Type.h revision 414d8967e1d760ea1e19a4aca96b13777a8cf8c5
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/ExceptionSpecificationType.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/Linkage.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Basic/Visibility.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/TemplateName.h"
25#include "llvm/Support/Casting.h"
26#include "llvm/Support/type_traits.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32
33using llvm::isa;
34using llvm::cast;
35using llvm::cast_or_null;
36using llvm::dyn_cast;
37using llvm::dyn_cast_or_null;
38namespace clang {
39  enum {
40    TypeAlignmentInBits = 4,
41    TypeAlignment = 1 << TypeAlignmentInBits
42  };
43  class Type;
44  class ExtQuals;
45  class QualType;
46}
47
48namespace llvm {
49  template <typename T>
50  class PointerLikeTypeTraits;
51  template<>
52  class PointerLikeTypeTraits< ::clang::Type*> {
53  public:
54    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
55    static inline ::clang::Type *getFromVoidPointer(void *P) {
56      return static_cast< ::clang::Type*>(P);
57    }
58    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
59  };
60  template<>
61  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
62  public:
63    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
64    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
65      return static_cast< ::clang::ExtQuals*>(P);
66    }
67    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
68  };
69
70  template <>
71  struct isPodLike<clang::QualType> { static const bool value = true; };
72}
73
74namespace clang {
75  class ASTContext;
76  class TypedefDecl;
77  class TemplateDecl;
78  class TemplateTypeParmDecl;
79  class NonTypeTemplateParmDecl;
80  class TemplateTemplateParmDecl;
81  class TagDecl;
82  class RecordDecl;
83  class CXXRecordDecl;
84  class EnumDecl;
85  class FieldDecl;
86  class ObjCInterfaceDecl;
87  class ObjCProtocolDecl;
88  class ObjCMethodDecl;
89  class UnresolvedUsingTypenameDecl;
90  class Expr;
91  class Stmt;
92  class SourceLocation;
93  class StmtIteratorBase;
94  class TemplateArgument;
95  class TemplateArgumentLoc;
96  class TemplateArgumentListInfo;
97  class ElaboratedType;
98  class ExtQuals;
99  class ExtQualsTypeCommonBase;
100  struct PrintingPolicy;
101
102  template <typename> class CanQual;
103  typedef CanQual<Type> CanQualType;
104
105  // Provide forward declarations for all of the *Type classes
106#define TYPE(Class, Base) class Class##Type;
107#include "clang/AST/TypeNodes.def"
108
109/// Qualifiers - The collection of all-type qualifiers we support.
110/// Clang supports five independent qualifiers:
111/// * C99: const, volatile, and restrict
112/// * Embedded C (TR18037): address spaces
113/// * Objective C: the GC attributes (none, weak, or strong)
114class Qualifiers {
115public:
116  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
117    Const    = 0x1,
118    Restrict = 0x2,
119    Volatile = 0x4,
120    CVRMask = Const | Volatile | Restrict
121  };
122
123  enum GC {
124    GCNone = 0,
125    Weak,
126    Strong
127  };
128
129  enum {
130    /// The maximum supported address space number.
131    /// 24 bits should be enough for anyone.
132    MaxAddressSpace = 0xffffffu,
133
134    /// The width of the "fast" qualifier mask.
135    FastWidth = 3,
136
137    /// The fast qualifier mask.
138    FastMask = (1 << FastWidth) - 1
139  };
140
141  Qualifiers() : Mask(0) {}
142
143  static Qualifiers fromFastMask(unsigned Mask) {
144    Qualifiers Qs;
145    Qs.addFastQualifiers(Mask);
146    return Qs;
147  }
148
149  static Qualifiers fromCVRMask(unsigned CVR) {
150    Qualifiers Qs;
151    Qs.addCVRQualifiers(CVR);
152    return Qs;
153  }
154
155  // Deserialize qualifiers from an opaque representation.
156  static Qualifiers fromOpaqueValue(unsigned opaque) {
157    Qualifiers Qs;
158    Qs.Mask = opaque;
159    return Qs;
160  }
161
162  // Serialize these qualifiers into an opaque representation.
163  unsigned getAsOpaqueValue() const {
164    return Mask;
165  }
166
167  bool hasConst() const { return Mask & Const; }
168  void setConst(bool flag) {
169    Mask = (Mask & ~Const) | (flag ? Const : 0);
170  }
171  void removeConst() { Mask &= ~Const; }
172  void addConst() { Mask |= Const; }
173
174  bool hasVolatile() const { return Mask & Volatile; }
175  void setVolatile(bool flag) {
176    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
177  }
178  void removeVolatile() { Mask &= ~Volatile; }
179  void addVolatile() { Mask |= Volatile; }
180
181  bool hasRestrict() const { return Mask & Restrict; }
182  void setRestrict(bool flag) {
183    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
184  }
185  void removeRestrict() { Mask &= ~Restrict; }
186  void addRestrict() { Mask |= Restrict; }
187
188  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
189  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
190  void setCVRQualifiers(unsigned mask) {
191    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
192    Mask = (Mask & ~CVRMask) | mask;
193  }
194  void removeCVRQualifiers(unsigned mask) {
195    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
196    Mask &= ~mask;
197  }
198  void removeCVRQualifiers() {
199    removeCVRQualifiers(CVRMask);
200  }
201  void addCVRQualifiers(unsigned mask) {
202    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
203    Mask |= mask;
204  }
205
206  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
207  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
208  void setObjCGCAttr(GC type) {
209    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
210  }
211  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
212  void addObjCGCAttr(GC type) {
213    assert(type);
214    setObjCGCAttr(type);
215  }
216  Qualifiers withoutObjCGCAttr() const {
217    Qualifiers qs = *this;
218    qs.removeObjCGCAttr();
219    return qs;
220  }
221
222  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
223  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
224  void setAddressSpace(unsigned space) {
225    assert(space <= MaxAddressSpace);
226    Mask = (Mask & ~AddressSpaceMask)
227         | (((uint32_t) space) << AddressSpaceShift);
228  }
229  void removeAddressSpace() { setAddressSpace(0); }
230  void addAddressSpace(unsigned space) {
231    assert(space);
232    setAddressSpace(space);
233  }
234
235  // Fast qualifiers are those that can be allocated directly
236  // on a QualType object.
237  bool hasFastQualifiers() const { return getFastQualifiers(); }
238  unsigned getFastQualifiers() const { return Mask & FastMask; }
239  void setFastQualifiers(unsigned mask) {
240    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
241    Mask = (Mask & ~FastMask) | mask;
242  }
243  void removeFastQualifiers(unsigned mask) {
244    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
245    Mask &= ~mask;
246  }
247  void removeFastQualifiers() {
248    removeFastQualifiers(FastMask);
249  }
250  void addFastQualifiers(unsigned mask) {
251    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
252    Mask |= mask;
253  }
254
255  /// hasNonFastQualifiers - Return true if the set contains any
256  /// qualifiers which require an ExtQuals node to be allocated.
257  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
258  Qualifiers getNonFastQualifiers() const {
259    Qualifiers Quals = *this;
260    Quals.setFastQualifiers(0);
261    return Quals;
262  }
263
264  /// hasQualifiers - Return true if the set contains any qualifiers.
265  bool hasQualifiers() const { return Mask; }
266  bool empty() const { return !Mask; }
267
268  /// \brief Add the qualifiers from the given set to this set.
269  void addQualifiers(Qualifiers Q) {
270    // If the other set doesn't have any non-boolean qualifiers, just
271    // bit-or it in.
272    if (!(Q.Mask & ~CVRMask))
273      Mask |= Q.Mask;
274    else {
275      Mask |= (Q.Mask & CVRMask);
276      if (Q.hasAddressSpace())
277        addAddressSpace(Q.getAddressSpace());
278      if (Q.hasObjCGCAttr())
279        addObjCGCAttr(Q.getObjCGCAttr());
280    }
281  }
282
283  /// \brief Add the qualifiers from the given set to this set, given that
284  /// they don't conflict.
285  void addConsistentQualifiers(Qualifiers qs) {
286    assert(getAddressSpace() == qs.getAddressSpace() ||
287           !hasAddressSpace() || !qs.hasAddressSpace());
288    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
289           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
290    Mask |= qs.Mask;
291  }
292
293  /// \brief Determines if these qualifiers compatibly include another set.
294  /// Generally this answers the question of whether an object with the other
295  /// qualifiers can be safely used as an object with these qualifiers.
296  bool compatiblyIncludes(Qualifiers other) const {
297    // Non-CVR qualifiers must match exactly.  CVR qualifiers may subset.
298    return ((Mask & ~CVRMask) == (other.Mask & ~CVRMask)) &&
299           (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
300  }
301
302  bool isSupersetOf(Qualifiers Other) const;
303
304  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
305  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
306
307  operator bool() const { return hasQualifiers(); }
308
309  Qualifiers &operator+=(Qualifiers R) {
310    addQualifiers(R);
311    return *this;
312  }
313
314  // Union two qualifier sets.  If an enumerated qualifier appears
315  // in both sets, use the one from the right.
316  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
317    L += R;
318    return L;
319  }
320
321  Qualifiers &operator-=(Qualifiers R) {
322    Mask = Mask & ~(R.Mask);
323    return *this;
324  }
325
326  /// \brief Compute the difference between two qualifier sets.
327  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
328    L -= R;
329    return L;
330  }
331
332  std::string getAsString() const;
333  std::string getAsString(const PrintingPolicy &Policy) const {
334    std::string Buffer;
335    getAsStringInternal(Buffer, Policy);
336    return Buffer;
337  }
338  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
339
340  void Profile(llvm::FoldingSetNodeID &ID) const {
341    ID.AddInteger(Mask);
342  }
343
344private:
345
346  // bits:     |0 1 2|3 .. 4|5  ..  31|
347  //           |C R V|GCAttr|AddrSpace|
348  uint32_t Mask;
349
350  static const uint32_t GCAttrMask = 0x18;
351  static const uint32_t GCAttrShift = 3;
352  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
353  static const uint32_t AddressSpaceShift = 5;
354};
355
356/// CallingConv - Specifies the calling convention that a function uses.
357enum CallingConv {
358  CC_Default,
359  CC_C,           // __attribute__((cdecl))
360  CC_X86StdCall,  // __attribute__((stdcall))
361  CC_X86FastCall, // __attribute__((fastcall))
362  CC_X86ThisCall, // __attribute__((thiscall))
363  CC_X86Pascal,   // __attribute__((pascal))
364  CC_AAPCS,       // __attribute__((pcs("aapcs")))
365  CC_AAPCS_VFP    // __attribute__((pcs("aapcs-vfp")))
366};
367
368typedef std::pair<const Type*, Qualifiers> SplitQualType;
369
370/// QualType - For efficiency, we don't store CV-qualified types as nodes on
371/// their own: instead each reference to a type stores the qualifiers.  This
372/// greatly reduces the number of nodes we need to allocate for types (for
373/// example we only need one for 'int', 'const int', 'volatile int',
374/// 'const volatile int', etc).
375///
376/// As an added efficiency bonus, instead of making this a pair, we
377/// just store the two bits we care about in the low bits of the
378/// pointer.  To handle the packing/unpacking, we make QualType be a
379/// simple wrapper class that acts like a smart pointer.  A third bit
380/// indicates whether there are extended qualifiers present, in which
381/// case the pointer points to a special structure.
382class QualType {
383  // Thankfully, these are efficiently composable.
384  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
385                       Qualifiers::FastWidth> Value;
386
387  const ExtQuals *getExtQualsUnsafe() const {
388    return Value.getPointer().get<const ExtQuals*>();
389  }
390
391  const Type *getTypePtrUnsafe() const {
392    return Value.getPointer().get<const Type*>();
393  }
394
395  const ExtQualsTypeCommonBase *getCommonPtr() const {
396    assert(!isNull() && "Cannot retrieve a NULL type pointer");
397    uintptr_t CommonPtrVal
398      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
399    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
400    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
401  }
402
403  friend class QualifierCollector;
404public:
405  QualType() {}
406
407  QualType(const Type *Ptr, unsigned Quals)
408    : Value(Ptr, Quals) {}
409  QualType(const ExtQuals *Ptr, unsigned Quals)
410    : Value(Ptr, Quals) {}
411
412  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
413  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
414
415  /// Retrieves a pointer to the underlying (unqualified) type.
416  /// This should really return a const Type, but it's not worth
417  /// changing all the users right now.
418  ///
419  /// This function requires that the type not be NULL. If the type might be
420  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
421  const Type *getTypePtr() const;
422
423  const Type *getTypePtrOrNull() const;
424
425  /// Divides a QualType into its unqualified type and a set of local
426  /// qualifiers.
427  SplitQualType split() const;
428
429  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
430  static QualType getFromOpaquePtr(const void *Ptr) {
431    QualType T;
432    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
433    return T;
434  }
435
436  const Type &operator*() const {
437    return *getTypePtr();
438  }
439
440  const Type *operator->() const {
441    return getTypePtr();
442  }
443
444  bool isCanonical() const;
445  bool isCanonicalAsParam() const;
446
447  /// isNull - Return true if this QualType doesn't point to a type yet.
448  bool isNull() const {
449    return Value.getPointer().isNull();
450  }
451
452  /// \brief Determine whether this particular QualType instance has the
453  /// "const" qualifier set, without looking through typedefs that may have
454  /// added "const" at a different level.
455  bool isLocalConstQualified() const {
456    return (getLocalFastQualifiers() & Qualifiers::Const);
457  }
458
459  /// \brief Determine whether this type is const-qualified.
460  bool isConstQualified() const;
461
462  /// \brief Determine whether this particular QualType instance has the
463  /// "restrict" qualifier set, without looking through typedefs that may have
464  /// added "restrict" at a different level.
465  bool isLocalRestrictQualified() const {
466    return (getLocalFastQualifiers() & Qualifiers::Restrict);
467  }
468
469  /// \brief Determine whether this type is restrict-qualified.
470  bool isRestrictQualified() const;
471
472  /// \brief Determine whether this particular QualType instance has the
473  /// "volatile" qualifier set, without looking through typedefs that may have
474  /// added "volatile" at a different level.
475  bool isLocalVolatileQualified() const {
476    return (getLocalFastQualifiers() & Qualifiers::Volatile);
477  }
478
479  /// \brief Determine whether this type is volatile-qualified.
480  bool isVolatileQualified() const;
481
482  /// \brief Determine whether this particular QualType instance has any
483  /// qualifiers, without looking through any typedefs that might add
484  /// qualifiers at a different level.
485  bool hasLocalQualifiers() const {
486    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
487  }
488
489  /// \brief Determine whether this type has any qualifiers.
490  bool hasQualifiers() const;
491
492  /// \brief Determine whether this particular QualType instance has any
493  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
494  /// instance.
495  bool hasLocalNonFastQualifiers() const {
496    return Value.getPointer().is<const ExtQuals*>();
497  }
498
499  /// \brief Retrieve the set of qualifiers local to this particular QualType
500  /// instance, not including any qualifiers acquired through typedefs or
501  /// other sugar.
502  Qualifiers getLocalQualifiers() const;
503
504  /// \brief Retrieve the set of qualifiers applied to this type.
505  Qualifiers getQualifiers() const;
506
507  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
508  /// local to this particular QualType instance, not including any qualifiers
509  /// acquired through typedefs or other sugar.
510  unsigned getLocalCVRQualifiers() const {
511    return getLocalFastQualifiers();
512  }
513
514  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
515  /// applied to this type.
516  unsigned getCVRQualifiers() const;
517
518  bool isConstant(ASTContext& Ctx) const {
519    return QualType::isConstant(*this, Ctx);
520  }
521
522  // Don't promise in the API that anything besides 'const' can be
523  // easily added.
524
525  /// addConst - add the specified type qualifier to this QualType.
526  void addConst() {
527    addFastQualifiers(Qualifiers::Const);
528  }
529  QualType withConst() const {
530    return withFastQualifiers(Qualifiers::Const);
531  }
532
533  void addFastQualifiers(unsigned TQs) {
534    assert(!(TQs & ~Qualifiers::FastMask)
535           && "non-fast qualifier bits set in mask!");
536    Value.setInt(Value.getInt() | TQs);
537  }
538
539  void removeLocalConst();
540  void removeLocalVolatile();
541  void removeLocalRestrict();
542  void removeLocalCVRQualifiers(unsigned Mask);
543
544  void removeLocalFastQualifiers() { Value.setInt(0); }
545  void removeLocalFastQualifiers(unsigned Mask) {
546    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
547    Value.setInt(Value.getInt() & ~Mask);
548  }
549
550  // Creates a type with the given qualifiers in addition to any
551  // qualifiers already on this type.
552  QualType withFastQualifiers(unsigned TQs) const {
553    QualType T = *this;
554    T.addFastQualifiers(TQs);
555    return T;
556  }
557
558  // Creates a type with exactly the given fast qualifiers, removing
559  // any existing fast qualifiers.
560  QualType withExactLocalFastQualifiers(unsigned TQs) const {
561    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
562  }
563
564  // Removes fast qualifiers, but leaves any extended qualifiers in place.
565  QualType withoutLocalFastQualifiers() const {
566    QualType T = *this;
567    T.removeLocalFastQualifiers();
568    return T;
569  }
570
571  QualType getCanonicalType() const;
572
573  /// \brief Return this type with all of the instance-specific qualifiers
574  /// removed, but without removing any qualifiers that may have been applied
575  /// through typedefs.
576  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
577
578  /// \brief Retrieve the unqualified variant of the given type,
579  /// removing as little sugar as possible.
580  ///
581  /// This routine looks through various kinds of sugar to find the
582  /// least-desugared type that is unqualified. For example, given:
583  ///
584  /// \code
585  /// typedef int Integer;
586  /// typedef const Integer CInteger;
587  /// typedef CInteger DifferenceType;
588  /// \endcode
589  ///
590  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
591  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
592  ///
593  /// The resulting type might still be qualified if it's an array
594  /// type.  To strip qualifiers even from within an array type, use
595  /// ASTContext::getUnqualifiedArrayType.
596  inline QualType getUnqualifiedType() const;
597
598  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
599  /// given type, removing as little sugar as possible.
600  ///
601  /// Like getUnqualifiedType(), but also returns the set of
602  /// qualifiers that were built up.
603  ///
604  /// The resulting type might still be qualified if it's an array
605  /// type.  To strip qualifiers even from within an array type, use
606  /// ASTContext::getUnqualifiedArrayType.
607  inline SplitQualType getSplitUnqualifiedType() const;
608
609  bool isMoreQualifiedThan(QualType Other) const;
610  bool isAtLeastAsQualifiedAs(QualType Other) const;
611  QualType getNonReferenceType() const;
612
613  /// \brief Determine the type of a (typically non-lvalue) expression with the
614  /// specified result type.
615  ///
616  /// This routine should be used for expressions for which the return type is
617  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
618  /// an lvalue. It removes a top-level reference (since there are no
619  /// expressions of reference type) and deletes top-level cvr-qualifiers
620  /// from non-class types (in C++) or all types (in C).
621  QualType getNonLValueExprType(ASTContext &Context) const;
622
623  /// getDesugaredType - Return the specified type with any "sugar" removed from
624  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
625  /// the type is already concrete, it returns it unmodified.  This is similar
626  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
627  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
628  /// concrete.
629  ///
630  /// Qualifiers are left in place.
631  QualType getDesugaredType(const ASTContext &Context) const {
632    return getDesugaredType(*this, Context);
633  }
634
635  SplitQualType getSplitDesugaredType() const {
636    return getSplitDesugaredType(*this);
637  }
638
639  /// IgnoreParens - Returns the specified type after dropping any
640  /// outer-level parentheses.
641  QualType IgnoreParens() const {
642    if (isa<ParenType>(*this))
643      return QualType::IgnoreParens(*this);
644    return *this;
645  }
646
647  /// operator==/!= - Indicate whether the specified types and qualifiers are
648  /// identical.
649  friend bool operator==(const QualType &LHS, const QualType &RHS) {
650    return LHS.Value == RHS.Value;
651  }
652  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
653    return LHS.Value != RHS.Value;
654  }
655  std::string getAsString() const {
656    return getAsString(split());
657  }
658  static std::string getAsString(SplitQualType split) {
659    return getAsString(split.first, split.second);
660  }
661  static std::string getAsString(const Type *ty, Qualifiers qs);
662
663  std::string getAsString(const PrintingPolicy &Policy) const {
664    std::string S;
665    getAsStringInternal(S, Policy);
666    return S;
667  }
668  void getAsStringInternal(std::string &Str,
669                           const PrintingPolicy &Policy) const {
670    return getAsStringInternal(split(), Str, Policy);
671  }
672  static void getAsStringInternal(SplitQualType split, std::string &out,
673                                  const PrintingPolicy &policy) {
674    return getAsStringInternal(split.first, split.second, out, policy);
675  }
676  static void getAsStringInternal(const Type *ty, Qualifiers qs,
677                                  std::string &out,
678                                  const PrintingPolicy &policy);
679
680  void dump(const char *s) const;
681  void dump() const;
682
683  void Profile(llvm::FoldingSetNodeID &ID) const {
684    ID.AddPointer(getAsOpaquePtr());
685  }
686
687  /// getAddressSpace - Return the address space of this type.
688  inline unsigned getAddressSpace() const;
689
690  /// GCAttrTypesAttr - Returns gc attribute of this type.
691  inline Qualifiers::GC getObjCGCAttr() const;
692
693  /// isObjCGCWeak true when Type is objc's weak.
694  bool isObjCGCWeak() const {
695    return getObjCGCAttr() == Qualifiers::Weak;
696  }
697
698  /// isObjCGCStrong true when Type is objc's strong.
699  bool isObjCGCStrong() const {
700    return getObjCGCAttr() == Qualifiers::Strong;
701  }
702
703  enum DestructionKind {
704    DK_none,
705    DK_cxx_destructor
706  };
707
708  /// isDestructedType - nonzero if objects of this type require
709  /// non-trivial work to clean up after.  Non-zero because it's
710  /// conceivable that qualifiers (objc_gc(weak)?) could make
711  /// something require destruction.
712  DestructionKind isDestructedType() const {
713    return isDestructedTypeImpl(*this);
714  }
715
716private:
717  // These methods are implemented in a separate translation unit;
718  // "static"-ize them to avoid creating temporary QualTypes in the
719  // caller.
720  static bool isConstant(QualType T, ASTContext& Ctx);
721  static QualType getDesugaredType(QualType T, const ASTContext &Context);
722  static SplitQualType getSplitDesugaredType(QualType T);
723  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
724  static QualType IgnoreParens(QualType T);
725  static DestructionKind isDestructedTypeImpl(QualType type);
726};
727
728} // end clang.
729
730namespace llvm {
731/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
732/// to a specific Type class.
733template<> struct simplify_type<const ::clang::QualType> {
734  typedef const ::clang::Type *SimpleType;
735  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
736    return Val.getTypePtr();
737  }
738};
739template<> struct simplify_type< ::clang::QualType>
740  : public simplify_type<const ::clang::QualType> {};
741
742// Teach SmallPtrSet that QualType is "basically a pointer".
743template<>
744class PointerLikeTypeTraits<clang::QualType> {
745public:
746  static inline void *getAsVoidPointer(clang::QualType P) {
747    return P.getAsOpaquePtr();
748  }
749  static inline clang::QualType getFromVoidPointer(void *P) {
750    return clang::QualType::getFromOpaquePtr(P);
751  }
752  // Various qualifiers go in low bits.
753  enum { NumLowBitsAvailable = 0 };
754};
755
756} // end namespace llvm
757
758namespace clang {
759
760/// \brief Base class that is common to both the \c ExtQuals and \c Type
761/// classes, which allows \c QualType to access the common fields between the
762/// two.
763///
764class ExtQualsTypeCommonBase {
765  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
766    : BaseType(baseType), CanonicalType(canon) {}
767
768  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
769  /// a self-referential pointer (for \c Type).
770  ///
771  /// This pointer allows an efficient mapping from a QualType to its
772  /// underlying type pointer.
773  const Type *const BaseType;
774
775  /// \brief The canonical type of this type.  A QualType.
776  QualType CanonicalType;
777
778  friend class QualType;
779  friend class Type;
780  friend class ExtQuals;
781};
782
783/// ExtQuals - We can encode up to four bits in the low bits of a
784/// type pointer, but there are many more type qualifiers that we want
785/// to be able to apply to an arbitrary type.  Therefore we have this
786/// struct, intended to be heap-allocated and used by QualType to
787/// store qualifiers.
788///
789/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
790/// in three low bits on the QualType pointer; a fourth bit records whether
791/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
792/// Objective-C GC attributes) are much more rare.
793class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
794  // NOTE: changing the fast qualifiers should be straightforward as
795  // long as you don't make 'const' non-fast.
796  // 1. Qualifiers:
797  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
798  //       Fast qualifiers must occupy the low-order bits.
799  //    b) Update Qualifiers::FastWidth and FastMask.
800  // 2. QualType:
801  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
802  //    b) Update remove{Volatile,Restrict}, defined near the end of
803  //       this header.
804  // 3. ASTContext:
805  //    a) Update get{Volatile,Restrict}Type.
806
807  /// Quals - the immutable set of qualifiers applied by this
808  /// node;  always contains extended qualifiers.
809  Qualifiers Quals;
810
811  ExtQuals *this_() { return this; }
812
813public:
814  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
815    : ExtQualsTypeCommonBase(baseType,
816                             canon.isNull() ? QualType(this_(), 0) : canon),
817      Quals(quals)
818  {
819    assert(Quals.hasNonFastQualifiers()
820           && "ExtQuals created with no fast qualifiers");
821    assert(!Quals.hasFastQualifiers()
822           && "ExtQuals created with fast qualifiers");
823  }
824
825  Qualifiers getQualifiers() const { return Quals; }
826
827  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
828  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
829
830  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
831  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
832
833  const Type *getBaseType() const { return BaseType; }
834
835public:
836  void Profile(llvm::FoldingSetNodeID &ID) const {
837    Profile(ID, getBaseType(), Quals);
838  }
839  static void Profile(llvm::FoldingSetNodeID &ID,
840                      const Type *BaseType,
841                      Qualifiers Quals) {
842    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
843    ID.AddPointer(BaseType);
844    Quals.Profile(ID);
845  }
846};
847
848/// \brief The kind of C++0x ref-qualifier associated with a function type,
849/// which determines whether a member function's "this" object can be an
850/// lvalue, rvalue, or neither.
851enum RefQualifierKind {
852  /// \brief No ref-qualifier was provided.
853  RQ_None = 0,
854  /// \brief An lvalue ref-qualifier was provided (\c &).
855  RQ_LValue,
856  /// \brief An rvalue ref-qualifier was provided (\c &&).
857  RQ_RValue
858};
859
860/// Type - This is the base class of the type hierarchy.  A central concept
861/// with types is that each type always has a canonical type.  A canonical type
862/// is the type with any typedef names stripped out of it or the types it
863/// references.  For example, consider:
864///
865///  typedef int  foo;
866///  typedef foo* bar;
867///    'int *'    'foo *'    'bar'
868///
869/// There will be a Type object created for 'int'.  Since int is canonical, its
870/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
871/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
872/// there is a PointerType that represents 'int*', which, like 'int', is
873/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
874/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
875/// is also 'int*'.
876///
877/// Non-canonical types are useful for emitting diagnostics, without losing
878/// information about typedefs being used.  Canonical types are useful for type
879/// comparisons (they allow by-pointer equality tests) and useful for reasoning
880/// about whether something has a particular form (e.g. is a function type),
881/// because they implicitly, recursively, strip all typedefs out of a type.
882///
883/// Types, once created, are immutable.
884///
885class Type : public ExtQualsTypeCommonBase {
886public:
887  enum TypeClass {
888#define TYPE(Class, Base) Class,
889#define LAST_TYPE(Class) TypeLast = Class,
890#define ABSTRACT_TYPE(Class, Base)
891#include "clang/AST/TypeNodes.def"
892    TagFirst = Record, TagLast = Enum
893  };
894
895private:
896  Type(const Type&);           // DO NOT IMPLEMENT.
897  void operator=(const Type&); // DO NOT IMPLEMENT.
898
899  /// Bitfields required by the Type class.
900  class TypeBitfields {
901    friend class Type;
902    template <class T> friend class TypePropertyCache;
903
904    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
905    unsigned TC : 8;
906
907    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
908    /// Note that this should stay at the end of the ivars for Type so that
909    /// subclasses can pack their bitfields into the same word.
910    unsigned Dependent : 1;
911
912    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
913    unsigned VariablyModified : 1;
914
915    /// \brief Whether this type contains an unexpanded parameter pack
916    /// (for C++0x variadic templates).
917    unsigned ContainsUnexpandedParameterPack : 1;
918
919    /// \brief Nonzero if the cache (i.e. the bitfields here starting
920    /// with 'Cache') is valid.  If so, then this is a
921    /// LangOptions::VisibilityMode+1.
922    mutable unsigned CacheValidAndVisibility : 2;
923
924    /// \brief Linkage of this type.
925    mutable unsigned CachedLinkage : 2;
926
927    /// \brief Whether this type involves and local or unnamed types.
928    mutable unsigned CachedLocalOrUnnamed : 1;
929
930    /// \brief FromAST - Whether this type comes from an AST file.
931    mutable unsigned FromAST : 1;
932
933    bool isCacheValid() const {
934      return (CacheValidAndVisibility != 0);
935    }
936    Visibility getVisibility() const {
937      assert(isCacheValid() && "getting linkage from invalid cache");
938      return static_cast<Visibility>(CacheValidAndVisibility-1);
939    }
940    Linkage getLinkage() const {
941      assert(isCacheValid() && "getting linkage from invalid cache");
942      return static_cast<Linkage>(CachedLinkage);
943    }
944    bool hasLocalOrUnnamedType() const {
945      assert(isCacheValid() && "getting linkage from invalid cache");
946      return CachedLocalOrUnnamed;
947    }
948  };
949  enum { NumTypeBits = 17 };
950
951protected:
952  // These classes allow subclasses to somewhat cleanly pack bitfields
953  // into Type.
954
955  class ArrayTypeBitfields {
956    friend class ArrayType;
957
958    unsigned : NumTypeBits;
959
960    /// IndexTypeQuals - CVR qualifiers from declarations like
961    /// 'int X[static restrict 4]'. For function parameters only.
962    unsigned IndexTypeQuals : 3;
963
964    /// SizeModifier - storage class qualifiers from declarations like
965    /// 'int X[static restrict 4]'. For function parameters only.
966    /// Actually an ArrayType::ArraySizeModifier.
967    unsigned SizeModifier : 3;
968  };
969
970  class BuiltinTypeBitfields {
971    friend class BuiltinType;
972
973    unsigned : NumTypeBits;
974
975    /// The kind (BuiltinType::Kind) of builtin type this is.
976    unsigned Kind : 8;
977  };
978
979  class FunctionTypeBitfields {
980    friend class FunctionType;
981
982    unsigned : NumTypeBits;
983
984    /// Extra information which affects how the function is called, like
985    /// regparm and the calling convention.
986    unsigned ExtInfo : 8;
987
988    /// Whether the function is variadic.  Only used by FunctionProtoType.
989    unsigned Variadic : 1;
990
991    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
992    /// other bitfields.
993    /// The qualifiers are part of FunctionProtoType because...
994    ///
995    /// C++ 8.3.5p4: The return type, the parameter type list and the
996    /// cv-qualifier-seq, [...], are part of the function type.
997    unsigned TypeQuals : 3;
998
999    /// \brief The ref-qualifier associated with a \c FunctionProtoType.
1000    ///
1001    /// This is a value of type \c RefQualifierKind.
1002    unsigned RefQualifier : 2;
1003  };
1004
1005  class ObjCObjectTypeBitfields {
1006    friend class ObjCObjectType;
1007
1008    unsigned : NumTypeBits;
1009
1010    /// NumProtocols - The number of protocols stored directly on this
1011    /// object type.
1012    unsigned NumProtocols : 32 - NumTypeBits;
1013  };
1014
1015  class ReferenceTypeBitfields {
1016    friend class ReferenceType;
1017
1018    unsigned : NumTypeBits;
1019
1020    /// True if the type was originally spelled with an lvalue sigil.
1021    /// This is never true of rvalue references but can also be false
1022    /// on lvalue references because of C++0x [dcl.typedef]p9,
1023    /// as follows:
1024    ///
1025    ///   typedef int &ref;    // lvalue, spelled lvalue
1026    ///   typedef int &&rvref; // rvalue
1027    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1028    ///   ref &&a;             // lvalue, inner ref
1029    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1030    ///   rvref &&a;           // rvalue, inner ref
1031    unsigned SpelledAsLValue : 1;
1032
1033    /// True if the inner type is a reference type.  This only happens
1034    /// in non-canonical forms.
1035    unsigned InnerRef : 1;
1036  };
1037
1038  class TypeWithKeywordBitfields {
1039    friend class TypeWithKeyword;
1040
1041    unsigned : NumTypeBits;
1042
1043    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1044    unsigned Keyword : 8;
1045  };
1046
1047  class VectorTypeBitfields {
1048    friend class VectorType;
1049
1050    unsigned : NumTypeBits;
1051
1052    /// VecKind - The kind of vector, either a generic vector type or some
1053    /// target-specific vector type such as for AltiVec or Neon.
1054    unsigned VecKind : 3;
1055
1056    /// NumElements - The number of elements in the vector.
1057    unsigned NumElements : 29 - NumTypeBits;
1058  };
1059
1060  class AttributedTypeBitfields {
1061    friend class AttributedType;
1062
1063    unsigned : NumTypeBits;
1064
1065    /// AttrKind - an AttributedType::Kind
1066    unsigned AttrKind : 32 - NumTypeBits;
1067  };
1068
1069  union {
1070    TypeBitfields TypeBits;
1071    ArrayTypeBitfields ArrayTypeBits;
1072    AttributedTypeBitfields AttributedTypeBits;
1073    BuiltinTypeBitfields BuiltinTypeBits;
1074    FunctionTypeBitfields FunctionTypeBits;
1075    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1076    ReferenceTypeBitfields ReferenceTypeBits;
1077    TypeWithKeywordBitfields TypeWithKeywordBits;
1078    VectorTypeBitfields VectorTypeBits;
1079  };
1080
1081private:
1082  /// \brief Set whether this type comes from an AST file.
1083  void setFromAST(bool V = true) const {
1084    TypeBits.FromAST = V;
1085  }
1086
1087  template <class T> friend class TypePropertyCache;
1088
1089protected:
1090  // silence VC++ warning C4355: 'this' : used in base member initializer list
1091  Type *this_() { return this; }
1092  Type(TypeClass tc, QualType canon, bool Dependent, bool VariablyModified,
1093       bool ContainsUnexpandedParameterPack)
1094    : ExtQualsTypeCommonBase(this,
1095                             canon.isNull() ? QualType(this_(), 0) : canon) {
1096    TypeBits.TC = tc;
1097    TypeBits.Dependent = Dependent;
1098    TypeBits.VariablyModified = VariablyModified;
1099    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1100    TypeBits.CacheValidAndVisibility = 0;
1101    TypeBits.CachedLocalOrUnnamed = false;
1102    TypeBits.CachedLinkage = NoLinkage;
1103    TypeBits.FromAST = false;
1104  }
1105  friend class ASTContext;
1106
1107  void setDependent(bool D = true) { TypeBits.Dependent = D; }
1108  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1109  void setContainsUnexpandedParameterPack(bool PP = true) {
1110    TypeBits.ContainsUnexpandedParameterPack = PP;
1111  }
1112
1113public:
1114  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1115
1116  /// \brief Whether this type comes from an AST file.
1117  bool isFromAST() const { return TypeBits.FromAST; }
1118
1119  /// \brief Whether this type is or contains an unexpanded parameter
1120  /// pack, used to support C++0x variadic templates.
1121  ///
1122  /// A type that contains a parameter pack shall be expanded by the
1123  /// ellipsis operator at some point. For example, the typedef in the
1124  /// following example contains an unexpanded parameter pack 'T':
1125  ///
1126  /// \code
1127  /// template<typename ...T>
1128  /// struct X {
1129  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1130  /// };
1131  /// \endcode
1132  ///
1133  /// Note that this routine does not specify which
1134  bool containsUnexpandedParameterPack() const {
1135    return TypeBits.ContainsUnexpandedParameterPack;
1136  }
1137
1138  /// Determines if this type would be canonical if it had no further
1139  /// qualification.
1140  bool isCanonicalUnqualified() const {
1141    return CanonicalType == QualType(this, 0);
1142  }
1143
1144  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1145  /// object types, function types, and incomplete types.
1146
1147  /// isIncompleteType - Return true if this is an incomplete type.
1148  /// A type that can describe objects, but which lacks information needed to
1149  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1150  /// routine will need to determine if the size is actually required.
1151  bool isIncompleteType() const;
1152
1153  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1154  /// type, in other words, not a function type.
1155  bool isIncompleteOrObjectType() const {
1156    return !isFunctionType();
1157  }
1158
1159  /// \brief Determine whether this type is an object type.
1160  bool isObjectType() const {
1161    // C++ [basic.types]p8:
1162    //   An object type is a (possibly cv-qualified) type that is not a
1163    //   function type, not a reference type, and not a void type.
1164    return !isReferenceType() && !isFunctionType() && !isVoidType();
1165  }
1166
1167  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
1168  bool isPODType() const;
1169
1170  /// isLiteralType - Return true if this is a literal type
1171  /// (C++0x [basic.types]p10)
1172  bool isLiteralType() const;
1173
1174  /// Helper methods to distinguish type categories. All type predicates
1175  /// operate on the canonical type, ignoring typedefs and qualifiers.
1176
1177  /// isBuiltinType - returns true if the type is a builtin type.
1178  bool isBuiltinType() const;
1179
1180  /// isSpecificBuiltinType - Test for a particular builtin type.
1181  bool isSpecificBuiltinType(unsigned K) const;
1182
1183  /// isPlaceholderType - Test for a type which does not represent an
1184  /// actual type-system type but is instead used as a placeholder for
1185  /// various convenient purposes within Clang.  All such types are
1186  /// BuiltinTypes.
1187  bool isPlaceholderType() const;
1188
1189  /// isIntegerType() does *not* include complex integers (a GCC extension).
1190  /// isComplexIntegerType() can be used to test for complex integers.
1191  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1192  bool isEnumeralType() const;
1193  bool isBooleanType() const;
1194  bool isCharType() const;
1195  bool isWideCharType() const;
1196  bool isAnyCharacterType() const;
1197  bool isIntegralType(ASTContext &Ctx) const;
1198
1199  /// \brief Determine whether this type is an integral or enumeration type.
1200  bool isIntegralOrEnumerationType() const;
1201  /// \brief Determine whether this type is an integral or unscoped enumeration
1202  /// type.
1203  bool isIntegralOrUnscopedEnumerationType() const;
1204
1205  /// Floating point categories.
1206  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1207  /// isComplexType() does *not* include complex integers (a GCC extension).
1208  /// isComplexIntegerType() can be used to test for complex integers.
1209  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1210  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1211  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1212  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1213  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1214  bool isVoidType() const;         // C99 6.2.5p19
1215  bool isDerivedType() const;      // C99 6.2.5p20
1216  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1217  bool isAggregateType() const;
1218
1219  // Type Predicates: Check to see if this type is structurally the specified
1220  // type, ignoring typedefs and qualifiers.
1221  bool isFunctionType() const;
1222  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1223  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1224  bool isPointerType() const;
1225  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1226  bool isBlockPointerType() const;
1227  bool isVoidPointerType() const;
1228  bool isReferenceType() const;
1229  bool isLValueReferenceType() const;
1230  bool isRValueReferenceType() const;
1231  bool isFunctionPointerType() const;
1232  bool isMemberPointerType() const;
1233  bool isMemberFunctionPointerType() const;
1234  bool isMemberDataPointerType() const;
1235  bool isArrayType() const;
1236  bool isConstantArrayType() const;
1237  bool isIncompleteArrayType() const;
1238  bool isVariableArrayType() const;
1239  bool isDependentSizedArrayType() const;
1240  bool isRecordType() const;
1241  bool isClassType() const;
1242  bool isStructureType() const;
1243  bool isStructureOrClassType() const;
1244  bool isUnionType() const;
1245  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1246  bool isVectorType() const;                    // GCC vector type.
1247  bool isExtVectorType() const;                 // Extended vector type.
1248  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
1249  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1250  // for the common case.
1251  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1252  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1253  bool isObjCQualifiedIdType() const;           // id<foo>
1254  bool isObjCQualifiedClassType() const;        // Class<foo>
1255  bool isObjCObjectOrInterfaceType() const;
1256  bool isObjCIdType() const;                    // id
1257  bool isObjCClassType() const;                 // Class
1258  bool isObjCSelType() const;                 // Class
1259  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1260  bool isTemplateTypeParmType() const;          // C++ template type parameter
1261  bool isNullPtrType() const;                   // C++0x nullptr_t
1262
1263  enum ScalarTypeKind {
1264    STK_Pointer,
1265    STK_MemberPointer,
1266    STK_Bool,
1267    STK_Integral,
1268    STK_Floating,
1269    STK_IntegralComplex,
1270    STK_FloatingComplex
1271  };
1272  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1273  ScalarTypeKind getScalarTypeKind() const;
1274
1275  /// isDependentType - Whether this type is a dependent type, meaning
1276  /// that its definition somehow depends on a template parameter
1277  /// (C++ [temp.dep.type]).
1278  bool isDependentType() const { return TypeBits.Dependent; }
1279
1280  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1281  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1282
1283  /// \brief Whether this type involves a variable-length array type
1284  /// with a definite size.
1285  bool hasSizedVLAType() const;
1286
1287  /// \brief Whether this type is or contains a local or unnamed type.
1288  bool hasUnnamedOrLocalType() const;
1289
1290  bool isOverloadableType() const;
1291
1292  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1293  bool isElaboratedTypeSpecifier() const;
1294
1295  /// hasPointerRepresentation - Whether this type is represented
1296  /// natively as a pointer; this includes pointers, references, block
1297  /// pointers, and Objective-C interface, qualified id, and qualified
1298  /// interface types, as well as nullptr_t.
1299  bool hasPointerRepresentation() const;
1300
1301  /// hasObjCPointerRepresentation - Whether this type can represent
1302  /// an objective pointer type for the purpose of GC'ability
1303  bool hasObjCPointerRepresentation() const;
1304
1305  /// \brief Determine whether this type has an integer representation
1306  /// of some sort, e.g., it is an integer type or a vector.
1307  bool hasIntegerRepresentation() const;
1308
1309  /// \brief Determine whether this type has an signed integer representation
1310  /// of some sort, e.g., it is an signed integer type or a vector.
1311  bool hasSignedIntegerRepresentation() const;
1312
1313  /// \brief Determine whether this type has an unsigned integer representation
1314  /// of some sort, e.g., it is an unsigned integer type or a vector.
1315  bool hasUnsignedIntegerRepresentation() const;
1316
1317  /// \brief Determine whether this type has a floating-point representation
1318  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1319  bool hasFloatingRepresentation() const;
1320
1321  // Type Checking Functions: Check to see if this type is structurally the
1322  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1323  // the best type we can.
1324  const RecordType *getAsStructureType() const;
1325  /// NOTE: getAs*ArrayType are methods on ASTContext.
1326  const RecordType *getAsUnionType() const;
1327  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1328  // The following is a convenience method that returns an ObjCObjectPointerType
1329  // for object declared using an interface.
1330  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1331  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1332  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1333  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1334  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
1335
1336  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1337  /// because the type is a RecordType or because it is the injected-class-name
1338  /// type of a class template or class template partial specialization.
1339  CXXRecordDecl *getAsCXXRecordDecl() const;
1340
1341  /// \brief Get the AutoType whose type will be deduced for a variable with
1342  /// an initializer of this type. This looks through declarators like pointer
1343  /// types, but not through decltype or typedefs.
1344  AutoType *getContainedAutoType() const;
1345
1346  /// Member-template getAs<specific type>'.  Look through sugar for
1347  /// an instance of <specific type>.   This scheme will eventually
1348  /// replace the specific getAsXXXX methods above.
1349  ///
1350  /// There are some specializations of this member template listed
1351  /// immediately following this class.
1352  template <typename T> const T *getAs() const;
1353
1354  /// A variant of getAs<> for array types which silently discards
1355  /// qualifiers from the outermost type.
1356  const ArrayType *getAsArrayTypeUnsafe() const;
1357
1358  /// Member-template castAs<specific type>.  Look through sugar for
1359  /// the underlying instance of <specific type>.
1360  ///
1361  /// This method has the same relationship to getAs<T> as cast<T> has
1362  /// to dyn_cast<T>; which is to say, the underlying type *must*
1363  /// have the intended type, and this method will never return null.
1364  template <typename T> const T *castAs() const;
1365
1366  /// A variant of castAs<> for array type which silently discards
1367  /// qualifiers from the outermost type.
1368  const ArrayType *castAsArrayTypeUnsafe() const;
1369
1370  /// getBaseElementTypeUnsafe - Get the base element type of this
1371  /// type, potentially discarding type qualifiers.  This method
1372  /// should never be used when type qualifiers are meaningful.
1373  const Type *getBaseElementTypeUnsafe() const;
1374
1375  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1376  /// element type of the array, potentially with type qualifiers missing.
1377  /// This method should never be used when type qualifiers are meaningful.
1378  const Type *getArrayElementTypeNoTypeQual() const;
1379
1380  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1381  /// pointer, this returns the respective pointee.
1382  QualType getPointeeType() const;
1383
1384  /// getUnqualifiedDesugaredType() - Return the specified type with
1385  /// any "sugar" removed from the type, removing any typedefs,
1386  /// typeofs, etc., as well as any qualifiers.
1387  const Type *getUnqualifiedDesugaredType() const;
1388
1389  /// More type predicates useful for type checking/promotion
1390  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1391
1392  /// isSignedIntegerType - Return true if this is an integer type that is
1393  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1394  /// an enum decl which has a signed representation, or a vector of signed
1395  /// integer element type.
1396  bool isSignedIntegerType() const;
1397
1398  /// isUnsignedIntegerType - Return true if this is an integer type that is
1399  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1400  /// decl which has an unsigned representation, or a vector of unsigned integer
1401  /// element type.
1402  bool isUnsignedIntegerType() const;
1403
1404  /// isConstantSizeType - Return true if this is not a variable sized type,
1405  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1406  /// incomplete types.
1407  bool isConstantSizeType() const;
1408
1409  /// isSpecifierType - Returns true if this type can be represented by some
1410  /// set of type specifiers.
1411  bool isSpecifierType() const;
1412
1413  /// \brief Determine the linkage of this type.
1414  Linkage getLinkage() const;
1415
1416  /// \brief Determine the visibility of this type.
1417  Visibility getVisibility() const;
1418
1419  /// \brief Determine the linkage and visibility of this type.
1420  std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
1421
1422  /// \brief Note that the linkage is no longer known.
1423  void ClearLinkageCache();
1424
1425  const char *getTypeClassName() const;
1426
1427  QualType getCanonicalTypeInternal() const {
1428    return CanonicalType;
1429  }
1430  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1431  void dump() const;
1432  static bool classof(const Type *) { return true; }
1433
1434  friend class ASTReader;
1435  friend class ASTWriter;
1436};
1437
1438template <> inline const TypedefType *Type::getAs() const {
1439  return dyn_cast<TypedefType>(this);
1440}
1441
1442// We can do canonical leaf types faster, because we don't have to
1443// worry about preserving child type decoration.
1444#define TYPE(Class, Base)
1445#define LEAF_TYPE(Class) \
1446template <> inline const Class##Type *Type::getAs() const { \
1447  return dyn_cast<Class##Type>(CanonicalType); \
1448} \
1449template <> inline const Class##Type *Type::castAs() const { \
1450  return cast<Class##Type>(CanonicalType); \
1451}
1452#include "clang/AST/TypeNodes.def"
1453
1454
1455/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1456/// types are always canonical and have a literal name field.
1457class BuiltinType : public Type {
1458public:
1459  enum Kind {
1460    Void,
1461
1462    Bool,     // This is bool and/or _Bool.
1463    Char_U,   // This is 'char' for targets where char is unsigned.
1464    UChar,    // This is explicitly qualified unsigned char.
1465    WChar_U,  // This is 'wchar_t' for C++, when unsigned.
1466    Char16,   // This is 'char16_t' for C++.
1467    Char32,   // This is 'char32_t' for C++.
1468    UShort,
1469    UInt,
1470    ULong,
1471    ULongLong,
1472    UInt128,  // __uint128_t
1473
1474    Char_S,   // This is 'char' for targets where char is signed.
1475    SChar,    // This is explicitly qualified signed char.
1476    WChar_S,  // This is 'wchar_t' for C++, when signed.
1477    Short,
1478    Int,
1479    Long,
1480    LongLong,
1481    Int128,   // __int128_t
1482
1483    Float, Double, LongDouble,
1484
1485    NullPtr,  // This is the type of C++0x 'nullptr'.
1486
1487    /// This represents the type of an expression whose type is
1488    /// totally unknown, e.g. 'T::foo'.  It is permitted for this to
1489    /// appear in situations where the structure of the type is
1490    /// theoretically deducible.
1491    Dependent,
1492
1493    /// The type of an unresolved overload set.
1494    Overload,
1495
1496    /// __builtin_any_type.  Useful for clients like debuggers
1497    /// that don't know what type to give something.  Only a small
1498    /// number of operations are valid on expressions of unknown type;
1499    /// notable among them, calls and explicit casts.
1500    UnknownAny,
1501
1502    /// The primitive Objective C 'id' type.  The type pointed to by the
1503    /// user-visible 'id' type.  Only ever shows up in an AST as the base
1504    /// type of an ObjCObjectType.
1505    ObjCId,
1506
1507    /// The primitive Objective C 'Class' type.  The type pointed to by the
1508    /// user-visible 'Class' type.  Only ever shows up in an AST as the
1509    /// base type of an ObjCObjectType.
1510    ObjCClass,
1511
1512    ObjCSel    // This represents the ObjC 'SEL' type.
1513  };
1514
1515public:
1516  BuiltinType(Kind K)
1517    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1518           /*VariablyModified=*/false,
1519           /*Unexpanded paramter pack=*/false) {
1520    BuiltinTypeBits.Kind = K;
1521  }
1522
1523  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1524  const char *getName(const LangOptions &LO) const;
1525
1526  bool isSugared() const { return false; }
1527  QualType desugar() const { return QualType(this, 0); }
1528
1529  bool isInteger() const {
1530    return getKind() >= Bool && getKind() <= Int128;
1531  }
1532
1533  bool isSignedInteger() const {
1534    return getKind() >= Char_S && getKind() <= Int128;
1535  }
1536
1537  bool isUnsignedInteger() const {
1538    return getKind() >= Bool && getKind() <= UInt128;
1539  }
1540
1541  bool isFloatingPoint() const {
1542    return getKind() >= Float && getKind() <= LongDouble;
1543  }
1544
1545  /// Determines whether this type is a "forbidden" placeholder type,
1546  /// i.e. a type which cannot appear in arbitrary positions in a
1547  /// fully-formed expression.
1548  bool isPlaceholderType() const {
1549    return getKind() == Overload || getKind() == UnknownAny;
1550  }
1551
1552  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1553  static bool classof(const BuiltinType *) { return true; }
1554};
1555
1556/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1557/// types (_Complex float etc) as well as the GCC integer complex extensions.
1558///
1559class ComplexType : public Type, public llvm::FoldingSetNode {
1560  QualType ElementType;
1561  ComplexType(QualType Element, QualType CanonicalPtr) :
1562    Type(Complex, CanonicalPtr, Element->isDependentType(),
1563         Element->isVariablyModifiedType(),
1564         Element->containsUnexpandedParameterPack()),
1565    ElementType(Element) {
1566  }
1567  friend class ASTContext;  // ASTContext creates these.
1568
1569public:
1570  QualType getElementType() const { return ElementType; }
1571
1572  bool isSugared() const { return false; }
1573  QualType desugar() const { return QualType(this, 0); }
1574
1575  void Profile(llvm::FoldingSetNodeID &ID) {
1576    Profile(ID, getElementType());
1577  }
1578  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1579    ID.AddPointer(Element.getAsOpaquePtr());
1580  }
1581
1582  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1583  static bool classof(const ComplexType *) { return true; }
1584};
1585
1586/// ParenType - Sugar for parentheses used when specifying types.
1587///
1588class ParenType : public Type, public llvm::FoldingSetNode {
1589  QualType Inner;
1590
1591  ParenType(QualType InnerType, QualType CanonType) :
1592    Type(Paren, CanonType, InnerType->isDependentType(),
1593         InnerType->isVariablyModifiedType(),
1594         InnerType->containsUnexpandedParameterPack()),
1595    Inner(InnerType) {
1596  }
1597  friend class ASTContext;  // ASTContext creates these.
1598
1599public:
1600
1601  QualType getInnerType() const { return Inner; }
1602
1603  bool isSugared() const { return true; }
1604  QualType desugar() const { return getInnerType(); }
1605
1606  void Profile(llvm::FoldingSetNodeID &ID) {
1607    Profile(ID, getInnerType());
1608  }
1609  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1610    Inner.Profile(ID);
1611  }
1612
1613  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1614  static bool classof(const ParenType *) { return true; }
1615};
1616
1617/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1618///
1619class PointerType : public Type, public llvm::FoldingSetNode {
1620  QualType PointeeType;
1621
1622  PointerType(QualType Pointee, QualType CanonicalPtr) :
1623    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1624         Pointee->isVariablyModifiedType(),
1625         Pointee->containsUnexpandedParameterPack()),
1626    PointeeType(Pointee) {
1627  }
1628  friend class ASTContext;  // ASTContext creates these.
1629
1630public:
1631
1632  QualType getPointeeType() const { return PointeeType; }
1633
1634  bool isSugared() const { return false; }
1635  QualType desugar() const { return QualType(this, 0); }
1636
1637  void Profile(llvm::FoldingSetNodeID &ID) {
1638    Profile(ID, getPointeeType());
1639  }
1640  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1641    ID.AddPointer(Pointee.getAsOpaquePtr());
1642  }
1643
1644  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1645  static bool classof(const PointerType *) { return true; }
1646};
1647
1648/// BlockPointerType - pointer to a block type.
1649/// This type is to represent types syntactically represented as
1650/// "void (^)(int)", etc. Pointee is required to always be a function type.
1651///
1652class BlockPointerType : public Type, public llvm::FoldingSetNode {
1653  QualType PointeeType;  // Block is some kind of pointer type
1654  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1655    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1656         Pointee->isVariablyModifiedType(),
1657         Pointee->containsUnexpandedParameterPack()),
1658    PointeeType(Pointee) {
1659  }
1660  friend class ASTContext;  // ASTContext creates these.
1661
1662public:
1663
1664  // Get the pointee type. Pointee is required to always be a function type.
1665  QualType getPointeeType() const { return PointeeType; }
1666
1667  bool isSugared() const { return false; }
1668  QualType desugar() const { return QualType(this, 0); }
1669
1670  void Profile(llvm::FoldingSetNodeID &ID) {
1671      Profile(ID, getPointeeType());
1672  }
1673  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1674      ID.AddPointer(Pointee.getAsOpaquePtr());
1675  }
1676
1677  static bool classof(const Type *T) {
1678    return T->getTypeClass() == BlockPointer;
1679  }
1680  static bool classof(const BlockPointerType *) { return true; }
1681};
1682
1683/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1684///
1685class ReferenceType : public Type, public llvm::FoldingSetNode {
1686  QualType PointeeType;
1687
1688protected:
1689  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1690                bool SpelledAsLValue) :
1691    Type(tc, CanonicalRef, Referencee->isDependentType(),
1692         Referencee->isVariablyModifiedType(),
1693         Referencee->containsUnexpandedParameterPack()),
1694    PointeeType(Referencee)
1695  {
1696    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
1697    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
1698  }
1699
1700public:
1701  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
1702  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
1703
1704  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1705  QualType getPointeeType() const {
1706    // FIXME: this might strip inner qualifiers; okay?
1707    const ReferenceType *T = this;
1708    while (T->isInnerRef())
1709      T = T->PointeeType->castAs<ReferenceType>();
1710    return T->PointeeType;
1711  }
1712
1713  void Profile(llvm::FoldingSetNodeID &ID) {
1714    Profile(ID, PointeeType, isSpelledAsLValue());
1715  }
1716  static void Profile(llvm::FoldingSetNodeID &ID,
1717                      QualType Referencee,
1718                      bool SpelledAsLValue) {
1719    ID.AddPointer(Referencee.getAsOpaquePtr());
1720    ID.AddBoolean(SpelledAsLValue);
1721  }
1722
1723  static bool classof(const Type *T) {
1724    return T->getTypeClass() == LValueReference ||
1725           T->getTypeClass() == RValueReference;
1726  }
1727  static bool classof(const ReferenceType *) { return true; }
1728};
1729
1730/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1731///
1732class LValueReferenceType : public ReferenceType {
1733  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1734                      bool SpelledAsLValue) :
1735    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1736  {}
1737  friend class ASTContext; // ASTContext creates these
1738public:
1739  bool isSugared() const { return false; }
1740  QualType desugar() const { return QualType(this, 0); }
1741
1742  static bool classof(const Type *T) {
1743    return T->getTypeClass() == LValueReference;
1744  }
1745  static bool classof(const LValueReferenceType *) { return true; }
1746};
1747
1748/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1749///
1750class RValueReferenceType : public ReferenceType {
1751  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1752    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1753  }
1754  friend class ASTContext; // ASTContext creates these
1755public:
1756  bool isSugared() const { return false; }
1757  QualType desugar() const { return QualType(this, 0); }
1758
1759  static bool classof(const Type *T) {
1760    return T->getTypeClass() == RValueReference;
1761  }
1762  static bool classof(const RValueReferenceType *) { return true; }
1763};
1764
1765/// MemberPointerType - C++ 8.3.3 - Pointers to members
1766///
1767class MemberPointerType : public Type, public llvm::FoldingSetNode {
1768  QualType PointeeType;
1769  /// The class of which the pointee is a member. Must ultimately be a
1770  /// RecordType, but could be a typedef or a template parameter too.
1771  const Type *Class;
1772
1773  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1774    Type(MemberPointer, CanonicalPtr,
1775         Cls->isDependentType() || Pointee->isDependentType(),
1776         Pointee->isVariablyModifiedType(),
1777         (Cls->containsUnexpandedParameterPack() ||
1778          Pointee->containsUnexpandedParameterPack())),
1779    PointeeType(Pointee), Class(Cls) {
1780  }
1781  friend class ASTContext; // ASTContext creates these.
1782
1783public:
1784  QualType getPointeeType() const { return PointeeType; }
1785
1786  /// Returns true if the member type (i.e. the pointee type) is a
1787  /// function type rather than a data-member type.
1788  bool isMemberFunctionPointer() const {
1789    return PointeeType->isFunctionProtoType();
1790  }
1791
1792  /// Returns true if the member type (i.e. the pointee type) is a
1793  /// data type rather than a function type.
1794  bool isMemberDataPointer() const {
1795    return !PointeeType->isFunctionProtoType();
1796  }
1797
1798  const Type *getClass() const { return Class; }
1799
1800  bool isSugared() const { return false; }
1801  QualType desugar() const { return QualType(this, 0); }
1802
1803  void Profile(llvm::FoldingSetNodeID &ID) {
1804    Profile(ID, getPointeeType(), getClass());
1805  }
1806  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1807                      const Type *Class) {
1808    ID.AddPointer(Pointee.getAsOpaquePtr());
1809    ID.AddPointer(Class);
1810  }
1811
1812  static bool classof(const Type *T) {
1813    return T->getTypeClass() == MemberPointer;
1814  }
1815  static bool classof(const MemberPointerType *) { return true; }
1816};
1817
1818/// ArrayType - C99 6.7.5.2 - Array Declarators.
1819///
1820class ArrayType : public Type, public llvm::FoldingSetNode {
1821public:
1822  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1823  /// an array with a static size (e.g. int X[static 4]), or an array
1824  /// with a star size (e.g. int X[*]).
1825  /// 'static' is only allowed on function parameters.
1826  enum ArraySizeModifier {
1827    Normal, Static, Star
1828  };
1829private:
1830  /// ElementType - The element type of the array.
1831  QualType ElementType;
1832
1833protected:
1834  // C++ [temp.dep.type]p1:
1835  //   A type is dependent if it is...
1836  //     - an array type constructed from any dependent type or whose
1837  //       size is specified by a constant expression that is
1838  //       value-dependent,
1839  ArrayType(TypeClass tc, QualType et, QualType can,
1840            ArraySizeModifier sm, unsigned tq,
1841            bool ContainsUnexpandedParameterPack)
1842    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
1843           (tc == VariableArray || et->isVariablyModifiedType()),
1844           ContainsUnexpandedParameterPack),
1845      ElementType(et) {
1846    ArrayTypeBits.IndexTypeQuals = tq;
1847    ArrayTypeBits.SizeModifier = sm;
1848  }
1849
1850  friend class ASTContext;  // ASTContext creates these.
1851
1852public:
1853  QualType getElementType() const { return ElementType; }
1854  ArraySizeModifier getSizeModifier() const {
1855    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
1856  }
1857  Qualifiers getIndexTypeQualifiers() const {
1858    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
1859  }
1860  unsigned getIndexTypeCVRQualifiers() const {
1861    return ArrayTypeBits.IndexTypeQuals;
1862  }
1863
1864  static bool classof(const Type *T) {
1865    return T->getTypeClass() == ConstantArray ||
1866           T->getTypeClass() == VariableArray ||
1867           T->getTypeClass() == IncompleteArray ||
1868           T->getTypeClass() == DependentSizedArray;
1869  }
1870  static bool classof(const ArrayType *) { return true; }
1871};
1872
1873/// ConstantArrayType - This class represents the canonical version of
1874/// C arrays with a specified constant size.  For example, the canonical
1875/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1876/// type is 'int' and the size is 404.
1877class ConstantArrayType : public ArrayType {
1878  llvm::APInt Size; // Allows us to unique the type.
1879
1880  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1881                    ArraySizeModifier sm, unsigned tq)
1882    : ArrayType(ConstantArray, et, can, sm, tq,
1883                et->containsUnexpandedParameterPack()),
1884      Size(size) {}
1885protected:
1886  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1887                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1888    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
1889      Size(size) {}
1890  friend class ASTContext;  // ASTContext creates these.
1891public:
1892  const llvm::APInt &getSize() const { return Size; }
1893  bool isSugared() const { return false; }
1894  QualType desugar() const { return QualType(this, 0); }
1895
1896
1897  /// \brief Determine the number of bits required to address a member of
1898  // an array with the given element type and number of elements.
1899  static unsigned getNumAddressingBits(ASTContext &Context,
1900                                       QualType ElementType,
1901                                       const llvm::APInt &NumElements);
1902
1903  /// \brief Determine the maximum number of active bits that an array's size
1904  /// can require, which limits the maximum size of the array.
1905  static unsigned getMaxSizeBits(ASTContext &Context);
1906
1907  void Profile(llvm::FoldingSetNodeID &ID) {
1908    Profile(ID, getElementType(), getSize(),
1909            getSizeModifier(), getIndexTypeCVRQualifiers());
1910  }
1911  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1912                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1913                      unsigned TypeQuals) {
1914    ID.AddPointer(ET.getAsOpaquePtr());
1915    ID.AddInteger(ArraySize.getZExtValue());
1916    ID.AddInteger(SizeMod);
1917    ID.AddInteger(TypeQuals);
1918  }
1919  static bool classof(const Type *T) {
1920    return T->getTypeClass() == ConstantArray;
1921  }
1922  static bool classof(const ConstantArrayType *) { return true; }
1923};
1924
1925/// IncompleteArrayType - This class represents C arrays with an unspecified
1926/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1927/// type is 'int' and the size is unspecified.
1928class IncompleteArrayType : public ArrayType {
1929
1930  IncompleteArrayType(QualType et, QualType can,
1931                      ArraySizeModifier sm, unsigned tq)
1932    : ArrayType(IncompleteArray, et, can, sm, tq,
1933                et->containsUnexpandedParameterPack()) {}
1934  friend class ASTContext;  // ASTContext creates these.
1935public:
1936  bool isSugared() const { return false; }
1937  QualType desugar() const { return QualType(this, 0); }
1938
1939  static bool classof(const Type *T) {
1940    return T->getTypeClass() == IncompleteArray;
1941  }
1942  static bool classof(const IncompleteArrayType *) { return true; }
1943
1944  friend class StmtIteratorBase;
1945
1946  void Profile(llvm::FoldingSetNodeID &ID) {
1947    Profile(ID, getElementType(), getSizeModifier(),
1948            getIndexTypeCVRQualifiers());
1949  }
1950
1951  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1952                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1953    ID.AddPointer(ET.getAsOpaquePtr());
1954    ID.AddInteger(SizeMod);
1955    ID.AddInteger(TypeQuals);
1956  }
1957};
1958
1959/// VariableArrayType - This class represents C arrays with a specified size
1960/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1961/// Since the size expression is an arbitrary expression, we store it as such.
1962///
1963/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1964/// should not be: two lexically equivalent variable array types could mean
1965/// different things, for example, these variables do not have the same type
1966/// dynamically:
1967///
1968/// void foo(int x) {
1969///   int Y[x];
1970///   ++x;
1971///   int Z[x];
1972/// }
1973///
1974class VariableArrayType : public ArrayType {
1975  /// SizeExpr - An assignment expression. VLA's are only permitted within
1976  /// a function block.
1977  Stmt *SizeExpr;
1978  /// Brackets - The left and right array brackets.
1979  SourceRange Brackets;
1980
1981  VariableArrayType(QualType et, QualType can, Expr *e,
1982                    ArraySizeModifier sm, unsigned tq,
1983                    SourceRange brackets)
1984    : ArrayType(VariableArray, et, can, sm, tq,
1985                et->containsUnexpandedParameterPack()),
1986      SizeExpr((Stmt*) e), Brackets(brackets) {}
1987  friend class ASTContext;  // ASTContext creates these.
1988
1989public:
1990  Expr *getSizeExpr() const {
1991    // We use C-style casts instead of cast<> here because we do not wish
1992    // to have a dependency of Type.h on Stmt.h/Expr.h.
1993    return (Expr*) SizeExpr;
1994  }
1995  SourceRange getBracketsRange() const { return Brackets; }
1996  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1997  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1998
1999  bool isSugared() const { return false; }
2000  QualType desugar() const { return QualType(this, 0); }
2001
2002  static bool classof(const Type *T) {
2003    return T->getTypeClass() == VariableArray;
2004  }
2005  static bool classof(const VariableArrayType *) { return true; }
2006
2007  friend class StmtIteratorBase;
2008
2009  void Profile(llvm::FoldingSetNodeID &ID) {
2010    assert(0 && "Cannnot unique VariableArrayTypes.");
2011  }
2012};
2013
2014/// DependentSizedArrayType - This type represents an array type in
2015/// C++ whose size is a value-dependent expression. For example:
2016///
2017/// \code
2018/// template<typename T, int Size>
2019/// class array {
2020///   T data[Size];
2021/// };
2022/// \endcode
2023///
2024/// For these types, we won't actually know what the array bound is
2025/// until template instantiation occurs, at which point this will
2026/// become either a ConstantArrayType or a VariableArrayType.
2027class DependentSizedArrayType : public ArrayType {
2028  const ASTContext &Context;
2029
2030  /// \brief An assignment expression that will instantiate to the
2031  /// size of the array.
2032  ///
2033  /// The expression itself might be NULL, in which case the array
2034  /// type will have its size deduced from an initializer.
2035  Stmt *SizeExpr;
2036
2037  /// Brackets - The left and right array brackets.
2038  SourceRange Brackets;
2039
2040  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2041                          Expr *e, ArraySizeModifier sm, unsigned tq,
2042                          SourceRange brackets);
2043
2044  friend class ASTContext;  // ASTContext creates these.
2045
2046public:
2047  Expr *getSizeExpr() const {
2048    // We use C-style casts instead of cast<> here because we do not wish
2049    // to have a dependency of Type.h on Stmt.h/Expr.h.
2050    return (Expr*) SizeExpr;
2051  }
2052  SourceRange getBracketsRange() const { return Brackets; }
2053  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2054  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2055
2056  bool isSugared() const { return false; }
2057  QualType desugar() const { return QualType(this, 0); }
2058
2059  static bool classof(const Type *T) {
2060    return T->getTypeClass() == DependentSizedArray;
2061  }
2062  static bool classof(const DependentSizedArrayType *) { return true; }
2063
2064  friend class StmtIteratorBase;
2065
2066
2067  void Profile(llvm::FoldingSetNodeID &ID) {
2068    Profile(ID, Context, getElementType(),
2069            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2070  }
2071
2072  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2073                      QualType ET, ArraySizeModifier SizeMod,
2074                      unsigned TypeQuals, Expr *E);
2075};
2076
2077/// DependentSizedExtVectorType - This type represent an extended vector type
2078/// where either the type or size is dependent. For example:
2079/// @code
2080/// template<typename T, int Size>
2081/// class vector {
2082///   typedef T __attribute__((ext_vector_type(Size))) type;
2083/// }
2084/// @endcode
2085class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2086  const ASTContext &Context;
2087  Expr *SizeExpr;
2088  /// ElementType - The element type of the array.
2089  QualType ElementType;
2090  SourceLocation loc;
2091
2092  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2093                              QualType can, Expr *SizeExpr, SourceLocation loc);
2094
2095  friend class ASTContext;
2096
2097public:
2098  Expr *getSizeExpr() const { return SizeExpr; }
2099  QualType getElementType() const { return ElementType; }
2100  SourceLocation getAttributeLoc() const { return loc; }
2101
2102  bool isSugared() const { return false; }
2103  QualType desugar() const { return QualType(this, 0); }
2104
2105  static bool classof(const Type *T) {
2106    return T->getTypeClass() == DependentSizedExtVector;
2107  }
2108  static bool classof(const DependentSizedExtVectorType *) { return true; }
2109
2110  void Profile(llvm::FoldingSetNodeID &ID) {
2111    Profile(ID, Context, getElementType(), getSizeExpr());
2112  }
2113
2114  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2115                      QualType ElementType, Expr *SizeExpr);
2116};
2117
2118
2119/// VectorType - GCC generic vector type. This type is created using
2120/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2121/// bytes; or from an Altivec __vector or vector declaration.
2122/// Since the constructor takes the number of vector elements, the
2123/// client is responsible for converting the size into the number of elements.
2124class VectorType : public Type, public llvm::FoldingSetNode {
2125public:
2126  enum VectorKind {
2127    GenericVector,  // not a target-specific vector type
2128    AltiVecVector,  // is AltiVec vector
2129    AltiVecPixel,   // is AltiVec 'vector Pixel'
2130    AltiVecBool,    // is AltiVec 'vector bool ...'
2131    NeonVector,     // is ARM Neon vector
2132    NeonPolyVector  // is ARM Neon polynomial vector
2133  };
2134protected:
2135  /// ElementType - The element type of the vector.
2136  QualType ElementType;
2137
2138  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2139             VectorKind vecKind);
2140
2141  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2142             QualType canonType, VectorKind vecKind);
2143
2144  friend class ASTContext;  // ASTContext creates these.
2145
2146public:
2147
2148  QualType getElementType() const { return ElementType; }
2149  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2150
2151  bool isSugared() const { return false; }
2152  QualType desugar() const { return QualType(this, 0); }
2153
2154  VectorKind getVectorKind() const {
2155    return VectorKind(VectorTypeBits.VecKind);
2156  }
2157
2158  void Profile(llvm::FoldingSetNodeID &ID) {
2159    Profile(ID, getElementType(), getNumElements(),
2160            getTypeClass(), getVectorKind());
2161  }
2162  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2163                      unsigned NumElements, TypeClass TypeClass,
2164                      VectorKind VecKind) {
2165    ID.AddPointer(ElementType.getAsOpaquePtr());
2166    ID.AddInteger(NumElements);
2167    ID.AddInteger(TypeClass);
2168    ID.AddInteger(VecKind);
2169  }
2170
2171  static bool classof(const Type *T) {
2172    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2173  }
2174  static bool classof(const VectorType *) { return true; }
2175};
2176
2177/// ExtVectorType - Extended vector type. This type is created using
2178/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2179/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2180/// class enables syntactic extensions, like Vector Components for accessing
2181/// points, colors, and textures (modeled after OpenGL Shading Language).
2182class ExtVectorType : public VectorType {
2183  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2184    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2185  friend class ASTContext;  // ASTContext creates these.
2186public:
2187  static int getPointAccessorIdx(char c) {
2188    switch (c) {
2189    default: return -1;
2190    case 'x': return 0;
2191    case 'y': return 1;
2192    case 'z': return 2;
2193    case 'w': return 3;
2194    }
2195  }
2196  static int getNumericAccessorIdx(char c) {
2197    switch (c) {
2198      default: return -1;
2199      case '0': return 0;
2200      case '1': return 1;
2201      case '2': return 2;
2202      case '3': return 3;
2203      case '4': return 4;
2204      case '5': return 5;
2205      case '6': return 6;
2206      case '7': return 7;
2207      case '8': return 8;
2208      case '9': return 9;
2209      case 'A':
2210      case 'a': return 10;
2211      case 'B':
2212      case 'b': return 11;
2213      case 'C':
2214      case 'c': return 12;
2215      case 'D':
2216      case 'd': return 13;
2217      case 'E':
2218      case 'e': return 14;
2219      case 'F':
2220      case 'f': return 15;
2221    }
2222  }
2223
2224  static int getAccessorIdx(char c) {
2225    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2226    return getNumericAccessorIdx(c);
2227  }
2228
2229  bool isAccessorWithinNumElements(char c) const {
2230    if (int idx = getAccessorIdx(c)+1)
2231      return unsigned(idx-1) < getNumElements();
2232    return false;
2233  }
2234  bool isSugared() const { return false; }
2235  QualType desugar() const { return QualType(this, 0); }
2236
2237  static bool classof(const Type *T) {
2238    return T->getTypeClass() == ExtVector;
2239  }
2240  static bool classof(const ExtVectorType *) { return true; }
2241};
2242
2243/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2244/// class of FunctionNoProtoType and FunctionProtoType.
2245///
2246class FunctionType : public Type {
2247  // The type returned by the function.
2248  QualType ResultType;
2249
2250 public:
2251  /// ExtInfo - A class which abstracts out some details necessary for
2252  /// making a call.
2253  ///
2254  /// It is not actually used directly for storing this information in
2255  /// a FunctionType, although FunctionType does currently use the
2256  /// same bit-pattern.
2257  ///
2258  // If you add a field (say Foo), other than the obvious places (both,
2259  // constructors, compile failures), what you need to update is
2260  // * Operator==
2261  // * getFoo
2262  // * withFoo
2263  // * functionType. Add Foo, getFoo.
2264  // * ASTContext::getFooType
2265  // * ASTContext::mergeFunctionTypes
2266  // * FunctionNoProtoType::Profile
2267  // * FunctionProtoType::Profile
2268  // * TypePrinter::PrintFunctionProto
2269  // * AST read and write
2270  // * Codegen
2271  class ExtInfo {
2272    // Feel free to rearrange or add bits, but if you go over 8,
2273    // you'll need to adjust both the Bits field below and
2274    // Type::FunctionTypeBitfields.
2275
2276    //   |  CC  |noreturn|hasregparm|regparm
2277    //   |0 .. 2|   3    |    4     |5 ..  7
2278    enum { CallConvMask = 0x7 };
2279    enum { NoReturnMask = 0x8 };
2280    enum { HasRegParmMask = 0x10 };
2281    enum { RegParmMask = ~(CallConvMask | NoReturnMask),
2282           RegParmOffset = 5 };
2283
2284    unsigned char Bits;
2285
2286    ExtInfo(unsigned Bits) : Bits(static_cast<unsigned char>(Bits)) {}
2287
2288    friend class FunctionType;
2289
2290   public:
2291    // Constructor with no defaults. Use this when you know that you
2292    // have all the elements (when reading an AST file for example).
2293    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc) {
2294      Bits = ((unsigned) cc) |
2295             (noReturn ? NoReturnMask : 0) |
2296             (hasRegParm ? HasRegParmMask : 0) |
2297             (regParm << RegParmOffset);
2298    }
2299
2300    // Constructor with all defaults. Use when for example creating a
2301    // function know to use defaults.
2302    ExtInfo() : Bits(0) {}
2303
2304    bool getNoReturn() const { return Bits & NoReturnMask; }
2305    bool getHasRegParm() const { return Bits & HasRegParmMask; }
2306    unsigned getRegParm() const { return Bits >> RegParmOffset; }
2307    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2308
2309    bool operator==(ExtInfo Other) const {
2310      return Bits == Other.Bits;
2311    }
2312    bool operator!=(ExtInfo Other) const {
2313      return Bits != Other.Bits;
2314    }
2315
2316    // Note that we don't have setters. That is by design, use
2317    // the following with methods instead of mutating these objects.
2318
2319    ExtInfo withNoReturn(bool noReturn) const {
2320      if (noReturn)
2321        return ExtInfo(Bits | NoReturnMask);
2322      else
2323        return ExtInfo(Bits & ~NoReturnMask);
2324    }
2325
2326    ExtInfo withRegParm(unsigned RegParm) const {
2327      return ExtInfo(HasRegParmMask | (Bits & ~RegParmMask) | (RegParm << RegParmOffset));
2328    }
2329
2330    ExtInfo withCallingConv(CallingConv cc) const {
2331      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2332    }
2333
2334    void Profile(llvm::FoldingSetNodeID &ID) const {
2335      ID.AddInteger(Bits);
2336    }
2337  };
2338
2339protected:
2340  FunctionType(TypeClass tc, QualType res, bool variadic,
2341               unsigned typeQuals, RefQualifierKind RefQualifier,
2342               QualType Canonical, bool Dependent,
2343               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2344               ExtInfo Info)
2345    : Type(tc, Canonical, Dependent, VariablyModified,
2346           ContainsUnexpandedParameterPack),
2347      ResultType(res) {
2348    FunctionTypeBits.ExtInfo = Info.Bits;
2349    FunctionTypeBits.Variadic = variadic;
2350    FunctionTypeBits.TypeQuals = typeQuals;
2351    FunctionTypeBits.RefQualifier = static_cast<unsigned>(RefQualifier);
2352  }
2353  bool isVariadic() const { return FunctionTypeBits.Variadic; }
2354  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2355
2356  RefQualifierKind getRefQualifier() const {
2357    return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
2358  }
2359
2360public:
2361
2362  QualType getResultType() const { return ResultType; }
2363
2364  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2365  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2366  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2367  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2368  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2369
2370  /// \brief Determine the type of an expression that calls a function of
2371  /// this type.
2372  QualType getCallResultType(ASTContext &Context) const {
2373    return getResultType().getNonLValueExprType(Context);
2374  }
2375
2376  static llvm::StringRef getNameForCallConv(CallingConv CC);
2377
2378  static bool classof(const Type *T) {
2379    return T->getTypeClass() == FunctionNoProto ||
2380           T->getTypeClass() == FunctionProto;
2381  }
2382  static bool classof(const FunctionType *) { return true; }
2383};
2384
2385/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2386/// no information available about its arguments.
2387class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2388  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2389    : FunctionType(FunctionNoProto, Result, false, 0, RQ_None, Canonical,
2390                   /*Dependent=*/false, Result->isVariablyModifiedType(),
2391                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2392
2393  friend class ASTContext;  // ASTContext creates these.
2394
2395public:
2396  // No additional state past what FunctionType provides.
2397
2398  bool isSugared() const { return false; }
2399  QualType desugar() const { return QualType(this, 0); }
2400
2401  void Profile(llvm::FoldingSetNodeID &ID) {
2402    Profile(ID, getResultType(), getExtInfo());
2403  }
2404  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2405                      ExtInfo Info) {
2406    Info.Profile(ID);
2407    ID.AddPointer(ResultType.getAsOpaquePtr());
2408  }
2409
2410  static bool classof(const Type *T) {
2411    return T->getTypeClass() == FunctionNoProto;
2412  }
2413  static bool classof(const FunctionNoProtoType *) { return true; }
2414};
2415
2416/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2417/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2418/// arguments, not as having a single void argument. Such a type can have an
2419/// exception specification, but this specification is not part of the canonical
2420/// type.
2421class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2422public:
2423  /// ExtProtoInfo - Extra information about a function prototype.
2424  struct ExtProtoInfo {
2425    ExtProtoInfo() :
2426      Variadic(false), ExceptionSpecType(EST_None), TypeQuals(0),
2427      RefQualifier(RQ_None), NumExceptions(0), Exceptions(0), NoexceptExpr(0) {}
2428
2429    FunctionType::ExtInfo ExtInfo;
2430    bool Variadic;
2431    ExceptionSpecificationType ExceptionSpecType;
2432    unsigned char TypeQuals;
2433    RefQualifierKind RefQualifier;
2434    unsigned NumExceptions;
2435    const QualType *Exceptions;
2436    Expr *NoexceptExpr;
2437  };
2438
2439private:
2440  /// \brief Determine whether there are any argument types that
2441  /// contain an unexpanded parameter pack.
2442  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2443                                                 unsigned numArgs) {
2444    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2445      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2446        return true;
2447
2448    return false;
2449  }
2450
2451  FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
2452                    QualType canonical, const ExtProtoInfo &epi);
2453
2454  /// NumArgs - The number of arguments this function has, not counting '...'.
2455  unsigned NumArgs : 20;
2456
2457  /// NumExceptions - The number of types in the exception spec, if any.
2458  unsigned NumExceptions : 9;
2459
2460  /// ExceptionSpecType - The type of exception specification this function has.
2461  unsigned ExceptionSpecType : 3;
2462
2463  /// ArgInfo - There is an variable size array after the class in memory that
2464  /// holds the argument types.
2465
2466  /// Exceptions - There is another variable size array after ArgInfo that
2467  /// holds the exception types.
2468
2469  /// NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2470  /// to the expression in the noexcept() specifier.
2471
2472  friend class ASTContext;  // ASTContext creates these.
2473
2474public:
2475  unsigned getNumArgs() const { return NumArgs; }
2476  QualType getArgType(unsigned i) const {
2477    assert(i < NumArgs && "Invalid argument number!");
2478    return arg_type_begin()[i];
2479  }
2480
2481  ExtProtoInfo getExtProtoInfo() const {
2482    ExtProtoInfo EPI;
2483    EPI.ExtInfo = getExtInfo();
2484    EPI.Variadic = isVariadic();
2485    EPI.ExceptionSpecType = getExceptionSpecType();
2486    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2487    EPI.RefQualifier = getRefQualifier();
2488    if (EPI.ExceptionSpecType == EST_Dynamic) {
2489      EPI.NumExceptions = NumExceptions;
2490      EPI.Exceptions = exception_begin();
2491    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2492      EPI.NoexceptExpr = getNoexceptExpr();
2493    }
2494    return EPI;
2495  }
2496
2497  /// \brief Get the kind of exception specification on this function.
2498  ExceptionSpecificationType getExceptionSpecType() const {
2499    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2500  }
2501  /// \brief Return whether this function has any kind of exception spec.
2502  bool hasExceptionSpec() const {
2503    return getExceptionSpecType() != EST_None;
2504  }
2505  /// \brief Return whether this function has a dynamic (throw) exception spec.
2506  bool hasDynamicExceptionSpec() const {
2507    return isDynamicExceptionSpec(getExceptionSpecType());
2508  }
2509  /// \brief Return whther this function has a noexcept exception spec.
2510  bool hasNoexceptExceptionSpec() const {
2511    return isNoexceptExceptionSpec(getExceptionSpecType());
2512  }
2513  /// \brief Result type of getNoexceptSpec().
2514  enum NoexceptResult {
2515    NR_NoNoexcept,  ///< There is no noexcept specifier.
2516    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2517    NR_Dependent,   ///< The noexcept specifier is dependent.
2518    NR_Throw,       ///< The noexcept specifier evaluates to false.
2519    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2520  };
2521  /// \brief Get the meaning of the noexcept spec on this function, if any.
2522  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2523  unsigned getNumExceptions() const { return NumExceptions; }
2524  QualType getExceptionType(unsigned i) const {
2525    assert(i < NumExceptions && "Invalid exception number!");
2526    return exception_begin()[i];
2527  }
2528  Expr *getNoexceptExpr() const {
2529    if (getExceptionSpecType() != EST_ComputedNoexcept)
2530      return 0;
2531    // NoexceptExpr sits where the arguments end.
2532    return *reinterpret_cast<Expr *const *>(arg_type_end());
2533  }
2534  bool isNothrow(ASTContext &Ctx) const {
2535    ExceptionSpecificationType EST = getExceptionSpecType();
2536    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2537      return true;
2538    if (EST != EST_ComputedNoexcept)
2539      return false;
2540    return getNoexceptSpec(Ctx) == NR_Nothrow;
2541  }
2542
2543  using FunctionType::isVariadic;
2544
2545  /// \brief Determines whether this function prototype contains a
2546  /// parameter pack at the end.
2547  ///
2548  /// A function template whose last parameter is a parameter pack can be
2549  /// called with an arbitrary number of arguments, much like a variadic
2550  /// function. However,
2551  bool isTemplateVariadic() const;
2552
2553  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2554
2555
2556  /// \brief Retrieve the ref-qualifier associated with this function type.
2557  RefQualifierKind getRefQualifier() const {
2558    return FunctionType::getRefQualifier();
2559  }
2560
2561  typedef const QualType *arg_type_iterator;
2562  arg_type_iterator arg_type_begin() const {
2563    return reinterpret_cast<const QualType *>(this+1);
2564  }
2565  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2566
2567  typedef const QualType *exception_iterator;
2568  exception_iterator exception_begin() const {
2569    // exceptions begin where arguments end
2570    return arg_type_end();
2571  }
2572  exception_iterator exception_end() const {
2573    if (getExceptionSpecType() != EST_Dynamic)
2574      return exception_begin();
2575    return exception_begin() + NumExceptions;
2576  }
2577
2578  bool isSugared() const { return false; }
2579  QualType desugar() const { return QualType(this, 0); }
2580
2581  static bool classof(const Type *T) {
2582    return T->getTypeClass() == FunctionProto;
2583  }
2584  static bool classof(const FunctionProtoType *) { return true; }
2585
2586  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
2587  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2588                      arg_type_iterator ArgTys, unsigned NumArgs,
2589                      const ExtProtoInfo &EPI, const ASTContext &Context);
2590};
2591
2592
2593/// \brief Represents the dependent type named by a dependently-scoped
2594/// typename using declaration, e.g.
2595///   using typename Base<T>::foo;
2596/// Template instantiation turns these into the underlying type.
2597class UnresolvedUsingType : public Type {
2598  UnresolvedUsingTypenameDecl *Decl;
2599
2600  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2601    : Type(UnresolvedUsing, QualType(), true, false,
2602           /*ContainsUnexpandedParameterPack=*/false),
2603      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2604  friend class ASTContext; // ASTContext creates these.
2605public:
2606
2607  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2608
2609  bool isSugared() const { return false; }
2610  QualType desugar() const { return QualType(this, 0); }
2611
2612  static bool classof(const Type *T) {
2613    return T->getTypeClass() == UnresolvedUsing;
2614  }
2615  static bool classof(const UnresolvedUsingType *) { return true; }
2616
2617  void Profile(llvm::FoldingSetNodeID &ID) {
2618    return Profile(ID, Decl);
2619  }
2620  static void Profile(llvm::FoldingSetNodeID &ID,
2621                      UnresolvedUsingTypenameDecl *D) {
2622    ID.AddPointer(D);
2623  }
2624};
2625
2626
2627class TypedefType : public Type {
2628  TypedefDecl *Decl;
2629protected:
2630  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
2631    : Type(tc, can, can->isDependentType(), can->isVariablyModifiedType(),
2632           /*ContainsUnexpandedParameterPack=*/false),
2633      Decl(const_cast<TypedefDecl*>(D)) {
2634    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2635  }
2636  friend class ASTContext;  // ASTContext creates these.
2637public:
2638
2639  TypedefDecl *getDecl() const { return Decl; }
2640
2641  bool isSugared() const { return true; }
2642  QualType desugar() const;
2643
2644  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2645  static bool classof(const TypedefType *) { return true; }
2646};
2647
2648/// TypeOfExprType (GCC extension).
2649class TypeOfExprType : public Type {
2650  Expr *TOExpr;
2651
2652protected:
2653  TypeOfExprType(Expr *E, QualType can = QualType());
2654  friend class ASTContext;  // ASTContext creates these.
2655public:
2656  Expr *getUnderlyingExpr() const { return TOExpr; }
2657
2658  /// \brief Remove a single level of sugar.
2659  QualType desugar() const;
2660
2661  /// \brief Returns whether this type directly provides sugar.
2662  bool isSugared() const { return true; }
2663
2664  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2665  static bool classof(const TypeOfExprType *) { return true; }
2666};
2667
2668/// \brief Internal representation of canonical, dependent
2669/// typeof(expr) types.
2670///
2671/// This class is used internally by the ASTContext to manage
2672/// canonical, dependent types, only. Clients will only see instances
2673/// of this class via TypeOfExprType nodes.
2674class DependentTypeOfExprType
2675  : public TypeOfExprType, public llvm::FoldingSetNode {
2676  const ASTContext &Context;
2677
2678public:
2679  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
2680    : TypeOfExprType(E), Context(Context) { }
2681
2682  bool isSugared() const { return false; }
2683  QualType desugar() const { return QualType(this, 0); }
2684
2685  void Profile(llvm::FoldingSetNodeID &ID) {
2686    Profile(ID, Context, getUnderlyingExpr());
2687  }
2688
2689  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2690                      Expr *E);
2691};
2692
2693/// TypeOfType (GCC extension).
2694class TypeOfType : public Type {
2695  QualType TOType;
2696  TypeOfType(QualType T, QualType can)
2697    : Type(TypeOf, can, T->isDependentType(), T->isVariablyModifiedType(),
2698           T->containsUnexpandedParameterPack()),
2699      TOType(T) {
2700    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2701  }
2702  friend class ASTContext;  // ASTContext creates these.
2703public:
2704  QualType getUnderlyingType() const { return TOType; }
2705
2706  /// \brief Remove a single level of sugar.
2707  QualType desugar() const { return getUnderlyingType(); }
2708
2709  /// \brief Returns whether this type directly provides sugar.
2710  bool isSugared() const { return true; }
2711
2712  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2713  static bool classof(const TypeOfType *) { return true; }
2714};
2715
2716/// DecltypeType (C++0x)
2717class DecltypeType : public Type {
2718  Expr *E;
2719
2720  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2721  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2722  // from it.
2723  QualType UnderlyingType;
2724
2725protected:
2726  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2727  friend class ASTContext;  // ASTContext creates these.
2728public:
2729  Expr *getUnderlyingExpr() const { return E; }
2730  QualType getUnderlyingType() const { return UnderlyingType; }
2731
2732  /// \brief Remove a single level of sugar.
2733  QualType desugar() const { return getUnderlyingType(); }
2734
2735  /// \brief Returns whether this type directly provides sugar.
2736  bool isSugared() const { return !isDependentType(); }
2737
2738  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2739  static bool classof(const DecltypeType *) { return true; }
2740};
2741
2742/// \brief Internal representation of canonical, dependent
2743/// decltype(expr) types.
2744///
2745/// This class is used internally by the ASTContext to manage
2746/// canonical, dependent types, only. Clients will only see instances
2747/// of this class via DecltypeType nodes.
2748class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2749  const ASTContext &Context;
2750
2751public:
2752  DependentDecltypeType(const ASTContext &Context, Expr *E);
2753
2754  bool isSugared() const { return false; }
2755  QualType desugar() const { return QualType(this, 0); }
2756
2757  void Profile(llvm::FoldingSetNodeID &ID) {
2758    Profile(ID, Context, getUnderlyingExpr());
2759  }
2760
2761  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2762                      Expr *E);
2763};
2764
2765class TagType : public Type {
2766  /// Stores the TagDecl associated with this type. The decl may point to any
2767  /// TagDecl that declares the entity.
2768  TagDecl * decl;
2769
2770protected:
2771  TagType(TypeClass TC, const TagDecl *D, QualType can);
2772
2773public:
2774  TagDecl *getDecl() const;
2775
2776  /// @brief Determines whether this type is in the process of being
2777  /// defined.
2778  bool isBeingDefined() const;
2779
2780  static bool classof(const Type *T) {
2781    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2782  }
2783  static bool classof(const TagType *) { return true; }
2784  static bool classof(const RecordType *) { return true; }
2785  static bool classof(const EnumType *) { return true; }
2786};
2787
2788/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2789/// to detect TagType objects of structs/unions/classes.
2790class RecordType : public TagType {
2791protected:
2792  explicit RecordType(const RecordDecl *D)
2793    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2794  explicit RecordType(TypeClass TC, RecordDecl *D)
2795    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2796  friend class ASTContext;   // ASTContext creates these.
2797public:
2798
2799  RecordDecl *getDecl() const {
2800    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2801  }
2802
2803  // FIXME: This predicate is a helper to QualType/Type. It needs to
2804  // recursively check all fields for const-ness. If any field is declared
2805  // const, it needs to return false.
2806  bool hasConstFields() const { return false; }
2807
2808  bool isSugared() const { return false; }
2809  QualType desugar() const { return QualType(this, 0); }
2810
2811  static bool classof(const TagType *T);
2812  static bool classof(const Type *T) {
2813    return isa<TagType>(T) && classof(cast<TagType>(T));
2814  }
2815  static bool classof(const RecordType *) { return true; }
2816};
2817
2818/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2819/// to detect TagType objects of enums.
2820class EnumType : public TagType {
2821  explicit EnumType(const EnumDecl *D)
2822    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2823  friend class ASTContext;   // ASTContext creates these.
2824public:
2825
2826  EnumDecl *getDecl() const {
2827    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2828  }
2829
2830  bool isSugared() const { return false; }
2831  QualType desugar() const { return QualType(this, 0); }
2832
2833  static bool classof(const TagType *T);
2834  static bool classof(const Type *T) {
2835    return isa<TagType>(T) && classof(cast<TagType>(T));
2836  }
2837  static bool classof(const EnumType *) { return true; }
2838};
2839
2840/// AttributedType - An attributed type is a type to which a type
2841/// attribute has been applied.  The "modified type" is the
2842/// fully-sugared type to which the attributed type was applied;
2843/// generally it is not canonically equivalent to the attributed type.
2844/// The "equivalent type" is the minimally-desugared type which the
2845/// type is canonically equivalent to.
2846///
2847/// For example, in the following attributed type:
2848///     int32_t __attribute__((vector_size(16)))
2849///   - the modified type is the TypedefType for int32_t
2850///   - the equivalent type is VectorType(16, int32_t)
2851///   - the canonical type is VectorType(16, int)
2852class AttributedType : public Type, public llvm::FoldingSetNode {
2853public:
2854  // It is really silly to have yet another attribute-kind enum, but
2855  // clang::attr::Kind doesn't currently cover the pure type attrs.
2856  enum Kind {
2857    // Expression operand.
2858    attr_address_space,
2859    attr_regparm,
2860    attr_vector_size,
2861    attr_neon_vector_type,
2862    attr_neon_polyvector_type,
2863
2864    FirstExprOperandKind = attr_address_space,
2865    LastExprOperandKind = attr_neon_polyvector_type,
2866
2867    // Enumerated operand (string or keyword).
2868    attr_objc_gc,
2869    attr_pcs,
2870
2871    FirstEnumOperandKind = attr_objc_gc,
2872    LastEnumOperandKind = attr_pcs,
2873
2874    // No operand.
2875    attr_noreturn,
2876    attr_cdecl,
2877    attr_fastcall,
2878    attr_stdcall,
2879    attr_thiscall,
2880    attr_pascal
2881  };
2882
2883private:
2884  QualType ModifiedType;
2885  QualType EquivalentType;
2886
2887  friend class ASTContext; // creates these
2888
2889  AttributedType(QualType canon, Kind attrKind,
2890                 QualType modified, QualType equivalent)
2891    : Type(Attributed, canon, canon->isDependentType(),
2892           canon->isVariablyModifiedType(),
2893           canon->containsUnexpandedParameterPack()),
2894      ModifiedType(modified), EquivalentType(equivalent) {
2895    AttributedTypeBits.AttrKind = attrKind;
2896  }
2897
2898public:
2899  Kind getAttrKind() const {
2900    return static_cast<Kind>(AttributedTypeBits.AttrKind);
2901  }
2902
2903  QualType getModifiedType() const { return ModifiedType; }
2904  QualType getEquivalentType() const { return EquivalentType; }
2905
2906  bool isSugared() const { return true; }
2907  QualType desugar() const { return getEquivalentType(); }
2908
2909  void Profile(llvm::FoldingSetNodeID &ID) {
2910    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
2911  }
2912
2913  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
2914                      QualType modified, QualType equivalent) {
2915    ID.AddInteger(attrKind);
2916    ID.AddPointer(modified.getAsOpaquePtr());
2917    ID.AddPointer(equivalent.getAsOpaquePtr());
2918  }
2919
2920  static bool classof(const Type *T) {
2921    return T->getTypeClass() == Attributed;
2922  }
2923  static bool classof(const AttributedType *T) { return true; }
2924};
2925
2926class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2927  unsigned Depth : 15;
2928  unsigned ParameterPack : 1;
2929  unsigned Index : 16;
2930  IdentifierInfo *Name;
2931
2932  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2933                       QualType Canon)
2934    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
2935           /*VariablyModified=*/false, PP),
2936      Depth(D), ParameterPack(PP), Index(I), Name(N) { }
2937
2938  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2939    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true,
2940           /*VariablyModified=*/false, PP),
2941      Depth(D), ParameterPack(PP), Index(I), Name(0) { }
2942
2943  friend class ASTContext;  // ASTContext creates these
2944
2945public:
2946  unsigned getDepth() const { return Depth; }
2947  unsigned getIndex() const { return Index; }
2948  bool isParameterPack() const { return ParameterPack; }
2949  IdentifierInfo *getName() const { return Name; }
2950
2951  bool isSugared() const { return false; }
2952  QualType desugar() const { return QualType(this, 0); }
2953
2954  void Profile(llvm::FoldingSetNodeID &ID) {
2955    Profile(ID, Depth, Index, ParameterPack, Name);
2956  }
2957
2958  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2959                      unsigned Index, bool ParameterPack,
2960                      IdentifierInfo *Name) {
2961    ID.AddInteger(Depth);
2962    ID.AddInteger(Index);
2963    ID.AddBoolean(ParameterPack);
2964    ID.AddPointer(Name);
2965  }
2966
2967  static bool classof(const Type *T) {
2968    return T->getTypeClass() == TemplateTypeParm;
2969  }
2970  static bool classof(const TemplateTypeParmType *T) { return true; }
2971};
2972
2973/// \brief Represents the result of substituting a type for a template
2974/// type parameter.
2975///
2976/// Within an instantiated template, all template type parameters have
2977/// been replaced with these.  They are used solely to record that a
2978/// type was originally written as a template type parameter;
2979/// therefore they are never canonical.
2980class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2981  // The original type parameter.
2982  const TemplateTypeParmType *Replaced;
2983
2984  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2985    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
2986           Canon->isVariablyModifiedType(),
2987           Canon->containsUnexpandedParameterPack()),
2988      Replaced(Param) { }
2989
2990  friend class ASTContext;
2991
2992public:
2993  IdentifierInfo *getName() const { return Replaced->getName(); }
2994
2995  /// Gets the template parameter that was substituted for.
2996  const TemplateTypeParmType *getReplacedParameter() const {
2997    return Replaced;
2998  }
2999
3000  /// Gets the type that was substituted for the template
3001  /// parameter.
3002  QualType getReplacementType() const {
3003    return getCanonicalTypeInternal();
3004  }
3005
3006  bool isSugared() const { return true; }
3007  QualType desugar() const { return getReplacementType(); }
3008
3009  void Profile(llvm::FoldingSetNodeID &ID) {
3010    Profile(ID, getReplacedParameter(), getReplacementType());
3011  }
3012  static void Profile(llvm::FoldingSetNodeID &ID,
3013                      const TemplateTypeParmType *Replaced,
3014                      QualType Replacement) {
3015    ID.AddPointer(Replaced);
3016    ID.AddPointer(Replacement.getAsOpaquePtr());
3017  }
3018
3019  static bool classof(const Type *T) {
3020    return T->getTypeClass() == SubstTemplateTypeParm;
3021  }
3022  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
3023};
3024
3025/// \brief Represents the result of substituting a set of types for a template
3026/// type parameter pack.
3027///
3028/// When a pack expansion in the source code contains multiple parameter packs
3029/// and those parameter packs correspond to different levels of template
3030/// parameter lists, this type node is used to represent a template type
3031/// parameter pack from an outer level, which has already had its argument pack
3032/// substituted but that still lives within a pack expansion that itself
3033/// could not be instantiated. When actually performing a substitution into
3034/// that pack expansion (e.g., when all template parameters have corresponding
3035/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3036/// at the current pack substitution index.
3037class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3038  /// \brief The original type parameter.
3039  const TemplateTypeParmType *Replaced;
3040
3041  /// \brief A pointer to the set of template arguments that this
3042  /// parameter pack is instantiated with.
3043  const TemplateArgument *Arguments;
3044
3045  /// \brief The number of template arguments in \c Arguments.
3046  unsigned NumArguments;
3047
3048  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3049                                QualType Canon,
3050                                const TemplateArgument &ArgPack);
3051
3052  friend class ASTContext;
3053
3054public:
3055  IdentifierInfo *getName() const { return Replaced->getName(); }
3056
3057  /// Gets the template parameter that was substituted for.
3058  const TemplateTypeParmType *getReplacedParameter() const {
3059    return Replaced;
3060  }
3061
3062  bool isSugared() const { return false; }
3063  QualType desugar() const { return QualType(this, 0); }
3064
3065  TemplateArgument getArgumentPack() const;
3066
3067  void Profile(llvm::FoldingSetNodeID &ID);
3068  static void Profile(llvm::FoldingSetNodeID &ID,
3069                      const TemplateTypeParmType *Replaced,
3070                      const TemplateArgument &ArgPack);
3071
3072  static bool classof(const Type *T) {
3073    return T->getTypeClass() == SubstTemplateTypeParmPack;
3074  }
3075  static bool classof(const SubstTemplateTypeParmPackType *T) { return true; }
3076};
3077
3078/// \brief Represents a C++0x auto type.
3079///
3080/// These types are usually a placeholder for a deduced type. However, within
3081/// templates and before the initializer is attached, there is no deduced type
3082/// and an auto type is type-dependent and canonical.
3083class AutoType : public Type, public llvm::FoldingSetNode {
3084  AutoType(QualType DeducedType)
3085    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3086           /*Dependent=*/DeducedType.isNull(),
3087           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3088    assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
3089           "deduced a dependent type for auto");
3090  }
3091
3092  friend class ASTContext;  // ASTContext creates these
3093
3094public:
3095  bool isSugared() const { return isDeduced(); }
3096  QualType desugar() const { return getCanonicalTypeInternal(); }
3097
3098  QualType getDeducedType() const {
3099    return isDeduced() ? getCanonicalTypeInternal() : QualType();
3100  }
3101  bool isDeduced() const {
3102    return !isDependentType();
3103  }
3104
3105  void Profile(llvm::FoldingSetNodeID &ID) {
3106    Profile(ID, getDeducedType());
3107  }
3108
3109  static void Profile(llvm::FoldingSetNodeID &ID,
3110                      QualType Deduced) {
3111    ID.AddPointer(Deduced.getAsOpaquePtr());
3112  }
3113
3114  static bool classof(const Type *T) {
3115    return T->getTypeClass() == Auto;
3116  }
3117  static bool classof(const AutoType *T) { return true; }
3118};
3119
3120/// \brief Represents the type of a template specialization as written
3121/// in the source code.
3122///
3123/// Template specialization types represent the syntactic form of a
3124/// template-id that refers to a type, e.g., @c vector<int>. Some
3125/// template specialization types are syntactic sugar, whose canonical
3126/// type will point to some other type node that represents the
3127/// instantiation or class template specialization. For example, a
3128/// class template specialization type of @c vector<int> will refer to
3129/// a tag type for the instantiation
3130/// @c std::vector<int, std::allocator<int>>.
3131///
3132/// Other template specialization types, for which the template name
3133/// is dependent, may be canonical types. These types are always
3134/// dependent.
3135class TemplateSpecializationType
3136  : public Type, public llvm::FoldingSetNode {
3137  /// \brief The name of the template being specialized.
3138  TemplateName Template;
3139
3140  /// \brief - The number of template arguments named in this class
3141  /// template specialization.
3142  unsigned NumArgs;
3143
3144  TemplateSpecializationType(TemplateName T,
3145                             const TemplateArgument *Args,
3146                             unsigned NumArgs, QualType Canon);
3147
3148  friend class ASTContext;  // ASTContext creates these
3149
3150public:
3151  /// \brief Determine whether any of the given template arguments are
3152  /// dependent.
3153  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3154                                            unsigned NumArgs);
3155
3156  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3157                                            unsigned NumArgs);
3158
3159  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
3160
3161  /// \brief Print a template argument list, including the '<' and '>'
3162  /// enclosing the template arguments.
3163  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
3164                                               unsigned NumArgs,
3165                                               const PrintingPolicy &Policy,
3166                                               bool SkipBrackets = false);
3167
3168  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
3169                                               unsigned NumArgs,
3170                                               const PrintingPolicy &Policy);
3171
3172  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
3173                                               const PrintingPolicy &Policy);
3174
3175  /// True if this template specialization type matches a current
3176  /// instantiation in the context in which it is found.
3177  bool isCurrentInstantiation() const {
3178    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3179  }
3180
3181  typedef const TemplateArgument * iterator;
3182
3183  iterator begin() const { return getArgs(); }
3184  iterator end() const; // defined inline in TemplateBase.h
3185
3186  /// \brief Retrieve the name of the template that we are specializing.
3187  TemplateName getTemplateName() const { return Template; }
3188
3189  /// \brief Retrieve the template arguments.
3190  const TemplateArgument *getArgs() const {
3191    return reinterpret_cast<const TemplateArgument *>(this + 1);
3192  }
3193
3194  /// \brief Retrieve the number of template arguments.
3195  unsigned getNumArgs() const { return NumArgs; }
3196
3197  /// \brief Retrieve a specific template argument as a type.
3198  /// \precondition @c isArgType(Arg)
3199  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3200
3201  bool isSugared() const {
3202    return !isDependentType() || isCurrentInstantiation();
3203  }
3204  QualType desugar() const { return getCanonicalTypeInternal(); }
3205
3206  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3207    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3208  }
3209
3210  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3211                      const TemplateArgument *Args,
3212                      unsigned NumArgs,
3213                      const ASTContext &Context);
3214
3215  static bool classof(const Type *T) {
3216    return T->getTypeClass() == TemplateSpecialization;
3217  }
3218  static bool classof(const TemplateSpecializationType *T) { return true; }
3219};
3220
3221/// \brief The injected class name of a C++ class template or class
3222/// template partial specialization.  Used to record that a type was
3223/// spelled with a bare identifier rather than as a template-id; the
3224/// equivalent for non-templated classes is just RecordType.
3225///
3226/// Injected class name types are always dependent.  Template
3227/// instantiation turns these into RecordTypes.
3228///
3229/// Injected class name types are always canonical.  This works
3230/// because it is impossible to compare an injected class name type
3231/// with the corresponding non-injected template type, for the same
3232/// reason that it is impossible to directly compare template
3233/// parameters from different dependent contexts: injected class name
3234/// types can only occur within the scope of a particular templated
3235/// declaration, and within that scope every template specialization
3236/// will canonicalize to the injected class name (when appropriate
3237/// according to the rules of the language).
3238class InjectedClassNameType : public Type {
3239  CXXRecordDecl *Decl;
3240
3241  /// The template specialization which this type represents.
3242  /// For example, in
3243  ///   template <class T> class A { ... };
3244  /// this is A<T>, whereas in
3245  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3246  /// this is A<B<X,Y> >.
3247  ///
3248  /// It is always unqualified, always a template specialization type,
3249  /// and always dependent.
3250  QualType InjectedType;
3251
3252  friend class ASTContext; // ASTContext creates these.
3253  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3254                          // currently suitable for AST reading, too much
3255                          // interdependencies.
3256  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3257    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3258           /*VariablyModified=*/false,
3259           /*ContainsUnexpandedParameterPack=*/false),
3260      Decl(D), InjectedType(TST) {
3261    assert(isa<TemplateSpecializationType>(TST));
3262    assert(!TST.hasQualifiers());
3263    assert(TST->isDependentType());
3264  }
3265
3266public:
3267  QualType getInjectedSpecializationType() const { return InjectedType; }
3268  const TemplateSpecializationType *getInjectedTST() const {
3269    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3270  }
3271
3272  CXXRecordDecl *getDecl() const;
3273
3274  bool isSugared() const { return false; }
3275  QualType desugar() const { return QualType(this, 0); }
3276
3277  static bool classof(const Type *T) {
3278    return T->getTypeClass() == InjectedClassName;
3279  }
3280  static bool classof(const InjectedClassNameType *T) { return true; }
3281};
3282
3283/// \brief The kind of a tag type.
3284enum TagTypeKind {
3285  /// \brief The "struct" keyword.
3286  TTK_Struct,
3287  /// \brief The "union" keyword.
3288  TTK_Union,
3289  /// \brief The "class" keyword.
3290  TTK_Class,
3291  /// \brief The "enum" keyword.
3292  TTK_Enum
3293};
3294
3295/// \brief The elaboration keyword that precedes a qualified type name or
3296/// introduces an elaborated-type-specifier.
3297enum ElaboratedTypeKeyword {
3298  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3299  ETK_Struct,
3300  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3301  ETK_Union,
3302  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3303  ETK_Class,
3304  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3305  ETK_Enum,
3306  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3307  /// \c typename T::type.
3308  ETK_Typename,
3309  /// \brief No keyword precedes the qualified type name.
3310  ETK_None
3311};
3312
3313/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3314/// The keyword in stored in the free bits of the base class.
3315/// Also provides a few static helpers for converting and printing
3316/// elaborated type keyword and tag type kind enumerations.
3317class TypeWithKeyword : public Type {
3318protected:
3319  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3320                  QualType Canonical, bool Dependent, bool VariablyModified,
3321                  bool ContainsUnexpandedParameterPack)
3322  : Type(tc, Canonical, Dependent, VariablyModified,
3323         ContainsUnexpandedParameterPack) {
3324    TypeWithKeywordBits.Keyword = Keyword;
3325  }
3326
3327public:
3328  ElaboratedTypeKeyword getKeyword() const {
3329    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3330  }
3331
3332  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3333  /// into an elaborated type keyword.
3334  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3335
3336  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3337  /// into a tag type kind.  It is an error to provide a type specifier
3338  /// which *isn't* a tag kind here.
3339  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3340
3341  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3342  /// elaborated type keyword.
3343  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3344
3345  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3346  // a TagTypeKind. It is an error to provide an elaborated type keyword
3347  /// which *isn't* a tag kind here.
3348  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3349
3350  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3351
3352  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3353
3354  static const char *getTagTypeKindName(TagTypeKind Kind) {
3355    return getKeywordName(getKeywordForTagTypeKind(Kind));
3356  }
3357
3358  class CannotCastToThisType {};
3359  static CannotCastToThisType classof(const Type *);
3360};
3361
3362/// \brief Represents a type that was referred to using an elaborated type
3363/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3364/// or both.
3365///
3366/// This type is used to keep track of a type name as written in the
3367/// source code, including tag keywords and any nested-name-specifiers.
3368/// The type itself is always "sugar", used to express what was written
3369/// in the source code but containing no additional semantic information.
3370class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3371
3372  /// \brief The nested name specifier containing the qualifier.
3373  NestedNameSpecifier *NNS;
3374
3375  /// \brief The type that this qualified name refers to.
3376  QualType NamedType;
3377
3378  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3379                 QualType NamedType, QualType CanonType)
3380    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3381                      NamedType->isDependentType(),
3382                      NamedType->isVariablyModifiedType(),
3383                      NamedType->containsUnexpandedParameterPack()),
3384      NNS(NNS), NamedType(NamedType) {
3385    assert(!(Keyword == ETK_None && NNS == 0) &&
3386           "ElaboratedType cannot have elaborated type keyword "
3387           "and name qualifier both null.");
3388  }
3389
3390  friend class ASTContext;  // ASTContext creates these
3391
3392public:
3393  ~ElaboratedType();
3394
3395  /// \brief Retrieve the qualification on this type.
3396  NestedNameSpecifier *getQualifier() const { return NNS; }
3397
3398  /// \brief Retrieve the type named by the qualified-id.
3399  QualType getNamedType() const { return NamedType; }
3400
3401  /// \brief Remove a single level of sugar.
3402  QualType desugar() const { return getNamedType(); }
3403
3404  /// \brief Returns whether this type directly provides sugar.
3405  bool isSugared() const { return true; }
3406
3407  void Profile(llvm::FoldingSetNodeID &ID) {
3408    Profile(ID, getKeyword(), NNS, NamedType);
3409  }
3410
3411  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3412                      NestedNameSpecifier *NNS, QualType NamedType) {
3413    ID.AddInteger(Keyword);
3414    ID.AddPointer(NNS);
3415    NamedType.Profile(ID);
3416  }
3417
3418  static bool classof(const Type *T) {
3419    return T->getTypeClass() == Elaborated;
3420  }
3421  static bool classof(const ElaboratedType *T) { return true; }
3422};
3423
3424/// \brief Represents a qualified type name for which the type name is
3425/// dependent.
3426///
3427/// DependentNameType represents a class of dependent types that involve a
3428/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3429/// name of a type. The DependentNameType may start with a "typename" (for a
3430/// typename-specifier), "class", "struct", "union", or "enum" (for a
3431/// dependent elaborated-type-specifier), or nothing (in contexts where we
3432/// know that we must be referring to a type, e.g., in a base class specifier).
3433class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3434
3435  /// \brief The nested name specifier containing the qualifier.
3436  NestedNameSpecifier *NNS;
3437
3438  /// \brief The type that this typename specifier refers to.
3439  const IdentifierInfo *Name;
3440
3441  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3442                    const IdentifierInfo *Name, QualType CanonType)
3443    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3444                      /*VariablyModified=*/false,
3445                      NNS->containsUnexpandedParameterPack()),
3446      NNS(NNS), Name(Name) {
3447    assert(NNS->isDependent() &&
3448           "DependentNameType requires a dependent nested-name-specifier");
3449  }
3450
3451  friend class ASTContext;  // ASTContext creates these
3452
3453public:
3454  /// \brief Retrieve the qualification on this type.
3455  NestedNameSpecifier *getQualifier() const { return NNS; }
3456
3457  /// \brief Retrieve the type named by the typename specifier as an
3458  /// identifier.
3459  ///
3460  /// This routine will return a non-NULL identifier pointer when the
3461  /// form of the original typename was terminated by an identifier,
3462  /// e.g., "typename T::type".
3463  const IdentifierInfo *getIdentifier() const {
3464    return Name;
3465  }
3466
3467  bool isSugared() const { return false; }
3468  QualType desugar() const { return QualType(this, 0); }
3469
3470  void Profile(llvm::FoldingSetNodeID &ID) {
3471    Profile(ID, getKeyword(), NNS, Name);
3472  }
3473
3474  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3475                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
3476    ID.AddInteger(Keyword);
3477    ID.AddPointer(NNS);
3478    ID.AddPointer(Name);
3479  }
3480
3481  static bool classof(const Type *T) {
3482    return T->getTypeClass() == DependentName;
3483  }
3484  static bool classof(const DependentNameType *T) { return true; }
3485};
3486
3487/// DependentTemplateSpecializationType - Represents a template
3488/// specialization type whose template cannot be resolved, e.g.
3489///   A<T>::template B<T>
3490class DependentTemplateSpecializationType :
3491  public TypeWithKeyword, public llvm::FoldingSetNode {
3492
3493  /// \brief The nested name specifier containing the qualifier.
3494  NestedNameSpecifier *NNS;
3495
3496  /// \brief The identifier of the template.
3497  const IdentifierInfo *Name;
3498
3499  /// \brief - The number of template arguments named in this class
3500  /// template specialization.
3501  unsigned NumArgs;
3502
3503  const TemplateArgument *getArgBuffer() const {
3504    return reinterpret_cast<const TemplateArgument*>(this+1);
3505  }
3506  TemplateArgument *getArgBuffer() {
3507    return reinterpret_cast<TemplateArgument*>(this+1);
3508  }
3509
3510  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
3511                                      NestedNameSpecifier *NNS,
3512                                      const IdentifierInfo *Name,
3513                                      unsigned NumArgs,
3514                                      const TemplateArgument *Args,
3515                                      QualType Canon);
3516
3517  friend class ASTContext;  // ASTContext creates these
3518
3519public:
3520  NestedNameSpecifier *getQualifier() const { return NNS; }
3521  const IdentifierInfo *getIdentifier() const { return Name; }
3522
3523  /// \brief Retrieve the template arguments.
3524  const TemplateArgument *getArgs() const {
3525    return getArgBuffer();
3526  }
3527
3528  /// \brief Retrieve the number of template arguments.
3529  unsigned getNumArgs() const { return NumArgs; }
3530
3531  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3532
3533  typedef const TemplateArgument * iterator;
3534  iterator begin() const { return getArgs(); }
3535  iterator end() const; // inline in TemplateBase.h
3536
3537  bool isSugared() const { return false; }
3538  QualType desugar() const { return QualType(this, 0); }
3539
3540  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
3541    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
3542  }
3543
3544  static void Profile(llvm::FoldingSetNodeID &ID,
3545                      const ASTContext &Context,
3546                      ElaboratedTypeKeyword Keyword,
3547                      NestedNameSpecifier *Qualifier,
3548                      const IdentifierInfo *Name,
3549                      unsigned NumArgs,
3550                      const TemplateArgument *Args);
3551
3552  static bool classof(const Type *T) {
3553    return T->getTypeClass() == DependentTemplateSpecialization;
3554  }
3555  static bool classof(const DependentTemplateSpecializationType *T) {
3556    return true;
3557  }
3558};
3559
3560/// \brief Represents a pack expansion of types.
3561///
3562/// Pack expansions are part of C++0x variadic templates. A pack
3563/// expansion contains a pattern, which itself contains one or more
3564/// "unexpanded" parameter packs. When instantiated, a pack expansion
3565/// produces a series of types, each instantiated from the pattern of
3566/// the expansion, where the Ith instantiation of the pattern uses the
3567/// Ith arguments bound to each of the unexpanded parameter packs. The
3568/// pack expansion is considered to "expand" these unexpanded
3569/// parameter packs.
3570///
3571/// \code
3572/// template<typename ...Types> struct tuple;
3573///
3574/// template<typename ...Types>
3575/// struct tuple_of_references {
3576///   typedef tuple<Types&...> type;
3577/// };
3578/// \endcode
3579///
3580/// Here, the pack expansion \c Types&... is represented via a
3581/// PackExpansionType whose pattern is Types&.
3582class PackExpansionType : public Type, public llvm::FoldingSetNode {
3583  /// \brief The pattern of the pack expansion.
3584  QualType Pattern;
3585
3586  /// \brief The number of expansions that this pack expansion will
3587  /// generate when substituted (+1), or indicates that
3588  ///
3589  /// This field will only have a non-zero value when some of the parameter
3590  /// packs that occur within the pattern have been substituted but others have
3591  /// not.
3592  unsigned NumExpansions;
3593
3594  PackExpansionType(QualType Pattern, QualType Canon,
3595                    llvm::Optional<unsigned> NumExpansions)
3596    : Type(PackExpansion, Canon, /*Dependent=*/true,
3597           /*VariableModified=*/Pattern->isVariablyModifiedType(),
3598           /*ContainsUnexpandedParameterPack=*/false),
3599      Pattern(Pattern),
3600      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
3601
3602  friend class ASTContext;  // ASTContext creates these
3603
3604public:
3605  /// \brief Retrieve the pattern of this pack expansion, which is the
3606  /// type that will be repeatedly instantiated when instantiating the
3607  /// pack expansion itself.
3608  QualType getPattern() const { return Pattern; }
3609
3610  /// \brief Retrieve the number of expansions that this pack expansion will
3611  /// generate, if known.
3612  llvm::Optional<unsigned> getNumExpansions() const {
3613    if (NumExpansions)
3614      return NumExpansions - 1;
3615
3616    return llvm::Optional<unsigned>();
3617  }
3618
3619  bool isSugared() const { return false; }
3620  QualType desugar() const { return QualType(this, 0); }
3621
3622  void Profile(llvm::FoldingSetNodeID &ID) {
3623    Profile(ID, getPattern(), getNumExpansions());
3624  }
3625
3626  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
3627                      llvm::Optional<unsigned> NumExpansions) {
3628    ID.AddPointer(Pattern.getAsOpaquePtr());
3629    ID.AddBoolean(NumExpansions);
3630    if (NumExpansions)
3631      ID.AddInteger(*NumExpansions);
3632  }
3633
3634  static bool classof(const Type *T) {
3635    return T->getTypeClass() == PackExpansion;
3636  }
3637  static bool classof(const PackExpansionType *T) {
3638    return true;
3639  }
3640};
3641
3642/// ObjCObjectType - Represents a class type in Objective C.
3643/// Every Objective C type is a combination of a base type and a
3644/// list of protocols.
3645///
3646/// Given the following declarations:
3647///   @class C;
3648///   @protocol P;
3649///
3650/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
3651/// with base C and no protocols.
3652///
3653/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
3654///
3655/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
3656/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
3657/// and no protocols.
3658///
3659/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
3660/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
3661/// this should get its own sugar class to better represent the source.
3662class ObjCObjectType : public Type {
3663  // ObjCObjectType.NumProtocols - the number of protocols stored
3664  // after the ObjCObjectPointerType node.
3665  //
3666  // These protocols are those written directly on the type.  If
3667  // protocol qualifiers ever become additive, the iterators will need
3668  // to get kindof complicated.
3669  //
3670  // In the canonical object type, these are sorted alphabetically
3671  // and uniqued.
3672
3673  /// Either a BuiltinType or an InterfaceType or sugar for either.
3674  QualType BaseType;
3675
3676  ObjCProtocolDecl * const *getProtocolStorage() const {
3677    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
3678  }
3679
3680  ObjCProtocolDecl **getProtocolStorage();
3681
3682protected:
3683  ObjCObjectType(QualType Canonical, QualType Base,
3684                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
3685
3686  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
3687  ObjCObjectType(enum Nonce_ObjCInterface)
3688        : Type(ObjCInterface, QualType(), false, false, false),
3689      BaseType(QualType(this_(), 0)) {
3690    ObjCObjectTypeBits.NumProtocols = 0;
3691  }
3692
3693public:
3694  /// getBaseType - Gets the base type of this object type.  This is
3695  /// always (possibly sugar for) one of:
3696  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
3697  ///    user, which is a typedef for an ObjCPointerType)
3698  ///  - the 'Class' builtin type (same caveat)
3699  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
3700  QualType getBaseType() const { return BaseType; }
3701
3702  bool isObjCId() const {
3703    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
3704  }
3705  bool isObjCClass() const {
3706    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
3707  }
3708  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
3709  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
3710  bool isObjCUnqualifiedIdOrClass() const {
3711    if (!qual_empty()) return false;
3712    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
3713      return T->getKind() == BuiltinType::ObjCId ||
3714             T->getKind() == BuiltinType::ObjCClass;
3715    return false;
3716  }
3717  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
3718  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
3719
3720  /// Gets the interface declaration for this object type, if the base type
3721  /// really is an interface.
3722  ObjCInterfaceDecl *getInterface() const;
3723
3724  typedef ObjCProtocolDecl * const *qual_iterator;
3725
3726  qual_iterator qual_begin() const { return getProtocolStorage(); }
3727  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
3728
3729  bool qual_empty() const { return getNumProtocols() == 0; }
3730
3731  /// getNumProtocols - Return the number of qualifying protocols in this
3732  /// interface type, or 0 if there are none.
3733  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
3734
3735  /// \brief Fetch a protocol by index.
3736  ObjCProtocolDecl *getProtocol(unsigned I) const {
3737    assert(I < getNumProtocols() && "Out-of-range protocol access");
3738    return qual_begin()[I];
3739  }
3740
3741  bool isSugared() const { return false; }
3742  QualType desugar() const { return QualType(this, 0); }
3743
3744  static bool classof(const Type *T) {
3745    return T->getTypeClass() == ObjCObject ||
3746           T->getTypeClass() == ObjCInterface;
3747  }
3748  static bool classof(const ObjCObjectType *) { return true; }
3749};
3750
3751/// ObjCObjectTypeImpl - A class providing a concrete implementation
3752/// of ObjCObjectType, so as to not increase the footprint of
3753/// ObjCInterfaceType.  Code outside of ASTContext and the core type
3754/// system should not reference this type.
3755class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
3756  friend class ASTContext;
3757
3758  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
3759  // will need to be modified.
3760
3761  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
3762                     ObjCProtocolDecl * const *Protocols,
3763                     unsigned NumProtocols)
3764    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
3765
3766public:
3767  void Profile(llvm::FoldingSetNodeID &ID);
3768  static void Profile(llvm::FoldingSetNodeID &ID,
3769                      QualType Base,
3770                      ObjCProtocolDecl *const *protocols,
3771                      unsigned NumProtocols);
3772};
3773
3774inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
3775  return reinterpret_cast<ObjCProtocolDecl**>(
3776            static_cast<ObjCObjectTypeImpl*>(this) + 1);
3777}
3778
3779/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
3780/// object oriented design.  They basically correspond to C++ classes.  There
3781/// are two kinds of interface types, normal interfaces like "NSString" and
3782/// qualified interfaces, which are qualified with a protocol list like
3783/// "NSString<NSCopyable, NSAmazing>".
3784///
3785/// ObjCInterfaceType guarantees the following properties when considered
3786/// as a subtype of its superclass, ObjCObjectType:
3787///   - There are no protocol qualifiers.  To reinforce this, code which
3788///     tries to invoke the protocol methods via an ObjCInterfaceType will
3789///     fail to compile.
3790///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
3791///     T->getBaseType() == QualType(T, 0).
3792class ObjCInterfaceType : public ObjCObjectType {
3793  ObjCInterfaceDecl *Decl;
3794
3795  ObjCInterfaceType(const ObjCInterfaceDecl *D)
3796    : ObjCObjectType(Nonce_ObjCInterface),
3797      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
3798  friend class ASTContext;  // ASTContext creates these.
3799
3800public:
3801  /// getDecl - Get the declaration of this interface.
3802  ObjCInterfaceDecl *getDecl() const { return Decl; }
3803
3804  bool isSugared() const { return false; }
3805  QualType desugar() const { return QualType(this, 0); }
3806
3807  static bool classof(const Type *T) {
3808    return T->getTypeClass() == ObjCInterface;
3809  }
3810  static bool classof(const ObjCInterfaceType *) { return true; }
3811
3812  // Nonsense to "hide" certain members of ObjCObjectType within this
3813  // class.  People asking for protocols on an ObjCInterfaceType are
3814  // not going to get what they want: ObjCInterfaceTypes are
3815  // guaranteed to have no protocols.
3816  enum {
3817    qual_iterator,
3818    qual_begin,
3819    qual_end,
3820    getNumProtocols,
3821    getProtocol
3822  };
3823};
3824
3825inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
3826  if (const ObjCInterfaceType *T =
3827        getBaseType()->getAs<ObjCInterfaceType>())
3828    return T->getDecl();
3829  return 0;
3830}
3831
3832/// ObjCObjectPointerType - Used to represent a pointer to an
3833/// Objective C object.  These are constructed from pointer
3834/// declarators when the pointee type is an ObjCObjectType (or sugar
3835/// for one).  In addition, the 'id' and 'Class' types are typedefs
3836/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
3837/// are translated into these.
3838///
3839/// Pointers to pointers to Objective C objects are still PointerTypes;
3840/// only the first level of pointer gets it own type implementation.
3841class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
3842  QualType PointeeType;
3843
3844  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
3845    : Type(ObjCObjectPointer, Canonical, false, false, false),
3846      PointeeType(Pointee) {}
3847  friend class ASTContext;  // ASTContext creates these.
3848
3849public:
3850  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
3851  /// The result will always be an ObjCObjectType or sugar thereof.
3852  QualType getPointeeType() const { return PointeeType; }
3853
3854  /// getObjCObjectType - Gets the type pointed to by this ObjC
3855  /// pointer.  This method always returns non-null.
3856  ///
3857  /// This method is equivalent to getPointeeType() except that
3858  /// it discards any typedefs (or other sugar) between this
3859  /// type and the "outermost" object type.  So for:
3860  ///   @class A; @protocol P; @protocol Q;
3861  ///   typedef A<P> AP;
3862  ///   typedef A A1;
3863  ///   typedef A1<P> A1P;
3864  ///   typedef A1P<Q> A1PQ;
3865  /// For 'A*', getObjectType() will return 'A'.
3866  /// For 'A<P>*', getObjectType() will return 'A<P>'.
3867  /// For 'AP*', getObjectType() will return 'A<P>'.
3868  /// For 'A1*', getObjectType() will return 'A'.
3869  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
3870  /// For 'A1P*', getObjectType() will return 'A1<P>'.
3871  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
3872  ///   adding protocols to a protocol-qualified base discards the
3873  ///   old qualifiers (for now).  But if it didn't, getObjectType()
3874  ///   would return 'A1P<Q>' (and we'd have to make iterating over
3875  ///   qualifiers more complicated).
3876  const ObjCObjectType *getObjectType() const {
3877    return PointeeType->castAs<ObjCObjectType>();
3878  }
3879
3880  /// getInterfaceType - If this pointer points to an Objective C
3881  /// @interface type, gets the type for that interface.  Any protocol
3882  /// qualifiers on the interface are ignored.
3883  ///
3884  /// \return null if the base type for this pointer is 'id' or 'Class'
3885  const ObjCInterfaceType *getInterfaceType() const {
3886    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
3887  }
3888
3889  /// getInterfaceDecl - If this pointer points to an Objective @interface
3890  /// type, gets the declaration for that interface.
3891  ///
3892  /// \return null if the base type for this pointer is 'id' or 'Class'
3893  ObjCInterfaceDecl *getInterfaceDecl() const {
3894    return getObjectType()->getInterface();
3895  }
3896
3897  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
3898  /// its object type is the primitive 'id' type with no protocols.
3899  bool isObjCIdType() const {
3900    return getObjectType()->isObjCUnqualifiedId();
3901  }
3902
3903  /// isObjCClassType - True if this is equivalent to the 'Class' type,
3904  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
3905  bool isObjCClassType() const {
3906    return getObjectType()->isObjCUnqualifiedClass();
3907  }
3908
3909  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
3910  /// non-empty set of protocols.
3911  bool isObjCQualifiedIdType() const {
3912    return getObjectType()->isObjCQualifiedId();
3913  }
3914
3915  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
3916  /// some non-empty set of protocols.
3917  bool isObjCQualifiedClassType() const {
3918    return getObjectType()->isObjCQualifiedClass();
3919  }
3920
3921  /// An iterator over the qualifiers on the object type.  Provided
3922  /// for convenience.  This will always iterate over the full set of
3923  /// protocols on a type, not just those provided directly.
3924  typedef ObjCObjectType::qual_iterator qual_iterator;
3925
3926  qual_iterator qual_begin() const {
3927    return getObjectType()->qual_begin();
3928  }
3929  qual_iterator qual_end() const {
3930    return getObjectType()->qual_end();
3931  }
3932  bool qual_empty() const { return getObjectType()->qual_empty(); }
3933
3934  /// getNumProtocols - Return the number of qualifying protocols on
3935  /// the object type.
3936  unsigned getNumProtocols() const {
3937    return getObjectType()->getNumProtocols();
3938  }
3939
3940  /// \brief Retrieve a qualifying protocol by index on the object
3941  /// type.
3942  ObjCProtocolDecl *getProtocol(unsigned I) const {
3943    return getObjectType()->getProtocol(I);
3944  }
3945
3946  bool isSugared() const { return false; }
3947  QualType desugar() const { return QualType(this, 0); }
3948
3949  void Profile(llvm::FoldingSetNodeID &ID) {
3950    Profile(ID, getPointeeType());
3951  }
3952  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
3953    ID.AddPointer(T.getAsOpaquePtr());
3954  }
3955  static bool classof(const Type *T) {
3956    return T->getTypeClass() == ObjCObjectPointer;
3957  }
3958  static bool classof(const ObjCObjectPointerType *) { return true; }
3959};
3960
3961/// A qualifier set is used to build a set of qualifiers.
3962class QualifierCollector : public Qualifiers {
3963public:
3964  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
3965
3966  /// Collect any qualifiers on the given type and return an
3967  /// unqualified type.  The qualifiers are assumed to be consistent
3968  /// with those already in the type.
3969  const Type *strip(QualType type) {
3970    addFastQualifiers(type.getLocalFastQualifiers());
3971    if (!type.hasLocalNonFastQualifiers())
3972      return type.getTypePtrUnsafe();
3973
3974    const ExtQuals *extQuals = type.getExtQualsUnsafe();
3975    addConsistentQualifiers(extQuals->getQualifiers());
3976    return extQuals->getBaseType();
3977  }
3978
3979  /// Apply the collected qualifiers to the given type.
3980  QualType apply(const ASTContext &Context, QualType QT) const;
3981
3982  /// Apply the collected qualifiers to the given type.
3983  QualType apply(const ASTContext &Context, const Type* T) const;
3984};
3985
3986
3987// Inline function definitions.
3988
3989inline const Type *QualType::getTypePtr() const {
3990  return getCommonPtr()->BaseType;
3991}
3992
3993inline const Type *QualType::getTypePtrOrNull() const {
3994  return (isNull() ? 0 : getCommonPtr()->BaseType);
3995}
3996
3997inline SplitQualType QualType::split() const {
3998  if (!hasLocalNonFastQualifiers())
3999    return SplitQualType(getTypePtrUnsafe(),
4000                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4001
4002  const ExtQuals *eq = getExtQualsUnsafe();
4003  Qualifiers qs = eq->getQualifiers();
4004  qs.addFastQualifiers(getLocalFastQualifiers());
4005  return SplitQualType(eq->getBaseType(), qs);
4006}
4007
4008inline Qualifiers QualType::getLocalQualifiers() const {
4009  Qualifiers Quals;
4010  if (hasLocalNonFastQualifiers())
4011    Quals = getExtQualsUnsafe()->getQualifiers();
4012  Quals.addFastQualifiers(getLocalFastQualifiers());
4013  return Quals;
4014}
4015
4016inline Qualifiers QualType::getQualifiers() const {
4017  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4018  quals.addFastQualifiers(getLocalFastQualifiers());
4019  return quals;
4020}
4021
4022inline unsigned QualType::getCVRQualifiers() const {
4023  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4024  cvr |= getLocalCVRQualifiers();
4025  return cvr;
4026}
4027
4028inline QualType QualType::getCanonicalType() const {
4029  QualType canon = getCommonPtr()->CanonicalType;
4030  return canon.withFastQualifiers(getLocalFastQualifiers());
4031}
4032
4033inline bool QualType::isCanonical() const {
4034  return getTypePtr()->isCanonicalUnqualified();
4035}
4036
4037inline bool QualType::isCanonicalAsParam() const {
4038  if (!isCanonical()) return false;
4039  if (hasLocalQualifiers()) return false;
4040
4041  const Type *T = getTypePtr();
4042  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4043    return false;
4044
4045  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4046}
4047
4048inline bool QualType::isConstQualified() const {
4049  return isLocalConstQualified() ||
4050         getCommonPtr()->CanonicalType.isLocalConstQualified();
4051}
4052
4053inline bool QualType::isRestrictQualified() const {
4054  return isLocalRestrictQualified() ||
4055         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4056}
4057
4058
4059inline bool QualType::isVolatileQualified() const {
4060  return isLocalVolatileQualified() ||
4061         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4062}
4063
4064inline bool QualType::hasQualifiers() const {
4065  return hasLocalQualifiers() ||
4066         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4067}
4068
4069inline QualType QualType::getUnqualifiedType() const {
4070  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4071    return QualType(getTypePtr(), 0);
4072
4073  return QualType(getSplitUnqualifiedTypeImpl(*this).first, 0);
4074}
4075
4076inline SplitQualType QualType::getSplitUnqualifiedType() const {
4077  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4078    return split();
4079
4080  return getSplitUnqualifiedTypeImpl(*this);
4081}
4082
4083inline void QualType::removeLocalConst() {
4084  removeLocalFastQualifiers(Qualifiers::Const);
4085}
4086
4087inline void QualType::removeLocalRestrict() {
4088  removeLocalFastQualifiers(Qualifiers::Restrict);
4089}
4090
4091inline void QualType::removeLocalVolatile() {
4092  removeLocalFastQualifiers(Qualifiers::Volatile);
4093}
4094
4095inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4096  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4097  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4098
4099  // Fast path: we don't need to touch the slow qualifiers.
4100  removeLocalFastQualifiers(Mask);
4101}
4102
4103/// getAddressSpace - Return the address space of this type.
4104inline unsigned QualType::getAddressSpace() const {
4105  return getQualifiers().getAddressSpace();
4106}
4107
4108/// getObjCGCAttr - Return the gc attribute of this type.
4109inline Qualifiers::GC QualType::getObjCGCAttr() const {
4110  return getQualifiers().getObjCGCAttr();
4111}
4112
4113inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4114  if (const PointerType *PT = t.getAs<PointerType>()) {
4115    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4116      return FT->getExtInfo();
4117  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4118    return FT->getExtInfo();
4119
4120  return FunctionType::ExtInfo();
4121}
4122
4123inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4124  return getFunctionExtInfo(*t);
4125}
4126
4127/// \brief Determine whether this set of qualifiers is a superset of the given
4128/// set of qualifiers.
4129inline bool Qualifiers::isSupersetOf(Qualifiers Other) const {
4130  return Mask != Other.Mask && (Mask | Other.Mask) == Mask;
4131}
4132
4133/// isMoreQualifiedThan - Determine whether this type is more
4134/// qualified than the Other type. For example, "const volatile int"
4135/// is more qualified than "const int", "volatile int", and
4136/// "int". However, it is not more qualified than "const volatile
4137/// int".
4138inline bool QualType::isMoreQualifiedThan(QualType other) const {
4139  Qualifiers myQuals = getQualifiers();
4140  Qualifiers otherQuals = other.getQualifiers();
4141  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4142}
4143
4144/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4145/// as qualified as the Other type. For example, "const volatile
4146/// int" is at least as qualified as "const int", "volatile int",
4147/// "int", and "const volatile int".
4148inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4149  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4150}
4151
4152/// getNonReferenceType - If Type is a reference type (e.g., const
4153/// int&), returns the type that the reference refers to ("const
4154/// int"). Otherwise, returns the type itself. This routine is used
4155/// throughout Sema to implement C++ 5p6:
4156///
4157///   If an expression initially has the type "reference to T" (8.3.2,
4158///   8.5.3), the type is adjusted to "T" prior to any further
4159///   analysis, the expression designates the object or function
4160///   denoted by the reference, and the expression is an lvalue.
4161inline QualType QualType::getNonReferenceType() const {
4162  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4163    return RefType->getPointeeType();
4164  else
4165    return *this;
4166}
4167
4168inline bool Type::isFunctionType() const {
4169  return isa<FunctionType>(CanonicalType);
4170}
4171inline bool Type::isPointerType() const {
4172  return isa<PointerType>(CanonicalType);
4173}
4174inline bool Type::isAnyPointerType() const {
4175  return isPointerType() || isObjCObjectPointerType();
4176}
4177inline bool Type::isBlockPointerType() const {
4178  return isa<BlockPointerType>(CanonicalType);
4179}
4180inline bool Type::isReferenceType() const {
4181  return isa<ReferenceType>(CanonicalType);
4182}
4183inline bool Type::isLValueReferenceType() const {
4184  return isa<LValueReferenceType>(CanonicalType);
4185}
4186inline bool Type::isRValueReferenceType() const {
4187  return isa<RValueReferenceType>(CanonicalType);
4188}
4189inline bool Type::isFunctionPointerType() const {
4190  if (const PointerType *T = getAs<PointerType>())
4191    return T->getPointeeType()->isFunctionType();
4192  else
4193    return false;
4194}
4195inline bool Type::isMemberPointerType() const {
4196  return isa<MemberPointerType>(CanonicalType);
4197}
4198inline bool Type::isMemberFunctionPointerType() const {
4199  if (const MemberPointerType* T = getAs<MemberPointerType>())
4200    return T->isMemberFunctionPointer();
4201  else
4202    return false;
4203}
4204inline bool Type::isMemberDataPointerType() const {
4205  if (const MemberPointerType* T = getAs<MemberPointerType>())
4206    return T->isMemberDataPointer();
4207  else
4208    return false;
4209}
4210inline bool Type::isArrayType() const {
4211  return isa<ArrayType>(CanonicalType);
4212}
4213inline bool Type::isConstantArrayType() const {
4214  return isa<ConstantArrayType>(CanonicalType);
4215}
4216inline bool Type::isIncompleteArrayType() const {
4217  return isa<IncompleteArrayType>(CanonicalType);
4218}
4219inline bool Type::isVariableArrayType() const {
4220  return isa<VariableArrayType>(CanonicalType);
4221}
4222inline bool Type::isDependentSizedArrayType() const {
4223  return isa<DependentSizedArrayType>(CanonicalType);
4224}
4225inline bool Type::isBuiltinType() const {
4226  return isa<BuiltinType>(CanonicalType);
4227}
4228inline bool Type::isRecordType() const {
4229  return isa<RecordType>(CanonicalType);
4230}
4231inline bool Type::isEnumeralType() const {
4232  return isa<EnumType>(CanonicalType);
4233}
4234inline bool Type::isAnyComplexType() const {
4235  return isa<ComplexType>(CanonicalType);
4236}
4237inline bool Type::isVectorType() const {
4238  return isa<VectorType>(CanonicalType);
4239}
4240inline bool Type::isExtVectorType() const {
4241  return isa<ExtVectorType>(CanonicalType);
4242}
4243inline bool Type::isObjCObjectPointerType() const {
4244  return isa<ObjCObjectPointerType>(CanonicalType);
4245}
4246inline bool Type::isObjCObjectType() const {
4247  return isa<ObjCObjectType>(CanonicalType);
4248}
4249inline bool Type::isObjCObjectOrInterfaceType() const {
4250  return isa<ObjCInterfaceType>(CanonicalType) ||
4251    isa<ObjCObjectType>(CanonicalType);
4252}
4253
4254inline bool Type::isObjCQualifiedIdType() const {
4255  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4256    return OPT->isObjCQualifiedIdType();
4257  return false;
4258}
4259inline bool Type::isObjCQualifiedClassType() const {
4260  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4261    return OPT->isObjCQualifiedClassType();
4262  return false;
4263}
4264inline bool Type::isObjCIdType() const {
4265  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4266    return OPT->isObjCIdType();
4267  return false;
4268}
4269inline bool Type::isObjCClassType() const {
4270  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4271    return OPT->isObjCClassType();
4272  return false;
4273}
4274inline bool Type::isObjCSelType() const {
4275  if (const PointerType *OPT = getAs<PointerType>())
4276    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4277  return false;
4278}
4279inline bool Type::isObjCBuiltinType() const {
4280  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4281}
4282inline bool Type::isTemplateTypeParmType() const {
4283  return isa<TemplateTypeParmType>(CanonicalType);
4284}
4285
4286inline bool Type::isSpecificBuiltinType(unsigned K) const {
4287  if (const BuiltinType *BT = getAs<BuiltinType>())
4288    if (BT->getKind() == (BuiltinType::Kind) K)
4289      return true;
4290  return false;
4291}
4292
4293inline bool Type::isPlaceholderType() const {
4294  if (const BuiltinType *BT = getAs<BuiltinType>())
4295    return BT->isPlaceholderType();
4296  return false;
4297}
4298
4299/// \brief Determines whether this is a type for which one can define
4300/// an overloaded operator.
4301inline bool Type::isOverloadableType() const {
4302  return isDependentType() || isRecordType() || isEnumeralType();
4303}
4304
4305inline bool Type::hasPointerRepresentation() const {
4306  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
4307          isObjCObjectPointerType() || isNullPtrType());
4308}
4309
4310inline bool Type::hasObjCPointerRepresentation() const {
4311  return isObjCObjectPointerType();
4312}
4313
4314inline const Type *Type::getBaseElementTypeUnsafe() const {
4315  const Type *type = this;
4316  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
4317    type = arrayType->getElementType().getTypePtr();
4318  return type;
4319}
4320
4321/// Insertion operator for diagnostics.  This allows sending QualType's into a
4322/// diagnostic with <<.
4323inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
4324                                           QualType T) {
4325  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4326                  Diagnostic::ak_qualtype);
4327  return DB;
4328}
4329
4330/// Insertion operator for partial diagnostics.  This allows sending QualType's
4331/// into a diagnostic with <<.
4332inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
4333                                           QualType T) {
4334  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4335                  Diagnostic::ak_qualtype);
4336  return PD;
4337}
4338
4339// Helper class template that is used by Type::getAs to ensure that one does
4340// not try to look through a qualified type to get to an array type.
4341template<typename T,
4342         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
4343                             llvm::is_base_of<ArrayType, T>::value)>
4344struct ArrayType_cannot_be_used_with_getAs { };
4345
4346template<typename T>
4347struct ArrayType_cannot_be_used_with_getAs<T, true>;
4348
4349/// Member-template getAs<specific type>'.
4350template <typename T> const T *Type::getAs() const {
4351  ArrayType_cannot_be_used_with_getAs<T> at;
4352  (void)at;
4353
4354  // If this is directly a T type, return it.
4355  if (const T *Ty = dyn_cast<T>(this))
4356    return Ty;
4357
4358  // If the canonical form of this type isn't the right kind, reject it.
4359  if (!isa<T>(CanonicalType))
4360    return 0;
4361
4362  // If this is a typedef for the type, strip the typedef off without
4363  // losing all typedef information.
4364  return cast<T>(getUnqualifiedDesugaredType());
4365}
4366
4367inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
4368  // If this is directly an array type, return it.
4369  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
4370    return arr;
4371
4372  // If the canonical form of this type isn't the right kind, reject it.
4373  if (!isa<ArrayType>(CanonicalType))
4374    return 0;
4375
4376  // If this is a typedef for the type, strip the typedef off without
4377  // losing all typedef information.
4378  return cast<ArrayType>(getUnqualifiedDesugaredType());
4379}
4380
4381template <typename T> const T *Type::castAs() const {
4382  ArrayType_cannot_be_used_with_getAs<T> at;
4383  (void) at;
4384
4385  assert(isa<T>(CanonicalType));
4386  if (const T *ty = dyn_cast<T>(this)) return ty;
4387  return cast<T>(getUnqualifiedDesugaredType());
4388}
4389
4390inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
4391  assert(isa<ArrayType>(CanonicalType));
4392  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
4393  return cast<ArrayType>(getUnqualifiedDesugaredType());
4394}
4395
4396}  // end namespace clang
4397
4398#endif
4399