Type.h revision 30a2e16f6c27f888dd11eba6bbbae1e980078fcb
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/AST/NestedNameSpecifier.h"
18#include "clang/AST/TemplateName.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Basic/ExceptionSpecificationType.h"
21#include "clang/Basic/IdentifierTable.h"
22#include "clang/Basic/LLVM.h"
23#include "clang/Basic/Linkage.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/Specifiers.h"
26#include "clang/Basic/Visibility.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32#include "llvm/ADT/Twine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/type_traits.h"
35
36namespace clang {
37  enum {
38    TypeAlignmentInBits = 4,
39    TypeAlignment = 1 << TypeAlignmentInBits
40  };
41  class Type;
42  class ExtQuals;
43  class QualType;
44}
45
46namespace llvm {
47  template <typename T>
48  class PointerLikeTypeTraits;
49  template<>
50  class PointerLikeTypeTraits< ::clang::Type*> {
51  public:
52    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
53    static inline ::clang::Type *getFromVoidPointer(void *P) {
54      return static_cast< ::clang::Type*>(P);
55    }
56    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
57  };
58  template<>
59  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
60  public:
61    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
62    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
63      return static_cast< ::clang::ExtQuals*>(P);
64    }
65    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
66  };
67
68  template <>
69  struct isPodLike<clang::QualType> { static const bool value = true; };
70}
71
72namespace clang {
73  class ASTContext;
74  class TypedefNameDecl;
75  class TemplateDecl;
76  class TemplateTypeParmDecl;
77  class NonTypeTemplateParmDecl;
78  class TemplateTemplateParmDecl;
79  class TagDecl;
80  class RecordDecl;
81  class CXXRecordDecl;
82  class EnumDecl;
83  class FieldDecl;
84  class FunctionDecl;
85  class ObjCInterfaceDecl;
86  class ObjCProtocolDecl;
87  class ObjCMethodDecl;
88  class UnresolvedUsingTypenameDecl;
89  class Expr;
90  class Stmt;
91  class SourceLocation;
92  class StmtIteratorBase;
93  class TemplateArgument;
94  class TemplateArgumentLoc;
95  class TemplateArgumentListInfo;
96  class ElaboratedType;
97  class ExtQuals;
98  class ExtQualsTypeCommonBase;
99  struct PrintingPolicy;
100
101  template <typename> class CanQual;
102  typedef CanQual<Type> CanQualType;
103
104  // Provide forward declarations for all of the *Type classes
105#define TYPE(Class, Base) class Class##Type;
106#include "clang/AST/TypeNodes.def"
107
108/// Qualifiers - The collection of all-type qualifiers we support.
109/// Clang supports five independent qualifiers:
110/// * C99: const, volatile, and restrict
111/// * Embedded C (TR18037): address spaces
112/// * Objective C: the GC attributes (none, weak, or strong)
113class Qualifiers {
114public:
115  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
116    Const    = 0x1,
117    Restrict = 0x2,
118    Volatile = 0x4,
119    CVRMask = Const | Volatile | Restrict
120  };
121
122  enum GC {
123    GCNone = 0,
124    Weak,
125    Strong
126  };
127
128  enum ObjCLifetime {
129    /// There is no lifetime qualification on this type.
130    OCL_None,
131
132    /// This object can be modified without requiring retains or
133    /// releases.
134    OCL_ExplicitNone,
135
136    /// Assigning into this object requires the old value to be
137    /// released and the new value to be retained.  The timing of the
138    /// release of the old value is inexact: it may be moved to
139    /// immediately after the last known point where the value is
140    /// live.
141    OCL_Strong,
142
143    /// Reading or writing from this object requires a barrier call.
144    OCL_Weak,
145
146    /// Assigning into this object requires a lifetime extension.
147    OCL_Autoreleasing
148  };
149
150  enum {
151    /// The maximum supported address space number.
152    /// 24 bits should be enough for anyone.
153    MaxAddressSpace = 0xffffffu,
154
155    /// The width of the "fast" qualifier mask.
156    FastWidth = 3,
157
158    /// The fast qualifier mask.
159    FastMask = (1 << FastWidth) - 1
160  };
161
162  Qualifiers() : Mask(0) {}
163
164  /// \brief Returns the common set of qualifiers while removing them from
165  /// the given sets.
166  static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
167    // If both are only CVR-qualified, bit operations are sufficient.
168    if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
169      Qualifiers Q;
170      Q.Mask = L.Mask & R.Mask;
171      L.Mask &= ~Q.Mask;
172      R.Mask &= ~Q.Mask;
173      return Q;
174    }
175
176    Qualifiers Q;
177    unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
178    Q.addCVRQualifiers(CommonCRV);
179    L.removeCVRQualifiers(CommonCRV);
180    R.removeCVRQualifiers(CommonCRV);
181
182    if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
183      Q.setObjCGCAttr(L.getObjCGCAttr());
184      L.removeObjCGCAttr();
185      R.removeObjCGCAttr();
186    }
187
188    if (L.getObjCLifetime() == R.getObjCLifetime()) {
189      Q.setObjCLifetime(L.getObjCLifetime());
190      L.removeObjCLifetime();
191      R.removeObjCLifetime();
192    }
193
194    if (L.getAddressSpace() == R.getAddressSpace()) {
195      Q.setAddressSpace(L.getAddressSpace());
196      L.removeAddressSpace();
197      R.removeAddressSpace();
198    }
199    return Q;
200  }
201
202  static Qualifiers fromFastMask(unsigned Mask) {
203    Qualifiers Qs;
204    Qs.addFastQualifiers(Mask);
205    return Qs;
206  }
207
208  static Qualifiers fromCVRMask(unsigned CVR) {
209    Qualifiers Qs;
210    Qs.addCVRQualifiers(CVR);
211    return Qs;
212  }
213
214  // Deserialize qualifiers from an opaque representation.
215  static Qualifiers fromOpaqueValue(unsigned opaque) {
216    Qualifiers Qs;
217    Qs.Mask = opaque;
218    return Qs;
219  }
220
221  // Serialize these qualifiers into an opaque representation.
222  unsigned getAsOpaqueValue() const {
223    return Mask;
224  }
225
226  bool hasConst() const { return Mask & Const; }
227  void setConst(bool flag) {
228    Mask = (Mask & ~Const) | (flag ? Const : 0);
229  }
230  void removeConst() { Mask &= ~Const; }
231  void addConst() { Mask |= Const; }
232
233  bool hasVolatile() const { return Mask & Volatile; }
234  void setVolatile(bool flag) {
235    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
236  }
237  void removeVolatile() { Mask &= ~Volatile; }
238  void addVolatile() { Mask |= Volatile; }
239
240  bool hasRestrict() const { return Mask & Restrict; }
241  void setRestrict(bool flag) {
242    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
243  }
244  void removeRestrict() { Mask &= ~Restrict; }
245  void addRestrict() { Mask |= Restrict; }
246
247  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
248  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
249  void setCVRQualifiers(unsigned mask) {
250    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
251    Mask = (Mask & ~CVRMask) | mask;
252  }
253  void removeCVRQualifiers(unsigned mask) {
254    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
255    Mask &= ~mask;
256  }
257  void removeCVRQualifiers() {
258    removeCVRQualifiers(CVRMask);
259  }
260  void addCVRQualifiers(unsigned mask) {
261    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
262    Mask |= mask;
263  }
264
265  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
266  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
267  void setObjCGCAttr(GC type) {
268    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
269  }
270  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
271  void addObjCGCAttr(GC type) {
272    assert(type);
273    setObjCGCAttr(type);
274  }
275  Qualifiers withoutObjCGCAttr() const {
276    Qualifiers qs = *this;
277    qs.removeObjCGCAttr();
278    return qs;
279  }
280  Qualifiers withoutObjCLifetime() const {
281    Qualifiers qs = *this;
282    qs.removeObjCLifetime();
283    return qs;
284  }
285
286  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
287  ObjCLifetime getObjCLifetime() const {
288    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
289  }
290  void setObjCLifetime(ObjCLifetime type) {
291    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
292  }
293  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
294  void addObjCLifetime(ObjCLifetime type) {
295    assert(type);
296    assert(!hasObjCLifetime());
297    Mask |= (type << LifetimeShift);
298  }
299
300  /// True if the lifetime is neither None or ExplicitNone.
301  bool hasNonTrivialObjCLifetime() const {
302    ObjCLifetime lifetime = getObjCLifetime();
303    return (lifetime > OCL_ExplicitNone);
304  }
305
306  /// True if the lifetime is either strong or weak.
307  bool hasStrongOrWeakObjCLifetime() const {
308    ObjCLifetime lifetime = getObjCLifetime();
309    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
310  }
311
312  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
313  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
314  void setAddressSpace(unsigned space) {
315    assert(space <= MaxAddressSpace);
316    Mask = (Mask & ~AddressSpaceMask)
317         | (((uint32_t) space) << AddressSpaceShift);
318  }
319  void removeAddressSpace() { setAddressSpace(0); }
320  void addAddressSpace(unsigned space) {
321    assert(space);
322    setAddressSpace(space);
323  }
324
325  // Fast qualifiers are those that can be allocated directly
326  // on a QualType object.
327  bool hasFastQualifiers() const { return getFastQualifiers(); }
328  unsigned getFastQualifiers() const { return Mask & FastMask; }
329  void setFastQualifiers(unsigned mask) {
330    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
331    Mask = (Mask & ~FastMask) | mask;
332  }
333  void removeFastQualifiers(unsigned mask) {
334    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
335    Mask &= ~mask;
336  }
337  void removeFastQualifiers() {
338    removeFastQualifiers(FastMask);
339  }
340  void addFastQualifiers(unsigned mask) {
341    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
342    Mask |= mask;
343  }
344
345  /// hasNonFastQualifiers - Return true if the set contains any
346  /// qualifiers which require an ExtQuals node to be allocated.
347  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
348  Qualifiers getNonFastQualifiers() const {
349    Qualifiers Quals = *this;
350    Quals.setFastQualifiers(0);
351    return Quals;
352  }
353
354  /// hasQualifiers - Return true if the set contains any qualifiers.
355  bool hasQualifiers() const { return Mask; }
356  bool empty() const { return !Mask; }
357
358  /// \brief Add the qualifiers from the given set to this set.
359  void addQualifiers(Qualifiers Q) {
360    // If the other set doesn't have any non-boolean qualifiers, just
361    // bit-or it in.
362    if (!(Q.Mask & ~CVRMask))
363      Mask |= Q.Mask;
364    else {
365      Mask |= (Q.Mask & CVRMask);
366      if (Q.hasAddressSpace())
367        addAddressSpace(Q.getAddressSpace());
368      if (Q.hasObjCGCAttr())
369        addObjCGCAttr(Q.getObjCGCAttr());
370      if (Q.hasObjCLifetime())
371        addObjCLifetime(Q.getObjCLifetime());
372    }
373  }
374
375  /// \brief Remove the qualifiers from the given set from this set.
376  void removeQualifiers(Qualifiers Q) {
377    // If the other set doesn't have any non-boolean qualifiers, just
378    // bit-and the inverse in.
379    if (!(Q.Mask & ~CVRMask))
380      Mask &= ~Q.Mask;
381    else {
382      Mask &= ~(Q.Mask & CVRMask);
383      if (getObjCGCAttr() == Q.getObjCGCAttr())
384        removeObjCGCAttr();
385      if (getObjCLifetime() == Q.getObjCLifetime())
386        removeObjCLifetime();
387      if (getAddressSpace() == Q.getAddressSpace())
388        removeAddressSpace();
389    }
390  }
391
392  /// \brief Add the qualifiers from the given set to this set, given that
393  /// they don't conflict.
394  void addConsistentQualifiers(Qualifiers qs) {
395    assert(getAddressSpace() == qs.getAddressSpace() ||
396           !hasAddressSpace() || !qs.hasAddressSpace());
397    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
398           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
399    assert(getObjCLifetime() == qs.getObjCLifetime() ||
400           !hasObjCLifetime() || !qs.hasObjCLifetime());
401    Mask |= qs.Mask;
402  }
403
404  /// \brief Determines if these qualifiers compatibly include another set.
405  /// Generally this answers the question of whether an object with the other
406  /// qualifiers can be safely used as an object with these qualifiers.
407  bool compatiblyIncludes(Qualifiers other) const {
408    return
409      // Address spaces must match exactly.
410      getAddressSpace() == other.getAddressSpace() &&
411      // ObjC GC qualifiers can match, be added, or be removed, but can't be
412      // changed.
413      (getObjCGCAttr() == other.getObjCGCAttr() ||
414       !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
415      // ObjC lifetime qualifiers must match exactly.
416      getObjCLifetime() == other.getObjCLifetime() &&
417      // CVR qualifiers may subset.
418      (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
419  }
420
421  /// \brief Determines if these qualifiers compatibly include another set of
422  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
423  ///
424  /// One set of Objective-C lifetime qualifiers compatibly includes the other
425  /// if the lifetime qualifiers match, or if both are non-__weak and the
426  /// including set also contains the 'const' qualifier.
427  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
428    if (getObjCLifetime() == other.getObjCLifetime())
429      return true;
430
431    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
432      return false;
433
434    return hasConst();
435  }
436
437  /// \brief Determine whether this set of qualifiers is a strict superset of
438  /// another set of qualifiers, not considering qualifier compatibility.
439  bool isStrictSupersetOf(Qualifiers Other) const;
440
441  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
442  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
443
444  operator bool() const { return hasQualifiers(); }
445
446  Qualifiers &operator+=(Qualifiers R) {
447    addQualifiers(R);
448    return *this;
449  }
450
451  // Union two qualifier sets.  If an enumerated qualifier appears
452  // in both sets, use the one from the right.
453  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
454    L += R;
455    return L;
456  }
457
458  Qualifiers &operator-=(Qualifiers R) {
459    removeQualifiers(R);
460    return *this;
461  }
462
463  /// \brief Compute the difference between two qualifier sets.
464  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
465    L -= R;
466    return L;
467  }
468
469  std::string getAsString() const;
470  std::string getAsString(const PrintingPolicy &Policy) const;
471
472  bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
473  void print(raw_ostream &OS, const PrintingPolicy &Policy,
474             bool appendSpaceIfNonEmpty = false) const;
475
476  void Profile(llvm::FoldingSetNodeID &ID) const {
477    ID.AddInteger(Mask);
478  }
479
480private:
481
482  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
483  //           |C R V|GCAttr|Lifetime|AddressSpace|
484  uint32_t Mask;
485
486  static const uint32_t GCAttrMask = 0x18;
487  static const uint32_t GCAttrShift = 3;
488  static const uint32_t LifetimeMask = 0xE0;
489  static const uint32_t LifetimeShift = 5;
490  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
491  static const uint32_t AddressSpaceShift = 8;
492};
493
494/// A std::pair-like structure for storing a qualified type split
495/// into its local qualifiers and its locally-unqualified type.
496struct SplitQualType {
497  /// The locally-unqualified type.
498  const Type *Ty;
499
500  /// The local qualifiers.
501  Qualifiers Quals;
502
503  SplitQualType() : Ty(0), Quals() {}
504  SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
505
506  SplitQualType getSingleStepDesugaredType() const; // end of this file
507
508  // Make llvm::tie work.
509  operator std::pair<const Type *,Qualifiers>() const {
510    return std::pair<const Type *,Qualifiers>(Ty, Quals);
511  }
512
513  friend bool operator==(SplitQualType a, SplitQualType b) {
514    return a.Ty == b.Ty && a.Quals == b.Quals;
515  }
516  friend bool operator!=(SplitQualType a, SplitQualType b) {
517    return a.Ty != b.Ty || a.Quals != b.Quals;
518  }
519};
520
521/// QualType - For efficiency, we don't store CV-qualified types as nodes on
522/// their own: instead each reference to a type stores the qualifiers.  This
523/// greatly reduces the number of nodes we need to allocate for types (for
524/// example we only need one for 'int', 'const int', 'volatile int',
525/// 'const volatile int', etc).
526///
527/// As an added efficiency bonus, instead of making this a pair, we
528/// just store the two bits we care about in the low bits of the
529/// pointer.  To handle the packing/unpacking, we make QualType be a
530/// simple wrapper class that acts like a smart pointer.  A third bit
531/// indicates whether there are extended qualifiers present, in which
532/// case the pointer points to a special structure.
533class QualType {
534  // Thankfully, these are efficiently composable.
535  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
536                       Qualifiers::FastWidth> Value;
537
538  const ExtQuals *getExtQualsUnsafe() const {
539    return Value.getPointer().get<const ExtQuals*>();
540  }
541
542  const Type *getTypePtrUnsafe() const {
543    return Value.getPointer().get<const Type*>();
544  }
545
546  const ExtQualsTypeCommonBase *getCommonPtr() const {
547    assert(!isNull() && "Cannot retrieve a NULL type pointer");
548    uintptr_t CommonPtrVal
549      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
550    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
551    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
552  }
553
554  friend class QualifierCollector;
555public:
556  QualType() {}
557
558  QualType(const Type *Ptr, unsigned Quals)
559    : Value(Ptr, Quals) {}
560  QualType(const ExtQuals *Ptr, unsigned Quals)
561    : Value(Ptr, Quals) {}
562
563  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
564  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
565
566  /// Retrieves a pointer to the underlying (unqualified) type.
567  ///
568  /// This function requires that the type not be NULL. If the type might be
569  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
570  const Type *getTypePtr() const;
571
572  const Type *getTypePtrOrNull() const;
573
574  /// Retrieves a pointer to the name of the base type.
575  const IdentifierInfo *getBaseTypeIdentifier() const;
576
577  /// Divides a QualType into its unqualified type and a set of local
578  /// qualifiers.
579  SplitQualType split() const;
580
581  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
582  static QualType getFromOpaquePtr(const void *Ptr) {
583    QualType T;
584    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
585    return T;
586  }
587
588  const Type &operator*() const {
589    return *getTypePtr();
590  }
591
592  const Type *operator->() const {
593    return getTypePtr();
594  }
595
596  bool isCanonical() const;
597  bool isCanonicalAsParam() const;
598
599  /// isNull - Return true if this QualType doesn't point to a type yet.
600  bool isNull() const {
601    return Value.getPointer().isNull();
602  }
603
604  /// \brief Determine whether this particular QualType instance has the
605  /// "const" qualifier set, without looking through typedefs that may have
606  /// added "const" at a different level.
607  bool isLocalConstQualified() const {
608    return (getLocalFastQualifiers() & Qualifiers::Const);
609  }
610
611  /// \brief Determine whether this type is const-qualified.
612  bool isConstQualified() const;
613
614  /// \brief Determine whether this particular QualType instance has the
615  /// "restrict" qualifier set, without looking through typedefs that may have
616  /// added "restrict" at a different level.
617  bool isLocalRestrictQualified() const {
618    return (getLocalFastQualifiers() & Qualifiers::Restrict);
619  }
620
621  /// \brief Determine whether this type is restrict-qualified.
622  bool isRestrictQualified() const;
623
624  /// \brief Determine whether this particular QualType instance has the
625  /// "volatile" qualifier set, without looking through typedefs that may have
626  /// added "volatile" at a different level.
627  bool isLocalVolatileQualified() const {
628    return (getLocalFastQualifiers() & Qualifiers::Volatile);
629  }
630
631  /// \brief Determine whether this type is volatile-qualified.
632  bool isVolatileQualified() const;
633
634  /// \brief Determine whether this particular QualType instance has any
635  /// qualifiers, without looking through any typedefs that might add
636  /// qualifiers at a different level.
637  bool hasLocalQualifiers() const {
638    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
639  }
640
641  /// \brief Determine whether this type has any qualifiers.
642  bool hasQualifiers() const;
643
644  /// \brief Determine whether this particular QualType instance has any
645  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
646  /// instance.
647  bool hasLocalNonFastQualifiers() const {
648    return Value.getPointer().is<const ExtQuals*>();
649  }
650
651  /// \brief Retrieve the set of qualifiers local to this particular QualType
652  /// instance, not including any qualifiers acquired through typedefs or
653  /// other sugar.
654  Qualifiers getLocalQualifiers() const;
655
656  /// \brief Retrieve the set of qualifiers applied to this type.
657  Qualifiers getQualifiers() const;
658
659  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
660  /// local to this particular QualType instance, not including any qualifiers
661  /// acquired through typedefs or other sugar.
662  unsigned getLocalCVRQualifiers() const {
663    return getLocalFastQualifiers();
664  }
665
666  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
667  /// applied to this type.
668  unsigned getCVRQualifiers() const;
669
670  bool isConstant(ASTContext& Ctx) const {
671    return QualType::isConstant(*this, Ctx);
672  }
673
674  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
675  bool isPODType(ASTContext &Context) const;
676
677  /// isCXX98PODType() - Return true if this is a POD type according to the
678  /// rules of the C++98 standard, regardless of the current compilation's
679  /// language.
680  bool isCXX98PODType(ASTContext &Context) const;
681
682  /// isCXX11PODType() - Return true if this is a POD type according to the
683  /// more relaxed rules of the C++11 standard, regardless of the current
684  /// compilation's language.
685  /// (C++0x [basic.types]p9)
686  bool isCXX11PODType(ASTContext &Context) const;
687
688  /// isTrivialType - Return true if this is a trivial type
689  /// (C++0x [basic.types]p9)
690  bool isTrivialType(ASTContext &Context) const;
691
692  /// isTriviallyCopyableType - Return true if this is a trivially
693  /// copyable type (C++0x [basic.types]p9)
694  bool isTriviallyCopyableType(ASTContext &Context) const;
695
696  // Don't promise in the API that anything besides 'const' can be
697  // easily added.
698
699  /// addConst - add the specified type qualifier to this QualType.
700  void addConst() {
701    addFastQualifiers(Qualifiers::Const);
702  }
703  QualType withConst() const {
704    return withFastQualifiers(Qualifiers::Const);
705  }
706
707  /// addVolatile - add the specified type qualifier to this QualType.
708  void addVolatile() {
709    addFastQualifiers(Qualifiers::Volatile);
710  }
711  QualType withVolatile() const {
712    return withFastQualifiers(Qualifiers::Volatile);
713  }
714
715  /// Add the restrict qualifier to this QualType.
716  void addRestrict() {
717    addFastQualifiers(Qualifiers::Restrict);
718  }
719  QualType withRestrict() const {
720    return withFastQualifiers(Qualifiers::Restrict);
721  }
722
723  QualType withCVRQualifiers(unsigned CVR) const {
724    return withFastQualifiers(CVR);
725  }
726
727  void addFastQualifiers(unsigned TQs) {
728    assert(!(TQs & ~Qualifiers::FastMask)
729           && "non-fast qualifier bits set in mask!");
730    Value.setInt(Value.getInt() | TQs);
731  }
732
733  void removeLocalConst();
734  void removeLocalVolatile();
735  void removeLocalRestrict();
736  void removeLocalCVRQualifiers(unsigned Mask);
737
738  void removeLocalFastQualifiers() { Value.setInt(0); }
739  void removeLocalFastQualifiers(unsigned Mask) {
740    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
741    Value.setInt(Value.getInt() & ~Mask);
742  }
743
744  // Creates a type with the given qualifiers in addition to any
745  // qualifiers already on this type.
746  QualType withFastQualifiers(unsigned TQs) const {
747    QualType T = *this;
748    T.addFastQualifiers(TQs);
749    return T;
750  }
751
752  // Creates a type with exactly the given fast qualifiers, removing
753  // any existing fast qualifiers.
754  QualType withExactLocalFastQualifiers(unsigned TQs) const {
755    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
756  }
757
758  // Removes fast qualifiers, but leaves any extended qualifiers in place.
759  QualType withoutLocalFastQualifiers() const {
760    QualType T = *this;
761    T.removeLocalFastQualifiers();
762    return T;
763  }
764
765  QualType getCanonicalType() const;
766
767  /// \brief Return this type with all of the instance-specific qualifiers
768  /// removed, but without removing any qualifiers that may have been applied
769  /// through typedefs.
770  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
771
772  /// \brief Retrieve the unqualified variant of the given type,
773  /// removing as little sugar as possible.
774  ///
775  /// This routine looks through various kinds of sugar to find the
776  /// least-desugared type that is unqualified. For example, given:
777  ///
778  /// \code
779  /// typedef int Integer;
780  /// typedef const Integer CInteger;
781  /// typedef CInteger DifferenceType;
782  /// \endcode
783  ///
784  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
785  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
786  ///
787  /// The resulting type might still be qualified if it's an array
788  /// type.  To strip qualifiers even from within an array type, use
789  /// ASTContext::getUnqualifiedArrayType.
790  inline QualType getUnqualifiedType() const;
791
792  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
793  /// given type, removing as little sugar as possible.
794  ///
795  /// Like getUnqualifiedType(), but also returns the set of
796  /// qualifiers that were built up.
797  ///
798  /// The resulting type might still be qualified if it's an array
799  /// type.  To strip qualifiers even from within an array type, use
800  /// ASTContext::getUnqualifiedArrayType.
801  inline SplitQualType getSplitUnqualifiedType() const;
802
803  /// \brief Determine whether this type is more qualified than the other
804  /// given type, requiring exact equality for non-CVR qualifiers.
805  bool isMoreQualifiedThan(QualType Other) const;
806
807  /// \brief Determine whether this type is at least as qualified as the other
808  /// given type, requiring exact equality for non-CVR qualifiers.
809  bool isAtLeastAsQualifiedAs(QualType Other) const;
810
811  QualType getNonReferenceType() const;
812
813  /// \brief Determine the type of a (typically non-lvalue) expression with the
814  /// specified result type.
815  ///
816  /// This routine should be used for expressions for which the return type is
817  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
818  /// an lvalue. It removes a top-level reference (since there are no
819  /// expressions of reference type) and deletes top-level cvr-qualifiers
820  /// from non-class types (in C++) or all types (in C).
821  QualType getNonLValueExprType(ASTContext &Context) const;
822
823  /// getDesugaredType - Return the specified type with any "sugar" removed from
824  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
825  /// the type is already concrete, it returns it unmodified.  This is similar
826  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
827  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
828  /// concrete.
829  ///
830  /// Qualifiers are left in place.
831  QualType getDesugaredType(const ASTContext &Context) const {
832    return getDesugaredType(*this, Context);
833  }
834
835  SplitQualType getSplitDesugaredType() const {
836    return getSplitDesugaredType(*this);
837  }
838
839  /// \brief Return the specified type with one level of "sugar" removed from
840  /// the type.
841  ///
842  /// This routine takes off the first typedef, typeof, etc. If the outer level
843  /// of the type is already concrete, it returns it unmodified.
844  QualType getSingleStepDesugaredType(const ASTContext &Context) const {
845    return getSingleStepDesugaredTypeImpl(*this, Context);
846  }
847
848  /// IgnoreParens - Returns the specified type after dropping any
849  /// outer-level parentheses.
850  QualType IgnoreParens() const {
851    if (isa<ParenType>(*this))
852      return QualType::IgnoreParens(*this);
853    return *this;
854  }
855
856  /// operator==/!= - Indicate whether the specified types and qualifiers are
857  /// identical.
858  friend bool operator==(const QualType &LHS, const QualType &RHS) {
859    return LHS.Value == RHS.Value;
860  }
861  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
862    return LHS.Value != RHS.Value;
863  }
864  std::string getAsString() const {
865    return getAsString(split());
866  }
867  static std::string getAsString(SplitQualType split) {
868    return getAsString(split.Ty, split.Quals);
869  }
870  static std::string getAsString(const Type *ty, Qualifiers qs);
871
872  std::string getAsString(const PrintingPolicy &Policy) const;
873
874  void print(raw_ostream &OS, const PrintingPolicy &Policy,
875             const Twine &PlaceHolder = Twine()) const {
876    print(split(), OS, Policy, PlaceHolder);
877  }
878  static void print(SplitQualType split, raw_ostream &OS,
879                    const PrintingPolicy &policy, const Twine &PlaceHolder) {
880    return print(split.Ty, split.Quals, OS, policy, PlaceHolder);
881  }
882  static void print(const Type *ty, Qualifiers qs,
883                    raw_ostream &OS, const PrintingPolicy &policy,
884                    const Twine &PlaceHolder);
885
886  void getAsStringInternal(std::string &Str,
887                           const PrintingPolicy &Policy) const {
888    return getAsStringInternal(split(), Str, Policy);
889  }
890  static void getAsStringInternal(SplitQualType split, std::string &out,
891                                  const PrintingPolicy &policy) {
892    return getAsStringInternal(split.Ty, split.Quals, out, policy);
893  }
894  static void getAsStringInternal(const Type *ty, Qualifiers qs,
895                                  std::string &out,
896                                  const PrintingPolicy &policy);
897
898  class StreamedQualTypeHelper {
899    const QualType &T;
900    const PrintingPolicy &Policy;
901    const Twine &PlaceHolder;
902  public:
903    StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
904                           const Twine &PlaceHolder)
905      : T(T), Policy(Policy), PlaceHolder(PlaceHolder) { }
906
907    friend raw_ostream &operator<<(raw_ostream &OS,
908                                   const StreamedQualTypeHelper &SQT) {
909      SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder);
910      return OS;
911    }
912  };
913
914  StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
915                                const Twine &PlaceHolder = Twine()) const {
916    return StreamedQualTypeHelper(*this, Policy, PlaceHolder);
917  }
918
919  void dump(const char *s) const;
920  void dump() const;
921
922  void Profile(llvm::FoldingSetNodeID &ID) const {
923    ID.AddPointer(getAsOpaquePtr());
924  }
925
926  /// getAddressSpace - Return the address space of this type.
927  inline unsigned getAddressSpace() const;
928
929  /// getObjCGCAttr - Returns gc attribute of this type.
930  inline Qualifiers::GC getObjCGCAttr() const;
931
932  /// isObjCGCWeak true when Type is objc's weak.
933  bool isObjCGCWeak() const {
934    return getObjCGCAttr() == Qualifiers::Weak;
935  }
936
937  /// isObjCGCStrong true when Type is objc's strong.
938  bool isObjCGCStrong() const {
939    return getObjCGCAttr() == Qualifiers::Strong;
940  }
941
942  /// getObjCLifetime - Returns lifetime attribute of this type.
943  Qualifiers::ObjCLifetime getObjCLifetime() const {
944    return getQualifiers().getObjCLifetime();
945  }
946
947  bool hasNonTrivialObjCLifetime() const {
948    return getQualifiers().hasNonTrivialObjCLifetime();
949  }
950
951  bool hasStrongOrWeakObjCLifetime() const {
952    return getQualifiers().hasStrongOrWeakObjCLifetime();
953  }
954
955  enum DestructionKind {
956    DK_none,
957    DK_cxx_destructor,
958    DK_objc_strong_lifetime,
959    DK_objc_weak_lifetime
960  };
961
962  /// isDestructedType - nonzero if objects of this type require
963  /// non-trivial work to clean up after.  Non-zero because it's
964  /// conceivable that qualifiers (objc_gc(weak)?) could make
965  /// something require destruction.
966  DestructionKind isDestructedType() const {
967    return isDestructedTypeImpl(*this);
968  }
969
970  /// \brief Determine whether expressions of the given type are forbidden
971  /// from being lvalues in C.
972  ///
973  /// The expression types that are forbidden to be lvalues are:
974  ///   - 'void', but not qualified void
975  ///   - function types
976  ///
977  /// The exact rule here is C99 6.3.2.1:
978  ///   An lvalue is an expression with an object type or an incomplete
979  ///   type other than void.
980  bool isCForbiddenLValueType() const;
981
982private:
983  // These methods are implemented in a separate translation unit;
984  // "static"-ize them to avoid creating temporary QualTypes in the
985  // caller.
986  static bool isConstant(QualType T, ASTContext& Ctx);
987  static QualType getDesugaredType(QualType T, const ASTContext &Context);
988  static SplitQualType getSplitDesugaredType(QualType T);
989  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
990  static QualType getSingleStepDesugaredTypeImpl(QualType type,
991                                                 const ASTContext &C);
992  static QualType IgnoreParens(QualType T);
993  static DestructionKind isDestructedTypeImpl(QualType type);
994};
995
996} // end clang.
997
998namespace llvm {
999/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1000/// to a specific Type class.
1001template<> struct simplify_type<const ::clang::QualType> {
1002  typedef const ::clang::Type *SimpleType;
1003  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
1004    return Val.getTypePtr();
1005  }
1006};
1007template<> struct simplify_type< ::clang::QualType>
1008  : public simplify_type<const ::clang::QualType> {};
1009
1010// Teach SmallPtrSet that QualType is "basically a pointer".
1011template<>
1012class PointerLikeTypeTraits<clang::QualType> {
1013public:
1014  static inline void *getAsVoidPointer(clang::QualType P) {
1015    return P.getAsOpaquePtr();
1016  }
1017  static inline clang::QualType getFromVoidPointer(void *P) {
1018    return clang::QualType::getFromOpaquePtr(P);
1019  }
1020  // Various qualifiers go in low bits.
1021  enum { NumLowBitsAvailable = 0 };
1022};
1023
1024} // end namespace llvm
1025
1026namespace clang {
1027
1028/// \brief Base class that is common to both the \c ExtQuals and \c Type
1029/// classes, which allows \c QualType to access the common fields between the
1030/// two.
1031///
1032class ExtQualsTypeCommonBase {
1033  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1034    : BaseType(baseType), CanonicalType(canon) {}
1035
1036  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
1037  /// a self-referential pointer (for \c Type).
1038  ///
1039  /// This pointer allows an efficient mapping from a QualType to its
1040  /// underlying type pointer.
1041  const Type *const BaseType;
1042
1043  /// \brief The canonical type of this type.  A QualType.
1044  QualType CanonicalType;
1045
1046  friend class QualType;
1047  friend class Type;
1048  friend class ExtQuals;
1049};
1050
1051/// ExtQuals - We can encode up to four bits in the low bits of a
1052/// type pointer, but there are many more type qualifiers that we want
1053/// to be able to apply to an arbitrary type.  Therefore we have this
1054/// struct, intended to be heap-allocated and used by QualType to
1055/// store qualifiers.
1056///
1057/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1058/// in three low bits on the QualType pointer; a fourth bit records whether
1059/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1060/// Objective-C GC attributes) are much more rare.
1061class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1062  // NOTE: changing the fast qualifiers should be straightforward as
1063  // long as you don't make 'const' non-fast.
1064  // 1. Qualifiers:
1065  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1066  //       Fast qualifiers must occupy the low-order bits.
1067  //    b) Update Qualifiers::FastWidth and FastMask.
1068  // 2. QualType:
1069  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
1070  //    b) Update remove{Volatile,Restrict}, defined near the end of
1071  //       this header.
1072  // 3. ASTContext:
1073  //    a) Update get{Volatile,Restrict}Type.
1074
1075  /// Quals - the immutable set of qualifiers applied by this
1076  /// node;  always contains extended qualifiers.
1077  Qualifiers Quals;
1078
1079  ExtQuals *this_() { return this; }
1080
1081public:
1082  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1083    : ExtQualsTypeCommonBase(baseType,
1084                             canon.isNull() ? QualType(this_(), 0) : canon),
1085      Quals(quals)
1086  {
1087    assert(Quals.hasNonFastQualifiers()
1088           && "ExtQuals created with no fast qualifiers");
1089    assert(!Quals.hasFastQualifiers()
1090           && "ExtQuals created with fast qualifiers");
1091  }
1092
1093  Qualifiers getQualifiers() const { return Quals; }
1094
1095  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1096  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1097
1098  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1099  Qualifiers::ObjCLifetime getObjCLifetime() const {
1100    return Quals.getObjCLifetime();
1101  }
1102
1103  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1104  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
1105
1106  const Type *getBaseType() const { return BaseType; }
1107
1108public:
1109  void Profile(llvm::FoldingSetNodeID &ID) const {
1110    Profile(ID, getBaseType(), Quals);
1111  }
1112  static void Profile(llvm::FoldingSetNodeID &ID,
1113                      const Type *BaseType,
1114                      Qualifiers Quals) {
1115    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1116    ID.AddPointer(BaseType);
1117    Quals.Profile(ID);
1118  }
1119};
1120
1121/// \brief The kind of C++0x ref-qualifier associated with a function type,
1122/// which determines whether a member function's "this" object can be an
1123/// lvalue, rvalue, or neither.
1124enum RefQualifierKind {
1125  /// \brief No ref-qualifier was provided.
1126  RQ_None = 0,
1127  /// \brief An lvalue ref-qualifier was provided (\c &).
1128  RQ_LValue,
1129  /// \brief An rvalue ref-qualifier was provided (\c &&).
1130  RQ_RValue
1131};
1132
1133/// Type - This is the base class of the type hierarchy.  A central concept
1134/// with types is that each type always has a canonical type.  A canonical type
1135/// is the type with any typedef names stripped out of it or the types it
1136/// references.  For example, consider:
1137///
1138///  typedef int  foo;
1139///  typedef foo* bar;
1140///    'int *'    'foo *'    'bar'
1141///
1142/// There will be a Type object created for 'int'.  Since int is canonical, its
1143/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
1144/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1145/// there is a PointerType that represents 'int*', which, like 'int', is
1146/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1147/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1148/// is also 'int*'.
1149///
1150/// Non-canonical types are useful for emitting diagnostics, without losing
1151/// information about typedefs being used.  Canonical types are useful for type
1152/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1153/// about whether something has a particular form (e.g. is a function type),
1154/// because they implicitly, recursively, strip all typedefs out of a type.
1155///
1156/// Types, once created, are immutable.
1157///
1158class Type : public ExtQualsTypeCommonBase {
1159public:
1160  enum TypeClass {
1161#define TYPE(Class, Base) Class,
1162#define LAST_TYPE(Class) TypeLast = Class,
1163#define ABSTRACT_TYPE(Class, Base)
1164#include "clang/AST/TypeNodes.def"
1165    TagFirst = Record, TagLast = Enum
1166  };
1167
1168private:
1169  Type(const Type &) LLVM_DELETED_FUNCTION;
1170  void operator=(const Type &) LLVM_DELETED_FUNCTION;
1171
1172  /// Bitfields required by the Type class.
1173  class TypeBitfields {
1174    friend class Type;
1175    template <class T> friend class TypePropertyCache;
1176
1177    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1178    unsigned TC : 8;
1179
1180    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
1181    unsigned Dependent : 1;
1182
1183    /// \brief Whether this type somehow involves a template parameter, even
1184    /// if the resolution of the type does not depend on a template parameter.
1185    unsigned InstantiationDependent : 1;
1186
1187    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1188    unsigned VariablyModified : 1;
1189
1190    /// \brief Whether this type contains an unexpanded parameter pack
1191    /// (for C++0x variadic templates).
1192    unsigned ContainsUnexpandedParameterPack : 1;
1193
1194    /// \brief Nonzero if the cache (i.e. the bitfields here starting
1195    /// with 'Cache') is valid.  If so, then this is a
1196    /// LangOptions::VisibilityMode+1.
1197    mutable unsigned CacheValidAndVisibility : 2;
1198
1199    /// \brief True if the visibility was set explicitly in the source code.
1200    mutable unsigned CachedExplicitVisibility : 1;
1201
1202    /// \brief Linkage of this type.
1203    mutable unsigned CachedLinkage : 2;
1204
1205    /// \brief Whether this type involves and local or unnamed types.
1206    mutable unsigned CachedLocalOrUnnamed : 1;
1207
1208    /// \brief FromAST - Whether this type comes from an AST file.
1209    mutable unsigned FromAST : 1;
1210
1211    bool isCacheValid() const {
1212      return (CacheValidAndVisibility != 0);
1213    }
1214    Visibility getVisibility() const {
1215      assert(isCacheValid() && "getting linkage from invalid cache");
1216      return static_cast<Visibility>(CacheValidAndVisibility-1);
1217    }
1218    bool isVisibilityExplicit() const {
1219      assert(isCacheValid() && "getting linkage from invalid cache");
1220      return CachedExplicitVisibility;
1221    }
1222    Linkage getLinkage() const {
1223      assert(isCacheValid() && "getting linkage from invalid cache");
1224      return static_cast<Linkage>(CachedLinkage);
1225    }
1226    bool hasLocalOrUnnamedType() const {
1227      assert(isCacheValid() && "getting linkage from invalid cache");
1228      return CachedLocalOrUnnamed;
1229    }
1230  };
1231  enum { NumTypeBits = 19 };
1232
1233protected:
1234  // These classes allow subclasses to somewhat cleanly pack bitfields
1235  // into Type.
1236
1237  class ArrayTypeBitfields {
1238    friend class ArrayType;
1239
1240    unsigned : NumTypeBits;
1241
1242    /// IndexTypeQuals - CVR qualifiers from declarations like
1243    /// 'int X[static restrict 4]'. For function parameters only.
1244    unsigned IndexTypeQuals : 3;
1245
1246    /// SizeModifier - storage class qualifiers from declarations like
1247    /// 'int X[static restrict 4]'. For function parameters only.
1248    /// Actually an ArrayType::ArraySizeModifier.
1249    unsigned SizeModifier : 3;
1250  };
1251
1252  class BuiltinTypeBitfields {
1253    friend class BuiltinType;
1254
1255    unsigned : NumTypeBits;
1256
1257    /// The kind (BuiltinType::Kind) of builtin type this is.
1258    unsigned Kind : 8;
1259  };
1260
1261  class FunctionTypeBitfields {
1262    friend class FunctionType;
1263
1264    unsigned : NumTypeBits;
1265
1266    /// Extra information which affects how the function is called, like
1267    /// regparm and the calling convention.
1268    unsigned ExtInfo : 9;
1269
1270    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1271    /// other bitfields.
1272    /// The qualifiers are part of FunctionProtoType because...
1273    ///
1274    /// C++ 8.3.5p4: The return type, the parameter type list and the
1275    /// cv-qualifier-seq, [...], are part of the function type.
1276    unsigned TypeQuals : 3;
1277
1278    /// \brief The ref-qualifier associated with a \c FunctionProtoType.
1279    ///
1280    /// This is a value of type \c RefQualifierKind.
1281    unsigned RefQualifier : 2;
1282  };
1283
1284  class ObjCObjectTypeBitfields {
1285    friend class ObjCObjectType;
1286
1287    unsigned : NumTypeBits;
1288
1289    /// NumProtocols - The number of protocols stored directly on this
1290    /// object type.
1291    unsigned NumProtocols : 32 - NumTypeBits;
1292  };
1293
1294  class ReferenceTypeBitfields {
1295    friend class ReferenceType;
1296
1297    unsigned : NumTypeBits;
1298
1299    /// True if the type was originally spelled with an lvalue sigil.
1300    /// This is never true of rvalue references but can also be false
1301    /// on lvalue references because of C++0x [dcl.typedef]p9,
1302    /// as follows:
1303    ///
1304    ///   typedef int &ref;    // lvalue, spelled lvalue
1305    ///   typedef int &&rvref; // rvalue
1306    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1307    ///   ref &&a;             // lvalue, inner ref
1308    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1309    ///   rvref &&a;           // rvalue, inner ref
1310    unsigned SpelledAsLValue : 1;
1311
1312    /// True if the inner type is a reference type.  This only happens
1313    /// in non-canonical forms.
1314    unsigned InnerRef : 1;
1315  };
1316
1317  class TypeWithKeywordBitfields {
1318    friend class TypeWithKeyword;
1319
1320    unsigned : NumTypeBits;
1321
1322    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1323    unsigned Keyword : 8;
1324  };
1325
1326  class VectorTypeBitfields {
1327    friend class VectorType;
1328
1329    unsigned : NumTypeBits;
1330
1331    /// VecKind - The kind of vector, either a generic vector type or some
1332    /// target-specific vector type such as for AltiVec or Neon.
1333    unsigned VecKind : 3;
1334
1335    /// NumElements - The number of elements in the vector.
1336    unsigned NumElements : 29 - NumTypeBits;
1337  };
1338
1339  class AttributedTypeBitfields {
1340    friend class AttributedType;
1341
1342    unsigned : NumTypeBits;
1343
1344    /// AttrKind - an AttributedType::Kind
1345    unsigned AttrKind : 32 - NumTypeBits;
1346  };
1347
1348  union {
1349    TypeBitfields TypeBits;
1350    ArrayTypeBitfields ArrayTypeBits;
1351    AttributedTypeBitfields AttributedTypeBits;
1352    BuiltinTypeBitfields BuiltinTypeBits;
1353    FunctionTypeBitfields FunctionTypeBits;
1354    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1355    ReferenceTypeBitfields ReferenceTypeBits;
1356    TypeWithKeywordBitfields TypeWithKeywordBits;
1357    VectorTypeBitfields VectorTypeBits;
1358  };
1359
1360private:
1361  /// \brief Set whether this type comes from an AST file.
1362  void setFromAST(bool V = true) const {
1363    TypeBits.FromAST = V;
1364  }
1365
1366  template <class T> friend class TypePropertyCache;
1367
1368protected:
1369  // silence VC++ warning C4355: 'this' : used in base member initializer list
1370  Type *this_() { return this; }
1371  Type(TypeClass tc, QualType canon, bool Dependent,
1372       bool InstantiationDependent, bool VariablyModified,
1373       bool ContainsUnexpandedParameterPack)
1374    : ExtQualsTypeCommonBase(this,
1375                             canon.isNull() ? QualType(this_(), 0) : canon) {
1376    TypeBits.TC = tc;
1377    TypeBits.Dependent = Dependent;
1378    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1379    TypeBits.VariablyModified = VariablyModified;
1380    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1381    TypeBits.CacheValidAndVisibility = 0;
1382    TypeBits.CachedExplicitVisibility = false;
1383    TypeBits.CachedLocalOrUnnamed = false;
1384    TypeBits.CachedLinkage = NoLinkage;
1385    TypeBits.FromAST = false;
1386  }
1387  friend class ASTContext;
1388
1389  void setDependent(bool D = true) {
1390    TypeBits.Dependent = D;
1391    if (D)
1392      TypeBits.InstantiationDependent = true;
1393  }
1394  void setInstantiationDependent(bool D = true) {
1395    TypeBits.InstantiationDependent = D; }
1396  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1397  }
1398  void setContainsUnexpandedParameterPack(bool PP = true) {
1399    TypeBits.ContainsUnexpandedParameterPack = PP;
1400  }
1401
1402public:
1403  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1404
1405  /// \brief Whether this type comes from an AST file.
1406  bool isFromAST() const { return TypeBits.FromAST; }
1407
1408  /// \brief Whether this type is or contains an unexpanded parameter
1409  /// pack, used to support C++0x variadic templates.
1410  ///
1411  /// A type that contains a parameter pack shall be expanded by the
1412  /// ellipsis operator at some point. For example, the typedef in the
1413  /// following example contains an unexpanded parameter pack 'T':
1414  ///
1415  /// \code
1416  /// template<typename ...T>
1417  /// struct X {
1418  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1419  /// };
1420  /// \endcode
1421  ///
1422  /// Note that this routine does not specify which
1423  bool containsUnexpandedParameterPack() const {
1424    return TypeBits.ContainsUnexpandedParameterPack;
1425  }
1426
1427  /// Determines if this type would be canonical if it had no further
1428  /// qualification.
1429  bool isCanonicalUnqualified() const {
1430    return CanonicalType == QualType(this, 0);
1431  }
1432
1433  /// Pull a single level of sugar off of this locally-unqualified type.
1434  /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1435  /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1436  QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1437
1438  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1439  /// object types, function types, and incomplete types.
1440
1441  /// isIncompleteType - Return true if this is an incomplete type.
1442  /// A type that can describe objects, but which lacks information needed to
1443  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1444  /// routine will need to determine if the size is actually required.
1445  ///
1446  /// \brief Def If non-NULL, and the type refers to some kind of declaration
1447  /// that can be completed (such as a C struct, C++ class, or Objective-C
1448  /// class), will be set to the declaration.
1449  bool isIncompleteType(NamedDecl **Def = 0) const;
1450
1451  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1452  /// type, in other words, not a function type.
1453  bool isIncompleteOrObjectType() const {
1454    return !isFunctionType();
1455  }
1456
1457  /// \brief Determine whether this type is an object type.
1458  bool isObjectType() const {
1459    // C++ [basic.types]p8:
1460    //   An object type is a (possibly cv-qualified) type that is not a
1461    //   function type, not a reference type, and not a void type.
1462    return !isReferenceType() && !isFunctionType() && !isVoidType();
1463  }
1464
1465  /// isLiteralType - Return true if this is a literal type
1466  /// (C++0x [basic.types]p10)
1467  bool isLiteralType() const;
1468
1469  /// \brief Test if this type is a standard-layout type.
1470  /// (C++0x [basic.type]p9)
1471  bool isStandardLayoutType() const;
1472
1473  /// Helper methods to distinguish type categories. All type predicates
1474  /// operate on the canonical type, ignoring typedefs and qualifiers.
1475
1476  /// isBuiltinType - returns true if the type is a builtin type.
1477  bool isBuiltinType() const;
1478
1479  /// isSpecificBuiltinType - Test for a particular builtin type.
1480  bool isSpecificBuiltinType(unsigned K) const;
1481
1482  /// isPlaceholderType - Test for a type which does not represent an
1483  /// actual type-system type but is instead used as a placeholder for
1484  /// various convenient purposes within Clang.  All such types are
1485  /// BuiltinTypes.
1486  bool isPlaceholderType() const;
1487  const BuiltinType *getAsPlaceholderType() const;
1488
1489  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1490  bool isSpecificPlaceholderType(unsigned K) const;
1491
1492  /// isNonOverloadPlaceholderType - Test for a placeholder type
1493  /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
1494  bool isNonOverloadPlaceholderType() const;
1495
1496  /// isIntegerType() does *not* include complex integers (a GCC extension).
1497  /// isComplexIntegerType() can be used to test for complex integers.
1498  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1499  bool isEnumeralType() const;
1500  bool isBooleanType() const;
1501  bool isCharType() const;
1502  bool isWideCharType() const;
1503  bool isChar16Type() const;
1504  bool isChar32Type() const;
1505  bool isAnyCharacterType() const;
1506  bool isIntegralType(ASTContext &Ctx) const;
1507
1508  /// \brief Determine whether this type is an integral or enumeration type.
1509  bool isIntegralOrEnumerationType() const;
1510  /// \brief Determine whether this type is an integral or unscoped enumeration
1511  /// type.
1512  bool isIntegralOrUnscopedEnumerationType() const;
1513
1514  /// Floating point categories.
1515  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1516  /// isComplexType() does *not* include complex integers (a GCC extension).
1517  /// isComplexIntegerType() can be used to test for complex integers.
1518  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1519  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1520  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1521  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1522  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1523  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1524  bool isVoidType() const;         // C99 6.2.5p19
1525  bool isDerivedType() const;      // C99 6.2.5p20
1526  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1527  bool isAggregateType() const;
1528  bool isFundamentalType() const;
1529  bool isCompoundType() const;
1530
1531  // Type Predicates: Check to see if this type is structurally the specified
1532  // type, ignoring typedefs and qualifiers.
1533  bool isFunctionType() const;
1534  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1535  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1536  bool isPointerType() const;
1537  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1538  bool isBlockPointerType() const;
1539  bool isVoidPointerType() const;
1540  bool isReferenceType() const;
1541  bool isLValueReferenceType() const;
1542  bool isRValueReferenceType() const;
1543  bool isFunctionPointerType() const;
1544  bool isMemberPointerType() const;
1545  bool isMemberFunctionPointerType() const;
1546  bool isMemberDataPointerType() const;
1547  bool isArrayType() const;
1548  bool isConstantArrayType() const;
1549  bool isIncompleteArrayType() const;
1550  bool isVariableArrayType() const;
1551  bool isDependentSizedArrayType() const;
1552  bool isRecordType() const;
1553  bool isClassType() const;
1554  bool isStructureType() const;
1555  bool isInterfaceType() const;
1556  bool isStructureOrClassType() const;
1557  bool isUnionType() const;
1558  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1559  bool isVectorType() const;                    // GCC vector type.
1560  bool isExtVectorType() const;                 // Extended vector type.
1561  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1562  bool isObjCRetainableType() const;            // ObjC object or block pointer
1563  bool isObjCLifetimeType() const;              // (array of)* retainable type
1564  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1565  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1566  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1567  // for the common case.
1568  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1569  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1570  bool isObjCQualifiedIdType() const;           // id<foo>
1571  bool isObjCQualifiedClassType() const;        // Class<foo>
1572  bool isObjCObjectOrInterfaceType() const;
1573  bool isObjCIdType() const;                    // id
1574  bool isObjCClassType() const;                 // Class
1575  bool isObjCSelType() const;                 // Class
1576  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1577  bool isObjCARCBridgableType() const;
1578  bool isCARCBridgableType() const;
1579  bool isTemplateTypeParmType() const;          // C++ template type parameter
1580  bool isNullPtrType() const;                   // C++0x nullptr_t
1581  bool isAtomicType() const;                    // C11 _Atomic()
1582
1583  /// Determines if this type, which must satisfy
1584  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1585  /// than implicitly __strong.
1586  bool isObjCARCImplicitlyUnretainedType() const;
1587
1588  /// Return the implicit lifetime for this type, which must not be dependent.
1589  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1590
1591  enum ScalarTypeKind {
1592    STK_CPointer,
1593    STK_BlockPointer,
1594    STK_ObjCObjectPointer,
1595    STK_MemberPointer,
1596    STK_Bool,
1597    STK_Integral,
1598    STK_Floating,
1599    STK_IntegralComplex,
1600    STK_FloatingComplex
1601  };
1602  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1603  ScalarTypeKind getScalarTypeKind() const;
1604
1605  /// isDependentType - Whether this type is a dependent type, meaning
1606  /// that its definition somehow depends on a template parameter
1607  /// (C++ [temp.dep.type]).
1608  bool isDependentType() const { return TypeBits.Dependent; }
1609
1610  /// \brief Determine whether this type is an instantiation-dependent type,
1611  /// meaning that the type involves a template parameter (even if the
1612  /// definition does not actually depend on the type substituted for that
1613  /// template parameter).
1614  bool isInstantiationDependentType() const {
1615    return TypeBits.InstantiationDependent;
1616  }
1617
1618  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1619  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1620
1621  /// \brief Whether this type involves a variable-length array type
1622  /// with a definite size.
1623  bool hasSizedVLAType() const;
1624
1625  /// \brief Whether this type is or contains a local or unnamed type.
1626  bool hasUnnamedOrLocalType() const;
1627
1628  bool isOverloadableType() const;
1629
1630  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1631  bool isElaboratedTypeSpecifier() const;
1632
1633  bool canDecayToPointerType() const;
1634
1635  /// hasPointerRepresentation - Whether this type is represented
1636  /// natively as a pointer; this includes pointers, references, block
1637  /// pointers, and Objective-C interface, qualified id, and qualified
1638  /// interface types, as well as nullptr_t.
1639  bool hasPointerRepresentation() const;
1640
1641  /// hasObjCPointerRepresentation - Whether this type can represent
1642  /// an objective pointer type for the purpose of GC'ability
1643  bool hasObjCPointerRepresentation() const;
1644
1645  /// \brief Determine whether this type has an integer representation
1646  /// of some sort, e.g., it is an integer type or a vector.
1647  bool hasIntegerRepresentation() const;
1648
1649  /// \brief Determine whether this type has an signed integer representation
1650  /// of some sort, e.g., it is an signed integer type or a vector.
1651  bool hasSignedIntegerRepresentation() const;
1652
1653  /// \brief Determine whether this type has an unsigned integer representation
1654  /// of some sort, e.g., it is an unsigned integer type or a vector.
1655  bool hasUnsignedIntegerRepresentation() const;
1656
1657  /// \brief Determine whether this type has a floating-point representation
1658  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1659  bool hasFloatingRepresentation() const;
1660
1661  // Type Checking Functions: Check to see if this type is structurally the
1662  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1663  // the best type we can.
1664  const RecordType *getAsStructureType() const;
1665  /// NOTE: getAs*ArrayType are methods on ASTContext.
1666  const RecordType *getAsUnionType() const;
1667  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1668  // The following is a convenience method that returns an ObjCObjectPointerType
1669  // for object declared using an interface.
1670  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1671  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1672  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1673  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1674
1675  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1676  /// because the type is a RecordType or because it is the injected-class-name
1677  /// type of a class template or class template partial specialization.
1678  CXXRecordDecl *getAsCXXRecordDecl() const;
1679
1680  /// If this is a pointer or reference to a RecordType, return the
1681  /// CXXRecordDecl that that type refers to.
1682  ///
1683  /// If this is not a pointer or reference, or the type being pointed to does
1684  /// not refer to a CXXRecordDecl, returns NULL.
1685  const CXXRecordDecl *getPointeeCXXRecordDecl() const;
1686
1687  /// \brief Get the AutoType whose type will be deduced for a variable with
1688  /// an initializer of this type. This looks through declarators like pointer
1689  /// types, but not through decltype or typedefs.
1690  AutoType *getContainedAutoType() const;
1691
1692  /// Member-template getAs<specific type>'.  Look through sugar for
1693  /// an instance of \<specific type>.   This scheme will eventually
1694  /// replace the specific getAsXXXX methods above.
1695  ///
1696  /// There are some specializations of this member template listed
1697  /// immediately following this class.
1698  template <typename T> const T *getAs() const;
1699
1700  /// A variant of getAs<> for array types which silently discards
1701  /// qualifiers from the outermost type.
1702  const ArrayType *getAsArrayTypeUnsafe() const;
1703
1704  /// Member-template castAs<specific type>.  Look through sugar for
1705  /// the underlying instance of \<specific type>.
1706  ///
1707  /// This method has the same relationship to getAs<T> as cast<T> has
1708  /// to dyn_cast<T>; which is to say, the underlying type *must*
1709  /// have the intended type, and this method will never return null.
1710  template <typename T> const T *castAs() const;
1711
1712  /// A variant of castAs<> for array type which silently discards
1713  /// qualifiers from the outermost type.
1714  const ArrayType *castAsArrayTypeUnsafe() const;
1715
1716  /// getBaseElementTypeUnsafe - Get the base element type of this
1717  /// type, potentially discarding type qualifiers.  This method
1718  /// should never be used when type qualifiers are meaningful.
1719  const Type *getBaseElementTypeUnsafe() const;
1720
1721  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1722  /// element type of the array, potentially with type qualifiers missing.
1723  /// This method should never be used when type qualifiers are meaningful.
1724  const Type *getArrayElementTypeNoTypeQual() const;
1725
1726  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1727  /// pointer, this returns the respective pointee.
1728  QualType getPointeeType() const;
1729
1730  /// getUnqualifiedDesugaredType() - Return the specified type with
1731  /// any "sugar" removed from the type, removing any typedefs,
1732  /// typeofs, etc., as well as any qualifiers.
1733  const Type *getUnqualifiedDesugaredType() const;
1734
1735  /// More type predicates useful for type checking/promotion
1736  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1737
1738  /// isSignedIntegerType - Return true if this is an integer type that is
1739  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1740  /// or an enum decl which has a signed representation.
1741  bool isSignedIntegerType() const;
1742
1743  /// isUnsignedIntegerType - Return true if this is an integer type that is
1744  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1745  /// or an enum decl which has an unsigned representation.
1746  bool isUnsignedIntegerType() const;
1747
1748  /// Determines whether this is an integer type that is signed or an
1749  /// enumeration types whose underlying type is a signed integer type.
1750  bool isSignedIntegerOrEnumerationType() const;
1751
1752  /// Determines whether this is an integer type that is unsigned or an
1753  /// enumeration types whose underlying type is a unsigned integer type.
1754  bool isUnsignedIntegerOrEnumerationType() const;
1755
1756  /// isConstantSizeType - Return true if this is not a variable sized type,
1757  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1758  /// incomplete types.
1759  bool isConstantSizeType() const;
1760
1761  /// isSpecifierType - Returns true if this type can be represented by some
1762  /// set of type specifiers.
1763  bool isSpecifierType() const;
1764
1765  /// \brief Determine the linkage of this type.
1766  Linkage getLinkage() const;
1767
1768  /// \brief Determine the visibility of this type.
1769  Visibility getVisibility() const;
1770
1771  /// \brief Return true if the visibility was explicitly set is the code.
1772  bool isVisibilityExplicit() const;
1773
1774  /// \brief Determine the linkage and visibility of this type.
1775  std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
1776
1777  /// \brief Note that the linkage is no longer known.
1778  void ClearLinkageCache();
1779
1780  const char *getTypeClassName() const;
1781
1782  QualType getCanonicalTypeInternal() const {
1783    return CanonicalType;
1784  }
1785  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1786  LLVM_ATTRIBUTE_USED void dump() const;
1787
1788  friend class ASTReader;
1789  friend class ASTWriter;
1790};
1791
1792/// \brief This will check for a TypedefType by removing any existing sugar
1793/// until it reaches a TypedefType or a non-sugared type.
1794template <> const TypedefType *Type::getAs() const;
1795
1796/// \brief This will check for a TemplateSpecializationType by removing any
1797/// existing sugar until it reaches a TemplateSpecializationType or a
1798/// non-sugared type.
1799template <> const TemplateSpecializationType *Type::getAs() const;
1800
1801// We can do canonical leaf types faster, because we don't have to
1802// worry about preserving child type decoration.
1803#define TYPE(Class, Base)
1804#define LEAF_TYPE(Class) \
1805template <> inline const Class##Type *Type::getAs() const { \
1806  return dyn_cast<Class##Type>(CanonicalType); \
1807} \
1808template <> inline const Class##Type *Type::castAs() const { \
1809  return cast<Class##Type>(CanonicalType); \
1810}
1811#include "clang/AST/TypeNodes.def"
1812
1813
1814/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1815/// types are always canonical and have a literal name field.
1816class BuiltinType : public Type {
1817public:
1818  enum Kind {
1819#define BUILTIN_TYPE(Id, SingletonId) Id,
1820#define LAST_BUILTIN_TYPE(Id) LastKind = Id
1821#include "clang/AST/BuiltinTypes.def"
1822  };
1823
1824public:
1825  BuiltinType(Kind K)
1826    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1827           /*InstantiationDependent=*/(K == Dependent),
1828           /*VariablyModified=*/false,
1829           /*Unexpanded paramter pack=*/false) {
1830    BuiltinTypeBits.Kind = K;
1831  }
1832
1833  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1834  StringRef getName(const PrintingPolicy &Policy) const;
1835  const char *getNameAsCString(const PrintingPolicy &Policy) const {
1836    // The StringRef is null-terminated.
1837    StringRef str = getName(Policy);
1838    assert(!str.empty() && str.data()[str.size()] == '\0');
1839    return str.data();
1840  }
1841
1842  bool isSugared() const { return false; }
1843  QualType desugar() const { return QualType(this, 0); }
1844
1845  bool isInteger() const {
1846    return getKind() >= Bool && getKind() <= Int128;
1847  }
1848
1849  bool isSignedInteger() const {
1850    return getKind() >= Char_S && getKind() <= Int128;
1851  }
1852
1853  bool isUnsignedInteger() const {
1854    return getKind() >= Bool && getKind() <= UInt128;
1855  }
1856
1857  bool isFloatingPoint() const {
1858    return getKind() >= Half && getKind() <= LongDouble;
1859  }
1860
1861  /// Determines whether the given kind corresponds to a placeholder type.
1862  static bool isPlaceholderTypeKind(Kind K) {
1863    return K >= Overload;
1864  }
1865
1866  /// Determines whether this type is a placeholder type, i.e. a type
1867  /// which cannot appear in arbitrary positions in a fully-formed
1868  /// expression.
1869  bool isPlaceholderType() const {
1870    return isPlaceholderTypeKind(getKind());
1871  }
1872
1873  /// Determines whether this type is a placeholder type other than
1874  /// Overload.  Most placeholder types require only syntactic
1875  /// information about their context in order to be resolved (e.g.
1876  /// whether it is a call expression), which means they can (and
1877  /// should) be resolved in an earlier "phase" of analysis.
1878  /// Overload expressions sometimes pick up further information
1879  /// from their context, like whether the context expects a
1880  /// specific function-pointer type, and so frequently need
1881  /// special treatment.
1882  bool isNonOverloadPlaceholderType() const {
1883    return getKind() > Overload;
1884  }
1885
1886  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1887};
1888
1889/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1890/// types (_Complex float etc) as well as the GCC integer complex extensions.
1891///
1892class ComplexType : public Type, public llvm::FoldingSetNode {
1893  QualType ElementType;
1894  ComplexType(QualType Element, QualType CanonicalPtr) :
1895    Type(Complex, CanonicalPtr, Element->isDependentType(),
1896         Element->isInstantiationDependentType(),
1897         Element->isVariablyModifiedType(),
1898         Element->containsUnexpandedParameterPack()),
1899    ElementType(Element) {
1900  }
1901  friend class ASTContext;  // ASTContext creates these.
1902
1903public:
1904  QualType getElementType() const { return ElementType; }
1905
1906  bool isSugared() const { return false; }
1907  QualType desugar() const { return QualType(this, 0); }
1908
1909  void Profile(llvm::FoldingSetNodeID &ID) {
1910    Profile(ID, getElementType());
1911  }
1912  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1913    ID.AddPointer(Element.getAsOpaquePtr());
1914  }
1915
1916  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1917};
1918
1919/// ParenType - Sugar for parentheses used when specifying types.
1920///
1921class ParenType : public Type, public llvm::FoldingSetNode {
1922  QualType Inner;
1923
1924  ParenType(QualType InnerType, QualType CanonType) :
1925    Type(Paren, CanonType, InnerType->isDependentType(),
1926         InnerType->isInstantiationDependentType(),
1927         InnerType->isVariablyModifiedType(),
1928         InnerType->containsUnexpandedParameterPack()),
1929    Inner(InnerType) {
1930  }
1931  friend class ASTContext;  // ASTContext creates these.
1932
1933public:
1934
1935  QualType getInnerType() const { return Inner; }
1936
1937  bool isSugared() const { return true; }
1938  QualType desugar() const { return getInnerType(); }
1939
1940  void Profile(llvm::FoldingSetNodeID &ID) {
1941    Profile(ID, getInnerType());
1942  }
1943  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1944    Inner.Profile(ID);
1945  }
1946
1947  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1948};
1949
1950/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1951///
1952class PointerType : public Type, public llvm::FoldingSetNode {
1953  QualType PointeeType;
1954
1955  PointerType(QualType Pointee, QualType CanonicalPtr) :
1956    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1957         Pointee->isInstantiationDependentType(),
1958         Pointee->isVariablyModifiedType(),
1959         Pointee->containsUnexpandedParameterPack()),
1960    PointeeType(Pointee) {
1961  }
1962  friend class ASTContext;  // ASTContext creates these.
1963
1964public:
1965
1966  QualType getPointeeType() const { return PointeeType; }
1967
1968  bool isSugared() const { return false; }
1969  QualType desugar() const { return QualType(this, 0); }
1970
1971  void Profile(llvm::FoldingSetNodeID &ID) {
1972    Profile(ID, getPointeeType());
1973  }
1974  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1975    ID.AddPointer(Pointee.getAsOpaquePtr());
1976  }
1977
1978  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1979};
1980
1981/// BlockPointerType - pointer to a block type.
1982/// This type is to represent types syntactically represented as
1983/// "void (^)(int)", etc. Pointee is required to always be a function type.
1984///
1985class BlockPointerType : public Type, public llvm::FoldingSetNode {
1986  QualType PointeeType;  // Block is some kind of pointer type
1987  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1988    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1989         Pointee->isInstantiationDependentType(),
1990         Pointee->isVariablyModifiedType(),
1991         Pointee->containsUnexpandedParameterPack()),
1992    PointeeType(Pointee) {
1993  }
1994  friend class ASTContext;  // ASTContext creates these.
1995
1996public:
1997
1998  // Get the pointee type. Pointee is required to always be a function type.
1999  QualType getPointeeType() const { return PointeeType; }
2000
2001  bool isSugared() const { return false; }
2002  QualType desugar() const { return QualType(this, 0); }
2003
2004  void Profile(llvm::FoldingSetNodeID &ID) {
2005      Profile(ID, getPointeeType());
2006  }
2007  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2008      ID.AddPointer(Pointee.getAsOpaquePtr());
2009  }
2010
2011  static bool classof(const Type *T) {
2012    return T->getTypeClass() == BlockPointer;
2013  }
2014};
2015
2016/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
2017///
2018class ReferenceType : public Type, public llvm::FoldingSetNode {
2019  QualType PointeeType;
2020
2021protected:
2022  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2023                bool SpelledAsLValue) :
2024    Type(tc, CanonicalRef, Referencee->isDependentType(),
2025         Referencee->isInstantiationDependentType(),
2026         Referencee->isVariablyModifiedType(),
2027         Referencee->containsUnexpandedParameterPack()),
2028    PointeeType(Referencee)
2029  {
2030    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2031    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2032  }
2033
2034public:
2035  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2036  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2037
2038  QualType getPointeeTypeAsWritten() const { return PointeeType; }
2039  QualType getPointeeType() const {
2040    // FIXME: this might strip inner qualifiers; okay?
2041    const ReferenceType *T = this;
2042    while (T->isInnerRef())
2043      T = T->PointeeType->castAs<ReferenceType>();
2044    return T->PointeeType;
2045  }
2046
2047  void Profile(llvm::FoldingSetNodeID &ID) {
2048    Profile(ID, PointeeType, isSpelledAsLValue());
2049  }
2050  static void Profile(llvm::FoldingSetNodeID &ID,
2051                      QualType Referencee,
2052                      bool SpelledAsLValue) {
2053    ID.AddPointer(Referencee.getAsOpaquePtr());
2054    ID.AddBoolean(SpelledAsLValue);
2055  }
2056
2057  static bool classof(const Type *T) {
2058    return T->getTypeClass() == LValueReference ||
2059           T->getTypeClass() == RValueReference;
2060  }
2061};
2062
2063/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
2064///
2065class LValueReferenceType : public ReferenceType {
2066  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2067                      bool SpelledAsLValue) :
2068    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
2069  {}
2070  friend class ASTContext; // ASTContext creates these
2071public:
2072  bool isSugared() const { return false; }
2073  QualType desugar() const { return QualType(this, 0); }
2074
2075  static bool classof(const Type *T) {
2076    return T->getTypeClass() == LValueReference;
2077  }
2078};
2079
2080/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
2081///
2082class RValueReferenceType : public ReferenceType {
2083  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
2084    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
2085  }
2086  friend class ASTContext; // ASTContext creates these
2087public:
2088  bool isSugared() const { return false; }
2089  QualType desugar() const { return QualType(this, 0); }
2090
2091  static bool classof(const Type *T) {
2092    return T->getTypeClass() == RValueReference;
2093  }
2094};
2095
2096/// MemberPointerType - C++ 8.3.3 - Pointers to members
2097///
2098class MemberPointerType : public Type, public llvm::FoldingSetNode {
2099  QualType PointeeType;
2100  /// The class of which the pointee is a member. Must ultimately be a
2101  /// RecordType, but could be a typedef or a template parameter too.
2102  const Type *Class;
2103
2104  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
2105    Type(MemberPointer, CanonicalPtr,
2106         Cls->isDependentType() || Pointee->isDependentType(),
2107         (Cls->isInstantiationDependentType() ||
2108          Pointee->isInstantiationDependentType()),
2109         Pointee->isVariablyModifiedType(),
2110         (Cls->containsUnexpandedParameterPack() ||
2111          Pointee->containsUnexpandedParameterPack())),
2112    PointeeType(Pointee), Class(Cls) {
2113  }
2114  friend class ASTContext; // ASTContext creates these.
2115
2116public:
2117  QualType getPointeeType() const { return PointeeType; }
2118
2119  /// Returns true if the member type (i.e. the pointee type) is a
2120  /// function type rather than a data-member type.
2121  bool isMemberFunctionPointer() const {
2122    return PointeeType->isFunctionProtoType();
2123  }
2124
2125  /// Returns true if the member type (i.e. the pointee type) is a
2126  /// data type rather than a function type.
2127  bool isMemberDataPointer() const {
2128    return !PointeeType->isFunctionProtoType();
2129  }
2130
2131  const Type *getClass() const { return Class; }
2132
2133  bool isSugared() const { return false; }
2134  QualType desugar() const { return QualType(this, 0); }
2135
2136  void Profile(llvm::FoldingSetNodeID &ID) {
2137    Profile(ID, getPointeeType(), getClass());
2138  }
2139  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2140                      const Type *Class) {
2141    ID.AddPointer(Pointee.getAsOpaquePtr());
2142    ID.AddPointer(Class);
2143  }
2144
2145  static bool classof(const Type *T) {
2146    return T->getTypeClass() == MemberPointer;
2147  }
2148};
2149
2150/// ArrayType - C99 6.7.5.2 - Array Declarators.
2151///
2152class ArrayType : public Type, public llvm::FoldingSetNode {
2153public:
2154  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
2155  /// an array with a static size (e.g. int X[static 4]), or an array
2156  /// with a star size (e.g. int X[*]).
2157  /// 'static' is only allowed on function parameters.
2158  enum ArraySizeModifier {
2159    Normal, Static, Star
2160  };
2161private:
2162  /// ElementType - The element type of the array.
2163  QualType ElementType;
2164
2165protected:
2166  // C++ [temp.dep.type]p1:
2167  //   A type is dependent if it is...
2168  //     - an array type constructed from any dependent type or whose
2169  //       size is specified by a constant expression that is
2170  //       value-dependent,
2171  ArrayType(TypeClass tc, QualType et, QualType can,
2172            ArraySizeModifier sm, unsigned tq,
2173            bool ContainsUnexpandedParameterPack)
2174    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2175           et->isInstantiationDependentType() || tc == DependentSizedArray,
2176           (tc == VariableArray || et->isVariablyModifiedType()),
2177           ContainsUnexpandedParameterPack),
2178      ElementType(et) {
2179    ArrayTypeBits.IndexTypeQuals = tq;
2180    ArrayTypeBits.SizeModifier = sm;
2181  }
2182
2183  friend class ASTContext;  // ASTContext creates these.
2184
2185public:
2186  QualType getElementType() const { return ElementType; }
2187  ArraySizeModifier getSizeModifier() const {
2188    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2189  }
2190  Qualifiers getIndexTypeQualifiers() const {
2191    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2192  }
2193  unsigned getIndexTypeCVRQualifiers() const {
2194    return ArrayTypeBits.IndexTypeQuals;
2195  }
2196
2197  static bool classof(const Type *T) {
2198    return T->getTypeClass() == ConstantArray ||
2199           T->getTypeClass() == VariableArray ||
2200           T->getTypeClass() == IncompleteArray ||
2201           T->getTypeClass() == DependentSizedArray;
2202  }
2203};
2204
2205/// ConstantArrayType - This class represents the canonical version of
2206/// C arrays with a specified constant size.  For example, the canonical
2207/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
2208/// type is 'int' and the size is 404.
2209class ConstantArrayType : public ArrayType {
2210  llvm::APInt Size; // Allows us to unique the type.
2211
2212  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2213                    ArraySizeModifier sm, unsigned tq)
2214    : ArrayType(ConstantArray, et, can, sm, tq,
2215                et->containsUnexpandedParameterPack()),
2216      Size(size) {}
2217protected:
2218  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2219                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2220    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2221      Size(size) {}
2222  friend class ASTContext;  // ASTContext creates these.
2223public:
2224  const llvm::APInt &getSize() const { return Size; }
2225  bool isSugared() const { return false; }
2226  QualType desugar() const { return QualType(this, 0); }
2227
2228
2229  /// \brief Determine the number of bits required to address a member of
2230  // an array with the given element type and number of elements.
2231  static unsigned getNumAddressingBits(ASTContext &Context,
2232                                       QualType ElementType,
2233                                       const llvm::APInt &NumElements);
2234
2235  /// \brief Determine the maximum number of active bits that an array's size
2236  /// can require, which limits the maximum size of the array.
2237  static unsigned getMaxSizeBits(ASTContext &Context);
2238
2239  void Profile(llvm::FoldingSetNodeID &ID) {
2240    Profile(ID, getElementType(), getSize(),
2241            getSizeModifier(), getIndexTypeCVRQualifiers());
2242  }
2243  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2244                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2245                      unsigned TypeQuals) {
2246    ID.AddPointer(ET.getAsOpaquePtr());
2247    ID.AddInteger(ArraySize.getZExtValue());
2248    ID.AddInteger(SizeMod);
2249    ID.AddInteger(TypeQuals);
2250  }
2251  static bool classof(const Type *T) {
2252    return T->getTypeClass() == ConstantArray;
2253  }
2254};
2255
2256/// IncompleteArrayType - This class represents C arrays with an unspecified
2257/// size.  For example 'int A[]' has an IncompleteArrayType where the element
2258/// type is 'int' and the size is unspecified.
2259class IncompleteArrayType : public ArrayType {
2260
2261  IncompleteArrayType(QualType et, QualType can,
2262                      ArraySizeModifier sm, unsigned tq)
2263    : ArrayType(IncompleteArray, et, can, sm, tq,
2264                et->containsUnexpandedParameterPack()) {}
2265  friend class ASTContext;  // ASTContext creates these.
2266public:
2267  bool isSugared() const { return false; }
2268  QualType desugar() const { return QualType(this, 0); }
2269
2270  static bool classof(const Type *T) {
2271    return T->getTypeClass() == IncompleteArray;
2272  }
2273
2274  friend class StmtIteratorBase;
2275
2276  void Profile(llvm::FoldingSetNodeID &ID) {
2277    Profile(ID, getElementType(), getSizeModifier(),
2278            getIndexTypeCVRQualifiers());
2279  }
2280
2281  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2282                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2283    ID.AddPointer(ET.getAsOpaquePtr());
2284    ID.AddInteger(SizeMod);
2285    ID.AddInteger(TypeQuals);
2286  }
2287};
2288
2289/// VariableArrayType - This class represents C arrays with a specified size
2290/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
2291/// Since the size expression is an arbitrary expression, we store it as such.
2292///
2293/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2294/// should not be: two lexically equivalent variable array types could mean
2295/// different things, for example, these variables do not have the same type
2296/// dynamically:
2297///
2298/// void foo(int x) {
2299///   int Y[x];
2300///   ++x;
2301///   int Z[x];
2302/// }
2303///
2304class VariableArrayType : public ArrayType {
2305  /// SizeExpr - An assignment expression. VLA's are only permitted within
2306  /// a function block.
2307  Stmt *SizeExpr;
2308  /// Brackets - The left and right array brackets.
2309  SourceRange Brackets;
2310
2311  VariableArrayType(QualType et, QualType can, Expr *e,
2312                    ArraySizeModifier sm, unsigned tq,
2313                    SourceRange brackets)
2314    : ArrayType(VariableArray, et, can, sm, tq,
2315                et->containsUnexpandedParameterPack()),
2316      SizeExpr((Stmt*) e), Brackets(brackets) {}
2317  friend class ASTContext;  // ASTContext creates these.
2318
2319public:
2320  Expr *getSizeExpr() const {
2321    // We use C-style casts instead of cast<> here because we do not wish
2322    // to have a dependency of Type.h on Stmt.h/Expr.h.
2323    return (Expr*) SizeExpr;
2324  }
2325  SourceRange getBracketsRange() const { return Brackets; }
2326  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2327  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2328
2329  bool isSugared() const { return false; }
2330  QualType desugar() const { return QualType(this, 0); }
2331
2332  static bool classof(const Type *T) {
2333    return T->getTypeClass() == VariableArray;
2334  }
2335
2336  friend class StmtIteratorBase;
2337
2338  void Profile(llvm::FoldingSetNodeID &ID) {
2339    llvm_unreachable("Cannot unique VariableArrayTypes.");
2340  }
2341};
2342
2343/// DependentSizedArrayType - This type represents an array type in
2344/// C++ whose size is a value-dependent expression. For example:
2345///
2346/// \code
2347/// template<typename T, int Size>
2348/// class array {
2349///   T data[Size];
2350/// };
2351/// \endcode
2352///
2353/// For these types, we won't actually know what the array bound is
2354/// until template instantiation occurs, at which point this will
2355/// become either a ConstantArrayType or a VariableArrayType.
2356class DependentSizedArrayType : public ArrayType {
2357  const ASTContext &Context;
2358
2359  /// \brief An assignment expression that will instantiate to the
2360  /// size of the array.
2361  ///
2362  /// The expression itself might be NULL, in which case the array
2363  /// type will have its size deduced from an initializer.
2364  Stmt *SizeExpr;
2365
2366  /// Brackets - The left and right array brackets.
2367  SourceRange Brackets;
2368
2369  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2370                          Expr *e, ArraySizeModifier sm, unsigned tq,
2371                          SourceRange brackets);
2372
2373  friend class ASTContext;  // ASTContext creates these.
2374
2375public:
2376  Expr *getSizeExpr() const {
2377    // We use C-style casts instead of cast<> here because we do not wish
2378    // to have a dependency of Type.h on Stmt.h/Expr.h.
2379    return (Expr*) SizeExpr;
2380  }
2381  SourceRange getBracketsRange() const { return Brackets; }
2382  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2383  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2384
2385  bool isSugared() const { return false; }
2386  QualType desugar() const { return QualType(this, 0); }
2387
2388  static bool classof(const Type *T) {
2389    return T->getTypeClass() == DependentSizedArray;
2390  }
2391
2392  friend class StmtIteratorBase;
2393
2394
2395  void Profile(llvm::FoldingSetNodeID &ID) {
2396    Profile(ID, Context, getElementType(),
2397            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2398  }
2399
2400  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2401                      QualType ET, ArraySizeModifier SizeMod,
2402                      unsigned TypeQuals, Expr *E);
2403};
2404
2405/// DependentSizedExtVectorType - This type represent an extended vector type
2406/// where either the type or size is dependent. For example:
2407/// @code
2408/// template<typename T, int Size>
2409/// class vector {
2410///   typedef T __attribute__((ext_vector_type(Size))) type;
2411/// }
2412/// @endcode
2413class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2414  const ASTContext &Context;
2415  Expr *SizeExpr;
2416  /// ElementType - The element type of the array.
2417  QualType ElementType;
2418  SourceLocation loc;
2419
2420  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2421                              QualType can, Expr *SizeExpr, SourceLocation loc);
2422
2423  friend class ASTContext;
2424
2425public:
2426  Expr *getSizeExpr() const { return SizeExpr; }
2427  QualType getElementType() const { return ElementType; }
2428  SourceLocation getAttributeLoc() const { return loc; }
2429
2430  bool isSugared() const { return false; }
2431  QualType desugar() const { return QualType(this, 0); }
2432
2433  static bool classof(const Type *T) {
2434    return T->getTypeClass() == DependentSizedExtVector;
2435  }
2436
2437  void Profile(llvm::FoldingSetNodeID &ID) {
2438    Profile(ID, Context, getElementType(), getSizeExpr());
2439  }
2440
2441  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2442                      QualType ElementType, Expr *SizeExpr);
2443};
2444
2445
2446/// VectorType - GCC generic vector type. This type is created using
2447/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2448/// bytes; or from an Altivec __vector or vector declaration.
2449/// Since the constructor takes the number of vector elements, the
2450/// client is responsible for converting the size into the number of elements.
2451class VectorType : public Type, public llvm::FoldingSetNode {
2452public:
2453  enum VectorKind {
2454    GenericVector,  // not a target-specific vector type
2455    AltiVecVector,  // is AltiVec vector
2456    AltiVecPixel,   // is AltiVec 'vector Pixel'
2457    AltiVecBool,    // is AltiVec 'vector bool ...'
2458    NeonVector,     // is ARM Neon vector
2459    NeonPolyVector  // is ARM Neon polynomial vector
2460  };
2461protected:
2462  /// ElementType - The element type of the vector.
2463  QualType ElementType;
2464
2465  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2466             VectorKind vecKind);
2467
2468  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2469             QualType canonType, VectorKind vecKind);
2470
2471  friend class ASTContext;  // ASTContext creates these.
2472
2473public:
2474
2475  QualType getElementType() const { return ElementType; }
2476  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2477
2478  bool isSugared() const { return false; }
2479  QualType desugar() const { return QualType(this, 0); }
2480
2481  VectorKind getVectorKind() const {
2482    return VectorKind(VectorTypeBits.VecKind);
2483  }
2484
2485  void Profile(llvm::FoldingSetNodeID &ID) {
2486    Profile(ID, getElementType(), getNumElements(),
2487            getTypeClass(), getVectorKind());
2488  }
2489  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2490                      unsigned NumElements, TypeClass TypeClass,
2491                      VectorKind VecKind) {
2492    ID.AddPointer(ElementType.getAsOpaquePtr());
2493    ID.AddInteger(NumElements);
2494    ID.AddInteger(TypeClass);
2495    ID.AddInteger(VecKind);
2496  }
2497
2498  static bool classof(const Type *T) {
2499    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2500  }
2501};
2502
2503/// ExtVectorType - Extended vector type. This type is created using
2504/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2505/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2506/// class enables syntactic extensions, like Vector Components for accessing
2507/// points, colors, and textures (modeled after OpenGL Shading Language).
2508class ExtVectorType : public VectorType {
2509  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2510    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2511  friend class ASTContext;  // ASTContext creates these.
2512public:
2513  static int getPointAccessorIdx(char c) {
2514    switch (c) {
2515    default: return -1;
2516    case 'x': return 0;
2517    case 'y': return 1;
2518    case 'z': return 2;
2519    case 'w': return 3;
2520    }
2521  }
2522  static int getNumericAccessorIdx(char c) {
2523    switch (c) {
2524      default: return -1;
2525      case '0': return 0;
2526      case '1': return 1;
2527      case '2': return 2;
2528      case '3': return 3;
2529      case '4': return 4;
2530      case '5': return 5;
2531      case '6': return 6;
2532      case '7': return 7;
2533      case '8': return 8;
2534      case '9': return 9;
2535      case 'A':
2536      case 'a': return 10;
2537      case 'B':
2538      case 'b': return 11;
2539      case 'C':
2540      case 'c': return 12;
2541      case 'D':
2542      case 'd': return 13;
2543      case 'E':
2544      case 'e': return 14;
2545      case 'F':
2546      case 'f': return 15;
2547    }
2548  }
2549
2550  static int getAccessorIdx(char c) {
2551    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2552    return getNumericAccessorIdx(c);
2553  }
2554
2555  bool isAccessorWithinNumElements(char c) const {
2556    if (int idx = getAccessorIdx(c)+1)
2557      return unsigned(idx-1) < getNumElements();
2558    return false;
2559  }
2560  bool isSugared() const { return false; }
2561  QualType desugar() const { return QualType(this, 0); }
2562
2563  static bool classof(const Type *T) {
2564    return T->getTypeClass() == ExtVector;
2565  }
2566};
2567
2568/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2569/// class of FunctionNoProtoType and FunctionProtoType.
2570///
2571class FunctionType : public Type {
2572  // The type returned by the function.
2573  QualType ResultType;
2574
2575 public:
2576  /// ExtInfo - A class which abstracts out some details necessary for
2577  /// making a call.
2578  ///
2579  /// It is not actually used directly for storing this information in
2580  /// a FunctionType, although FunctionType does currently use the
2581  /// same bit-pattern.
2582  ///
2583  // If you add a field (say Foo), other than the obvious places (both,
2584  // constructors, compile failures), what you need to update is
2585  // * Operator==
2586  // * getFoo
2587  // * withFoo
2588  // * functionType. Add Foo, getFoo.
2589  // * ASTContext::getFooType
2590  // * ASTContext::mergeFunctionTypes
2591  // * FunctionNoProtoType::Profile
2592  // * FunctionProtoType::Profile
2593  // * TypePrinter::PrintFunctionProto
2594  // * AST read and write
2595  // * Codegen
2596  class ExtInfo {
2597    // Feel free to rearrange or add bits, but if you go over 9,
2598    // you'll need to adjust both the Bits field below and
2599    // Type::FunctionTypeBitfields.
2600
2601    //   |  CC  |noreturn|produces|regparm|
2602    //   |0 .. 3|   4    |    5   | 6 .. 8|
2603    //
2604    // regparm is either 0 (no regparm attribute) or the regparm value+1.
2605    enum { CallConvMask = 0xF };
2606    enum { NoReturnMask = 0x10 };
2607    enum { ProducesResultMask = 0x20 };
2608    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2609           RegParmOffset = 6 }; // Assumed to be the last field
2610
2611    uint16_t Bits;
2612
2613    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2614
2615    friend class FunctionType;
2616
2617   public:
2618    // Constructor with no defaults. Use this when you know that you
2619    // have all the elements (when reading an AST file for example).
2620    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2621            bool producesResult) {
2622      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2623      Bits = ((unsigned) cc) |
2624             (noReturn ? NoReturnMask : 0) |
2625             (producesResult ? ProducesResultMask : 0) |
2626             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2627    }
2628
2629    // Constructor with all defaults. Use when for example creating a
2630    // function know to use defaults.
2631    ExtInfo() : Bits(0) {}
2632
2633    bool getNoReturn() const { return Bits & NoReturnMask; }
2634    bool getProducesResult() const { return Bits & ProducesResultMask; }
2635    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2636    unsigned getRegParm() const {
2637      unsigned RegParm = Bits >> RegParmOffset;
2638      if (RegParm > 0)
2639        --RegParm;
2640      return RegParm;
2641    }
2642    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2643
2644    bool operator==(ExtInfo Other) const {
2645      return Bits == Other.Bits;
2646    }
2647    bool operator!=(ExtInfo Other) const {
2648      return Bits != Other.Bits;
2649    }
2650
2651    // Note that we don't have setters. That is by design, use
2652    // the following with methods instead of mutating these objects.
2653
2654    ExtInfo withNoReturn(bool noReturn) const {
2655      if (noReturn)
2656        return ExtInfo(Bits | NoReturnMask);
2657      else
2658        return ExtInfo(Bits & ~NoReturnMask);
2659    }
2660
2661    ExtInfo withProducesResult(bool producesResult) const {
2662      if (producesResult)
2663        return ExtInfo(Bits | ProducesResultMask);
2664      else
2665        return ExtInfo(Bits & ~ProducesResultMask);
2666    }
2667
2668    ExtInfo withRegParm(unsigned RegParm) const {
2669      assert(RegParm < 7 && "Invalid regparm value");
2670      return ExtInfo((Bits & ~RegParmMask) |
2671                     ((RegParm + 1) << RegParmOffset));
2672    }
2673
2674    ExtInfo withCallingConv(CallingConv cc) const {
2675      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2676    }
2677
2678    void Profile(llvm::FoldingSetNodeID &ID) const {
2679      ID.AddInteger(Bits);
2680    }
2681  };
2682
2683protected:
2684  FunctionType(TypeClass tc, QualType res,
2685               unsigned typeQuals, RefQualifierKind RefQualifier,
2686               QualType Canonical, bool Dependent,
2687               bool InstantiationDependent,
2688               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2689               ExtInfo Info)
2690    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
2691           ContainsUnexpandedParameterPack),
2692      ResultType(res) {
2693    FunctionTypeBits.ExtInfo = Info.Bits;
2694    FunctionTypeBits.TypeQuals = typeQuals;
2695    FunctionTypeBits.RefQualifier = static_cast<unsigned>(RefQualifier);
2696  }
2697  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2698
2699  RefQualifierKind getRefQualifier() const {
2700    return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
2701  }
2702
2703public:
2704
2705  QualType getResultType() const { return ResultType; }
2706
2707  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2708  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2709  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2710  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2711  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2712  bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
2713  bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
2714  bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
2715
2716  /// \brief Determine the type of an expression that calls a function of
2717  /// this type.
2718  QualType getCallResultType(ASTContext &Context) const {
2719    return getResultType().getNonLValueExprType(Context);
2720  }
2721
2722  static StringRef getNameForCallConv(CallingConv CC);
2723
2724  static bool classof(const Type *T) {
2725    return T->getTypeClass() == FunctionNoProto ||
2726           T->getTypeClass() == FunctionProto;
2727  }
2728};
2729
2730/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2731/// no information available about its arguments.
2732class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2733  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2734    : FunctionType(FunctionNoProto, Result, 0, RQ_None, Canonical,
2735                   /*Dependent=*/false, /*InstantiationDependent=*/false,
2736                   Result->isVariablyModifiedType(),
2737                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2738
2739  friend class ASTContext;  // ASTContext creates these.
2740
2741public:
2742  // No additional state past what FunctionType provides.
2743
2744  bool isSugared() const { return false; }
2745  QualType desugar() const { return QualType(this, 0); }
2746
2747  void Profile(llvm::FoldingSetNodeID &ID) {
2748    Profile(ID, getResultType(), getExtInfo());
2749  }
2750  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2751                      ExtInfo Info) {
2752    Info.Profile(ID);
2753    ID.AddPointer(ResultType.getAsOpaquePtr());
2754  }
2755
2756  static bool classof(const Type *T) {
2757    return T->getTypeClass() == FunctionNoProto;
2758  }
2759};
2760
2761/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2762/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2763/// arguments, not as having a single void argument. Such a type can have an
2764/// exception specification, but this specification is not part of the canonical
2765/// type.
2766class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2767public:
2768  /// ExtProtoInfo - Extra information about a function prototype.
2769  struct ExtProtoInfo {
2770    ExtProtoInfo() :
2771      Variadic(false), HasTrailingReturn(false), TypeQuals(0),
2772      ExceptionSpecType(EST_None), RefQualifier(RQ_None),
2773      NumExceptions(0), Exceptions(0), NoexceptExpr(0),
2774      ExceptionSpecDecl(0), ExceptionSpecTemplate(0),
2775      ConsumedArguments(0) {}
2776
2777    FunctionType::ExtInfo ExtInfo;
2778    bool Variadic : 1;
2779    bool HasTrailingReturn : 1;
2780    unsigned char TypeQuals;
2781    ExceptionSpecificationType ExceptionSpecType;
2782    RefQualifierKind RefQualifier;
2783    unsigned NumExceptions;
2784    const QualType *Exceptions;
2785    Expr *NoexceptExpr;
2786    FunctionDecl *ExceptionSpecDecl;
2787    FunctionDecl *ExceptionSpecTemplate;
2788    const bool *ConsumedArguments;
2789  };
2790
2791private:
2792  /// \brief Determine whether there are any argument types that
2793  /// contain an unexpanded parameter pack.
2794  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2795                                                 unsigned numArgs) {
2796    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2797      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2798        return true;
2799
2800    return false;
2801  }
2802
2803  FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
2804                    QualType canonical, const ExtProtoInfo &epi);
2805
2806  /// NumArgs - The number of arguments this function has, not counting '...'.
2807  unsigned NumArgs : 17;
2808
2809  /// NumExceptions - The number of types in the exception spec, if any.
2810  unsigned NumExceptions : 9;
2811
2812  /// ExceptionSpecType - The type of exception specification this function has.
2813  unsigned ExceptionSpecType : 3;
2814
2815  /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
2816  unsigned HasAnyConsumedArgs : 1;
2817
2818  /// Variadic - Whether the function is variadic.
2819  unsigned Variadic : 1;
2820
2821  /// HasTrailingReturn - Whether this function has a trailing return type.
2822  unsigned HasTrailingReturn : 1;
2823
2824  // ArgInfo - There is an variable size array after the class in memory that
2825  // holds the argument types.
2826
2827  // Exceptions - There is another variable size array after ArgInfo that
2828  // holds the exception types.
2829
2830  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2831  // to the expression in the noexcept() specifier.
2832
2833  // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
2834  // be a pair of FunctionDecl* pointing to the function which should be used to
2835  // instantiate this function type's exception specification, and the function
2836  // from which it should be instantiated.
2837
2838  // ConsumedArgs - A variable size array, following Exceptions
2839  // and of length NumArgs, holding flags indicating which arguments
2840  // are consumed.  This only appears if HasAnyConsumedArgs is true.
2841
2842  friend class ASTContext;  // ASTContext creates these.
2843
2844  const bool *getConsumedArgsBuffer() const {
2845    assert(hasAnyConsumedArgs());
2846
2847    // Find the end of the exceptions.
2848    Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
2849    if (getExceptionSpecType() != EST_ComputedNoexcept)
2850      eh_end += NumExceptions;
2851    else
2852      eh_end += 1; // NoexceptExpr
2853
2854    return reinterpret_cast<const bool*>(eh_end);
2855  }
2856
2857public:
2858  unsigned getNumArgs() const { return NumArgs; }
2859  QualType getArgType(unsigned i) const {
2860    assert(i < NumArgs && "Invalid argument number!");
2861    return arg_type_begin()[i];
2862  }
2863
2864  ExtProtoInfo getExtProtoInfo() const {
2865    ExtProtoInfo EPI;
2866    EPI.ExtInfo = getExtInfo();
2867    EPI.Variadic = isVariadic();
2868    EPI.HasTrailingReturn = hasTrailingReturn();
2869    EPI.ExceptionSpecType = getExceptionSpecType();
2870    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2871    EPI.RefQualifier = getRefQualifier();
2872    if (EPI.ExceptionSpecType == EST_Dynamic) {
2873      EPI.NumExceptions = NumExceptions;
2874      EPI.Exceptions = exception_begin();
2875    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2876      EPI.NoexceptExpr = getNoexceptExpr();
2877    } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2878      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2879      EPI.ExceptionSpecTemplate = getExceptionSpecTemplate();
2880    } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2881      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2882    }
2883    if (hasAnyConsumedArgs())
2884      EPI.ConsumedArguments = getConsumedArgsBuffer();
2885    return EPI;
2886  }
2887
2888  /// \brief Get the kind of exception specification on this function.
2889  ExceptionSpecificationType getExceptionSpecType() const {
2890    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2891  }
2892  /// \brief Return whether this function has any kind of exception spec.
2893  bool hasExceptionSpec() const {
2894    return getExceptionSpecType() != EST_None;
2895  }
2896  /// \brief Return whether this function has a dynamic (throw) exception spec.
2897  bool hasDynamicExceptionSpec() const {
2898    return isDynamicExceptionSpec(getExceptionSpecType());
2899  }
2900  /// \brief Return whether this function has a noexcept exception spec.
2901  bool hasNoexceptExceptionSpec() const {
2902    return isNoexceptExceptionSpec(getExceptionSpecType());
2903  }
2904  /// \brief Result type of getNoexceptSpec().
2905  enum NoexceptResult {
2906    NR_NoNoexcept,  ///< There is no noexcept specifier.
2907    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2908    NR_Dependent,   ///< The noexcept specifier is dependent.
2909    NR_Throw,       ///< The noexcept specifier evaluates to false.
2910    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2911  };
2912  /// \brief Get the meaning of the noexcept spec on this function, if any.
2913  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2914  unsigned getNumExceptions() const { return NumExceptions; }
2915  QualType getExceptionType(unsigned i) const {
2916    assert(i < NumExceptions && "Invalid exception number!");
2917    return exception_begin()[i];
2918  }
2919  Expr *getNoexceptExpr() const {
2920    if (getExceptionSpecType() != EST_ComputedNoexcept)
2921      return 0;
2922    // NoexceptExpr sits where the arguments end.
2923    return *reinterpret_cast<Expr *const *>(arg_type_end());
2924  }
2925  /// \brief If this function type has an exception specification which hasn't
2926  /// been determined yet (either because it has not been evaluated or because
2927  /// it has not been instantiated), this is the function whose exception
2928  /// specification is represented by this type.
2929  FunctionDecl *getExceptionSpecDecl() const {
2930    if (getExceptionSpecType() != EST_Uninstantiated &&
2931        getExceptionSpecType() != EST_Unevaluated)
2932      return 0;
2933    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[0];
2934  }
2935  /// \brief If this function type has an uninstantiated exception
2936  /// specification, this is the function whose exception specification
2937  /// should be instantiated to find the exception specification for
2938  /// this type.
2939  FunctionDecl *getExceptionSpecTemplate() const {
2940    if (getExceptionSpecType() != EST_Uninstantiated)
2941      return 0;
2942    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[1];
2943  }
2944  bool isNothrow(ASTContext &Ctx) const {
2945    ExceptionSpecificationType EST = getExceptionSpecType();
2946    assert(EST != EST_Unevaluated && EST != EST_Uninstantiated);
2947    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2948      return true;
2949    if (EST != EST_ComputedNoexcept)
2950      return false;
2951    return getNoexceptSpec(Ctx) == NR_Nothrow;
2952  }
2953
2954  bool isVariadic() const { return Variadic; }
2955
2956  /// \brief Determines whether this function prototype contains a
2957  /// parameter pack at the end.
2958  ///
2959  /// A function template whose last parameter is a parameter pack can be
2960  /// called with an arbitrary number of arguments, much like a variadic
2961  /// function.
2962  bool isTemplateVariadic() const;
2963
2964  bool hasTrailingReturn() const { return HasTrailingReturn; }
2965
2966  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2967
2968
2969  /// \brief Retrieve the ref-qualifier associated with this function type.
2970  RefQualifierKind getRefQualifier() const {
2971    return FunctionType::getRefQualifier();
2972  }
2973
2974  typedef const QualType *arg_type_iterator;
2975  arg_type_iterator arg_type_begin() const {
2976    return reinterpret_cast<const QualType *>(this+1);
2977  }
2978  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2979
2980  typedef const QualType *exception_iterator;
2981  exception_iterator exception_begin() const {
2982    // exceptions begin where arguments end
2983    return arg_type_end();
2984  }
2985  exception_iterator exception_end() const {
2986    if (getExceptionSpecType() != EST_Dynamic)
2987      return exception_begin();
2988    return exception_begin() + NumExceptions;
2989  }
2990
2991  bool hasAnyConsumedArgs() const {
2992    return HasAnyConsumedArgs;
2993  }
2994  bool isArgConsumed(unsigned I) const {
2995    assert(I < getNumArgs() && "argument index out of range!");
2996    if (hasAnyConsumedArgs())
2997      return getConsumedArgsBuffer()[I];
2998    return false;
2999  }
3000
3001  bool isSugared() const { return false; }
3002  QualType desugar() const { return QualType(this, 0); }
3003
3004  // FIXME: Remove the string version.
3005  void printExceptionSpecification(std::string &S,
3006                                   const PrintingPolicy &Policy) const;
3007  void printExceptionSpecification(raw_ostream &OS,
3008                                   const PrintingPolicy &Policy) const;
3009
3010  static bool classof(const Type *T) {
3011    return T->getTypeClass() == FunctionProto;
3012  }
3013
3014  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
3015  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3016                      arg_type_iterator ArgTys, unsigned NumArgs,
3017                      const ExtProtoInfo &EPI, const ASTContext &Context);
3018};
3019
3020
3021/// \brief Represents the dependent type named by a dependently-scoped
3022/// typename using declaration, e.g.
3023///   using typename Base<T>::foo;
3024/// Template instantiation turns these into the underlying type.
3025class UnresolvedUsingType : public Type {
3026  UnresolvedUsingTypenameDecl *Decl;
3027
3028  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
3029    : Type(UnresolvedUsing, QualType(), true, true, false,
3030           /*ContainsUnexpandedParameterPack=*/false),
3031      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
3032  friend class ASTContext; // ASTContext creates these.
3033public:
3034
3035  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
3036
3037  bool isSugared() const { return false; }
3038  QualType desugar() const { return QualType(this, 0); }
3039
3040  static bool classof(const Type *T) {
3041    return T->getTypeClass() == UnresolvedUsing;
3042  }
3043
3044  void Profile(llvm::FoldingSetNodeID &ID) {
3045    return Profile(ID, Decl);
3046  }
3047  static void Profile(llvm::FoldingSetNodeID &ID,
3048                      UnresolvedUsingTypenameDecl *D) {
3049    ID.AddPointer(D);
3050  }
3051};
3052
3053
3054class TypedefType : public Type {
3055  TypedefNameDecl *Decl;
3056protected:
3057  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
3058    : Type(tc, can, can->isDependentType(),
3059           can->isInstantiationDependentType(),
3060           can->isVariablyModifiedType(),
3061           /*ContainsUnexpandedParameterPack=*/false),
3062      Decl(const_cast<TypedefNameDecl*>(D)) {
3063    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3064  }
3065  friend class ASTContext;  // ASTContext creates these.
3066public:
3067
3068  TypedefNameDecl *getDecl() const { return Decl; }
3069
3070  bool isSugared() const { return true; }
3071  QualType desugar() const;
3072
3073  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
3074};
3075
3076/// TypeOfExprType (GCC extension).
3077class TypeOfExprType : public Type {
3078  Expr *TOExpr;
3079
3080protected:
3081  TypeOfExprType(Expr *E, QualType can = QualType());
3082  friend class ASTContext;  // ASTContext creates these.
3083public:
3084  Expr *getUnderlyingExpr() const { return TOExpr; }
3085
3086  /// \brief Remove a single level of sugar.
3087  QualType desugar() const;
3088
3089  /// \brief Returns whether this type directly provides sugar.
3090  bool isSugared() const;
3091
3092  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
3093};
3094
3095/// \brief Internal representation of canonical, dependent
3096/// typeof(expr) types.
3097///
3098/// This class is used internally by the ASTContext to manage
3099/// canonical, dependent types, only. Clients will only see instances
3100/// of this class via TypeOfExprType nodes.
3101class DependentTypeOfExprType
3102  : public TypeOfExprType, public llvm::FoldingSetNode {
3103  const ASTContext &Context;
3104
3105public:
3106  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
3107    : TypeOfExprType(E), Context(Context) { }
3108
3109  void Profile(llvm::FoldingSetNodeID &ID) {
3110    Profile(ID, Context, getUnderlyingExpr());
3111  }
3112
3113  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3114                      Expr *E);
3115};
3116
3117/// TypeOfType (GCC extension).
3118class TypeOfType : public Type {
3119  QualType TOType;
3120  TypeOfType(QualType T, QualType can)
3121    : Type(TypeOf, can, T->isDependentType(),
3122           T->isInstantiationDependentType(),
3123           T->isVariablyModifiedType(),
3124           T->containsUnexpandedParameterPack()),
3125      TOType(T) {
3126    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3127  }
3128  friend class ASTContext;  // ASTContext creates these.
3129public:
3130  QualType getUnderlyingType() const { return TOType; }
3131
3132  /// \brief Remove a single level of sugar.
3133  QualType desugar() const { return getUnderlyingType(); }
3134
3135  /// \brief Returns whether this type directly provides sugar.
3136  bool isSugared() const { return true; }
3137
3138  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
3139};
3140
3141/// DecltypeType (C++0x)
3142class DecltypeType : public Type {
3143  Expr *E;
3144  QualType UnderlyingType;
3145
3146protected:
3147  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3148  friend class ASTContext;  // ASTContext creates these.
3149public:
3150  Expr *getUnderlyingExpr() const { return E; }
3151  QualType getUnderlyingType() const { return UnderlyingType; }
3152
3153  /// \brief Remove a single level of sugar.
3154  QualType desugar() const;
3155
3156  /// \brief Returns whether this type directly provides sugar.
3157  bool isSugared() const;
3158
3159  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3160};
3161
3162/// \brief Internal representation of canonical, dependent
3163/// decltype(expr) types.
3164///
3165/// This class is used internally by the ASTContext to manage
3166/// canonical, dependent types, only. Clients will only see instances
3167/// of this class via DecltypeType nodes.
3168class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3169  const ASTContext &Context;
3170
3171public:
3172  DependentDecltypeType(const ASTContext &Context, Expr *E);
3173
3174  void Profile(llvm::FoldingSetNodeID &ID) {
3175    Profile(ID, Context, getUnderlyingExpr());
3176  }
3177
3178  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3179                      Expr *E);
3180};
3181
3182/// \brief A unary type transform, which is a type constructed from another
3183class UnaryTransformType : public Type {
3184public:
3185  enum UTTKind {
3186    EnumUnderlyingType
3187  };
3188
3189private:
3190  /// The untransformed type.
3191  QualType BaseType;
3192  /// The transformed type if not dependent, otherwise the same as BaseType.
3193  QualType UnderlyingType;
3194
3195  UTTKind UKind;
3196protected:
3197  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3198                     QualType CanonicalTy);
3199  friend class ASTContext;
3200public:
3201  bool isSugared() const { return !isDependentType(); }
3202  QualType desugar() const { return UnderlyingType; }
3203
3204  QualType getUnderlyingType() const { return UnderlyingType; }
3205  QualType getBaseType() const { return BaseType; }
3206
3207  UTTKind getUTTKind() const { return UKind; }
3208
3209  static bool classof(const Type *T) {
3210    return T->getTypeClass() == UnaryTransform;
3211  }
3212};
3213
3214class TagType : public Type {
3215  /// Stores the TagDecl associated with this type. The decl may point to any
3216  /// TagDecl that declares the entity.
3217  TagDecl * decl;
3218
3219  friend class ASTReader;
3220
3221protected:
3222  TagType(TypeClass TC, const TagDecl *D, QualType can);
3223
3224public:
3225  TagDecl *getDecl() const;
3226
3227  /// @brief Determines whether this type is in the process of being
3228  /// defined.
3229  bool isBeingDefined() const;
3230
3231  static bool classof(const Type *T) {
3232    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3233  }
3234};
3235
3236/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
3237/// to detect TagType objects of structs/unions/classes.
3238class RecordType : public TagType {
3239protected:
3240  explicit RecordType(const RecordDecl *D)
3241    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3242  explicit RecordType(TypeClass TC, RecordDecl *D)
3243    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3244  friend class ASTContext;   // ASTContext creates these.
3245public:
3246
3247  RecordDecl *getDecl() const {
3248    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3249  }
3250
3251  // FIXME: This predicate is a helper to QualType/Type. It needs to
3252  // recursively check all fields for const-ness. If any field is declared
3253  // const, it needs to return false.
3254  bool hasConstFields() const { return false; }
3255
3256  bool isSugared() const { return false; }
3257  QualType desugar() const { return QualType(this, 0); }
3258
3259  static bool classof(const Type *T) { return T->getTypeClass() == Record; }
3260};
3261
3262/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
3263/// to detect TagType objects of enums.
3264class EnumType : public TagType {
3265  explicit EnumType(const EnumDecl *D)
3266    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3267  friend class ASTContext;   // ASTContext creates these.
3268public:
3269
3270  EnumDecl *getDecl() const {
3271    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3272  }
3273
3274  bool isSugared() const { return false; }
3275  QualType desugar() const { return QualType(this, 0); }
3276
3277  static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
3278};
3279
3280/// AttributedType - An attributed type is a type to which a type
3281/// attribute has been applied.  The "modified type" is the
3282/// fully-sugared type to which the attributed type was applied;
3283/// generally it is not canonically equivalent to the attributed type.
3284/// The "equivalent type" is the minimally-desugared type which the
3285/// type is canonically equivalent to.
3286///
3287/// For example, in the following attributed type:
3288///     int32_t __attribute__((vector_size(16)))
3289///   - the modified type is the TypedefType for int32_t
3290///   - the equivalent type is VectorType(16, int32_t)
3291///   - the canonical type is VectorType(16, int)
3292class AttributedType : public Type, public llvm::FoldingSetNode {
3293public:
3294  // It is really silly to have yet another attribute-kind enum, but
3295  // clang::attr::Kind doesn't currently cover the pure type attrs.
3296  enum Kind {
3297    // Expression operand.
3298    attr_address_space,
3299    attr_regparm,
3300    attr_vector_size,
3301    attr_neon_vector_type,
3302    attr_neon_polyvector_type,
3303
3304    FirstExprOperandKind = attr_address_space,
3305    LastExprOperandKind = attr_neon_polyvector_type,
3306
3307    // Enumerated operand (string or keyword).
3308    attr_objc_gc,
3309    attr_objc_ownership,
3310    attr_pcs,
3311
3312    FirstEnumOperandKind = attr_objc_gc,
3313    LastEnumOperandKind = attr_pcs,
3314
3315    // No operand.
3316    attr_noreturn,
3317    attr_cdecl,
3318    attr_fastcall,
3319    attr_stdcall,
3320    attr_thiscall,
3321    attr_pascal,
3322    attr_pnaclcall
3323  };
3324
3325private:
3326  QualType ModifiedType;
3327  QualType EquivalentType;
3328
3329  friend class ASTContext; // creates these
3330
3331  AttributedType(QualType canon, Kind attrKind,
3332                 QualType modified, QualType equivalent)
3333    : Type(Attributed, canon, canon->isDependentType(),
3334           canon->isInstantiationDependentType(),
3335           canon->isVariablyModifiedType(),
3336           canon->containsUnexpandedParameterPack()),
3337      ModifiedType(modified), EquivalentType(equivalent) {
3338    AttributedTypeBits.AttrKind = attrKind;
3339  }
3340
3341public:
3342  Kind getAttrKind() const {
3343    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3344  }
3345
3346  QualType getModifiedType() const { return ModifiedType; }
3347  QualType getEquivalentType() const { return EquivalentType; }
3348
3349  bool isSugared() const { return true; }
3350  QualType desugar() const { return getEquivalentType(); }
3351
3352  void Profile(llvm::FoldingSetNodeID &ID) {
3353    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3354  }
3355
3356  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3357                      QualType modified, QualType equivalent) {
3358    ID.AddInteger(attrKind);
3359    ID.AddPointer(modified.getAsOpaquePtr());
3360    ID.AddPointer(equivalent.getAsOpaquePtr());
3361  }
3362
3363  static bool classof(const Type *T) {
3364    return T->getTypeClass() == Attributed;
3365  }
3366};
3367
3368class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3369  // Helper data collector for canonical types.
3370  struct CanonicalTTPTInfo {
3371    unsigned Depth : 15;
3372    unsigned ParameterPack : 1;
3373    unsigned Index : 16;
3374  };
3375
3376  union {
3377    // Info for the canonical type.
3378    CanonicalTTPTInfo CanTTPTInfo;
3379    // Info for the non-canonical type.
3380    TemplateTypeParmDecl *TTPDecl;
3381  };
3382
3383  /// Build a non-canonical type.
3384  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3385    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3386           /*InstantiationDependent=*/true,
3387           /*VariablyModified=*/false,
3388           Canon->containsUnexpandedParameterPack()),
3389      TTPDecl(TTPDecl) { }
3390
3391  /// Build the canonical type.
3392  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3393    : Type(TemplateTypeParm, QualType(this, 0),
3394           /*Dependent=*/true,
3395           /*InstantiationDependent=*/true,
3396           /*VariablyModified=*/false, PP) {
3397    CanTTPTInfo.Depth = D;
3398    CanTTPTInfo.Index = I;
3399    CanTTPTInfo.ParameterPack = PP;
3400  }
3401
3402  friend class ASTContext;  // ASTContext creates these
3403
3404  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3405    QualType Can = getCanonicalTypeInternal();
3406    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3407  }
3408
3409public:
3410  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3411  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3412  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3413
3414  TemplateTypeParmDecl *getDecl() const {
3415    return isCanonicalUnqualified() ? 0 : TTPDecl;
3416  }
3417
3418  IdentifierInfo *getIdentifier() const;
3419
3420  bool isSugared() const { return false; }
3421  QualType desugar() const { return QualType(this, 0); }
3422
3423  void Profile(llvm::FoldingSetNodeID &ID) {
3424    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3425  }
3426
3427  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3428                      unsigned Index, bool ParameterPack,
3429                      TemplateTypeParmDecl *TTPDecl) {
3430    ID.AddInteger(Depth);
3431    ID.AddInteger(Index);
3432    ID.AddBoolean(ParameterPack);
3433    ID.AddPointer(TTPDecl);
3434  }
3435
3436  static bool classof(const Type *T) {
3437    return T->getTypeClass() == TemplateTypeParm;
3438  }
3439};
3440
3441/// \brief Represents the result of substituting a type for a template
3442/// type parameter.
3443///
3444/// Within an instantiated template, all template type parameters have
3445/// been replaced with these.  They are used solely to record that a
3446/// type was originally written as a template type parameter;
3447/// therefore they are never canonical.
3448class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3449  // The original type parameter.
3450  const TemplateTypeParmType *Replaced;
3451
3452  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3453    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3454           Canon->isInstantiationDependentType(),
3455           Canon->isVariablyModifiedType(),
3456           Canon->containsUnexpandedParameterPack()),
3457      Replaced(Param) { }
3458
3459  friend class ASTContext;
3460
3461public:
3462  /// Gets the template parameter that was substituted for.
3463  const TemplateTypeParmType *getReplacedParameter() const {
3464    return Replaced;
3465  }
3466
3467  /// Gets the type that was substituted for the template
3468  /// parameter.
3469  QualType getReplacementType() const {
3470    return getCanonicalTypeInternal();
3471  }
3472
3473  bool isSugared() const { return true; }
3474  QualType desugar() const { return getReplacementType(); }
3475
3476  void Profile(llvm::FoldingSetNodeID &ID) {
3477    Profile(ID, getReplacedParameter(), getReplacementType());
3478  }
3479  static void Profile(llvm::FoldingSetNodeID &ID,
3480                      const TemplateTypeParmType *Replaced,
3481                      QualType Replacement) {
3482    ID.AddPointer(Replaced);
3483    ID.AddPointer(Replacement.getAsOpaquePtr());
3484  }
3485
3486  static bool classof(const Type *T) {
3487    return T->getTypeClass() == SubstTemplateTypeParm;
3488  }
3489};
3490
3491/// \brief Represents the result of substituting a set of types for a template
3492/// type parameter pack.
3493///
3494/// When a pack expansion in the source code contains multiple parameter packs
3495/// and those parameter packs correspond to different levels of template
3496/// parameter lists, this type node is used to represent a template type
3497/// parameter pack from an outer level, which has already had its argument pack
3498/// substituted but that still lives within a pack expansion that itself
3499/// could not be instantiated. When actually performing a substitution into
3500/// that pack expansion (e.g., when all template parameters have corresponding
3501/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3502/// at the current pack substitution index.
3503class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3504  /// \brief The original type parameter.
3505  const TemplateTypeParmType *Replaced;
3506
3507  /// \brief A pointer to the set of template arguments that this
3508  /// parameter pack is instantiated with.
3509  const TemplateArgument *Arguments;
3510
3511  /// \brief The number of template arguments in \c Arguments.
3512  unsigned NumArguments;
3513
3514  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3515                                QualType Canon,
3516                                const TemplateArgument &ArgPack);
3517
3518  friend class ASTContext;
3519
3520public:
3521  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
3522
3523  /// Gets the template parameter that was substituted for.
3524  const TemplateTypeParmType *getReplacedParameter() const {
3525    return Replaced;
3526  }
3527
3528  bool isSugared() const { return false; }
3529  QualType desugar() const { return QualType(this, 0); }
3530
3531  TemplateArgument getArgumentPack() const;
3532
3533  void Profile(llvm::FoldingSetNodeID &ID);
3534  static void Profile(llvm::FoldingSetNodeID &ID,
3535                      const TemplateTypeParmType *Replaced,
3536                      const TemplateArgument &ArgPack);
3537
3538  static bool classof(const Type *T) {
3539    return T->getTypeClass() == SubstTemplateTypeParmPack;
3540  }
3541};
3542
3543/// \brief Represents a C++0x auto type.
3544///
3545/// These types are usually a placeholder for a deduced type. However, within
3546/// templates and before the initializer is attached, there is no deduced type
3547/// and an auto type is type-dependent and canonical.
3548class AutoType : public Type, public llvm::FoldingSetNode {
3549  AutoType(QualType DeducedType)
3550    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3551           /*Dependent=*/DeducedType.isNull(),
3552           /*InstantiationDependent=*/DeducedType.isNull(),
3553           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3554    assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
3555           "deduced a dependent type for auto");
3556  }
3557
3558  friend class ASTContext;  // ASTContext creates these
3559
3560public:
3561  bool isSugared() const { return isDeduced(); }
3562  QualType desugar() const { return getCanonicalTypeInternal(); }
3563
3564  QualType getDeducedType() const {
3565    return isDeduced() ? getCanonicalTypeInternal() : QualType();
3566  }
3567  bool isDeduced() const {
3568    return !isDependentType();
3569  }
3570
3571  void Profile(llvm::FoldingSetNodeID &ID) {
3572    Profile(ID, getDeducedType());
3573  }
3574
3575  static void Profile(llvm::FoldingSetNodeID &ID,
3576                      QualType Deduced) {
3577    ID.AddPointer(Deduced.getAsOpaquePtr());
3578  }
3579
3580  static bool classof(const Type *T) {
3581    return T->getTypeClass() == Auto;
3582  }
3583};
3584
3585/// \brief Represents a type template specialization; the template
3586/// must be a class template, a type alias template, or a template
3587/// template parameter.  A template which cannot be resolved to one of
3588/// these, e.g. because it is written with a dependent scope
3589/// specifier, is instead represented as a
3590/// @c DependentTemplateSpecializationType.
3591///
3592/// A non-dependent template specialization type is always "sugar",
3593/// typically for a @c RecordType.  For example, a class template
3594/// specialization type of @c vector<int> will refer to a tag type for
3595/// the instantiation @c std::vector<int, std::allocator<int>>
3596///
3597/// Template specializations are dependent if either the template or
3598/// any of the template arguments are dependent, in which case the
3599/// type may also be canonical.
3600///
3601/// Instances of this type are allocated with a trailing array of
3602/// TemplateArguments, followed by a QualType representing the
3603/// non-canonical aliased type when the template is a type alias
3604/// template.
3605class TemplateSpecializationType
3606  : public Type, public llvm::FoldingSetNode {
3607  /// \brief The name of the template being specialized.  This is
3608  /// either a TemplateName::Template (in which case it is a
3609  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
3610  /// TypeAliasTemplateDecl*), a
3611  /// TemplateName::SubstTemplateTemplateParmPack, or a
3612  /// TemplateName::SubstTemplateTemplateParm (in which case the
3613  /// replacement must, recursively, be one of these).
3614  TemplateName Template;
3615
3616  /// \brief - The number of template arguments named in this class
3617  /// template specialization.
3618  unsigned NumArgs : 31;
3619
3620  /// \brief Whether this template specialization type is a substituted
3621  /// type alias.
3622  bool TypeAlias : 1;
3623
3624  TemplateSpecializationType(TemplateName T,
3625                             const TemplateArgument *Args,
3626                             unsigned NumArgs, QualType Canon,
3627                             QualType Aliased);
3628
3629  friend class ASTContext;  // ASTContext creates these
3630
3631public:
3632  /// \brief Determine whether any of the given template arguments are
3633  /// dependent.
3634  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3635                                            unsigned NumArgs,
3636                                            bool &InstantiationDependent);
3637
3638  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3639                                            unsigned NumArgs,
3640                                            bool &InstantiationDependent);
3641
3642  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
3643                                            bool &InstantiationDependent);
3644
3645  /// \brief Print a template argument list, including the '<' and '>'
3646  /// enclosing the template arguments.
3647  // FIXME: remove the string ones.
3648  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
3649                                               unsigned NumArgs,
3650                                               const PrintingPolicy &Policy,
3651                                               bool SkipBrackets = false);
3652
3653  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
3654                                               unsigned NumArgs,
3655                                               const PrintingPolicy &Policy);
3656
3657  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
3658                                               const PrintingPolicy &Policy);
3659
3660  /// \brief Print a template argument list, including the '<' and '>'
3661  /// enclosing the template arguments.
3662  static void PrintTemplateArgumentList(raw_ostream &OS,
3663                                        const TemplateArgument *Args,
3664                                        unsigned NumArgs,
3665                                        const PrintingPolicy &Policy,
3666                                        bool SkipBrackets = false);
3667
3668  static void PrintTemplateArgumentList(raw_ostream &OS,
3669                                        const TemplateArgumentLoc *Args,
3670                                        unsigned NumArgs,
3671                                        const PrintingPolicy &Policy);
3672
3673  static void PrintTemplateArgumentList(raw_ostream &OS,
3674                                        const TemplateArgumentListInfo &,
3675                                        const PrintingPolicy &Policy);
3676
3677  /// True if this template specialization type matches a current
3678  /// instantiation in the context in which it is found.
3679  bool isCurrentInstantiation() const {
3680    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3681  }
3682
3683  /// \brief Determine if this template specialization type is for a type alias
3684  /// template that has been substituted.
3685  ///
3686  /// Nearly every template specialization type whose template is an alias
3687  /// template will be substituted. However, this is not the case when
3688  /// the specialization contains a pack expansion but the template alias
3689  /// does not have a corresponding parameter pack, e.g.,
3690  ///
3691  /// \code
3692  /// template<typename T, typename U, typename V> struct S;
3693  /// template<typename T, typename U> using A = S<T, int, U>;
3694  /// template<typename... Ts> struct X {
3695  ///   typedef A<Ts...> type; // not a type alias
3696  /// };
3697  /// \endcode
3698  bool isTypeAlias() const { return TypeAlias; }
3699
3700  /// Get the aliased type, if this is a specialization of a type alias
3701  /// template.
3702  QualType getAliasedType() const {
3703    assert(isTypeAlias() && "not a type alias template specialization");
3704    return *reinterpret_cast<const QualType*>(end());
3705  }
3706
3707  typedef const TemplateArgument * iterator;
3708
3709  iterator begin() const { return getArgs(); }
3710  iterator end() const; // defined inline in TemplateBase.h
3711
3712  /// \brief Retrieve the name of the template that we are specializing.
3713  TemplateName getTemplateName() const { return Template; }
3714
3715  /// \brief Retrieve the template arguments.
3716  const TemplateArgument *getArgs() const {
3717    return reinterpret_cast<const TemplateArgument *>(this + 1);
3718  }
3719
3720  /// \brief Retrieve the number of template arguments.
3721  unsigned getNumArgs() const { return NumArgs; }
3722
3723  /// \brief Retrieve a specific template argument as a type.
3724  /// \pre @c isArgType(Arg)
3725  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3726
3727  bool isSugared() const {
3728    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
3729  }
3730  QualType desugar() const { return getCanonicalTypeInternal(); }
3731
3732  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3733    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3734    if (isTypeAlias())
3735      getAliasedType().Profile(ID);
3736  }
3737
3738  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3739                      const TemplateArgument *Args,
3740                      unsigned NumArgs,
3741                      const ASTContext &Context);
3742
3743  static bool classof(const Type *T) {
3744    return T->getTypeClass() == TemplateSpecialization;
3745  }
3746};
3747
3748/// \brief The injected class name of a C++ class template or class
3749/// template partial specialization.  Used to record that a type was
3750/// spelled with a bare identifier rather than as a template-id; the
3751/// equivalent for non-templated classes is just RecordType.
3752///
3753/// Injected class name types are always dependent.  Template
3754/// instantiation turns these into RecordTypes.
3755///
3756/// Injected class name types are always canonical.  This works
3757/// because it is impossible to compare an injected class name type
3758/// with the corresponding non-injected template type, for the same
3759/// reason that it is impossible to directly compare template
3760/// parameters from different dependent contexts: injected class name
3761/// types can only occur within the scope of a particular templated
3762/// declaration, and within that scope every template specialization
3763/// will canonicalize to the injected class name (when appropriate
3764/// according to the rules of the language).
3765class InjectedClassNameType : public Type {
3766  CXXRecordDecl *Decl;
3767
3768  /// The template specialization which this type represents.
3769  /// For example, in
3770  ///   template <class T> class A { ... };
3771  /// this is A<T>, whereas in
3772  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3773  /// this is A<B<X,Y> >.
3774  ///
3775  /// It is always unqualified, always a template specialization type,
3776  /// and always dependent.
3777  QualType InjectedType;
3778
3779  friend class ASTContext; // ASTContext creates these.
3780  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3781                          // currently suitable for AST reading, too much
3782                          // interdependencies.
3783  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3784    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3785           /*InstantiationDependent=*/true,
3786           /*VariablyModified=*/false,
3787           /*ContainsUnexpandedParameterPack=*/false),
3788      Decl(D), InjectedType(TST) {
3789    assert(isa<TemplateSpecializationType>(TST));
3790    assert(!TST.hasQualifiers());
3791    assert(TST->isDependentType());
3792  }
3793
3794public:
3795  QualType getInjectedSpecializationType() const { return InjectedType; }
3796  const TemplateSpecializationType *getInjectedTST() const {
3797    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3798  }
3799
3800  CXXRecordDecl *getDecl() const;
3801
3802  bool isSugared() const { return false; }
3803  QualType desugar() const { return QualType(this, 0); }
3804
3805  static bool classof(const Type *T) {
3806    return T->getTypeClass() == InjectedClassName;
3807  }
3808};
3809
3810/// \brief The kind of a tag type.
3811enum TagTypeKind {
3812  /// \brief The "struct" keyword.
3813  TTK_Struct,
3814  /// \brief The "__interface" keyword.
3815  TTK_Interface,
3816  /// \brief The "union" keyword.
3817  TTK_Union,
3818  /// \brief The "class" keyword.
3819  TTK_Class,
3820  /// \brief The "enum" keyword.
3821  TTK_Enum
3822};
3823
3824/// \brief The elaboration keyword that precedes a qualified type name or
3825/// introduces an elaborated-type-specifier.
3826enum ElaboratedTypeKeyword {
3827  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3828  ETK_Struct,
3829  /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
3830  ETK_Interface,
3831  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3832  ETK_Union,
3833  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3834  ETK_Class,
3835  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3836  ETK_Enum,
3837  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3838  /// \c typename T::type.
3839  ETK_Typename,
3840  /// \brief No keyword precedes the qualified type name.
3841  ETK_None
3842};
3843
3844/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3845/// The keyword in stored in the free bits of the base class.
3846/// Also provides a few static helpers for converting and printing
3847/// elaborated type keyword and tag type kind enumerations.
3848class TypeWithKeyword : public Type {
3849protected:
3850  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3851                  QualType Canonical, bool Dependent,
3852                  bool InstantiationDependent, bool VariablyModified,
3853                  bool ContainsUnexpandedParameterPack)
3854  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3855         ContainsUnexpandedParameterPack) {
3856    TypeWithKeywordBits.Keyword = Keyword;
3857  }
3858
3859public:
3860  ElaboratedTypeKeyword getKeyword() const {
3861    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3862  }
3863
3864  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3865  /// into an elaborated type keyword.
3866  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3867
3868  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3869  /// into a tag type kind.  It is an error to provide a type specifier
3870  /// which *isn't* a tag kind here.
3871  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3872
3873  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3874  /// elaborated type keyword.
3875  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3876
3877  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3878  // a TagTypeKind. It is an error to provide an elaborated type keyword
3879  /// which *isn't* a tag kind here.
3880  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3881
3882  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3883
3884  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3885
3886  static const char *getTagTypeKindName(TagTypeKind Kind) {
3887    return getKeywordName(getKeywordForTagTypeKind(Kind));
3888  }
3889
3890  class CannotCastToThisType {};
3891  static CannotCastToThisType classof(const Type *);
3892};
3893
3894/// \brief Represents a type that was referred to using an elaborated type
3895/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3896/// or both.
3897///
3898/// This type is used to keep track of a type name as written in the
3899/// source code, including tag keywords and any nested-name-specifiers.
3900/// The type itself is always "sugar", used to express what was written
3901/// in the source code but containing no additional semantic information.
3902class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3903
3904  /// \brief The nested name specifier containing the qualifier.
3905  NestedNameSpecifier *NNS;
3906
3907  /// \brief The type that this qualified name refers to.
3908  QualType NamedType;
3909
3910  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3911                 QualType NamedType, QualType CanonType)
3912    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3913                      NamedType->isDependentType(),
3914                      NamedType->isInstantiationDependentType(),
3915                      NamedType->isVariablyModifiedType(),
3916                      NamedType->containsUnexpandedParameterPack()),
3917      NNS(NNS), NamedType(NamedType) {
3918    assert(!(Keyword == ETK_None && NNS == 0) &&
3919           "ElaboratedType cannot have elaborated type keyword "
3920           "and name qualifier both null.");
3921  }
3922
3923  friend class ASTContext;  // ASTContext creates these
3924
3925public:
3926  ~ElaboratedType();
3927
3928  /// \brief Retrieve the qualification on this type.
3929  NestedNameSpecifier *getQualifier() const { return NNS; }
3930
3931  /// \brief Retrieve the type named by the qualified-id.
3932  QualType getNamedType() const { return NamedType; }
3933
3934  /// \brief Remove a single level of sugar.
3935  QualType desugar() const { return getNamedType(); }
3936
3937  /// \brief Returns whether this type directly provides sugar.
3938  bool isSugared() const { return true; }
3939
3940  void Profile(llvm::FoldingSetNodeID &ID) {
3941    Profile(ID, getKeyword(), NNS, NamedType);
3942  }
3943
3944  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3945                      NestedNameSpecifier *NNS, QualType NamedType) {
3946    ID.AddInteger(Keyword);
3947    ID.AddPointer(NNS);
3948    NamedType.Profile(ID);
3949  }
3950
3951  static bool classof(const Type *T) {
3952    return T->getTypeClass() == Elaborated;
3953  }
3954};
3955
3956/// \brief Represents a qualified type name for which the type name is
3957/// dependent.
3958///
3959/// DependentNameType represents a class of dependent types that involve a
3960/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3961/// name of a type. The DependentNameType may start with a "typename" (for a
3962/// typename-specifier), "class", "struct", "union", or "enum" (for a
3963/// dependent elaborated-type-specifier), or nothing (in contexts where we
3964/// know that we must be referring to a type, e.g., in a base class specifier).
3965class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3966
3967  /// \brief The nested name specifier containing the qualifier.
3968  NestedNameSpecifier *NNS;
3969
3970  /// \brief The type that this typename specifier refers to.
3971  const IdentifierInfo *Name;
3972
3973  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3974                    const IdentifierInfo *Name, QualType CanonType)
3975    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3976                      /*InstantiationDependent=*/true,
3977                      /*VariablyModified=*/false,
3978                      NNS->containsUnexpandedParameterPack()),
3979      NNS(NNS), Name(Name) {
3980    assert(NNS->isDependent() &&
3981           "DependentNameType requires a dependent nested-name-specifier");
3982  }
3983
3984  friend class ASTContext;  // ASTContext creates these
3985
3986public:
3987  /// \brief Retrieve the qualification on this type.
3988  NestedNameSpecifier *getQualifier() const { return NNS; }
3989
3990  /// \brief Retrieve the type named by the typename specifier as an
3991  /// identifier.
3992  ///
3993  /// This routine will return a non-NULL identifier pointer when the
3994  /// form of the original typename was terminated by an identifier,
3995  /// e.g., "typename T::type".
3996  const IdentifierInfo *getIdentifier() const {
3997    return Name;
3998  }
3999
4000  bool isSugared() const { return false; }
4001  QualType desugar() const { return QualType(this, 0); }
4002
4003  void Profile(llvm::FoldingSetNodeID &ID) {
4004    Profile(ID, getKeyword(), NNS, Name);
4005  }
4006
4007  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
4008                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
4009    ID.AddInteger(Keyword);
4010    ID.AddPointer(NNS);
4011    ID.AddPointer(Name);
4012  }
4013
4014  static bool classof(const Type *T) {
4015    return T->getTypeClass() == DependentName;
4016  }
4017};
4018
4019/// DependentTemplateSpecializationType - Represents a template
4020/// specialization type whose template cannot be resolved, e.g.
4021///   A<T>::template B<T>
4022class DependentTemplateSpecializationType :
4023  public TypeWithKeyword, public llvm::FoldingSetNode {
4024
4025  /// \brief The nested name specifier containing the qualifier.
4026  NestedNameSpecifier *NNS;
4027
4028  /// \brief The identifier of the template.
4029  const IdentifierInfo *Name;
4030
4031  /// \brief - The number of template arguments named in this class
4032  /// template specialization.
4033  unsigned NumArgs;
4034
4035  const TemplateArgument *getArgBuffer() const {
4036    return reinterpret_cast<const TemplateArgument*>(this+1);
4037  }
4038  TemplateArgument *getArgBuffer() {
4039    return reinterpret_cast<TemplateArgument*>(this+1);
4040  }
4041
4042  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
4043                                      NestedNameSpecifier *NNS,
4044                                      const IdentifierInfo *Name,
4045                                      unsigned NumArgs,
4046                                      const TemplateArgument *Args,
4047                                      QualType Canon);
4048
4049  friend class ASTContext;  // ASTContext creates these
4050
4051public:
4052  NestedNameSpecifier *getQualifier() const { return NNS; }
4053  const IdentifierInfo *getIdentifier() const { return Name; }
4054
4055  /// \brief Retrieve the template arguments.
4056  const TemplateArgument *getArgs() const {
4057    return getArgBuffer();
4058  }
4059
4060  /// \brief Retrieve the number of template arguments.
4061  unsigned getNumArgs() const { return NumArgs; }
4062
4063  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4064
4065  typedef const TemplateArgument * iterator;
4066  iterator begin() const { return getArgs(); }
4067  iterator end() const; // inline in TemplateBase.h
4068
4069  bool isSugared() const { return false; }
4070  QualType desugar() const { return QualType(this, 0); }
4071
4072  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
4073    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
4074  }
4075
4076  static void Profile(llvm::FoldingSetNodeID &ID,
4077                      const ASTContext &Context,
4078                      ElaboratedTypeKeyword Keyword,
4079                      NestedNameSpecifier *Qualifier,
4080                      const IdentifierInfo *Name,
4081                      unsigned NumArgs,
4082                      const TemplateArgument *Args);
4083
4084  static bool classof(const Type *T) {
4085    return T->getTypeClass() == DependentTemplateSpecialization;
4086  }
4087};
4088
4089/// \brief Represents a pack expansion of types.
4090///
4091/// Pack expansions are part of C++0x variadic templates. A pack
4092/// expansion contains a pattern, which itself contains one or more
4093/// "unexpanded" parameter packs. When instantiated, a pack expansion
4094/// produces a series of types, each instantiated from the pattern of
4095/// the expansion, where the Ith instantiation of the pattern uses the
4096/// Ith arguments bound to each of the unexpanded parameter packs. The
4097/// pack expansion is considered to "expand" these unexpanded
4098/// parameter packs.
4099///
4100/// \code
4101/// template<typename ...Types> struct tuple;
4102///
4103/// template<typename ...Types>
4104/// struct tuple_of_references {
4105///   typedef tuple<Types&...> type;
4106/// };
4107/// \endcode
4108///
4109/// Here, the pack expansion \c Types&... is represented via a
4110/// PackExpansionType whose pattern is Types&.
4111class PackExpansionType : public Type, public llvm::FoldingSetNode {
4112  /// \brief The pattern of the pack expansion.
4113  QualType Pattern;
4114
4115  /// \brief The number of expansions that this pack expansion will
4116  /// generate when substituted (+1), or indicates that
4117  ///
4118  /// This field will only have a non-zero value when some of the parameter
4119  /// packs that occur within the pattern have been substituted but others have
4120  /// not.
4121  unsigned NumExpansions;
4122
4123  PackExpansionType(QualType Pattern, QualType Canon,
4124                    llvm::Optional<unsigned> NumExpansions)
4125    : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
4126           /*InstantiationDependent=*/true,
4127           /*VariableModified=*/Pattern->isVariablyModifiedType(),
4128           /*ContainsUnexpandedParameterPack=*/false),
4129      Pattern(Pattern),
4130      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
4131
4132  friend class ASTContext;  // ASTContext creates these
4133
4134public:
4135  /// \brief Retrieve the pattern of this pack expansion, which is the
4136  /// type that will be repeatedly instantiated when instantiating the
4137  /// pack expansion itself.
4138  QualType getPattern() const { return Pattern; }
4139
4140  /// \brief Retrieve the number of expansions that this pack expansion will
4141  /// generate, if known.
4142  llvm::Optional<unsigned> getNumExpansions() const {
4143    if (NumExpansions)
4144      return NumExpansions - 1;
4145
4146    return llvm::Optional<unsigned>();
4147  }
4148
4149  bool isSugared() const { return false; }
4150  QualType desugar() const { return QualType(this, 0); }
4151
4152  void Profile(llvm::FoldingSetNodeID &ID) {
4153    Profile(ID, getPattern(), getNumExpansions());
4154  }
4155
4156  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
4157                      llvm::Optional<unsigned> NumExpansions) {
4158    ID.AddPointer(Pattern.getAsOpaquePtr());
4159    ID.AddBoolean(NumExpansions);
4160    if (NumExpansions)
4161      ID.AddInteger(*NumExpansions);
4162  }
4163
4164  static bool classof(const Type *T) {
4165    return T->getTypeClass() == PackExpansion;
4166  }
4167};
4168
4169/// ObjCObjectType - Represents a class type in Objective C.
4170/// Every Objective C type is a combination of a base type and a
4171/// list of protocols.
4172///
4173/// Given the following declarations:
4174/// \code
4175///   \@class C;
4176///   \@protocol P;
4177/// \endcode
4178///
4179/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4180/// with base C and no protocols.
4181///
4182/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
4183///
4184/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
4185/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4186/// and no protocols.
4187///
4188/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
4189/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4190/// this should get its own sugar class to better represent the source.
4191class ObjCObjectType : public Type {
4192  // ObjCObjectType.NumProtocols - the number of protocols stored
4193  // after the ObjCObjectPointerType node.
4194  //
4195  // These protocols are those written directly on the type.  If
4196  // protocol qualifiers ever become additive, the iterators will need
4197  // to get kindof complicated.
4198  //
4199  // In the canonical object type, these are sorted alphabetically
4200  // and uniqued.
4201
4202  /// Either a BuiltinType or an InterfaceType or sugar for either.
4203  QualType BaseType;
4204
4205  ObjCProtocolDecl * const *getProtocolStorage() const {
4206    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4207  }
4208
4209  ObjCProtocolDecl **getProtocolStorage();
4210
4211protected:
4212  ObjCObjectType(QualType Canonical, QualType Base,
4213                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
4214
4215  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4216  ObjCObjectType(enum Nonce_ObjCInterface)
4217        : Type(ObjCInterface, QualType(), false, false, false, false),
4218      BaseType(QualType(this_(), 0)) {
4219    ObjCObjectTypeBits.NumProtocols = 0;
4220  }
4221
4222public:
4223  /// getBaseType - Gets the base type of this object type.  This is
4224  /// always (possibly sugar for) one of:
4225  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4226  ///    user, which is a typedef for an ObjCPointerType)
4227  ///  - the 'Class' builtin type (same caveat)
4228  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4229  QualType getBaseType() const { return BaseType; }
4230
4231  bool isObjCId() const {
4232    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4233  }
4234  bool isObjCClass() const {
4235    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4236  }
4237  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4238  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4239  bool isObjCUnqualifiedIdOrClass() const {
4240    if (!qual_empty()) return false;
4241    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4242      return T->getKind() == BuiltinType::ObjCId ||
4243             T->getKind() == BuiltinType::ObjCClass;
4244    return false;
4245  }
4246  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4247  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4248
4249  /// Gets the interface declaration for this object type, if the base type
4250  /// really is an interface.
4251  ObjCInterfaceDecl *getInterface() const;
4252
4253  typedef ObjCProtocolDecl * const *qual_iterator;
4254
4255  qual_iterator qual_begin() const { return getProtocolStorage(); }
4256  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4257
4258  bool qual_empty() const { return getNumProtocols() == 0; }
4259
4260  /// getNumProtocols - Return the number of qualifying protocols in this
4261  /// interface type, or 0 if there are none.
4262  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4263
4264  /// \brief Fetch a protocol by index.
4265  ObjCProtocolDecl *getProtocol(unsigned I) const {
4266    assert(I < getNumProtocols() && "Out-of-range protocol access");
4267    return qual_begin()[I];
4268  }
4269
4270  bool isSugared() const { return false; }
4271  QualType desugar() const { return QualType(this, 0); }
4272
4273  static bool classof(const Type *T) {
4274    return T->getTypeClass() == ObjCObject ||
4275           T->getTypeClass() == ObjCInterface;
4276  }
4277};
4278
4279/// ObjCObjectTypeImpl - A class providing a concrete implementation
4280/// of ObjCObjectType, so as to not increase the footprint of
4281/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4282/// system should not reference this type.
4283class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4284  friend class ASTContext;
4285
4286  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4287  // will need to be modified.
4288
4289  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4290                     ObjCProtocolDecl * const *Protocols,
4291                     unsigned NumProtocols)
4292    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
4293
4294public:
4295  void Profile(llvm::FoldingSetNodeID &ID);
4296  static void Profile(llvm::FoldingSetNodeID &ID,
4297                      QualType Base,
4298                      ObjCProtocolDecl *const *protocols,
4299                      unsigned NumProtocols);
4300};
4301
4302inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4303  return reinterpret_cast<ObjCProtocolDecl**>(
4304            static_cast<ObjCObjectTypeImpl*>(this) + 1);
4305}
4306
4307/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
4308/// object oriented design.  They basically correspond to C++ classes.  There
4309/// are two kinds of interface types, normal interfaces like "NSString" and
4310/// qualified interfaces, which are qualified with a protocol list like
4311/// "NSString<NSCopyable, NSAmazing>".
4312///
4313/// ObjCInterfaceType guarantees the following properties when considered
4314/// as a subtype of its superclass, ObjCObjectType:
4315///   - There are no protocol qualifiers.  To reinforce this, code which
4316///     tries to invoke the protocol methods via an ObjCInterfaceType will
4317///     fail to compile.
4318///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4319///     T->getBaseType() == QualType(T, 0).
4320class ObjCInterfaceType : public ObjCObjectType {
4321  mutable ObjCInterfaceDecl *Decl;
4322
4323  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4324    : ObjCObjectType(Nonce_ObjCInterface),
4325      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4326  friend class ASTContext;  // ASTContext creates these.
4327  friend class ASTReader;
4328  friend class ObjCInterfaceDecl;
4329
4330public:
4331  /// getDecl - Get the declaration of this interface.
4332  ObjCInterfaceDecl *getDecl() const { return Decl; }
4333
4334  bool isSugared() const { return false; }
4335  QualType desugar() const { return QualType(this, 0); }
4336
4337  static bool classof(const Type *T) {
4338    return T->getTypeClass() == ObjCInterface;
4339  }
4340
4341  // Nonsense to "hide" certain members of ObjCObjectType within this
4342  // class.  People asking for protocols on an ObjCInterfaceType are
4343  // not going to get what they want: ObjCInterfaceTypes are
4344  // guaranteed to have no protocols.
4345  enum {
4346    qual_iterator,
4347    qual_begin,
4348    qual_end,
4349    getNumProtocols,
4350    getProtocol
4351  };
4352};
4353
4354inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4355  if (const ObjCInterfaceType *T =
4356        getBaseType()->getAs<ObjCInterfaceType>())
4357    return T->getDecl();
4358  return 0;
4359}
4360
4361/// ObjCObjectPointerType - Used to represent a pointer to an
4362/// Objective C object.  These are constructed from pointer
4363/// declarators when the pointee type is an ObjCObjectType (or sugar
4364/// for one).  In addition, the 'id' and 'Class' types are typedefs
4365/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
4366/// are translated into these.
4367///
4368/// Pointers to pointers to Objective C objects are still PointerTypes;
4369/// only the first level of pointer gets it own type implementation.
4370class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4371  QualType PointeeType;
4372
4373  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4374    : Type(ObjCObjectPointer, Canonical, false, false, false, false),
4375      PointeeType(Pointee) {}
4376  friend class ASTContext;  // ASTContext creates these.
4377
4378public:
4379  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
4380  /// The result will always be an ObjCObjectType or sugar thereof.
4381  QualType getPointeeType() const { return PointeeType; }
4382
4383  /// getObjCObjectType - Gets the type pointed to by this ObjC
4384  /// pointer.  This method always returns non-null.
4385  ///
4386  /// This method is equivalent to getPointeeType() except that
4387  /// it discards any typedefs (or other sugar) between this
4388  /// type and the "outermost" object type.  So for:
4389  /// \code
4390  ///   \@class A; \@protocol P; \@protocol Q;
4391  ///   typedef A<P> AP;
4392  ///   typedef A A1;
4393  ///   typedef A1<P> A1P;
4394  ///   typedef A1P<Q> A1PQ;
4395  /// \endcode
4396  /// For 'A*', getObjectType() will return 'A'.
4397  /// For 'A<P>*', getObjectType() will return 'A<P>'.
4398  /// For 'AP*', getObjectType() will return 'A<P>'.
4399  /// For 'A1*', getObjectType() will return 'A'.
4400  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
4401  /// For 'A1P*', getObjectType() will return 'A1<P>'.
4402  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
4403  ///   adding protocols to a protocol-qualified base discards the
4404  ///   old qualifiers (for now).  But if it didn't, getObjectType()
4405  ///   would return 'A1P<Q>' (and we'd have to make iterating over
4406  ///   qualifiers more complicated).
4407  const ObjCObjectType *getObjectType() const {
4408    return PointeeType->castAs<ObjCObjectType>();
4409  }
4410
4411  /// getInterfaceType - If this pointer points to an Objective C
4412  /// \@interface type, gets the type for that interface.  Any protocol
4413  /// qualifiers on the interface are ignored.
4414  ///
4415  /// \return null if the base type for this pointer is 'id' or 'Class'
4416  const ObjCInterfaceType *getInterfaceType() const {
4417    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
4418  }
4419
4420  /// getInterfaceDecl - If this pointer points to an Objective \@interface
4421  /// type, gets the declaration for that interface.
4422  ///
4423  /// \return null if the base type for this pointer is 'id' or 'Class'
4424  ObjCInterfaceDecl *getInterfaceDecl() const {
4425    return getObjectType()->getInterface();
4426  }
4427
4428  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
4429  /// its object type is the primitive 'id' type with no protocols.
4430  bool isObjCIdType() const {
4431    return getObjectType()->isObjCUnqualifiedId();
4432  }
4433
4434  /// isObjCClassType - True if this is equivalent to the 'Class' type,
4435  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
4436  bool isObjCClassType() const {
4437    return getObjectType()->isObjCUnqualifiedClass();
4438  }
4439
4440  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
4441  /// non-empty set of protocols.
4442  bool isObjCQualifiedIdType() const {
4443    return getObjectType()->isObjCQualifiedId();
4444  }
4445
4446  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
4447  /// some non-empty set of protocols.
4448  bool isObjCQualifiedClassType() const {
4449    return getObjectType()->isObjCQualifiedClass();
4450  }
4451
4452  /// An iterator over the qualifiers on the object type.  Provided
4453  /// for convenience.  This will always iterate over the full set of
4454  /// protocols on a type, not just those provided directly.
4455  typedef ObjCObjectType::qual_iterator qual_iterator;
4456
4457  qual_iterator qual_begin() const {
4458    return getObjectType()->qual_begin();
4459  }
4460  qual_iterator qual_end() const {
4461    return getObjectType()->qual_end();
4462  }
4463  bool qual_empty() const { return getObjectType()->qual_empty(); }
4464
4465  /// getNumProtocols - Return the number of qualifying protocols on
4466  /// the object type.
4467  unsigned getNumProtocols() const {
4468    return getObjectType()->getNumProtocols();
4469  }
4470
4471  /// \brief Retrieve a qualifying protocol by index on the object
4472  /// type.
4473  ObjCProtocolDecl *getProtocol(unsigned I) const {
4474    return getObjectType()->getProtocol(I);
4475  }
4476
4477  bool isSugared() const { return false; }
4478  QualType desugar() const { return QualType(this, 0); }
4479
4480  void Profile(llvm::FoldingSetNodeID &ID) {
4481    Profile(ID, getPointeeType());
4482  }
4483  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4484    ID.AddPointer(T.getAsOpaquePtr());
4485  }
4486  static bool classof(const Type *T) {
4487    return T->getTypeClass() == ObjCObjectPointer;
4488  }
4489};
4490
4491class AtomicType : public Type, public llvm::FoldingSetNode {
4492  QualType ValueType;
4493
4494  AtomicType(QualType ValTy, QualType Canonical)
4495    : Type(Atomic, Canonical, ValTy->isDependentType(),
4496           ValTy->isInstantiationDependentType(),
4497           ValTy->isVariablyModifiedType(),
4498           ValTy->containsUnexpandedParameterPack()),
4499      ValueType(ValTy) {}
4500  friend class ASTContext;  // ASTContext creates these.
4501
4502  public:
4503  /// getValueType - Gets the type contained by this atomic type, i.e.
4504  /// the type returned by performing an atomic load of this atomic type.
4505  QualType getValueType() const { return ValueType; }
4506
4507  bool isSugared() const { return false; }
4508  QualType desugar() const { return QualType(this, 0); }
4509
4510  void Profile(llvm::FoldingSetNodeID &ID) {
4511    Profile(ID, getValueType());
4512  }
4513  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4514    ID.AddPointer(T.getAsOpaquePtr());
4515  }
4516  static bool classof(const Type *T) {
4517    return T->getTypeClass() == Atomic;
4518  }
4519};
4520
4521/// A qualifier set is used to build a set of qualifiers.
4522class QualifierCollector : public Qualifiers {
4523public:
4524  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4525
4526  /// Collect any qualifiers on the given type and return an
4527  /// unqualified type.  The qualifiers are assumed to be consistent
4528  /// with those already in the type.
4529  const Type *strip(QualType type) {
4530    addFastQualifiers(type.getLocalFastQualifiers());
4531    if (!type.hasLocalNonFastQualifiers())
4532      return type.getTypePtrUnsafe();
4533
4534    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4535    addConsistentQualifiers(extQuals->getQualifiers());
4536    return extQuals->getBaseType();
4537  }
4538
4539  /// Apply the collected qualifiers to the given type.
4540  QualType apply(const ASTContext &Context, QualType QT) const;
4541
4542  /// Apply the collected qualifiers to the given type.
4543  QualType apply(const ASTContext &Context, const Type* T) const;
4544};
4545
4546
4547// Inline function definitions.
4548
4549inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
4550  SplitQualType desugar =
4551    Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
4552  desugar.Quals.addConsistentQualifiers(Quals);
4553  return desugar;
4554}
4555
4556inline const Type *QualType::getTypePtr() const {
4557  return getCommonPtr()->BaseType;
4558}
4559
4560inline const Type *QualType::getTypePtrOrNull() const {
4561  return (isNull() ? 0 : getCommonPtr()->BaseType);
4562}
4563
4564inline SplitQualType QualType::split() const {
4565  if (!hasLocalNonFastQualifiers())
4566    return SplitQualType(getTypePtrUnsafe(),
4567                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4568
4569  const ExtQuals *eq = getExtQualsUnsafe();
4570  Qualifiers qs = eq->getQualifiers();
4571  qs.addFastQualifiers(getLocalFastQualifiers());
4572  return SplitQualType(eq->getBaseType(), qs);
4573}
4574
4575inline Qualifiers QualType::getLocalQualifiers() const {
4576  Qualifiers Quals;
4577  if (hasLocalNonFastQualifiers())
4578    Quals = getExtQualsUnsafe()->getQualifiers();
4579  Quals.addFastQualifiers(getLocalFastQualifiers());
4580  return Quals;
4581}
4582
4583inline Qualifiers QualType::getQualifiers() const {
4584  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4585  quals.addFastQualifiers(getLocalFastQualifiers());
4586  return quals;
4587}
4588
4589inline unsigned QualType::getCVRQualifiers() const {
4590  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4591  cvr |= getLocalCVRQualifiers();
4592  return cvr;
4593}
4594
4595inline QualType QualType::getCanonicalType() const {
4596  QualType canon = getCommonPtr()->CanonicalType;
4597  return canon.withFastQualifiers(getLocalFastQualifiers());
4598}
4599
4600inline bool QualType::isCanonical() const {
4601  return getTypePtr()->isCanonicalUnqualified();
4602}
4603
4604inline bool QualType::isCanonicalAsParam() const {
4605  if (!isCanonical()) return false;
4606  if (hasLocalQualifiers()) return false;
4607
4608  const Type *T = getTypePtr();
4609  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4610    return false;
4611
4612  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4613}
4614
4615inline bool QualType::isConstQualified() const {
4616  return isLocalConstQualified() ||
4617         getCommonPtr()->CanonicalType.isLocalConstQualified();
4618}
4619
4620inline bool QualType::isRestrictQualified() const {
4621  return isLocalRestrictQualified() ||
4622         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4623}
4624
4625
4626inline bool QualType::isVolatileQualified() const {
4627  return isLocalVolatileQualified() ||
4628         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4629}
4630
4631inline bool QualType::hasQualifiers() const {
4632  return hasLocalQualifiers() ||
4633         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4634}
4635
4636inline QualType QualType::getUnqualifiedType() const {
4637  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4638    return QualType(getTypePtr(), 0);
4639
4640  return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
4641}
4642
4643inline SplitQualType QualType::getSplitUnqualifiedType() const {
4644  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4645    return split();
4646
4647  return getSplitUnqualifiedTypeImpl(*this);
4648}
4649
4650inline void QualType::removeLocalConst() {
4651  removeLocalFastQualifiers(Qualifiers::Const);
4652}
4653
4654inline void QualType::removeLocalRestrict() {
4655  removeLocalFastQualifiers(Qualifiers::Restrict);
4656}
4657
4658inline void QualType::removeLocalVolatile() {
4659  removeLocalFastQualifiers(Qualifiers::Volatile);
4660}
4661
4662inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4663  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4664  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4665
4666  // Fast path: we don't need to touch the slow qualifiers.
4667  removeLocalFastQualifiers(Mask);
4668}
4669
4670/// getAddressSpace - Return the address space of this type.
4671inline unsigned QualType::getAddressSpace() const {
4672  return getQualifiers().getAddressSpace();
4673}
4674
4675/// getObjCGCAttr - Return the gc attribute of this type.
4676inline Qualifiers::GC QualType::getObjCGCAttr() const {
4677  return getQualifiers().getObjCGCAttr();
4678}
4679
4680inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4681  if (const PointerType *PT = t.getAs<PointerType>()) {
4682    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4683      return FT->getExtInfo();
4684  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4685    return FT->getExtInfo();
4686
4687  return FunctionType::ExtInfo();
4688}
4689
4690inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4691  return getFunctionExtInfo(*t);
4692}
4693
4694/// isMoreQualifiedThan - Determine whether this type is more
4695/// qualified than the Other type. For example, "const volatile int"
4696/// is more qualified than "const int", "volatile int", and
4697/// "int". However, it is not more qualified than "const volatile
4698/// int".
4699inline bool QualType::isMoreQualifiedThan(QualType other) const {
4700  Qualifiers myQuals = getQualifiers();
4701  Qualifiers otherQuals = other.getQualifiers();
4702  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4703}
4704
4705/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4706/// as qualified as the Other type. For example, "const volatile
4707/// int" is at least as qualified as "const int", "volatile int",
4708/// "int", and "const volatile int".
4709inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4710  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4711}
4712
4713/// getNonReferenceType - If Type is a reference type (e.g., const
4714/// int&), returns the type that the reference refers to ("const
4715/// int"). Otherwise, returns the type itself. This routine is used
4716/// throughout Sema to implement C++ 5p6:
4717///
4718///   If an expression initially has the type "reference to T" (8.3.2,
4719///   8.5.3), the type is adjusted to "T" prior to any further
4720///   analysis, the expression designates the object or function
4721///   denoted by the reference, and the expression is an lvalue.
4722inline QualType QualType::getNonReferenceType() const {
4723  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4724    return RefType->getPointeeType();
4725  else
4726    return *this;
4727}
4728
4729inline bool QualType::isCForbiddenLValueType() const {
4730  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
4731          getTypePtr()->isFunctionType());
4732}
4733
4734/// \brief Tests whether the type is categorized as a fundamental type.
4735///
4736/// \returns True for types specified in C++0x [basic.fundamental].
4737inline bool Type::isFundamentalType() const {
4738  return isVoidType() ||
4739         // FIXME: It's really annoying that we don't have an
4740         // 'isArithmeticType()' which agrees with the standard definition.
4741         (isArithmeticType() && !isEnumeralType());
4742}
4743
4744/// \brief Tests whether the type is categorized as a compound type.
4745///
4746/// \returns True for types specified in C++0x [basic.compound].
4747inline bool Type::isCompoundType() const {
4748  // C++0x [basic.compound]p1:
4749  //   Compound types can be constructed in the following ways:
4750  //    -- arrays of objects of a given type [...];
4751  return isArrayType() ||
4752  //    -- functions, which have parameters of given types [...];
4753         isFunctionType() ||
4754  //    -- pointers to void or objects or functions [...];
4755         isPointerType() ||
4756  //    -- references to objects or functions of a given type. [...]
4757         isReferenceType() ||
4758  //    -- classes containing a sequence of objects of various types, [...];
4759         isRecordType() ||
4760  //    -- unions, which are classes capable of containing objects of different
4761  //               types at different times;
4762         isUnionType() ||
4763  //    -- enumerations, which comprise a set of named constant values. [...];
4764         isEnumeralType() ||
4765  //    -- pointers to non-static class members, [...].
4766         isMemberPointerType();
4767}
4768
4769inline bool Type::isFunctionType() const {
4770  return isa<FunctionType>(CanonicalType);
4771}
4772inline bool Type::isPointerType() const {
4773  return isa<PointerType>(CanonicalType);
4774}
4775inline bool Type::isAnyPointerType() const {
4776  return isPointerType() || isObjCObjectPointerType();
4777}
4778inline bool Type::isBlockPointerType() const {
4779  return isa<BlockPointerType>(CanonicalType);
4780}
4781inline bool Type::isReferenceType() const {
4782  return isa<ReferenceType>(CanonicalType);
4783}
4784inline bool Type::isLValueReferenceType() const {
4785  return isa<LValueReferenceType>(CanonicalType);
4786}
4787inline bool Type::isRValueReferenceType() const {
4788  return isa<RValueReferenceType>(CanonicalType);
4789}
4790inline bool Type::isFunctionPointerType() const {
4791  if (const PointerType *T = getAs<PointerType>())
4792    return T->getPointeeType()->isFunctionType();
4793  else
4794    return false;
4795}
4796inline bool Type::isMemberPointerType() const {
4797  return isa<MemberPointerType>(CanonicalType);
4798}
4799inline bool Type::isMemberFunctionPointerType() const {
4800  if (const MemberPointerType* T = getAs<MemberPointerType>())
4801    return T->isMemberFunctionPointer();
4802  else
4803    return false;
4804}
4805inline bool Type::isMemberDataPointerType() const {
4806  if (const MemberPointerType* T = getAs<MemberPointerType>())
4807    return T->isMemberDataPointer();
4808  else
4809    return false;
4810}
4811inline bool Type::isArrayType() const {
4812  return isa<ArrayType>(CanonicalType);
4813}
4814inline bool Type::isConstantArrayType() const {
4815  return isa<ConstantArrayType>(CanonicalType);
4816}
4817inline bool Type::isIncompleteArrayType() const {
4818  return isa<IncompleteArrayType>(CanonicalType);
4819}
4820inline bool Type::isVariableArrayType() const {
4821  return isa<VariableArrayType>(CanonicalType);
4822}
4823inline bool Type::isDependentSizedArrayType() const {
4824  return isa<DependentSizedArrayType>(CanonicalType);
4825}
4826inline bool Type::isBuiltinType() const {
4827  return isa<BuiltinType>(CanonicalType);
4828}
4829inline bool Type::isRecordType() const {
4830  return isa<RecordType>(CanonicalType);
4831}
4832inline bool Type::isEnumeralType() const {
4833  return isa<EnumType>(CanonicalType);
4834}
4835inline bool Type::isAnyComplexType() const {
4836  return isa<ComplexType>(CanonicalType);
4837}
4838inline bool Type::isVectorType() const {
4839  return isa<VectorType>(CanonicalType);
4840}
4841inline bool Type::isExtVectorType() const {
4842  return isa<ExtVectorType>(CanonicalType);
4843}
4844inline bool Type::isObjCObjectPointerType() const {
4845  return isa<ObjCObjectPointerType>(CanonicalType);
4846}
4847inline bool Type::isObjCObjectType() const {
4848  return isa<ObjCObjectType>(CanonicalType);
4849}
4850inline bool Type::isObjCObjectOrInterfaceType() const {
4851  return isa<ObjCInterfaceType>(CanonicalType) ||
4852    isa<ObjCObjectType>(CanonicalType);
4853}
4854inline bool Type::isAtomicType() const {
4855  return isa<AtomicType>(CanonicalType);
4856}
4857
4858inline bool Type::isObjCQualifiedIdType() const {
4859  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4860    return OPT->isObjCQualifiedIdType();
4861  return false;
4862}
4863inline bool Type::isObjCQualifiedClassType() const {
4864  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4865    return OPT->isObjCQualifiedClassType();
4866  return false;
4867}
4868inline bool Type::isObjCIdType() const {
4869  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4870    return OPT->isObjCIdType();
4871  return false;
4872}
4873inline bool Type::isObjCClassType() const {
4874  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4875    return OPT->isObjCClassType();
4876  return false;
4877}
4878inline bool Type::isObjCSelType() const {
4879  if (const PointerType *OPT = getAs<PointerType>())
4880    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4881  return false;
4882}
4883inline bool Type::isObjCBuiltinType() const {
4884  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4885}
4886inline bool Type::isTemplateTypeParmType() const {
4887  return isa<TemplateTypeParmType>(CanonicalType);
4888}
4889
4890inline bool Type::isSpecificBuiltinType(unsigned K) const {
4891  if (const BuiltinType *BT = getAs<BuiltinType>())
4892    if (BT->getKind() == (BuiltinType::Kind) K)
4893      return true;
4894  return false;
4895}
4896
4897inline bool Type::isPlaceholderType() const {
4898  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4899    return BT->isPlaceholderType();
4900  return false;
4901}
4902
4903inline const BuiltinType *Type::getAsPlaceholderType() const {
4904  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4905    if (BT->isPlaceholderType())
4906      return BT;
4907  return 0;
4908}
4909
4910inline bool Type::isSpecificPlaceholderType(unsigned K) const {
4911  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
4912  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4913    return (BT->getKind() == (BuiltinType::Kind) K);
4914  return false;
4915}
4916
4917inline bool Type::isNonOverloadPlaceholderType() const {
4918  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4919    return BT->isNonOverloadPlaceholderType();
4920  return false;
4921}
4922
4923inline bool Type::isVoidType() const {
4924  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4925    return BT->getKind() == BuiltinType::Void;
4926  return false;
4927}
4928
4929inline bool Type::isHalfType() const {
4930  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4931    return BT->getKind() == BuiltinType::Half;
4932  // FIXME: Should we allow complex __fp16? Probably not.
4933  return false;
4934}
4935
4936inline bool Type::isNullPtrType() const {
4937  if (const BuiltinType *BT = getAs<BuiltinType>())
4938    return BT->getKind() == BuiltinType::NullPtr;
4939  return false;
4940}
4941
4942extern bool IsEnumDeclComplete(EnumDecl *);
4943extern bool IsEnumDeclScoped(EnumDecl *);
4944
4945inline bool Type::isIntegerType() const {
4946  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4947    return BT->getKind() >= BuiltinType::Bool &&
4948           BT->getKind() <= BuiltinType::Int128;
4949  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
4950    // Incomplete enum types are not treated as integer types.
4951    // FIXME: In C++, enum types are never integer types.
4952    return IsEnumDeclComplete(ET->getDecl()) &&
4953      !IsEnumDeclScoped(ET->getDecl());
4954  }
4955  return false;
4956}
4957
4958inline bool Type::isScalarType() const {
4959  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4960    return BT->getKind() > BuiltinType::Void &&
4961           BT->getKind() <= BuiltinType::NullPtr;
4962  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
4963    // Enums are scalar types, but only if they are defined.  Incomplete enums
4964    // are not treated as scalar types.
4965    return IsEnumDeclComplete(ET->getDecl());
4966  return isa<PointerType>(CanonicalType) ||
4967         isa<BlockPointerType>(CanonicalType) ||
4968         isa<MemberPointerType>(CanonicalType) ||
4969         isa<ComplexType>(CanonicalType) ||
4970         isa<ObjCObjectPointerType>(CanonicalType);
4971}
4972
4973inline bool Type::isIntegralOrEnumerationType() const {
4974  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4975    return BT->getKind() >= BuiltinType::Bool &&
4976           BT->getKind() <= BuiltinType::Int128;
4977
4978  // Check for a complete enum type; incomplete enum types are not properly an
4979  // enumeration type in the sense required here.
4980  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
4981    return IsEnumDeclComplete(ET->getDecl());
4982
4983  return false;
4984}
4985
4986inline bool Type::isBooleanType() const {
4987  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4988    return BT->getKind() == BuiltinType::Bool;
4989  return false;
4990}
4991
4992/// \brief Determines whether this is a type for which one can define
4993/// an overloaded operator.
4994inline bool Type::isOverloadableType() const {
4995  return isDependentType() || isRecordType() || isEnumeralType();
4996}
4997
4998/// \brief Determines whether this type can decay to a pointer type.
4999inline bool Type::canDecayToPointerType() const {
5000  return isFunctionType() || isArrayType();
5001}
5002
5003inline bool Type::hasPointerRepresentation() const {
5004  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
5005          isObjCObjectPointerType() || isNullPtrType());
5006}
5007
5008inline bool Type::hasObjCPointerRepresentation() const {
5009  return isObjCObjectPointerType();
5010}
5011
5012inline const Type *Type::getBaseElementTypeUnsafe() const {
5013  const Type *type = this;
5014  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
5015    type = arrayType->getElementType().getTypePtr();
5016  return type;
5017}
5018
5019/// Insertion operator for diagnostics.  This allows sending QualType's into a
5020/// diagnostic with <<.
5021inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
5022                                           QualType T) {
5023  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5024                  DiagnosticsEngine::ak_qualtype);
5025  return DB;
5026}
5027
5028/// Insertion operator for partial diagnostics.  This allows sending QualType's
5029/// into a diagnostic with <<.
5030inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
5031                                           QualType T) {
5032  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5033                  DiagnosticsEngine::ak_qualtype);
5034  return PD;
5035}
5036
5037// Helper class template that is used by Type::getAs to ensure that one does
5038// not try to look through a qualified type to get to an array type.
5039template<typename T,
5040         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
5041                             llvm::is_base_of<ArrayType, T>::value)>
5042struct ArrayType_cannot_be_used_with_getAs { };
5043
5044template<typename T>
5045struct ArrayType_cannot_be_used_with_getAs<T, true>;
5046
5047// Member-template getAs<specific type>'.
5048template <typename T> const T *Type::getAs() const {
5049  ArrayType_cannot_be_used_with_getAs<T> at;
5050  (void)at;
5051
5052  // If this is directly a T type, return it.
5053  if (const T *Ty = dyn_cast<T>(this))
5054    return Ty;
5055
5056  // If the canonical form of this type isn't the right kind, reject it.
5057  if (!isa<T>(CanonicalType))
5058    return 0;
5059
5060  // If this is a typedef for the type, strip the typedef off without
5061  // losing all typedef information.
5062  return cast<T>(getUnqualifiedDesugaredType());
5063}
5064
5065inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
5066  // If this is directly an array type, return it.
5067  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
5068    return arr;
5069
5070  // If the canonical form of this type isn't the right kind, reject it.
5071  if (!isa<ArrayType>(CanonicalType))
5072    return 0;
5073
5074  // If this is a typedef for the type, strip the typedef off without
5075  // losing all typedef information.
5076  return cast<ArrayType>(getUnqualifiedDesugaredType());
5077}
5078
5079template <typename T> const T *Type::castAs() const {
5080  ArrayType_cannot_be_used_with_getAs<T> at;
5081  (void) at;
5082
5083  assert(isa<T>(CanonicalType));
5084  if (const T *ty = dyn_cast<T>(this)) return ty;
5085  return cast<T>(getUnqualifiedDesugaredType());
5086}
5087
5088inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
5089  assert(isa<ArrayType>(CanonicalType));
5090  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
5091  return cast<ArrayType>(getUnqualifiedDesugaredType());
5092}
5093
5094}  // end namespace clang
5095
5096#endif
5097