old qualifiers (for now).  But if it didn't, getObjectType()
4391  ///   would return 'A1P<Q>' (and we'd have to make iterating over
4392  ///   qualifiers more complicated).
4393  const ObjCObjectType *getObjectType() const {
4394    return PointeeType->castAs<ObjCObjectType>();
4395  }
4396
4397  /// getInterfaceType - If this pointer points to an Objective C
4398  /// \@interface type, gets the type for that interface.  Any protocol
4399  /// qualifiers on the interface are ignored.
4400  ///
4401  /// \return null if the base type for this pointer is 'id' or 'Class'
4402  const ObjCInterfaceType *getInterfaceType() const {
4403    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
4404  }
4405
4406  /// getInterfaceDecl - If this pointer points to an Objective \@interface
4407  /// type, gets the declaration for that interface.
4408  ///
4409  /// \return null if the base type for this pointer is 'id' or 'Class'
4410  ObjCInterfaceDecl *getInterfaceDecl() const {
4411    return getObjectType()->getInterface();
4412  }
4413
4414  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
4415  /// its object type is the primitive 'id' type with no protocols.
4416  bool isObjCIdType() const {
4417    return getObjectType()->isObjCUnqualifiedId();
4418  }
4419
4420  /// isObjCClassType - True if this is equivalent to the 'Class' type,
4421  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
4422  bool isObjCClassType() const {
4423    return getObjectType()->isObjCUnqualifiedClass();
4424  }
4425
4426  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
4427  /// non-empty set of protocols.
4428  bool isObjCQualifiedIdType() const {
4429    return getObjectType()->isObjCQualifiedId();
4430  }
4431
4432  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
4433  /// some non-empty set of protocols.
4434  bool isObjCQualifiedClassType() const {
4435    return getObjectType()->isObjCQualifiedClass();
4436  }
4437
4438  /// An iterator over the qualifiers on the object type.  Provided
4439  /// for convenience.  This will always iterate over the full set of
4440  /// protocols on a type, not just those provided directly.
4441  typedef ObjCObjectType::qual_iterator qual_iterator;
4442
4443  qual_iterator qual_begin() const {
4444    return getObjectType()->qual_begin();
4445  }
4446  qual_iterator qual_end() const {
4447    return getObjectType()->qual_end();
4448  }
4449  bool qual_empty() const { return getObjectType()->qual_empty(); }
4450
4451  /// getNumProtocols - Return the number of qualifying protocols on
4452  /// the object type.
4453  unsigned getNumProtocols() const {
4454    return getObjectType()->getNumProtocols();
4455  }
4456
4457  /// \brief Retrieve a qualifying protocol by index on the object
4458  /// type.
4459  ObjCProtocolDecl *getProtocol(unsigned I) const {
4460    return getObjectType()->getProtocol(I);
4461  }
4462
4463  bool isSugared() const { return false; }
4464  QualType desugar() const { return QualType(this, 0); }
4465
4466  void Profile(llvm::FoldingSetNodeID &ID) {
4467    Profile(ID, getPointeeType());
4468  }
4469  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4470    ID.AddPointer(T.getAsOpaquePtr());
4471  }
4472  static bool classof(const Type *T) {
4473    return T->getTypeClass() == ObjCObjectPointer;
4474  }
4475};
4476
4477class AtomicType : public Type, public llvm::FoldingSetNode {
4478  QualType ValueType;
4479
4480  AtomicType(QualType ValTy, QualType Canonical)
4481    : Type(Atomic, Canonical, ValTy->isDependentType(),
4482           ValTy->isInstantiationDependentType(),
4483           ValTy->isVariablyModifiedType(),
4484           ValTy->containsUnexpandedParameterPack()),
4485      ValueType(ValTy) {}
4486  friend class ASTContext;  // ASTContext creates these.
4487
4488  public:
4489  /// getValueType - Gets the type contained by this atomic type, i.e.
4490  /// the type returned by performing an atomic load of this atomic type.
4491  QualType getValueType() const { return ValueType; }
4492
4493  bool isSugared() const { return false; }
4494  QualType desugar() const { return QualType(this, 0); }
4495
4496  void Profile(llvm::FoldingSetNodeID &ID) {
4497    Profile(ID, getValueType());
4498  }
4499  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4500    ID.AddPointer(T.getAsOpaquePtr());
4501  }
4502  static bool classof(const Type *T) {
4503    return T->getTypeClass() == Atomic;
4504  }
4505};
4506
4507/// A qualifier set is used to build a set of qualifiers.
4508class QualifierCollector : public Qualifiers {
4509public:
4510  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4511
4512  /// Collect any qualifiers on the given type and return an
4513  /// unqualified type.  The qualifiers are assumed to be consistent
4514  /// with those already in the type.
4515  const Type *strip(QualType type) {
4516    addFastQualifiers(type.getLocalFastQualifiers());
4517    if (!type.hasLocalNonFastQualifiers())
4518      return type.getTypePtrUnsafe();
4519
4520    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4521    addConsistentQualifiers(extQuals->getQualifiers());
4522    return extQuals->getBaseType();
4523  }
4524
4525  /// Apply the collected qualifiers to the given type.
4526  QualType apply(const ASTContext &Context, QualType QT) const;
4527
4528  /// Apply the collected qualifiers to the given type.
4529  QualType apply(const ASTContext &Context, const Type* T) const;
4530};
4531
4532
4533// Inline function definitions.
4534
4535inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
4536  SplitQualType desugar =
4537    Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
4538  desugar.Quals.addConsistentQualifiers(Quals);
4539  return desugar;
4540}
4541
4542inline const Type *QualType::getTypePtr() const {
4543  return getCommonPtr()->BaseType;
4544}
4545
4546inline const Type *QualType::getTypePtrOrNull() const {
4547  return (isNull() ? 0 : getCommonPtr()->BaseType);
4548}
4549
4550inline SplitQualType QualType::split() const {
4551  if (!hasLocalNonFastQualifiers())
4552    return SplitQualType(getTypePtrUnsafe(),
4553                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4554
4555  const ExtQuals *eq = getExtQualsUnsafe();
4556  Qualifiers qs = eq->getQualifiers();
4557  qs.addFastQualifiers(getLocalFastQualifiers());
4558  return SplitQualType(eq->getBaseType(), qs);
4559}
4560
4561inline Qualifiers QualType::getLocalQualifiers() const {
4562  Qualifiers Quals;
4563  if (hasLocalNonFastQualifiers())
4564    Quals = getExtQualsUnsafe()->getQualifiers();
4565  Quals.addFastQualifiers(getLocalFastQualifiers());
4566  return Quals;
4567}
4568
4569inline Qualifiers QualType::getQualifiers() const {
4570  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4571  quals.addFastQualifiers(getLocalFastQualifiers());
4572  return quals;
4573}
4574
4575inline unsigned QualType::getCVRQualifiers() const {
4576  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4577  cvr |= getLocalCVRQualifiers();
4578  return cvr;
4579}
4580
4581inline QualType QualType::getCanonicalType() const {
4582  QualType canon = getCommonPtr()->CanonicalType;
4583  return canon.withFastQualifiers(getLocalFastQualifiers());
4584}
4585
4586inline bool QualType::isCanonical() const {
4587  return getTypePtr()->isCanonicalUnqualified();
4588}
4589
4590inline bool QualType::isCanonicalAsParam() const {
4591  if (!isCanonical()) return false;
4592  if (hasLocalQualifiers()) return false;
4593
4594  const Type *T = getTypePtr();
4595  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4596    return false;
4597
4598  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4599}
4600
4601inline bool QualType::isConstQualified() const {
4602  return isLocalConstQualified() ||
4603         getCommonPtr()->CanonicalType.isLocalConstQualified();
4604}
4605
4606inline bool QualType::isRestrictQualified() const {
4607  return isLocalRestrictQualified() ||
4608         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4609}
4610
4611
4612inline bool QualType::isVolatileQualified() const {
4613  return isLocalVolatileQualified() ||
4614         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4615}
4616
4617inline bool QualType::hasQualifiers() const {
4618  return hasLocalQualifiers() ||
4619         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4620}
4621
4622inline QualType QualType::getUnqualifiedType() const {
4623  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4624    return QualType(getTypePtr(), 0);
4625
4626  return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
4627}
4628
4629inline SplitQualType QualType::getSplitUnqualifiedType() const {
4630  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4631    return split();
4632
4633  return getSplitUnqualifiedTypeImpl(*this);
4634}
4635
4636inline void QualType::removeLocalConst() {
4637  removeLocalFastQualifiers(Qualifiers::Const);
4638}
4639
4640inline void QualType::removeLocalRestrict() {
4641  removeLocalFastQualifiers(Qualifiers::Restrict);
4642}
4643
4644inline void QualType::removeLocalVolatile() {
4645  removeLocalFastQualifiers(Qualifiers::Volatile);
4646}
4647
4648inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4649  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4650  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4651
4652  // Fast path: we don't need to touch the slow qualifiers.
4653  removeLocalFastQualifiers(Mask);
4654}
4655
4656/// getAddressSpace - Return the address space of this type.
4657inline unsigned QualType::getAddressSpace() const {
4658  return getQualifiers().getAddressSpace();
4659}
4660
4661/// getObjCGCAttr - Return the gc attribute of this type.
4662inline Qualifiers::GC QualType::getObjCGCAttr() const {
4663  return getQualifiers().getObjCGCAttr();
4664}
4665
4666inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4667  if (const PointerType *PT = t.getAs<PointerType>()) {
4668    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4669      return FT->getExtInfo();
4670  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4671    return FT->getExtInfo();
4672
4673  return FunctionType::ExtInfo();
4674}
4675
4676inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4677  return getFunctionExtInfo(*t);
4678}
4679
4680/// isMoreQualifiedThan - Determine whether this type is more
4681/// qualified than the Other type. For example, "const volatile int"
4682/// is more qualified than "const int", "volatile int", and
4683/// "int". However, it is not more qualified than "const volatile
4684/// int".
4685inline bool QualType::isMoreQualifiedThan(QualType other) const {
4686  Qualifiers myQuals = getQualifiers();
4687  Qualifiers otherQuals = other.getQualifiers();
4688  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4689}
4690
4691/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4692/// as qualified as the Other type. For example, "const volatile
4693/// int" is at least as qualified as "const int", "volatile int",
4694/// "int", and "const volatile int".
4695inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4696  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4697}
4698
4699/// getNonReferenceType - If Type is a reference type (e.g., const
4700/// int&), returns the type that the reference refers to ("const
4701/// int"). Otherwise, returns the type itself. This routine is used
4702/// throughout Sema to implement C++ 5p6:
4703///
4704///   If an expression initially has the type "reference to T" (8.3.2,
4705///   8.5.3), the type is adjusted to "T" prior to any further
4706///   analysis, the expression designates the object or function
4707///   denoted by the reference, and the expression is an lvalue.
4708inline QualType QualType::getNonReferenceType() const {
4709  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4710    return RefType->getPointeeType();
4711  else
4712    return *this;
4713}
4714
4715inline bool QualType::isCForbiddenLValueType() const {
4716  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
4717          getTypePtr()->isFunctionType());
4718}
4719
4720/// \brief Tests whether the type is categorized as a fundamental type.
4721///
4722/// \returns True for types specified in C++0x [basic.fundamental].
4723inline bool Type::isFundamentalType() const {
4724  return isVoidType() ||
4725         // FIXME: It's really annoying that we don't have an
4726         // 'isArithmeticType()' which agrees with the standard definition.
4727         (isArithmeticType() && !isEnumeralType());
4728}
4729
4730/// \brief Tests whether the type is categorized as a compound type.
4731///
4732/// \returns True for types specified in C++0x [basic.compound].
4733inline bool Type::isCompoundType() const {
4734  // C++0x [basic.compound]p1:
4735  //   Compound types can be constructed in the following ways:
4736  //    -- arrays of objects of a given type [...];
4737  return isArrayType() ||
4738  //    -- functions, which have parameters of given types [...];
4739         isFunctionType() ||
4740  //    -- pointers to void or objects or functions [...];
4741         isPointerType() ||
4742  //    -- references to objects or functions of a given type. [...]
4743         isReferenceType() ||
4744  //    -- classes containing a sequence of objects of various types, [...];
4745         isRecordType() ||
4746  //    -- unions, which are classes capable of containing objects of different
4747  //               types at different times;
4748         isUnionType() ||
4749  //    -- enumerations, which comprise a set of named constant values. [...];
4750         isEnumeralType() ||
4751  //    -- pointers to non-static class members, [...].
4752         isMemberPointerType();
4753}
4754
4755inline bool Type::isFunctionType() const {
4756  return isa<FunctionType>(CanonicalType);
4757}
4758inline bool Type::isPointerType() const {
4759  return isa<PointerType>(CanonicalType);
4760}
4761inline bool Type::isAnyPointerType() const {
4762  return isPointerType() || isObjCObjectPointerType();
4763}
4764inline bool Type::isBlockPointerType() const {
4765  return isa<BlockPointerType>(CanonicalType);
4766}
4767inline bool Type::isReferenceType() const {
4768  return isa<ReferenceType>(CanonicalType);
4769}
4770inline bool Type::isLValueReferenceType() const {
4771  return isa<LValueReferenceType>(CanonicalType);
4772}
4773inline bool Type::isRValueReferenceType() const {
4774  return isa<RValueReferenceType>(CanonicalType);
4775}
4776inline bool Type::isFunctionPointerType() const {
4777  if (const PointerType *T = getAs<PointerType>())
4778    return T->getPointeeType()->isFunctionType();
4779  else
4780    return false;
4781}
4782inline bool Type::isMemberPointerType() const {
4783  return isa<MemberPointerType>(CanonicalType);
4784}
4785inline bool Type::isMemberFunctionPointerType() const {
4786  if (const MemberPointerType* T = getAs<MemberPointerType>())
4787    return T->isMemberFunctionPointer();
4788  else
4789    return false;
4790}
4791inline bool Type::isMemberDataPointerType() const {
4792  if (const MemberPointerType* T = getAs<MemberPointerType>())
4793    return T->isMemberDataPointer();
4794  else
4795    return false;
4796}
4797inline bool Type::isArrayType() const {
4798  return isa<ArrayType>(CanonicalType);
4799}
4800inline bool Type::isConstantArrayType() const {
4801  return isa<ConstantArrayType>(CanonicalType);
4802}
4803inline bool Type::isIncompleteArrayType() const {
4804  return isa<IncompleteArrayType>(CanonicalType);
4805}
4806inline bool Type::isVariableArrayType() const {
4807  return isa<VariableArrayType>(CanonicalType);
4808}
4809inline bool Type::isDependentSizedArrayType() const {
4810  return isa<DependentSizedArrayType>(CanonicalType);
4811}
4812inline bool Type::isBuiltinType() const {
4813  return isa<BuiltinType>(CanonicalType);
4814}
4815inline bool Type::isRecordType() const {
4816  return isa<RecordType>(CanonicalType);
4817}
4818inline bool Type::isEnumeralType() const {
4819  return isa<EnumType>(CanonicalType);
4820}
4821inline bool Type::isAnyComplexType() const {
4822  return isa<ComplexType>(CanonicalType);
4823}
4824inline bool Type::isVectorType() const {
4825  return isa<VectorType>(CanonicalType);
4826}
4827inline bool Type::isExtVectorType() const {
4828  return isa<ExtVectorType>(CanonicalType);
4829}
4830inline bool Type::isObjCObjectPointerType() const {
4831  return isa<ObjCObjectPointerType>(CanonicalType);
4832}
4833inline bool Type::isObjCObjectType() const {
4834  return isa<ObjCObjectType>(CanonicalType);
4835}
4836inline bool Type::isObjCObjectOrInterfaceType() const {
4837  return isa<ObjCInterfaceType>(CanonicalType) ||
4838    isa<ObjCObjectType>(CanonicalType);
4839}
4840inline bool Type::isAtomicType() const {
4841  return isa<AtomicType>(CanonicalType);
4842}
4843
4844inline bool Type::isObjCQualifiedIdType() const {
4845  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4846    return OPT->isObjCQualifiedIdType();
4847  return false;
4848}
4849inline bool Type::isObjCQualifiedClassType() const {
4850  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4851    return OPT->isObjCQualifiedClassType();
4852  return false;
4853}
4854inline bool Type::isObjCIdType() const {
4855  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4856    return OPT->isObjCIdType();
4857  return false;
4858}
4859inline bool Type::isObjCClassType() const {
4860  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4861    return OPT->isObjCClassType();
4862  return false;
4863}
4864inline bool Type::isObjCSelType() const {
4865  if (const PointerType *OPT = getAs<PointerType>())
4866    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4867  return false;
4868}
4869inline bool Type::isObjCBuiltinType() const {
4870  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4871}
4872
4873inline bool Type::isImage1dT() const {
4874  return isSpecificBuiltinType(BuiltinType::OCLImage1d);
4875}
4876
4877inline bool Type::isImage1dArrayT() const {
4878  return isSpecificBuiltinType(BuiltinType::OCLImage1dArray);
4879}
4880
4881inline bool Type::isImage1dBufferT() const {
4882  return isSpecificBuiltinType(BuiltinType::OCLImage1dBuffer);
4883}
4884
4885inline bool Type::isImage2dT() const {
4886  return isSpecificBuiltinType(BuiltinType::OCLImage2d);
4887}
4888
4889inline bool Type::isImage2dArrayT() const {
4890  return isSpecificBuiltinType(BuiltinType::OCLImage2dArray);
4891}
4892
4893inline bool Type::isImage3dT() const {
4894  return isSpecificBuiltinType(BuiltinType::OCLImage3d);
4895}
4896
4897inline bool Type::isSamplerT() const {
4898  return isSpecificBuiltinType(BuiltinType::OCLSampler);
4899}
4900
4901inline bool Type::isEventT() const {
4902  return isSpecificBuiltinType(BuiltinType::OCLEvent);
4903}
4904
4905inline bool Type::isImageType() const {
4906  return isImage3dT() ||
4907         isImage2dT() || isImage2dArrayT() ||
4908         isImage1dT() || isImage1dArrayT() || isImage1dBufferT();
4909}
4910
4911inline bool Type::isOpenCLSpecificType() const {
4912  return isSamplerT() || isEventT() || isImageType();
4913}
4914
4915inline bool Type::isTemplateTypeParmType() const {
4916  return isa<TemplateTypeParmType>(CanonicalType);
4917}
4918
4919inline bool Type::isSpecificBuiltinType(unsigned K) const {
4920  if (const BuiltinType *BT = getAs<BuiltinType>())
4921    if (BT->getKind() == (BuiltinType::Kind) K)
4922      return true;
4923  return false;
4924}
4925
4926inline bool Type::isPlaceholderType() const {
4927  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4928    return BT->isPlaceholderType();
4929  return false;
4930}
4931
4932inline const BuiltinType *Type::getAsPlaceholderType() const {
4933  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4934    if (BT->isPlaceholderType())
4935      return BT;
4936  return 0;
4937}
4938
4939inline bool Type::isSpecificPlaceholderType(unsigned K) const {
4940  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
4941  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4942    return (BT->getKind() == (BuiltinType::Kind) K);
4943  return false;
4944}
4945
4946inline bool Type::isNonOverloadPlaceholderType() const {
4947  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4948    return BT->isNonOverloadPlaceholderType();
4949  return false;
4950}
4951
4952inline bool Type::isVoidType() const {
4953  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4954    return BT->getKind() == BuiltinType::Void;
4955  return false;
4956}
4957
4958inline bool Type::isHalfType() const {
4959  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4960    return BT->getKind() == BuiltinType::Half;
4961  // FIXME: Should we allow complex __fp16? Probably not.
4962  return false;
4963}
4964
4965inline bool Type::isNullPtrType() const {
4966  if (const BuiltinType *BT = getAs<BuiltinType>())
4967    return BT->getKind() == BuiltinType::NullPtr;
4968  return false;
4969}
4970
4971extern bool IsEnumDeclComplete(EnumDecl *);
4972extern bool IsEnumDeclScoped(EnumDecl *);
4973
4974inline bool Type::isIntegerType() const {
4975  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4976    return BT->getKind() >= BuiltinType::Bool &&
4977           BT->getKind() <= BuiltinType::Int128;
4978  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
4979    // Incomplete enum types are not treated as integer types.
4980    // FIXME: In C++, enum types are never integer types.
4981    return IsEnumDeclComplete(ET->getDecl()) &&
4982      !IsEnumDeclScoped(ET->getDecl());
4983  }
4984  return false;
4985}
4986
4987inline bool Type::isScalarType() const {
4988  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4989    return BT->getKind() > BuiltinType::Void &&
4990           BT->getKind() <= BuiltinType::NullPtr;
4991  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
4992    // Enums are scalar types, but only if they are defined.  Incomplete enums
4993    // are not treated as scalar types.
4994    return IsEnumDeclComplete(ET->getDecl());
4995  return isa<PointerType>(CanonicalType) ||
4996         isa<BlockPointerType>(CanonicalType) ||
4997         isa<MemberPointerType>(CanonicalType) ||
4998         isa<ComplexType>(CanonicalType) ||
4999         isa<ObjCObjectPointerType>(CanonicalType);
5000}
5001
5002inline bool Type::isIntegralOrEnumerationType() const {
5003  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5004    return BT->getKind() >= BuiltinType::Bool &&
5005           BT->getKind() <= BuiltinType::Int128;
5006
5007  // Check for a complete enum type; incomplete enum types are not properly an
5008  // enumeration type in the sense required here.
5009  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5010    return IsEnumDeclComplete(ET->getDecl());
5011
5012  return false;
5013}
5014
5015inline bool Type::isBooleanType() const {
5016  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5017    return BT->getKind() == BuiltinType::Bool;
5018  return false;
5019}
5020
5021/// \brief Determines whether this is a type for which one can define
5022/// an overloaded operator.
5023inline bool Type::isOverloadableType() const {
5024  return isDependentType() || isRecordType() || isEnumeralType();
5025}
5026
5027/// \brief Determines whether this type can decay to a pointer type.
5028inline bool Type::canDecayToPointerType() const {
5029  return isFunctionType() || isArrayType();
5030}
5031
5032inline bool Type::hasPointerRepresentation() const {
5033  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
5034          isObjCObjectPointerType() || isNullPtrType());
5035}
5036
5037inline bool Type::hasObjCPointerRepresentation() const {
5038  return isObjCObjectPointerType();
5039}
5040
5041inline const Type *Type::getBaseElementTypeUnsafe() const {
5042  const Type *type = this;
5043  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
5044    type = arrayType->getElementType().getTypePtr();
5045  return type;
5046}
5047
5048/// Insertion operator for diagnostics.  This allows sending QualType's into a
5049/// diagnostic with <<.
5050inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
5051                                           QualType T) {
5052  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5053                  DiagnosticsEngine::ak_qualtype);
5054  return DB;
5055}
5056
5057/// Insertion operator for partial diagnostics.  This allows sending QualType's
5058/// into a diagnostic with <<.
5059inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
5060                                           QualType T) {
5061  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5062                  DiagnosticsEngine::ak_qualtype);
5063  return PD;
5064}
5065
5066// Helper class template that is used by Type::getAs to ensure that one does
5067// not try to look through a qualified type to get to an array type.
5068template<typename T,
5069         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
5070                             llvm::is_base_of<ArrayType, T>::value)>
5071struct ArrayType_cannot_be_used_with_getAs { };
5072
5073template<typename T>
5074struct ArrayType_cannot_be_used_with_getAs<T, true>;
5075
5076// Member-template getAs<specific type>'.
5077template <typename T> const T *Type::getAs() const {
5078  ArrayType_cannot_be_used_with_getAs<T> at;
5079  (void)at;
5080
5081  // If this is directly a T type, return it.
5082  if (const T *Ty = dyn_cast<T>(this))
5083    return Ty;
5084
5085  // If the canonical form of this type isn't the right kind, reject it.
5086  if (!isa<T>(CanonicalType))
5087    return 0;
5088
5089  // If this is a typedef for the type, strip the typedef off without
5090  // losing all typedef information.
5091  return cast<T>(getUnqualifiedDesugaredType());
5092}
5093
5094inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
5095  // If this is directly an array type, return it.
5096  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
5097    return arr;
5098
5099  // If the canonical form of this type isn't the right kind, reject it.
5100  if (!isa<ArrayType>(CanonicalType))
5101    return 0;
5102
5103  // If this is a typedef for the type, strip the typedef off without
5104  // losing all typedef information.
5105  return cast<ArrayType>(getUnqualifiedDesugaredType());
5106}
5107
5108template <typename T> const T *Type::castAs() const {
5109  ArrayType_cannot_be_used_with_getAs<T> at;
5110  (void) at;
5111
5112  assert(isa<T>(CanonicalType));
5113  if (const T *ty = dyn_cast<T>(this)) return ty;
5114  return cast<T>(getUnqualifiedDesugaredType());
5115}
5116
5117inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
5118  assert(isa<ArrayType>(CanonicalType));
5119  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
5120  return cast<ArrayType>(getUnqualifiedDesugaredType());
5121}
5122
5123}  // end namespace clang
5124
5125#endif
5126