Type.h revision 32b5a1e82f535d43e94332183cd330f4a39b2dbd
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/AST/NestedNameSpecifier.h"
18#include "clang/AST/TemplateName.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Basic/ExceptionSpecificationType.h"
21#include "clang/Basic/IdentifierTable.h"
22#include "clang/Basic/LLVM.h"
23#include "clang/Basic/Linkage.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/Specifiers.h"
26#include "clang/Basic/Visibility.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32#include "llvm/ADT/Twine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/type_traits.h"
35
36namespace clang {
37  enum {
38    TypeAlignmentInBits = 4,
39    TypeAlignment = 1 << TypeAlignmentInBits
40  };
41  class Type;
42  class ExtQuals;
43  class QualType;
44}
45
46namespace llvm {
47  template <typename T>
48  class PointerLikeTypeTraits;
49  template<>
50  class PointerLikeTypeTraits< ::clang::Type*> {
51  public:
52    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
53    static inline ::clang::Type *getFromVoidPointer(void *P) {
54      return static_cast< ::clang::Type*>(P);
55    }
56    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
57  };
58  template<>
59  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
60  public:
61    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
62    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
63      return static_cast< ::clang::ExtQuals*>(P);
64    }
65    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
66  };
67
68  template <>
69  struct isPodLike<clang::QualType> { static const bool value = true; };
70}
71
72namespace clang {
73  class ASTContext;
74  class TypedefNameDecl;
75  class TemplateDecl;
76  class TemplateTypeParmDecl;
77  class NonTypeTemplateParmDecl;
78  class TemplateTemplateParmDecl;
79  class TagDecl;
80  class RecordDecl;
81  class CXXRecordDecl;
82  class EnumDecl;
83  class FieldDecl;
84  class FunctionDecl;
85  class ObjCInterfaceDecl;
86  class ObjCProtocolDecl;
87  class ObjCMethodDecl;
88  class UnresolvedUsingTypenameDecl;
89  class Expr;
90  class Stmt;
91  class SourceLocation;
92  class StmtIteratorBase;
93  class TemplateArgument;
94  class TemplateArgumentLoc;
95  class TemplateArgumentListInfo;
96  class ElaboratedType;
97  class ExtQuals;
98  class ExtQualsTypeCommonBase;
99  struct PrintingPolicy;
100
101  template <typename> class CanQual;
102  typedef CanQual<Type> CanQualType;
103
104  // Provide forward declarations for all of the *Type classes
105#define TYPE(Class, Base) class Class##Type;
106#include "clang/AST/TypeNodes.def"
107
108/// Qualifiers - The collection of all-type qualifiers we support.
109/// Clang supports five independent qualifiers:
110/// * C99: const, volatile, and restrict
111/// * Embedded C (TR18037): address spaces
112/// * Objective C: the GC attributes (none, weak, or strong)
113class Qualifiers {
114public:
115  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
116    Const    = 0x1,
117    Restrict = 0x2,
118    Volatile = 0x4,
119    CVRMask = Const | Volatile | Restrict
120  };
121
122  enum GC {
123    GCNone = 0,
124    Weak,
125    Strong
126  };
127
128  enum ObjCLifetime {
129    /// There is no lifetime qualification on this type.
130    OCL_None,
131
132    /// This object can be modified without requiring retains or
133    /// releases.
134    OCL_ExplicitNone,
135
136    /// Assigning into this object requires the old value to be
137    /// released and the new value to be retained.  The timing of the
138    /// release of the old value is inexact: it may be moved to
139    /// immediately after the last known point where the value is
140    /// live.
141    OCL_Strong,
142
143    /// Reading or writing from this object requires a barrier call.
144    OCL_Weak,
145
146    /// Assigning into this object requires a lifetime extension.
147    OCL_Autoreleasing
148  };
149
150  enum {
151    /// The maximum supported address space number.
152    /// 24 bits should be enough for anyone.
153    MaxAddressSpace = 0xffffffu,
154
155    /// The width of the "fast" qualifier mask.
156    FastWidth = 3,
157
158    /// The fast qualifier mask.
159    FastMask = (1 << FastWidth) - 1
160  };
161
162  Qualifiers() : Mask(0) {}
163
164  /// \brief Returns the common set of qualifiers while removing them from
165  /// the given sets.
166  static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
167    // If both are only CVR-qualified, bit operations are sufficient.
168    if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
169      Qualifiers Q;
170      Q.Mask = L.Mask & R.Mask;
171      L.Mask &= ~Q.Mask;
172      R.Mask &= ~Q.Mask;
173      return Q;
174    }
175
176    Qualifiers Q;
177    unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
178    Q.addCVRQualifiers(CommonCRV);
179    L.removeCVRQualifiers(CommonCRV);
180    R.removeCVRQualifiers(CommonCRV);
181
182    if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
183      Q.setObjCGCAttr(L.getObjCGCAttr());
184      L.removeObjCGCAttr();
185      R.removeObjCGCAttr();
186    }
187
188    if (L.getObjCLifetime() == R.getObjCLifetime()) {
189      Q.setObjCLifetime(L.getObjCLifetime());
190      L.removeObjCLifetime();
191      R.removeObjCLifetime();
192    }
193
194    if (L.getAddressSpace() == R.getAddressSpace()) {
195      Q.setAddressSpace(L.getAddressSpace());
196      L.removeAddressSpace();
197      R.removeAddressSpace();
198    }
199    return Q;
200  }
201
202  static Qualifiers fromFastMask(unsigned Mask) {
203    Qualifiers Qs;
204    Qs.addFastQualifiers(Mask);
205    return Qs;
206  }
207
208  static Qualifiers fromCVRMask(unsigned CVR) {
209    Qualifiers Qs;
210    Qs.addCVRQualifiers(CVR);
211    return Qs;
212  }
213
214  // Deserialize qualifiers from an opaque representation.
215  static Qualifiers fromOpaqueValue(unsigned opaque) {
216    Qualifiers Qs;
217    Qs.Mask = opaque;
218    return Qs;
219  }
220
221  // Serialize these qualifiers into an opaque representation.
222  unsigned getAsOpaqueValue() const {
223    return Mask;
224  }
225
226  bool hasConst() const { return Mask & Const; }
227  void setConst(bool flag) {
228    Mask = (Mask & ~Const) | (flag ? Const : 0);
229  }
230  void removeConst() { Mask &= ~Const; }
231  void addConst() { Mask |= Const; }
232
233  bool hasVolatile() const { return Mask & Volatile; }
234  void setVolatile(bool flag) {
235    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
236  }
237  void removeVolatile() { Mask &= ~Volatile; }
238  void addVolatile() { Mask |= Volatile; }
239
240  bool hasRestrict() const { return Mask & Restrict; }
241  void setRestrict(bool flag) {
242    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
243  }
244  void removeRestrict() { Mask &= ~Restrict; }
245  void addRestrict() { Mask |= Restrict; }
246
247  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
248  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
249  void setCVRQualifiers(unsigned mask) {
250    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
251    Mask = (Mask & ~CVRMask) | mask;
252  }
253  void removeCVRQualifiers(unsigned mask) {
254    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
255    Mask &= ~mask;
256  }
257  void removeCVRQualifiers() {
258    removeCVRQualifiers(CVRMask);
259  }
260  void addCVRQualifiers(unsigned mask) {
261    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
262    Mask |= mask;
263  }
264
265  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
266  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
267  void setObjCGCAttr(GC type) {
268    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
269  }
270  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
271  void addObjCGCAttr(GC type) {
272    assert(type);
273    setObjCGCAttr(type);
274  }
275  Qualifiers withoutObjCGCAttr() const {
276    Qualifiers qs = *this;
277    qs.removeObjCGCAttr();
278    return qs;
279  }
280  Qualifiers withoutObjCLifetime() const {
281    Qualifiers qs = *this;
282    qs.removeObjCLifetime();
283    return qs;
284  }
285
286  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
287  ObjCLifetime getObjCLifetime() const {
288    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
289  }
290  void setObjCLifetime(ObjCLifetime type) {
291    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
292  }
293  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
294  void addObjCLifetime(ObjCLifetime type) {
295    assert(type);
296    assert(!hasObjCLifetime());
297    Mask |= (type << LifetimeShift);
298  }
299
300  /// True if the lifetime is neither None or ExplicitNone.
301  bool hasNonTrivialObjCLifetime() const {
302    ObjCLifetime lifetime = getObjCLifetime();
303    return (lifetime > OCL_ExplicitNone);
304  }
305
306  /// True if the lifetime is either strong or weak.
307  bool hasStrongOrWeakObjCLifetime() const {
308    ObjCLifetime lifetime = getObjCLifetime();
309    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
310  }
311
312  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
313  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
314  void setAddressSpace(unsigned space) {
315    assert(space <= MaxAddressSpace);
316    Mask = (Mask & ~AddressSpaceMask)
317         | (((uint32_t) space) << AddressSpaceShift);
318  }
319  void removeAddressSpace() { setAddressSpace(0); }
320  void addAddressSpace(unsigned space) {
321    assert(space);
322    setAddressSpace(space);
323  }
324
325  // Fast qualifiers are those that can be allocated directly
326  // on a QualType object.
327  bool hasFastQualifiers() const { return getFastQualifiers(); }
328  unsigned getFastQualifiers() const { return Mask & FastMask; }
329  void setFastQualifiers(unsigned mask) {
330    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
331    Mask = (Mask & ~FastMask) | mask;
332  }
333  void removeFastQualifiers(unsigned mask) {
334    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
335    Mask &= ~mask;
336  }
337  void removeFastQualifiers() {
338    removeFastQualifiers(FastMask);
339  }
340  void addFastQualifiers(unsigned mask) {
341    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
342    Mask |= mask;
343  }
344
345  /// hasNonFastQualifiers - Return true if the set contains any
346  /// qualifiers which require an ExtQuals node to be allocated.
347  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
348  Qualifiers getNonFastQualifiers() const {
349    Qualifiers Quals = *this;
350    Quals.setFastQualifiers(0);
351    return Quals;
352  }
353
354  /// hasQualifiers - Return true if the set contains any qualifiers.
355  bool hasQualifiers() const { return Mask; }
356  bool empty() const { return !Mask; }
357
358  /// \brief Add the qualifiers from the given set to this set.
359  void addQualifiers(Qualifiers Q) {
360    // If the other set doesn't have any non-boolean qualifiers, just
361    // bit-or it in.
362    if (!(Q.Mask & ~CVRMask))
363      Mask |= Q.Mask;
364    else {
365      Mask |= (Q.Mask & CVRMask);
366      if (Q.hasAddressSpace())
367        addAddressSpace(Q.getAddressSpace());
368      if (Q.hasObjCGCAttr())
369        addObjCGCAttr(Q.getObjCGCAttr());
370      if (Q.hasObjCLifetime())
371        addObjCLifetime(Q.getObjCLifetime());
372    }
373  }
374
375  /// \brief Remove the qualifiers from the given set from this set.
376  void removeQualifiers(Qualifiers Q) {
377    // If the other set doesn't have any non-boolean qualifiers, just
378    // bit-and the inverse in.
379    if (!(Q.Mask & ~CVRMask))
380      Mask &= ~Q.Mask;
381    else {
382      Mask &= ~(Q.Mask & CVRMask);
383      if (getObjCGCAttr() == Q.getObjCGCAttr())
384        removeObjCGCAttr();
385      if (getObjCLifetime() == Q.getObjCLifetime())
386        removeObjCLifetime();
387      if (getAddressSpace() == Q.getAddressSpace())
388        removeAddressSpace();
389    }
390  }
391
392  /// \brief Add the qualifiers from the given set to this set, given that
393  /// they don't conflict.
394  void addConsistentQualifiers(Qualifiers qs) {
395    assert(getAddressSpace() == qs.getAddressSpace() ||
396           !hasAddressSpace() || !qs.hasAddressSpace());
397    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
398           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
399    assert(getObjCLifetime() == qs.getObjCLifetime() ||
400           !hasObjCLifetime() || !qs.hasObjCLifetime());
401    Mask |= qs.Mask;
402  }
403
404  /// \brief Determines if these qualifiers compatibly include another set.
405  /// Generally this answers the question of whether an object with the other
406  /// qualifiers can be safely used as an object with these qualifiers.
407  bool compatiblyIncludes(Qualifiers other) const {
408    return
409      // Address spaces must match exactly.
410      getAddressSpace() == other.getAddressSpace() &&
411      // ObjC GC qualifiers can match, be added, or be removed, but can't be
412      // changed.
413      (getObjCGCAttr() == other.getObjCGCAttr() ||
414       !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
415      // ObjC lifetime qualifiers must match exactly.
416      getObjCLifetime() == other.getObjCLifetime() &&
417      // CVR qualifiers may subset.
418      (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
419  }
420
421  /// \brief Determines if these qualifiers compatibly include another set of
422  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
423  ///
424  /// One set of Objective-C lifetime qualifiers compatibly includes the other
425  /// if the lifetime qualifiers match, or if both are non-__weak and the
426  /// including set also contains the 'const' qualifier.
427  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
428    if (getObjCLifetime() == other.getObjCLifetime())
429      return true;
430
431    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
432      return false;
433
434    return hasConst();
435  }
436
437  /// \brief Determine whether this set of qualifiers is a strict superset of
438  /// another set of qualifiers, not considering qualifier compatibility.
439  bool isStrictSupersetOf(Qualifiers Other) const;
440
441  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
442  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
443
444  LLVM_EXPLICIT operator bool() const { return hasQualifiers(); }
445
446  Qualifiers &operator+=(Qualifiers R) {
447    addQualifiers(R);
448    return *this;
449  }
450
451  // Union two qualifier sets.  If an enumerated qualifier appears
452  // in both sets, use the one from the right.
453  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
454    L += R;
455    return L;
456  }
457
458  Qualifiers &operator-=(Qualifiers R) {
459    removeQualifiers(R);
460    return *this;
461  }
462
463  /// \brief Compute the difference between two qualifier sets.
464  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
465    L -= R;
466    return L;
467  }
468
469  std::string getAsString() const;
470  std::string getAsString(const PrintingPolicy &Policy) const;
471
472  bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
473  void print(raw_ostream &OS, const PrintingPolicy &Policy,
474             bool appendSpaceIfNonEmpty = false) const;
475
476  void Profile(llvm::FoldingSetNodeID &ID) const {
477    ID.AddInteger(Mask);
478  }
479
480private:
481
482  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
483  //           |C R V|GCAttr|Lifetime|AddressSpace|
484  uint32_t Mask;
485
486  static const uint32_t GCAttrMask = 0x18;
487  static const uint32_t GCAttrShift = 3;
488  static const uint32_t LifetimeMask = 0xE0;
489  static const uint32_t LifetimeShift = 5;
490  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
491  static const uint32_t AddressSpaceShift = 8;
492};
493
494/// A std::pair-like structure for storing a qualified type split
495/// into its local qualifiers and its locally-unqualified type.
496struct SplitQualType {
497  /// The locally-unqualified type.
498  const Type *Ty;
499
500  /// The local qualifiers.
501  Qualifiers Quals;
502
503  SplitQualType() : Ty(0), Quals() {}
504  SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
505
506  SplitQualType getSingleStepDesugaredType() const; // end of this file
507
508  // Make llvm::tie work.
509  operator std::pair<const Type *,Qualifiers>() const {
510    return std::pair<const Type *,Qualifiers>(Ty, Quals);
511  }
512
513  friend bool operator==(SplitQualType a, SplitQualType b) {
514    return a.Ty == b.Ty && a.Quals == b.Quals;
515  }
516  friend bool operator!=(SplitQualType a, SplitQualType b) {
517    return a.Ty != b.Ty || a.Quals != b.Quals;
518  }
519};
520
521/// QualType - For efficiency, we don't store CV-qualified types as nodes on
522/// their own: instead each reference to a type stores the qualifiers.  This
523/// greatly reduces the number of nodes we need to allocate for types (for
524/// example we only need one for 'int', 'const int', 'volatile int',
525/// 'const volatile int', etc).
526///
527/// As an added efficiency bonus, instead of making this a pair, we
528/// just store the two bits we care about in the low bits of the
529/// pointer.  To handle the packing/unpacking, we make QualType be a
530/// simple wrapper class that acts like a smart pointer.  A third bit
531/// indicates whether there are extended qualifiers present, in which
532/// case the pointer points to a special structure.
533class QualType {
534  // Thankfully, these are efficiently composable.
535  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
536                       Qualifiers::FastWidth> Value;
537
538  const ExtQuals *getExtQualsUnsafe() const {
539    return Value.getPointer().get<const ExtQuals*>();
540  }
541
542  const Type *getTypePtrUnsafe() const {
543    return Value.getPointer().get<const Type*>();
544  }
545
546  const ExtQualsTypeCommonBase *getCommonPtr() const {
547    assert(!isNull() && "Cannot retrieve a NULL type pointer");
548    uintptr_t CommonPtrVal
549      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
550    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
551    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
552  }
553
554  friend class QualifierCollector;
555public:
556  QualType() {}
557
558  QualType(const Type *Ptr, unsigned Quals)
559    : Value(Ptr, Quals) {}
560  QualType(const ExtQuals *Ptr, unsigned Quals)
561    : Value(Ptr, Quals) {}
562
563  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
564  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
565
566  /// Retrieves a pointer to the underlying (unqualified) type.
567  ///
568  /// This function requires that the type not be NULL. If the type might be
569  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
570  const Type *getTypePtr() const;
571
572  const Type *getTypePtrOrNull() const;
573
574  /// Retrieves a pointer to the name of the base type.
575  const IdentifierInfo *getBaseTypeIdentifier() const;
576
577  /// Divides a QualType into its unqualified type and a set of local
578  /// qualifiers.
579  SplitQualType split() const;
580
581  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
582  static QualType getFromOpaquePtr(const void *Ptr) {
583    QualType T;
584    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
585    return T;
586  }
587
588  const Type &operator*() const {
589    return *getTypePtr();
590  }
591
592  const Type *operator->() const {
593    return getTypePtr();
594  }
595
596  bool isCanonical() const;
597  bool isCanonicalAsParam() const;
598
599  /// isNull - Return true if this QualType doesn't point to a type yet.
600  bool isNull() const {
601    return Value.getPointer().isNull();
602  }
603
604  /// \brief Determine whether this particular QualType instance has the
605  /// "const" qualifier set, without looking through typedefs that may have
606  /// added "const" at a different level.
607  bool isLocalConstQualified() const {
608    return (getLocalFastQualifiers() & Qualifiers::Const);
609  }
610
611  /// \brief Determine whether this type is const-qualified.
612  bool isConstQualified() const;
613
614  /// \brief Determine whether this particular QualType instance has the
615  /// "restrict" qualifier set, without looking through typedefs that may have
616  /// added "restrict" at a different level.
617  bool isLocalRestrictQualified() const {
618    return (getLocalFastQualifiers() & Qualifiers::Restrict);
619  }
620
621  /// \brief Determine whether this type is restrict-qualified.
622  bool isRestrictQualified() const;
623
624  /// \brief Determine whether this particular QualType instance has the
625  /// "volatile" qualifier set, without looking through typedefs that may have
626  /// added "volatile" at a different level.
627  bool isLocalVolatileQualified() const {
628    return (getLocalFastQualifiers() & Qualifiers::Volatile);
629  }
630
631  /// \brief Determine whether this type is volatile-qualified.
632  bool isVolatileQualified() const;
633
634  /// \brief Determine whether this particular QualType instance has any
635  /// qualifiers, without looking through any typedefs that might add
636  /// qualifiers at a different level.
637  bool hasLocalQualifiers() const {
638    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
639  }
640
641  /// \brief Determine whether this type has any qualifiers.
642  bool hasQualifiers() const;
643
644  /// \brief Determine whether this particular QualType instance has any
645  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
646  /// instance.
647  bool hasLocalNonFastQualifiers() const {
648    return Value.getPointer().is<const ExtQuals*>();
649  }
650
651  /// \brief Retrieve the set of qualifiers local to this particular QualType
652  /// instance, not including any qualifiers acquired through typedefs or
653  /// other sugar.
654  Qualifiers getLocalQualifiers() const;
655
656  /// \brief Retrieve the set of qualifiers applied to this type.
657  Qualifiers getQualifiers() const;
658
659  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
660  /// local to this particular QualType instance, not including any qualifiers
661  /// acquired through typedefs or other sugar.
662  unsigned getLocalCVRQualifiers() const {
663    return getLocalFastQualifiers();
664  }
665
666  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
667  /// applied to this type.
668  unsigned getCVRQualifiers() const;
669
670  bool isConstant(ASTContext& Ctx) const {
671    return QualType::isConstant(*this, Ctx);
672  }
673
674  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
675  bool isPODType(ASTContext &Context) const;
676
677  /// isCXX98PODType() - Return true if this is a POD type according to the
678  /// rules of the C++98 standard, regardless of the current compilation's
679  /// language.
680  bool isCXX98PODType(ASTContext &Context) const;
681
682  /// isCXX11PODType() - Return true if this is a POD type according to the
683  /// more relaxed rules of the C++11 standard, regardless of the current
684  /// compilation's language.
685  /// (C++0x [basic.types]p9)
686  bool isCXX11PODType(ASTContext &Context) const;
687
688  /// isTrivialType - Return true if this is a trivial type
689  /// (C++0x [basic.types]p9)
690  bool isTrivialType(ASTContext &Context) const;
691
692  /// isTriviallyCopyableType - Return true if this is a trivially
693  /// copyable type (C++0x [basic.types]p9)
694  bool isTriviallyCopyableType(ASTContext &Context) const;
695
696  // Don't promise in the API that anything besides 'const' can be
697  // easily added.
698
699  /// addConst - add the specified type qualifier to this QualType.
700  void addConst() {
701    addFastQualifiers(Qualifiers::Const);
702  }
703  QualType withConst() const {
704    return withFastQualifiers(Qualifiers::Const);
705  }
706
707  /// addVolatile - add the specified type qualifier to this QualType.
708  void addVolatile() {
709    addFastQualifiers(Qualifiers::Volatile);
710  }
711  QualType withVolatile() const {
712    return withFastQualifiers(Qualifiers::Volatile);
713  }
714
715  /// Add the restrict qualifier to this QualType.
716  void addRestrict() {
717    addFastQualifiers(Qualifiers::Restrict);
718  }
719  QualType withRestrict() const {
720    return withFastQualifiers(Qualifiers::Restrict);
721  }
722
723  QualType withCVRQualifiers(unsigned CVR) const {
724    return withFastQualifiers(CVR);
725  }
726
727  void addFastQualifiers(unsigned TQs) {
728    assert(!(TQs & ~Qualifiers::FastMask)
729           && "non-fast qualifier bits set in mask!");
730    Value.setInt(Value.getInt() | TQs);
731  }
732
733  void removeLocalConst();
734  void removeLocalVolatile();
735  void removeLocalRestrict();
736  void removeLocalCVRQualifiers(unsigned Mask);
737
738  void removeLocalFastQualifiers() { Value.setInt(0); }
739  void removeLocalFastQualifiers(unsigned Mask) {
740    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
741    Value.setInt(Value.getInt() & ~Mask);
742  }
743
744  // Creates a type with the given qualifiers in addition to any
745  // qualifiers already on this type.
746  QualType withFastQualifiers(unsigned TQs) const {
747    QualType T = *this;
748    T.addFastQualifiers(TQs);
749    return T;
750  }
751
752  // Creates a type with exactly the given fast qualifiers, removing
753  // any existing fast qualifiers.
754  QualType withExactLocalFastQualifiers(unsigned TQs) const {
755    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
756  }
757
758  // Removes fast qualifiers, but leaves any extended qualifiers in place.
759  QualType withoutLocalFastQualifiers() const {
760    QualType T = *this;
761    T.removeLocalFastQualifiers();
762    return T;
763  }
764
765  QualType getCanonicalType() const;
766
767  /// \brief Return this type with all of the instance-specific qualifiers
768  /// removed, but without removing any qualifiers that may have been applied
769  /// through typedefs.
770  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
771
772  /// \brief Retrieve the unqualified variant of the given type,
773  /// removing as little sugar as possible.
774  ///
775  /// This routine looks through various kinds of sugar to find the
776  /// least-desugared type that is unqualified. For example, given:
777  ///
778  /// \code
779  /// typedef int Integer;
780  /// typedef const Integer CInteger;
781  /// typedef CInteger DifferenceType;
782  /// \endcode
783  ///
784  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
785  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
786  ///
787  /// The resulting type might still be qualified if it's sugar for an array
788  /// type.  To strip qualifiers even from within a sugared array type, use
789  /// ASTContext::getUnqualifiedArrayType.
790  inline QualType getUnqualifiedType() const;
791
792  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
793  /// given type, removing as little sugar as possible.
794  ///
795  /// Like getUnqualifiedType(), but also returns the set of
796  /// qualifiers that were built up.
797  ///
798  /// The resulting type might still be qualified if it's sugar for an array
799  /// type.  To strip qualifiers even from within a sugared array type, use
800  /// ASTContext::getUnqualifiedArrayType.
801  inline SplitQualType getSplitUnqualifiedType() const;
802
803  /// \brief Determine whether this type is more qualified than the other
804  /// given type, requiring exact equality for non-CVR qualifiers.
805  bool isMoreQualifiedThan(QualType Other) const;
806
807  /// \brief Determine whether this type is at least as qualified as the other
808  /// given type, requiring exact equality for non-CVR qualifiers.
809  bool isAtLeastAsQualifiedAs(QualType Other) const;
810
811  QualType getNonReferenceType() const;
812
813  /// \brief Determine the type of a (typically non-lvalue) expression with the
814  /// specified result type.
815  ///
816  /// This routine should be used for expressions for which the return type is
817  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
818  /// an lvalue. It removes a top-level reference (since there are no
819  /// expressions of reference type) and deletes top-level cvr-qualifiers
820  /// from non-class types (in C++) or all types (in C).
821  QualType getNonLValueExprType(const ASTContext &Context) const;
822
823  /// getDesugaredType - Return the specified type with any "sugar" removed from
824  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
825  /// the type is already concrete, it returns it unmodified.  This is similar
826  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
827  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
828  /// concrete.
829  ///
830  /// Qualifiers are left in place.
831  QualType getDesugaredType(const ASTContext &Context) const {
832    return getDesugaredType(*this, Context);
833  }
834
835  SplitQualType getSplitDesugaredType() const {
836    return getSplitDesugaredType(*this);
837  }
838
839  /// \brief Return the specified type with one level of "sugar" removed from
840  /// the type.
841  ///
842  /// This routine takes off the first typedef, typeof, etc. If the outer level
843  /// of the type is already concrete, it returns it unmodified.
844  QualType getSingleStepDesugaredType(const ASTContext &Context) const {
845    return getSingleStepDesugaredTypeImpl(*this, Context);
846  }
847
848  /// IgnoreParens - Returns the specified type after dropping any
849  /// outer-level parentheses.
850  QualType IgnoreParens() const {
851    if (isa<ParenType>(*this))
852      return QualType::IgnoreParens(*this);
853    return *this;
854  }
855
856  /// operator==/!= - Indicate whether the specified types and qualifiers are
857  /// identical.
858  friend bool operator==(const QualType &LHS, const QualType &RHS) {
859    return LHS.Value == RHS.Value;
860  }
861  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
862    return LHS.Value != RHS.Value;
863  }
864  std::string getAsString() const {
865    return getAsString(split());
866  }
867  static std::string getAsString(SplitQualType split) {
868    return getAsString(split.Ty, split.Quals);
869  }
870  static std::string getAsString(const Type *ty, Qualifiers qs);
871
872  std::string getAsString(const PrintingPolicy &Policy) const;
873
874  void print(raw_ostream &OS, const PrintingPolicy &Policy,
875             const Twine &PlaceHolder = Twine()) const {
876    print(split(), OS, Policy, PlaceHolder);
877  }
878  static void print(SplitQualType split, raw_ostream &OS,
879                    const PrintingPolicy &policy, const Twine &PlaceHolder) {
880    return print(split.Ty, split.Quals, OS, policy, PlaceHolder);
881  }
882  static void print(const Type *ty, Qualifiers qs,
883                    raw_ostream &OS, const PrintingPolicy &policy,
884                    const Twine &PlaceHolder);
885
886  void getAsStringInternal(std::string &Str,
887                           const PrintingPolicy &Policy) const {
888    return getAsStringInternal(split(), Str, Policy);
889  }
890  static void getAsStringInternal(SplitQualType split, std::string &out,
891                                  const PrintingPolicy &policy) {
892    return getAsStringInternal(split.Ty, split.Quals, out, policy);
893  }
894  static void getAsStringInternal(const Type *ty, Qualifiers qs,
895                                  std::string &out,
896                                  const PrintingPolicy &policy);
897
898  class StreamedQualTypeHelper {
899    const QualType &T;
900    const PrintingPolicy &Policy;
901    const Twine &PlaceHolder;
902  public:
903    StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
904                           const Twine &PlaceHolder)
905      : T(T), Policy(Policy), PlaceHolder(PlaceHolder) { }
906
907    friend raw_ostream &operator<<(raw_ostream &OS,
908                                   const StreamedQualTypeHelper &SQT) {
909      SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder);
910      return OS;
911    }
912  };
913
914  StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
915                                const Twine &PlaceHolder = Twine()) const {
916    return StreamedQualTypeHelper(*this, Policy, PlaceHolder);
917  }
918
919  void dump(const char *s) const;
920  void dump() const;
921
922  void Profile(llvm::FoldingSetNodeID &ID) const {
923    ID.AddPointer(getAsOpaquePtr());
924  }
925
926  /// getAddressSpace - Return the address space of this type.
927  inline unsigned getAddressSpace() const;
928
929  /// getObjCGCAttr - Returns gc attribute of this type.
930  inline Qualifiers::GC getObjCGCAttr() const;
931
932  /// isObjCGCWeak true when Type is objc's weak.
933  bool isObjCGCWeak() const {
934    return getObjCGCAttr() == Qualifiers::Weak;
935  }
936
937  /// isObjCGCStrong true when Type is objc's strong.
938  bool isObjCGCStrong() const {
939    return getObjCGCAttr() == Qualifiers::Strong;
940  }
941
942  /// getObjCLifetime - Returns lifetime attribute of this type.
943  Qualifiers::ObjCLifetime getObjCLifetime() const {
944    return getQualifiers().getObjCLifetime();
945  }
946
947  bool hasNonTrivialObjCLifetime() const {
948    return getQualifiers().hasNonTrivialObjCLifetime();
949  }
950
951  bool hasStrongOrWeakObjCLifetime() const {
952    return getQualifiers().hasStrongOrWeakObjCLifetime();
953  }
954
955  enum DestructionKind {
956    DK_none,
957    DK_cxx_destructor,
958    DK_objc_strong_lifetime,
959    DK_objc_weak_lifetime
960  };
961
962  /// isDestructedType - nonzero if objects of this type require
963  /// non-trivial work to clean up after.  Non-zero because it's
964  /// conceivable that qualifiers (objc_gc(weak)?) could make
965  /// something require destruction.
966  DestructionKind isDestructedType() const {
967    return isDestructedTypeImpl(*this);
968  }
969
970  /// \brief Determine whether expressions of the given type are forbidden
971  /// from being lvalues in C.
972  ///
973  /// The expression types that are forbidden to be lvalues are:
974  ///   - 'void', but not qualified void
975  ///   - function types
976  ///
977  /// The exact rule here is C99 6.3.2.1:
978  ///   An lvalue is an expression with an object type or an incomplete
979  ///   type other than void.
980  bool isCForbiddenLValueType() const;
981
982private:
983  // These methods are implemented in a separate translation unit;
984  // "static"-ize them to avoid creating temporary QualTypes in the
985  // caller.
986  static bool isConstant(QualType T, ASTContext& Ctx);
987  static QualType getDesugaredType(QualType T, const ASTContext &Context);
988  static SplitQualType getSplitDesugaredType(QualType T);
989  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
990  static QualType getSingleStepDesugaredTypeImpl(QualType type,
991                                                 const ASTContext &C);
992  static QualType IgnoreParens(QualType T);
993  static DestructionKind isDestructedTypeImpl(QualType type);
994};
995
996} // end clang.
997
998namespace llvm {
999/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1000/// to a specific Type class.
1001template<> struct simplify_type< ::clang::QualType> {
1002  typedef const ::clang::Type *SimpleType;
1003  static SimpleType getSimplifiedValue(::clang::QualType Val) {
1004    return Val.getTypePtr();
1005  }
1006};
1007
1008// Teach SmallPtrSet that QualType is "basically a pointer".
1009template<>
1010class PointerLikeTypeTraits<clang::QualType> {
1011public:
1012  static inline void *getAsVoidPointer(clang::QualType P) {
1013    return P.getAsOpaquePtr();
1014  }
1015  static inline clang::QualType getFromVoidPointer(void *P) {
1016    return clang::QualType::getFromOpaquePtr(P);
1017  }
1018  // Various qualifiers go in low bits.
1019  enum { NumLowBitsAvailable = 0 };
1020};
1021
1022} // end namespace llvm
1023
1024namespace clang {
1025
1026/// \brief Base class that is common to both the \c ExtQuals and \c Type
1027/// classes, which allows \c QualType to access the common fields between the
1028/// two.
1029///
1030class ExtQualsTypeCommonBase {
1031  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1032    : BaseType(baseType), CanonicalType(canon) {}
1033
1034  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
1035  /// a self-referential pointer (for \c Type).
1036  ///
1037  /// This pointer allows an efficient mapping from a QualType to its
1038  /// underlying type pointer.
1039  const Type *const BaseType;
1040
1041  /// \brief The canonical type of this type.  A QualType.
1042  QualType CanonicalType;
1043
1044  friend class QualType;
1045  friend class Type;
1046  friend class ExtQuals;
1047};
1048
1049/// ExtQuals - We can encode up to four bits in the low bits of a
1050/// type pointer, but there are many more type qualifiers that we want
1051/// to be able to apply to an arbitrary type.  Therefore we have this
1052/// struct, intended to be heap-allocated and used by QualType to
1053/// store qualifiers.
1054///
1055/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1056/// in three low bits on the QualType pointer; a fourth bit records whether
1057/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1058/// Objective-C GC attributes) are much more rare.
1059class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1060  // NOTE: changing the fast qualifiers should be straightforward as
1061  // long as you don't make 'const' non-fast.
1062  // 1. Qualifiers:
1063  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1064  //       Fast qualifiers must occupy the low-order bits.
1065  //    b) Update Qualifiers::FastWidth and FastMask.
1066  // 2. QualType:
1067  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
1068  //    b) Update remove{Volatile,Restrict}, defined near the end of
1069  //       this header.
1070  // 3. ASTContext:
1071  //    a) Update get{Volatile,Restrict}Type.
1072
1073  /// Quals - the immutable set of qualifiers applied by this
1074  /// node;  always contains extended qualifiers.
1075  Qualifiers Quals;
1076
1077  ExtQuals *this_() { return this; }
1078
1079public:
1080  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1081    : ExtQualsTypeCommonBase(baseType,
1082                             canon.isNull() ? QualType(this_(), 0) : canon),
1083      Quals(quals)
1084  {
1085    assert(Quals.hasNonFastQualifiers()
1086           && "ExtQuals created with no fast qualifiers");
1087    assert(!Quals.hasFastQualifiers()
1088           && "ExtQuals created with fast qualifiers");
1089  }
1090
1091  Qualifiers getQualifiers() const { return Quals; }
1092
1093  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1094  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1095
1096  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1097  Qualifiers::ObjCLifetime getObjCLifetime() const {
1098    return Quals.getObjCLifetime();
1099  }
1100
1101  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1102  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
1103
1104  const Type *getBaseType() const { return BaseType; }
1105
1106public:
1107  void Profile(llvm::FoldingSetNodeID &ID) const {
1108    Profile(ID, getBaseType(), Quals);
1109  }
1110  static void Profile(llvm::FoldingSetNodeID &ID,
1111                      const Type *BaseType,
1112                      Qualifiers Quals) {
1113    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1114    ID.AddPointer(BaseType);
1115    Quals.Profile(ID);
1116  }
1117};
1118
1119/// \brief The kind of C++0x ref-qualifier associated with a function type,
1120/// which determines whether a member function's "this" object can be an
1121/// lvalue, rvalue, or neither.
1122enum RefQualifierKind {
1123  /// \brief No ref-qualifier was provided.
1124  RQ_None = 0,
1125  /// \brief An lvalue ref-qualifier was provided (\c &).
1126  RQ_LValue,
1127  /// \brief An rvalue ref-qualifier was provided (\c &&).
1128  RQ_RValue
1129};
1130
1131/// Type - This is the base class of the type hierarchy.  A central concept
1132/// with types is that each type always has a canonical type.  A canonical type
1133/// is the type with any typedef names stripped out of it or the types it
1134/// references.  For example, consider:
1135///
1136///  typedef int  foo;
1137///  typedef foo* bar;
1138///    'int *'    'foo *'    'bar'
1139///
1140/// There will be a Type object created for 'int'.  Since int is canonical, its
1141/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
1142/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1143/// there is a PointerType that represents 'int*', which, like 'int', is
1144/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1145/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1146/// is also 'int*'.
1147///
1148/// Non-canonical types are useful for emitting diagnostics, without losing
1149/// information about typedefs being used.  Canonical types are useful for type
1150/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1151/// about whether something has a particular form (e.g. is a function type),
1152/// because they implicitly, recursively, strip all typedefs out of a type.
1153///
1154/// Types, once created, are immutable.
1155///
1156class Type : public ExtQualsTypeCommonBase {
1157public:
1158  enum TypeClass {
1159#define TYPE(Class, Base) Class,
1160#define LAST_TYPE(Class) TypeLast = Class,
1161#define ABSTRACT_TYPE(Class, Base)
1162#include "clang/AST/TypeNodes.def"
1163    TagFirst = Record, TagLast = Enum
1164  };
1165
1166private:
1167  Type(const Type &) LLVM_DELETED_FUNCTION;
1168  void operator=(const Type &) LLVM_DELETED_FUNCTION;
1169
1170  /// Bitfields required by the Type class.
1171  class TypeBitfields {
1172    friend class Type;
1173    template <class T> friend class TypePropertyCache;
1174
1175    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1176    unsigned TC : 8;
1177
1178    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
1179    unsigned Dependent : 1;
1180
1181    /// \brief Whether this type somehow involves a template parameter, even
1182    /// if the resolution of the type does not depend on a template parameter.
1183    unsigned InstantiationDependent : 1;
1184
1185    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1186    unsigned VariablyModified : 1;
1187
1188    /// \brief Whether this type contains an unexpanded parameter pack
1189    /// (for C++0x variadic templates).
1190    unsigned ContainsUnexpandedParameterPack : 1;
1191
1192    /// \brief True if the cache (i.e. the bitfields here starting with
1193    /// 'Cache') is valid.
1194    mutable unsigned CacheValid : 1;
1195
1196    /// \brief Linkage of this type.
1197    mutable unsigned CachedLinkage : 3;
1198
1199    /// \brief Whether this type involves and local or unnamed types.
1200    mutable unsigned CachedLocalOrUnnamed : 1;
1201
1202    /// \brief FromAST - Whether this type comes from an AST file.
1203    mutable unsigned FromAST : 1;
1204
1205    bool isCacheValid() const {
1206      return CacheValid;
1207    }
1208    Linkage getLinkage() const {
1209      assert(isCacheValid() && "getting linkage from invalid cache");
1210      return static_cast<Linkage>(CachedLinkage);
1211    }
1212    bool hasLocalOrUnnamedType() const {
1213      assert(isCacheValid() && "getting linkage from invalid cache");
1214      return CachedLocalOrUnnamed;
1215    }
1216  };
1217  enum { NumTypeBits = 19 };
1218
1219protected:
1220  // These classes allow subclasses to somewhat cleanly pack bitfields
1221  // into Type.
1222
1223  class ArrayTypeBitfields {
1224    friend class ArrayType;
1225
1226    unsigned : NumTypeBits;
1227
1228    /// IndexTypeQuals - CVR qualifiers from declarations like
1229    /// 'int X[static restrict 4]'. For function parameters only.
1230    unsigned IndexTypeQuals : 3;
1231
1232    /// SizeModifier - storage class qualifiers from declarations like
1233    /// 'int X[static restrict 4]'. For function parameters only.
1234    /// Actually an ArrayType::ArraySizeModifier.
1235    unsigned SizeModifier : 3;
1236  };
1237
1238  class BuiltinTypeBitfields {
1239    friend class BuiltinType;
1240
1241    unsigned : NumTypeBits;
1242
1243    /// The kind (BuiltinType::Kind) of builtin type this is.
1244    unsigned Kind : 8;
1245  };
1246
1247  class FunctionTypeBitfields {
1248    friend class FunctionType;
1249
1250    unsigned : NumTypeBits;
1251
1252    /// Extra information which affects how the function is called, like
1253    /// regparm and the calling convention.
1254    unsigned ExtInfo : 9;
1255
1256    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1257    /// other bitfields.
1258    /// The qualifiers are part of FunctionProtoType because...
1259    ///
1260    /// C++ 8.3.5p4: The return type, the parameter type list and the
1261    /// cv-qualifier-seq, [...], are part of the function type.
1262    unsigned TypeQuals : 3;
1263  };
1264
1265  class ObjCObjectTypeBitfields {
1266    friend class ObjCObjectType;
1267
1268    unsigned : NumTypeBits;
1269
1270    /// NumProtocols - The number of protocols stored directly on this
1271    /// object type.
1272    unsigned NumProtocols : 32 - NumTypeBits;
1273  };
1274
1275  class ReferenceTypeBitfields {
1276    friend class ReferenceType;
1277
1278    unsigned : NumTypeBits;
1279
1280    /// True if the type was originally spelled with an lvalue sigil.
1281    /// This is never true of rvalue references but can also be false
1282    /// on lvalue references because of C++0x [dcl.typedef]p9,
1283    /// as follows:
1284    ///
1285    ///   typedef int &ref;    // lvalue, spelled lvalue
1286    ///   typedef int &&rvref; // rvalue
1287    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1288    ///   ref &&a;             // lvalue, inner ref
1289    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1290    ///   rvref &&a;           // rvalue, inner ref
1291    unsigned SpelledAsLValue : 1;
1292
1293    /// True if the inner type is a reference type.  This only happens
1294    /// in non-canonical forms.
1295    unsigned InnerRef : 1;
1296  };
1297
1298  class TypeWithKeywordBitfields {
1299    friend class TypeWithKeyword;
1300
1301    unsigned : NumTypeBits;
1302
1303    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1304    unsigned Keyword : 8;
1305  };
1306
1307  class VectorTypeBitfields {
1308    friend class VectorType;
1309
1310    unsigned : NumTypeBits;
1311
1312    /// VecKind - The kind of vector, either a generic vector type or some
1313    /// target-specific vector type such as for AltiVec or Neon.
1314    unsigned VecKind : 3;
1315
1316    /// NumElements - The number of elements in the vector.
1317    unsigned NumElements : 29 - NumTypeBits;
1318
1319    enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
1320  };
1321
1322  class AttributedTypeBitfields {
1323    friend class AttributedType;
1324
1325    unsigned : NumTypeBits;
1326
1327    /// AttrKind - an AttributedType::Kind
1328    unsigned AttrKind : 32 - NumTypeBits;
1329  };
1330
1331  class AutoTypeBitfields {
1332    friend class AutoType;
1333
1334    unsigned : NumTypeBits;
1335
1336    /// Was this placeholder type spelled as 'decltype(auto)'?
1337    unsigned IsDecltypeAuto : 1;
1338  };
1339
1340  union {
1341    TypeBitfields TypeBits;
1342    ArrayTypeBitfields ArrayTypeBits;
1343    AttributedTypeBitfields AttributedTypeBits;
1344    AutoTypeBitfields AutoTypeBits;
1345    BuiltinTypeBitfields BuiltinTypeBits;
1346    FunctionTypeBitfields FunctionTypeBits;
1347    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1348    ReferenceTypeBitfields ReferenceTypeBits;
1349    TypeWithKeywordBitfields TypeWithKeywordBits;
1350    VectorTypeBitfields VectorTypeBits;
1351  };
1352
1353private:
1354  /// \brief Set whether this type comes from an AST file.
1355  void setFromAST(bool V = true) const {
1356    TypeBits.FromAST = V;
1357  }
1358
1359  template <class T> friend class TypePropertyCache;
1360
1361protected:
1362  // silence VC++ warning C4355: 'this' : used in base member initializer list
1363  Type *this_() { return this; }
1364  Type(TypeClass tc, QualType canon, bool Dependent,
1365       bool InstantiationDependent, bool VariablyModified,
1366       bool ContainsUnexpandedParameterPack)
1367    : ExtQualsTypeCommonBase(this,
1368                             canon.isNull() ? QualType(this_(), 0) : canon) {
1369    TypeBits.TC = tc;
1370    TypeBits.Dependent = Dependent;
1371    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1372    TypeBits.VariablyModified = VariablyModified;
1373    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1374    TypeBits.CacheValid = false;
1375    TypeBits.CachedLocalOrUnnamed = false;
1376    TypeBits.CachedLinkage = NoLinkage;
1377    TypeBits.FromAST = false;
1378  }
1379  friend class ASTContext;
1380
1381  void setDependent(bool D = true) {
1382    TypeBits.Dependent = D;
1383    if (D)
1384      TypeBits.InstantiationDependent = true;
1385  }
1386  void setInstantiationDependent(bool D = true) {
1387    TypeBits.InstantiationDependent = D; }
1388  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1389  }
1390  void setContainsUnexpandedParameterPack(bool PP = true) {
1391    TypeBits.ContainsUnexpandedParameterPack = PP;
1392  }
1393
1394public:
1395  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1396
1397  /// \brief Whether this type comes from an AST file.
1398  bool isFromAST() const { return TypeBits.FromAST; }
1399
1400  /// \brief Whether this type is or contains an unexpanded parameter
1401  /// pack, used to support C++0x variadic templates.
1402  ///
1403  /// A type that contains a parameter pack shall be expanded by the
1404  /// ellipsis operator at some point. For example, the typedef in the
1405  /// following example contains an unexpanded parameter pack 'T':
1406  ///
1407  /// \code
1408  /// template<typename ...T>
1409  /// struct X {
1410  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1411  /// };
1412  /// \endcode
1413  ///
1414  /// Note that this routine does not specify which
1415  bool containsUnexpandedParameterPack() const {
1416    return TypeBits.ContainsUnexpandedParameterPack;
1417  }
1418
1419  /// Determines if this type would be canonical if it had no further
1420  /// qualification.
1421  bool isCanonicalUnqualified() const {
1422    return CanonicalType == QualType(this, 0);
1423  }
1424
1425  /// Pull a single level of sugar off of this locally-unqualified type.
1426  /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1427  /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1428  QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1429
1430  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1431  /// object types, function types, and incomplete types.
1432
1433  /// isIncompleteType - Return true if this is an incomplete type.
1434  /// A type that can describe objects, but which lacks information needed to
1435  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1436  /// routine will need to determine if the size is actually required.
1437  ///
1438  /// \brief Def If non-NULL, and the type refers to some kind of declaration
1439  /// that can be completed (such as a C struct, C++ class, or Objective-C
1440  /// class), will be set to the declaration.
1441  bool isIncompleteType(NamedDecl **Def = 0) const;
1442
1443  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1444  /// type, in other words, not a function type.
1445  bool isIncompleteOrObjectType() const {
1446    return !isFunctionType();
1447  }
1448
1449  /// \brief Determine whether this type is an object type.
1450  bool isObjectType() const {
1451    // C++ [basic.types]p8:
1452    //   An object type is a (possibly cv-qualified) type that is not a
1453    //   function type, not a reference type, and not a void type.
1454    return !isReferenceType() && !isFunctionType() && !isVoidType();
1455  }
1456
1457  /// isLiteralType - Return true if this is a literal type
1458  /// (C++11 [basic.types]p10)
1459  bool isLiteralType(const ASTContext &Ctx) const;
1460
1461  /// \brief Test if this type is a standard-layout type.
1462  /// (C++0x [basic.type]p9)
1463  bool isStandardLayoutType() const;
1464
1465  /// Helper methods to distinguish type categories. All type predicates
1466  /// operate on the canonical type, ignoring typedefs and qualifiers.
1467
1468  /// isBuiltinType - returns true if the type is a builtin type.
1469  bool isBuiltinType() const;
1470
1471  /// isSpecificBuiltinType - Test for a particular builtin type.
1472  bool isSpecificBuiltinType(unsigned K) const;
1473
1474  /// isPlaceholderType - Test for a type which does not represent an
1475  /// actual type-system type but is instead used as a placeholder for
1476  /// various convenient purposes within Clang.  All such types are
1477  /// BuiltinTypes.
1478  bool isPlaceholderType() const;
1479  const BuiltinType *getAsPlaceholderType() const;
1480
1481  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1482  bool isSpecificPlaceholderType(unsigned K) const;
1483
1484  /// isNonOverloadPlaceholderType - Test for a placeholder type
1485  /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
1486  bool isNonOverloadPlaceholderType() const;
1487
1488  /// isIntegerType() does *not* include complex integers (a GCC extension).
1489  /// isComplexIntegerType() can be used to test for complex integers.
1490  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1491  bool isEnumeralType() const;
1492  bool isBooleanType() const;
1493  bool isCharType() const;
1494  bool isWideCharType() const;
1495  bool isChar16Type() const;
1496  bool isChar32Type() const;
1497  bool isAnyCharacterType() const;
1498  bool isIntegralType(ASTContext &Ctx) const;
1499
1500  /// \brief Determine whether this type is an integral or enumeration type.
1501  bool isIntegralOrEnumerationType() const;
1502  /// \brief Determine whether this type is an integral or unscoped enumeration
1503  /// type.
1504  bool isIntegralOrUnscopedEnumerationType() const;
1505
1506  /// Floating point categories.
1507  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1508  /// isComplexType() does *not* include complex integers (a GCC extension).
1509  /// isComplexIntegerType() can be used to test for complex integers.
1510  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1511  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1512  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1513  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1514  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1515  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1516  bool isVoidType() const;         // C99 6.2.5p19
1517  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1518  bool isAggregateType() const;
1519  bool isFundamentalType() const;
1520  bool isCompoundType() const;
1521
1522  // Type Predicates: Check to see if this type is structurally the specified
1523  // type, ignoring typedefs and qualifiers.
1524  bool isFunctionType() const;
1525  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1526  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1527  bool isPointerType() const;
1528  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1529  bool isBlockPointerType() const;
1530  bool isVoidPointerType() const;
1531  bool isReferenceType() const;
1532  bool isLValueReferenceType() const;
1533  bool isRValueReferenceType() const;
1534  bool isFunctionPointerType() const;
1535  bool isMemberPointerType() const;
1536  bool isMemberFunctionPointerType() const;
1537  bool isMemberDataPointerType() const;
1538  bool isArrayType() const;
1539  bool isConstantArrayType() const;
1540  bool isIncompleteArrayType() const;
1541  bool isVariableArrayType() const;
1542  bool isDependentSizedArrayType() const;
1543  bool isRecordType() const;
1544  bool isClassType() const;
1545  bool isStructureType() const;
1546  bool isInterfaceType() const;
1547  bool isStructureOrClassType() const;
1548  bool isUnionType() const;
1549  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1550  bool isVectorType() const;                    // GCC vector type.
1551  bool isExtVectorType() const;                 // Extended vector type.
1552  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1553  bool isObjCRetainableType() const;            // ObjC object or block pointer
1554  bool isObjCLifetimeType() const;              // (array of)* retainable type
1555  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1556  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1557  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1558  // for the common case.
1559  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1560  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1561  bool isObjCQualifiedIdType() const;           // id<foo>
1562  bool isObjCQualifiedClassType() const;        // Class<foo>
1563  bool isObjCObjectOrInterfaceType() const;
1564  bool isObjCIdType() const;                    // id
1565  bool isObjCClassType() const;                 // Class
1566  bool isObjCSelType() const;                 // Class
1567  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1568  bool isObjCARCBridgableType() const;
1569  bool isCARCBridgableType() const;
1570  bool isTemplateTypeParmType() const;          // C++ template type parameter
1571  bool isNullPtrType() const;                   // C++0x nullptr_t
1572  bool isAtomicType() const;                    // C11 _Atomic()
1573
1574  bool isImage1dT() const;                      // OpenCL image1d_t
1575  bool isImage1dArrayT() const;                 // OpenCL image1d_array_t
1576  bool isImage1dBufferT() const;                // OpenCL image1d_buffer_t
1577  bool isImage2dT() const;                      // OpenCL image2d_t
1578  bool isImage2dArrayT() const;                 // OpenCL image2d_array_t
1579  bool isImage3dT() const;                      // OpenCL image3d_t
1580
1581  bool isImageType() const;                     // Any OpenCL image type
1582
1583  bool isSamplerT() const;                      // OpenCL sampler_t
1584  bool isEventT() const;                        // OpenCL event_t
1585
1586  bool isOpenCLSpecificType() const;            // Any OpenCL specific type
1587
1588  /// Determines if this type, which must satisfy
1589  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1590  /// than implicitly __strong.
1591  bool isObjCARCImplicitlyUnretainedType() const;
1592
1593  /// Return the implicit lifetime for this type, which must not be dependent.
1594  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1595
1596  enum ScalarTypeKind {
1597    STK_CPointer,
1598    STK_BlockPointer,
1599    STK_ObjCObjectPointer,
1600    STK_MemberPointer,
1601    STK_Bool,
1602    STK_Integral,
1603    STK_Floating,
1604    STK_IntegralComplex,
1605    STK_FloatingComplex
1606  };
1607  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1608  ScalarTypeKind getScalarTypeKind() const;
1609
1610  /// isDependentType - Whether this type is a dependent type, meaning
1611  /// that its definition somehow depends on a template parameter
1612  /// (C++ [temp.dep.type]).
1613  bool isDependentType() const { return TypeBits.Dependent; }
1614
1615  /// \brief Determine whether this type is an instantiation-dependent type,
1616  /// meaning that the type involves a template parameter (even if the
1617  /// definition does not actually depend on the type substituted for that
1618  /// template parameter).
1619  bool isInstantiationDependentType() const {
1620    return TypeBits.InstantiationDependent;
1621  }
1622
1623  /// \brief Determine whether this type is an undeduced type, meaning that
1624  /// it somehow involves a C++11 'auto' type which has not yet been deduced.
1625  bool isUndeducedType() const;
1626
1627  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1628  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1629
1630  /// \brief Whether this type involves a variable-length array type
1631  /// with a definite size.
1632  bool hasSizedVLAType() const;
1633
1634  /// \brief Whether this type is or contains a local or unnamed type.
1635  bool hasUnnamedOrLocalType() const;
1636
1637  bool isOverloadableType() const;
1638
1639  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1640  bool isElaboratedTypeSpecifier() const;
1641
1642  bool canDecayToPointerType() const;
1643
1644  /// hasPointerRepresentation - Whether this type is represented
1645  /// natively as a pointer; this includes pointers, references, block
1646  /// pointers, and Objective-C interface, qualified id, and qualified
1647  /// interface types, as well as nullptr_t.
1648  bool hasPointerRepresentation() const;
1649
1650  /// hasObjCPointerRepresentation - Whether this type can represent
1651  /// an objective pointer type for the purpose of GC'ability
1652  bool hasObjCPointerRepresentation() const;
1653
1654  /// \brief Determine whether this type has an integer representation
1655  /// of some sort, e.g., it is an integer type or a vector.
1656  bool hasIntegerRepresentation() const;
1657
1658  /// \brief Determine whether this type has an signed integer representation
1659  /// of some sort, e.g., it is an signed integer type or a vector.
1660  bool hasSignedIntegerRepresentation() const;
1661
1662  /// \brief Determine whether this type has an unsigned integer representation
1663  /// of some sort, e.g., it is an unsigned integer type or a vector.
1664  bool hasUnsignedIntegerRepresentation() const;
1665
1666  /// \brief Determine whether this type has a floating-point representation
1667  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1668  bool hasFloatingRepresentation() const;
1669
1670  // Type Checking Functions: Check to see if this type is structurally the
1671  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1672  // the best type we can.
1673  const RecordType *getAsStructureType() const;
1674  /// NOTE: getAs*ArrayType are methods on ASTContext.
1675  const RecordType *getAsUnionType() const;
1676  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1677  // The following is a convenience method that returns an ObjCObjectPointerType
1678  // for object declared using an interface.
1679  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1680  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1681  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1682  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1683
1684  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1685  /// because the type is a RecordType or because it is the injected-class-name
1686  /// type of a class template or class template partial specialization.
1687  CXXRecordDecl *getAsCXXRecordDecl() const;
1688
1689  /// If this is a pointer or reference to a RecordType, return the
1690  /// CXXRecordDecl that that type refers to.
1691  ///
1692  /// If this is not a pointer or reference, or the type being pointed to does
1693  /// not refer to a CXXRecordDecl, returns NULL.
1694  const CXXRecordDecl *getPointeeCXXRecordDecl() const;
1695
1696  /// \brief Get the AutoType whose type will be deduced for a variable with
1697  /// an initializer of this type. This looks through declarators like pointer
1698  /// types, but not through decltype or typedefs.
1699  AutoType *getContainedAutoType() const;
1700
1701  /// Member-template getAs<specific type>'.  Look through sugar for
1702  /// an instance of \<specific type>.   This scheme will eventually
1703  /// replace the specific getAsXXXX methods above.
1704  ///
1705  /// There are some specializations of this member template listed
1706  /// immediately following this class.
1707  template <typename T> const T *getAs() const;
1708
1709  /// A variant of getAs<> for array types which silently discards
1710  /// qualifiers from the outermost type.
1711  const ArrayType *getAsArrayTypeUnsafe() const;
1712
1713  /// Member-template castAs<specific type>.  Look through sugar for
1714  /// the underlying instance of \<specific type>.
1715  ///
1716  /// This method has the same relationship to getAs<T> as cast<T> has
1717  /// to dyn_cast<T>; which is to say, the underlying type *must*
1718  /// have the intended type, and this method will never return null.
1719  template <typename T> const T *castAs() const;
1720
1721  /// A variant of castAs<> for array type which silently discards
1722  /// qualifiers from the outermost type.
1723  const ArrayType *castAsArrayTypeUnsafe() const;
1724
1725  /// getBaseElementTypeUnsafe - Get the base element type of this
1726  /// type, potentially discarding type qualifiers.  This method
1727  /// should never be used when type qualifiers are meaningful.
1728  const Type *getBaseElementTypeUnsafe() const;
1729
1730  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1731  /// element type of the array, potentially with type qualifiers missing.
1732  /// This method should never be used when type qualifiers are meaningful.
1733  const Type *getArrayElementTypeNoTypeQual() const;
1734
1735  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1736  /// pointer, this returns the respective pointee.
1737  QualType getPointeeType() const;
1738
1739  /// getUnqualifiedDesugaredType() - Return the specified type with
1740  /// any "sugar" removed from the type, removing any typedefs,
1741  /// typeofs, etc., as well as any qualifiers.
1742  const Type *getUnqualifiedDesugaredType() const;
1743
1744  /// More type predicates useful for type checking/promotion
1745  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1746
1747  /// isSignedIntegerType - Return true if this is an integer type that is
1748  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1749  /// or an enum decl which has a signed representation.
1750  bool isSignedIntegerType() const;
1751
1752  /// isUnsignedIntegerType - Return true if this is an integer type that is
1753  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1754  /// or an enum decl which has an unsigned representation.
1755  bool isUnsignedIntegerType() const;
1756
1757  /// Determines whether this is an integer type that is signed or an
1758  /// enumeration types whose underlying type is a signed integer type.
1759  bool isSignedIntegerOrEnumerationType() const;
1760
1761  /// Determines whether this is an integer type that is unsigned or an
1762  /// enumeration types whose underlying type is a unsigned integer type.
1763  bool isUnsignedIntegerOrEnumerationType() const;
1764
1765  /// isConstantSizeType - Return true if this is not a variable sized type,
1766  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1767  /// incomplete types.
1768  bool isConstantSizeType() const;
1769
1770  /// isSpecifierType - Returns true if this type can be represented by some
1771  /// set of type specifiers.
1772  bool isSpecifierType() const;
1773
1774  /// \brief Determine the linkage of this type.
1775  Linkage getLinkage() const;
1776
1777  /// \brief Determine the visibility of this type.
1778  Visibility getVisibility() const {
1779    return getLinkageAndVisibility().getVisibility();
1780  }
1781
1782  /// \brief Return true if the visibility was explicitly set is the code.
1783  bool isVisibilityExplicit() const {
1784    return getLinkageAndVisibility().isVisibilityExplicit();
1785  }
1786
1787  /// \brief Determine the linkage and visibility of this type.
1788  LinkageInfo getLinkageAndVisibility() const;
1789
1790  /// \brief True if the computed linkage is valid. Used for consistency
1791  /// checking. Should always return true.
1792  bool isLinkageValid() const;
1793
1794  const char *getTypeClassName() const;
1795
1796  QualType getCanonicalTypeInternal() const {
1797    return CanonicalType;
1798  }
1799  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1800  LLVM_ATTRIBUTE_USED void dump() const;
1801
1802  friend class ASTReader;
1803  friend class ASTWriter;
1804};
1805
1806/// \brief This will check for a TypedefType by removing any existing sugar
1807/// until it reaches a TypedefType or a non-sugared type.
1808template <> const TypedefType *Type::getAs() const;
1809
1810/// \brief This will check for a TemplateSpecializationType by removing any
1811/// existing sugar until it reaches a TemplateSpecializationType or a
1812/// non-sugared type.
1813template <> const TemplateSpecializationType *Type::getAs() const;
1814
1815// We can do canonical leaf types faster, because we don't have to
1816// worry about preserving child type decoration.
1817#define TYPE(Class, Base)
1818#define LEAF_TYPE(Class) \
1819template <> inline const Class##Type *Type::getAs() const { \
1820  return dyn_cast<Class##Type>(CanonicalType); \
1821} \
1822template <> inline const Class##Type *Type::castAs() const { \
1823  return cast<Class##Type>(CanonicalType); \
1824}
1825#include "clang/AST/TypeNodes.def"
1826
1827
1828/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1829/// types are always canonical and have a literal name field.
1830class BuiltinType : public Type {
1831public:
1832  enum Kind {
1833#define BUILTIN_TYPE(Id, SingletonId) Id,
1834#define LAST_BUILTIN_TYPE(Id) LastKind = Id
1835#include "clang/AST/BuiltinTypes.def"
1836  };
1837
1838public:
1839  BuiltinType(Kind K)
1840    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1841           /*InstantiationDependent=*/(K == Dependent),
1842           /*VariablyModified=*/false,
1843           /*Unexpanded paramter pack=*/false) {
1844    BuiltinTypeBits.Kind = K;
1845  }
1846
1847  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1848  StringRef getName(const PrintingPolicy &Policy) const;
1849  const char *getNameAsCString(const PrintingPolicy &Policy) const {
1850    // The StringRef is null-terminated.
1851    StringRef str = getName(Policy);
1852    assert(!str.empty() && str.data()[str.size()] == '\0');
1853    return str.data();
1854  }
1855
1856  bool isSugared() const { return false; }
1857  QualType desugar() const { return QualType(this, 0); }
1858
1859  bool isInteger() const {
1860    return getKind() >= Bool && getKind() <= Int128;
1861  }
1862
1863  bool isSignedInteger() const {
1864    return getKind() >= Char_S && getKind() <= Int128;
1865  }
1866
1867  bool isUnsignedInteger() const {
1868    return getKind() >= Bool && getKind() <= UInt128;
1869  }
1870
1871  bool isFloatingPoint() const {
1872    return getKind() >= Half && getKind() <= LongDouble;
1873  }
1874
1875  /// Determines whether the given kind corresponds to a placeholder type.
1876  static bool isPlaceholderTypeKind(Kind K) {
1877    return K >= Overload;
1878  }
1879
1880  /// Determines whether this type is a placeholder type, i.e. a type
1881  /// which cannot appear in arbitrary positions in a fully-formed
1882  /// expression.
1883  bool isPlaceholderType() const {
1884    return isPlaceholderTypeKind(getKind());
1885  }
1886
1887  /// Determines whether this type is a placeholder type other than
1888  /// Overload.  Most placeholder types require only syntactic
1889  /// information about their context in order to be resolved (e.g.
1890  /// whether it is a call expression), which means they can (and
1891  /// should) be resolved in an earlier "phase" of analysis.
1892  /// Overload expressions sometimes pick up further information
1893  /// from their context, like whether the context expects a
1894  /// specific function-pointer type, and so frequently need
1895  /// special treatment.
1896  bool isNonOverloadPlaceholderType() const {
1897    return getKind() > Overload;
1898  }
1899
1900  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1901};
1902
1903/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1904/// types (_Complex float etc) as well as the GCC integer complex extensions.
1905///
1906class ComplexType : public Type, public llvm::FoldingSetNode {
1907  QualType ElementType;
1908  ComplexType(QualType Element, QualType CanonicalPtr) :
1909    Type(Complex, CanonicalPtr, Element->isDependentType(),
1910         Element->isInstantiationDependentType(),
1911         Element->isVariablyModifiedType(),
1912         Element->containsUnexpandedParameterPack()),
1913    ElementType(Element) {
1914  }
1915  friend class ASTContext;  // ASTContext creates these.
1916
1917public:
1918  QualType getElementType() const { return ElementType; }
1919
1920  bool isSugared() const { return false; }
1921  QualType desugar() const { return QualType(this, 0); }
1922
1923  void Profile(llvm::FoldingSetNodeID &ID) {
1924    Profile(ID, getElementType());
1925  }
1926  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1927    ID.AddPointer(Element.getAsOpaquePtr());
1928  }
1929
1930  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1931};
1932
1933/// ParenType - Sugar for parentheses used when specifying types.
1934///
1935class ParenType : public Type, public llvm::FoldingSetNode {
1936  QualType Inner;
1937
1938  ParenType(QualType InnerType, QualType CanonType) :
1939    Type(Paren, CanonType, InnerType->isDependentType(),
1940         InnerType->isInstantiationDependentType(),
1941         InnerType->isVariablyModifiedType(),
1942         InnerType->containsUnexpandedParameterPack()),
1943    Inner(InnerType) {
1944  }
1945  friend class ASTContext;  // ASTContext creates these.
1946
1947public:
1948
1949  QualType getInnerType() const { return Inner; }
1950
1951  bool isSugared() const { return true; }
1952  QualType desugar() const { return getInnerType(); }
1953
1954  void Profile(llvm::FoldingSetNodeID &ID) {
1955    Profile(ID, getInnerType());
1956  }
1957  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1958    Inner.Profile(ID);
1959  }
1960
1961  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1962};
1963
1964/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1965///
1966class PointerType : public Type, public llvm::FoldingSetNode {
1967  QualType PointeeType;
1968
1969  PointerType(QualType Pointee, QualType CanonicalPtr) :
1970    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1971         Pointee->isInstantiationDependentType(),
1972         Pointee->isVariablyModifiedType(),
1973         Pointee->containsUnexpandedParameterPack()),
1974    PointeeType(Pointee) {
1975  }
1976  friend class ASTContext;  // ASTContext creates these.
1977
1978public:
1979
1980  QualType getPointeeType() const { return PointeeType; }
1981
1982  bool isSugared() const { return false; }
1983  QualType desugar() const { return QualType(this, 0); }
1984
1985  void Profile(llvm::FoldingSetNodeID &ID) {
1986    Profile(ID, getPointeeType());
1987  }
1988  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1989    ID.AddPointer(Pointee.getAsOpaquePtr());
1990  }
1991
1992  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1993};
1994
1995/// \brief Represents a pointer type decayed from an array or function type.
1996class DecayedType : public Type, public llvm::FoldingSetNode {
1997  QualType OriginalType;
1998  QualType DecayedPointer;
1999
2000  DecayedType(QualType OriginalType, QualType DecayedPointer,
2001              QualType CanonicalPtr)
2002      : Type(Decayed, CanonicalPtr, OriginalType->isDependentType(),
2003             OriginalType->isInstantiationDependentType(),
2004             OriginalType->isVariablyModifiedType(),
2005             OriginalType->containsUnexpandedParameterPack()),
2006        OriginalType(OriginalType), DecayedPointer(DecayedPointer) {
2007    assert(isa<PointerType>(DecayedPointer));
2008  }
2009
2010  friend class ASTContext;  // ASTContext creates these.
2011
2012public:
2013  QualType getDecayedType() const { return DecayedPointer; }
2014  QualType getOriginalType() const { return OriginalType; }
2015
2016  QualType getPointeeType() const {
2017    return cast<PointerType>(DecayedPointer)->getPointeeType();
2018  }
2019
2020  bool isSugared() const { return true; }
2021  QualType desugar() const { return DecayedPointer; }
2022
2023  void Profile(llvm::FoldingSetNodeID &ID) {
2024    Profile(ID, OriginalType);
2025  }
2026  static void Profile(llvm::FoldingSetNodeID &ID, QualType OriginalType) {
2027    ID.AddPointer(OriginalType.getAsOpaquePtr());
2028  }
2029
2030  static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2031};
2032
2033/// BlockPointerType - pointer to a block type.
2034/// This type is to represent types syntactically represented as
2035/// "void (^)(int)", etc. Pointee is required to always be a function type.
2036///
2037class BlockPointerType : public Type, public llvm::FoldingSetNode {
2038  QualType PointeeType;  // Block is some kind of pointer type
2039  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
2040    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2041         Pointee->isInstantiationDependentType(),
2042         Pointee->isVariablyModifiedType(),
2043         Pointee->containsUnexpandedParameterPack()),
2044    PointeeType(Pointee) {
2045  }
2046  friend class ASTContext;  // ASTContext creates these.
2047
2048public:
2049
2050  // Get the pointee type. Pointee is required to always be a function type.
2051  QualType getPointeeType() const { return PointeeType; }
2052
2053  bool isSugared() const { return false; }
2054  QualType desugar() const { return QualType(this, 0); }
2055
2056  void Profile(llvm::FoldingSetNodeID &ID) {
2057      Profile(ID, getPointeeType());
2058  }
2059  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2060      ID.AddPointer(Pointee.getAsOpaquePtr());
2061  }
2062
2063  static bool classof(const Type *T) {
2064    return T->getTypeClass() == BlockPointer;
2065  }
2066};
2067
2068/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
2069///
2070class ReferenceType : public Type, public llvm::FoldingSetNode {
2071  QualType PointeeType;
2072
2073protected:
2074  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2075                bool SpelledAsLValue) :
2076    Type(tc, CanonicalRef, Referencee->isDependentType(),
2077         Referencee->isInstantiationDependentType(),
2078         Referencee->isVariablyModifiedType(),
2079         Referencee->containsUnexpandedParameterPack()),
2080    PointeeType(Referencee)
2081  {
2082    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2083    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2084  }
2085
2086public:
2087  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2088  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2089
2090  QualType getPointeeTypeAsWritten() const { return PointeeType; }
2091  QualType getPointeeType() const {
2092    // FIXME: this might strip inner qualifiers; okay?
2093    const ReferenceType *T = this;
2094    while (T->isInnerRef())
2095      T = T->PointeeType->castAs<ReferenceType>();
2096    return T->PointeeType;
2097  }
2098
2099  void Profile(llvm::FoldingSetNodeID &ID) {
2100    Profile(ID, PointeeType, isSpelledAsLValue());
2101  }
2102  static void Profile(llvm::FoldingSetNodeID &ID,
2103                      QualType Referencee,
2104                      bool SpelledAsLValue) {
2105    ID.AddPointer(Referencee.getAsOpaquePtr());
2106    ID.AddBoolean(SpelledAsLValue);
2107  }
2108
2109  static bool classof(const Type *T) {
2110    return T->getTypeClass() == LValueReference ||
2111           T->getTypeClass() == RValueReference;
2112  }
2113};
2114
2115/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
2116///
2117class LValueReferenceType : public ReferenceType {
2118  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2119                      bool SpelledAsLValue) :
2120    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
2121  {}
2122  friend class ASTContext; // ASTContext creates these
2123public:
2124  bool isSugared() const { return false; }
2125  QualType desugar() const { return QualType(this, 0); }
2126
2127  static bool classof(const Type *T) {
2128    return T->getTypeClass() == LValueReference;
2129  }
2130};
2131
2132/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
2133///
2134class RValueReferenceType : public ReferenceType {
2135  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
2136    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
2137  }
2138  friend class ASTContext; // ASTContext creates these
2139public:
2140  bool isSugared() const { return false; }
2141  QualType desugar() const { return QualType(this, 0); }
2142
2143  static bool classof(const Type *T) {
2144    return T->getTypeClass() == RValueReference;
2145  }
2146};
2147
2148/// MemberPointerType - C++ 8.3.3 - Pointers to members
2149///
2150class MemberPointerType : public Type, public llvm::FoldingSetNode {
2151  QualType PointeeType;
2152  /// The class of which the pointee is a member. Must ultimately be a
2153  /// RecordType, but could be a typedef or a template parameter too.
2154  const Type *Class;
2155
2156  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
2157    Type(MemberPointer, CanonicalPtr,
2158         Cls->isDependentType() || Pointee->isDependentType(),
2159         (Cls->isInstantiationDependentType() ||
2160          Pointee->isInstantiationDependentType()),
2161         Pointee->isVariablyModifiedType(),
2162         (Cls->containsUnexpandedParameterPack() ||
2163          Pointee->containsUnexpandedParameterPack())),
2164    PointeeType(Pointee), Class(Cls) {
2165  }
2166  friend class ASTContext; // ASTContext creates these.
2167
2168public:
2169  QualType getPointeeType() const { return PointeeType; }
2170
2171  /// Returns true if the member type (i.e. the pointee type) is a
2172  /// function type rather than a data-member type.
2173  bool isMemberFunctionPointer() const {
2174    return PointeeType->isFunctionProtoType();
2175  }
2176
2177  /// Returns true if the member type (i.e. the pointee type) is a
2178  /// data type rather than a function type.
2179  bool isMemberDataPointer() const {
2180    return !PointeeType->isFunctionProtoType();
2181  }
2182
2183  const Type *getClass() const { return Class; }
2184
2185  bool isSugared() const { return false; }
2186  QualType desugar() const { return QualType(this, 0); }
2187
2188  void Profile(llvm::FoldingSetNodeID &ID) {
2189    Profile(ID, getPointeeType(), getClass());
2190  }
2191  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2192                      const Type *Class) {
2193    ID.AddPointer(Pointee.getAsOpaquePtr());
2194    ID.AddPointer(Class);
2195  }
2196
2197  static bool classof(const Type *T) {
2198    return T->getTypeClass() == MemberPointer;
2199  }
2200};
2201
2202/// ArrayType - C99 6.7.5.2 - Array Declarators.
2203///
2204class ArrayType : public Type, public llvm::FoldingSetNode {
2205public:
2206  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
2207  /// an array with a static size (e.g. int X[static 4]), or an array
2208  /// with a star size (e.g. int X[*]).
2209  /// 'static' is only allowed on function parameters.
2210  enum ArraySizeModifier {
2211    Normal, Static, Star
2212  };
2213private:
2214  /// ElementType - The element type of the array.
2215  QualType ElementType;
2216
2217protected:
2218  // C++ [temp.dep.type]p1:
2219  //   A type is dependent if it is...
2220  //     - an array type constructed from any dependent type or whose
2221  //       size is specified by a constant expression that is
2222  //       value-dependent,
2223  ArrayType(TypeClass tc, QualType et, QualType can,
2224            ArraySizeModifier sm, unsigned tq,
2225            bool ContainsUnexpandedParameterPack)
2226    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2227           et->isInstantiationDependentType() || tc == DependentSizedArray,
2228           (tc == VariableArray || et->isVariablyModifiedType()),
2229           ContainsUnexpandedParameterPack),
2230      ElementType(et) {
2231    ArrayTypeBits.IndexTypeQuals = tq;
2232    ArrayTypeBits.SizeModifier = sm;
2233  }
2234
2235  friend class ASTContext;  // ASTContext creates these.
2236
2237public:
2238  QualType getElementType() const { return ElementType; }
2239  ArraySizeModifier getSizeModifier() const {
2240    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2241  }
2242  Qualifiers getIndexTypeQualifiers() const {
2243    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2244  }
2245  unsigned getIndexTypeCVRQualifiers() const {
2246    return ArrayTypeBits.IndexTypeQuals;
2247  }
2248
2249  static bool classof(const Type *T) {
2250    return T->getTypeClass() == ConstantArray ||
2251           T->getTypeClass() == VariableArray ||
2252           T->getTypeClass() == IncompleteArray ||
2253           T->getTypeClass() == DependentSizedArray;
2254  }
2255};
2256
2257/// ConstantArrayType - This class represents the canonical version of
2258/// C arrays with a specified constant size.  For example, the canonical
2259/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
2260/// type is 'int' and the size is 404.
2261class ConstantArrayType : public ArrayType {
2262  llvm::APInt Size; // Allows us to unique the type.
2263
2264  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2265                    ArraySizeModifier sm, unsigned tq)
2266    : ArrayType(ConstantArray, et, can, sm, tq,
2267                et->containsUnexpandedParameterPack()),
2268      Size(size) {}
2269protected:
2270  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2271                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2272    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2273      Size(size) {}
2274  friend class ASTContext;  // ASTContext creates these.
2275public:
2276  const llvm::APInt &getSize() const { return Size; }
2277  bool isSugared() const { return false; }
2278  QualType desugar() const { return QualType(this, 0); }
2279
2280
2281  /// \brief Determine the number of bits required to address a member of
2282  // an array with the given element type and number of elements.
2283  static unsigned getNumAddressingBits(ASTContext &Context,
2284                                       QualType ElementType,
2285                                       const llvm::APInt &NumElements);
2286
2287  /// \brief Determine the maximum number of active bits that an array's size
2288  /// can require, which limits the maximum size of the array.
2289  static unsigned getMaxSizeBits(ASTContext &Context);
2290
2291  void Profile(llvm::FoldingSetNodeID &ID) {
2292    Profile(ID, getElementType(), getSize(),
2293            getSizeModifier(), getIndexTypeCVRQualifiers());
2294  }
2295  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2296                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2297                      unsigned TypeQuals) {
2298    ID.AddPointer(ET.getAsOpaquePtr());
2299    ID.AddInteger(ArraySize.getZExtValue());
2300    ID.AddInteger(SizeMod);
2301    ID.AddInteger(TypeQuals);
2302  }
2303  static bool classof(const Type *T) {
2304    return T->getTypeClass() == ConstantArray;
2305  }
2306};
2307
2308/// IncompleteArrayType - This class represents C arrays with an unspecified
2309/// size.  For example 'int A[]' has an IncompleteArrayType where the element
2310/// type is 'int' and the size is unspecified.
2311class IncompleteArrayType : public ArrayType {
2312
2313  IncompleteArrayType(QualType et, QualType can,
2314                      ArraySizeModifier sm, unsigned tq)
2315    : ArrayType(IncompleteArray, et, can, sm, tq,
2316                et->containsUnexpandedParameterPack()) {}
2317  friend class ASTContext;  // ASTContext creates these.
2318public:
2319  bool isSugared() const { return false; }
2320  QualType desugar() const { return QualType(this, 0); }
2321
2322  static bool classof(const Type *T) {
2323    return T->getTypeClass() == IncompleteArray;
2324  }
2325
2326  friend class StmtIteratorBase;
2327
2328  void Profile(llvm::FoldingSetNodeID &ID) {
2329    Profile(ID, getElementType(), getSizeModifier(),
2330            getIndexTypeCVRQualifiers());
2331  }
2332
2333  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2334                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2335    ID.AddPointer(ET.getAsOpaquePtr());
2336    ID.AddInteger(SizeMod);
2337    ID.AddInteger(TypeQuals);
2338  }
2339};
2340
2341/// VariableArrayType - This class represents C arrays with a specified size
2342/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
2343/// Since the size expression is an arbitrary expression, we store it as such.
2344///
2345/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2346/// should not be: two lexically equivalent variable array types could mean
2347/// different things, for example, these variables do not have the same type
2348/// dynamically:
2349///
2350/// void foo(int x) {
2351///   int Y[x];
2352///   ++x;
2353///   int Z[x];
2354/// }
2355///
2356class VariableArrayType : public ArrayType {
2357  /// SizeExpr - An assignment expression. VLA's are only permitted within
2358  /// a function block.
2359  Stmt *SizeExpr;
2360  /// Brackets - The left and right array brackets.
2361  SourceRange Brackets;
2362
2363  VariableArrayType(QualType et, QualType can, Expr *e,
2364                    ArraySizeModifier sm, unsigned tq,
2365                    SourceRange brackets)
2366    : ArrayType(VariableArray, et, can, sm, tq,
2367                et->containsUnexpandedParameterPack()),
2368      SizeExpr((Stmt*) e), Brackets(brackets) {}
2369  friend class ASTContext;  // ASTContext creates these.
2370
2371public:
2372  Expr *getSizeExpr() const {
2373    // We use C-style casts instead of cast<> here because we do not wish
2374    // to have a dependency of Type.h on Stmt.h/Expr.h.
2375    return (Expr*) SizeExpr;
2376  }
2377  SourceRange getBracketsRange() const { return Brackets; }
2378  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2379  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2380
2381  bool isSugared() const { return false; }
2382  QualType desugar() const { return QualType(this, 0); }
2383
2384  static bool classof(const Type *T) {
2385    return T->getTypeClass() == VariableArray;
2386  }
2387
2388  friend class StmtIteratorBase;
2389
2390  void Profile(llvm::FoldingSetNodeID &ID) {
2391    llvm_unreachable("Cannot unique VariableArrayTypes.");
2392  }
2393};
2394
2395/// DependentSizedArrayType - This type represents an array type in
2396/// C++ whose size is a value-dependent expression. For example:
2397///
2398/// \code
2399/// template<typename T, int Size>
2400/// class array {
2401///   T data[Size];
2402/// };
2403/// \endcode
2404///
2405/// For these types, we won't actually know what the array bound is
2406/// until template instantiation occurs, at which point this will
2407/// become either a ConstantArrayType or a VariableArrayType.
2408class DependentSizedArrayType : public ArrayType {
2409  const ASTContext &Context;
2410
2411  /// \brief An assignment expression that will instantiate to the
2412  /// size of the array.
2413  ///
2414  /// The expression itself might be NULL, in which case the array
2415  /// type will have its size deduced from an initializer.
2416  Stmt *SizeExpr;
2417
2418  /// Brackets - The left and right array brackets.
2419  SourceRange Brackets;
2420
2421  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2422                          Expr *e, ArraySizeModifier sm, unsigned tq,
2423                          SourceRange brackets);
2424
2425  friend class ASTContext;  // ASTContext creates these.
2426
2427public:
2428  Expr *getSizeExpr() const {
2429    // We use C-style casts instead of cast<> here because we do not wish
2430    // to have a dependency of Type.h on Stmt.h/Expr.h.
2431    return (Expr*) SizeExpr;
2432  }
2433  SourceRange getBracketsRange() const { return Brackets; }
2434  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2435  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2436
2437  bool isSugared() const { return false; }
2438  QualType desugar() const { return QualType(this, 0); }
2439
2440  static bool classof(const Type *T) {
2441    return T->getTypeClass() == DependentSizedArray;
2442  }
2443
2444  friend class StmtIteratorBase;
2445
2446
2447  void Profile(llvm::FoldingSetNodeID &ID) {
2448    Profile(ID, Context, getElementType(),
2449            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2450  }
2451
2452  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2453                      QualType ET, ArraySizeModifier SizeMod,
2454                      unsigned TypeQuals, Expr *E);
2455};
2456
2457/// DependentSizedExtVectorType - This type represent an extended vector type
2458/// where either the type or size is dependent. For example:
2459/// @code
2460/// template<typename T, int Size>
2461/// class vector {
2462///   typedef T __attribute__((ext_vector_type(Size))) type;
2463/// }
2464/// @endcode
2465class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2466  const ASTContext &Context;
2467  Expr *SizeExpr;
2468  /// ElementType - The element type of the array.
2469  QualType ElementType;
2470  SourceLocation loc;
2471
2472  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2473                              QualType can, Expr *SizeExpr, SourceLocation loc);
2474
2475  friend class ASTContext;
2476
2477public:
2478  Expr *getSizeExpr() const { return SizeExpr; }
2479  QualType getElementType() const { return ElementType; }
2480  SourceLocation getAttributeLoc() const { return loc; }
2481
2482  bool isSugared() const { return false; }
2483  QualType desugar() const { return QualType(this, 0); }
2484
2485  static bool classof(const Type *T) {
2486    return T->getTypeClass() == DependentSizedExtVector;
2487  }
2488
2489  void Profile(llvm::FoldingSetNodeID &ID) {
2490    Profile(ID, Context, getElementType(), getSizeExpr());
2491  }
2492
2493  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2494                      QualType ElementType, Expr *SizeExpr);
2495};
2496
2497
2498/// VectorType - GCC generic vector type. This type is created using
2499/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2500/// bytes; or from an Altivec __vector or vector declaration.
2501/// Since the constructor takes the number of vector elements, the
2502/// client is responsible for converting the size into the number of elements.
2503class VectorType : public Type, public llvm::FoldingSetNode {
2504public:
2505  enum VectorKind {
2506    GenericVector,  // not a target-specific vector type
2507    AltiVecVector,  // is AltiVec vector
2508    AltiVecPixel,   // is AltiVec 'vector Pixel'
2509    AltiVecBool,    // is AltiVec 'vector bool ...'
2510    NeonVector,     // is ARM Neon vector
2511    NeonPolyVector  // is ARM Neon polynomial vector
2512  };
2513protected:
2514  /// ElementType - The element type of the vector.
2515  QualType ElementType;
2516
2517  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2518             VectorKind vecKind);
2519
2520  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2521             QualType canonType, VectorKind vecKind);
2522
2523  friend class ASTContext;  // ASTContext creates these.
2524
2525public:
2526
2527  QualType getElementType() const { return ElementType; }
2528  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2529  static bool isVectorSizeTooLarge(unsigned NumElements) {
2530    return NumElements > VectorTypeBitfields::MaxNumElements;
2531  }
2532
2533  bool isSugared() const { return false; }
2534  QualType desugar() const { return QualType(this, 0); }
2535
2536  VectorKind getVectorKind() const {
2537    return VectorKind(VectorTypeBits.VecKind);
2538  }
2539
2540  void Profile(llvm::FoldingSetNodeID &ID) {
2541    Profile(ID, getElementType(), getNumElements(),
2542            getTypeClass(), getVectorKind());
2543  }
2544  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2545                      unsigned NumElements, TypeClass TypeClass,
2546                      VectorKind VecKind) {
2547    ID.AddPointer(ElementType.getAsOpaquePtr());
2548    ID.AddInteger(NumElements);
2549    ID.AddInteger(TypeClass);
2550    ID.AddInteger(VecKind);
2551  }
2552
2553  static bool classof(const Type *T) {
2554    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2555  }
2556};
2557
2558/// ExtVectorType - Extended vector type. This type is created using
2559/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2560/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2561/// class enables syntactic extensions, like Vector Components for accessing
2562/// points, colors, and textures (modeled after OpenGL Shading Language).
2563class ExtVectorType : public VectorType {
2564  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2565    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2566  friend class ASTContext;  // ASTContext creates these.
2567public:
2568  static int getPointAccessorIdx(char c) {
2569    switch (c) {
2570    default: return -1;
2571    case 'x': return 0;
2572    case 'y': return 1;
2573    case 'z': return 2;
2574    case 'w': return 3;
2575    }
2576  }
2577  static int getNumericAccessorIdx(char c) {
2578    switch (c) {
2579      default: return -1;
2580      case '0': return 0;
2581      case '1': return 1;
2582      case '2': return 2;
2583      case '3': return 3;
2584      case '4': return 4;
2585      case '5': return 5;
2586      case '6': return 6;
2587      case '7': return 7;
2588      case '8': return 8;
2589      case '9': return 9;
2590      case 'A':
2591      case 'a': return 10;
2592      case 'B':
2593      case 'b': return 11;
2594      case 'C':
2595      case 'c': return 12;
2596      case 'D':
2597      case 'd': return 13;
2598      case 'E':
2599      case 'e': return 14;
2600      case 'F':
2601      case 'f': return 15;
2602    }
2603  }
2604
2605  static int getAccessorIdx(char c) {
2606    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2607    return getNumericAccessorIdx(c);
2608  }
2609
2610  bool isAccessorWithinNumElements(char c) const {
2611    if (int idx = getAccessorIdx(c)+1)
2612      return unsigned(idx-1) < getNumElements();
2613    return false;
2614  }
2615  bool isSugared() const { return false; }
2616  QualType desugar() const { return QualType(this, 0); }
2617
2618  static bool classof(const Type *T) {
2619    return T->getTypeClass() == ExtVector;
2620  }
2621};
2622
2623/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2624/// class of FunctionNoProtoType and FunctionProtoType.
2625///
2626class FunctionType : public Type {
2627  // The type returned by the function.
2628  QualType ResultType;
2629
2630 public:
2631  /// ExtInfo - A class which abstracts out some details necessary for
2632  /// making a call.
2633  ///
2634  /// It is not actually used directly for storing this information in
2635  /// a FunctionType, although FunctionType does currently use the
2636  /// same bit-pattern.
2637  ///
2638  // If you add a field (say Foo), other than the obvious places (both,
2639  // constructors, compile failures), what you need to update is
2640  // * Operator==
2641  // * getFoo
2642  // * withFoo
2643  // * functionType. Add Foo, getFoo.
2644  // * ASTContext::getFooType
2645  // * ASTContext::mergeFunctionTypes
2646  // * FunctionNoProtoType::Profile
2647  // * FunctionProtoType::Profile
2648  // * TypePrinter::PrintFunctionProto
2649  // * AST read and write
2650  // * Codegen
2651  class ExtInfo {
2652    // Feel free to rearrange or add bits, but if you go over 9,
2653    // you'll need to adjust both the Bits field below and
2654    // Type::FunctionTypeBitfields.
2655
2656    //   |  CC  |noreturn|produces|regparm|
2657    //   |0 .. 3|   4    |    5   | 6 .. 8|
2658    //
2659    // regparm is either 0 (no regparm attribute) or the regparm value+1.
2660    enum { CallConvMask = 0xF };
2661    enum { NoReturnMask = 0x10 };
2662    enum { ProducesResultMask = 0x20 };
2663    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2664           RegParmOffset = 6 }; // Assumed to be the last field
2665
2666    uint16_t Bits;
2667
2668    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2669
2670    friend class FunctionType;
2671
2672   public:
2673    // Constructor with no defaults. Use this when you know that you
2674    // have all the elements (when reading an AST file for example).
2675    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2676            bool producesResult) {
2677      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2678      Bits = ((unsigned) cc) |
2679             (noReturn ? NoReturnMask : 0) |
2680             (producesResult ? ProducesResultMask : 0) |
2681             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2682    }
2683
2684    // Constructor with all defaults. Use when for example creating a
2685    // function know to use defaults.
2686    ExtInfo() : Bits(0) {}
2687
2688    bool getNoReturn() const { return Bits & NoReturnMask; }
2689    bool getProducesResult() const { return Bits & ProducesResultMask; }
2690    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2691    unsigned getRegParm() const {
2692      unsigned RegParm = Bits >> RegParmOffset;
2693      if (RegParm > 0)
2694        --RegParm;
2695      return RegParm;
2696    }
2697    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2698
2699    bool operator==(ExtInfo Other) const {
2700      return Bits == Other.Bits;
2701    }
2702    bool operator!=(ExtInfo Other) const {
2703      return Bits != Other.Bits;
2704    }
2705
2706    // Note that we don't have setters. That is by design, use
2707    // the following with methods instead of mutating these objects.
2708
2709    ExtInfo withNoReturn(bool noReturn) const {
2710      if (noReturn)
2711        return ExtInfo(Bits | NoReturnMask);
2712      else
2713        return ExtInfo(Bits & ~NoReturnMask);
2714    }
2715
2716    ExtInfo withProducesResult(bool producesResult) const {
2717      if (producesResult)
2718        return ExtInfo(Bits | ProducesResultMask);
2719      else
2720        return ExtInfo(Bits & ~ProducesResultMask);
2721    }
2722
2723    ExtInfo withRegParm(unsigned RegParm) const {
2724      assert(RegParm < 7 && "Invalid regparm value");
2725      return ExtInfo((Bits & ~RegParmMask) |
2726                     ((RegParm + 1) << RegParmOffset));
2727    }
2728
2729    ExtInfo withCallingConv(CallingConv cc) const {
2730      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2731    }
2732
2733    void Profile(llvm::FoldingSetNodeID &ID) const {
2734      ID.AddInteger(Bits);
2735    }
2736  };
2737
2738protected:
2739  FunctionType(TypeClass tc, QualType res,
2740               unsigned typeQuals, QualType Canonical, bool Dependent,
2741               bool InstantiationDependent,
2742               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2743               ExtInfo Info)
2744    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
2745           ContainsUnexpandedParameterPack),
2746      ResultType(res) {
2747    FunctionTypeBits.ExtInfo = Info.Bits;
2748    FunctionTypeBits.TypeQuals = typeQuals;
2749  }
2750  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2751
2752public:
2753
2754  QualType getResultType() const { return ResultType; }
2755
2756  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2757  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2758  /// \brief Determine whether this function type includes the GNU noreturn
2759  /// attribute. The C++11 [[noreturn]] attribute does not affect the function
2760  /// type.
2761  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2762  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2763  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2764  bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
2765  bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
2766  bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
2767
2768  /// \brief Determine the type of an expression that calls a function of
2769  /// this type.
2770  QualType getCallResultType(ASTContext &Context) const {
2771    return getResultType().getNonLValueExprType(Context);
2772  }
2773
2774  static StringRef getNameForCallConv(CallingConv CC);
2775
2776  static bool classof(const Type *T) {
2777    return T->getTypeClass() == FunctionNoProto ||
2778           T->getTypeClass() == FunctionProto;
2779  }
2780};
2781
2782/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2783/// no information available about its arguments.
2784class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2785  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2786    : FunctionType(FunctionNoProto, Result, 0, Canonical,
2787                   /*Dependent=*/false, /*InstantiationDependent=*/false,
2788                   Result->isVariablyModifiedType(),
2789                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2790
2791  friend class ASTContext;  // ASTContext creates these.
2792
2793public:
2794  // No additional state past what FunctionType provides.
2795
2796  bool isSugared() const { return false; }
2797  QualType desugar() const { return QualType(this, 0); }
2798
2799  void Profile(llvm::FoldingSetNodeID &ID) {
2800    Profile(ID, getResultType(), getExtInfo());
2801  }
2802  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2803                      ExtInfo Info) {
2804    Info.Profile(ID);
2805    ID.AddPointer(ResultType.getAsOpaquePtr());
2806  }
2807
2808  static bool classof(const Type *T) {
2809    return T->getTypeClass() == FunctionNoProto;
2810  }
2811};
2812
2813/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2814/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2815/// arguments, not as having a single void argument. Such a type can have an
2816/// exception specification, but this specification is not part of the canonical
2817/// type.
2818class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2819public:
2820  /// ExtProtoInfo - Extra information about a function prototype.
2821  struct ExtProtoInfo {
2822    ExtProtoInfo() :
2823      Variadic(false), HasTrailingReturn(false), TypeQuals(0),
2824      ExceptionSpecType(EST_None), RefQualifier(RQ_None),
2825      NumExceptions(0), Exceptions(0), NoexceptExpr(0),
2826      ExceptionSpecDecl(0), ExceptionSpecTemplate(0),
2827      ConsumedArguments(0) {}
2828
2829    FunctionType::ExtInfo ExtInfo;
2830    bool Variadic : 1;
2831    bool HasTrailingReturn : 1;
2832    unsigned char TypeQuals;
2833    ExceptionSpecificationType ExceptionSpecType;
2834    RefQualifierKind RefQualifier;
2835    unsigned NumExceptions;
2836    const QualType *Exceptions;
2837    Expr *NoexceptExpr;
2838    FunctionDecl *ExceptionSpecDecl;
2839    FunctionDecl *ExceptionSpecTemplate;
2840    const bool *ConsumedArguments;
2841  };
2842
2843private:
2844  /// \brief Determine whether there are any argument types that
2845  /// contain an unexpanded parameter pack.
2846  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2847                                                 unsigned numArgs) {
2848    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2849      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2850        return true;
2851
2852    return false;
2853  }
2854
2855  FunctionProtoType(QualType result, ArrayRef<QualType> args,
2856                    QualType canonical, const ExtProtoInfo &epi);
2857
2858  /// NumArgs - The number of arguments this function has, not counting '...'.
2859  unsigned NumArgs : 15;
2860
2861  /// NumExceptions - The number of types in the exception spec, if any.
2862  unsigned NumExceptions : 9;
2863
2864  /// ExceptionSpecType - The type of exception specification this function has.
2865  unsigned ExceptionSpecType : 3;
2866
2867  /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
2868  unsigned HasAnyConsumedArgs : 1;
2869
2870  /// Variadic - Whether the function is variadic.
2871  unsigned Variadic : 1;
2872
2873  /// HasTrailingReturn - Whether this function has a trailing return type.
2874  unsigned HasTrailingReturn : 1;
2875
2876  /// \brief The ref-qualifier associated with a \c FunctionProtoType.
2877  ///
2878  /// This is a value of type \c RefQualifierKind.
2879  unsigned RefQualifier : 2;
2880
2881  // ArgInfo - There is an variable size array after the class in memory that
2882  // holds the argument types.
2883
2884  // Exceptions - There is another variable size array after ArgInfo that
2885  // holds the exception types.
2886
2887  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2888  // to the expression in the noexcept() specifier.
2889
2890  // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
2891  // be a pair of FunctionDecl* pointing to the function which should be used to
2892  // instantiate this function type's exception specification, and the function
2893  // from which it should be instantiated.
2894
2895  // ConsumedArgs - A variable size array, following Exceptions
2896  // and of length NumArgs, holding flags indicating which arguments
2897  // are consumed.  This only appears if HasAnyConsumedArgs is true.
2898
2899  friend class ASTContext;  // ASTContext creates these.
2900
2901  const bool *getConsumedArgsBuffer() const {
2902    assert(hasAnyConsumedArgs());
2903
2904    // Find the end of the exceptions.
2905    Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
2906    if (getExceptionSpecType() != EST_ComputedNoexcept)
2907      eh_end += NumExceptions;
2908    else
2909      eh_end += 1; // NoexceptExpr
2910
2911    return reinterpret_cast<const bool*>(eh_end);
2912  }
2913
2914public:
2915  unsigned getNumArgs() const { return NumArgs; }
2916  QualType getArgType(unsigned i) const {
2917    assert(i < NumArgs && "Invalid argument number!");
2918    return arg_type_begin()[i];
2919  }
2920  ArrayRef<QualType> getArgTypes() const {
2921    return ArrayRef<QualType>(arg_type_begin(), arg_type_end());
2922  }
2923
2924  ExtProtoInfo getExtProtoInfo() const {
2925    ExtProtoInfo EPI;
2926    EPI.ExtInfo = getExtInfo();
2927    EPI.Variadic = isVariadic();
2928    EPI.HasTrailingReturn = hasTrailingReturn();
2929    EPI.ExceptionSpecType = getExceptionSpecType();
2930    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2931    EPI.RefQualifier = getRefQualifier();
2932    if (EPI.ExceptionSpecType == EST_Dynamic) {
2933      EPI.NumExceptions = NumExceptions;
2934      EPI.Exceptions = exception_begin();
2935    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2936      EPI.NoexceptExpr = getNoexceptExpr();
2937    } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2938      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2939      EPI.ExceptionSpecTemplate = getExceptionSpecTemplate();
2940    } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2941      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2942    }
2943    if (hasAnyConsumedArgs())
2944      EPI.ConsumedArguments = getConsumedArgsBuffer();
2945    return EPI;
2946  }
2947
2948  /// \brief Get the kind of exception specification on this function.
2949  ExceptionSpecificationType getExceptionSpecType() const {
2950    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2951  }
2952  /// \brief Return whether this function has any kind of exception spec.
2953  bool hasExceptionSpec() const {
2954    return getExceptionSpecType() != EST_None;
2955  }
2956  /// \brief Return whether this function has a dynamic (throw) exception spec.
2957  bool hasDynamicExceptionSpec() const {
2958    return isDynamicExceptionSpec(getExceptionSpecType());
2959  }
2960  /// \brief Return whether this function has a noexcept exception spec.
2961  bool hasNoexceptExceptionSpec() const {
2962    return isNoexceptExceptionSpec(getExceptionSpecType());
2963  }
2964  /// \brief Result type of getNoexceptSpec().
2965  enum NoexceptResult {
2966    NR_NoNoexcept,  ///< There is no noexcept specifier.
2967    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2968    NR_Dependent,   ///< The noexcept specifier is dependent.
2969    NR_Throw,       ///< The noexcept specifier evaluates to false.
2970    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2971  };
2972  /// \brief Get the meaning of the noexcept spec on this function, if any.
2973  NoexceptResult getNoexceptSpec(const ASTContext &Ctx) const;
2974  unsigned getNumExceptions() const { return NumExceptions; }
2975  QualType getExceptionType(unsigned i) const {
2976    assert(i < NumExceptions && "Invalid exception number!");
2977    return exception_begin()[i];
2978  }
2979  Expr *getNoexceptExpr() const {
2980    if (getExceptionSpecType() != EST_ComputedNoexcept)
2981      return 0;
2982    // NoexceptExpr sits where the arguments end.
2983    return *reinterpret_cast<Expr *const *>(arg_type_end());
2984  }
2985  /// \brief If this function type has an exception specification which hasn't
2986  /// been determined yet (either because it has not been evaluated or because
2987  /// it has not been instantiated), this is the function whose exception
2988  /// specification is represented by this type.
2989  FunctionDecl *getExceptionSpecDecl() const {
2990    if (getExceptionSpecType() != EST_Uninstantiated &&
2991        getExceptionSpecType() != EST_Unevaluated)
2992      return 0;
2993    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[0];
2994  }
2995  /// \brief If this function type has an uninstantiated exception
2996  /// specification, this is the function whose exception specification
2997  /// should be instantiated to find the exception specification for
2998  /// this type.
2999  FunctionDecl *getExceptionSpecTemplate() const {
3000    if (getExceptionSpecType() != EST_Uninstantiated)
3001      return 0;
3002    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[1];
3003  }
3004  bool isNothrow(const ASTContext &Ctx) const {
3005    ExceptionSpecificationType EST = getExceptionSpecType();
3006    assert(EST != EST_Unevaluated && EST != EST_Uninstantiated);
3007    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
3008      return true;
3009    if (EST != EST_ComputedNoexcept)
3010      return false;
3011    return getNoexceptSpec(Ctx) == NR_Nothrow;
3012  }
3013
3014  bool isVariadic() const { return Variadic; }
3015
3016  /// \brief Determines whether this function prototype contains a
3017  /// parameter pack at the end.
3018  ///
3019  /// A function template whose last parameter is a parameter pack can be
3020  /// called with an arbitrary number of arguments, much like a variadic
3021  /// function.
3022  bool isTemplateVariadic() const;
3023
3024  bool hasTrailingReturn() const { return HasTrailingReturn; }
3025
3026  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
3027
3028
3029  /// \brief Retrieve the ref-qualifier associated with this function type.
3030  RefQualifierKind getRefQualifier() const {
3031    return static_cast<RefQualifierKind>(RefQualifier);
3032  }
3033
3034  typedef const QualType *arg_type_iterator;
3035  arg_type_iterator arg_type_begin() const {
3036    return reinterpret_cast<const QualType *>(this+1);
3037  }
3038  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
3039
3040  typedef const QualType *exception_iterator;
3041  exception_iterator exception_begin() const {
3042    // exceptions begin where arguments end
3043    return arg_type_end();
3044  }
3045  exception_iterator exception_end() const {
3046    if (getExceptionSpecType() != EST_Dynamic)
3047      return exception_begin();
3048    return exception_begin() + NumExceptions;
3049  }
3050
3051  bool hasAnyConsumedArgs() const {
3052    return HasAnyConsumedArgs;
3053  }
3054  bool isArgConsumed(unsigned I) const {
3055    assert(I < getNumArgs() && "argument index out of range!");
3056    if (hasAnyConsumedArgs())
3057      return getConsumedArgsBuffer()[I];
3058    return false;
3059  }
3060
3061  bool isSugared() const { return false; }
3062  QualType desugar() const { return QualType(this, 0); }
3063
3064  void printExceptionSpecification(raw_ostream &OS,
3065                                   const PrintingPolicy &Policy) const;
3066
3067  static bool classof(const Type *T) {
3068    return T->getTypeClass() == FunctionProto;
3069  }
3070
3071  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
3072  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3073                      arg_type_iterator ArgTys, unsigned NumArgs,
3074                      const ExtProtoInfo &EPI, const ASTContext &Context);
3075};
3076
3077
3078/// \brief Represents the dependent type named by a dependently-scoped
3079/// typename using declaration, e.g.
3080///   using typename Base<T>::foo;
3081/// Template instantiation turns these into the underlying type.
3082class UnresolvedUsingType : public Type {
3083  UnresolvedUsingTypenameDecl *Decl;
3084
3085  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
3086    : Type(UnresolvedUsing, QualType(), true, true, false,
3087           /*ContainsUnexpandedParameterPack=*/false),
3088      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
3089  friend class ASTContext; // ASTContext creates these.
3090public:
3091
3092  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
3093
3094  bool isSugared() const { return false; }
3095  QualType desugar() const { return QualType(this, 0); }
3096
3097  static bool classof(const Type *T) {
3098    return T->getTypeClass() == UnresolvedUsing;
3099  }
3100
3101  void Profile(llvm::FoldingSetNodeID &ID) {
3102    return Profile(ID, Decl);
3103  }
3104  static void Profile(llvm::FoldingSetNodeID &ID,
3105                      UnresolvedUsingTypenameDecl *D) {
3106    ID.AddPointer(D);
3107  }
3108};
3109
3110
3111class TypedefType : public Type {
3112  TypedefNameDecl *Decl;
3113protected:
3114  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
3115    : Type(tc, can, can->isDependentType(),
3116           can->isInstantiationDependentType(),
3117           can->isVariablyModifiedType(),
3118           /*ContainsUnexpandedParameterPack=*/false),
3119      Decl(const_cast<TypedefNameDecl*>(D)) {
3120    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3121  }
3122  friend class ASTContext;  // ASTContext creates these.
3123public:
3124
3125  TypedefNameDecl *getDecl() const { return Decl; }
3126
3127  bool isSugared() const { return true; }
3128  QualType desugar() const;
3129
3130  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
3131};
3132
3133/// TypeOfExprType (GCC extension).
3134class TypeOfExprType : public Type {
3135  Expr *TOExpr;
3136
3137protected:
3138  TypeOfExprType(Expr *E, QualType can = QualType());
3139  friend class ASTContext;  // ASTContext creates these.
3140public:
3141  Expr *getUnderlyingExpr() const { return TOExpr; }
3142
3143  /// \brief Remove a single level of sugar.
3144  QualType desugar() const;
3145
3146  /// \brief Returns whether this type directly provides sugar.
3147  bool isSugared() const;
3148
3149  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
3150};
3151
3152/// \brief Internal representation of canonical, dependent
3153/// typeof(expr) types.
3154///
3155/// This class is used internally by the ASTContext to manage
3156/// canonical, dependent types, only. Clients will only see instances
3157/// of this class via TypeOfExprType nodes.
3158class DependentTypeOfExprType
3159  : public TypeOfExprType, public llvm::FoldingSetNode {
3160  const ASTContext &Context;
3161
3162public:
3163  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
3164    : TypeOfExprType(E), Context(Context) { }
3165
3166  void Profile(llvm::FoldingSetNodeID &ID) {
3167    Profile(ID, Context, getUnderlyingExpr());
3168  }
3169
3170  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3171                      Expr *E);
3172};
3173
3174/// TypeOfType (GCC extension).
3175class TypeOfType : public Type {
3176  QualType TOType;
3177  TypeOfType(QualType T, QualType can)
3178    : Type(TypeOf, can, T->isDependentType(),
3179           T->isInstantiationDependentType(),
3180           T->isVariablyModifiedType(),
3181           T->containsUnexpandedParameterPack()),
3182      TOType(T) {
3183    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3184  }
3185  friend class ASTContext;  // ASTContext creates these.
3186public:
3187  QualType getUnderlyingType() const { return TOType; }
3188
3189  /// \brief Remove a single level of sugar.
3190  QualType desugar() const { return getUnderlyingType(); }
3191
3192  /// \brief Returns whether this type directly provides sugar.
3193  bool isSugared() const { return true; }
3194
3195  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
3196};
3197
3198/// DecltypeType (C++0x)
3199class DecltypeType : public Type {
3200  Expr *E;
3201  QualType UnderlyingType;
3202
3203protected:
3204  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3205  friend class ASTContext;  // ASTContext creates these.
3206public:
3207  Expr *getUnderlyingExpr() const { return E; }
3208  QualType getUnderlyingType() const { return UnderlyingType; }
3209
3210  /// \brief Remove a single level of sugar.
3211  QualType desugar() const;
3212
3213  /// \brief Returns whether this type directly provides sugar.
3214  bool isSugared() const;
3215
3216  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3217};
3218
3219/// \brief Internal representation of canonical, dependent
3220/// decltype(expr) types.
3221///
3222/// This class is used internally by the ASTContext to manage
3223/// canonical, dependent types, only. Clients will only see instances
3224/// of this class via DecltypeType nodes.
3225class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3226  const ASTContext &Context;
3227
3228public:
3229  DependentDecltypeType(const ASTContext &Context, Expr *E);
3230
3231  void Profile(llvm::FoldingSetNodeID &ID) {
3232    Profile(ID, Context, getUnderlyingExpr());
3233  }
3234
3235  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3236                      Expr *E);
3237};
3238
3239/// \brief A unary type transform, which is a type constructed from another
3240class UnaryTransformType : public Type {
3241public:
3242  enum UTTKind {
3243    EnumUnderlyingType
3244  };
3245
3246private:
3247  /// The untransformed type.
3248  QualType BaseType;
3249  /// The transformed type if not dependent, otherwise the same as BaseType.
3250  QualType UnderlyingType;
3251
3252  UTTKind UKind;
3253protected:
3254  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3255                     QualType CanonicalTy);
3256  friend class ASTContext;
3257public:
3258  bool isSugared() const { return !isDependentType(); }
3259  QualType desugar() const { return UnderlyingType; }
3260
3261  QualType getUnderlyingType() const { return UnderlyingType; }
3262  QualType getBaseType() const { return BaseType; }
3263
3264  UTTKind getUTTKind() const { return UKind; }
3265
3266  static bool classof(const Type *T) {
3267    return T->getTypeClass() == UnaryTransform;
3268  }
3269};
3270
3271class TagType : public Type {
3272  /// Stores the TagDecl associated with this type. The decl may point to any
3273  /// TagDecl that declares the entity.
3274  TagDecl * decl;
3275
3276  friend class ASTReader;
3277
3278protected:
3279  TagType(TypeClass TC, const TagDecl *D, QualType can);
3280
3281public:
3282  TagDecl *getDecl() const;
3283
3284  /// @brief Determines whether this type is in the process of being
3285  /// defined.
3286  bool isBeingDefined() const;
3287
3288  static bool classof(const Type *T) {
3289    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3290  }
3291};
3292
3293/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
3294/// to detect TagType objects of structs/unions/classes.
3295class RecordType : public TagType {
3296protected:
3297  explicit RecordType(const RecordDecl *D)
3298    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3299  explicit RecordType(TypeClass TC, RecordDecl *D)
3300    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3301  friend class ASTContext;   // ASTContext creates these.
3302public:
3303
3304  RecordDecl *getDecl() const {
3305    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3306  }
3307
3308  // FIXME: This predicate is a helper to QualType/Type. It needs to
3309  // recursively check all fields for const-ness. If any field is declared
3310  // const, it needs to return false.
3311  bool hasConstFields() const { return false; }
3312
3313  bool isSugared() const { return false; }
3314  QualType desugar() const { return QualType(this, 0); }
3315
3316  static bool classof(const Type *T) { return T->getTypeClass() == Record; }
3317};
3318
3319/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
3320/// to detect TagType objects of enums.
3321class EnumType : public TagType {
3322  explicit EnumType(const EnumDecl *D)
3323    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3324  friend class ASTContext;   // ASTContext creates these.
3325public:
3326
3327  EnumDecl *getDecl() const {
3328    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3329  }
3330
3331  bool isSugared() const { return false; }
3332  QualType desugar() const { return QualType(this, 0); }
3333
3334  static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
3335};
3336
3337/// AttributedType - An attributed type is a type to which a type
3338/// attribute has been applied.  The "modified type" is the
3339/// fully-sugared type to which the attributed type was applied;
3340/// generally it is not canonically equivalent to the attributed type.
3341/// The "equivalent type" is the minimally-desugared type which the
3342/// type is canonically equivalent to.
3343///
3344/// For example, in the following attributed type:
3345///     int32_t __attribute__((vector_size(16)))
3346///   - the modified type is the TypedefType for int32_t
3347///   - the equivalent type is VectorType(16, int32_t)
3348///   - the canonical type is VectorType(16, int)
3349class AttributedType : public Type, public llvm::FoldingSetNode {
3350public:
3351  // It is really silly to have yet another attribute-kind enum, but
3352  // clang::attr::Kind doesn't currently cover the pure type attrs.
3353  enum Kind {
3354    // Expression operand.
3355    attr_address_space,
3356    attr_regparm,
3357    attr_vector_size,
3358    attr_neon_vector_type,
3359    attr_neon_polyvector_type,
3360
3361    FirstExprOperandKind = attr_address_space,
3362    LastExprOperandKind = attr_neon_polyvector_type,
3363
3364    // Enumerated operand (string or keyword).
3365    attr_objc_gc,
3366    attr_objc_ownership,
3367    attr_pcs,
3368    attr_pcs_vfp,
3369
3370    FirstEnumOperandKind = attr_objc_gc,
3371    LastEnumOperandKind = attr_pcs_vfp,
3372
3373    // No operand.
3374    attr_noreturn,
3375    attr_cdecl,
3376    attr_fastcall,
3377    attr_stdcall,
3378    attr_thiscall,
3379    attr_pascal,
3380    attr_pnaclcall,
3381    attr_inteloclbicc,
3382    attr_ptr32,
3383    attr_ptr64,
3384    attr_sptr,
3385    attr_uptr
3386  };
3387
3388private:
3389  QualType ModifiedType;
3390  QualType EquivalentType;
3391
3392  friend class ASTContext; // creates these
3393
3394  AttributedType(QualType canon, Kind attrKind,
3395                 QualType modified, QualType equivalent)
3396    : Type(Attributed, canon, canon->isDependentType(),
3397           canon->isInstantiationDependentType(),
3398           canon->isVariablyModifiedType(),
3399           canon->containsUnexpandedParameterPack()),
3400      ModifiedType(modified), EquivalentType(equivalent) {
3401    AttributedTypeBits.AttrKind = attrKind;
3402  }
3403
3404public:
3405  Kind getAttrKind() const {
3406    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3407  }
3408
3409  QualType getModifiedType() const { return ModifiedType; }
3410  QualType getEquivalentType() const { return EquivalentType; }
3411
3412  bool isSugared() const { return true; }
3413  QualType desugar() const { return getEquivalentType(); }
3414
3415  bool isMSTypeSpec() const;
3416
3417  bool isCallingConv() const;
3418
3419  void Profile(llvm::FoldingSetNodeID &ID) {
3420    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3421  }
3422
3423  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3424                      QualType modified, QualType equivalent) {
3425    ID.AddInteger(attrKind);
3426    ID.AddPointer(modified.getAsOpaquePtr());
3427    ID.AddPointer(equivalent.getAsOpaquePtr());
3428  }
3429
3430  static bool classof(const Type *T) {
3431    return T->getTypeClass() == Attributed;
3432  }
3433};
3434
3435class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3436  // Helper data collector for canonical types.
3437  struct CanonicalTTPTInfo {
3438    unsigned Depth : 15;
3439    unsigned ParameterPack : 1;
3440    unsigned Index : 16;
3441  };
3442
3443  union {
3444    // Info for the canonical type.
3445    CanonicalTTPTInfo CanTTPTInfo;
3446    // Info for the non-canonical type.
3447    TemplateTypeParmDecl *TTPDecl;
3448  };
3449
3450  /// Build a non-canonical type.
3451  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3452    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3453           /*InstantiationDependent=*/true,
3454           /*VariablyModified=*/false,
3455           Canon->containsUnexpandedParameterPack()),
3456      TTPDecl(TTPDecl) { }
3457
3458  /// Build the canonical type.
3459  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3460    : Type(TemplateTypeParm, QualType(this, 0),
3461           /*Dependent=*/true,
3462           /*InstantiationDependent=*/true,
3463           /*VariablyModified=*/false, PP) {
3464    CanTTPTInfo.Depth = D;
3465    CanTTPTInfo.Index = I;
3466    CanTTPTInfo.ParameterPack = PP;
3467  }
3468
3469  friend class ASTContext;  // ASTContext creates these
3470
3471  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3472    QualType Can = getCanonicalTypeInternal();
3473    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3474  }
3475
3476public:
3477  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3478  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3479  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3480
3481  TemplateTypeParmDecl *getDecl() const {
3482    return isCanonicalUnqualified() ? 0 : TTPDecl;
3483  }
3484
3485  IdentifierInfo *getIdentifier() const;
3486
3487  bool isSugared() const { return false; }
3488  QualType desugar() const { return QualType(this, 0); }
3489
3490  void Profile(llvm::FoldingSetNodeID &ID) {
3491    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3492  }
3493
3494  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3495                      unsigned Index, bool ParameterPack,
3496                      TemplateTypeParmDecl *TTPDecl) {
3497    ID.AddInteger(Depth);
3498    ID.AddInteger(Index);
3499    ID.AddBoolean(ParameterPack);
3500    ID.AddPointer(TTPDecl);
3501  }
3502
3503  static bool classof(const Type *T) {
3504    return T->getTypeClass() == TemplateTypeParm;
3505  }
3506};
3507
3508/// \brief Represents the result of substituting a type for a template
3509/// type parameter.
3510///
3511/// Within an instantiated template, all template type parameters have
3512/// been replaced with these.  They are used solely to record that a
3513/// type was originally written as a template type parameter;
3514/// therefore they are never canonical.
3515class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3516  // The original type parameter.
3517  const TemplateTypeParmType *Replaced;
3518
3519  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3520    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3521           Canon->isInstantiationDependentType(),
3522           Canon->isVariablyModifiedType(),
3523           Canon->containsUnexpandedParameterPack()),
3524      Replaced(Param) { }
3525
3526  friend class ASTContext;
3527
3528public:
3529  /// Gets the template parameter that was substituted for.
3530  const TemplateTypeParmType *getReplacedParameter() const {
3531    return Replaced;
3532  }
3533
3534  /// Gets the type that was substituted for the template
3535  /// parameter.
3536  QualType getReplacementType() const {
3537    return getCanonicalTypeInternal();
3538  }
3539
3540  bool isSugared() const { return true; }
3541  QualType desugar() const { return getReplacementType(); }
3542
3543  void Profile(llvm::FoldingSetNodeID &ID) {
3544    Profile(ID, getReplacedParameter(), getReplacementType());
3545  }
3546  static void Profile(llvm::FoldingSetNodeID &ID,
3547                      const TemplateTypeParmType *Replaced,
3548                      QualType Replacement) {
3549    ID.AddPointer(Replaced);
3550    ID.AddPointer(Replacement.getAsOpaquePtr());
3551  }
3552
3553  static bool classof(const Type *T) {
3554    return T->getTypeClass() == SubstTemplateTypeParm;
3555  }
3556};
3557
3558/// \brief Represents the result of substituting a set of types for a template
3559/// type parameter pack.
3560///
3561/// When a pack expansion in the source code contains multiple parameter packs
3562/// and those parameter packs correspond to different levels of template
3563/// parameter lists, this type node is used to represent a template type
3564/// parameter pack from an outer level, which has already had its argument pack
3565/// substituted but that still lives within a pack expansion that itself
3566/// could not be instantiated. When actually performing a substitution into
3567/// that pack expansion (e.g., when all template parameters have corresponding
3568/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3569/// at the current pack substitution index.
3570class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3571  /// \brief The original type parameter.
3572  const TemplateTypeParmType *Replaced;
3573
3574  /// \brief A pointer to the set of template arguments that this
3575  /// parameter pack is instantiated with.
3576  const TemplateArgument *Arguments;
3577
3578  /// \brief The number of template arguments in \c Arguments.
3579  unsigned NumArguments;
3580
3581  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3582                                QualType Canon,
3583                                const TemplateArgument &ArgPack);
3584
3585  friend class ASTContext;
3586
3587public:
3588  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
3589
3590  /// Gets the template parameter that was substituted for.
3591  const TemplateTypeParmType *getReplacedParameter() const {
3592    return Replaced;
3593  }
3594
3595  bool isSugared() const { return false; }
3596  QualType desugar() const { return QualType(this, 0); }
3597
3598  TemplateArgument getArgumentPack() const;
3599
3600  void Profile(llvm::FoldingSetNodeID &ID);
3601  static void Profile(llvm::FoldingSetNodeID &ID,
3602                      const TemplateTypeParmType *Replaced,
3603                      const TemplateArgument &ArgPack);
3604
3605  static bool classof(const Type *T) {
3606    return T->getTypeClass() == SubstTemplateTypeParmPack;
3607  }
3608};
3609
3610/// \brief Represents a C++11 auto or C++1y decltype(auto) type.
3611///
3612/// These types are usually a placeholder for a deduced type. However, before
3613/// the initializer is attached, or if the initializer is type-dependent, there
3614/// is no deduced type and an auto type is canonical. In the latter case, it is
3615/// also a dependent type.
3616class AutoType : public Type, public llvm::FoldingSetNode {
3617  AutoType(QualType DeducedType, bool IsDecltypeAuto,
3618           bool IsDependent, bool IsParameterPack)
3619    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3620           /*Dependent=*/IsDependent, /*InstantiationDependent=*/IsDependent,
3621           /*VariablyModified=*/false, /*ContainsParameterPack=*/IsParameterPack) {
3622    assert((DeducedType.isNull() || !IsDependent) &&
3623           "auto deduced to dependent type");
3624    AutoTypeBits.IsDecltypeAuto = IsDecltypeAuto;
3625  }
3626
3627  friend class ASTContext;  // ASTContext creates these
3628
3629public:
3630  bool isDecltypeAuto() const { return AutoTypeBits.IsDecltypeAuto; }
3631
3632  bool isSugared() const { return !isCanonicalUnqualified(); }
3633  QualType desugar() const { return getCanonicalTypeInternal(); }
3634
3635  /// \brief Get the type deduced for this auto type, or null if it's either
3636  /// not been deduced or was deduced to a dependent type.
3637  QualType getDeducedType() const {
3638    return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
3639  }
3640  bool isDeduced() const {
3641    return !isCanonicalUnqualified() || isDependentType();
3642  }
3643
3644  void Profile(llvm::FoldingSetNodeID &ID) {
3645    Profile(ID, getDeducedType(), isDecltypeAuto(),
3646		    isDependentType(), containsUnexpandedParameterPack());
3647  }
3648
3649  static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
3650                      bool IsDecltypeAuto, bool IsDependent,
3651                      bool IsParameterPack) {
3652    ID.AddPointer(Deduced.getAsOpaquePtr());
3653    ID.AddBoolean(IsDecltypeAuto);
3654    ID.AddBoolean(IsDependent);
3655    ID.AddBoolean(IsParameterPack);
3656  }
3657
3658  static bool classof(const Type *T) {
3659    return T->getTypeClass() == Auto;
3660  }
3661};
3662
3663/// \brief Represents a type template specialization; the template
3664/// must be a class template, a type alias template, or a template
3665/// template parameter.  A template which cannot be resolved to one of
3666/// these, e.g. because it is written with a dependent scope
3667/// specifier, is instead represented as a
3668/// @c DependentTemplateSpecializationType.
3669///
3670/// A non-dependent template specialization type is always "sugar",
3671/// typically for a @c RecordType.  For example, a class template
3672/// specialization type of @c vector<int> will refer to a tag type for
3673/// the instantiation @c std::vector<int, std::allocator<int>>
3674///
3675/// Template specializations are dependent if either the template or
3676/// any of the template arguments are dependent, in which case the
3677/// type may also be canonical.
3678///
3679/// Instances of this type are allocated with a trailing array of
3680/// TemplateArguments, followed by a QualType representing the
3681/// non-canonical aliased type when the template is a type alias
3682/// template.
3683class TemplateSpecializationType
3684  : public Type, public llvm::FoldingSetNode {
3685  /// \brief The name of the template being specialized.  This is
3686  /// either a TemplateName::Template (in which case it is a
3687  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
3688  /// TypeAliasTemplateDecl*), a
3689  /// TemplateName::SubstTemplateTemplateParmPack, or a
3690  /// TemplateName::SubstTemplateTemplateParm (in which case the
3691  /// replacement must, recursively, be one of these).
3692  TemplateName Template;
3693
3694  /// \brief - The number of template arguments named in this class
3695  /// template specialization.
3696  unsigned NumArgs : 31;
3697
3698  /// \brief Whether this template specialization type is a substituted
3699  /// type alias.
3700  bool TypeAlias : 1;
3701
3702  TemplateSpecializationType(TemplateName T,
3703                             const TemplateArgument *Args,
3704                             unsigned NumArgs, QualType Canon,
3705                             QualType Aliased);
3706
3707  friend class ASTContext;  // ASTContext creates these
3708
3709public:
3710  /// \brief Determine whether any of the given template arguments are
3711  /// dependent.
3712  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3713                                            unsigned NumArgs,
3714                                            bool &InstantiationDependent);
3715
3716  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
3717                                            bool &InstantiationDependent);
3718
3719  /// \brief Print a template argument list, including the '<' and '>'
3720  /// enclosing the template arguments.
3721  static void PrintTemplateArgumentList(raw_ostream &OS,
3722                                        const TemplateArgument *Args,
3723                                        unsigned NumArgs,
3724                                        const PrintingPolicy &Policy,
3725                                        bool SkipBrackets = false);
3726
3727  static void PrintTemplateArgumentList(raw_ostream &OS,
3728                                        const TemplateArgumentLoc *Args,
3729                                        unsigned NumArgs,
3730                                        const PrintingPolicy &Policy);
3731
3732  static void PrintTemplateArgumentList(raw_ostream &OS,
3733                                        const TemplateArgumentListInfo &,
3734                                        const PrintingPolicy &Policy);
3735
3736  /// True if this template specialization type matches a current
3737  /// instantiation in the context in which it is found.
3738  bool isCurrentInstantiation() const {
3739    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3740  }
3741
3742  /// \brief Determine if this template specialization type is for a type alias
3743  /// template that has been substituted.
3744  ///
3745  /// Nearly every template specialization type whose template is an alias
3746  /// template will be substituted. However, this is not the case when
3747  /// the specialization contains a pack expansion but the template alias
3748  /// does not have a corresponding parameter pack, e.g.,
3749  ///
3750  /// \code
3751  /// template<typename T, typename U, typename V> struct S;
3752  /// template<typename T, typename U> using A = S<T, int, U>;
3753  /// template<typename... Ts> struct X {
3754  ///   typedef A<Ts...> type; // not a type alias
3755  /// };
3756  /// \endcode
3757  bool isTypeAlias() const { return TypeAlias; }
3758
3759  /// Get the aliased type, if this is a specialization of a type alias
3760  /// template.
3761  QualType getAliasedType() const {
3762    assert(isTypeAlias() && "not a type alias template specialization");
3763    return *reinterpret_cast<const QualType*>(end());
3764  }
3765
3766  typedef const TemplateArgument * iterator;
3767
3768  iterator begin() const { return getArgs(); }
3769  iterator end() const; // defined inline in TemplateBase.h
3770
3771  /// \brief Retrieve the name of the template that we are specializing.
3772  TemplateName getTemplateName() const { return Template; }
3773
3774  /// \brief Retrieve the template arguments.
3775  const TemplateArgument *getArgs() const {
3776    return reinterpret_cast<const TemplateArgument *>(this + 1);
3777  }
3778
3779  /// \brief Retrieve the number of template arguments.
3780  unsigned getNumArgs() const { return NumArgs; }
3781
3782  /// \brief Retrieve a specific template argument as a type.
3783  /// \pre @c isArgType(Arg)
3784  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3785
3786  bool isSugared() const {
3787    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
3788  }
3789  QualType desugar() const { return getCanonicalTypeInternal(); }
3790
3791  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3792    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3793    if (isTypeAlias())
3794      getAliasedType().Profile(ID);
3795  }
3796
3797  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3798                      const TemplateArgument *Args,
3799                      unsigned NumArgs,
3800                      const ASTContext &Context);
3801
3802  static bool classof(const Type *T) {
3803    return T->getTypeClass() == TemplateSpecialization;
3804  }
3805};
3806
3807/// \brief The injected class name of a C++ class template or class
3808/// template partial specialization.  Used to record that a type was
3809/// spelled with a bare identifier rather than as a template-id; the
3810/// equivalent for non-templated classes is just RecordType.
3811///
3812/// Injected class name types are always dependent.  Template
3813/// instantiation turns these into RecordTypes.
3814///
3815/// Injected class name types are always canonical.  This works
3816/// because it is impossible to compare an injected class name type
3817/// with the corresponding non-injected template type, for the same
3818/// reason that it is impossible to directly compare template
3819/// parameters from different dependent contexts: injected class name
3820/// types can only occur within the scope of a particular templated
3821/// declaration, and within that scope every template specialization
3822/// will canonicalize to the injected class name (when appropriate
3823/// according to the rules of the language).
3824class InjectedClassNameType : public Type {
3825  CXXRecordDecl *Decl;
3826
3827  /// The template specialization which this type represents.
3828  /// For example, in
3829  ///   template <class T> class A { ... };
3830  /// this is A<T>, whereas in
3831  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3832  /// this is A<B<X,Y> >.
3833  ///
3834  /// It is always unqualified, always a template specialization type,
3835  /// and always dependent.
3836  QualType InjectedType;
3837
3838  friend class ASTContext; // ASTContext creates these.
3839  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3840                          // currently suitable for AST reading, too much
3841                          // interdependencies.
3842  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3843    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3844           /*InstantiationDependent=*/true,
3845           /*VariablyModified=*/false,
3846           /*ContainsUnexpandedParameterPack=*/false),
3847      Decl(D), InjectedType(TST) {
3848    assert(isa<TemplateSpecializationType>(TST));
3849    assert(!TST.hasQualifiers());
3850    assert(TST->isDependentType());
3851  }
3852
3853public:
3854  QualType getInjectedSpecializationType() const { return InjectedType; }
3855  const TemplateSpecializationType *getInjectedTST() const {
3856    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3857  }
3858
3859  CXXRecordDecl *getDecl() const;
3860
3861  bool isSugared() const { return false; }
3862  QualType desugar() const { return QualType(this, 0); }
3863
3864  static bool classof(const Type *T) {
3865    return T->getTypeClass() == InjectedClassName;
3866  }
3867};
3868
3869/// \brief The kind of a tag type.
3870enum TagTypeKind {
3871  /// \brief The "struct" keyword.
3872  TTK_Struct,
3873  /// \brief The "__interface" keyword.
3874  TTK_Interface,
3875  /// \brief The "union" keyword.
3876  TTK_Union,
3877  /// \brief The "class" keyword.
3878  TTK_Class,
3879  /// \brief The "enum" keyword.
3880  TTK_Enum
3881};
3882
3883/// \brief The elaboration keyword that precedes a qualified type name or
3884/// introduces an elaborated-type-specifier.
3885enum ElaboratedTypeKeyword {
3886  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3887  ETK_Struct,
3888  /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
3889  ETK_Interface,
3890  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3891  ETK_Union,
3892  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3893  ETK_Class,
3894  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3895  ETK_Enum,
3896  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3897  /// \c typename T::type.
3898  ETK_Typename,
3899  /// \brief No keyword precedes the qualified type name.
3900  ETK_None
3901};
3902
3903/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3904/// The keyword in stored in the free bits of the base class.
3905/// Also provides a few static helpers for converting and printing
3906/// elaborated type keyword and tag type kind enumerations.
3907class TypeWithKeyword : public Type {
3908protected:
3909  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3910                  QualType Canonical, bool Dependent,
3911                  bool InstantiationDependent, bool VariablyModified,
3912                  bool ContainsUnexpandedParameterPack)
3913  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3914         ContainsUnexpandedParameterPack) {
3915    TypeWithKeywordBits.Keyword = Keyword;
3916  }
3917
3918public:
3919  ElaboratedTypeKeyword getKeyword() const {
3920    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3921  }
3922
3923  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3924  /// into an elaborated type keyword.
3925  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3926
3927  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3928  /// into a tag type kind.  It is an error to provide a type specifier
3929  /// which *isn't* a tag kind here.
3930  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3931
3932  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3933  /// elaborated type keyword.
3934  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3935
3936  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3937  // a TagTypeKind. It is an error to provide an elaborated type keyword
3938  /// which *isn't* a tag kind here.
3939  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3940
3941  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3942
3943  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3944
3945  static const char *getTagTypeKindName(TagTypeKind Kind) {
3946    return getKeywordName(getKeywordForTagTypeKind(Kind));
3947  }
3948
3949  class CannotCastToThisType {};
3950  static CannotCastToThisType classof(const Type *);
3951};
3952
3953/// \brief Represents a type that was referred to using an elaborated type
3954/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3955/// or both.
3956///
3957/// This type is used to keep track of a type name as written in the
3958/// source code, including tag keywords and any nested-name-specifiers.
3959/// The type itself is always "sugar", used to express what was written
3960/// in the source code but containing no additional semantic information.
3961class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3962
3963  /// \brief The nested name specifier containing the qualifier.
3964  NestedNameSpecifier *NNS;
3965
3966  /// \brief The type that this qualified name refers to.
3967  QualType NamedType;
3968
3969  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3970                 QualType NamedType, QualType CanonType)
3971    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3972                      NamedType->isDependentType(),
3973                      NamedType->isInstantiationDependentType(),
3974                      NamedType->isVariablyModifiedType(),
3975                      NamedType->containsUnexpandedParameterPack()),
3976      NNS(NNS), NamedType(NamedType) {
3977    assert(!(Keyword == ETK_None && NNS == 0) &&
3978           "ElaboratedType cannot have elaborated type keyword "
3979           "and name qualifier both null.");
3980  }
3981
3982  friend class ASTContext;  // ASTContext creates these
3983
3984public:
3985  ~ElaboratedType();
3986
3987  /// \brief Retrieve the qualification on this type.
3988  NestedNameSpecifier *getQualifier() const { return NNS; }
3989
3990  /// \brief Retrieve the type named by the qualified-id.
3991  QualType getNamedType() const { return NamedType; }
3992
3993  /// \brief Remove a single level of sugar.
3994  QualType desugar() const { return getNamedType(); }
3995
3996  /// \brief Returns whether this type directly provides sugar.
3997  bool isSugared() const { return true; }
3998
3999  void Profile(llvm::FoldingSetNodeID &ID) {
4000    Profile(ID, getKeyword(), NNS, NamedType);
4001  }
4002
4003  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
4004                      NestedNameSpecifier *NNS, QualType NamedType) {
4005    ID.AddInteger(Keyword);
4006    ID.AddPointer(NNS);
4007    NamedType.Profile(ID);
4008  }
4009
4010  static bool classof(const Type *T) {
4011    return T->getTypeClass() == Elaborated;
4012  }
4013};
4014
4015/// \brief Represents a qualified type name for which the type name is
4016/// dependent.
4017///
4018/// DependentNameType represents a class of dependent types that involve a
4019/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
4020/// name of a type. The DependentNameType may start with a "typename" (for a
4021/// typename-specifier), "class", "struct", "union", or "enum" (for a
4022/// dependent elaborated-type-specifier), or nothing (in contexts where we
4023/// know that we must be referring to a type, e.g., in a base class specifier).
4024class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
4025
4026  /// \brief The nested name specifier containing the qualifier.
4027  NestedNameSpecifier *NNS;
4028
4029  /// \brief The type that this typename specifier refers to.
4030  const IdentifierInfo *Name;
4031
4032  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
4033                    const IdentifierInfo *Name, QualType CanonType)
4034    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
4035                      /*InstantiationDependent=*/true,
4036                      /*VariablyModified=*/false,
4037                      NNS->containsUnexpandedParameterPack()),
4038      NNS(NNS), Name(Name) {
4039    assert(NNS->isDependent() &&
4040           "DependentNameType requires a dependent nested-name-specifier");
4041  }
4042
4043  friend class ASTContext;  // ASTContext creates these
4044
4045public:
4046  /// \brief Retrieve the qualification on this type.
4047  NestedNameSpecifier *getQualifier() const { return NNS; }
4048
4049  /// \brief Retrieve the type named by the typename specifier as an
4050  /// identifier.
4051  ///
4052  /// This routine will return a non-NULL identifier pointer when the
4053  /// form of the original typename was terminated by an identifier,
4054  /// e.g., "typename T::type".
4055  const IdentifierInfo *getIdentifier() const {
4056    return Name;
4057  }
4058
4059  bool isSugared() const { return false; }
4060  QualType desugar() const { return QualType(this, 0); }
4061
4062  void Profile(llvm::FoldingSetNodeID &ID) {
4063    Profile(ID, getKeyword(), NNS, Name);
4064  }
4065
4066  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
4067                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
4068    ID.AddInteger(Keyword);
4069    ID.AddPointer(NNS);
4070    ID.AddPointer(Name);
4071  }
4072
4073  static bool classof(const Type *T) {
4074    return T->getTypeClass() == DependentName;
4075  }
4076};
4077
4078/// DependentTemplateSpecializationType - Represents a template
4079/// specialization type whose template cannot be resolved, e.g.
4080///   A<T>::template B<T>
4081class DependentTemplateSpecializationType :
4082  public TypeWithKeyword, public llvm::FoldingSetNode {
4083
4084  /// \brief The nested name specifier containing the qualifier.
4085  NestedNameSpecifier *NNS;
4086
4087  /// \brief The identifier of the template.
4088  const IdentifierInfo *Name;
4089
4090  /// \brief - The number of template arguments named in this class
4091  /// template specialization.
4092  unsigned NumArgs;
4093
4094  const TemplateArgument *getArgBuffer() const {
4095    return reinterpret_cast<const TemplateArgument*>(this+1);
4096  }
4097  TemplateArgument *getArgBuffer() {
4098    return reinterpret_cast<TemplateArgument*>(this+1);
4099  }
4100
4101  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
4102                                      NestedNameSpecifier *NNS,
4103                                      const IdentifierInfo *Name,
4104                                      unsigned NumArgs,
4105                                      const TemplateArgument *Args,
4106                                      QualType Canon);
4107
4108  friend class ASTContext;  // ASTContext creates these
4109
4110public:
4111  NestedNameSpecifier *getQualifier() const { return NNS; }
4112  const IdentifierInfo *getIdentifier() const { return Name; }
4113
4114  /// \brief Retrieve the template arguments.
4115  const TemplateArgument *getArgs() const {
4116    return getArgBuffer();
4117  }
4118
4119  /// \brief Retrieve the number of template arguments.
4120  unsigned getNumArgs() const { return NumArgs; }
4121
4122  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4123
4124  typedef const TemplateArgument * iterator;
4125  iterator begin() const { return getArgs(); }
4126  iterator end() const; // inline in TemplateBase.h
4127
4128  bool isSugared() const { return false; }
4129  QualType desugar() const { return QualType(this, 0); }
4130
4131  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
4132    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
4133  }
4134
4135  static void Profile(llvm::FoldingSetNodeID &ID,
4136                      const ASTContext &Context,
4137                      ElaboratedTypeKeyword Keyword,
4138                      NestedNameSpecifier *Qualifier,
4139                      const IdentifierInfo *Name,
4140                      unsigned NumArgs,
4141                      const TemplateArgument *Args);
4142
4143  static bool classof(const Type *T) {
4144    return T->getTypeClass() == DependentTemplateSpecialization;
4145  }
4146};
4147
4148/// \brief Represents a pack expansion of types.
4149///
4150/// Pack expansions are part of C++0x variadic templates. A pack
4151/// expansion contains a pattern, which itself contains one or more
4152/// "unexpanded" parameter packs. When instantiated, a pack expansion
4153/// produces a series of types, each instantiated from the pattern of
4154/// the expansion, where the Ith instantiation of the pattern uses the
4155/// Ith arguments bound to each of the unexpanded parameter packs. The
4156/// pack expansion is considered to "expand" these unexpanded
4157/// parameter packs.
4158///
4159/// \code
4160/// template<typename ...Types> struct tuple;
4161///
4162/// template<typename ...Types>
4163/// struct tuple_of_references {
4164///   typedef tuple<Types&...> type;
4165/// };
4166/// \endcode
4167///
4168/// Here, the pack expansion \c Types&... is represented via a
4169/// PackExpansionType whose pattern is Types&.
4170class PackExpansionType : public Type, public llvm::FoldingSetNode {
4171  /// \brief The pattern of the pack expansion.
4172  QualType Pattern;
4173
4174  /// \brief The number of expansions that this pack expansion will
4175  /// generate when substituted (+1), or indicates that
4176  ///
4177  /// This field will only have a non-zero value when some of the parameter
4178  /// packs that occur within the pattern have been substituted but others have
4179  /// not.
4180  unsigned NumExpansions;
4181
4182  PackExpansionType(QualType Pattern, QualType Canon,
4183                    Optional<unsigned> NumExpansions)
4184    : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
4185           /*InstantiationDependent=*/true,
4186           /*VariableModified=*/Pattern->isVariablyModifiedType(),
4187           /*ContainsUnexpandedParameterPack=*/false),
4188      Pattern(Pattern),
4189      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
4190
4191  friend class ASTContext;  // ASTContext creates these
4192
4193public:
4194  /// \brief Retrieve the pattern of this pack expansion, which is the
4195  /// type that will be repeatedly instantiated when instantiating the
4196  /// pack expansion itself.
4197  QualType getPattern() const { return Pattern; }
4198
4199  /// \brief Retrieve the number of expansions that this pack expansion will
4200  /// generate, if known.
4201  Optional<unsigned> getNumExpansions() const {
4202    if (NumExpansions)
4203      return NumExpansions - 1;
4204
4205    return None;
4206  }
4207
4208  bool isSugared() const { return !Pattern->isDependentType(); }
4209  QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
4210
4211  void Profile(llvm::FoldingSetNodeID &ID) {
4212    Profile(ID, getPattern(), getNumExpansions());
4213  }
4214
4215  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
4216                      Optional<unsigned> NumExpansions) {
4217    ID.AddPointer(Pattern.getAsOpaquePtr());
4218    ID.AddBoolean(NumExpansions.hasValue());
4219    if (NumExpansions)
4220      ID.AddInteger(*NumExpansions);
4221  }
4222
4223  static bool classof(const Type *T) {
4224    return T->getTypeClass() == PackExpansion;
4225  }
4226};
4227
4228/// ObjCObjectType - Represents a class type in Objective C.
4229/// Every Objective C type is a combination of a base type and a
4230/// list of protocols.
4231///
4232/// Given the following declarations:
4233/// \code
4234///   \@class C;
4235///   \@protocol P;
4236/// \endcode
4237///
4238/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4239/// with base C and no protocols.
4240///
4241/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
4242///
4243/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
4244/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4245/// and no protocols.
4246///
4247/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
4248/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4249/// this should get its own sugar class to better represent the source.
4250class ObjCObjectType : public Type {
4251  // ObjCObjectType.NumProtocols - the number of protocols stored
4252  // after the ObjCObjectPointerType node.
4253  //
4254  // These protocols are those written directly on the type.  If
4255  // protocol qualifiers ever become additive, the iterators will need
4256  // to get kindof complicated.
4257  //
4258  // In the canonical object type, these are sorted alphabetically
4259  // and uniqued.
4260
4261  /// Either a BuiltinType or an InterfaceType or sugar for either.
4262  QualType BaseType;
4263
4264  ObjCProtocolDecl * const *getProtocolStorage() const {
4265    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4266  }
4267
4268  ObjCProtocolDecl **getProtocolStorage();
4269
4270protected:
4271  ObjCObjectType(QualType Canonical, QualType Base,
4272                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
4273
4274  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4275  ObjCObjectType(enum Nonce_ObjCInterface)
4276        : Type(ObjCInterface, QualType(), false, false, false, false),
4277      BaseType(QualType(this_(), 0)) {
4278    ObjCObjectTypeBits.NumProtocols = 0;
4279  }
4280
4281public:
4282  /// getBaseType - Gets the base type of this object type.  This is
4283  /// always (possibly sugar for) one of:
4284  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4285  ///    user, which is a typedef for an ObjCObjectPointerType)
4286  ///  - the 'Class' builtin type (same caveat)
4287  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4288  QualType getBaseType() const { return BaseType; }
4289
4290  bool isObjCId() const {
4291    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4292  }
4293  bool isObjCClass() const {
4294    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4295  }
4296  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4297  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4298  bool isObjCUnqualifiedIdOrClass() const {
4299    if (!qual_empty()) return false;
4300    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4301      return T->getKind() == BuiltinType::ObjCId ||
4302             T->getKind() == BuiltinType::ObjCClass;
4303    return false;
4304  }
4305  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4306  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4307
4308  /// Gets the interface declaration for this object type, if the base type
4309  /// really is an interface.
4310  ObjCInterfaceDecl *getInterface() const;
4311
4312  typedef ObjCProtocolDecl * const *qual_iterator;
4313
4314  qual_iterator qual_begin() const { return getProtocolStorage(); }
4315  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4316
4317  bool qual_empty() const { return getNumProtocols() == 0; }
4318
4319  /// getNumProtocols - Return the number of qualifying protocols in this
4320  /// interface type, or 0 if there are none.
4321  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4322
4323  /// \brief Fetch a protocol by index.
4324  ObjCProtocolDecl *getProtocol(unsigned I) const {
4325    assert(I < getNumProtocols() && "Out-of-range protocol access");
4326    return qual_begin()[I];
4327  }
4328
4329  bool isSugared() const { return false; }
4330  QualType desugar() const { return QualType(this, 0); }
4331
4332  static bool classof(const Type *T) {
4333    return T->getTypeClass() == ObjCObject ||
4334           T->getTypeClass() == ObjCInterface;
4335  }
4336};
4337
4338/// ObjCObjectTypeImpl - A class providing a concrete implementation
4339/// of ObjCObjectType, so as to not increase the footprint of
4340/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4341/// system should not reference this type.
4342class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4343  friend class ASTContext;
4344
4345  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4346  // will need to be modified.
4347
4348  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4349                     ObjCProtocolDecl * const *Protocols,
4350                     unsigned NumProtocols)
4351    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
4352
4353public:
4354  void Profile(llvm::FoldingSetNodeID &ID);
4355  static void Profile(llvm::FoldingSetNodeID &ID,
4356                      QualType Base,
4357                      ObjCProtocolDecl *const *protocols,
4358                      unsigned NumProtocols);
4359};
4360
4361inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4362  return reinterpret_cast<ObjCProtocolDecl**>(
4363            static_cast<ObjCObjectTypeImpl*>(this) + 1);
4364}
4365
4366/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
4367/// object oriented design.  They basically correspond to C++ classes.  There
4368/// are two kinds of interface types, normal interfaces like "NSString" and
4369/// qualified interfaces, which are qualified with a protocol list like
4370/// "NSString<NSCopyable, NSAmazing>".
4371///
4372/// ObjCInterfaceType guarantees the following properties when considered
4373/// as a subtype of its superclass, ObjCObjectType:
4374///   - There are no protocol qualifiers.  To reinforce this, code which
4375///     tries to invoke the protocol methods via an ObjCInterfaceType will
4376///     fail to compile.
4377///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4378///     T->getBaseType() == QualType(T, 0).
4379class ObjCInterfaceType : public ObjCObjectType {
4380  mutable ObjCInterfaceDecl *Decl;
4381
4382  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4383    : ObjCObjectType(Nonce_ObjCInterface),
4384      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4385  friend class ASTContext;  // ASTContext creates these.
4386  friend class ASTReader;
4387  friend class ObjCInterfaceDecl;
4388
4389public:
4390  /// getDecl - Get the declaration of this interface.
4391  ObjCInterfaceDecl *getDecl() const { return Decl; }
4392
4393  bool isSugared() const { return false; }
4394  QualType desugar() const { return QualType(this, 0); }
4395
4396  static bool classof(const Type *T) {
4397    return T->getTypeClass() == ObjCInterface;
4398  }
4399
4400  // Nonsense to "hide" certain members of ObjCObjectType within this
4401  // class.  People asking for protocols on an ObjCInterfaceType are
4402  // not going to get what they want: ObjCInterfaceTypes are
4403  // guaranteed to have no protocols.
4404  enum {
4405    qual_iterator,
4406    qual_begin,
4407    qual_end,
4408    getNumProtocols,
4409    getProtocol
4410  };
4411};
4412
4413inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4414  if (const ObjCInterfaceType *T =
4415        getBaseType()->getAs<ObjCInterfaceType>())
4416    return T->getDecl();
4417  return 0;
4418}
4419
4420/// ObjCObjectPointerType - Used to represent a pointer to an
4421/// Objective C object.  These are constructed from pointer
4422/// declarators when the pointee type is an ObjCObjectType (or sugar
4423/// for one).  In addition, the 'id' and 'Class' types are typedefs
4424/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
4425/// are translated into these.
4426///
4427/// Pointers to pointers to Objective C objects are still PointerTypes;
4428/// only the first level of pointer gets it own type implementation.
4429class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4430  QualType PointeeType;
4431
4432  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4433    : Type(ObjCObjectPointer, Canonical, false, false, false, false),
4434      PointeeType(Pointee) {}
4435  friend class ASTContext;  // ASTContext creates these.
4436
4437public:
4438  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
4439  /// The result will always be an ObjCObjectType or sugar thereof.
4440  QualType getPointeeType() const { return PointeeType; }
4441
4442  /// getObjCObjectType - Gets the type pointed to by this ObjC
4443  /// pointer.  This method always returns non-null.
4444  ///
4445  /// This method is equivalent to getPointeeType() except that
4446  /// it discards any typedefs (or other sugar) between this
4447  /// type and the "outermost" object type.  So for:
4448  /// \code
4449  ///   \@class A; \@protocol P; \@protocol Q;
4450  ///   typedef A<P> AP;
4451  ///   typedef A A1;
4452  ///   typedef A1<P> A1P;
4453  ///   typedef A1P<Q> A1PQ;
4454  /// \endcode
4455  /// For 'A*', getObjectType() will return 'A'.
4456  /// For 'A<P>*', getObjectType() will return 'A<P>'.
4457  /// For 'AP*', getObjectType() will return 'A<P>'.
4458  /// For 'A1*', getObjectType() will return 'A'.
4459  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
4460  /// For 'A1P*', getObjectType() will return 'A1<P>'.
4461  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
4462  ///   adding protocols to a protocol-qualified base discards the
4463  ///   old qualifiers (for now).  But if it didn't, getObjectType()
4464  ///   would return 'A1P<Q>' (and we'd have to make iterating over
4465  ///   qualifiers more complicated).
4466  const ObjCObjectType *getObjectType() const {
4467    return PointeeType->castAs<ObjCObjectType>();
4468  }
4469
4470  /// getInterfaceType - If this pointer points to an Objective C
4471  /// \@interface type, gets the type for that interface.  Any protocol
4472  /// qualifiers on the interface are ignored.
4473  ///
4474  /// \return null if the base type for this pointer is 'id' or 'Class'
4475  const ObjCInterfaceType *getInterfaceType() const {
4476    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
4477  }
4478
4479  /// getInterfaceDecl - If this pointer points to an Objective \@interface
4480  /// type, gets the declaration for that interface.
4481  ///
4482  /// \return null if the base type for this pointer is 'id' or 'Class'
4483  ObjCInterfaceDecl *getInterfaceDecl() const {
4484    return getObjectType()->getInterface();
4485  }
4486
4487  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
4488  /// its object type is the primitive 'id' type with no protocols.
4489  bool isObjCIdType() const {
4490    return getObjectType()->isObjCUnqualifiedId();
4491  }
4492
4493  /// isObjCClassType - True if this is equivalent to the 'Class' type,
4494  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
4495  bool isObjCClassType() const {
4496    return getObjectType()->isObjCUnqualifiedClass();
4497  }
4498
4499  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
4500  /// non-empty set of protocols.
4501  bool isObjCQualifiedIdType() const {
4502    return getObjectType()->isObjCQualifiedId();
4503  }
4504
4505  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
4506  /// some non-empty set of protocols.
4507  bool isObjCQualifiedClassType() const {
4508    return getObjectType()->isObjCQualifiedClass();
4509  }
4510
4511  /// An iterator over the qualifiers on the object type.  Provided
4512  /// for convenience.  This will always iterate over the full set of
4513  /// protocols on a type, not just those provided directly.
4514  typedef ObjCObjectType::qual_iterator qual_iterator;
4515
4516  qual_iterator qual_begin() const {
4517    return getObjectType()->qual_begin();
4518  }
4519  qual_iterator qual_end() const {
4520    return getObjectType()->qual_end();
4521  }
4522  bool qual_empty() const { return getObjectType()->qual_empty(); }
4523
4524  /// getNumProtocols - Return the number of qualifying protocols on
4525  /// the object type.
4526  unsigned getNumProtocols() const {
4527    return getObjectType()->getNumProtocols();
4528  }
4529
4530  /// \brief Retrieve a qualifying protocol by index on the object
4531  /// type.
4532  ObjCProtocolDecl *getProtocol(unsigned I) const {
4533    return getObjectType()->getProtocol(I);
4534  }
4535
4536  bool isSugared() const { return false; }
4537  QualType desugar() const { return QualType(this, 0); }
4538
4539  void Profile(llvm::FoldingSetNodeID &ID) {
4540    Profile(ID, getPointeeType());
4541  }
4542  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4543    ID.AddPointer(T.getAsOpaquePtr());
4544  }
4545  static bool classof(const Type *T) {
4546    return T->getTypeClass() == ObjCObjectPointer;
4547  }
4548};
4549
4550class AtomicType : public Type, public llvm::FoldingSetNode {
4551  QualType ValueType;
4552
4553  AtomicType(QualType ValTy, QualType Canonical)
4554    : Type(Atomic, Canonical, ValTy->isDependentType(),
4555           ValTy->isInstantiationDependentType(),
4556           ValTy->isVariablyModifiedType(),
4557           ValTy->containsUnexpandedParameterPack()),
4558      ValueType(ValTy) {}
4559  friend class ASTContext;  // ASTContext creates these.
4560
4561  public:
4562  /// getValueType - Gets the type contained by this atomic type, i.e.
4563  /// the type returned by performing an atomic load of this atomic type.
4564  QualType getValueType() const { return ValueType; }
4565
4566  bool isSugared() const { return false; }
4567  QualType desugar() const { return QualType(this, 0); }
4568
4569  void Profile(llvm::FoldingSetNodeID &ID) {
4570    Profile(ID, getValueType());
4571  }
4572  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4573    ID.AddPointer(T.getAsOpaquePtr());
4574  }
4575  static bool classof(const Type *T) {
4576    return T->getTypeClass() == Atomic;
4577  }
4578};
4579
4580/// A qualifier set is used to build a set of qualifiers.
4581class QualifierCollector : public Qualifiers {
4582public:
4583  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4584
4585  /// Collect any qualifiers on the given type and return an
4586  /// unqualified type.  The qualifiers are assumed to be consistent
4587  /// with those already in the type.
4588  const Type *strip(QualType type) {
4589    addFastQualifiers(type.getLocalFastQualifiers());
4590    if (!type.hasLocalNonFastQualifiers())
4591      return type.getTypePtrUnsafe();
4592
4593    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4594    addConsistentQualifiers(extQuals->getQualifiers());
4595    return extQuals->getBaseType();
4596  }
4597
4598  /// Apply the collected qualifiers to the given type.
4599  QualType apply(const ASTContext &Context, QualType QT) const;
4600
4601  /// Apply the collected qualifiers to the given type.
4602  QualType apply(const ASTContext &Context, const Type* T) const;
4603};
4604
4605
4606// Inline function definitions.
4607
4608inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
4609  SplitQualType desugar =
4610    Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
4611  desugar.Quals.addConsistentQualifiers(Quals);
4612  return desugar;
4613}
4614
4615inline const Type *QualType::getTypePtr() const {
4616  return getCommonPtr()->BaseType;
4617}
4618
4619inline const Type *QualType::getTypePtrOrNull() const {
4620  return (isNull() ? 0 : getCommonPtr()->BaseType);
4621}
4622
4623inline SplitQualType QualType::split() const {
4624  if (!hasLocalNonFastQualifiers())
4625    return SplitQualType(getTypePtrUnsafe(),
4626                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4627
4628  const ExtQuals *eq = getExtQualsUnsafe();
4629  Qualifiers qs = eq->getQualifiers();
4630  qs.addFastQualifiers(getLocalFastQualifiers());
4631  return SplitQualType(eq->getBaseType(), qs);
4632}
4633
4634inline Qualifiers QualType::getLocalQualifiers() const {
4635  Qualifiers Quals;
4636  if (hasLocalNonFastQualifiers())
4637    Quals = getExtQualsUnsafe()->getQualifiers();
4638  Quals.addFastQualifiers(getLocalFastQualifiers());
4639  return Quals;
4640}
4641
4642inline Qualifiers QualType::getQualifiers() const {
4643  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4644  quals.addFastQualifiers(getLocalFastQualifiers());
4645  return quals;
4646}
4647
4648inline unsigned QualType::getCVRQualifiers() const {
4649  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4650  cvr |= getLocalCVRQualifiers();
4651  return cvr;
4652}
4653
4654inline QualType QualType::getCanonicalType() const {
4655  QualType canon = getCommonPtr()->CanonicalType;
4656  return canon.withFastQualifiers(getLocalFastQualifiers());
4657}
4658
4659inline bool QualType::isCanonical() const {
4660  return getTypePtr()->isCanonicalUnqualified();
4661}
4662
4663inline bool QualType::isCanonicalAsParam() const {
4664  if (!isCanonical()) return false;
4665  if (hasLocalQualifiers()) return false;
4666
4667  const Type *T = getTypePtr();
4668  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4669    return false;
4670
4671  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4672}
4673
4674inline bool QualType::isConstQualified() const {
4675  return isLocalConstQualified() ||
4676         getCommonPtr()->CanonicalType.isLocalConstQualified();
4677}
4678
4679inline bool QualType::isRestrictQualified() const {
4680  return isLocalRestrictQualified() ||
4681         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4682}
4683
4684
4685inline bool QualType::isVolatileQualified() const {
4686  return isLocalVolatileQualified() ||
4687         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4688}
4689
4690inline bool QualType::hasQualifiers() const {
4691  return hasLocalQualifiers() ||
4692         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4693}
4694
4695inline QualType QualType::getUnqualifiedType() const {
4696  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4697    return QualType(getTypePtr(), 0);
4698
4699  return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
4700}
4701
4702inline SplitQualType QualType::getSplitUnqualifiedType() const {
4703  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4704    return split();
4705
4706  return getSplitUnqualifiedTypeImpl(*this);
4707}
4708
4709inline void QualType::removeLocalConst() {
4710  removeLocalFastQualifiers(Qualifiers::Const);
4711}
4712
4713inline void QualType::removeLocalRestrict() {
4714  removeLocalFastQualifiers(Qualifiers::Restrict);
4715}
4716
4717inline void QualType::removeLocalVolatile() {
4718  removeLocalFastQualifiers(Qualifiers::Volatile);
4719}
4720
4721inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4722  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4723  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4724
4725  // Fast path: we don't need to touch the slow qualifiers.
4726  removeLocalFastQualifiers(Mask);
4727}
4728
4729/// getAddressSpace - Return the address space of this type.
4730inline unsigned QualType::getAddressSpace() const {
4731  return getQualifiers().getAddressSpace();
4732}
4733
4734/// getObjCGCAttr - Return the gc attribute of this type.
4735inline Qualifiers::GC QualType::getObjCGCAttr() const {
4736  return getQualifiers().getObjCGCAttr();
4737}
4738
4739inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4740  if (const PointerType *PT = t.getAs<PointerType>()) {
4741    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4742      return FT->getExtInfo();
4743  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4744    return FT->getExtInfo();
4745
4746  return FunctionType::ExtInfo();
4747}
4748
4749inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4750  return getFunctionExtInfo(*t);
4751}
4752
4753/// isMoreQualifiedThan - Determine whether this type is more
4754/// qualified than the Other type. For example, "const volatile int"
4755/// is more qualified than "const int", "volatile int", and
4756/// "int". However, it is not more qualified than "const volatile
4757/// int".
4758inline bool QualType::isMoreQualifiedThan(QualType other) const {
4759  Qualifiers myQuals = getQualifiers();
4760  Qualifiers otherQuals = other.getQualifiers();
4761  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4762}
4763
4764/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4765/// as qualified as the Other type. For example, "const volatile
4766/// int" is at least as qualified as "const int", "volatile int",
4767/// "int", and "const volatile int".
4768inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4769  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4770}
4771
4772/// getNonReferenceType - If Type is a reference type (e.g., const
4773/// int&), returns the type that the reference refers to ("const
4774/// int"). Otherwise, returns the type itself. This routine is used
4775/// throughout Sema to implement C++ 5p6:
4776///
4777///   If an expression initially has the type "reference to T" (8.3.2,
4778///   8.5.3), the type is adjusted to "T" prior to any further
4779///   analysis, the expression designates the object or function
4780///   denoted by the reference, and the expression is an lvalue.
4781inline QualType QualType::getNonReferenceType() const {
4782  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4783    return RefType->getPointeeType();
4784  else
4785    return *this;
4786}
4787
4788inline bool QualType::isCForbiddenLValueType() const {
4789  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
4790          getTypePtr()->isFunctionType());
4791}
4792
4793/// \brief Tests whether the type is categorized as a fundamental type.
4794///
4795/// \returns True for types specified in C++0x [basic.fundamental].
4796inline bool Type::isFundamentalType() const {
4797  return isVoidType() ||
4798         // FIXME: It's really annoying that we don't have an
4799         // 'isArithmeticType()' which agrees with the standard definition.
4800         (isArithmeticType() && !isEnumeralType());
4801}
4802
4803/// \brief Tests whether the type is categorized as a compound type.
4804///
4805/// \returns True for types specified in C++0x [basic.compound].
4806inline bool Type::isCompoundType() const {
4807  // C++0x [basic.compound]p1:
4808  //   Compound types can be constructed in the following ways:
4809  //    -- arrays of objects of a given type [...];
4810  return isArrayType() ||
4811  //    -- functions, which have parameters of given types [...];
4812         isFunctionType() ||
4813  //    -- pointers to void or objects or functions [...];
4814         isPointerType() ||
4815  //    -- references to objects or functions of a given type. [...]
4816         isReferenceType() ||
4817  //    -- classes containing a sequence of objects of various types, [...];
4818         isRecordType() ||
4819  //    -- unions, which are classes capable of containing objects of different
4820  //               types at different times;
4821         isUnionType() ||
4822  //    -- enumerations, which comprise a set of named constant values. [...];
4823         isEnumeralType() ||
4824  //    -- pointers to non-static class members, [...].
4825         isMemberPointerType();
4826}
4827
4828inline bool Type::isFunctionType() const {
4829  return isa<FunctionType>(CanonicalType);
4830}
4831inline bool Type::isPointerType() const {
4832  return isa<PointerType>(CanonicalType);
4833}
4834inline bool Type::isAnyPointerType() const {
4835  return isPointerType() || isObjCObjectPointerType();
4836}
4837inline bool Type::isBlockPointerType() const {
4838  return isa<BlockPointerType>(CanonicalType);
4839}
4840inline bool Type::isReferenceType() const {
4841  return isa<ReferenceType>(CanonicalType);
4842}
4843inline bool Type::isLValueReferenceType() const {
4844  return isa<LValueReferenceType>(CanonicalType);
4845}
4846inline bool Type::isRValueReferenceType() const {
4847  return isa<RValueReferenceType>(CanonicalType);
4848}
4849inline bool Type::isFunctionPointerType() const {
4850  if (const PointerType *T = getAs<PointerType>())
4851    return T->getPointeeType()->isFunctionType();
4852  else
4853    return false;
4854}
4855inline bool Type::isMemberPointerType() const {
4856  return isa<MemberPointerType>(CanonicalType);
4857}
4858inline bool Type::isMemberFunctionPointerType() const {
4859  if (const MemberPointerType* T = getAs<MemberPointerType>())
4860    return T->isMemberFunctionPointer();
4861  else
4862    return false;
4863}
4864inline bool Type::isMemberDataPointerType() const {
4865  if (const MemberPointerType* T = getAs<MemberPointerType>())
4866    return T->isMemberDataPointer();
4867  else
4868    return false;
4869}
4870inline bool Type::isArrayType() const {
4871  return isa<ArrayType>(CanonicalType);
4872}
4873inline bool Type::isConstantArrayType() const {
4874  return isa<ConstantArrayType>(CanonicalType);
4875}
4876inline bool Type::isIncompleteArrayType() const {
4877  return isa<IncompleteArrayType>(CanonicalType);
4878}
4879inline bool Type::isVariableArrayType() const {
4880  return isa<VariableArrayType>(CanonicalType);
4881}
4882inline bool Type::isDependentSizedArrayType() const {
4883  return isa<DependentSizedArrayType>(CanonicalType);
4884}
4885inline bool Type::isBuiltinType() const {
4886  return isa<BuiltinType>(CanonicalType);
4887}
4888inline bool Type::isRecordType() const {
4889  return isa<RecordType>(CanonicalType);
4890}
4891inline bool Type::isEnumeralType() const {
4892  return isa<EnumType>(CanonicalType);
4893}
4894inline bool Type::isAnyComplexType() const {
4895  return isa<ComplexType>(CanonicalType);
4896}
4897inline bool Type::isVectorType() const {
4898  return isa<VectorType>(CanonicalType);
4899}
4900inline bool Type::isExtVectorType() const {
4901  return isa<ExtVectorType>(CanonicalType);
4902}
4903inline bool Type::isObjCObjectPointerType() const {
4904  return isa<ObjCObjectPointerType>(CanonicalType);
4905}
4906inline bool Type::isObjCObjectType() const {
4907  return isa<ObjCObjectType>(CanonicalType);
4908}
4909inline bool Type::isObjCObjectOrInterfaceType() const {
4910  return isa<ObjCInterfaceType>(CanonicalType) ||
4911    isa<ObjCObjectType>(CanonicalType);
4912}
4913inline bool Type::isAtomicType() const {
4914  return isa<AtomicType>(CanonicalType);
4915}
4916
4917inline bool Type::isObjCQualifiedIdType() const {
4918  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4919    return OPT->isObjCQualifiedIdType();
4920  return false;
4921}
4922inline bool Type::isObjCQualifiedClassType() const {
4923  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4924    return OPT->isObjCQualifiedClassType();
4925  return false;
4926}
4927inline bool Type::isObjCIdType() const {
4928  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4929    return OPT->isObjCIdType();
4930  return false;
4931}
4932inline bool Type::isObjCClassType() const {
4933  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4934    return OPT->isObjCClassType();
4935  return false;
4936}
4937inline bool Type::isObjCSelType() const {
4938  if (const PointerType *OPT = getAs<PointerType>())
4939    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4940  return false;
4941}
4942inline bool Type::isObjCBuiltinType() const {
4943  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4944}
4945
4946inline bool Type::isImage1dT() const {
4947  return isSpecificBuiltinType(BuiltinType::OCLImage1d);
4948}
4949
4950inline bool Type::isImage1dArrayT() const {
4951  return isSpecificBuiltinType(BuiltinType::OCLImage1dArray);
4952}
4953
4954inline bool Type::isImage1dBufferT() const {
4955  return isSpecificBuiltinType(BuiltinType::OCLImage1dBuffer);
4956}
4957
4958inline bool Type::isImage2dT() const {
4959  return isSpecificBuiltinType(BuiltinType::OCLImage2d);
4960}
4961
4962inline bool Type::isImage2dArrayT() const {
4963  return isSpecificBuiltinType(BuiltinType::OCLImage2dArray);
4964}
4965
4966inline bool Type::isImage3dT() const {
4967  return isSpecificBuiltinType(BuiltinType::OCLImage3d);
4968}
4969
4970inline bool Type::isSamplerT() const {
4971  return isSpecificBuiltinType(BuiltinType::OCLSampler);
4972}
4973
4974inline bool Type::isEventT() const {
4975  return isSpecificBuiltinType(BuiltinType::OCLEvent);
4976}
4977
4978inline bool Type::isImageType() const {
4979  return isImage3dT() ||
4980         isImage2dT() || isImage2dArrayT() ||
4981         isImage1dT() || isImage1dArrayT() || isImage1dBufferT();
4982}
4983
4984inline bool Type::isOpenCLSpecificType() const {
4985  return isSamplerT() || isEventT() || isImageType();
4986}
4987
4988inline bool Type::isTemplateTypeParmType() const {
4989  return isa<TemplateTypeParmType>(CanonicalType);
4990}
4991
4992inline bool Type::isSpecificBuiltinType(unsigned K) const {
4993  if (const BuiltinType *BT = getAs<BuiltinType>())
4994    if (BT->getKind() == (BuiltinType::Kind) K)
4995      return true;
4996  return false;
4997}
4998
4999inline bool Type::isPlaceholderType() const {
5000  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5001    return BT->isPlaceholderType();
5002  return false;
5003}
5004
5005inline const BuiltinType *Type::getAsPlaceholderType() const {
5006  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5007    if (BT->isPlaceholderType())
5008      return BT;
5009  return 0;
5010}
5011
5012inline bool Type::isSpecificPlaceholderType(unsigned K) const {
5013  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
5014  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5015    return (BT->getKind() == (BuiltinType::Kind) K);
5016  return false;
5017}
5018
5019inline bool Type::isNonOverloadPlaceholderType() const {
5020  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5021    return BT->isNonOverloadPlaceholderType();
5022  return false;
5023}
5024
5025inline bool Type::isVoidType() const {
5026  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5027    return BT->getKind() == BuiltinType::Void;
5028  return false;
5029}
5030
5031inline bool Type::isHalfType() const {
5032  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5033    return BT->getKind() == BuiltinType::Half;
5034  // FIXME: Should we allow complex __fp16? Probably not.
5035  return false;
5036}
5037
5038inline bool Type::isNullPtrType() const {
5039  if (const BuiltinType *BT = getAs<BuiltinType>())
5040    return BT->getKind() == BuiltinType::NullPtr;
5041  return false;
5042}
5043
5044extern bool IsEnumDeclComplete(EnumDecl *);
5045extern bool IsEnumDeclScoped(EnumDecl *);
5046
5047inline bool Type::isIntegerType() const {
5048  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5049    return BT->getKind() >= BuiltinType::Bool &&
5050           BT->getKind() <= BuiltinType::Int128;
5051  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
5052    // Incomplete enum types are not treated as integer types.
5053    // FIXME: In C++, enum types are never integer types.
5054    return IsEnumDeclComplete(ET->getDecl()) &&
5055      !IsEnumDeclScoped(ET->getDecl());
5056  }
5057  return false;
5058}
5059
5060inline bool Type::isScalarType() const {
5061  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5062    return BT->getKind() > BuiltinType::Void &&
5063           BT->getKind() <= BuiltinType::NullPtr;
5064  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5065    // Enums are scalar types, but only if they are defined.  Incomplete enums
5066    // are not treated as scalar types.
5067    return IsEnumDeclComplete(ET->getDecl());
5068  return isa<PointerType>(CanonicalType) ||
5069         isa<BlockPointerType>(CanonicalType) ||
5070         isa<MemberPointerType>(CanonicalType) ||
5071         isa<ComplexType>(CanonicalType) ||
5072         isa<ObjCObjectPointerType>(CanonicalType);
5073}
5074
5075inline bool Type::isIntegralOrEnumerationType() const {
5076  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5077    return BT->getKind() >= BuiltinType::Bool &&
5078           BT->getKind() <= BuiltinType::Int128;
5079
5080  // Check for a complete enum type; incomplete enum types are not properly an
5081  // enumeration type in the sense required here.
5082  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5083    return IsEnumDeclComplete(ET->getDecl());
5084
5085  return false;
5086}
5087
5088inline bool Type::isBooleanType() const {
5089  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5090    return BT->getKind() == BuiltinType::Bool;
5091  return false;
5092}
5093
5094inline bool Type::isUndeducedType() const {
5095  const AutoType *AT = getContainedAutoType();
5096  return AT && !AT->isDeduced();
5097}
5098
5099/// \brief Determines whether this is a type for which one can define
5100/// an overloaded operator.
5101inline bool Type::isOverloadableType() const {
5102  return isDependentType() || isRecordType() || isEnumeralType();
5103}
5104
5105/// \brief Determines whether this type can decay to a pointer type.
5106inline bool Type::canDecayToPointerType() const {
5107  return isFunctionType() || isArrayType();
5108}
5109
5110inline bool Type::hasPointerRepresentation() const {
5111  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
5112          isObjCObjectPointerType() || isNullPtrType());
5113}
5114
5115inline bool Type::hasObjCPointerRepresentation() const {
5116  return isObjCObjectPointerType();
5117}
5118
5119inline const Type *Type::getBaseElementTypeUnsafe() const {
5120  const Type *type = this;
5121  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
5122    type = arrayType->getElementType().getTypePtr();
5123  return type;
5124}
5125
5126/// Insertion operator for diagnostics.  This allows sending QualType's into a
5127/// diagnostic with <<.
5128inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
5129                                           QualType T) {
5130  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5131                  DiagnosticsEngine::ak_qualtype);
5132  return DB;
5133}
5134
5135/// Insertion operator for partial diagnostics.  This allows sending QualType's
5136/// into a diagnostic with <<.
5137inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
5138                                           QualType T) {
5139  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5140                  DiagnosticsEngine::ak_qualtype);
5141  return PD;
5142}
5143
5144// Helper class template that is used by Type::getAs to ensure that one does
5145// not try to look through a qualified type to get to an array type.
5146template<typename T,
5147         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
5148                             llvm::is_base_of<ArrayType, T>::value)>
5149struct ArrayType_cannot_be_used_with_getAs { };
5150
5151template<typename T>
5152struct ArrayType_cannot_be_used_with_getAs<T, true>;
5153
5154// Member-template getAs<specific type>'.
5155template <typename T> const T *Type::getAs() const {
5156  ArrayType_cannot_be_used_with_getAs<T> at;
5157  (void)at;
5158
5159  // If this is directly a T type, return it.
5160  if (const T *Ty = dyn_cast<T>(this))
5161    return Ty;
5162
5163  // If the canonical form of this type isn't the right kind, reject it.
5164  if (!isa<T>(CanonicalType))
5165    return 0;
5166
5167  // If this is a typedef for the type, strip the typedef off without
5168  // losing all typedef information.
5169  return cast<T>(getUnqualifiedDesugaredType());
5170}
5171
5172inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
5173  // If this is directly an array type, return it.
5174  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
5175    return arr;
5176
5177  // If the canonical form of this type isn't the right kind, reject it.
5178  if (!isa<ArrayType>(CanonicalType))
5179    return 0;
5180
5181  // If this is a typedef for the type, strip the typedef off without
5182  // losing all typedef information.
5183  return cast<ArrayType>(getUnqualifiedDesugaredType());
5184}
5185
5186template <typename T> const T *Type::castAs() const {
5187  ArrayType_cannot_be_used_with_getAs<T> at;
5188  (void) at;
5189
5190  assert(isa<T>(CanonicalType));
5191  if (const T *ty = dyn_cast<T>(this)) return ty;
5192  return cast<T>(getUnqualifiedDesugaredType());
5193}
5194
5195inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
5196  assert(isa<ArrayType>(CanonicalType));
5197  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
5198  return cast<ArrayType>(getUnqualifiedDesugaredType());
5199}
5200
5201}  // end namespace clang
5202
5203#endif
5204