Type.h revision 3cdee121daa13403335094ce0e181b9911c2124c
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/type_traits.h"
25#include "llvm/ADT/APSInt.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/ADT/PointerIntPair.h"
28#include "llvm/ADT/PointerUnion.h"
29
30using llvm::isa;
31using llvm::cast;
32using llvm::cast_or_null;
33using llvm::dyn_cast;
34using llvm::dyn_cast_or_null;
35namespace clang {
36  enum {
37    TypeAlignmentInBits = 3,
38    TypeAlignment = 1 << TypeAlignmentInBits
39  };
40  class Type;
41  class ExtQuals;
42  class QualType;
43}
44
45namespace llvm {
46  template <typename T>
47  class PointerLikeTypeTraits;
48  template<>
49  class PointerLikeTypeTraits< ::clang::Type*> {
50  public:
51    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
52    static inline ::clang::Type *getFromVoidPointer(void *P) {
53      return static_cast< ::clang::Type*>(P);
54    }
55    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
56  };
57  template<>
58  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
59  public:
60    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
61    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
62      return static_cast< ::clang::ExtQuals*>(P);
63    }
64    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
65  };
66
67  template <>
68  struct isPodLike<clang::QualType> { static const bool value = true; };
69}
70
71namespace clang {
72  class ASTContext;
73  class TypedefDecl;
74  class TemplateDecl;
75  class TemplateTypeParmDecl;
76  class NonTypeTemplateParmDecl;
77  class TemplateTemplateParmDecl;
78  class TagDecl;
79  class RecordDecl;
80  class CXXRecordDecl;
81  class EnumDecl;
82  class FieldDecl;
83  class ObjCInterfaceDecl;
84  class ObjCProtocolDecl;
85  class ObjCMethodDecl;
86  class UnresolvedUsingTypenameDecl;
87  class Expr;
88  class Stmt;
89  class SourceLocation;
90  class StmtIteratorBase;
91  class TemplateArgument;
92  class TemplateArgumentLoc;
93  class TemplateArgumentListInfo;
94  class Type;
95  class ElaboratedType;
96  struct PrintingPolicy;
97
98  template <typename> class CanQual;
99  typedef CanQual<Type> CanQualType;
100
101  // Provide forward declarations for all of the *Type classes
102#define TYPE(Class, Base) class Class##Type;
103#include "clang/AST/TypeNodes.def"
104
105/// Qualifiers - The collection of all-type qualifiers we support.
106/// Clang supports five independent qualifiers:
107/// * C99: const, volatile, and restrict
108/// * Embedded C (TR18037): address spaces
109/// * Objective C: the GC attributes (none, weak, or strong)
110class Qualifiers {
111public:
112  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
113    Const    = 0x1,
114    Restrict = 0x2,
115    Volatile = 0x4,
116    CVRMask = Const | Volatile | Restrict
117  };
118
119  enum GC {
120    GCNone = 0,
121    Weak,
122    Strong
123  };
124
125  enum {
126    /// The maximum supported address space number.
127    /// 24 bits should be enough for anyone.
128    MaxAddressSpace = 0xffffffu,
129
130    /// The width of the "fast" qualifier mask.
131    FastWidth = 2,
132
133    /// The fast qualifier mask.
134    FastMask = (1 << FastWidth) - 1
135  };
136
137  Qualifiers() : Mask(0) {}
138
139  static Qualifiers fromFastMask(unsigned Mask) {
140    Qualifiers Qs;
141    Qs.addFastQualifiers(Mask);
142    return Qs;
143  }
144
145  static Qualifiers fromCVRMask(unsigned CVR) {
146    Qualifiers Qs;
147    Qs.addCVRQualifiers(CVR);
148    return Qs;
149  }
150
151  // Deserialize qualifiers from an opaque representation.
152  static Qualifiers fromOpaqueValue(unsigned opaque) {
153    Qualifiers Qs;
154    Qs.Mask = opaque;
155    return Qs;
156  }
157
158  // Serialize these qualifiers into an opaque representation.
159  unsigned getAsOpaqueValue() const {
160    return Mask;
161  }
162
163  bool hasConst() const { return Mask & Const; }
164  void setConst(bool flag) {
165    Mask = (Mask & ~Const) | (flag ? Const : 0);
166  }
167  void removeConst() { Mask &= ~Const; }
168  void addConst() { Mask |= Const; }
169
170  bool hasVolatile() const { return Mask & Volatile; }
171  void setVolatile(bool flag) {
172    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
173  }
174  void removeVolatile() { Mask &= ~Volatile; }
175  void addVolatile() { Mask |= Volatile; }
176
177  bool hasRestrict() const { return Mask & Restrict; }
178  void setRestrict(bool flag) {
179    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
180  }
181  void removeRestrict() { Mask &= ~Restrict; }
182  void addRestrict() { Mask |= Restrict; }
183
184  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
185  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
186  void setCVRQualifiers(unsigned mask) {
187    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
188    Mask = (Mask & ~CVRMask) | mask;
189  }
190  void removeCVRQualifiers(unsigned mask) {
191    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
192    Mask &= ~mask;
193  }
194  void removeCVRQualifiers() {
195    removeCVRQualifiers(CVRMask);
196  }
197  void addCVRQualifiers(unsigned mask) {
198    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
199    Mask |= mask;
200  }
201
202  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
203  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
204  void setObjCGCAttr(GC type) {
205    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
206  }
207  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
208  void addObjCGCAttr(GC type) {
209    assert(type);
210    setObjCGCAttr(type);
211  }
212
213  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
214  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
215  void setAddressSpace(unsigned space) {
216    assert(space <= MaxAddressSpace);
217    Mask = (Mask & ~AddressSpaceMask)
218         | (((uint32_t) space) << AddressSpaceShift);
219  }
220  void removeAddressSpace() { setAddressSpace(0); }
221  void addAddressSpace(unsigned space) {
222    assert(space);
223    setAddressSpace(space);
224  }
225
226  // Fast qualifiers are those that can be allocated directly
227  // on a QualType object.
228  bool hasFastQualifiers() const { return getFastQualifiers(); }
229  unsigned getFastQualifiers() const { return Mask & FastMask; }
230  void setFastQualifiers(unsigned mask) {
231    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
232    Mask = (Mask & ~FastMask) | mask;
233  }
234  void removeFastQualifiers(unsigned mask) {
235    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
236    Mask &= ~mask;
237  }
238  void removeFastQualifiers() {
239    removeFastQualifiers(FastMask);
240  }
241  void addFastQualifiers(unsigned mask) {
242    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
243    Mask |= mask;
244  }
245
246  /// hasNonFastQualifiers - Return true if the set contains any
247  /// qualifiers which require an ExtQuals node to be allocated.
248  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
249  Qualifiers getNonFastQualifiers() const {
250    Qualifiers Quals = *this;
251    Quals.setFastQualifiers(0);
252    return Quals;
253  }
254
255  /// hasQualifiers - Return true if the set contains any qualifiers.
256  bool hasQualifiers() const { return Mask; }
257  bool empty() const { return !Mask; }
258
259  /// \brief Add the qualifiers from the given set to this set.
260  void addQualifiers(Qualifiers Q) {
261    // If the other set doesn't have any non-boolean qualifiers, just
262    // bit-or it in.
263    if (!(Q.Mask & ~CVRMask))
264      Mask |= Q.Mask;
265    else {
266      Mask |= (Q.Mask & CVRMask);
267      if (Q.hasAddressSpace())
268        addAddressSpace(Q.getAddressSpace());
269      if (Q.hasObjCGCAttr())
270        addObjCGCAttr(Q.getObjCGCAttr());
271    }
272  }
273
274  bool isSupersetOf(Qualifiers Other) const;
275
276  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
277  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
278
279  operator bool() const { return hasQualifiers(); }
280
281  Qualifiers &operator+=(Qualifiers R) {
282    addQualifiers(R);
283    return *this;
284  }
285
286  // Union two qualifier sets.  If an enumerated qualifier appears
287  // in both sets, use the one from the right.
288  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
289    L += R;
290    return L;
291  }
292
293  Qualifiers &operator-=(Qualifiers R) {
294    Mask = Mask & ~(R.Mask);
295    return *this;
296  }
297
298  /// \brief Compute the difference between two qualifier sets.
299  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
300    L -= R;
301    return L;
302  }
303
304  std::string getAsString() const;
305  std::string getAsString(const PrintingPolicy &Policy) const {
306    std::string Buffer;
307    getAsStringInternal(Buffer, Policy);
308    return Buffer;
309  }
310  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
311
312  void Profile(llvm::FoldingSetNodeID &ID) const {
313    ID.AddInteger(Mask);
314  }
315
316private:
317
318  // bits:     |0 1 2|3 .. 4|5  ..  31|
319  //           |C R V|GCAttr|AddrSpace|
320  uint32_t Mask;
321
322  static const uint32_t GCAttrMask = 0x18;
323  static const uint32_t GCAttrShift = 3;
324  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
325  static const uint32_t AddressSpaceShift = 5;
326};
327
328
329/// ExtQuals - We can encode up to three bits in the low bits of a
330/// type pointer, but there are many more type qualifiers that we want
331/// to be able to apply to an arbitrary type.  Therefore we have this
332/// struct, intended to be heap-allocated and used by QualType to
333/// store qualifiers.
334///
335/// The current design tags the 'const' and 'restrict' qualifiers in
336/// two low bits on the QualType pointer; a third bit records whether
337/// the pointer is an ExtQuals node.  'const' was chosen because it is
338/// orders of magnitude more common than the other two qualifiers, in
339/// both library and user code.  It's relatively rare to see
340/// 'restrict' in user code, but many standard C headers are saturated
341/// with 'restrict' declarations, so that representing them efficiently
342/// is a critical goal of this representation.
343class ExtQuals : public llvm::FoldingSetNode {
344  // NOTE: changing the fast qualifiers should be straightforward as
345  // long as you don't make 'const' non-fast.
346  // 1. Qualifiers:
347  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
348  //       Fast qualifiers must occupy the low-order bits.
349  //    b) Update Qualifiers::FastWidth and FastMask.
350  // 2. QualType:
351  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
352  //    b) Update remove{Volatile,Restrict}, defined near the end of
353  //       this header.
354  // 3. ASTContext:
355  //    a) Update get{Volatile,Restrict}Type.
356
357  /// Context - the context to which this set belongs.  We save this
358  /// here so that QualifierCollector can use it to reapply extended
359  /// qualifiers to an arbitrary type without requiring a context to
360  /// be pushed through every single API dealing with qualifiers.
361  ASTContext& Context;
362
363  /// BaseType - the underlying type that this qualifies
364  const Type *BaseType;
365
366  /// Quals - the immutable set of qualifiers applied by this
367  /// node;  always contains extended qualifiers.
368  Qualifiers Quals;
369
370public:
371  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
372    : Context(Context), BaseType(Base), Quals(Quals)
373  {
374    assert(Quals.hasNonFastQualifiers()
375           && "ExtQuals created with no fast qualifiers");
376    assert(!Quals.hasFastQualifiers()
377           && "ExtQuals created with fast qualifiers");
378  }
379
380  Qualifiers getQualifiers() const { return Quals; }
381
382  bool hasVolatile() const { return Quals.hasVolatile(); }
383
384  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
385  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
386
387  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
388  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
389
390  const Type *getBaseType() const { return BaseType; }
391
392  ASTContext &getContext() const { return Context; }
393
394public:
395  void Profile(llvm::FoldingSetNodeID &ID) const {
396    Profile(ID, getBaseType(), Quals);
397  }
398  static void Profile(llvm::FoldingSetNodeID &ID,
399                      const Type *BaseType,
400                      Qualifiers Quals) {
401    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
402    ID.AddPointer(BaseType);
403    Quals.Profile(ID);
404  }
405};
406
407/// CallingConv - Specifies the calling convention that a function uses.
408enum CallingConv {
409  CC_Default,
410  CC_C,           // __attribute__((cdecl))
411  CC_X86StdCall,  // __attribute__((stdcall))
412  CC_X86FastCall, // __attribute__((fastcall))
413  CC_X86ThisCall  // __attribute__((thiscall))
414};
415
416
417/// QualType - For efficiency, we don't store CV-qualified types as nodes on
418/// their own: instead each reference to a type stores the qualifiers.  This
419/// greatly reduces the number of nodes we need to allocate for types (for
420/// example we only need one for 'int', 'const int', 'volatile int',
421/// 'const volatile int', etc).
422///
423/// As an added efficiency bonus, instead of making this a pair, we
424/// just store the two bits we care about in the low bits of the
425/// pointer.  To handle the packing/unpacking, we make QualType be a
426/// simple wrapper class that acts like a smart pointer.  A third bit
427/// indicates whether there are extended qualifiers present, in which
428/// case the pointer points to a special structure.
429class QualType {
430  // Thankfully, these are efficiently composable.
431  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
432                       Qualifiers::FastWidth> Value;
433
434  const ExtQuals *getExtQualsUnsafe() const {
435    return Value.getPointer().get<const ExtQuals*>();
436  }
437
438  const Type *getTypePtrUnsafe() const {
439    return Value.getPointer().get<const Type*>();
440  }
441
442  QualType getUnqualifiedTypeSlow() const;
443
444  friend class QualifierCollector;
445public:
446  QualType() {}
447
448  QualType(const Type *Ptr, unsigned Quals)
449    : Value(Ptr, Quals) {}
450  QualType(const ExtQuals *Ptr, unsigned Quals)
451    : Value(Ptr, Quals) {}
452
453  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
454  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
455
456  /// Retrieves a pointer to the underlying (unqualified) type.
457  /// This should really return a const Type, but it's not worth
458  /// changing all the users right now.
459  Type *getTypePtr() const {
460    if (hasLocalNonFastQualifiers())
461      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
462    return const_cast<Type*>(getTypePtrUnsafe());
463  }
464
465  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
466  static QualType getFromOpaquePtr(void *Ptr) {
467    QualType T;
468    T.Value.setFromOpaqueValue(Ptr);
469    return T;
470  }
471
472  Type &operator*() const {
473    return *getTypePtr();
474  }
475
476  Type *operator->() const {
477    return getTypePtr();
478  }
479
480  bool isCanonical() const;
481  bool isCanonicalAsParam() const;
482
483  /// isNull - Return true if this QualType doesn't point to a type yet.
484  bool isNull() const {
485    return Value.getPointer().isNull();
486  }
487
488  /// \brief Determine whether this particular QualType instance has the
489  /// "const" qualifier set, without looking through typedefs that may have
490  /// added "const" at a different level.
491  bool isLocalConstQualified() const {
492    return (getLocalFastQualifiers() & Qualifiers::Const);
493  }
494
495  /// \brief Determine whether this type is const-qualified.
496  bool isConstQualified() const;
497
498  /// \brief Determine whether this particular QualType instance has the
499  /// "restrict" qualifier set, without looking through typedefs that may have
500  /// added "restrict" at a different level.
501  bool isLocalRestrictQualified() const {
502    return (getLocalFastQualifiers() & Qualifiers::Restrict);
503  }
504
505  /// \brief Determine whether this type is restrict-qualified.
506  bool isRestrictQualified() const;
507
508  /// \brief Determine whether this particular QualType instance has the
509  /// "volatile" qualifier set, without looking through typedefs that may have
510  /// added "volatile" at a different level.
511  bool isLocalVolatileQualified() const {
512    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
513  }
514
515  /// \brief Determine whether this type is volatile-qualified.
516  bool isVolatileQualified() const;
517
518  /// \brief Determine whether this particular QualType instance has any
519  /// qualifiers, without looking through any typedefs that might add
520  /// qualifiers at a different level.
521  bool hasLocalQualifiers() const {
522    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
523  }
524
525  /// \brief Determine whether this type has any qualifiers.
526  bool hasQualifiers() const;
527
528  /// \brief Determine whether this particular QualType instance has any
529  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
530  /// instance.
531  bool hasLocalNonFastQualifiers() const {
532    return Value.getPointer().is<const ExtQuals*>();
533  }
534
535  /// \brief Retrieve the set of qualifiers local to this particular QualType
536  /// instance, not including any qualifiers acquired through typedefs or
537  /// other sugar.
538  Qualifiers getLocalQualifiers() const {
539    Qualifiers Quals;
540    if (hasLocalNonFastQualifiers())
541      Quals = getExtQualsUnsafe()->getQualifiers();
542    Quals.addFastQualifiers(getLocalFastQualifiers());
543    return Quals;
544  }
545
546  /// \brief Retrieve the set of qualifiers applied to this type.
547  Qualifiers getQualifiers() const;
548
549  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
550  /// local to this particular QualType instance, not including any qualifiers
551  /// acquired through typedefs or other sugar.
552  unsigned getLocalCVRQualifiers() const {
553    unsigned CVR = getLocalFastQualifiers();
554    if (isLocalVolatileQualified())
555      CVR |= Qualifiers::Volatile;
556    return CVR;
557  }
558
559  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
560  /// applied to this type.
561  unsigned getCVRQualifiers() const;
562
563  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
564  /// applied to this type, looking through any number of unqualified array
565  /// types to their element types' qualifiers.
566  unsigned getCVRQualifiersThroughArrayTypes() const;
567
568  bool isConstant(ASTContext& Ctx) const {
569    return QualType::isConstant(*this, Ctx);
570  }
571
572  // Don't promise in the API that anything besides 'const' can be
573  // easily added.
574
575  /// addConst - add the specified type qualifier to this QualType.
576  void addConst() {
577    addFastQualifiers(Qualifiers::Const);
578  }
579  QualType withConst() const {
580    return withFastQualifiers(Qualifiers::Const);
581  }
582
583  void addFastQualifiers(unsigned TQs) {
584    assert(!(TQs & ~Qualifiers::FastMask)
585           && "non-fast qualifier bits set in mask!");
586    Value.setInt(Value.getInt() | TQs);
587  }
588
589  // FIXME: The remove* functions are semantically broken, because they might
590  // not remove a qualifier stored on a typedef. Most of the with* functions
591  // have the same problem.
592  void removeConst();
593  void removeVolatile();
594  void removeRestrict();
595  void removeCVRQualifiers(unsigned Mask);
596
597  void removeFastQualifiers() { Value.setInt(0); }
598  void removeFastQualifiers(unsigned Mask) {
599    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
600    Value.setInt(Value.getInt() & ~Mask);
601  }
602
603  // Creates a type with the given qualifiers in addition to any
604  // qualifiers already on this type.
605  QualType withFastQualifiers(unsigned TQs) const {
606    QualType T = *this;
607    T.addFastQualifiers(TQs);
608    return T;
609  }
610
611  // Creates a type with exactly the given fast qualifiers, removing
612  // any existing fast qualifiers.
613  QualType withExactFastQualifiers(unsigned TQs) const {
614    return withoutFastQualifiers().withFastQualifiers(TQs);
615  }
616
617  // Removes fast qualifiers, but leaves any extended qualifiers in place.
618  QualType withoutFastQualifiers() const {
619    QualType T = *this;
620    T.removeFastQualifiers();
621    return T;
622  }
623
624  /// \brief Return this type with all of the instance-specific qualifiers
625  /// removed, but without removing any qualifiers that may have been applied
626  /// through typedefs.
627  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
628
629  /// \brief Return the unqualified form of the given type, which might be
630  /// desugared to eliminate qualifiers introduced via typedefs.
631  QualType getUnqualifiedType() const {
632    QualType T = getLocalUnqualifiedType();
633    if (!T.hasQualifiers())
634      return T;
635
636    return getUnqualifiedTypeSlow();
637  }
638
639  bool isMoreQualifiedThan(QualType Other) const;
640  bool isAtLeastAsQualifiedAs(QualType Other) const;
641  QualType getNonReferenceType() const;
642
643  /// \brief Determine the type of a (typically non-lvalue) expression with the
644  /// specified result type.
645  ///
646  /// This routine should be used for expressions for which the return type is
647  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
648  /// an lvalue. It removes a top-level reference (since there are no
649  /// expressions of reference type) and deletes top-level cvr-qualifiers
650  /// from non-class types (in C++) or all types (in C).
651  QualType getNonLValueExprType(ASTContext &Context) const;
652
653  /// getDesugaredType - Return the specified type with any "sugar" removed from
654  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
655  /// the type is already concrete, it returns it unmodified.  This is similar
656  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
657  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
658  /// concrete.
659  ///
660  /// Qualifiers are left in place.
661  QualType getDesugaredType() const {
662    return QualType::getDesugaredType(*this);
663  }
664
665  /// operator==/!= - Indicate whether the specified types and qualifiers are
666  /// identical.
667  friend bool operator==(const QualType &LHS, const QualType &RHS) {
668    return LHS.Value == RHS.Value;
669  }
670  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
671    return LHS.Value != RHS.Value;
672  }
673  std::string getAsString() const;
674
675  std::string getAsString(const PrintingPolicy &Policy) const {
676    std::string S;
677    getAsStringInternal(S, Policy);
678    return S;
679  }
680  void getAsStringInternal(std::string &Str,
681                           const PrintingPolicy &Policy) const;
682
683  void dump(const char *s) const;
684  void dump() const;
685
686  void Profile(llvm::FoldingSetNodeID &ID) const {
687    ID.AddPointer(getAsOpaquePtr());
688  }
689
690  /// getAddressSpace - Return the address space of this type.
691  inline unsigned getAddressSpace() const;
692
693  /// GCAttrTypesAttr - Returns gc attribute of this type.
694  inline Qualifiers::GC getObjCGCAttr() const;
695
696  /// isObjCGCWeak true when Type is objc's weak.
697  bool isObjCGCWeak() const {
698    return getObjCGCAttr() == Qualifiers::Weak;
699  }
700
701  /// isObjCGCStrong true when Type is objc's strong.
702  bool isObjCGCStrong() const {
703    return getObjCGCAttr() == Qualifiers::Strong;
704  }
705
706private:
707  // These methods are implemented in a separate translation unit;
708  // "static"-ize them to avoid creating temporary QualTypes in the
709  // caller.
710  static bool isConstant(QualType T, ASTContext& Ctx);
711  static QualType getDesugaredType(QualType T);
712};
713
714} // end clang.
715
716namespace llvm {
717/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
718/// to a specific Type class.
719template<> struct simplify_type<const ::clang::QualType> {
720  typedef ::clang::Type* SimpleType;
721  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
722    return Val.getTypePtr();
723  }
724};
725template<> struct simplify_type< ::clang::QualType>
726  : public simplify_type<const ::clang::QualType> {};
727
728// Teach SmallPtrSet that QualType is "basically a pointer".
729template<>
730class PointerLikeTypeTraits<clang::QualType> {
731public:
732  static inline void *getAsVoidPointer(clang::QualType P) {
733    return P.getAsOpaquePtr();
734  }
735  static inline clang::QualType getFromVoidPointer(void *P) {
736    return clang::QualType::getFromOpaquePtr(P);
737  }
738  // Various qualifiers go in low bits.
739  enum { NumLowBitsAvailable = 0 };
740};
741
742} // end namespace llvm
743
744namespace clang {
745
746/// Type - This is the base class of the type hierarchy.  A central concept
747/// with types is that each type always has a canonical type.  A canonical type
748/// is the type with any typedef names stripped out of it or the types it
749/// references.  For example, consider:
750///
751///  typedef int  foo;
752///  typedef foo* bar;
753///    'int *'    'foo *'    'bar'
754///
755/// There will be a Type object created for 'int'.  Since int is canonical, its
756/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
757/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
758/// there is a PointerType that represents 'int*', which, like 'int', is
759/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
760/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
761/// is also 'int*'.
762///
763/// Non-canonical types are useful for emitting diagnostics, without losing
764/// information about typedefs being used.  Canonical types are useful for type
765/// comparisons (they allow by-pointer equality tests) and useful for reasoning
766/// about whether something has a particular form (e.g. is a function type),
767/// because they implicitly, recursively, strip all typedefs out of a type.
768///
769/// Types, once created, are immutable.
770///
771class Type {
772public:
773  enum TypeClass {
774#define TYPE(Class, Base) Class,
775#define LAST_TYPE(Class) TypeLast = Class,
776#define ABSTRACT_TYPE(Class, Base)
777#include "clang/AST/TypeNodes.def"
778    TagFirst = Record, TagLast = Enum
779  };
780
781private:
782  Type(const Type&);           // DO NOT IMPLEMENT.
783  void operator=(const Type&); // DO NOT IMPLEMENT.
784
785  QualType CanonicalType;
786
787  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
788  unsigned TC : 8;
789
790  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
791  /// Note that this should stay at the end of the ivars for Type so that
792  /// subclasses can pack their bitfields into the same word.
793  bool Dependent : 1;
794
795  /// \brief Whether the linkage of this type is already known.
796  mutable bool LinkageKnown : 1;
797
798  /// \brief Linkage of this type.
799  mutable unsigned CachedLinkage : 2;
800
801  /// \brief FromAST - Whether this type comes from an AST file.
802  mutable bool FromAST : 1;
803
804  /// \brief Set whether this type comes from an AST file.
805  void setFromAST(bool V = true) const {
806    FromAST = V;
807  }
808
809protected:
810  /// \brief Compute the linkage of this type.
811  virtual Linkage getLinkageImpl() const;
812
813  enum { BitsRemainingInType = 19 };
814
815  // silence VC++ warning C4355: 'this' : used in base member initializer list
816  Type *this_() { return this; }
817  Type(TypeClass tc, QualType Canonical, bool dependent)
818    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
819      TC(tc), Dependent(dependent), LinkageKnown(false),
820      CachedLinkage(NoLinkage), FromAST(false) {}
821  virtual ~Type();
822  friend class ASTContext;
823
824public:
825  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
826
827  /// \brief Whether this type comes from an AST file.
828  bool isFromAST() const { return FromAST; }
829
830  bool isCanonicalUnqualified() const {
831    return CanonicalType.getTypePtr() == this;
832  }
833
834  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
835  /// object types, function types, and incomplete types.
836
837  /// isIncompleteType - Return true if this is an incomplete type.
838  /// A type that can describe objects, but which lacks information needed to
839  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
840  /// routine will need to determine if the size is actually required.
841  bool isIncompleteType() const;
842
843  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
844  /// type, in other words, not a function type.
845  bool isIncompleteOrObjectType() const {
846    return !isFunctionType();
847  }
848
849  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
850  bool isPODType() const;
851
852  /// isLiteralType - Return true if this is a literal type
853  /// (C++0x [basic.types]p10)
854  bool isLiteralType() const;
855
856  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
857  /// types that have a non-constant expression. This does not include "[]".
858  bool isVariablyModifiedType() const;
859
860  /// Helper methods to distinguish type categories. All type predicates
861  /// operate on the canonical type, ignoring typedefs and qualifiers.
862
863  /// isBuiltinType - returns true if the type is a builtin type.
864  bool isBuiltinType() const;
865
866  /// isSpecificBuiltinType - Test for a particular builtin type.
867  bool isSpecificBuiltinType(unsigned K) const;
868
869  /// isIntegerType() does *not* include complex integers (a GCC extension).
870  /// isComplexIntegerType() can be used to test for complex integers.
871  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
872  bool isEnumeralType() const;
873  bool isBooleanType() const;
874  bool isCharType() const;
875  bool isWideCharType() const;
876  bool isAnyCharacterType() const;
877  bool isIntegralType(ASTContext &Ctx) const;
878
879  /// \brief Determine whether this type is an integral or enumeration type.
880  bool isIntegralOrEnumerationType() const;
881
882  /// Floating point categories.
883  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
884  /// isComplexType() does *not* include complex integers (a GCC extension).
885  /// isComplexIntegerType() can be used to test for complex integers.
886  bool isComplexType() const;      // C99 6.2.5p11 (complex)
887  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
888  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
889  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
890  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
891  bool isVoidType() const;         // C99 6.2.5p19
892  bool isDerivedType() const;      // C99 6.2.5p20
893  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
894  bool isAggregateType() const;
895
896  // Type Predicates: Check to see if this type is structurally the specified
897  // type, ignoring typedefs and qualifiers.
898  bool isFunctionType() const;
899  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
900  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
901  bool isPointerType() const;
902  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
903  bool isBlockPointerType() const;
904  bool isVoidPointerType() const;
905  bool isReferenceType() const;
906  bool isLValueReferenceType() const;
907  bool isRValueReferenceType() const;
908  bool isFunctionPointerType() const;
909  bool isMemberPointerType() const;
910  bool isMemberFunctionPointerType() const;
911  bool isMemberDataPointerType() const;
912  bool isArrayType() const;
913  bool isConstantArrayType() const;
914  bool isIncompleteArrayType() const;
915  bool isVariableArrayType() const;
916  bool isDependentSizedArrayType() const;
917  bool isRecordType() const;
918  bool isClassType() const;
919  bool isStructureType() const;
920  bool isStructureOrClassType() const;
921  bool isUnionType() const;
922  bool isComplexIntegerType() const;            // GCC _Complex integer type.
923  bool isVectorType() const;                    // GCC vector type.
924  bool isExtVectorType() const;                 // Extended vector type.
925  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
926  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
927  // for the common case.
928  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
929  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
930  bool isObjCQualifiedIdType() const;           // id<foo>
931  bool isObjCQualifiedClassType() const;        // Class<foo>
932  bool isObjCObjectOrInterfaceType() const;
933  bool isObjCIdType() const;                    // id
934  bool isObjCClassType() const;                 // Class
935  bool isObjCSelType() const;                 // Class
936  bool isObjCBuiltinType() const;               // 'id' or 'Class'
937  bool isTemplateTypeParmType() const;          // C++ template type parameter
938  bool isNullPtrType() const;                   // C++0x nullptr_t
939
940  /// isDependentType - Whether this type is a dependent type, meaning
941  /// that its definition somehow depends on a template parameter
942  /// (C++ [temp.dep.type]).
943  bool isDependentType() const { return Dependent; }
944  bool isOverloadableType() const;
945
946  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
947  bool isElaboratedTypeSpecifier() const;
948
949  /// hasPointerRepresentation - Whether this type is represented
950  /// natively as a pointer; this includes pointers, references, block
951  /// pointers, and Objective-C interface, qualified id, and qualified
952  /// interface types, as well as nullptr_t.
953  bool hasPointerRepresentation() const;
954
955  /// hasObjCPointerRepresentation - Whether this type can represent
956  /// an objective pointer type for the purpose of GC'ability
957  bool hasObjCPointerRepresentation() const;
958
959  /// \brief Determine whether this type has an integer representation
960  /// of some sort, e.g., it is an integer type or a vector.
961  bool hasIntegerRepresentation() const;
962
963  /// \brief Determine whether this type has an signed integer representation
964  /// of some sort, e.g., it is an signed integer type or a vector.
965  bool hasSignedIntegerRepresentation() const;
966
967  /// \brief Determine whether this type has an unsigned integer representation
968  /// of some sort, e.g., it is an unsigned integer type or a vector.
969  bool hasUnsignedIntegerRepresentation() const;
970
971  /// \brief Determine whether this type has a floating-point representation
972  /// of some sort, e.g., it is a floating-point type or a vector thereof.
973  bool hasFloatingRepresentation() const;
974
975  // Type Checking Functions: Check to see if this type is structurally the
976  // specified type, ignoring typedefs and qualifiers, and return a pointer to
977  // the best type we can.
978  const RecordType *getAsStructureType() const;
979  /// NOTE: getAs*ArrayType are methods on ASTContext.
980  const RecordType *getAsUnionType() const;
981  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
982  // The following is a convenience method that returns an ObjCObjectPointerType
983  // for object declared using an interface.
984  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
985  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
986  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
987  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
988
989  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
990  /// because the type is a RecordType or because it is the injected-class-name
991  /// type of a class template or class template partial specialization.
992  CXXRecordDecl *getAsCXXRecordDecl() const;
993
994  // Member-template getAs<specific type>'.  Look through sugar for
995  // an instance of <specific type>.   This scheme will eventually
996  // replace the specific getAsXXXX methods above.
997  //
998  // There are some specializations of this member template listed
999  // immediately following this class.
1000  template <typename T> const T *getAs() const;
1001
1002  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1003  /// element type of the array, potentially with type qualifiers missing.
1004  /// This method should never be used when type qualifiers are meaningful.
1005  const Type *getArrayElementTypeNoTypeQual() const;
1006
1007  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1008  /// pointer, this returns the respective pointee.
1009  QualType getPointeeType() const;
1010
1011  /// getUnqualifiedDesugaredType() - Return the specified type with
1012  /// any "sugar" removed from the type, removing any typedefs,
1013  /// typeofs, etc., as well as any qualifiers.
1014  const Type *getUnqualifiedDesugaredType() const;
1015
1016  /// More type predicates useful for type checking/promotion
1017  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1018
1019  /// isSignedIntegerType - Return true if this is an integer type that is
1020  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1021  /// an enum decl which has a signed representation, or a vector of signed
1022  /// integer element type.
1023  bool isSignedIntegerType() const;
1024
1025  /// isUnsignedIntegerType - Return true if this is an integer type that is
1026  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1027  /// decl which has an unsigned representation, or a vector of unsigned integer
1028  /// element type.
1029  bool isUnsignedIntegerType() const;
1030
1031  /// isConstantSizeType - Return true if this is not a variable sized type,
1032  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1033  /// incomplete types.
1034  bool isConstantSizeType() const;
1035
1036  /// isSpecifierType - Returns true if this type can be represented by some
1037  /// set of type specifiers.
1038  bool isSpecifierType() const;
1039
1040  /// \brief Determine the linkage of this type.
1041  Linkage getLinkage() const;
1042
1043  /// \brief Note that the linkage is no longer known.
1044  void ClearLinkageCache();
1045
1046  const char *getTypeClassName() const;
1047
1048  QualType getCanonicalTypeInternal() const {
1049    return CanonicalType;
1050  }
1051  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1052  void dump() const;
1053  static bool classof(const Type *) { return true; }
1054
1055  friend class ASTReader;
1056  friend class ASTWriter;
1057};
1058
1059template <> inline const TypedefType *Type::getAs() const {
1060  return dyn_cast<TypedefType>(this);
1061}
1062
1063// We can do canonical leaf types faster, because we don't have to
1064// worry about preserving child type decoration.
1065#define TYPE(Class, Base)
1066#define LEAF_TYPE(Class) \
1067template <> inline const Class##Type *Type::getAs() const { \
1068  return dyn_cast<Class##Type>(CanonicalType); \
1069}
1070#include "clang/AST/TypeNodes.def"
1071
1072
1073/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1074/// types are always canonical and have a literal name field.
1075class BuiltinType : public Type {
1076public:
1077  enum Kind {
1078    Void,
1079
1080    Bool,     // This is bool and/or _Bool.
1081    Char_U,   // This is 'char' for targets where char is unsigned.
1082    UChar,    // This is explicitly qualified unsigned char.
1083    Char16,   // This is 'char16_t' for C++.
1084    Char32,   // This is 'char32_t' for C++.
1085    UShort,
1086    UInt,
1087    ULong,
1088    ULongLong,
1089    UInt128,  // __uint128_t
1090
1091    Char_S,   // This is 'char' for targets where char is signed.
1092    SChar,    // This is explicitly qualified signed char.
1093    WChar,    // This is 'wchar_t' for C++.
1094    Short,
1095    Int,
1096    Long,
1097    LongLong,
1098    Int128,   // __int128_t
1099
1100    Float, Double, LongDouble,
1101
1102    NullPtr,  // This is the type of C++0x 'nullptr'.
1103
1104    Overload,  // This represents the type of an overloaded function declaration.
1105    Dependent, // This represents the type of a type-dependent expression.
1106
1107    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1108                   // that has not been deduced yet.
1109
1110    /// The primitive Objective C 'id' type.  The type pointed to by the
1111    /// user-visible 'id' type.  Only ever shows up in an AST as the base
1112    /// type of an ObjCObjectType.
1113    ObjCId,
1114
1115    /// The primitive Objective C 'Class' type.  The type pointed to by the
1116    /// user-visible 'Class' type.  Only ever shows up in an AST as the
1117    /// base type of an ObjCObjectType.
1118    ObjCClass,
1119
1120    ObjCSel    // This represents the ObjC 'SEL' type.
1121  };
1122private:
1123  Kind TypeKind;
1124
1125protected:
1126  virtual Linkage getLinkageImpl() const;
1127
1128public:
1129  BuiltinType(Kind K)
1130    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
1131      TypeKind(K) {}
1132
1133  Kind getKind() const { return TypeKind; }
1134  const char *getName(const LangOptions &LO) const;
1135
1136  bool isSugared() const { return false; }
1137  QualType desugar() const { return QualType(this, 0); }
1138
1139  bool isInteger() const {
1140    return TypeKind >= Bool && TypeKind <= Int128;
1141  }
1142
1143  bool isSignedInteger() const {
1144    return TypeKind >= Char_S && TypeKind <= Int128;
1145  }
1146
1147  bool isUnsignedInteger() const {
1148    return TypeKind >= Bool && TypeKind <= UInt128;
1149  }
1150
1151  bool isFloatingPoint() const {
1152    return TypeKind >= Float && TypeKind <= LongDouble;
1153  }
1154
1155  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1156  static bool classof(const BuiltinType *) { return true; }
1157};
1158
1159/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1160/// types (_Complex float etc) as well as the GCC integer complex extensions.
1161///
1162class ComplexType : public Type, public llvm::FoldingSetNode {
1163  QualType ElementType;
1164  ComplexType(QualType Element, QualType CanonicalPtr) :
1165    Type(Complex, CanonicalPtr, Element->isDependentType()),
1166    ElementType(Element) {
1167  }
1168  friend class ASTContext;  // ASTContext creates these.
1169
1170protected:
1171  virtual Linkage getLinkageImpl() const;
1172
1173public:
1174  QualType getElementType() const { return ElementType; }
1175
1176  bool isSugared() const { return false; }
1177  QualType desugar() const { return QualType(this, 0); }
1178
1179  void Profile(llvm::FoldingSetNodeID &ID) {
1180    Profile(ID, getElementType());
1181  }
1182  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1183    ID.AddPointer(Element.getAsOpaquePtr());
1184  }
1185
1186  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1187  static bool classof(const ComplexType *) { return true; }
1188};
1189
1190/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1191///
1192class PointerType : public Type, public llvm::FoldingSetNode {
1193  QualType PointeeType;
1194
1195  PointerType(QualType Pointee, QualType CanonicalPtr) :
1196    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1197  }
1198  friend class ASTContext;  // ASTContext creates these.
1199
1200protected:
1201  virtual Linkage getLinkageImpl() const;
1202
1203public:
1204
1205  QualType getPointeeType() const { return PointeeType; }
1206
1207  bool isSugared() const { return false; }
1208  QualType desugar() const { return QualType(this, 0); }
1209
1210  void Profile(llvm::FoldingSetNodeID &ID) {
1211    Profile(ID, getPointeeType());
1212  }
1213  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1214    ID.AddPointer(Pointee.getAsOpaquePtr());
1215  }
1216
1217  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1218  static bool classof(const PointerType *) { return true; }
1219};
1220
1221/// BlockPointerType - pointer to a block type.
1222/// This type is to represent types syntactically represented as
1223/// "void (^)(int)", etc. Pointee is required to always be a function type.
1224///
1225class BlockPointerType : public Type, public llvm::FoldingSetNode {
1226  QualType PointeeType;  // Block is some kind of pointer type
1227  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1228    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1229    PointeeType(Pointee) {
1230  }
1231  friend class ASTContext;  // ASTContext creates these.
1232
1233protected:
1234  virtual Linkage getLinkageImpl() const;
1235
1236public:
1237
1238  // Get the pointee type. Pointee is required to always be a function type.
1239  QualType getPointeeType() const { return PointeeType; }
1240
1241  bool isSugared() const { return false; }
1242  QualType desugar() const { return QualType(this, 0); }
1243
1244  void Profile(llvm::FoldingSetNodeID &ID) {
1245      Profile(ID, getPointeeType());
1246  }
1247  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1248      ID.AddPointer(Pointee.getAsOpaquePtr());
1249  }
1250
1251  static bool classof(const Type *T) {
1252    return T->getTypeClass() == BlockPointer;
1253  }
1254  static bool classof(const BlockPointerType *) { return true; }
1255};
1256
1257/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1258///
1259class ReferenceType : public Type, public llvm::FoldingSetNode {
1260  QualType PointeeType;
1261
1262  /// True if the type was originally spelled with an lvalue sigil.
1263  /// This is never true of rvalue references but can also be false
1264  /// on lvalue references because of C++0x [dcl.typedef]p9,
1265  /// as follows:
1266  ///
1267  ///   typedef int &ref;    // lvalue, spelled lvalue
1268  ///   typedef int &&rvref; // rvalue
1269  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1270  ///   ref &&a;             // lvalue, inner ref
1271  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1272  ///   rvref &&a;           // rvalue, inner ref
1273  bool SpelledAsLValue;
1274
1275  /// True if the inner type is a reference type.  This only happens
1276  /// in non-canonical forms.
1277  bool InnerRef;
1278
1279protected:
1280  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1281                bool SpelledAsLValue) :
1282    Type(tc, CanonicalRef, Referencee->isDependentType()),
1283    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1284    InnerRef(Referencee->isReferenceType()) {
1285  }
1286
1287  virtual Linkage getLinkageImpl() const;
1288
1289public:
1290  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1291  bool isInnerRef() const { return InnerRef; }
1292
1293  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1294  QualType getPointeeType() const {
1295    // FIXME: this might strip inner qualifiers; okay?
1296    const ReferenceType *T = this;
1297    while (T->InnerRef)
1298      T = T->PointeeType->getAs<ReferenceType>();
1299    return T->PointeeType;
1300  }
1301
1302  void Profile(llvm::FoldingSetNodeID &ID) {
1303    Profile(ID, PointeeType, SpelledAsLValue);
1304  }
1305  static void Profile(llvm::FoldingSetNodeID &ID,
1306                      QualType Referencee,
1307                      bool SpelledAsLValue) {
1308    ID.AddPointer(Referencee.getAsOpaquePtr());
1309    ID.AddBoolean(SpelledAsLValue);
1310  }
1311
1312  static bool classof(const Type *T) {
1313    return T->getTypeClass() == LValueReference ||
1314           T->getTypeClass() == RValueReference;
1315  }
1316  static bool classof(const ReferenceType *) { return true; }
1317};
1318
1319/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1320///
1321class LValueReferenceType : public ReferenceType {
1322  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1323                      bool SpelledAsLValue) :
1324    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1325  {}
1326  friend class ASTContext; // ASTContext creates these
1327public:
1328  bool isSugared() const { return false; }
1329  QualType desugar() const { return QualType(this, 0); }
1330
1331  static bool classof(const Type *T) {
1332    return T->getTypeClass() == LValueReference;
1333  }
1334  static bool classof(const LValueReferenceType *) { return true; }
1335};
1336
1337/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1338///
1339class RValueReferenceType : public ReferenceType {
1340  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1341    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1342  }
1343  friend class ASTContext; // ASTContext creates these
1344public:
1345  bool isSugared() const { return false; }
1346  QualType desugar() const { return QualType(this, 0); }
1347
1348  static bool classof(const Type *T) {
1349    return T->getTypeClass() == RValueReference;
1350  }
1351  static bool classof(const RValueReferenceType *) { return true; }
1352};
1353
1354/// MemberPointerType - C++ 8.3.3 - Pointers to members
1355///
1356class MemberPointerType : public Type, public llvm::FoldingSetNode {
1357  QualType PointeeType;
1358  /// The class of which the pointee is a member. Must ultimately be a
1359  /// RecordType, but could be a typedef or a template parameter too.
1360  const Type *Class;
1361
1362  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1363    Type(MemberPointer, CanonicalPtr,
1364         Cls->isDependentType() || Pointee->isDependentType()),
1365    PointeeType(Pointee), Class(Cls) {
1366  }
1367  friend class ASTContext; // ASTContext creates these.
1368
1369protected:
1370  virtual Linkage getLinkageImpl() const;
1371
1372public:
1373  QualType getPointeeType() const { return PointeeType; }
1374
1375  /// Returns true if the member type (i.e. the pointee type) is a
1376  /// function type rather than a data-member type.
1377  bool isMemberFunctionPointer() const {
1378    return PointeeType->isFunctionProtoType();
1379  }
1380
1381  /// Returns true if the member type (i.e. the pointee type) is a
1382  /// data type rather than a function type.
1383  bool isMemberDataPointer() const {
1384    return !PointeeType->isFunctionProtoType();
1385  }
1386
1387  const Type *getClass() const { return Class; }
1388
1389  bool isSugared() const { return false; }
1390  QualType desugar() const { return QualType(this, 0); }
1391
1392  void Profile(llvm::FoldingSetNodeID &ID) {
1393    Profile(ID, getPointeeType(), getClass());
1394  }
1395  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1396                      const Type *Class) {
1397    ID.AddPointer(Pointee.getAsOpaquePtr());
1398    ID.AddPointer(Class);
1399  }
1400
1401  static bool classof(const Type *T) {
1402    return T->getTypeClass() == MemberPointer;
1403  }
1404  static bool classof(const MemberPointerType *) { return true; }
1405};
1406
1407/// ArrayType - C99 6.7.5.2 - Array Declarators.
1408///
1409class ArrayType : public Type, public llvm::FoldingSetNode {
1410public:
1411  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1412  /// an array with a static size (e.g. int X[static 4]), or an array
1413  /// with a star size (e.g. int X[*]).
1414  /// 'static' is only allowed on function parameters.
1415  enum ArraySizeModifier {
1416    Normal, Static, Star
1417  };
1418private:
1419  /// ElementType - The element type of the array.
1420  QualType ElementType;
1421
1422  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1423  /// NOTE: These fields are packed into the bitfields space in the Type class.
1424  unsigned SizeModifier : 2;
1425
1426  /// IndexTypeQuals - Capture qualifiers in declarations like:
1427  /// 'int X[static restrict 4]'. For function parameters only.
1428  unsigned IndexTypeQuals : 3;
1429
1430protected:
1431  // C++ [temp.dep.type]p1:
1432  //   A type is dependent if it is...
1433  //     - an array type constructed from any dependent type or whose
1434  //       size is specified by a constant expression that is
1435  //       value-dependent,
1436  ArrayType(TypeClass tc, QualType et, QualType can,
1437            ArraySizeModifier sm, unsigned tq)
1438    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1439      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1440
1441  friend class ASTContext;  // ASTContext creates these.
1442
1443  virtual Linkage getLinkageImpl() const;
1444
1445public:
1446  QualType getElementType() const { return ElementType; }
1447  ArraySizeModifier getSizeModifier() const {
1448    return ArraySizeModifier(SizeModifier);
1449  }
1450  Qualifiers getIndexTypeQualifiers() const {
1451    return Qualifiers::fromCVRMask(IndexTypeQuals);
1452  }
1453  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1454
1455  static bool classof(const Type *T) {
1456    return T->getTypeClass() == ConstantArray ||
1457           T->getTypeClass() == VariableArray ||
1458           T->getTypeClass() == IncompleteArray ||
1459           T->getTypeClass() == DependentSizedArray;
1460  }
1461  static bool classof(const ArrayType *) { return true; }
1462};
1463
1464/// ConstantArrayType - This class represents the canonical version of
1465/// C arrays with a specified constant size.  For example, the canonical
1466/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1467/// type is 'int' and the size is 404.
1468class ConstantArrayType : public ArrayType {
1469  llvm::APInt Size; // Allows us to unique the type.
1470
1471  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1472                    ArraySizeModifier sm, unsigned tq)
1473    : ArrayType(ConstantArray, et, can, sm, tq),
1474      Size(size) {}
1475protected:
1476  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1477                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1478    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1479  friend class ASTContext;  // ASTContext creates these.
1480public:
1481  const llvm::APInt &getSize() const { return Size; }
1482  bool isSugared() const { return false; }
1483  QualType desugar() const { return QualType(this, 0); }
1484
1485
1486  /// \brief Determine the number of bits required to address a member of
1487  // an array with the given element type and number of elements.
1488  static unsigned getNumAddressingBits(ASTContext &Context,
1489                                       QualType ElementType,
1490                                       const llvm::APInt &NumElements);
1491
1492  /// \brief Determine the maximum number of active bits that an array's size
1493  /// can require, which limits the maximum size of the array.
1494  static unsigned getMaxSizeBits(ASTContext &Context);
1495
1496  void Profile(llvm::FoldingSetNodeID &ID) {
1497    Profile(ID, getElementType(), getSize(),
1498            getSizeModifier(), getIndexTypeCVRQualifiers());
1499  }
1500  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1501                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1502                      unsigned TypeQuals) {
1503    ID.AddPointer(ET.getAsOpaquePtr());
1504    ID.AddInteger(ArraySize.getZExtValue());
1505    ID.AddInteger(SizeMod);
1506    ID.AddInteger(TypeQuals);
1507  }
1508  static bool classof(const Type *T) {
1509    return T->getTypeClass() == ConstantArray;
1510  }
1511  static bool classof(const ConstantArrayType *) { return true; }
1512};
1513
1514/// IncompleteArrayType - This class represents C arrays with an unspecified
1515/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1516/// type is 'int' and the size is unspecified.
1517class IncompleteArrayType : public ArrayType {
1518
1519  IncompleteArrayType(QualType et, QualType can,
1520                      ArraySizeModifier sm, unsigned tq)
1521    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1522  friend class ASTContext;  // ASTContext creates these.
1523public:
1524  bool isSugared() const { return false; }
1525  QualType desugar() const { return QualType(this, 0); }
1526
1527  static bool classof(const Type *T) {
1528    return T->getTypeClass() == IncompleteArray;
1529  }
1530  static bool classof(const IncompleteArrayType *) { return true; }
1531
1532  friend class StmtIteratorBase;
1533
1534  void Profile(llvm::FoldingSetNodeID &ID) {
1535    Profile(ID, getElementType(), getSizeModifier(),
1536            getIndexTypeCVRQualifiers());
1537  }
1538
1539  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1540                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1541    ID.AddPointer(ET.getAsOpaquePtr());
1542    ID.AddInteger(SizeMod);
1543    ID.AddInteger(TypeQuals);
1544  }
1545};
1546
1547/// VariableArrayType - This class represents C arrays with a specified size
1548/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1549/// Since the size expression is an arbitrary expression, we store it as such.
1550///
1551/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1552/// should not be: two lexically equivalent variable array types could mean
1553/// different things, for example, these variables do not have the same type
1554/// dynamically:
1555///
1556/// void foo(int x) {
1557///   int Y[x];
1558///   ++x;
1559///   int Z[x];
1560/// }
1561///
1562class VariableArrayType : public ArrayType {
1563  /// SizeExpr - An assignment expression. VLA's are only permitted within
1564  /// a function block.
1565  Stmt *SizeExpr;
1566  /// Brackets - The left and right array brackets.
1567  SourceRange Brackets;
1568
1569  VariableArrayType(QualType et, QualType can, Expr *e,
1570                    ArraySizeModifier sm, unsigned tq,
1571                    SourceRange brackets)
1572    : ArrayType(VariableArray, et, can, sm, tq),
1573      SizeExpr((Stmt*) e), Brackets(brackets) {}
1574  friend class ASTContext;  // ASTContext creates these.
1575
1576public:
1577  Expr *getSizeExpr() const {
1578    // We use C-style casts instead of cast<> here because we do not wish
1579    // to have a dependency of Type.h on Stmt.h/Expr.h.
1580    return (Expr*) SizeExpr;
1581  }
1582  SourceRange getBracketsRange() const { return Brackets; }
1583  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1584  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1585
1586  bool isSugared() const { return false; }
1587  QualType desugar() const { return QualType(this, 0); }
1588
1589  static bool classof(const Type *T) {
1590    return T->getTypeClass() == VariableArray;
1591  }
1592  static bool classof(const VariableArrayType *) { return true; }
1593
1594  friend class StmtIteratorBase;
1595
1596  void Profile(llvm::FoldingSetNodeID &ID) {
1597    assert(0 && "Cannnot unique VariableArrayTypes.");
1598  }
1599};
1600
1601/// DependentSizedArrayType - This type represents an array type in
1602/// C++ whose size is a value-dependent expression. For example:
1603///
1604/// \code
1605/// template<typename T, int Size>
1606/// class array {
1607///   T data[Size];
1608/// };
1609/// \endcode
1610///
1611/// For these types, we won't actually know what the array bound is
1612/// until template instantiation occurs, at which point this will
1613/// become either a ConstantArrayType or a VariableArrayType.
1614class DependentSizedArrayType : public ArrayType {
1615  ASTContext &Context;
1616
1617  /// \brief An assignment expression that will instantiate to the
1618  /// size of the array.
1619  ///
1620  /// The expression itself might be NULL, in which case the array
1621  /// type will have its size deduced from an initializer.
1622  Stmt *SizeExpr;
1623
1624  /// Brackets - The left and right array brackets.
1625  SourceRange Brackets;
1626
1627  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1628                          Expr *e, ArraySizeModifier sm, unsigned tq,
1629                          SourceRange brackets)
1630    : ArrayType(DependentSizedArray, et, can, sm, tq),
1631      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1632  friend class ASTContext;  // ASTContext creates these.
1633
1634public:
1635  Expr *getSizeExpr() const {
1636    // We use C-style casts instead of cast<> here because we do not wish
1637    // to have a dependency of Type.h on Stmt.h/Expr.h.
1638    return (Expr*) SizeExpr;
1639  }
1640  SourceRange getBracketsRange() const { return Brackets; }
1641  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1642  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1643
1644  bool isSugared() const { return false; }
1645  QualType desugar() const { return QualType(this, 0); }
1646
1647  static bool classof(const Type *T) {
1648    return T->getTypeClass() == DependentSizedArray;
1649  }
1650  static bool classof(const DependentSizedArrayType *) { return true; }
1651
1652  friend class StmtIteratorBase;
1653
1654
1655  void Profile(llvm::FoldingSetNodeID &ID) {
1656    Profile(ID, Context, getElementType(),
1657            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1658  }
1659
1660  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1661                      QualType ET, ArraySizeModifier SizeMod,
1662                      unsigned TypeQuals, Expr *E);
1663};
1664
1665/// DependentSizedExtVectorType - This type represent an extended vector type
1666/// where either the type or size is dependent. For example:
1667/// @code
1668/// template<typename T, int Size>
1669/// class vector {
1670///   typedef T __attribute__((ext_vector_type(Size))) type;
1671/// }
1672/// @endcode
1673class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1674  ASTContext &Context;
1675  Expr *SizeExpr;
1676  /// ElementType - The element type of the array.
1677  QualType ElementType;
1678  SourceLocation loc;
1679
1680  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1681                              QualType can, Expr *SizeExpr, SourceLocation loc)
1682    : Type (DependentSizedExtVector, can, true),
1683      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1684      loc(loc) {}
1685  friend class ASTContext;
1686
1687public:
1688  Expr *getSizeExpr() const { return SizeExpr; }
1689  QualType getElementType() const { return ElementType; }
1690  SourceLocation getAttributeLoc() const { return loc; }
1691
1692  bool isSugared() const { return false; }
1693  QualType desugar() const { return QualType(this, 0); }
1694
1695  static bool classof(const Type *T) {
1696    return T->getTypeClass() == DependentSizedExtVector;
1697  }
1698  static bool classof(const DependentSizedExtVectorType *) { return true; }
1699
1700  void Profile(llvm::FoldingSetNodeID &ID) {
1701    Profile(ID, Context, getElementType(), getSizeExpr());
1702  }
1703
1704  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1705                      QualType ElementType, Expr *SizeExpr);
1706};
1707
1708
1709/// VectorType - GCC generic vector type. This type is created using
1710/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1711/// bytes; or from an Altivec __vector or vector declaration.
1712/// Since the constructor takes the number of vector elements, the
1713/// client is responsible for converting the size into the number of elements.
1714class VectorType : public Type, public llvm::FoldingSetNode {
1715public:
1716  enum AltiVecSpecific {
1717    NotAltiVec,  // is not AltiVec vector
1718    AltiVec,     // is AltiVec vector
1719    Pixel,       // is AltiVec 'vector Pixel'
1720    Bool         // is AltiVec 'vector bool ...'
1721  };
1722protected:
1723  /// ElementType - The element type of the vector.
1724  QualType ElementType;
1725
1726  /// NumElements - The number of elements in the vector.
1727  unsigned NumElements;
1728
1729  AltiVecSpecific AltiVecSpec;
1730
1731  VectorType(QualType vecType, unsigned nElements, QualType canonType,
1732      AltiVecSpecific altiVecSpec) :
1733    Type(Vector, canonType, vecType->isDependentType()),
1734    ElementType(vecType), NumElements(nElements), AltiVecSpec(altiVecSpec) {}
1735  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1736             QualType canonType, AltiVecSpecific altiVecSpec)
1737    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1738      NumElements(nElements), AltiVecSpec(altiVecSpec) {}
1739  friend class ASTContext;  // ASTContext creates these.
1740
1741  virtual Linkage getLinkageImpl() const;
1742
1743public:
1744
1745  QualType getElementType() const { return ElementType; }
1746  unsigned getNumElements() const { return NumElements; }
1747
1748  bool isSugared() const { return false; }
1749  QualType desugar() const { return QualType(this, 0); }
1750
1751  AltiVecSpecific getAltiVecSpecific() const { return AltiVecSpec; }
1752
1753  void Profile(llvm::FoldingSetNodeID &ID) {
1754    Profile(ID, getElementType(), getNumElements(), getTypeClass(), AltiVecSpec);
1755  }
1756  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1757                      unsigned NumElements, TypeClass TypeClass,
1758                      unsigned AltiVecSpec) {
1759    ID.AddPointer(ElementType.getAsOpaquePtr());
1760    ID.AddInteger(NumElements);
1761    ID.AddInteger(TypeClass);
1762    ID.AddInteger(AltiVecSpec);
1763  }
1764
1765  static bool classof(const Type *T) {
1766    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1767  }
1768  static bool classof(const VectorType *) { return true; }
1769};
1770
1771/// ExtVectorType - Extended vector type. This type is created using
1772/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1773/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1774/// class enables syntactic extensions, like Vector Components for accessing
1775/// points, colors, and textures (modeled after OpenGL Shading Language).
1776class ExtVectorType : public VectorType {
1777  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1778    VectorType(ExtVector, vecType, nElements, canonType, NotAltiVec) {}
1779  friend class ASTContext;  // ASTContext creates these.
1780public:
1781  static int getPointAccessorIdx(char c) {
1782    switch (c) {
1783    default: return -1;
1784    case 'x': return 0;
1785    case 'y': return 1;
1786    case 'z': return 2;
1787    case 'w': return 3;
1788    }
1789  }
1790  static int getNumericAccessorIdx(char c) {
1791    switch (c) {
1792      default: return -1;
1793      case '0': return 0;
1794      case '1': return 1;
1795      case '2': return 2;
1796      case '3': return 3;
1797      case '4': return 4;
1798      case '5': return 5;
1799      case '6': return 6;
1800      case '7': return 7;
1801      case '8': return 8;
1802      case '9': return 9;
1803      case 'A':
1804      case 'a': return 10;
1805      case 'B':
1806      case 'b': return 11;
1807      case 'C':
1808      case 'c': return 12;
1809      case 'D':
1810      case 'd': return 13;
1811      case 'E':
1812      case 'e': return 14;
1813      case 'F':
1814      case 'f': return 15;
1815    }
1816  }
1817
1818  static int getAccessorIdx(char c) {
1819    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1820    return getNumericAccessorIdx(c);
1821  }
1822
1823  bool isAccessorWithinNumElements(char c) const {
1824    if (int idx = getAccessorIdx(c)+1)
1825      return unsigned(idx-1) < NumElements;
1826    return false;
1827  }
1828  bool isSugared() const { return false; }
1829  QualType desugar() const { return QualType(this, 0); }
1830
1831  static bool classof(const Type *T) {
1832    return T->getTypeClass() == ExtVector;
1833  }
1834  static bool classof(const ExtVectorType *) { return true; }
1835};
1836
1837/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1838/// class of FunctionNoProtoType and FunctionProtoType.
1839///
1840class FunctionType : public Type {
1841  virtual void ANCHOR(); // Key function for FunctionType.
1842
1843  /// SubClassData - This field is owned by the subclass, put here to pack
1844  /// tightly with the ivars in Type.
1845  bool SubClassData : 1;
1846
1847  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1848  /// other bitfields.
1849  /// The qualifiers are part of FunctionProtoType because...
1850  ///
1851  /// C++ 8.3.5p4: The return type, the parameter type list and the
1852  /// cv-qualifier-seq, [...], are part of the function type.
1853  ///
1854  unsigned TypeQuals : 3;
1855
1856  /// NoReturn - Indicates if the function type is attribute noreturn.
1857  unsigned NoReturn : 1;
1858
1859  /// RegParm - How many arguments to pass inreg.
1860  unsigned RegParm : 3;
1861
1862  /// CallConv - The calling convention used by the function.
1863  unsigned CallConv : 3;
1864
1865  // The type returned by the function.
1866  QualType ResultType;
1867
1868 public:
1869  // This class is used for passing arround the information needed to
1870  // construct a call. It is not actually used for storage, just for
1871  // factoring together common arguments.
1872  // If you add a field (say Foo), other than the obvious places (both, constructors,
1873  // compile failures), what you need to update is
1874  // * Operetor==
1875  // * getFoo
1876  // * withFoo
1877  // * functionType. Add Foo, getFoo.
1878  // * ASTContext::getFooType
1879  // * ASTContext::mergeFunctionTypes
1880  // * FunctionNoProtoType::Profile
1881  // * FunctionProtoType::Profile
1882  // * TypePrinter::PrintFunctionProto
1883  // * AST read and write
1884  // * Codegen
1885
1886  class ExtInfo {
1887   public:
1888    // Constructor with no defaults. Use this when you know that you
1889    // have all the elements (when reading an AST file for example).
1890    ExtInfo(bool noReturn, unsigned regParm, CallingConv cc) :
1891        NoReturn(noReturn), RegParm(regParm), CC(cc) {}
1892
1893    // Constructor with all defaults. Use when for example creating a
1894    // function know to use defaults.
1895    ExtInfo() : NoReturn(false), RegParm(0), CC(CC_Default) {}
1896
1897    bool getNoReturn() const { return NoReturn; }
1898    unsigned getRegParm() const { return RegParm; }
1899    CallingConv getCC() const { return CC; }
1900
1901    bool operator==(const ExtInfo &Other) const {
1902      return getNoReturn() == Other.getNoReturn() &&
1903          getRegParm() == Other.getRegParm() &&
1904          getCC() == Other.getCC();
1905    }
1906    bool operator!=(const ExtInfo &Other) const {
1907      return !(*this == Other);
1908    }
1909
1910    // Note that we don't have setters. That is by design, use
1911    // the following with methods instead of mutating these objects.
1912
1913    ExtInfo withNoReturn(bool noReturn) const {
1914      return ExtInfo(noReturn, getRegParm(), getCC());
1915    }
1916
1917    ExtInfo withRegParm(unsigned RegParm) const {
1918      return ExtInfo(getNoReturn(), RegParm, getCC());
1919    }
1920
1921    ExtInfo withCallingConv(CallingConv cc) const {
1922      return ExtInfo(getNoReturn(), getRegParm(), cc);
1923    }
1924
1925   private:
1926    // True if we have __attribute__((noreturn))
1927    bool NoReturn;
1928    // The value passed to __attribute__((regparm(x)))
1929    unsigned RegParm;
1930    // The calling convention as specified via
1931    // __attribute__((cdecl|stdcall|fastcall|thiscall))
1932    CallingConv CC;
1933  };
1934
1935protected:
1936  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1937               unsigned typeQuals, QualType Canonical, bool Dependent,
1938               const ExtInfo &Info)
1939    : Type(tc, Canonical, Dependent),
1940      SubClassData(SubclassInfo), TypeQuals(typeQuals),
1941      NoReturn(Info.getNoReturn()),
1942      RegParm(Info.getRegParm()), CallConv(Info.getCC()), ResultType(res) {}
1943  bool getSubClassData() const { return SubClassData; }
1944  unsigned getTypeQuals() const { return TypeQuals; }
1945public:
1946
1947  QualType getResultType() const { return ResultType; }
1948
1949  unsigned getRegParmType() const { return RegParm; }
1950  bool getNoReturnAttr() const { return NoReturn; }
1951  CallingConv getCallConv() const { return (CallingConv)CallConv; }
1952  ExtInfo getExtInfo() const {
1953    return ExtInfo(NoReturn, RegParm, (CallingConv)CallConv);
1954  }
1955
1956  /// \brief Determine the type of an expression that calls a function of
1957  /// this type.
1958  QualType getCallResultType(ASTContext &Context) const {
1959    return getResultType().getNonLValueExprType(Context);
1960  }
1961
1962  static llvm::StringRef getNameForCallConv(CallingConv CC);
1963
1964  static bool classof(const Type *T) {
1965    return T->getTypeClass() == FunctionNoProto ||
1966           T->getTypeClass() == FunctionProto;
1967  }
1968  static bool classof(const FunctionType *) { return true; }
1969};
1970
1971/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1972/// no information available about its arguments.
1973class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1974  FunctionNoProtoType(QualType Result, QualType Canonical,
1975                      const ExtInfo &Info)
1976    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1977                   /*Dependent=*/false, Info) {}
1978  friend class ASTContext;  // ASTContext creates these.
1979
1980protected:
1981  virtual Linkage getLinkageImpl() const;
1982
1983public:
1984  // No additional state past what FunctionType provides.
1985
1986  bool isSugared() const { return false; }
1987  QualType desugar() const { return QualType(this, 0); }
1988
1989  void Profile(llvm::FoldingSetNodeID &ID) {
1990    Profile(ID, getResultType(), getExtInfo());
1991  }
1992  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1993                      const ExtInfo &Info) {
1994    ID.AddInteger(Info.getCC());
1995    ID.AddInteger(Info.getRegParm());
1996    ID.AddInteger(Info.getNoReturn());
1997    ID.AddPointer(ResultType.getAsOpaquePtr());
1998  }
1999
2000  static bool classof(const Type *T) {
2001    return T->getTypeClass() == FunctionNoProto;
2002  }
2003  static bool classof(const FunctionNoProtoType *) { return true; }
2004};
2005
2006/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2007/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2008/// arguments, not as having a single void argument. Such a type can have an
2009/// exception specification, but this specification is not part of the canonical
2010/// type.
2011class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2012  /// hasAnyDependentType - Determine whether there are any dependent
2013  /// types within the arguments passed in.
2014  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
2015    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2016      if (ArgArray[Idx]->isDependentType())
2017    return true;
2018
2019    return false;
2020  }
2021
2022  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
2023                    bool isVariadic, unsigned typeQuals, bool hasExs,
2024                    bool hasAnyExs, const QualType *ExArray,
2025                    unsigned numExs, QualType Canonical,
2026                    const ExtInfo &Info)
2027    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
2028                   (Result->isDependentType() ||
2029                    hasAnyDependentType(ArgArray, numArgs)),
2030                   Info),
2031      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
2032      AnyExceptionSpec(hasAnyExs) {
2033    // Fill in the trailing argument array.
2034    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
2035    for (unsigned i = 0; i != numArgs; ++i)
2036      ArgInfo[i] = ArgArray[i];
2037    // Fill in the exception array.
2038    QualType *Ex = ArgInfo + numArgs;
2039    for (unsigned i = 0; i != numExs; ++i)
2040      Ex[i] = ExArray[i];
2041  }
2042
2043  /// NumArgs - The number of arguments this function has, not counting '...'.
2044  unsigned NumArgs : 20;
2045
2046  /// NumExceptions - The number of types in the exception spec, if any.
2047  unsigned NumExceptions : 10;
2048
2049  /// HasExceptionSpec - Whether this function has an exception spec at all.
2050  bool HasExceptionSpec : 1;
2051
2052  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
2053  bool AnyExceptionSpec : 1;
2054
2055  /// ArgInfo - There is an variable size array after the class in memory that
2056  /// holds the argument types.
2057
2058  /// Exceptions - There is another variable size array after ArgInfo that
2059  /// holds the exception types.
2060
2061  friend class ASTContext;  // ASTContext creates these.
2062
2063protected:
2064  virtual Linkage getLinkageImpl() const;
2065
2066public:
2067  unsigned getNumArgs() const { return NumArgs; }
2068  QualType getArgType(unsigned i) const {
2069    assert(i < NumArgs && "Invalid argument number!");
2070    return arg_type_begin()[i];
2071  }
2072
2073  bool hasExceptionSpec() const { return HasExceptionSpec; }
2074  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
2075  unsigned getNumExceptions() const { return NumExceptions; }
2076  QualType getExceptionType(unsigned i) const {
2077    assert(i < NumExceptions && "Invalid exception number!");
2078    return exception_begin()[i];
2079  }
2080  bool hasEmptyExceptionSpec() const {
2081    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
2082      getNumExceptions() == 0;
2083  }
2084
2085  bool isVariadic() const { return getSubClassData(); }
2086  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2087
2088  typedef const QualType *arg_type_iterator;
2089  arg_type_iterator arg_type_begin() const {
2090    return reinterpret_cast<const QualType *>(this+1);
2091  }
2092  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2093
2094  typedef const QualType *exception_iterator;
2095  exception_iterator exception_begin() const {
2096    // exceptions begin where arguments end
2097    return arg_type_end();
2098  }
2099  exception_iterator exception_end() const {
2100    return exception_begin() + NumExceptions;
2101  }
2102
2103  bool isSugared() const { return false; }
2104  QualType desugar() const { return QualType(this, 0); }
2105
2106  static bool classof(const Type *T) {
2107    return T->getTypeClass() == FunctionProto;
2108  }
2109  static bool classof(const FunctionProtoType *) { return true; }
2110
2111  void Profile(llvm::FoldingSetNodeID &ID);
2112  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2113                      arg_type_iterator ArgTys, unsigned NumArgs,
2114                      bool isVariadic, unsigned TypeQuals,
2115                      bool hasExceptionSpec, bool anyExceptionSpec,
2116                      unsigned NumExceptions, exception_iterator Exs,
2117                      const ExtInfo &ExtInfo);
2118};
2119
2120
2121/// \brief Represents the dependent type named by a dependently-scoped
2122/// typename using declaration, e.g.
2123///   using typename Base<T>::foo;
2124/// Template instantiation turns these into the underlying type.
2125class UnresolvedUsingType : public Type {
2126  UnresolvedUsingTypenameDecl *Decl;
2127
2128  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2129    : Type(UnresolvedUsing, QualType(), true),
2130      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2131  friend class ASTContext; // ASTContext creates these.
2132public:
2133
2134  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2135
2136  bool isSugared() const { return false; }
2137  QualType desugar() const { return QualType(this, 0); }
2138
2139  static bool classof(const Type *T) {
2140    return T->getTypeClass() == UnresolvedUsing;
2141  }
2142  static bool classof(const UnresolvedUsingType *) { return true; }
2143
2144  void Profile(llvm::FoldingSetNodeID &ID) {
2145    return Profile(ID, Decl);
2146  }
2147  static void Profile(llvm::FoldingSetNodeID &ID,
2148                      UnresolvedUsingTypenameDecl *D) {
2149    ID.AddPointer(D);
2150  }
2151};
2152
2153
2154class TypedefType : public Type {
2155  TypedefDecl *Decl;
2156protected:
2157  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
2158    : Type(tc, can, can->isDependentType()),
2159      Decl(const_cast<TypedefDecl*>(D)) {
2160    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2161  }
2162  friend class ASTContext;  // ASTContext creates these.
2163public:
2164
2165  TypedefDecl *getDecl() const { return Decl; }
2166
2167  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
2168  /// potentially looking through *all* consecutive typedefs.  This returns the
2169  /// sum of the type qualifiers, so if you have:
2170  ///   typedef const int A;
2171  ///   typedef volatile A B;
2172  /// looking through the typedefs for B will give you "const volatile A".
2173  QualType LookThroughTypedefs() const;
2174
2175  bool isSugared() const { return true; }
2176  QualType desugar() const;
2177
2178  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2179  static bool classof(const TypedefType *) { return true; }
2180};
2181
2182/// TypeOfExprType (GCC extension).
2183class TypeOfExprType : public Type {
2184  Expr *TOExpr;
2185
2186protected:
2187  TypeOfExprType(Expr *E, QualType can = QualType());
2188  friend class ASTContext;  // ASTContext creates these.
2189public:
2190  Expr *getUnderlyingExpr() const { return TOExpr; }
2191
2192  /// \brief Remove a single level of sugar.
2193  QualType desugar() const;
2194
2195  /// \brief Returns whether this type directly provides sugar.
2196  bool isSugared() const { return true; }
2197
2198  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2199  static bool classof(const TypeOfExprType *) { return true; }
2200};
2201
2202/// \brief Internal representation of canonical, dependent
2203/// typeof(expr) types.
2204///
2205/// This class is used internally by the ASTContext to manage
2206/// canonical, dependent types, only. Clients will only see instances
2207/// of this class via TypeOfExprType nodes.
2208class DependentTypeOfExprType
2209  : public TypeOfExprType, public llvm::FoldingSetNode {
2210  ASTContext &Context;
2211
2212public:
2213  DependentTypeOfExprType(ASTContext &Context, Expr *E)
2214    : TypeOfExprType(E), Context(Context) { }
2215
2216  bool isSugared() const { return false; }
2217  QualType desugar() const { return QualType(this, 0); }
2218
2219  void Profile(llvm::FoldingSetNodeID &ID) {
2220    Profile(ID, Context, getUnderlyingExpr());
2221  }
2222
2223  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2224                      Expr *E);
2225};
2226
2227/// TypeOfType (GCC extension).
2228class TypeOfType : public Type {
2229  QualType TOType;
2230  TypeOfType(QualType T, QualType can)
2231    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
2232    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2233  }
2234  friend class ASTContext;  // ASTContext creates these.
2235public:
2236  QualType getUnderlyingType() const { return TOType; }
2237
2238  /// \brief Remove a single level of sugar.
2239  QualType desugar() const { return getUnderlyingType(); }
2240
2241  /// \brief Returns whether this type directly provides sugar.
2242  bool isSugared() const { return true; }
2243
2244  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2245  static bool classof(const TypeOfType *) { return true; }
2246};
2247
2248/// DecltypeType (C++0x)
2249class DecltypeType : public Type {
2250  Expr *E;
2251
2252  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2253  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2254  // from it.
2255  QualType UnderlyingType;
2256
2257protected:
2258  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2259  friend class ASTContext;  // ASTContext creates these.
2260public:
2261  Expr *getUnderlyingExpr() const { return E; }
2262  QualType getUnderlyingType() const { return UnderlyingType; }
2263
2264  /// \brief Remove a single level of sugar.
2265  QualType desugar() const { return getUnderlyingType(); }
2266
2267  /// \brief Returns whether this type directly provides sugar.
2268  bool isSugared() const { return !isDependentType(); }
2269
2270  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2271  static bool classof(const DecltypeType *) { return true; }
2272};
2273
2274/// \brief Internal representation of canonical, dependent
2275/// decltype(expr) types.
2276///
2277/// This class is used internally by the ASTContext to manage
2278/// canonical, dependent types, only. Clients will only see instances
2279/// of this class via DecltypeType nodes.
2280class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2281  ASTContext &Context;
2282
2283public:
2284  DependentDecltypeType(ASTContext &Context, Expr *E);
2285
2286  bool isSugared() const { return false; }
2287  QualType desugar() const { return QualType(this, 0); }
2288
2289  void Profile(llvm::FoldingSetNodeID &ID) {
2290    Profile(ID, Context, getUnderlyingExpr());
2291  }
2292
2293  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2294                      Expr *E);
2295};
2296
2297class TagType : public Type {
2298  /// Stores the TagDecl associated with this type. The decl may point to any
2299  /// TagDecl that declares the entity.
2300  TagDecl * decl;
2301
2302protected:
2303  TagType(TypeClass TC, const TagDecl *D, QualType can);
2304
2305  virtual Linkage getLinkageImpl() const;
2306
2307public:
2308  TagDecl *getDecl() const;
2309
2310  /// @brief Determines whether this type is in the process of being
2311  /// defined.
2312  bool isBeingDefined() const;
2313
2314  static bool classof(const Type *T) {
2315    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2316  }
2317  static bool classof(const TagType *) { return true; }
2318  static bool classof(const RecordType *) { return true; }
2319  static bool classof(const EnumType *) { return true; }
2320};
2321
2322/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2323/// to detect TagType objects of structs/unions/classes.
2324class RecordType : public TagType {
2325protected:
2326  explicit RecordType(const RecordDecl *D)
2327    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2328  explicit RecordType(TypeClass TC, RecordDecl *D)
2329    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2330  friend class ASTContext;   // ASTContext creates these.
2331public:
2332
2333  RecordDecl *getDecl() const {
2334    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2335  }
2336
2337  // FIXME: This predicate is a helper to QualType/Type. It needs to
2338  // recursively check all fields for const-ness. If any field is declared
2339  // const, it needs to return false.
2340  bool hasConstFields() const { return false; }
2341
2342  // FIXME: RecordType needs to check when it is created that all fields are in
2343  // the same address space, and return that.
2344  unsigned getAddressSpace() const { return 0; }
2345
2346  bool isSugared() const { return false; }
2347  QualType desugar() const { return QualType(this, 0); }
2348
2349  static bool classof(const TagType *T);
2350  static bool classof(const Type *T) {
2351    return isa<TagType>(T) && classof(cast<TagType>(T));
2352  }
2353  static bool classof(const RecordType *) { return true; }
2354};
2355
2356/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2357/// to detect TagType objects of enums.
2358class EnumType : public TagType {
2359  explicit EnumType(const EnumDecl *D)
2360    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2361  friend class ASTContext;   // ASTContext creates these.
2362public:
2363
2364  EnumDecl *getDecl() const {
2365    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2366  }
2367
2368  bool isSugared() const { return false; }
2369  QualType desugar() const { return QualType(this, 0); }
2370
2371  static bool classof(const TagType *T);
2372  static bool classof(const Type *T) {
2373    return isa<TagType>(T) && classof(cast<TagType>(T));
2374  }
2375  static bool classof(const EnumType *) { return true; }
2376};
2377
2378class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2379  unsigned Depth : 15;
2380  unsigned Index : 16;
2381  unsigned ParameterPack : 1;
2382  IdentifierInfo *Name;
2383
2384  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2385                       QualType Canon)
2386    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2387      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2388
2389  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2390    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2391      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2392
2393  friend class ASTContext;  // ASTContext creates these
2394
2395public:
2396  unsigned getDepth() const { return Depth; }
2397  unsigned getIndex() const { return Index; }
2398  bool isParameterPack() const { return ParameterPack; }
2399  IdentifierInfo *getName() const { return Name; }
2400
2401  bool isSugared() const { return false; }
2402  QualType desugar() const { return QualType(this, 0); }
2403
2404  void Profile(llvm::FoldingSetNodeID &ID) {
2405    Profile(ID, Depth, Index, ParameterPack, Name);
2406  }
2407
2408  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2409                      unsigned Index, bool ParameterPack,
2410                      IdentifierInfo *Name) {
2411    ID.AddInteger(Depth);
2412    ID.AddInteger(Index);
2413    ID.AddBoolean(ParameterPack);
2414    ID.AddPointer(Name);
2415  }
2416
2417  static bool classof(const Type *T) {
2418    return T->getTypeClass() == TemplateTypeParm;
2419  }
2420  static bool classof(const TemplateTypeParmType *T) { return true; }
2421};
2422
2423/// \brief Represents the result of substituting a type for a template
2424/// type parameter.
2425///
2426/// Within an instantiated template, all template type parameters have
2427/// been replaced with these.  They are used solely to record that a
2428/// type was originally written as a template type parameter;
2429/// therefore they are never canonical.
2430class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2431  // The original type parameter.
2432  const TemplateTypeParmType *Replaced;
2433
2434  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2435    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2436      Replaced(Param) { }
2437
2438  friend class ASTContext;
2439
2440public:
2441  IdentifierInfo *getName() const { return Replaced->getName(); }
2442
2443  /// Gets the template parameter that was substituted for.
2444  const TemplateTypeParmType *getReplacedParameter() const {
2445    return Replaced;
2446  }
2447
2448  /// Gets the type that was substituted for the template
2449  /// parameter.
2450  QualType getReplacementType() const {
2451    return getCanonicalTypeInternal();
2452  }
2453
2454  bool isSugared() const { return true; }
2455  QualType desugar() const { return getReplacementType(); }
2456
2457  void Profile(llvm::FoldingSetNodeID &ID) {
2458    Profile(ID, getReplacedParameter(), getReplacementType());
2459  }
2460  static void Profile(llvm::FoldingSetNodeID &ID,
2461                      const TemplateTypeParmType *Replaced,
2462                      QualType Replacement) {
2463    ID.AddPointer(Replaced);
2464    ID.AddPointer(Replacement.getAsOpaquePtr());
2465  }
2466
2467  static bool classof(const Type *T) {
2468    return T->getTypeClass() == SubstTemplateTypeParm;
2469  }
2470  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2471};
2472
2473/// \brief Represents the type of a template specialization as written
2474/// in the source code.
2475///
2476/// Template specialization types represent the syntactic form of a
2477/// template-id that refers to a type, e.g., @c vector<int>. Some
2478/// template specialization types are syntactic sugar, whose canonical
2479/// type will point to some other type node that represents the
2480/// instantiation or class template specialization. For example, a
2481/// class template specialization type of @c vector<int> will refer to
2482/// a tag type for the instantiation
2483/// @c std::vector<int, std::allocator<int>>.
2484///
2485/// Other template specialization types, for which the template name
2486/// is dependent, may be canonical types. These types are always
2487/// dependent.
2488class TemplateSpecializationType
2489  : public Type, public llvm::FoldingSetNode {
2490  /// \brief The name of the template being specialized.
2491  TemplateName Template;
2492
2493  /// \brief - The number of template arguments named in this class
2494  /// template specialization.
2495  unsigned NumArgs;
2496
2497  TemplateSpecializationType(TemplateName T,
2498                             const TemplateArgument *Args,
2499                             unsigned NumArgs, QualType Canon);
2500
2501  friend class ASTContext;  // ASTContext creates these
2502
2503public:
2504  /// \brief Determine whether any of the given template arguments are
2505  /// dependent.
2506  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2507                                            unsigned NumArgs);
2508
2509  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2510                                            unsigned NumArgs);
2511
2512  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2513
2514  /// \brief Print a template argument list, including the '<' and '>'
2515  /// enclosing the template arguments.
2516  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2517                                               unsigned NumArgs,
2518                                               const PrintingPolicy &Policy);
2519
2520  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2521                                               unsigned NumArgs,
2522                                               const PrintingPolicy &Policy);
2523
2524  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2525                                               const PrintingPolicy &Policy);
2526
2527  /// True if this template specialization type matches a current
2528  /// instantiation in the context in which it is found.
2529  bool isCurrentInstantiation() const {
2530    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
2531  }
2532
2533  typedef const TemplateArgument * iterator;
2534
2535  iterator begin() const { return getArgs(); }
2536  iterator end() const; // defined inline in TemplateBase.h
2537
2538  /// \brief Retrieve the name of the template that we are specializing.
2539  TemplateName getTemplateName() const { return Template; }
2540
2541  /// \brief Retrieve the template arguments.
2542  const TemplateArgument *getArgs() const {
2543    return reinterpret_cast<const TemplateArgument *>(this + 1);
2544  }
2545
2546  /// \brief Retrieve the number of template arguments.
2547  unsigned getNumArgs() const { return NumArgs; }
2548
2549  /// \brief Retrieve a specific template argument as a type.
2550  /// \precondition @c isArgType(Arg)
2551  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
2552
2553  bool isSugared() const {
2554    return !isDependentType() || isCurrentInstantiation();
2555  }
2556  QualType desugar() const { return getCanonicalTypeInternal(); }
2557
2558  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Ctx) {
2559    Profile(ID, Template, getArgs(), NumArgs, Ctx);
2560  }
2561
2562  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2563                      const TemplateArgument *Args,
2564                      unsigned NumArgs,
2565                      ASTContext &Context);
2566
2567  static bool classof(const Type *T) {
2568    return T->getTypeClass() == TemplateSpecialization;
2569  }
2570  static bool classof(const TemplateSpecializationType *T) { return true; }
2571};
2572
2573/// \brief The injected class name of a C++ class template or class
2574/// template partial specialization.  Used to record that a type was
2575/// spelled with a bare identifier rather than as a template-id; the
2576/// equivalent for non-templated classes is just RecordType.
2577///
2578/// Injected class name types are always dependent.  Template
2579/// instantiation turns these into RecordTypes.
2580///
2581/// Injected class name types are always canonical.  This works
2582/// because it is impossible to compare an injected class name type
2583/// with the corresponding non-injected template type, for the same
2584/// reason that it is impossible to directly compare template
2585/// parameters from different dependent contexts: injected class name
2586/// types can only occur within the scope of a particular templated
2587/// declaration, and within that scope every template specialization
2588/// will canonicalize to the injected class name (when appropriate
2589/// according to the rules of the language).
2590class InjectedClassNameType : public Type {
2591  CXXRecordDecl *Decl;
2592
2593  /// The template specialization which this type represents.
2594  /// For example, in
2595  ///   template <class T> class A { ... };
2596  /// this is A<T>, whereas in
2597  ///   template <class X, class Y> class A<B<X,Y> > { ... };
2598  /// this is A<B<X,Y> >.
2599  ///
2600  /// It is always unqualified, always a template specialization type,
2601  /// and always dependent.
2602  QualType InjectedType;
2603
2604  friend class ASTContext; // ASTContext creates these.
2605  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
2606                          // currently suitable for AST reading, too much
2607                          // interdependencies.
2608  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
2609    : Type(InjectedClassName, QualType(), true),
2610      Decl(D), InjectedType(TST) {
2611    assert(isa<TemplateSpecializationType>(TST));
2612    assert(!TST.hasQualifiers());
2613    assert(TST->isDependentType());
2614  }
2615
2616public:
2617  QualType getInjectedSpecializationType() const { return InjectedType; }
2618  const TemplateSpecializationType *getInjectedTST() const {
2619    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
2620  }
2621
2622  CXXRecordDecl *getDecl() const;
2623
2624  bool isSugared() const { return false; }
2625  QualType desugar() const { return QualType(this, 0); }
2626
2627  static bool classof(const Type *T) {
2628    return T->getTypeClass() == InjectedClassName;
2629  }
2630  static bool classof(const InjectedClassNameType *T) { return true; }
2631};
2632
2633/// \brief The kind of a tag type.
2634enum TagTypeKind {
2635  /// \brief The "struct" keyword.
2636  TTK_Struct,
2637  /// \brief The "union" keyword.
2638  TTK_Union,
2639  /// \brief The "class" keyword.
2640  TTK_Class,
2641  /// \brief The "enum" keyword.
2642  TTK_Enum
2643};
2644
2645/// \brief The elaboration keyword that precedes a qualified type name or
2646/// introduces an elaborated-type-specifier.
2647enum ElaboratedTypeKeyword {
2648  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
2649  ETK_Struct,
2650  /// \brief The "union" keyword introduces the elaborated-type-specifier.
2651  ETK_Union,
2652  /// \brief The "class" keyword introduces the elaborated-type-specifier.
2653  ETK_Class,
2654  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
2655  ETK_Enum,
2656  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
2657  /// \c typename T::type.
2658  ETK_Typename,
2659  /// \brief No keyword precedes the qualified type name.
2660  ETK_None
2661};
2662
2663/// A helper class for Type nodes having an ElaboratedTypeKeyword.
2664/// The keyword in stored in the free bits of the base class.
2665/// Also provides a few static helpers for converting and printing
2666/// elaborated type keyword and tag type kind enumerations.
2667class TypeWithKeyword : public Type {
2668  /// Keyword - Encodes an ElaboratedTypeKeyword enumeration constant.
2669  unsigned Keyword : 3;
2670
2671protected:
2672  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
2673                  QualType Canonical, bool dependent)
2674    : Type(tc, Canonical, dependent), Keyword(Keyword) {}
2675
2676public:
2677  virtual ~TypeWithKeyword(); // pin vtable to Type.cpp
2678
2679  ElaboratedTypeKeyword getKeyword() const {
2680    return static_cast<ElaboratedTypeKeyword>(Keyword);
2681  }
2682
2683  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
2684  /// into an elaborated type keyword.
2685  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
2686
2687  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
2688  /// into a tag type kind.  It is an error to provide a type specifier
2689  /// which *isn't* a tag kind here.
2690  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
2691
2692  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
2693  /// elaborated type keyword.
2694  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
2695
2696  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
2697  // a TagTypeKind. It is an error to provide an elaborated type keyword
2698  /// which *isn't* a tag kind here.
2699  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
2700
2701  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
2702
2703  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
2704
2705  static const char *getTagTypeKindName(TagTypeKind Kind) {
2706    return getKeywordName(getKeywordForTagTypeKind(Kind));
2707  }
2708
2709  class CannotCastToThisType {};
2710  static CannotCastToThisType classof(const Type *);
2711};
2712
2713/// \brief Represents a type that was referred to using an elaborated type
2714/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
2715/// or both.
2716///
2717/// This type is used to keep track of a type name as written in the
2718/// source code, including tag keywords and any nested-name-specifiers.
2719/// The type itself is always "sugar", used to express what was written
2720/// in the source code but containing no additional semantic information.
2721class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
2722
2723  /// \brief The nested name specifier containing the qualifier.
2724  NestedNameSpecifier *NNS;
2725
2726  /// \brief The type that this qualified name refers to.
2727  QualType NamedType;
2728
2729  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2730                 QualType NamedType, QualType CanonType)
2731    : TypeWithKeyword(Keyword, Elaborated, CanonType,
2732                      NamedType->isDependentType()),
2733      NNS(NNS), NamedType(NamedType) {
2734    assert(!(Keyword == ETK_None && NNS == 0) &&
2735           "ElaboratedType cannot have elaborated type keyword "
2736           "and name qualifier both null.");
2737  }
2738
2739  friend class ASTContext;  // ASTContext creates these
2740
2741public:
2742  ~ElaboratedType();
2743
2744  /// \brief Retrieve the qualification on this type.
2745  NestedNameSpecifier *getQualifier() const { return NNS; }
2746
2747  /// \brief Retrieve the type named by the qualified-id.
2748  QualType getNamedType() const { return NamedType; }
2749
2750  /// \brief Remove a single level of sugar.
2751  QualType desugar() const { return getNamedType(); }
2752
2753  /// \brief Returns whether this type directly provides sugar.
2754  bool isSugared() const { return true; }
2755
2756  void Profile(llvm::FoldingSetNodeID &ID) {
2757    Profile(ID, getKeyword(), NNS, NamedType);
2758  }
2759
2760  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2761                      NestedNameSpecifier *NNS, QualType NamedType) {
2762    ID.AddInteger(Keyword);
2763    ID.AddPointer(NNS);
2764    NamedType.Profile(ID);
2765  }
2766
2767  static bool classof(const Type *T) {
2768    return T->getTypeClass() == Elaborated;
2769  }
2770  static bool classof(const ElaboratedType *T) { return true; }
2771};
2772
2773/// \brief Represents a qualified type name for which the type name is
2774/// dependent.
2775///
2776/// DependentNameType represents a class of dependent types that involve a
2777/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
2778/// name of a type. The DependentNameType may start with a "typename" (for a
2779/// typename-specifier), "class", "struct", "union", or "enum" (for a
2780/// dependent elaborated-type-specifier), or nothing (in contexts where we
2781/// know that we must be referring to a type, e.g., in a base class specifier).
2782class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
2783
2784  /// \brief The nested name specifier containing the qualifier.
2785  NestedNameSpecifier *NNS;
2786
2787  /// \brief The type that this typename specifier refers to.
2788  const IdentifierInfo *Name;
2789
2790  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2791                    const IdentifierInfo *Name, QualType CanonType)
2792    : TypeWithKeyword(Keyword, DependentName, CanonType, true),
2793      NNS(NNS), Name(Name) {
2794    assert(NNS->isDependent() &&
2795           "DependentNameType requires a dependent nested-name-specifier");
2796  }
2797
2798  friend class ASTContext;  // ASTContext creates these
2799
2800public:
2801  virtual ~DependentNameType();
2802
2803  /// \brief Retrieve the qualification on this type.
2804  NestedNameSpecifier *getQualifier() const { return NNS; }
2805
2806  /// \brief Retrieve the type named by the typename specifier as an
2807  /// identifier.
2808  ///
2809  /// This routine will return a non-NULL identifier pointer when the
2810  /// form of the original typename was terminated by an identifier,
2811  /// e.g., "typename T::type".
2812  const IdentifierInfo *getIdentifier() const {
2813    return Name;
2814  }
2815
2816  bool isSugared() const { return false; }
2817  QualType desugar() const { return QualType(this, 0); }
2818
2819  void Profile(llvm::FoldingSetNodeID &ID) {
2820    Profile(ID, getKeyword(), NNS, Name);
2821  }
2822
2823  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2824                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
2825    ID.AddInteger(Keyword);
2826    ID.AddPointer(NNS);
2827    ID.AddPointer(Name);
2828  }
2829
2830  static bool classof(const Type *T) {
2831    return T->getTypeClass() == DependentName;
2832  }
2833  static bool classof(const DependentNameType *T) { return true; }
2834};
2835
2836/// DependentTemplateSpecializationType - Represents a template
2837/// specialization type whose template cannot be resolved, e.g.
2838///   A<T>::template B<T>
2839class DependentTemplateSpecializationType :
2840  public TypeWithKeyword, public llvm::FoldingSetNode {
2841
2842  /// \brief The nested name specifier containing the qualifier.
2843  NestedNameSpecifier *NNS;
2844
2845  /// \brief The identifier of the template.
2846  const IdentifierInfo *Name;
2847
2848  /// \brief - The number of template arguments named in this class
2849  /// template specialization.
2850  unsigned NumArgs;
2851
2852  const TemplateArgument *getArgBuffer() const {
2853    return reinterpret_cast<const TemplateArgument*>(this+1);
2854  }
2855  TemplateArgument *getArgBuffer() {
2856    return reinterpret_cast<TemplateArgument*>(this+1);
2857  }
2858
2859  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
2860                                      NestedNameSpecifier *NNS,
2861                                      const IdentifierInfo *Name,
2862                                      unsigned NumArgs,
2863                                      const TemplateArgument *Args,
2864                                      QualType Canon);
2865
2866  friend class ASTContext;  // ASTContext creates these
2867
2868public:
2869  virtual ~DependentTemplateSpecializationType();
2870
2871  NestedNameSpecifier *getQualifier() const { return NNS; }
2872  const IdentifierInfo *getIdentifier() const { return Name; }
2873
2874  /// \brief Retrieve the template arguments.
2875  const TemplateArgument *getArgs() const {
2876    return getArgBuffer();
2877  }
2878
2879  /// \brief Retrieve the number of template arguments.
2880  unsigned getNumArgs() const { return NumArgs; }
2881
2882  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
2883
2884  typedef const TemplateArgument * iterator;
2885  iterator begin() const { return getArgs(); }
2886  iterator end() const; // inline in TemplateBase.h
2887
2888  bool isSugared() const { return false; }
2889  QualType desugar() const { return QualType(this, 0); }
2890
2891  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context) {
2892    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
2893  }
2894
2895  static void Profile(llvm::FoldingSetNodeID &ID,
2896                      ASTContext &Context,
2897                      ElaboratedTypeKeyword Keyword,
2898                      NestedNameSpecifier *Qualifier,
2899                      const IdentifierInfo *Name,
2900                      unsigned NumArgs,
2901                      const TemplateArgument *Args);
2902
2903  static bool classof(const Type *T) {
2904    return T->getTypeClass() == DependentTemplateSpecialization;
2905  }
2906  static bool classof(const DependentTemplateSpecializationType *T) {
2907    return true;
2908  }
2909};
2910
2911/// ObjCObjectType - Represents a class type in Objective C.
2912/// Every Objective C type is a combination of a base type and a
2913/// list of protocols.
2914///
2915/// Given the following declarations:
2916///   @class C;
2917///   @protocol P;
2918///
2919/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
2920/// with base C and no protocols.
2921///
2922/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
2923///
2924/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
2925/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
2926/// and no protocols.
2927///
2928/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
2929/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
2930/// this should get its own sugar class to better represent the source.
2931class ObjCObjectType : public Type {
2932  // Pad the bit count up so that NumProtocols is 2-byte aligned
2933  unsigned : BitsRemainingInType - 16;
2934
2935  /// \brief The number of protocols stored after the
2936  /// ObjCObjectPointerType node.
2937  ///
2938  /// These protocols are those written directly on the type.  If
2939  /// protocol qualifiers ever become additive, the iterators will
2940  /// get kindof complicated.
2941  ///
2942  /// In the canonical object type, these are sorted alphabetically
2943  /// and uniqued.
2944  unsigned NumProtocols : 16;
2945
2946  /// Either a BuiltinType or an InterfaceType or sugar for either.
2947  QualType BaseType;
2948
2949  ObjCProtocolDecl * const *getProtocolStorage() const {
2950    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
2951  }
2952
2953  ObjCProtocolDecl **getProtocolStorage();
2954
2955protected:
2956  ObjCObjectType(QualType Canonical, QualType Base,
2957                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
2958
2959  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
2960  ObjCObjectType(enum Nonce_ObjCInterface)
2961    : Type(ObjCInterface, QualType(), false),
2962      NumProtocols(0),
2963      BaseType(QualType(this_(), 0)) {}
2964
2965protected:
2966  Linkage getLinkageImpl() const; // key function
2967
2968public:
2969  /// getBaseType - Gets the base type of this object type.  This is
2970  /// always (possibly sugar for) one of:
2971  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
2972  ///    user, which is a typedef for an ObjCPointerType)
2973  ///  - the 'Class' builtin type (same caveat)
2974  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
2975  QualType getBaseType() const { return BaseType; }
2976
2977  bool isObjCId() const {
2978    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
2979  }
2980  bool isObjCClass() const {
2981    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
2982  }
2983  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
2984  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
2985  bool isObjCUnqualifiedIdOrClass() const {
2986    if (!qual_empty()) return false;
2987    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
2988      return T->getKind() == BuiltinType::ObjCId ||
2989             T->getKind() == BuiltinType::ObjCClass;
2990    return false;
2991  }
2992  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
2993  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
2994
2995  /// Gets the interface declaration for this object type, if the base type
2996  /// really is an interface.
2997  ObjCInterfaceDecl *getInterface() const;
2998
2999  typedef ObjCProtocolDecl * const *qual_iterator;
3000
3001  qual_iterator qual_begin() const { return getProtocolStorage(); }
3002  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
3003
3004  bool qual_empty() const { return getNumProtocols() == 0; }
3005
3006  /// getNumProtocols - Return the number of qualifying protocols in this
3007  /// interface type, or 0 if there are none.
3008  unsigned getNumProtocols() const { return NumProtocols; }
3009
3010  /// \brief Fetch a protocol by index.
3011  ObjCProtocolDecl *getProtocol(unsigned I) const {
3012    assert(I < getNumProtocols() && "Out-of-range protocol access");
3013    return qual_begin()[I];
3014  }
3015
3016  bool isSugared() const { return false; }
3017  QualType desugar() const { return QualType(this, 0); }
3018
3019  static bool classof(const Type *T) {
3020    return T->getTypeClass() == ObjCObject ||
3021           T->getTypeClass() == ObjCInterface;
3022  }
3023  static bool classof(const ObjCObjectType *) { return true; }
3024};
3025
3026/// ObjCObjectTypeImpl - A class providing a concrete implementation
3027/// of ObjCObjectType, so as to not increase the footprint of
3028/// ObjCInterfaceType.  Code outside of ASTContext and the core type
3029/// system should not reference this type.
3030class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
3031  friend class ASTContext;
3032
3033  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
3034  // will need to be modified.
3035
3036  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
3037                     ObjCProtocolDecl * const *Protocols,
3038                     unsigned NumProtocols)
3039    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
3040
3041public:
3042  void Profile(llvm::FoldingSetNodeID &ID);
3043  static void Profile(llvm::FoldingSetNodeID &ID,
3044                      QualType Base,
3045                      ObjCProtocolDecl *const *protocols,
3046                      unsigned NumProtocols);
3047};
3048
3049inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
3050  return reinterpret_cast<ObjCProtocolDecl**>(
3051            static_cast<ObjCObjectTypeImpl*>(this) + 1);
3052}
3053
3054/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
3055/// object oriented design.  They basically correspond to C++ classes.  There
3056/// are two kinds of interface types, normal interfaces like "NSString" and
3057/// qualified interfaces, which are qualified with a protocol list like
3058/// "NSString<NSCopyable, NSAmazing>".
3059///
3060/// ObjCInterfaceType guarantees the following properties when considered
3061/// as a subtype of its superclass, ObjCObjectType:
3062///   - There are no protocol qualifiers.  To reinforce this, code which
3063///     tries to invoke the protocol methods via an ObjCInterfaceType will
3064///     fail to compile.
3065///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
3066///     T->getBaseType() == QualType(T, 0).
3067class ObjCInterfaceType : public ObjCObjectType {
3068  ObjCInterfaceDecl *Decl;
3069
3070  ObjCInterfaceType(const ObjCInterfaceDecl *D)
3071    : ObjCObjectType(Nonce_ObjCInterface),
3072      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
3073  friend class ASTContext;  // ASTContext creates these.
3074public:
3075  /// getDecl - Get the declaration of this interface.
3076  ObjCInterfaceDecl *getDecl() const { return Decl; }
3077
3078  bool isSugared() const { return false; }
3079  QualType desugar() const { return QualType(this, 0); }
3080
3081  static bool classof(const Type *T) {
3082    return T->getTypeClass() == ObjCInterface;
3083  }
3084  static bool classof(const ObjCInterfaceType *) { return true; }
3085
3086  // Nonsense to "hide" certain members of ObjCObjectType within this
3087  // class.  People asking for protocols on an ObjCInterfaceType are
3088  // not going to get what they want: ObjCInterfaceTypes are
3089  // guaranteed to have no protocols.
3090  enum {
3091    qual_iterator,
3092    qual_begin,
3093    qual_end,
3094    getNumProtocols,
3095    getProtocol
3096  };
3097};
3098
3099inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
3100  if (const ObjCInterfaceType *T =
3101        getBaseType()->getAs<ObjCInterfaceType>())
3102    return T->getDecl();
3103  return 0;
3104}
3105
3106/// ObjCObjectPointerType - Used to represent a pointer to an
3107/// Objective C object.  These are constructed from pointer
3108/// declarators when the pointee type is an ObjCObjectType (or sugar
3109/// for one).  In addition, the 'id' and 'Class' types are typedefs
3110/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
3111/// are translated into these.
3112///
3113/// Pointers to pointers to Objective C objects are still PointerTypes;
3114/// only the first level of pointer gets it own type implementation.
3115class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
3116  QualType PointeeType;
3117
3118  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
3119    : Type(ObjCObjectPointer, Canonical, false),
3120      PointeeType(Pointee) {}
3121  friend class ASTContext;  // ASTContext creates these.
3122
3123protected:
3124  virtual Linkage getLinkageImpl() const;
3125
3126public:
3127  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
3128  /// The result will always be an ObjCObjectType or sugar thereof.
3129  QualType getPointeeType() const { return PointeeType; }
3130
3131  /// getObjCObjectType - Gets the type pointed to by this ObjC
3132  /// pointer.  This method always returns non-null.
3133  ///
3134  /// This method is equivalent to getPointeeType() except that
3135  /// it discards any typedefs (or other sugar) between this
3136  /// type and the "outermost" object type.  So for:
3137  ///   @class A; @protocol P; @protocol Q;
3138  ///   typedef A<P> AP;
3139  ///   typedef A A1;
3140  ///   typedef A1<P> A1P;
3141  ///   typedef A1P<Q> A1PQ;
3142  /// For 'A*', getObjectType() will return 'A'.
3143  /// For 'A<P>*', getObjectType() will return 'A<P>'.
3144  /// For 'AP*', getObjectType() will return 'A<P>'.
3145  /// For 'A1*', getObjectType() will return 'A'.
3146  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
3147  /// For 'A1P*', getObjectType() will return 'A1<P>'.
3148  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
3149  ///   adding protocols to a protocol-qualified base discards the
3150  ///   old qualifiers (for now).  But if it didn't, getObjectType()
3151  ///   would return 'A1P<Q>' (and we'd have to make iterating over
3152  ///   qualifiers more complicated).
3153  const ObjCObjectType *getObjectType() const {
3154    return PointeeType->getAs<ObjCObjectType>();
3155  }
3156
3157  /// getInterfaceType - If this pointer points to an Objective C
3158  /// @interface type, gets the type for that interface.  Any protocol
3159  /// qualifiers on the interface are ignored.
3160  ///
3161  /// \return null if the base type for this pointer is 'id' or 'Class'
3162  const ObjCInterfaceType *getInterfaceType() const {
3163    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
3164  }
3165
3166  /// getInterfaceDecl - If this pointer points to an Objective @interface
3167  /// type, gets the declaration for that interface.
3168  ///
3169  /// \return null if the base type for this pointer is 'id' or 'Class'
3170  ObjCInterfaceDecl *getInterfaceDecl() const {
3171    return getObjectType()->getInterface();
3172  }
3173
3174  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
3175  /// its object type is the primitive 'id' type with no protocols.
3176  bool isObjCIdType() const {
3177    return getObjectType()->isObjCUnqualifiedId();
3178  }
3179
3180  /// isObjCClassType - True if this is equivalent to the 'Class' type,
3181  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
3182  bool isObjCClassType() const {
3183    return getObjectType()->isObjCUnqualifiedClass();
3184  }
3185
3186  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
3187  /// non-empty set of protocols.
3188  bool isObjCQualifiedIdType() const {
3189    return getObjectType()->isObjCQualifiedId();
3190  }
3191
3192  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
3193  /// some non-empty set of protocols.
3194  bool isObjCQualifiedClassType() const {
3195    return getObjectType()->isObjCQualifiedClass();
3196  }
3197
3198  /// An iterator over the qualifiers on the object type.  Provided
3199  /// for convenience.  This will always iterate over the full set of
3200  /// protocols on a type, not just those provided directly.
3201  typedef ObjCObjectType::qual_iterator qual_iterator;
3202
3203  qual_iterator qual_begin() const {
3204    return getObjectType()->qual_begin();
3205  }
3206  qual_iterator qual_end() const {
3207    return getObjectType()->qual_end();
3208  }
3209  bool qual_empty() const { return getObjectType()->qual_empty(); }
3210
3211  /// getNumProtocols - Return the number of qualifying protocols on
3212  /// the object type.
3213  unsigned getNumProtocols() const {
3214    return getObjectType()->getNumProtocols();
3215  }
3216
3217  /// \brief Retrieve a qualifying protocol by index on the object
3218  /// type.
3219  ObjCProtocolDecl *getProtocol(unsigned I) const {
3220    return getObjectType()->getProtocol(I);
3221  }
3222
3223  bool isSugared() const { return false; }
3224  QualType desugar() const { return QualType(this, 0); }
3225
3226  void Profile(llvm::FoldingSetNodeID &ID) {
3227    Profile(ID, getPointeeType());
3228  }
3229  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
3230    ID.AddPointer(T.getAsOpaquePtr());
3231  }
3232  static bool classof(const Type *T) {
3233    return T->getTypeClass() == ObjCObjectPointer;
3234  }
3235  static bool classof(const ObjCObjectPointerType *) { return true; }
3236};
3237
3238/// A qualifier set is used to build a set of qualifiers.
3239class QualifierCollector : public Qualifiers {
3240  ASTContext *Context;
3241
3242public:
3243  QualifierCollector(Qualifiers Qs = Qualifiers())
3244    : Qualifiers(Qs), Context(0) {}
3245  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
3246    : Qualifiers(Qs), Context(&Context) {}
3247
3248  void setContext(ASTContext &C) { Context = &C; }
3249
3250  /// Collect any qualifiers on the given type and return an
3251  /// unqualified type.
3252  const Type *strip(QualType QT) {
3253    addFastQualifiers(QT.getLocalFastQualifiers());
3254    if (QT.hasLocalNonFastQualifiers()) {
3255      const ExtQuals *EQ = QT.getExtQualsUnsafe();
3256      Context = &EQ->getContext();
3257      addQualifiers(EQ->getQualifiers());
3258      return EQ->getBaseType();
3259    }
3260    return QT.getTypePtrUnsafe();
3261  }
3262
3263  /// Apply the collected qualifiers to the given type.
3264  QualType apply(QualType QT) const;
3265
3266  /// Apply the collected qualifiers to the given type.
3267  QualType apply(const Type* T) const;
3268
3269};
3270
3271
3272// Inline function definitions.
3273
3274inline bool QualType::isCanonical() const {
3275  const Type *T = getTypePtr();
3276  if (hasLocalQualifiers())
3277    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
3278  return T->isCanonicalUnqualified();
3279}
3280
3281inline bool QualType::isCanonicalAsParam() const {
3282  if (hasLocalQualifiers()) return false;
3283  const Type *T = getTypePtr();
3284  return T->isCanonicalUnqualified() &&
3285           !isa<FunctionType>(T) && !isa<ArrayType>(T);
3286}
3287
3288inline bool QualType::isConstQualified() const {
3289  return isLocalConstQualified() ||
3290              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
3291}
3292
3293inline bool QualType::isRestrictQualified() const {
3294  return isLocalRestrictQualified() ||
3295            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
3296}
3297
3298
3299inline bool QualType::isVolatileQualified() const {
3300  return isLocalVolatileQualified() ||
3301  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
3302}
3303
3304inline bool QualType::hasQualifiers() const {
3305  return hasLocalQualifiers() ||
3306                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
3307}
3308
3309inline Qualifiers QualType::getQualifiers() const {
3310  Qualifiers Quals = getLocalQualifiers();
3311  Quals.addQualifiers(
3312                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
3313  return Quals;
3314}
3315
3316inline unsigned QualType::getCVRQualifiers() const {
3317  return getLocalCVRQualifiers() |
3318              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
3319}
3320
3321/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
3322/// type, returns them. Otherwise, if this is an array type, recurses
3323/// on the element type until some qualifiers have been found or a non-array
3324/// type reached.
3325inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
3326  if (unsigned Quals = getCVRQualifiers())
3327    return Quals;
3328  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3329  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3330    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
3331  return 0;
3332}
3333
3334inline void QualType::removeConst() {
3335  removeFastQualifiers(Qualifiers::Const);
3336}
3337
3338inline void QualType::removeRestrict() {
3339  removeFastQualifiers(Qualifiers::Restrict);
3340}
3341
3342inline void QualType::removeVolatile() {
3343  QualifierCollector Qc;
3344  const Type *Ty = Qc.strip(*this);
3345  if (Qc.hasVolatile()) {
3346    Qc.removeVolatile();
3347    *this = Qc.apply(Ty);
3348  }
3349}
3350
3351inline void QualType::removeCVRQualifiers(unsigned Mask) {
3352  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
3353
3354  // Fast path: we don't need to touch the slow qualifiers.
3355  if (!(Mask & ~Qualifiers::FastMask)) {
3356    removeFastQualifiers(Mask);
3357    return;
3358  }
3359
3360  QualifierCollector Qc;
3361  const Type *Ty = Qc.strip(*this);
3362  Qc.removeCVRQualifiers(Mask);
3363  *this = Qc.apply(Ty);
3364}
3365
3366/// getAddressSpace - Return the address space of this type.
3367inline unsigned QualType::getAddressSpace() const {
3368  if (hasLocalNonFastQualifiers()) {
3369    const ExtQuals *EQ = getExtQualsUnsafe();
3370    if (EQ->hasAddressSpace())
3371      return EQ->getAddressSpace();
3372  }
3373
3374  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3375  if (CT.hasLocalNonFastQualifiers()) {
3376    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3377    if (EQ->hasAddressSpace())
3378      return EQ->getAddressSpace();
3379  }
3380
3381  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3382    return AT->getElementType().getAddressSpace();
3383  if (const RecordType *RT = dyn_cast<RecordType>(CT))
3384    return RT->getAddressSpace();
3385  return 0;
3386}
3387
3388/// getObjCGCAttr - Return the gc attribute of this type.
3389inline Qualifiers::GC QualType::getObjCGCAttr() const {
3390  if (hasLocalNonFastQualifiers()) {
3391    const ExtQuals *EQ = getExtQualsUnsafe();
3392    if (EQ->hasObjCGCAttr())
3393      return EQ->getObjCGCAttr();
3394  }
3395
3396  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3397  if (CT.hasLocalNonFastQualifiers()) {
3398    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3399    if (EQ->hasObjCGCAttr())
3400      return EQ->getObjCGCAttr();
3401  }
3402
3403  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3404      return AT->getElementType().getObjCGCAttr();
3405  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
3406    return PT->getPointeeType().getObjCGCAttr();
3407  // We most look at all pointer types, not just pointer to interface types.
3408  if (const PointerType *PT = CT->getAs<PointerType>())
3409    return PT->getPointeeType().getObjCGCAttr();
3410  return Qualifiers::GCNone;
3411}
3412
3413inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
3414  if (const PointerType *PT = t.getAs<PointerType>()) {
3415    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
3416      return FT->getExtInfo();
3417  } else if (const FunctionType *FT = t.getAs<FunctionType>())
3418    return FT->getExtInfo();
3419
3420  return FunctionType::ExtInfo();
3421}
3422
3423inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
3424  return getFunctionExtInfo(*t);
3425}
3426
3427/// \brief Determine whether this set of qualifiers is a superset of the given
3428/// set of qualifiers.
3429inline bool Qualifiers::isSupersetOf(Qualifiers Other) const {
3430  return Mask != Other.Mask && (Mask | Other.Mask) == Mask;
3431}
3432
3433/// isMoreQualifiedThan - Determine whether this type is more
3434/// qualified than the Other type. For example, "const volatile int"
3435/// is more qualified than "const int", "volatile int", and
3436/// "int". However, it is not more qualified than "const volatile
3437/// int".
3438inline bool QualType::isMoreQualifiedThan(QualType Other) const {
3439  // FIXME: work on arbitrary qualifiers
3440  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3441  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3442  if (getAddressSpace() != Other.getAddressSpace())
3443    return false;
3444  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
3445}
3446
3447/// isAtLeastAsQualifiedAs - Determine whether this type is at last
3448/// as qualified as the Other type. For example, "const volatile
3449/// int" is at least as qualified as "const int", "volatile int",
3450/// "int", and "const volatile int".
3451inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
3452  // FIXME: work on arbitrary qualifiers
3453  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3454  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3455  if (getAddressSpace() != Other.getAddressSpace())
3456    return false;
3457  return (MyQuals | OtherQuals) == MyQuals;
3458}
3459
3460/// getNonReferenceType - If Type is a reference type (e.g., const
3461/// int&), returns the type that the reference refers to ("const
3462/// int"). Otherwise, returns the type itself. This routine is used
3463/// throughout Sema to implement C++ 5p6:
3464///
3465///   If an expression initially has the type "reference to T" (8.3.2,
3466///   8.5.3), the type is adjusted to "T" prior to any further
3467///   analysis, the expression designates the object or function
3468///   denoted by the reference, and the expression is an lvalue.
3469inline QualType QualType::getNonReferenceType() const {
3470  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
3471    return RefType->getPointeeType();
3472  else
3473    return *this;
3474}
3475
3476inline bool Type::isFunctionType() const {
3477  return isa<FunctionType>(CanonicalType);
3478}
3479inline bool Type::isPointerType() const {
3480  return isa<PointerType>(CanonicalType);
3481}
3482inline bool Type::isAnyPointerType() const {
3483  return isPointerType() || isObjCObjectPointerType();
3484}
3485inline bool Type::isBlockPointerType() const {
3486  return isa<BlockPointerType>(CanonicalType);
3487}
3488inline bool Type::isReferenceType() const {
3489  return isa<ReferenceType>(CanonicalType);
3490}
3491inline bool Type::isLValueReferenceType() const {
3492  return isa<LValueReferenceType>(CanonicalType);
3493}
3494inline bool Type::isRValueReferenceType() const {
3495  return isa<RValueReferenceType>(CanonicalType);
3496}
3497inline bool Type::isFunctionPointerType() const {
3498  if (const PointerType* T = getAs<PointerType>())
3499    return T->getPointeeType()->isFunctionType();
3500  else
3501    return false;
3502}
3503inline bool Type::isMemberPointerType() const {
3504  return isa<MemberPointerType>(CanonicalType);
3505}
3506inline bool Type::isMemberFunctionPointerType() const {
3507  if (const MemberPointerType* T = getAs<MemberPointerType>())
3508    return T->isMemberFunctionPointer();
3509  else
3510    return false;
3511}
3512inline bool Type::isMemberDataPointerType() const {
3513  if (const MemberPointerType* T = getAs<MemberPointerType>())
3514    return T->isMemberDataPointer();
3515  else
3516    return false;
3517}
3518inline bool Type::isArrayType() const {
3519  return isa<ArrayType>(CanonicalType);
3520}
3521inline bool Type::isConstantArrayType() const {
3522  return isa<ConstantArrayType>(CanonicalType);
3523}
3524inline bool Type::isIncompleteArrayType() const {
3525  return isa<IncompleteArrayType>(CanonicalType);
3526}
3527inline bool Type::isVariableArrayType() const {
3528  return isa<VariableArrayType>(CanonicalType);
3529}
3530inline bool Type::isDependentSizedArrayType() const {
3531  return isa<DependentSizedArrayType>(CanonicalType);
3532}
3533inline bool Type::isRecordType() const {
3534  return isa<RecordType>(CanonicalType);
3535}
3536inline bool Type::isAnyComplexType() const {
3537  return isa<ComplexType>(CanonicalType);
3538}
3539inline bool Type::isVectorType() const {
3540  return isa<VectorType>(CanonicalType);
3541}
3542inline bool Type::isExtVectorType() const {
3543  return isa<ExtVectorType>(CanonicalType);
3544}
3545inline bool Type::isObjCObjectPointerType() const {
3546  return isa<ObjCObjectPointerType>(CanonicalType);
3547}
3548inline bool Type::isObjCObjectType() const {
3549  return isa<ObjCObjectType>(CanonicalType);
3550}
3551inline bool Type::isObjCObjectOrInterfaceType() const {
3552  return isa<ObjCInterfaceType>(CanonicalType) ||
3553    isa<ObjCObjectType>(CanonicalType);
3554}
3555
3556inline bool Type::isObjCQualifiedIdType() const {
3557  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3558    return OPT->isObjCQualifiedIdType();
3559  return false;
3560}
3561inline bool Type::isObjCQualifiedClassType() const {
3562  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3563    return OPT->isObjCQualifiedClassType();
3564  return false;
3565}
3566inline bool Type::isObjCIdType() const {
3567  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3568    return OPT->isObjCIdType();
3569  return false;
3570}
3571inline bool Type::isObjCClassType() const {
3572  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3573    return OPT->isObjCClassType();
3574  return false;
3575}
3576inline bool Type::isObjCSelType() const {
3577  if (const PointerType *OPT = getAs<PointerType>())
3578    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3579  return false;
3580}
3581inline bool Type::isObjCBuiltinType() const {
3582  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3583}
3584inline bool Type::isTemplateTypeParmType() const {
3585  return isa<TemplateTypeParmType>(CanonicalType);
3586}
3587
3588inline bool Type::isBuiltinType() const {
3589  return getAs<BuiltinType>();
3590}
3591
3592inline bool Type::isSpecificBuiltinType(unsigned K) const {
3593  if (const BuiltinType *BT = getAs<BuiltinType>())
3594    if (BT->getKind() == (BuiltinType::Kind) K)
3595      return true;
3596  return false;
3597}
3598
3599/// \brief Determines whether this is a type for which one can define
3600/// an overloaded operator.
3601inline bool Type::isOverloadableType() const {
3602  return isDependentType() || isRecordType() || isEnumeralType();
3603}
3604
3605inline bool Type::hasPointerRepresentation() const {
3606  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3607          isObjCObjectPointerType() || isNullPtrType());
3608}
3609
3610inline bool Type::hasObjCPointerRepresentation() const {
3611  return isObjCObjectPointerType();
3612}
3613
3614/// Insertion operator for diagnostics.  This allows sending QualType's into a
3615/// diagnostic with <<.
3616inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3617                                           QualType T) {
3618  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3619                  Diagnostic::ak_qualtype);
3620  return DB;
3621}
3622
3623/// Insertion operator for partial diagnostics.  This allows sending QualType's
3624/// into a diagnostic with <<.
3625inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
3626                                           QualType T) {
3627  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3628                  Diagnostic::ak_qualtype);
3629  return PD;
3630}
3631
3632// Helper class template that is used by Type::getAs to ensure that one does
3633// not try to look through a qualified type to get to an array type.
3634template<typename T,
3635         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3636                             llvm::is_base_of<ArrayType, T>::value)>
3637struct ArrayType_cannot_be_used_with_getAs { };
3638
3639template<typename T>
3640struct ArrayType_cannot_be_used_with_getAs<T, true>;
3641
3642/// Member-template getAs<specific type>'.
3643template <typename T> const T *Type::getAs() const {
3644  ArrayType_cannot_be_used_with_getAs<T> at;
3645  (void)at;
3646
3647  // If this is directly a T type, return it.
3648  if (const T *Ty = dyn_cast<T>(this))
3649    return Ty;
3650
3651  // If the canonical form of this type isn't the right kind, reject it.
3652  if (!isa<T>(CanonicalType))
3653    return 0;
3654
3655  // If this is a typedef for the type, strip the typedef off without
3656  // losing all typedef information.
3657  return cast<T>(getUnqualifiedDesugaredType());
3658}
3659
3660}  // end namespace clang
3661
3662#endif
3663