Type.h revision 2ec09f1dc123e1942ed756e8ee4fef86451eac9e
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/AST/TemplateName.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/ADT/APSInt.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/PointerUnion.h"
26
27using llvm::isa;
28using llvm::cast;
29using llvm::cast_or_null;
30using llvm::dyn_cast;
31using llvm::dyn_cast_or_null;
32namespace clang { class Type; }
33
34namespace llvm {
35  template <typename T>
36  class PointerLikeTypeTraits;
37  template<>
38  class PointerLikeTypeTraits< ::clang::Type*> {
39  public:
40    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
41    static inline ::clang::Type *getFromVoidPointer(void *P) {
42      return static_cast< ::clang::Type*>(P);
43    }
44    enum { NumLowBitsAvailable = 3 };
45  };
46}
47
48namespace clang {
49  class ASTContext;
50  class TypedefDecl;
51  class TemplateDecl;
52  class TemplateTypeParmDecl;
53  class NonTypeTemplateParmDecl;
54  class TemplateTemplateParmDecl;
55  class TagDecl;
56  class RecordDecl;
57  class CXXRecordDecl;
58  class EnumDecl;
59  class FieldDecl;
60  class ObjCInterfaceDecl;
61  class ObjCProtocolDecl;
62  class ObjCMethodDecl;
63  class Expr;
64  class Stmt;
65  class SourceLocation;
66  class StmtIteratorBase;
67  class TemplateArgument;
68  class QualifiedNameType;
69  struct PrintingPolicy;
70
71  // Provide forward declarations for all of the *Type classes
72#define TYPE(Class, Base) class Class##Type;
73#include "clang/AST/TypeNodes.def"
74
75/// QualType - For efficiency, we don't store CVR-qualified types as nodes on
76/// their own: instead each reference to a type stores the qualifiers.  This
77/// greatly reduces the number of nodes we need to allocate for types (for
78/// example we only need one for 'int', 'const int', 'volatile int',
79/// 'const volatile int', etc).
80///
81/// As an added efficiency bonus, instead of making this a pair, we just store
82/// the three bits we care about in the low bits of the pointer.  To handle the
83/// packing/unpacking, we make QualType be a simple wrapper class that acts like
84/// a smart pointer.
85class QualType {
86  llvm::PointerIntPair<Type*, 3> Value;
87public:
88  enum TQ {   // NOTE: These flags must be kept in sync with DeclSpec::TQ.
89    Const    = 0x1,
90    Restrict = 0x2,
91    Volatile = 0x4,
92    CVRFlags = Const|Restrict|Volatile
93  };
94
95  enum GCAttrTypes {
96    GCNone = 0,
97    Weak,
98    Strong
99  };
100
101  // 24 bits should be enough for anyone.
102  static const unsigned MaxAddressSpace = 0xffffffu;
103
104  QualType() {}
105
106  QualType(const Type *Ptr, unsigned Quals)
107    : Value(const_cast<Type*>(Ptr), Quals) {}
108
109  unsigned getCVRQualifiers() const { return Value.getInt(); }
110  void setCVRQualifiers(unsigned Quals) { Value.setInt(Quals); }
111  Type *getTypePtr() const { return Value.getPointer(); }
112
113  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
114  static QualType getFromOpaquePtr(void *Ptr) {
115    QualType T;
116    T.Value.setFromOpaqueValue(Ptr);
117    return T;
118  }
119
120  Type &operator*() const {
121    return *getTypePtr();
122  }
123
124  Type *operator->() const {
125    return getTypePtr();
126  }
127
128  /// isNull - Return true if this QualType doesn't point to a type yet.
129  bool isNull() const {
130    return getTypePtr() == 0;
131  }
132
133  bool isConstQualified() const {
134    return (getCVRQualifiers() & Const) ? true : false;
135  }
136  bool isVolatileQualified() const {
137    return (getCVRQualifiers() & Volatile) ? true : false;
138  }
139  bool isRestrictQualified() const {
140    return (getCVRQualifiers() & Restrict) ? true : false;
141  }
142
143  bool isConstant(ASTContext& Ctx) const;
144
145  /// addConst/addVolatile/addRestrict - add the specified type qual to this
146  /// QualType.
147  void addConst()    { Value.setInt(Value.getInt() | Const); }
148  void addVolatile() { Value.setInt(Value.getInt() | Volatile); }
149  void addRestrict() { Value.setInt(Value.getInt() | Restrict); }
150
151  void removeConst()    { Value.setInt(Value.getInt() & ~Const); }
152  void removeVolatile() { Value.setInt(Value.getInt() & ~Volatile); }
153  void removeRestrict() { Value.setInt(Value.getInt() & ~Restrict); }
154
155  QualType getQualifiedType(unsigned TQs) const {
156    return QualType(getTypePtr(), TQs);
157  }
158  QualType getWithAdditionalQualifiers(unsigned TQs) const {
159    return QualType(getTypePtr(), TQs|getCVRQualifiers());
160  }
161
162  QualType withConst() const { return getWithAdditionalQualifiers(Const); }
163  QualType withVolatile() const { return getWithAdditionalQualifiers(Volatile);}
164  QualType withRestrict() const { return getWithAdditionalQualifiers(Restrict);}
165
166  QualType getUnqualifiedType() const;
167  bool isMoreQualifiedThan(QualType Other) const;
168  bool isAtLeastAsQualifiedAs(QualType Other) const;
169  QualType getNonReferenceType() const;
170
171  /// getDesugaredType - Return the specified type with any "sugar" removed from
172  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
173  /// the type is already concrete, it returns it unmodified.  This is similar
174  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
175  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
176  /// concrete.
177  QualType getDesugaredType(bool ForDisplay = false) const;
178
179  /// operator==/!= - Indicate whether the specified types and qualifiers are
180  /// identical.
181  bool operator==(const QualType &RHS) const {
182    return Value == RHS.Value;
183  }
184  bool operator!=(const QualType &RHS) const {
185    return Value != RHS.Value;
186  }
187  std::string getAsString() const;
188
189  std::string getAsString(const PrintingPolicy &Policy) const {
190    std::string S;
191    getAsStringInternal(S, Policy);
192    return S;
193  }
194  void getAsStringInternal(std::string &Str,
195                           const PrintingPolicy &Policy) const;
196
197  void dump(const char *s) const;
198  void dump() const;
199
200  void Profile(llvm::FoldingSetNodeID &ID) const {
201    ID.AddPointer(getAsOpaquePtr());
202  }
203
204public:
205
206  /// getAddressSpace - Return the address space of this type.
207  inline unsigned getAddressSpace() const;
208
209  /// GCAttrTypesAttr - Returns gc attribute of this type.
210  inline QualType::GCAttrTypes getObjCGCAttr() const;
211
212  /// isObjCGCWeak true when Type is objc's weak.
213  bool isObjCGCWeak() const {
214    return getObjCGCAttr() == Weak;
215  }
216
217  /// isObjCGCStrong true when Type is objc's strong.
218  bool isObjCGCStrong() const {
219    return getObjCGCAttr() == Strong;
220  }
221
222  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
223  /// false otherwise.
224  bool getNoReturnAttr() const;
225};
226
227} // end clang.
228
229namespace llvm {
230/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
231/// to a specific Type class.
232template<> struct simplify_type<const ::clang::QualType> {
233  typedef ::clang::Type* SimpleType;
234  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
235    return Val.getTypePtr();
236  }
237};
238template<> struct simplify_type< ::clang::QualType>
239  : public simplify_type<const ::clang::QualType> {};
240
241// Teach SmallPtrSet that QualType is "basically a pointer".
242template<>
243class PointerLikeTypeTraits<clang::QualType> {
244public:
245  static inline void *getAsVoidPointer(clang::QualType P) {
246    return P.getAsOpaquePtr();
247  }
248  static inline clang::QualType getFromVoidPointer(void *P) {
249    return clang::QualType::getFromOpaquePtr(P);
250  }
251  // CVR qualifiers go in low bits.
252  enum { NumLowBitsAvailable = 0 };
253};
254} // end namespace llvm
255
256namespace clang {
257
258/// Type - This is the base class of the type hierarchy.  A central concept
259/// with types is that each type always has a canonical type.  A canonical type
260/// is the type with any typedef names stripped out of it or the types it
261/// references.  For example, consider:
262///
263///  typedef int  foo;
264///  typedef foo* bar;
265///    'int *'    'foo *'    'bar'
266///
267/// There will be a Type object created for 'int'.  Since int is canonical, its
268/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
269/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
270/// there is a PointerType that represents 'int*', which, like 'int', is
271/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
272/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
273/// is also 'int*'.
274///
275/// Non-canonical types are useful for emitting diagnostics, without losing
276/// information about typedefs being used.  Canonical types are useful for type
277/// comparisons (they allow by-pointer equality tests) and useful for reasoning
278/// about whether something has a particular form (e.g. is a function type),
279/// because they implicitly, recursively, strip all typedefs out of a type.
280///
281/// Types, once created, are immutable.
282///
283class Type {
284public:
285  enum TypeClass {
286#define TYPE(Class, Base) Class,
287#define ABSTRACT_TYPE(Class, Base)
288#include "clang/AST/TypeNodes.def"
289    TagFirst = Record, TagLast = Enum
290  };
291
292private:
293  QualType CanonicalType;
294
295  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
296  bool Dependent : 1;
297
298  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
299  /// Note that this should stay at the end of the ivars for Type so that
300  /// subclasses can pack their bitfields into the same word.
301  unsigned TC : 6;
302
303  Type(const Type&);           // DO NOT IMPLEMENT.
304  void operator=(const Type&); // DO NOT IMPLEMENT.
305protected:
306  // silence VC++ warning C4355: 'this' : used in base member initializer list
307  Type *this_() { return this; }
308  Type(TypeClass tc, QualType Canonical, bool dependent)
309    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
310      Dependent(dependent), TC(tc) {}
311  virtual ~Type() {}
312  virtual void Destroy(ASTContext& C);
313  friend class ASTContext;
314
315public:
316  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
317
318  bool isCanonical() const { return CanonicalType.getTypePtr() == this; }
319
320  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
321  /// object types, function types, and incomplete types.
322
323  /// \brief Determines whether the type describes an object in memory.
324  ///
325  /// Note that this definition of object type corresponds to the C++
326  /// definition of object type, which includes incomplete types, as
327  /// opposed to the C definition (which does not include incomplete
328  /// types).
329  bool isObjectType() const;
330
331  /// isIncompleteType - Return true if this is an incomplete type.
332  /// A type that can describe objects, but which lacks information needed to
333  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
334  /// routine will need to determine if the size is actually required.
335  bool isIncompleteType() const;
336
337  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
338  /// type, in other words, not a function type.
339  bool isIncompleteOrObjectType() const {
340    return !isFunctionType();
341  }
342
343  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
344  bool isPODType() const;
345
346  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
347  /// types that have a non-constant expression. This does not include "[]".
348  bool isVariablyModifiedType() const;
349
350  /// Helper methods to distinguish type categories. All type predicates
351  /// operate on the canonical type, ignoring typedefs and qualifiers.
352
353  /// isSpecificBuiltinType - Test for a particular builtin type.
354  bool isSpecificBuiltinType(unsigned K) const;
355
356  /// isIntegerType() does *not* include complex integers (a GCC extension).
357  /// isComplexIntegerType() can be used to test for complex integers.
358  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
359  bool isEnumeralType() const;
360  bool isBooleanType() const;
361  bool isCharType() const;
362  bool isWideCharType() const;
363  bool isIntegralType() const;
364
365  /// Floating point categories.
366  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
367  /// isComplexType() does *not* include complex integers (a GCC extension).
368  /// isComplexIntegerType() can be used to test for complex integers.
369  bool isComplexType() const;      // C99 6.2.5p11 (complex)
370  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
371  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
372  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
373  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
374  bool isVoidType() const;         // C99 6.2.5p19
375  bool isDerivedType() const;      // C99 6.2.5p20
376  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
377  bool isAggregateType() const;
378
379  // Type Predicates: Check to see if this type is structurally the specified
380  // type, ignoring typedefs and qualifiers.
381  bool isFunctionType() const;
382  bool isFunctionNoProtoType() const { return getAsFunctionNoProtoType() != 0; }
383  bool isFunctionProtoType() const { return getAsFunctionProtoType() != 0; }
384  bool isPointerType() const;
385  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
386  bool isBlockPointerType() const;
387  bool isVoidPointerType() const;
388  bool isReferenceType() const;
389  bool isLValueReferenceType() const;
390  bool isRValueReferenceType() const;
391  bool isFunctionPointerType() const;
392  bool isMemberPointerType() const;
393  bool isMemberFunctionPointerType() const;
394  bool isArrayType() const;
395  bool isConstantArrayType() const;
396  bool isIncompleteArrayType() const;
397  bool isVariableArrayType() const;
398  bool isDependentSizedArrayType() const;
399  bool isRecordType() const;
400  bool isClassType() const;
401  bool isStructureType() const;
402  bool isUnionType() const;
403  bool isComplexIntegerType() const;            // GCC _Complex integer type.
404  bool isVectorType() const;                    // GCC vector type.
405  bool isExtVectorType() const;                 // Extended vector type.
406  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
407  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
408  // for the common case.
409  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
410  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
411  bool isObjCQualifiedIdType() const;           // id<foo>
412  bool isObjCQualifiedClassType() const;        // Class<foo>
413  bool isObjCIdType() const;                    // id
414  bool isObjCClassType() const;                 // Class
415  bool isObjCBuiltinType() const;               // 'id' or 'Class'
416  bool isTemplateTypeParmType() const;          // C++ template type parameter
417  bool isNullPtrType() const;                   // C++0x nullptr_t
418
419  /// isDependentType - Whether this type is a dependent type, meaning
420  /// that its definition somehow depends on a template parameter
421  /// (C++ [temp.dep.type]).
422  bool isDependentType() const { return Dependent; }
423  bool isOverloadableType() const;
424
425  /// hasPointerRepresentation - Whether this type is represented
426  /// natively as a pointer; this includes pointers, references, block
427  /// pointers, and Objective-C interface, qualified id, and qualified
428  /// interface types, as well as nullptr_t.
429  bool hasPointerRepresentation() const;
430
431  /// hasObjCPointerRepresentation - Whether this type can represent
432  /// an objective pointer type for the purpose of GC'ability
433  bool hasObjCPointerRepresentation() const;
434
435  // Type Checking Functions: Check to see if this type is structurally the
436  // specified type, ignoring typedefs and qualifiers, and return a pointer to
437  // the best type we can.
438  const BuiltinType *getAsBuiltinType() const;
439  const FunctionType *getAsFunctionType() const;
440  const FunctionNoProtoType *getAsFunctionNoProtoType() const;
441  const FunctionProtoType *getAsFunctionProtoType() const;
442  const RecordType *getAsStructureType() const;
443  /// NOTE: getAs*ArrayType are methods on ASTContext.
444  const TypedefType *getAsTypedefType() const;
445  const RecordType *getAsUnionType() const;
446  const EnumType *getAsEnumType() const;
447  const VectorType *getAsVectorType() const; // GCC vector type.
448  const ComplexType *getAsComplexType() const;
449  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
450  const ExtVectorType *getAsExtVectorType() const; // Extended vector type.
451  const ObjCObjectPointerType *getAsObjCObjectPointerType() const;
452  // The following is a convenience method that returns an ObjCObjectPointerType
453  // for object declared using an interface.
454  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
455  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
456  const ObjCInterfaceType *getAsObjCInterfaceType() const;
457  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
458  const TemplateTypeParmType *getAsTemplateTypeParmType() const;
459  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
460
461  // Member-template getAs<specific type>'.  This scheme will eventually
462  // replace the specific getAsXXXX methods above.
463  template <typename T> const T *getAs() const;
464
465  const TemplateSpecializationType *
466    getAsTemplateSpecializationType() const;
467
468  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
469  /// interface, return the interface type, otherwise return null.
470  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
471
472  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
473  /// element type of the array, potentially with type qualifiers missing.
474  /// This method should never be used when type qualifiers are meaningful.
475  const Type *getArrayElementTypeNoTypeQual() const;
476
477  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
478  /// pointer, this returns the respective pointee.
479  QualType getPointeeType() const;
480
481  /// getDesugaredType - Return the specified type with any "sugar" removed from
482  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
483  /// the type is already concrete, it returns it unmodified.  This is similar
484  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
485  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
486  /// concrete.
487  QualType getDesugaredType(bool ForDisplay = false) const;
488
489  /// More type predicates useful for type checking/promotion
490  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
491
492  /// isSignedIntegerType - Return true if this is an integer type that is
493  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
494  /// an enum decl which has a signed representation, or a vector of signed
495  /// integer element type.
496  bool isSignedIntegerType() const;
497
498  /// isUnsignedIntegerType - Return true if this is an integer type that is
499  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
500  /// decl which has an unsigned representation, or a vector of unsigned integer
501  /// element type.
502  bool isUnsignedIntegerType() const;
503
504  /// isConstantSizeType - Return true if this is not a variable sized type,
505  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
506  /// incomplete types.
507  bool isConstantSizeType() const;
508
509  /// isSpecifierType - Returns true if this type can be represented by some
510  /// set of type specifiers.
511  bool isSpecifierType() const;
512
513  QualType getCanonicalTypeInternal() const { return CanonicalType; }
514  void dump() const;
515  virtual void getAsStringInternal(std::string &InnerString,
516                                   const PrintingPolicy &Policy) const = 0;
517  static bool classof(const Type *) { return true; }
518};
519
520/// ExtQualType - TR18037 (C embedded extensions) 6.2.5p26
521/// This supports all kinds of type attributes; including,
522/// address space qualified types, objective-c's __weak and
523/// __strong attributes.
524///
525class ExtQualType : public Type, public llvm::FoldingSetNode {
526  /// BaseType - This is the underlying type that this qualifies.  All CVR
527  /// qualifiers are stored on the QualType that references this type, so we
528  /// can't have any here.
529  Type *BaseType;
530
531  /// Address Space ID - The address space ID this type is qualified with.
532  unsigned AddressSpace;
533  /// GC __weak/__strong attributes
534  QualType::GCAttrTypes GCAttrType;
535
536  ExtQualType(Type *Base, QualType CanonicalPtr, unsigned AddrSpace,
537              QualType::GCAttrTypes gcAttr) :
538      Type(ExtQual, CanonicalPtr, Base->isDependentType()), BaseType(Base),
539      AddressSpace(AddrSpace), GCAttrType(gcAttr) {
540    assert(!isa<ExtQualType>(BaseType) &&
541           "Cannot have ExtQualType of ExtQualType");
542  }
543  friend class ASTContext;  // ASTContext creates these.
544public:
545  Type *getBaseType() const { return BaseType; }
546  QualType::GCAttrTypes getObjCGCAttr() const { return GCAttrType; }
547  unsigned getAddressSpace() const { return AddressSpace; }
548
549  virtual void getAsStringInternal(std::string &InnerString,
550                                   const PrintingPolicy &Policy) const;
551
552  void Profile(llvm::FoldingSetNodeID &ID) {
553    Profile(ID, getBaseType(), AddressSpace, GCAttrType);
554  }
555  static void Profile(llvm::FoldingSetNodeID &ID, Type *Base,
556                      unsigned AddrSpace, QualType::GCAttrTypes gcAttr) {
557    ID.AddPointer(Base);
558    ID.AddInteger(AddrSpace);
559    ID.AddInteger(gcAttr);
560  }
561
562  static bool classof(const Type *T) { return T->getTypeClass() == ExtQual; }
563  static bool classof(const ExtQualType *) { return true; }
564};
565
566
567/// QualifierSet - This class is used to collect qualifiers.
568/// Clang supports five independent qualifiers:
569/// * C99: const, volatile, and restrict
570/// * Embedded C (TR18037): address spaces
571/// * Objective C: the GC attributes (none, weak, or strong)
572class QualifierSet {
573public:
574  QualifierSet() : Mask(0) {}
575
576  void removeConst() { removeCVR(QualType::Const); }
577  void removeVolatile() { removeCVR(QualType::Volatile); }
578  void removeRestrict() { removeCVR(QualType::Restrict); }
579  void removeCVR(unsigned mask) { Mask &= ~mask; }
580  void removeAddressSpace() { setAddressSpace(0); }
581  void removeObjCGCAttrType() { setGCAttrType(QualType::GCNone); }
582
583  void addConst() { addCVR(QualType::Const); }
584  void addVolatile() { addCVR(QualType::Volatile); }
585  void addRestrict() { addCVR(QualType::Restrict); }
586  void addCVR(unsigned mask) { Mask |= mask; }
587  void addAddressSpace(unsigned space) {
588    assert(space);
589    setAddressSpace(space);
590  }
591  void addObjCGCAttrType(QualType::GCAttrTypes type) {
592    assert(type);
593    setGCAttrType(type);
594  }
595
596  bool hasConst() const { return Mask & QualType::Const; }
597  bool hasVolatile() const { return Mask & QualType::Volatile; }
598  bool hasRestrict() const { return Mask & QualType::Restrict; }
599  unsigned getCVRMask() const { return Mask & CVRMask; }
600
601  bool hasObjCGCAttrType() const { return Mask & GCAttrMask; }
602  QualType::GCAttrTypes getObjCGCAttrType() const {
603    return QualType::GCAttrTypes((Mask & GCAttrMask) >> GCAttrShift);
604  }
605
606  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
607  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
608
609  /// empty() - Return true if there are no qualifiers collected
610  /// in this set.
611  bool empty() {
612    return (Mask == 0);
613  }
614
615  /// Collect any qualifiers on the given type and return an
616  /// unqualified type.
617  const Type *strip(QualType QT) {
618    Mask |= QT.getCVRQualifiers();
619    return strip(QT.getTypePtr());
620  }
621
622  /// Collect any qualifiers on the given type and return an
623  /// unqualified type.
624  const Type *strip(const Type* T);
625
626  /// Apply the collected qualifiers to the given type.
627  QualType apply(QualType QT, ASTContext& C);
628
629  /// Apply the collected qualifiers to the given type.
630  QualType apply(const Type* T, ASTContext& C) {
631    return apply(QualType(T, 0), C);
632  }
633
634  bool operator==(QualifierSet& Other) { return Mask == Other.Mask; }
635
636private:
637  void setAddressSpace(unsigned space) {
638    assert(space <= MaxAddressSpace);
639    Mask = (Mask & ~AddressSpaceMask)
640         | (((uint32_t) space) << AddressSpaceShift);
641  }
642
643  void setGCAttrType(QualType::GCAttrTypes type) {
644    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
645  }
646
647  // bits:     |0 1 2|3 .. 4|5  ..  31|
648  //           |C R V|GCAttr|AddrSpace|
649  uint32_t Mask;
650
651  static const uint32_t CVRMask = 0x07;
652  static const uint32_t GCAttrMask = 0x18;
653  static const uint32_t GCAttrShift = 3;
654  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
655  static const uint32_t AddressSpaceShift = 5;
656  static const unsigned MaxAddressSpace = QualType::MaxAddressSpace;
657};
658
659
660/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
661/// types are always canonical and have a literal name field.
662class BuiltinType : public Type {
663public:
664  enum Kind {
665    Void,
666
667    Bool,     // This is bool and/or _Bool.
668    Char_U,   // This is 'char' for targets where char is unsigned.
669    UChar,    // This is explicitly qualified unsigned char.
670    Char16,   // This is 'char16_t' for C++.
671    Char32,   // This is 'char32_t' for C++.
672    UShort,
673    UInt,
674    ULong,
675    ULongLong,
676    UInt128,  // __uint128_t
677
678    Char_S,   // This is 'char' for targets where char is signed.
679    SChar,    // This is explicitly qualified signed char.
680    WChar,    // This is 'wchar_t' for C++.
681    Short,
682    Int,
683    Long,
684    LongLong,
685    Int128,   // __int128_t
686
687    Float, Double, LongDouble,
688
689    NullPtr,  // This is the type of C++0x 'nullptr'.
690
691    Overload,  // This represents the type of an overloaded function declaration.
692    Dependent, // This represents the type of a type-dependent expression.
693
694    UndeducedAuto, // In C++0x, this represents the type of an auto variable
695                   // that has not been deduced yet.
696    ObjCId,    // This represents the ObjC 'id' type.
697    ObjCClass  // This represents the ObjC 'Class' type.
698  };
699private:
700  Kind TypeKind;
701public:
702  BuiltinType(Kind K)
703    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
704      TypeKind(K) {}
705
706  Kind getKind() const { return TypeKind; }
707  const char *getName(const LangOptions &LO) const;
708
709  virtual void getAsStringInternal(std::string &InnerString,
710                                   const PrintingPolicy &Policy) const;
711
712  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
713  static bool classof(const BuiltinType *) { return true; }
714};
715
716/// FixedWidthIntType - Used for arbitrary width types that we either don't
717/// want to or can't map to named integer types.  These always have a lower
718/// integer rank than builtin types of the same width.
719class FixedWidthIntType : public Type {
720private:
721  unsigned Width;
722  bool Signed;
723public:
724  FixedWidthIntType(unsigned W, bool S) : Type(FixedWidthInt, QualType(), false),
725                                          Width(W), Signed(S) {}
726
727  unsigned getWidth() const { return Width; }
728  bool isSigned() const { return Signed; }
729  const char *getName() const;
730
731  virtual void getAsStringInternal(std::string &InnerString,
732                                   const PrintingPolicy &Policy) const;
733
734  static bool classof(const Type *T) { return T->getTypeClass() == FixedWidthInt; }
735  static bool classof(const FixedWidthIntType *) { return true; }
736};
737
738/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
739/// types (_Complex float etc) as well as the GCC integer complex extensions.
740///
741class ComplexType : public Type, public llvm::FoldingSetNode {
742  QualType ElementType;
743  ComplexType(QualType Element, QualType CanonicalPtr) :
744    Type(Complex, CanonicalPtr, Element->isDependentType()),
745    ElementType(Element) {
746  }
747  friend class ASTContext;  // ASTContext creates these.
748public:
749  QualType getElementType() const { return ElementType; }
750
751  virtual void getAsStringInternal(std::string &InnerString,
752                                   const PrintingPolicy &Policy) const;
753
754  void Profile(llvm::FoldingSetNodeID &ID) {
755    Profile(ID, getElementType());
756  }
757  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
758    ID.AddPointer(Element.getAsOpaquePtr());
759  }
760
761  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
762  static bool classof(const ComplexType *) { return true; }
763};
764
765/// PointerType - C99 6.7.5.1 - Pointer Declarators.
766///
767class PointerType : public Type, public llvm::FoldingSetNode {
768  QualType PointeeType;
769
770  PointerType(QualType Pointee, QualType CanonicalPtr) :
771    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
772  }
773  friend class ASTContext;  // ASTContext creates these.
774public:
775
776  virtual void getAsStringInternal(std::string &InnerString,
777                                   const PrintingPolicy &Policy) const;
778
779  QualType getPointeeType() const { return PointeeType; }
780
781  void Profile(llvm::FoldingSetNodeID &ID) {
782    Profile(ID, getPointeeType());
783  }
784  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
785    ID.AddPointer(Pointee.getAsOpaquePtr());
786  }
787
788  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
789  static bool classof(const PointerType *) { return true; }
790};
791
792/// BlockPointerType - pointer to a block type.
793/// This type is to represent types syntactically represented as
794/// "void (^)(int)", etc. Pointee is required to always be a function type.
795///
796class BlockPointerType : public Type, public llvm::FoldingSetNode {
797  QualType PointeeType;  // Block is some kind of pointer type
798  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
799    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
800    PointeeType(Pointee) {
801  }
802  friend class ASTContext;  // ASTContext creates these.
803public:
804
805  // Get the pointee type. Pointee is required to always be a function type.
806  QualType getPointeeType() const { return PointeeType; }
807
808  virtual void getAsStringInternal(std::string &InnerString,
809                                   const PrintingPolicy &Policy) const;
810
811  void Profile(llvm::FoldingSetNodeID &ID) {
812      Profile(ID, getPointeeType());
813  }
814  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
815      ID.AddPointer(Pointee.getAsOpaquePtr());
816  }
817
818  static bool classof(const Type *T) {
819    return T->getTypeClass() == BlockPointer;
820  }
821  static bool classof(const BlockPointerType *) { return true; }
822};
823
824/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
825///
826class ReferenceType : public Type, public llvm::FoldingSetNode {
827  QualType PointeeType;
828
829protected:
830  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef) :
831    Type(tc, CanonicalRef, Referencee->isDependentType()),
832    PointeeType(Referencee) {
833  }
834public:
835  QualType getPointeeType() const { return PointeeType; }
836
837  void Profile(llvm::FoldingSetNodeID &ID) {
838    Profile(ID, getPointeeType());
839  }
840  static void Profile(llvm::FoldingSetNodeID &ID, QualType Referencee) {
841    ID.AddPointer(Referencee.getAsOpaquePtr());
842  }
843
844  static bool classof(const Type *T) {
845    return T->getTypeClass() == LValueReference ||
846           T->getTypeClass() == RValueReference;
847  }
848  static bool classof(const ReferenceType *) { return true; }
849};
850
851/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
852///
853class LValueReferenceType : public ReferenceType {
854  LValueReferenceType(QualType Referencee, QualType CanonicalRef) :
855    ReferenceType(LValueReference, Referencee, CanonicalRef) {
856  }
857  friend class ASTContext; // ASTContext creates these
858public:
859  virtual void getAsStringInternal(std::string &InnerString,
860                                   const PrintingPolicy &Policy) const;
861
862  static bool classof(const Type *T) {
863    return T->getTypeClass() == LValueReference;
864  }
865  static bool classof(const LValueReferenceType *) { return true; }
866};
867
868/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
869///
870class RValueReferenceType : public ReferenceType {
871  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
872    ReferenceType(RValueReference, Referencee, CanonicalRef) {
873  }
874  friend class ASTContext; // ASTContext creates these
875public:
876  virtual void getAsStringInternal(std::string &InnerString,
877                                   const PrintingPolicy &Policy) const;
878
879  static bool classof(const Type *T) {
880    return T->getTypeClass() == RValueReference;
881  }
882  static bool classof(const RValueReferenceType *) { return true; }
883};
884
885/// MemberPointerType - C++ 8.3.3 - Pointers to members
886///
887class MemberPointerType : public Type, public llvm::FoldingSetNode {
888  QualType PointeeType;
889  /// The class of which the pointee is a member. Must ultimately be a
890  /// RecordType, but could be a typedef or a template parameter too.
891  const Type *Class;
892
893  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
894    Type(MemberPointer, CanonicalPtr,
895         Cls->isDependentType() || Pointee->isDependentType()),
896    PointeeType(Pointee), Class(Cls) {
897  }
898  friend class ASTContext; // ASTContext creates these.
899public:
900
901  QualType getPointeeType() const { return PointeeType; }
902
903  const Type *getClass() const { return Class; }
904
905  virtual void getAsStringInternal(std::string &InnerString,
906                                   const PrintingPolicy &Policy) const;
907
908  void Profile(llvm::FoldingSetNodeID &ID) {
909    Profile(ID, getPointeeType(), getClass());
910  }
911  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
912                      const Type *Class) {
913    ID.AddPointer(Pointee.getAsOpaquePtr());
914    ID.AddPointer(Class);
915  }
916
917  static bool classof(const Type *T) {
918    return T->getTypeClass() == MemberPointer;
919  }
920  static bool classof(const MemberPointerType *) { return true; }
921};
922
923/// ArrayType - C99 6.7.5.2 - Array Declarators.
924///
925class ArrayType : public Type, public llvm::FoldingSetNode {
926public:
927  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
928  /// an array with a static size (e.g. int X[static 4]), or an array
929  /// with a star size (e.g. int X[*]).
930  /// 'static' is only allowed on function parameters.
931  enum ArraySizeModifier {
932    Normal, Static, Star
933  };
934private:
935  /// ElementType - The element type of the array.
936  QualType ElementType;
937
938  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
939  /// NOTE: These fields are packed into the bitfields space in the Type class.
940  unsigned SizeModifier : 2;
941
942  /// IndexTypeQuals - Capture qualifiers in declarations like:
943  /// 'int X[static restrict 4]'. For function parameters only.
944  unsigned IndexTypeQuals : 3;
945
946protected:
947  // C++ [temp.dep.type]p1:
948  //   A type is dependent if it is...
949  //     - an array type constructed from any dependent type or whose
950  //       size is specified by a constant expression that is
951  //       value-dependent,
952  ArrayType(TypeClass tc, QualType et, QualType can,
953            ArraySizeModifier sm, unsigned tq)
954    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
955      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
956
957  friend class ASTContext;  // ASTContext creates these.
958public:
959  QualType getElementType() const { return ElementType; }
960  ArraySizeModifier getSizeModifier() const {
961    return ArraySizeModifier(SizeModifier);
962  }
963  unsigned getIndexTypeQualifier() const { return IndexTypeQuals; }
964
965  static bool classof(const Type *T) {
966    return T->getTypeClass() == ConstantArray ||
967           T->getTypeClass() == ConstantArrayWithExpr ||
968           T->getTypeClass() == ConstantArrayWithoutExpr ||
969           T->getTypeClass() == VariableArray ||
970           T->getTypeClass() == IncompleteArray ||
971           T->getTypeClass() == DependentSizedArray;
972  }
973  static bool classof(const ArrayType *) { return true; }
974};
975
976/// ConstantArrayType - This class represents the canonical version of
977/// C arrays with a specified constant size.  For example, the canonical
978/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
979/// type is 'int' and the size is 404.
980class ConstantArrayType : public ArrayType {
981  llvm::APInt Size; // Allows us to unique the type.
982
983  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
984                    ArraySizeModifier sm, unsigned tq)
985    : ArrayType(ConstantArray, et, can, sm, tq),
986      Size(size) {}
987protected:
988  ConstantArrayType(TypeClass tc, QualType et, QualType can,
989                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
990    : ArrayType(tc, et, can, sm, tq), Size(size) {}
991  friend class ASTContext;  // ASTContext creates these.
992public:
993  const llvm::APInt &getSize() const { return Size; }
994  virtual void getAsStringInternal(std::string &InnerString,
995                                   const PrintingPolicy &Policy) const;
996
997  void Profile(llvm::FoldingSetNodeID &ID) {
998    Profile(ID, getElementType(), getSize(),
999            getSizeModifier(), getIndexTypeQualifier());
1000  }
1001  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1002                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1003                      unsigned TypeQuals) {
1004    ID.AddPointer(ET.getAsOpaquePtr());
1005    ID.AddInteger(ArraySize.getZExtValue());
1006    ID.AddInteger(SizeMod);
1007    ID.AddInteger(TypeQuals);
1008  }
1009  static bool classof(const Type *T) {
1010    return T->getTypeClass() == ConstantArray ||
1011           T->getTypeClass() == ConstantArrayWithExpr ||
1012           T->getTypeClass() == ConstantArrayWithoutExpr;
1013  }
1014  static bool classof(const ConstantArrayType *) { return true; }
1015};
1016
1017/// ConstantArrayWithExprType - This class represents C arrays with a
1018/// constant size specified by means of an integer constant expression.
1019/// For example 'int A[sizeof(int)]' has ConstantArrayWithExprType where
1020/// the element type is 'int' and the size expression is 'sizeof(int)'.
1021/// These types are non-canonical.
1022class ConstantArrayWithExprType : public ConstantArrayType {
1023  /// SizeExpr - The ICE occurring in the concrete syntax.
1024  Expr *SizeExpr;
1025  /// Brackets - The left and right array brackets.
1026  SourceRange Brackets;
1027
1028  ConstantArrayWithExprType(QualType et, QualType can,
1029                            const llvm::APInt &size, Expr *e,
1030                            ArraySizeModifier sm, unsigned tq,
1031                            SourceRange brackets)
1032    : ConstantArrayType(ConstantArrayWithExpr, et, can, size, sm, tq),
1033      SizeExpr(e), Brackets(brackets) {}
1034  friend class ASTContext;  // ASTContext creates these.
1035  virtual void Destroy(ASTContext& C);
1036
1037public:
1038  Expr *getSizeExpr() const { return SizeExpr; }
1039  SourceRange getBracketsRange() const { return Brackets; }
1040  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1041  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1042
1043  virtual void getAsStringInternal(std::string &InnerString,
1044                                   const PrintingPolicy &Policy) const;
1045
1046  static bool classof(const Type *T) {
1047    return T->getTypeClass() == ConstantArrayWithExpr;
1048  }
1049  static bool classof(const ConstantArrayWithExprType *) { return true; }
1050
1051  void Profile(llvm::FoldingSetNodeID &ID) {
1052    assert(0 && "Cannot unique ConstantArrayWithExprTypes.");
1053  }
1054};
1055
1056/// ConstantArrayWithoutExprType - This class represents C arrays with a
1057/// constant size that was not specified by an integer constant expression,
1058/// but inferred by static semantics.
1059/// For example 'int A[] = { 0, 1, 2 }' has ConstantArrayWithoutExprType.
1060/// These types are non-canonical: the corresponding canonical type,
1061/// having the size specified in an APInt object, is a ConstantArrayType.
1062class ConstantArrayWithoutExprType : public ConstantArrayType {
1063
1064  ConstantArrayWithoutExprType(QualType et, QualType can,
1065                               const llvm::APInt &size,
1066                               ArraySizeModifier sm, unsigned tq)
1067    : ConstantArrayType(ConstantArrayWithoutExpr, et, can, size, sm, tq) {}
1068  friend class ASTContext;  // ASTContext creates these.
1069
1070public:
1071  virtual void getAsStringInternal(std::string &InnerString,
1072                                   const PrintingPolicy &Policy) const;
1073
1074  static bool classof(const Type *T) {
1075    return T->getTypeClass() == ConstantArrayWithoutExpr;
1076  }
1077  static bool classof(const ConstantArrayWithoutExprType *) { return true; }
1078
1079  void Profile(llvm::FoldingSetNodeID &ID) {
1080    assert(0 && "Cannot unique ConstantArrayWithoutExprTypes.");
1081  }
1082};
1083
1084/// IncompleteArrayType - This class represents C arrays with an unspecified
1085/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1086/// type is 'int' and the size is unspecified.
1087class IncompleteArrayType : public ArrayType {
1088
1089  IncompleteArrayType(QualType et, QualType can,
1090                      ArraySizeModifier sm, unsigned tq)
1091    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1092  friend class ASTContext;  // ASTContext creates these.
1093public:
1094  virtual void getAsStringInternal(std::string &InnerString,
1095                                   const PrintingPolicy &Policy) const;
1096
1097  static bool classof(const Type *T) {
1098    return T->getTypeClass() == IncompleteArray;
1099  }
1100  static bool classof(const IncompleteArrayType *) { return true; }
1101
1102  friend class StmtIteratorBase;
1103
1104  void Profile(llvm::FoldingSetNodeID &ID) {
1105    Profile(ID, getElementType(), getSizeModifier(), getIndexTypeQualifier());
1106  }
1107
1108  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1109                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1110    ID.AddPointer(ET.getAsOpaquePtr());
1111    ID.AddInteger(SizeMod);
1112    ID.AddInteger(TypeQuals);
1113  }
1114};
1115
1116/// VariableArrayType - This class represents C arrays with a specified size
1117/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1118/// Since the size expression is an arbitrary expression, we store it as such.
1119///
1120/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1121/// should not be: two lexically equivalent variable array types could mean
1122/// different things, for example, these variables do not have the same type
1123/// dynamically:
1124///
1125/// void foo(int x) {
1126///   int Y[x];
1127///   ++x;
1128///   int Z[x];
1129/// }
1130///
1131class VariableArrayType : public ArrayType {
1132  /// SizeExpr - An assignment expression. VLA's are only permitted within
1133  /// a function block.
1134  Stmt *SizeExpr;
1135  /// Brackets - The left and right array brackets.
1136  SourceRange Brackets;
1137
1138  VariableArrayType(QualType et, QualType can, Expr *e,
1139                    ArraySizeModifier sm, unsigned tq,
1140                    SourceRange brackets)
1141    : ArrayType(VariableArray, et, can, sm, tq),
1142      SizeExpr((Stmt*) e), Brackets(brackets) {}
1143  friend class ASTContext;  // ASTContext creates these.
1144  virtual void Destroy(ASTContext& C);
1145
1146public:
1147  Expr *getSizeExpr() const {
1148    // We use C-style casts instead of cast<> here because we do not wish
1149    // to have a dependency of Type.h on Stmt.h/Expr.h.
1150    return (Expr*) SizeExpr;
1151  }
1152  SourceRange getBracketsRange() const { return Brackets; }
1153  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1154  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1155
1156  virtual void getAsStringInternal(std::string &InnerString,
1157                                   const PrintingPolicy &Policy) const;
1158
1159  static bool classof(const Type *T) {
1160    return T->getTypeClass() == VariableArray;
1161  }
1162  static bool classof(const VariableArrayType *) { return true; }
1163
1164  friend class StmtIteratorBase;
1165
1166  void Profile(llvm::FoldingSetNodeID &ID) {
1167    assert(0 && "Cannnot unique VariableArrayTypes.");
1168  }
1169};
1170
1171/// DependentSizedArrayType - This type represents an array type in
1172/// C++ whose size is a value-dependent expression. For example:
1173/// @code
1174/// template<typename T, int Size>
1175/// class array {
1176///   T data[Size];
1177/// };
1178/// @endcode
1179/// For these types, we won't actually know what the array bound is
1180/// until template instantiation occurs, at which point this will
1181/// become either a ConstantArrayType or a VariableArrayType.
1182class DependentSizedArrayType : public ArrayType {
1183  ASTContext &Context;
1184
1185  /// SizeExpr - An assignment expression that will instantiate to the
1186  /// size of the array.
1187  Stmt *SizeExpr;
1188  /// Brackets - The left and right array brackets.
1189  SourceRange Brackets;
1190
1191  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1192                          Expr *e, ArraySizeModifier sm, unsigned tq,
1193                          SourceRange brackets)
1194    : ArrayType(DependentSizedArray, et, can, sm, tq),
1195      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1196  friend class ASTContext;  // ASTContext creates these.
1197  virtual void Destroy(ASTContext& C);
1198
1199public:
1200  Expr *getSizeExpr() const {
1201    // We use C-style casts instead of cast<> here because we do not wish
1202    // to have a dependency of Type.h on Stmt.h/Expr.h.
1203    return (Expr*) SizeExpr;
1204  }
1205  SourceRange getBracketsRange() const { return Brackets; }
1206  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1207  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1208
1209  virtual void getAsStringInternal(std::string &InnerString,
1210                                   const PrintingPolicy &Policy) const;
1211
1212  static bool classof(const Type *T) {
1213    return T->getTypeClass() == DependentSizedArray;
1214  }
1215  static bool classof(const DependentSizedArrayType *) { return true; }
1216
1217  friend class StmtIteratorBase;
1218
1219
1220  void Profile(llvm::FoldingSetNodeID &ID) {
1221    Profile(ID, Context, getElementType(),
1222            getSizeModifier(), getIndexTypeQualifier(), getSizeExpr());
1223  }
1224
1225  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1226                      QualType ET, ArraySizeModifier SizeMod,
1227                      unsigned TypeQuals, Expr *E);
1228};
1229
1230/// DependentSizedExtVectorType - This type represent an extended vector type
1231/// where either the type or size is dependent. For example:
1232/// @code
1233/// template<typename T, int Size>
1234/// class vector {
1235///   typedef T __attribute__((ext_vector_type(Size))) type;
1236/// }
1237/// @endcode
1238class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1239  ASTContext &Context;
1240  Expr *SizeExpr;
1241  /// ElementType - The element type of the array.
1242  QualType ElementType;
1243  SourceLocation loc;
1244
1245  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1246                              QualType can, Expr *SizeExpr, SourceLocation loc)
1247    : Type (DependentSizedExtVector, can, true),
1248      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1249      loc(loc) {}
1250  friend class ASTContext;
1251  virtual void Destroy(ASTContext& C);
1252
1253public:
1254  Expr *getSizeExpr() const { return SizeExpr; }
1255  QualType getElementType() const { return ElementType; }
1256  SourceLocation getAttributeLoc() const { return loc; }
1257
1258  virtual void getAsStringInternal(std::string &InnerString,
1259                                   const PrintingPolicy &Policy) const;
1260
1261  static bool classof(const Type *T) {
1262    return T->getTypeClass() == DependentSizedExtVector;
1263  }
1264  static bool classof(const DependentSizedExtVectorType *) { return true; }
1265
1266  void Profile(llvm::FoldingSetNodeID &ID) {
1267    Profile(ID, Context, getElementType(), getSizeExpr());
1268  }
1269
1270  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1271                      QualType ElementType, Expr *SizeExpr);
1272};
1273
1274
1275/// VectorType - GCC generic vector type. This type is created using
1276/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1277/// bytes. Since the constructor takes the number of vector elements, the
1278/// client is responsible for converting the size into the number of elements.
1279class VectorType : public Type, public llvm::FoldingSetNode {
1280protected:
1281  /// ElementType - The element type of the vector.
1282  QualType ElementType;
1283
1284  /// NumElements - The number of elements in the vector.
1285  unsigned NumElements;
1286
1287  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1288    Type(Vector, canonType, vecType->isDependentType()),
1289    ElementType(vecType), NumElements(nElements) {}
1290  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1291             QualType canonType)
1292    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1293      NumElements(nElements) {}
1294  friend class ASTContext;  // ASTContext creates these.
1295public:
1296
1297  QualType getElementType() const { return ElementType; }
1298  unsigned getNumElements() const { return NumElements; }
1299
1300  virtual void getAsStringInternal(std::string &InnerString,
1301                                   const PrintingPolicy &Policy) const;
1302
1303  void Profile(llvm::FoldingSetNodeID &ID) {
1304    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1305  }
1306  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1307                      unsigned NumElements, TypeClass TypeClass) {
1308    ID.AddPointer(ElementType.getAsOpaquePtr());
1309    ID.AddInteger(NumElements);
1310    ID.AddInteger(TypeClass);
1311  }
1312  static bool classof(const Type *T) {
1313    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1314  }
1315  static bool classof(const VectorType *) { return true; }
1316};
1317
1318/// ExtVectorType - Extended vector type. This type is created using
1319/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1320/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1321/// class enables syntactic extensions, like Vector Components for accessing
1322/// points, colors, and textures (modeled after OpenGL Shading Language).
1323class ExtVectorType : public VectorType {
1324  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1325    VectorType(ExtVector, vecType, nElements, canonType) {}
1326  friend class ASTContext;  // ASTContext creates these.
1327public:
1328  static int getPointAccessorIdx(char c) {
1329    switch (c) {
1330    default: return -1;
1331    case 'x': return 0;
1332    case 'y': return 1;
1333    case 'z': return 2;
1334    case 'w': return 3;
1335    }
1336  }
1337  static int getNumericAccessorIdx(char c) {
1338    switch (c) {
1339      default: return -1;
1340      case '0': return 0;
1341      case '1': return 1;
1342      case '2': return 2;
1343      case '3': return 3;
1344      case '4': return 4;
1345      case '5': return 5;
1346      case '6': return 6;
1347      case '7': return 7;
1348      case '8': return 8;
1349      case '9': return 9;
1350      case 'A':
1351      case 'a': return 10;
1352      case 'B':
1353      case 'b': return 11;
1354      case 'C':
1355      case 'c': return 12;
1356      case 'D':
1357      case 'd': return 13;
1358      case 'E':
1359      case 'e': return 14;
1360      case 'F':
1361      case 'f': return 15;
1362    }
1363  }
1364
1365  static int getAccessorIdx(char c) {
1366    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1367    return getNumericAccessorIdx(c);
1368  }
1369
1370  bool isAccessorWithinNumElements(char c) const {
1371    if (int idx = getAccessorIdx(c)+1)
1372      return unsigned(idx-1) < NumElements;
1373    return false;
1374  }
1375  virtual void getAsStringInternal(std::string &InnerString,
1376                                   const PrintingPolicy &Policy) const;
1377
1378  static bool classof(const Type *T) {
1379    return T->getTypeClass() == ExtVector;
1380  }
1381  static bool classof(const ExtVectorType *) { return true; }
1382};
1383
1384/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1385/// class of FunctionNoProtoType and FunctionProtoType.
1386///
1387class FunctionType : public Type {
1388  /// SubClassData - This field is owned by the subclass, put here to pack
1389  /// tightly with the ivars in Type.
1390  bool SubClassData : 1;
1391
1392  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1393  /// other bitfields.
1394  /// The qualifiers are part of FunctionProtoType because...
1395  ///
1396  /// C++ 8.3.5p4: The return type, the parameter type list and the
1397  /// cv-qualifier-seq, [...], are part of the function type.
1398  ///
1399  unsigned TypeQuals : 3;
1400
1401  /// NoReturn - Indicates if the function type is attribute noreturn.
1402  unsigned NoReturn : 1;
1403
1404  // The type returned by the function.
1405  QualType ResultType;
1406protected:
1407  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1408               unsigned typeQuals, QualType Canonical, bool Dependent,
1409               bool noReturn = false)
1410    : Type(tc, Canonical, Dependent),
1411      SubClassData(SubclassInfo), TypeQuals(typeQuals), NoReturn(noReturn),
1412      ResultType(res) {}
1413  bool getSubClassData() const { return SubClassData; }
1414  unsigned getTypeQuals() const { return TypeQuals; }
1415public:
1416
1417  QualType getResultType() const { return ResultType; }
1418  bool getNoReturnAttr() const { return NoReturn; }
1419
1420
1421  static bool classof(const Type *T) {
1422    return T->getTypeClass() == FunctionNoProto ||
1423           T->getTypeClass() == FunctionProto;
1424  }
1425  static bool classof(const FunctionType *) { return true; }
1426};
1427
1428/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1429/// no information available about its arguments.
1430class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1431  FunctionNoProtoType(QualType Result, QualType Canonical,
1432                      bool NoReturn = false)
1433    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1434                   /*Dependent=*/false, NoReturn) {}
1435  friend class ASTContext;  // ASTContext creates these.
1436public:
1437  // No additional state past what FunctionType provides.
1438
1439  virtual void getAsStringInternal(std::string &InnerString,
1440                                   const PrintingPolicy &Policy) const;
1441
1442  void Profile(llvm::FoldingSetNodeID &ID) {
1443    Profile(ID, getResultType(), getNoReturnAttr());
1444  }
1445  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1446                      bool NoReturn) {
1447    ID.AddInteger(NoReturn);
1448    ID.AddPointer(ResultType.getAsOpaquePtr());
1449  }
1450
1451  static bool classof(const Type *T) {
1452    return T->getTypeClass() == FunctionNoProto;
1453  }
1454  static bool classof(const FunctionNoProtoType *) { return true; }
1455};
1456
1457/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1458/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1459/// arguments, not as having a single void argument. Such a type can have an
1460/// exception specification, but this specification is not part of the canonical
1461/// type.
1462class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1463  /// hasAnyDependentType - Determine whether there are any dependent
1464  /// types within the arguments passed in.
1465  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1466    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1467      if (ArgArray[Idx]->isDependentType())
1468    return true;
1469
1470    return false;
1471  }
1472
1473  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1474                    bool isVariadic, unsigned typeQuals, bool hasExs,
1475                    bool hasAnyExs, const QualType *ExArray,
1476                    unsigned numExs, QualType Canonical, bool NoReturn)
1477    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1478                   (Result->isDependentType() ||
1479                    hasAnyDependentType(ArgArray, numArgs)), NoReturn),
1480      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1481      AnyExceptionSpec(hasAnyExs) {
1482    // Fill in the trailing argument array.
1483    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1484    for (unsigned i = 0; i != numArgs; ++i)
1485      ArgInfo[i] = ArgArray[i];
1486    // Fill in the exception array.
1487    QualType *Ex = ArgInfo + numArgs;
1488    for (unsigned i = 0; i != numExs; ++i)
1489      Ex[i] = ExArray[i];
1490  }
1491
1492  /// NumArgs - The number of arguments this function has, not counting '...'.
1493  unsigned NumArgs : 20;
1494
1495  /// NumExceptions - The number of types in the exception spec, if any.
1496  unsigned NumExceptions : 10;
1497
1498  /// HasExceptionSpec - Whether this function has an exception spec at all.
1499  bool HasExceptionSpec : 1;
1500
1501  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1502  bool AnyExceptionSpec : 1;
1503
1504  /// ArgInfo - There is an variable size array after the class in memory that
1505  /// holds the argument types.
1506
1507  /// Exceptions - There is another variable size array after ArgInfo that
1508  /// holds the exception types.
1509
1510  friend class ASTContext;  // ASTContext creates these.
1511
1512public:
1513  unsigned getNumArgs() const { return NumArgs; }
1514  QualType getArgType(unsigned i) const {
1515    assert(i < NumArgs && "Invalid argument number!");
1516    return arg_type_begin()[i];
1517  }
1518
1519  bool hasExceptionSpec() const { return HasExceptionSpec; }
1520  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1521  unsigned getNumExceptions() const { return NumExceptions; }
1522  QualType getExceptionType(unsigned i) const {
1523    assert(i < NumExceptions && "Invalid exception number!");
1524    return exception_begin()[i];
1525  }
1526  bool hasEmptyExceptionSpec() const {
1527    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1528      getNumExceptions() == 0;
1529  }
1530
1531  bool isVariadic() const { return getSubClassData(); }
1532  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1533
1534  typedef const QualType *arg_type_iterator;
1535  arg_type_iterator arg_type_begin() const {
1536    return reinterpret_cast<const QualType *>(this+1);
1537  }
1538  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1539
1540  typedef const QualType *exception_iterator;
1541  exception_iterator exception_begin() const {
1542    // exceptions begin where arguments end
1543    return arg_type_end();
1544  }
1545  exception_iterator exception_end() const {
1546    return exception_begin() + NumExceptions;
1547  }
1548
1549  virtual void getAsStringInternal(std::string &InnerString,
1550                                   const PrintingPolicy &Policy) const;
1551
1552  static bool classof(const Type *T) {
1553    return T->getTypeClass() == FunctionProto;
1554  }
1555  static bool classof(const FunctionProtoType *) { return true; }
1556
1557  void Profile(llvm::FoldingSetNodeID &ID);
1558  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1559                      arg_type_iterator ArgTys, unsigned NumArgs,
1560                      bool isVariadic, unsigned TypeQuals,
1561                      bool hasExceptionSpec, bool anyExceptionSpec,
1562                      unsigned NumExceptions, exception_iterator Exs,
1563                      bool NoReturn);
1564};
1565
1566
1567class TypedefType : public Type {
1568  TypedefDecl *Decl;
1569protected:
1570  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1571    : Type(tc, can, can->isDependentType()), Decl(D) {
1572    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1573  }
1574  friend class ASTContext;  // ASTContext creates these.
1575public:
1576
1577  TypedefDecl *getDecl() const { return Decl; }
1578
1579  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1580  /// potentially looking through *all* consecutive typedefs.  This returns the
1581  /// sum of the type qualifiers, so if you have:
1582  ///   typedef const int A;
1583  ///   typedef volatile A B;
1584  /// looking through the typedefs for B will give you "const volatile A".
1585  QualType LookThroughTypedefs() const;
1586
1587  virtual void getAsStringInternal(std::string &InnerString,
1588                                   const PrintingPolicy &Policy) const;
1589
1590  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1591  static bool classof(const TypedefType *) { return true; }
1592};
1593
1594/// TypeOfExprType (GCC extension).
1595class TypeOfExprType : public Type {
1596  Expr *TOExpr;
1597
1598protected:
1599  TypeOfExprType(Expr *E, QualType can = QualType());
1600  friend class ASTContext;  // ASTContext creates these.
1601public:
1602  Expr *getUnderlyingExpr() const { return TOExpr; }
1603
1604  virtual void getAsStringInternal(std::string &InnerString,
1605                                   const PrintingPolicy &Policy) const;
1606
1607  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1608  static bool classof(const TypeOfExprType *) { return true; }
1609};
1610
1611/// Subclass of TypeOfExprType that is used for canonical, dependent
1612/// typeof(expr) types.
1613class DependentTypeOfExprType
1614  : public TypeOfExprType, public llvm::FoldingSetNode {
1615  ASTContext &Context;
1616
1617public:
1618  DependentTypeOfExprType(ASTContext &Context, Expr *E)
1619    : TypeOfExprType(E), Context(Context) { }
1620
1621  void Profile(llvm::FoldingSetNodeID &ID) {
1622    Profile(ID, Context, getUnderlyingExpr());
1623  }
1624
1625  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1626                      Expr *E);
1627};
1628
1629/// TypeOfType (GCC extension).
1630class TypeOfType : public Type {
1631  QualType TOType;
1632  TypeOfType(QualType T, QualType can)
1633    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
1634    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1635  }
1636  friend class ASTContext;  // ASTContext creates these.
1637public:
1638  QualType getUnderlyingType() const { return TOType; }
1639
1640  virtual void getAsStringInternal(std::string &InnerString,
1641                                   const PrintingPolicy &Policy) const;
1642
1643  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
1644  static bool classof(const TypeOfType *) { return true; }
1645};
1646
1647/// DecltypeType (C++0x)
1648class DecltypeType : public Type {
1649  Expr *E;
1650
1651  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
1652  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
1653  // from it.
1654  QualType UnderlyingType;
1655
1656protected:
1657  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
1658  friend class ASTContext;  // ASTContext creates these.
1659public:
1660  Expr *getUnderlyingExpr() const { return E; }
1661  QualType getUnderlyingType() const { return UnderlyingType; }
1662
1663  virtual void getAsStringInternal(std::string &InnerString,
1664                                   const PrintingPolicy &Policy) const;
1665
1666  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
1667  static bool classof(const DecltypeType *) { return true; }
1668};
1669
1670/// Subclass of DecltypeType that is used for canonical, dependent
1671/// C++0x decltype types.
1672class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
1673  ASTContext &Context;
1674
1675public:
1676  DependentDecltypeType(ASTContext &Context, Expr *E);
1677
1678  void Profile(llvm::FoldingSetNodeID &ID) {
1679    Profile(ID, Context, getUnderlyingExpr());
1680  }
1681
1682  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1683                      Expr *E);
1684};
1685
1686class TagType : public Type {
1687  /// Stores the TagDecl associated with this type. The decl will
1688  /// point to the TagDecl that actually defines the entity (or is a
1689  /// definition in progress), if there is such a definition. The
1690  /// single-bit value will be non-zero when this tag is in the
1691  /// process of being defined.
1692  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
1693  friend class ASTContext;
1694  friend class TagDecl;
1695
1696protected:
1697  TagType(TypeClass TC, TagDecl *D, QualType can);
1698
1699public:
1700  TagDecl *getDecl() const { return decl.getPointer(); }
1701
1702  /// @brief Determines whether this type is in the process of being
1703  /// defined.
1704  bool isBeingDefined() const { return decl.getInt(); }
1705  void setBeingDefined(bool Def) { decl.setInt(Def? 1 : 0); }
1706
1707  virtual void getAsStringInternal(std::string &InnerString,
1708                                   const PrintingPolicy &Policy) const;
1709
1710  static bool classof(const Type *T) {
1711    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
1712  }
1713  static bool classof(const TagType *) { return true; }
1714  static bool classof(const RecordType *) { return true; }
1715  static bool classof(const EnumType *) { return true; }
1716};
1717
1718/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
1719/// to detect TagType objects of structs/unions/classes.
1720class RecordType : public TagType {
1721protected:
1722  explicit RecordType(RecordDecl *D)
1723    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
1724  explicit RecordType(TypeClass TC, RecordDecl *D)
1725    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
1726  friend class ASTContext;   // ASTContext creates these.
1727public:
1728
1729  RecordDecl *getDecl() const {
1730    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
1731  }
1732
1733  // FIXME: This predicate is a helper to QualType/Type. It needs to
1734  // recursively check all fields for const-ness. If any field is declared
1735  // const, it needs to return false.
1736  bool hasConstFields() const { return false; }
1737
1738  // FIXME: RecordType needs to check when it is created that all fields are in
1739  // the same address space, and return that.
1740  unsigned getAddressSpace() const { return 0; }
1741
1742  static bool classof(const TagType *T);
1743  static bool classof(const Type *T) {
1744    return isa<TagType>(T) && classof(cast<TagType>(T));
1745  }
1746  static bool classof(const RecordType *) { return true; }
1747};
1748
1749/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
1750/// to detect TagType objects of enums.
1751class EnumType : public TagType {
1752  explicit EnumType(EnumDecl *D)
1753    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
1754  friend class ASTContext;   // ASTContext creates these.
1755public:
1756
1757  EnumDecl *getDecl() const {
1758    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
1759  }
1760
1761  static bool classof(const TagType *T);
1762  static bool classof(const Type *T) {
1763    return isa<TagType>(T) && classof(cast<TagType>(T));
1764  }
1765  static bool classof(const EnumType *) { return true; }
1766};
1767
1768class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
1769  unsigned Depth : 15;
1770  unsigned Index : 16;
1771  unsigned ParameterPack : 1;
1772  IdentifierInfo *Name;
1773
1774  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
1775                       QualType Canon)
1776    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
1777      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
1778
1779  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
1780    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
1781      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
1782
1783  friend class ASTContext;  // ASTContext creates these
1784
1785public:
1786  unsigned getDepth() const { return Depth; }
1787  unsigned getIndex() const { return Index; }
1788  bool isParameterPack() const { return ParameterPack; }
1789  IdentifierInfo *getName() const { return Name; }
1790
1791  virtual void getAsStringInternal(std::string &InnerString,
1792                                   const PrintingPolicy &Policy) const;
1793
1794  void Profile(llvm::FoldingSetNodeID &ID) {
1795    Profile(ID, Depth, Index, ParameterPack, Name);
1796  }
1797
1798  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
1799                      unsigned Index, bool ParameterPack,
1800                      IdentifierInfo *Name) {
1801    ID.AddInteger(Depth);
1802    ID.AddInteger(Index);
1803    ID.AddBoolean(ParameterPack);
1804    ID.AddPointer(Name);
1805  }
1806
1807  static bool classof(const Type *T) {
1808    return T->getTypeClass() == TemplateTypeParm;
1809  }
1810  static bool classof(const TemplateTypeParmType *T) { return true; }
1811};
1812
1813/// \brief Represents the type of a template specialization as written
1814/// in the source code.
1815///
1816/// Template specialization types represent the syntactic form of a
1817/// template-id that refers to a type, e.g., @c vector<int>. Some
1818/// template specialization types are syntactic sugar, whose canonical
1819/// type will point to some other type node that represents the
1820/// instantiation or class template specialization. For example, a
1821/// class template specialization type of @c vector<int> will refer to
1822/// a tag type for the instantiation
1823/// @c std::vector<int, std::allocator<int>>.
1824///
1825/// Other template specialization types, for which the template name
1826/// is dependent, may be canonical types. These types are always
1827/// dependent.
1828class TemplateSpecializationType
1829  : public Type, public llvm::FoldingSetNode {
1830
1831  // FIXME: Currently needed for profiling expressions; can we avoid this?
1832  ASTContext &Context;
1833
1834    /// \brief The name of the template being specialized.
1835  TemplateName Template;
1836
1837  /// \brief - The number of template arguments named in this class
1838  /// template specialization.
1839  unsigned NumArgs;
1840
1841  TemplateSpecializationType(ASTContext &Context,
1842                             TemplateName T,
1843                             const TemplateArgument *Args,
1844                             unsigned NumArgs, QualType Canon);
1845
1846  virtual void Destroy(ASTContext& C);
1847
1848  friend class ASTContext;  // ASTContext creates these
1849
1850public:
1851  /// \brief Determine whether any of the given template arguments are
1852  /// dependent.
1853  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
1854                                            unsigned NumArgs);
1855
1856  /// \brief Print a template argument list, including the '<' and '>'
1857  /// enclosing the template arguments.
1858  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
1859                                               unsigned NumArgs,
1860                                               const PrintingPolicy &Policy);
1861
1862  typedef const TemplateArgument * iterator;
1863
1864  iterator begin() const { return getArgs(); }
1865  iterator end() const;
1866
1867  /// \brief Retrieve the name of the template that we are specializing.
1868  TemplateName getTemplateName() const { return Template; }
1869
1870  /// \brief Retrieve the template arguments.
1871  const TemplateArgument *getArgs() const {
1872    return reinterpret_cast<const TemplateArgument *>(this + 1);
1873  }
1874
1875  /// \brief Retrieve the number of template arguments.
1876  unsigned getNumArgs() const { return NumArgs; }
1877
1878  /// \brief Retrieve a specific template argument as a type.
1879  /// \precondition @c isArgType(Arg)
1880  const TemplateArgument &getArg(unsigned Idx) const;
1881
1882  virtual void getAsStringInternal(std::string &InnerString,
1883                                   const PrintingPolicy &Policy) const;
1884
1885  void Profile(llvm::FoldingSetNodeID &ID) {
1886    Profile(ID, Template, getArgs(), NumArgs, Context);
1887  }
1888
1889  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
1890                      const TemplateArgument *Args, unsigned NumArgs,
1891                      ASTContext &Context);
1892
1893  static bool classof(const Type *T) {
1894    return T->getTypeClass() == TemplateSpecialization;
1895  }
1896  static bool classof(const TemplateSpecializationType *T) { return true; }
1897};
1898
1899/// \brief Represents a type that was referred to via a qualified
1900/// name, e.g., N::M::type.
1901///
1902/// This type is used to keep track of a type name as written in the
1903/// source code, including any nested-name-specifiers. The type itself
1904/// is always "sugar", used to express what was written in the source
1905/// code but containing no additional semantic information.
1906class QualifiedNameType : public Type, public llvm::FoldingSetNode {
1907  /// \brief The nested name specifier containing the qualifier.
1908  NestedNameSpecifier *NNS;
1909
1910  /// \brief The type that this qualified name refers to.
1911  QualType NamedType;
1912
1913  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
1914                    QualType CanonType)
1915    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
1916      NNS(NNS), NamedType(NamedType) { }
1917
1918  friend class ASTContext;  // ASTContext creates these
1919
1920public:
1921  /// \brief Retrieve the qualification on this type.
1922  NestedNameSpecifier *getQualifier() const { return NNS; }
1923
1924  /// \brief Retrieve the type named by the qualified-id.
1925  QualType getNamedType() const { return NamedType; }
1926
1927  virtual void getAsStringInternal(std::string &InnerString,
1928                                   const PrintingPolicy &Policy) const;
1929
1930  void Profile(llvm::FoldingSetNodeID &ID) {
1931    Profile(ID, NNS, NamedType);
1932  }
1933
1934  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1935                      QualType NamedType) {
1936    ID.AddPointer(NNS);
1937    NamedType.Profile(ID);
1938  }
1939
1940  static bool classof(const Type *T) {
1941    return T->getTypeClass() == QualifiedName;
1942  }
1943  static bool classof(const QualifiedNameType *T) { return true; }
1944};
1945
1946/// \brief Represents a 'typename' specifier that names a type within
1947/// a dependent type, e.g., "typename T::type".
1948///
1949/// TypenameType has a very similar structure to QualifiedNameType,
1950/// which also involves a nested-name-specifier following by a type,
1951/// and (FIXME!) both can even be prefixed by the 'typename'
1952/// keyword. However, the two types serve very different roles:
1953/// QualifiedNameType is a non-semantic type that serves only as sugar
1954/// to show how a particular type was written in the source
1955/// code. TypenameType, on the other hand, only occurs when the
1956/// nested-name-specifier is dependent, such that we cannot resolve
1957/// the actual type until after instantiation.
1958class TypenameType : public Type, public llvm::FoldingSetNode {
1959  /// \brief The nested name specifier containing the qualifier.
1960  NestedNameSpecifier *NNS;
1961
1962  typedef llvm::PointerUnion<const IdentifierInfo *,
1963                             const TemplateSpecializationType *> NameType;
1964
1965  /// \brief The type that this typename specifier refers to.
1966  NameType Name;
1967
1968  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1969               QualType CanonType)
1970    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
1971    assert(NNS->isDependent() &&
1972           "TypenameType requires a dependent nested-name-specifier");
1973  }
1974
1975  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
1976               QualType CanonType)
1977    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
1978    assert(NNS->isDependent() &&
1979           "TypenameType requires a dependent nested-name-specifier");
1980  }
1981
1982  friend class ASTContext;  // ASTContext creates these
1983
1984public:
1985  /// \brief Retrieve the qualification on this type.
1986  NestedNameSpecifier *getQualifier() const { return NNS; }
1987
1988  /// \brief Retrieve the type named by the typename specifier as an
1989  /// identifier.
1990  ///
1991  /// This routine will return a non-NULL identifier pointer when the
1992  /// form of the original typename was terminated by an identifier,
1993  /// e.g., "typename T::type".
1994  const IdentifierInfo *getIdentifier() const {
1995    return Name.dyn_cast<const IdentifierInfo *>();
1996  }
1997
1998  /// \brief Retrieve the type named by the typename specifier as a
1999  /// type specialization.
2000  const TemplateSpecializationType *getTemplateId() const {
2001    return Name.dyn_cast<const TemplateSpecializationType *>();
2002  }
2003
2004  virtual void getAsStringInternal(std::string &InnerString,
2005                                   const PrintingPolicy &Policy) const;
2006
2007  void Profile(llvm::FoldingSetNodeID &ID) {
2008    Profile(ID, NNS, Name);
2009  }
2010
2011  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2012                      NameType Name) {
2013    ID.AddPointer(NNS);
2014    ID.AddPointer(Name.getOpaqueValue());
2015  }
2016
2017  static bool classof(const Type *T) {
2018    return T->getTypeClass() == Typename;
2019  }
2020  static bool classof(const TypenameType *T) { return true; }
2021};
2022
2023/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
2024/// object oriented design.  They basically correspond to C++ classes.  There
2025/// are two kinds of interface types, normal interfaces like "NSString" and
2026/// qualified interfaces, which are qualified with a protocol list like
2027/// "NSString<NSCopyable, NSAmazing>".
2028class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
2029  ObjCInterfaceDecl *Decl;
2030
2031  // List of protocols for this protocol conforming object type
2032  // List is sorted on protocol name. No protocol is enterred more than once.
2033  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;
2034
2035  ObjCInterfaceType(ObjCInterfaceDecl *D,
2036                    ObjCProtocolDecl **Protos, unsigned NumP) :
2037    Type(ObjCInterface, QualType(), /*Dependent=*/false),
2038    Decl(D), Protocols(Protos, Protos+NumP) { }
2039  friend class ASTContext;  // ASTContext creates these.
2040public:
2041  ObjCInterfaceDecl *getDecl() const { return Decl; }
2042
2043  /// getNumProtocols - Return the number of qualifying protocols in this
2044  /// interface type, or 0 if there are none.
2045  unsigned getNumProtocols() const { return Protocols.size(); }
2046
2047  /// qual_iterator and friends: this provides access to the (potentially empty)
2048  /// list of protocols qualifying this interface.
2049  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
2050  qual_iterator qual_begin() const { return Protocols.begin(); }
2051  qual_iterator qual_end() const   { return Protocols.end(); }
2052  bool qual_empty() const { return Protocols.size() == 0; }
2053
2054  virtual void getAsStringInternal(std::string &InnerString,
2055                                   const PrintingPolicy &Policy) const;
2056
2057  void Profile(llvm::FoldingSetNodeID &ID);
2058  static void Profile(llvm::FoldingSetNodeID &ID,
2059                      const ObjCInterfaceDecl *Decl,
2060                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2061
2062  static bool classof(const Type *T) {
2063    return T->getTypeClass() == ObjCInterface;
2064  }
2065  static bool classof(const ObjCInterfaceType *) { return true; }
2066};
2067
2068/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
2069/// and 'Interface <p> *'.
2070///
2071/// Duplicate protocols are removed and protocol list is canonicalized to be in
2072/// alphabetical order.
2073class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
2074  QualType PointeeType; // A builtin or interface type.
2075
2076  // List of protocols for this protocol conforming object type
2077  // List is sorted on protocol name. No protocol is entered more than once.
2078  llvm::SmallVector<ObjCProtocolDecl*, 8> Protocols;
2079
2080  ObjCObjectPointerType(QualType T, ObjCProtocolDecl **Protos, unsigned NumP) :
2081    Type(ObjCObjectPointer, QualType(), /*Dependent=*/false),
2082    PointeeType(T), Protocols(Protos, Protos+NumP) { }
2083  friend class ASTContext;  // ASTContext creates these.
2084
2085public:
2086  // Get the pointee type. Pointee will either be:
2087  // - a built-in type (for 'id' and 'Class').
2088  // - an interface type (for user-defined types).
2089  // - a TypedefType whose canonical type is an interface (as in 'T' below).
2090  //   For example: typedef NSObject T; T *var;
2091  QualType getPointeeType() const { return PointeeType; }
2092
2093  const ObjCInterfaceType *getInterfaceType() const {
2094    return PointeeType->getAsObjCInterfaceType();
2095  }
2096  /// getInterfaceDecl - returns an interface decl for user-defined types.
2097  ObjCInterfaceDecl *getInterfaceDecl() const {
2098    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
2099  }
2100  /// isObjCIdType - true for "id".
2101  bool isObjCIdType() const {
2102    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2103           !Protocols.size();
2104  }
2105  /// isObjCClassType - true for "Class".
2106  bool isObjCClassType() const {
2107    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2108           !Protocols.size();
2109  }
2110  /// isObjCQualifiedIdType - true for "id <p>".
2111  bool isObjCQualifiedIdType() const {
2112    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2113           Protocols.size();
2114  }
2115  /// isObjCQualifiedClassType - true for "Class <p>".
2116  bool isObjCQualifiedClassType() const {
2117    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2118           Protocols.size();
2119  }
2120  /// qual_iterator and friends: this provides access to the (potentially empty)
2121  /// list of protocols qualifying this interface.
2122  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
2123
2124  qual_iterator qual_begin() const { return Protocols.begin(); }
2125  qual_iterator qual_end() const   { return Protocols.end(); }
2126  bool qual_empty() const { return Protocols.size() == 0; }
2127
2128  /// getNumProtocols - Return the number of qualifying protocols in this
2129  /// interface type, or 0 if there are none.
2130  unsigned getNumProtocols() const { return Protocols.size(); }
2131
2132  void Profile(llvm::FoldingSetNodeID &ID);
2133  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2134                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2135  virtual void getAsStringInternal(std::string &InnerString,
2136                                   const PrintingPolicy &Policy) const;
2137  static bool classof(const Type *T) {
2138    return T->getTypeClass() == ObjCObjectPointer;
2139  }
2140  static bool classof(const ObjCObjectPointerType *) { return true; }
2141};
2142
2143// Inline function definitions.
2144
2145/// getUnqualifiedType - Return the type without any qualifiers.
2146inline QualType QualType::getUnqualifiedType() const {
2147  Type *TP = getTypePtr();
2148  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(TP))
2149    TP = EXTQT->getBaseType();
2150  return QualType(TP, 0);
2151}
2152
2153/// getAddressSpace - Return the address space of this type.
2154inline unsigned QualType::getAddressSpace() const {
2155  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2156  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2157    return AT->getElementType().getAddressSpace();
2158  if (const RecordType *RT = dyn_cast<RecordType>(CT))
2159    return RT->getAddressSpace();
2160  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
2161    return EXTQT->getAddressSpace();
2162  return 0;
2163}
2164
2165/// getObjCGCAttr - Return the gc attribute of this type.
2166inline QualType::GCAttrTypes QualType::getObjCGCAttr() const {
2167  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2168  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2169      return AT->getElementType().getObjCGCAttr();
2170  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
2171    return EXTQT->getObjCGCAttr();
2172  if (const ObjCObjectPointerType *PT = CT->getAsObjCObjectPointerType())
2173    return PT->getPointeeType().getObjCGCAttr();
2174  return GCNone;
2175}
2176
2177  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
2178  /// false otherwise.
2179inline bool QualType::getNoReturnAttr() const {
2180  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2181  if (const PointerType *PT = getTypePtr()->getAs<PointerType>()) {
2182    if (const FunctionType *FT = PT->getPointeeType()->getAsFunctionType())
2183      return FT->getNoReturnAttr();
2184  } else if (const FunctionType *FT = getTypePtr()->getAsFunctionType())
2185    return FT->getNoReturnAttr();
2186
2187  return false;
2188}
2189
2190/// isMoreQualifiedThan - Determine whether this type is more
2191/// qualified than the Other type. For example, "const volatile int"
2192/// is more qualified than "const int", "volatile int", and
2193/// "int". However, it is not more qualified than "const volatile
2194/// int".
2195inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2196  unsigned MyQuals = this->getCVRQualifiers();
2197  unsigned OtherQuals = Other.getCVRQualifiers();
2198  if (getAddressSpace() != Other.getAddressSpace())
2199    return false;
2200  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2201}
2202
2203/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2204/// as qualified as the Other type. For example, "const volatile
2205/// int" is at least as qualified as "const int", "volatile int",
2206/// "int", and "const volatile int".
2207inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2208  unsigned MyQuals = this->getCVRQualifiers();
2209  unsigned OtherQuals = Other.getCVRQualifiers();
2210  if (getAddressSpace() != Other.getAddressSpace())
2211    return false;
2212  return (MyQuals | OtherQuals) == MyQuals;
2213}
2214
2215/// getNonReferenceType - If Type is a reference type (e.g., const
2216/// int&), returns the type that the reference refers to ("const
2217/// int"). Otherwise, returns the type itself. This routine is used
2218/// throughout Sema to implement C++ 5p6:
2219///
2220///   If an expression initially has the type "reference to T" (8.3.2,
2221///   8.5.3), the type is adjusted to "T" prior to any further
2222///   analysis, the expression designates the object or function
2223///   denoted by the reference, and the expression is an lvalue.
2224inline QualType QualType::getNonReferenceType() const {
2225  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
2226    return RefType->getPointeeType();
2227  else
2228    return *this;
2229}
2230
2231inline const TypedefType* Type::getAsTypedefType() const {
2232  return dyn_cast<TypedefType>(this);
2233}
2234inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
2235  if (const PointerType *PT = getAs<PointerType>())
2236    return PT->getPointeeType()->getAsObjCInterfaceType();
2237  return 0;
2238}
2239
2240// NOTE: All of these methods use "getUnqualifiedType" to strip off address
2241// space qualifiers if present.
2242inline bool Type::isFunctionType() const {
2243  return isa<FunctionType>(CanonicalType.getUnqualifiedType());
2244}
2245inline bool Type::isPointerType() const {
2246  return isa<PointerType>(CanonicalType.getUnqualifiedType());
2247}
2248inline bool Type::isAnyPointerType() const {
2249  return isPointerType() || isObjCObjectPointerType();
2250}
2251inline bool Type::isBlockPointerType() const {
2252  return isa<BlockPointerType>(CanonicalType.getUnqualifiedType());
2253}
2254inline bool Type::isReferenceType() const {
2255  return isa<ReferenceType>(CanonicalType.getUnqualifiedType());
2256}
2257inline bool Type::isLValueReferenceType() const {
2258  return isa<LValueReferenceType>(CanonicalType.getUnqualifiedType());
2259}
2260inline bool Type::isRValueReferenceType() const {
2261  return isa<RValueReferenceType>(CanonicalType.getUnqualifiedType());
2262}
2263inline bool Type::isFunctionPointerType() const {
2264  if (const PointerType* T = getAs<PointerType>())
2265    return T->getPointeeType()->isFunctionType();
2266  else
2267    return false;
2268}
2269inline bool Type::isMemberPointerType() const {
2270  return isa<MemberPointerType>(CanonicalType.getUnqualifiedType());
2271}
2272inline bool Type::isMemberFunctionPointerType() const {
2273  if (const MemberPointerType* T = getAs<MemberPointerType>())
2274    return T->getPointeeType()->isFunctionType();
2275  else
2276    return false;
2277}
2278inline bool Type::isArrayType() const {
2279  return isa<ArrayType>(CanonicalType.getUnqualifiedType());
2280}
2281inline bool Type::isConstantArrayType() const {
2282  return isa<ConstantArrayType>(CanonicalType.getUnqualifiedType());
2283}
2284inline bool Type::isIncompleteArrayType() const {
2285  return isa<IncompleteArrayType>(CanonicalType.getUnqualifiedType());
2286}
2287inline bool Type::isVariableArrayType() const {
2288  return isa<VariableArrayType>(CanonicalType.getUnqualifiedType());
2289}
2290inline bool Type::isDependentSizedArrayType() const {
2291  return isa<DependentSizedArrayType>(CanonicalType.getUnqualifiedType());
2292}
2293inline bool Type::isRecordType() const {
2294  return isa<RecordType>(CanonicalType.getUnqualifiedType());
2295}
2296inline bool Type::isAnyComplexType() const {
2297  return isa<ComplexType>(CanonicalType.getUnqualifiedType());
2298}
2299inline bool Type::isVectorType() const {
2300  return isa<VectorType>(CanonicalType.getUnqualifiedType());
2301}
2302inline bool Type::isExtVectorType() const {
2303  return isa<ExtVectorType>(CanonicalType.getUnqualifiedType());
2304}
2305inline bool Type::isObjCObjectPointerType() const {
2306  return isa<ObjCObjectPointerType>(CanonicalType.getUnqualifiedType());
2307}
2308inline bool Type::isObjCInterfaceType() const {
2309  return isa<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
2310}
2311inline bool Type::isObjCQualifiedIdType() const {
2312  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2313    return OPT->isObjCQualifiedIdType();
2314  return false;
2315}
2316inline bool Type::isObjCQualifiedClassType() const {
2317  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2318    return OPT->isObjCQualifiedClassType();
2319  return false;
2320}
2321inline bool Type::isObjCIdType() const {
2322  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2323    return OPT->isObjCIdType();
2324  return false;
2325}
2326inline bool Type::isObjCClassType() const {
2327  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2328    return OPT->isObjCClassType();
2329  return false;
2330}
2331inline bool Type::isObjCBuiltinType() const {
2332  return isObjCIdType() || isObjCClassType();
2333}
2334inline bool Type::isTemplateTypeParmType() const {
2335  return isa<TemplateTypeParmType>(CanonicalType.getUnqualifiedType());
2336}
2337
2338inline bool Type::isSpecificBuiltinType(unsigned K) const {
2339  if (const BuiltinType *BT = getAsBuiltinType())
2340    if (BT->getKind() == (BuiltinType::Kind) K)
2341      return true;
2342  return false;
2343}
2344
2345/// \brief Determines whether this is a type for which one can define
2346/// an overloaded operator.
2347inline bool Type::isOverloadableType() const {
2348  return isDependentType() || isRecordType() || isEnumeralType();
2349}
2350
2351inline bool Type::hasPointerRepresentation() const {
2352  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
2353          isObjCInterfaceType() || isObjCObjectPointerType() ||
2354          isObjCQualifiedInterfaceType() || isNullPtrType());
2355}
2356
2357inline bool Type::hasObjCPointerRepresentation() const {
2358  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
2359          isObjCQualifiedInterfaceType());
2360}
2361
2362/// Insertion operator for diagnostics.  This allows sending QualType's into a
2363/// diagnostic with <<.
2364inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2365                                           QualType T) {
2366  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
2367                  Diagnostic::ak_qualtype);
2368  return DB;
2369}
2370
2371/// Member-template getAs<specific type>'.
2372template <typename T> const T *Type::getAs() const {
2373  // If this is directly a T type, return it.
2374  if (const T *Ty = dyn_cast<T>(this))
2375    return Ty;
2376
2377  // If the canonical form of this type isn't the right kind, reject it.
2378  if (!isa<T>(CanonicalType)) {
2379    // Look through type qualifiers
2380    if (isa<T>(CanonicalType.getUnqualifiedType()))
2381      return CanonicalType.getUnqualifiedType()->getAs<T>();
2382    return 0;
2383  }
2384
2385  // If this is a typedef for a pointer type, strip the typedef off without
2386  // losing all typedef information.
2387  return cast<T>(getDesugaredType());
2388}
2389
2390}  // end namespace clang
2391
2392#endif
2393