Type.h revision 465226e23a3008bd68973513dda1f9e3cd27dbdd
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/AST/TemplateName.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/ADT/APSInt.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/PointerUnion.h"
26
27using llvm::isa;
28using llvm::cast;
29using llvm::cast_or_null;
30using llvm::dyn_cast;
31using llvm::dyn_cast_or_null;
32namespace clang { class Type; }
33
34namespace llvm {
35  template <typename T>
36  class PointerLikeTypeTraits;
37  template<>
38  class PointerLikeTypeTraits< ::clang::Type*> {
39  public:
40    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
41    static inline ::clang::Type *getFromVoidPointer(void *P) {
42      return static_cast< ::clang::Type*>(P);
43    }
44    enum { NumLowBitsAvailable = 3 };
45  };
46}
47
48namespace clang {
49  class ASTContext;
50  class TypedefDecl;
51  class TemplateDecl;
52  class TemplateTypeParmDecl;
53  class NonTypeTemplateParmDecl;
54  class TemplateTemplateParmDecl;
55  class TagDecl;
56  class RecordDecl;
57  class CXXRecordDecl;
58  class EnumDecl;
59  class FieldDecl;
60  class ObjCInterfaceDecl;
61  class ObjCProtocolDecl;
62  class ObjCMethodDecl;
63  class Expr;
64  class Stmt;
65  class SourceLocation;
66  class StmtIteratorBase;
67  class TemplateArgument;
68  class QualifiedNameType;
69
70  // Provide forward declarations for all of the *Type classes
71#define TYPE(Class, Base) class Class##Type;
72#include "clang/AST/TypeNodes.def"
73
74/// QualType - For efficiency, we don't store CVR-qualified types as nodes on
75/// their own: instead each reference to a type stores the qualifiers.  This
76/// greatly reduces the number of nodes we need to allocate for types (for
77/// example we only need one for 'int', 'const int', 'volatile int',
78/// 'const volatile int', etc).
79///
80/// As an added efficiency bonus, instead of making this a pair, we just store
81/// the three bits we care about in the low bits of the pointer.  To handle the
82/// packing/unpacking, we make QualType be a simple wrapper class that acts like
83/// a smart pointer.
84class QualType {
85  llvm::PointerIntPair<Type*, 3> Value;
86public:
87  enum TQ {   // NOTE: These flags must be kept in sync with DeclSpec::TQ.
88    Const    = 0x1,
89    Restrict = 0x2,
90    Volatile = 0x4,
91    CVRFlags = Const|Restrict|Volatile
92  };
93
94  enum GCAttrTypes {
95    GCNone = 0,
96    Weak,
97    Strong
98  };
99
100  QualType() {}
101
102  QualType(const Type *Ptr, unsigned Quals)
103    : Value(const_cast<Type*>(Ptr), Quals) {}
104
105  unsigned getCVRQualifiers() const { return Value.getInt(); }
106  void setCVRQualifiers(unsigned Quals) { Value.setInt(Quals); }
107  Type *getTypePtr() const { return Value.getPointer(); }
108
109  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
110  static QualType getFromOpaquePtr(void *Ptr) {
111    QualType T;
112    T.Value.setFromOpaqueValue(Ptr);
113    return T;
114  }
115
116  Type &operator*() const {
117    return *getTypePtr();
118  }
119
120  Type *operator->() const {
121    return getTypePtr();
122  }
123
124  /// isNull - Return true if this QualType doesn't point to a type yet.
125  bool isNull() const {
126    return getTypePtr() == 0;
127  }
128
129  bool isConstQualified() const {
130    return (getCVRQualifiers() & Const) ? true : false;
131  }
132  bool isVolatileQualified() const {
133    return (getCVRQualifiers() & Volatile) ? true : false;
134  }
135  bool isRestrictQualified() const {
136    return (getCVRQualifiers() & Restrict) ? true : false;
137  }
138
139  bool isConstant(ASTContext& Ctx) const;
140
141  /// addConst/addVolatile/addRestrict - add the specified type qual to this
142  /// QualType.
143  void addConst()    { Value.setInt(Value.getInt() | Const); }
144  void addVolatile() { Value.setInt(Value.getInt() | Volatile); }
145  void addRestrict() { Value.setInt(Value.getInt() | Restrict); }
146
147  void removeConst()    { Value.setInt(Value.getInt() & ~Const); }
148  void removeVolatile() { Value.setInt(Value.getInt() & ~Volatile); }
149  void removeRestrict() { Value.setInt(Value.getInt() & ~Restrict); }
150
151  QualType getQualifiedType(unsigned TQs) const {
152    return QualType(getTypePtr(), TQs);
153  }
154  QualType getWithAdditionalQualifiers(unsigned TQs) const {
155    return QualType(getTypePtr(), TQs|getCVRQualifiers());
156  }
157
158  QualType withConst() const { return getWithAdditionalQualifiers(Const); }
159  QualType withVolatile() const { return getWithAdditionalQualifiers(Volatile);}
160  QualType withRestrict() const { return getWithAdditionalQualifiers(Restrict);}
161
162  QualType getUnqualifiedType() const;
163  bool isMoreQualifiedThan(QualType Other) const;
164  bool isAtLeastAsQualifiedAs(QualType Other) const;
165  QualType getNonReferenceType() const;
166
167  /// getDesugaredType - Return the specified type with any "sugar" removed from
168  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
169  /// the type is already concrete, it returns it unmodified.  This is similar
170  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
171  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
172  /// concrete.
173  QualType getDesugaredType(bool ForDisplay = false) const;
174
175  /// operator==/!= - Indicate whether the specified types and qualifiers are
176  /// identical.
177  bool operator==(const QualType &RHS) const {
178    return Value == RHS.Value;
179  }
180  bool operator!=(const QualType &RHS) const {
181    return Value != RHS.Value;
182  }
183  std::string getAsString() const {
184    std::string S;
185    getAsStringInternal(S);
186    return S;
187  }
188  void getAsStringInternal(std::string &Str) const;
189
190  void dump(const char *s) const;
191  void dump() const;
192
193  void Profile(llvm::FoldingSetNodeID &ID) const {
194    ID.AddPointer(getAsOpaquePtr());
195  }
196
197public:
198
199  /// getAddressSpace - Return the address space of this type.
200  inline unsigned getAddressSpace() const;
201
202  /// GCAttrTypesAttr - Returns gc attribute of this type.
203  inline QualType::GCAttrTypes getObjCGCAttr() const;
204
205  /// isObjCGCWeak true when Type is objc's weak.
206  bool isObjCGCWeak() const {
207    return getObjCGCAttr() == Weak;
208  }
209
210  /// isObjCGCStrong true when Type is objc's strong.
211  bool isObjCGCStrong() const {
212    return getObjCGCAttr() == Strong;
213  }
214};
215
216} // end clang.
217
218namespace llvm {
219/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
220/// to a specific Type class.
221template<> struct simplify_type<const ::clang::QualType> {
222  typedef ::clang::Type* SimpleType;
223  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
224    return Val.getTypePtr();
225  }
226};
227template<> struct simplify_type< ::clang::QualType>
228  : public simplify_type<const ::clang::QualType> {};
229
230// Teach SmallPtrSet that QualType is "basically a pointer".
231template<>
232class PointerLikeTypeTraits<clang::QualType> {
233public:
234  static inline void *getAsVoidPointer(clang::QualType P) {
235    return P.getAsOpaquePtr();
236  }
237  static inline clang::QualType getFromVoidPointer(void *P) {
238    return clang::QualType::getFromOpaquePtr(P);
239  }
240  // CVR qualifiers go in low bits.
241  enum { NumLowBitsAvailable = 0 };
242};
243} // end namespace llvm
244
245namespace clang {
246
247/// Type - This is the base class of the type hierarchy.  A central concept
248/// with types is that each type always has a canonical type.  A canonical type
249/// is the type with any typedef names stripped out of it or the types it
250/// references.  For example, consider:
251///
252///  typedef int  foo;
253///  typedef foo* bar;
254///    'int *'    'foo *'    'bar'
255///
256/// There will be a Type object created for 'int'.  Since int is canonical, its
257/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
258/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
259/// there is a PointerType that represents 'int*', which, like 'int', is
260/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
261/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
262/// is also 'int*'.
263///
264/// Non-canonical types are useful for emitting diagnostics, without losing
265/// information about typedefs being used.  Canonical types are useful for type
266/// comparisons (they allow by-pointer equality tests) and useful for reasoning
267/// about whether something has a particular form (e.g. is a function type),
268/// because they implicitly, recursively, strip all typedefs out of a type.
269///
270/// Types, once created, are immutable.
271///
272class Type {
273public:
274  enum TypeClass {
275#define TYPE(Class, Base) Class,
276#define ABSTRACT_TYPE(Class, Base)
277#include "clang/AST/TypeNodes.def"
278    TagFirst = Record, TagLast = Enum
279  };
280
281private:
282  QualType CanonicalType;
283
284  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
285  bool Dependent : 1;
286
287  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
288  /// Note that this should stay at the end of the ivars for Type so that
289  /// subclasses can pack their bitfields into the same word.
290  unsigned TC : 5;
291
292  Type(const Type&);           // DO NOT IMPLEMENT.
293  void operator=(const Type&); // DO NOT IMPLEMENT.
294protected:
295  // silence VC++ warning C4355: 'this' : used in base member initializer list
296  Type *this_() { return this; }
297  Type(TypeClass tc, QualType Canonical, bool dependent)
298    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
299      Dependent(dependent), TC(tc) {}
300  virtual ~Type() {}
301  virtual void Destroy(ASTContext& C);
302  friend class ASTContext;
303
304public:
305  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
306
307  bool isCanonical() const { return CanonicalType.getTypePtr() == this; }
308
309  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
310  /// object types, function types, and incomplete types.
311
312  /// \brief Determines whether the type describes an object in memory.
313  ///
314  /// Note that this definition of object type corresponds to the C++
315  /// definition of object type, which includes incomplete types, as
316  /// opposed to the C definition (which does not include incomplete
317  /// types).
318  bool isObjectType() const;
319
320  /// isIncompleteType - Return true if this is an incomplete type.
321  /// A type that can describe objects, but which lacks information needed to
322  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
323  /// routine will need to determine if the size is actually required.
324  bool isIncompleteType() const;
325
326  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
327  /// type, in other words, not a function type.
328  bool isIncompleteOrObjectType() const {
329    return !isFunctionType();
330  }
331
332  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
333  bool isPODType() const;
334
335  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
336  /// types that have a non-constant expression. This does not include "[]".
337  bool isVariablyModifiedType() const;
338
339  /// Helper methods to distinguish type categories. All type predicates
340  /// operate on the canonical type, ignoring typedefs and qualifiers.
341
342  /// isSpecificBuiltinType - Test for a particular builtin type.
343  bool isSpecificBuiltinType(unsigned K) const;
344
345  /// isIntegerType() does *not* include complex integers (a GCC extension).
346  /// isComplexIntegerType() can be used to test for complex integers.
347  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
348  bool isEnumeralType() const;
349  bool isBooleanType() const;
350  bool isCharType() const;
351  bool isWideCharType() const;
352  bool isIntegralType() const;
353
354  /// Floating point categories.
355  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
356  /// isComplexType() does *not* include complex integers (a GCC extension).
357  /// isComplexIntegerType() can be used to test for complex integers.
358  bool isComplexType() const;      // C99 6.2.5p11 (complex)
359  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
360  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
361  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
362  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
363  bool isVoidType() const;         // C99 6.2.5p19
364  bool isDerivedType() const;      // C99 6.2.5p20
365  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
366  bool isAggregateType() const;
367
368  // Type Predicates: Check to see if this type is structurally the specified
369  // type, ignoring typedefs and qualifiers.
370  bool isFunctionType() const;
371  bool isFunctionNoProtoType() const { return getAsFunctionNoProtoType() != 0; }
372  bool isFunctionProtoType() const { return getAsFunctionProtoType() != 0; }
373  bool isPointerType() const;
374  bool isBlockPointerType() const;
375  bool isReferenceType() const;
376  bool isLValueReferenceType() const;
377  bool isRValueReferenceType() const;
378  bool isFunctionPointerType() const;
379  bool isMemberPointerType() const;
380  bool isMemberFunctionPointerType() const;
381  bool isArrayType() const;
382  bool isConstantArrayType() const;
383  bool isIncompleteArrayType() const;
384  bool isVariableArrayType() const;
385  bool isDependentSizedArrayType() const;
386  bool isRecordType() const;
387  bool isClassType() const;
388  bool isStructureType() const;
389  bool isUnionType() const;
390  bool isComplexIntegerType() const;            // GCC _Complex integer type.
391  bool isVectorType() const;                    // GCC vector type.
392  bool isExtVectorType() const;                 // Extended vector type.
393  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
394  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
395  bool isObjCQualifiedIdType() const;           // id<foo>
396  bool isTemplateTypeParmType() const;          // C++ template type parameter
397  bool isNullPtrType() const;                   // C++0x nullptr_t
398
399  /// isDependentType - Whether this type is a dependent type, meaning
400  /// that its definition somehow depends on a template parameter
401  /// (C++ [temp.dep.type]).
402  bool isDependentType() const { return Dependent; }
403  bool isOverloadableType() const;
404
405  /// hasPointerRepresentation - Whether this type is represented
406  /// natively as a pointer; this includes pointers, references, block
407  /// pointers, and Objective-C interface, qualified id, and qualified
408  /// interface types, as well as nullptr_t.
409  bool hasPointerRepresentation() const;
410
411  /// hasObjCPointerRepresentation - Whether this type can represent
412  /// an objective pointer type for the purpose of GC'ability
413  bool hasObjCPointerRepresentation() const;
414
415  // Type Checking Functions: Check to see if this type is structurally the
416  // specified type, ignoring typedefs and qualifiers, and return a pointer to
417  // the best type we can.
418  const BuiltinType *getAsBuiltinType() const;
419  const FunctionType *getAsFunctionType() const;
420  const FunctionNoProtoType *getAsFunctionNoProtoType() const;
421  const FunctionProtoType *getAsFunctionProtoType() const;
422  const PointerType *getAsPointerType() const;
423  const BlockPointerType *getAsBlockPointerType() const;
424  const ReferenceType *getAsReferenceType() const;
425  const LValueReferenceType *getAsLValueReferenceType() const;
426  const RValueReferenceType *getAsRValueReferenceType() const;
427  const MemberPointerType *getAsMemberPointerType() const;
428  const TagType *getAsTagType() const;
429  const RecordType *getAsRecordType() const;
430  const RecordType *getAsStructureType() const;
431  /// NOTE: getAs*ArrayType are methods on ASTContext.
432  const TypedefType *getAsTypedefType() const;
433  const RecordType *getAsUnionType() const;
434  const EnumType *getAsEnumType() const;
435  const VectorType *getAsVectorType() const; // GCC vector type.
436  const ComplexType *getAsComplexType() const;
437  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
438  const ExtVectorType *getAsExtVectorType() const; // Extended vector type.
439  const ObjCInterfaceType *getAsObjCInterfaceType() const;
440  const ObjCQualifiedInterfaceType *getAsObjCQualifiedInterfaceType() const;
441  const ObjCQualifiedIdType *getAsObjCQualifiedIdType() const;
442  const TemplateTypeParmType *getAsTemplateTypeParmType() const;
443
444  const TemplateSpecializationType *
445    getAsTemplateSpecializationType() const;
446
447  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
448  /// interface, return the interface type, otherwise return null.
449  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
450
451  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
452  /// element type of the array, potentially with type qualifiers missing.
453  /// This method should never be used when type qualifiers are meaningful.
454  const Type *getArrayElementTypeNoTypeQual() const;
455
456  /// getDesugaredType - Return the specified type with any "sugar" removed from
457  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
458  /// the type is already concrete, it returns it unmodified.  This is similar
459  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
460  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
461  /// concrete.
462  QualType getDesugaredType(bool ForDisplay = false) const;
463
464  /// More type predicates useful for type checking/promotion
465  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
466
467  /// isSignedIntegerType - Return true if this is an integer type that is
468  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
469  /// an enum decl which has a signed representation, or a vector of signed
470  /// integer element type.
471  bool isSignedIntegerType() const;
472
473  /// isUnsignedIntegerType - Return true if this is an integer type that is
474  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
475  /// decl which has an unsigned representation, or a vector of unsigned integer
476  /// element type.
477  bool isUnsignedIntegerType() const;
478
479  /// isConstantSizeType - Return true if this is not a variable sized type,
480  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
481  /// incomplete types.
482  bool isConstantSizeType() const;
483
484  QualType getCanonicalTypeInternal() const { return CanonicalType; }
485  void dump() const;
486  virtual void getAsStringInternal(std::string &InnerString) const = 0;
487  static bool classof(const Type *) { return true; }
488};
489
490/// ExtQualType - TR18037 (C embedded extensions) 6.2.5p26
491/// This supports all kinds of type attributes; including,
492/// address space qualified types, objective-c's __weak and
493/// __strong attributes.
494///
495class ExtQualType : public Type, public llvm::FoldingSetNode {
496  /// BaseType - This is the underlying type that this qualifies.  All CVR
497  /// qualifiers are stored on the QualType that references this type, so we
498  /// can't have any here.
499  Type *BaseType;
500
501  /// Address Space ID - The address space ID this type is qualified with.
502  unsigned AddressSpace;
503  /// GC __weak/__strong attributes
504  QualType::GCAttrTypes GCAttrType;
505
506  ExtQualType(Type *Base, QualType CanonicalPtr, unsigned AddrSpace,
507              QualType::GCAttrTypes gcAttr) :
508      Type(ExtQual, CanonicalPtr, Base->isDependentType()), BaseType(Base),
509      AddressSpace(AddrSpace), GCAttrType(gcAttr) {
510    assert(!isa<ExtQualType>(BaseType) &&
511           "Cannot have ExtQualType of ExtQualType");
512  }
513  friend class ASTContext;  // ASTContext creates these.
514public:
515  Type *getBaseType() const { return BaseType; }
516  QualType::GCAttrTypes getObjCGCAttr() const { return GCAttrType; }
517  unsigned getAddressSpace() const { return AddressSpace; }
518
519  virtual void getAsStringInternal(std::string &InnerString) const;
520
521  void Profile(llvm::FoldingSetNodeID &ID) {
522    Profile(ID, getBaseType(), AddressSpace, GCAttrType);
523  }
524  static void Profile(llvm::FoldingSetNodeID &ID, Type *Base,
525                      unsigned AddrSpace, QualType::GCAttrTypes gcAttr) {
526    ID.AddPointer(Base);
527    ID.AddInteger(AddrSpace);
528    ID.AddInteger(gcAttr);
529  }
530
531  static bool classof(const Type *T) { return T->getTypeClass() == ExtQual; }
532  static bool classof(const ExtQualType *) { return true; }
533};
534
535
536/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
537/// types are always canonical and have a literal name field.
538class BuiltinType : public Type {
539public:
540  enum Kind {
541    Void,
542
543    Bool,     // This is bool and/or _Bool.
544    Char_U,   // This is 'char' for targets where char is unsigned.
545    UChar,    // This is explicitly qualified unsigned char.
546    UShort,
547    UInt,
548    ULong,
549    ULongLong,
550    UInt128,  // __uint128_t
551
552    Char_S,   // This is 'char' for targets where char is signed.
553    SChar,    // This is explicitly qualified signed char.
554    WChar,    // This is 'wchar_t' for C++.
555    Short,
556    Int,
557    Long,
558    LongLong,
559    Int128,   // __int128_t
560
561    Float, Double, LongDouble,
562
563    NullPtr,  // This is the type of C++0x 'nullptr'.
564
565    Overload,  // This represents the type of an overloaded function declaration.
566    Dependent  // This represents the type of a type-dependent expression.
567  };
568private:
569  Kind TypeKind;
570public:
571  BuiltinType(Kind K)
572    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
573      TypeKind(K) {}
574
575  Kind getKind() const { return TypeKind; }
576  const char *getName() const;
577
578  virtual void getAsStringInternal(std::string &InnerString) const;
579
580  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
581  static bool classof(const BuiltinType *) { return true; }
582};
583
584/// FixedWidthIntType - Used for arbitrary width types that we either don't
585/// want to or can't map to named integer types.  These always have a lower
586/// integer rank than builtin types of the same width.
587class FixedWidthIntType : public Type {
588private:
589  unsigned Width;
590  bool Signed;
591public:
592  FixedWidthIntType(unsigned W, bool S) : Type(FixedWidthInt, QualType(), false),
593                                          Width(W), Signed(S) {}
594
595  unsigned getWidth() const { return Width; }
596  bool isSigned() const { return Signed; }
597  const char *getName() const;
598
599  virtual void getAsStringInternal(std::string &InnerString) const;
600
601  static bool classof(const Type *T) { return T->getTypeClass() == FixedWidthInt; }
602  static bool classof(const FixedWidthIntType *) { return true; }
603};
604
605/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
606/// types (_Complex float etc) as well as the GCC integer complex extensions.
607///
608class ComplexType : public Type, public llvm::FoldingSetNode {
609  QualType ElementType;
610  ComplexType(QualType Element, QualType CanonicalPtr) :
611    Type(Complex, CanonicalPtr, Element->isDependentType()),
612    ElementType(Element) {
613  }
614  friend class ASTContext;  // ASTContext creates these.
615public:
616  QualType getElementType() const { return ElementType; }
617
618  virtual void getAsStringInternal(std::string &InnerString) const;
619
620  void Profile(llvm::FoldingSetNodeID &ID) {
621    Profile(ID, getElementType());
622  }
623  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
624    ID.AddPointer(Element.getAsOpaquePtr());
625  }
626
627  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
628  static bool classof(const ComplexType *) { return true; }
629};
630
631/// PointerType - C99 6.7.5.1 - Pointer Declarators.
632///
633class PointerType : public Type, public llvm::FoldingSetNode {
634  QualType PointeeType;
635
636  PointerType(QualType Pointee, QualType CanonicalPtr) :
637    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
638  }
639  friend class ASTContext;  // ASTContext creates these.
640public:
641
642  virtual void getAsStringInternal(std::string &InnerString) const;
643
644  QualType getPointeeType() const { return PointeeType; }
645
646  void Profile(llvm::FoldingSetNodeID &ID) {
647    Profile(ID, getPointeeType());
648  }
649  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
650    ID.AddPointer(Pointee.getAsOpaquePtr());
651  }
652
653  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
654  static bool classof(const PointerType *) { return true; }
655};
656
657/// BlockPointerType - pointer to a block type.
658/// This type is to represent types syntactically represented as
659/// "void (^)(int)", etc. Pointee is required to always be a function type.
660///
661class BlockPointerType : public Type, public llvm::FoldingSetNode {
662  QualType PointeeType;  // Block is some kind of pointer type
663  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
664    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
665    PointeeType(Pointee) {
666  }
667  friend class ASTContext;  // ASTContext creates these.
668public:
669
670  // Get the pointee type. Pointee is required to always be a function type.
671  QualType getPointeeType() const { return PointeeType; }
672
673  virtual void getAsStringInternal(std::string &InnerString) const;
674
675  void Profile(llvm::FoldingSetNodeID &ID) {
676      Profile(ID, getPointeeType());
677  }
678  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
679      ID.AddPointer(Pointee.getAsOpaquePtr());
680  }
681
682  static bool classof(const Type *T) {
683    return T->getTypeClass() == BlockPointer;
684  }
685  static bool classof(const BlockPointerType *) { return true; }
686};
687
688/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
689///
690class ReferenceType : public Type, public llvm::FoldingSetNode {
691  QualType PointeeType;
692
693protected:
694  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef) :
695    Type(tc, CanonicalRef, Referencee->isDependentType()),
696    PointeeType(Referencee) {
697  }
698public:
699  QualType getPointeeType() const { return PointeeType; }
700
701  void Profile(llvm::FoldingSetNodeID &ID) {
702    Profile(ID, getPointeeType());
703  }
704  static void Profile(llvm::FoldingSetNodeID &ID, QualType Referencee) {
705    ID.AddPointer(Referencee.getAsOpaquePtr());
706  }
707
708  static bool classof(const Type *T) {
709    return T->getTypeClass() == LValueReference ||
710           T->getTypeClass() == RValueReference;
711  }
712  static bool classof(const ReferenceType *) { return true; }
713};
714
715/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
716///
717class LValueReferenceType : public ReferenceType {
718  LValueReferenceType(QualType Referencee, QualType CanonicalRef) :
719    ReferenceType(LValueReference, Referencee, CanonicalRef) {
720  }
721  friend class ASTContext; // ASTContext creates these
722public:
723  virtual void getAsStringInternal(std::string &InnerString) const;
724
725  static bool classof(const Type *T) {
726    return T->getTypeClass() == LValueReference;
727  }
728  static bool classof(const LValueReferenceType *) { return true; }
729};
730
731/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
732///
733class RValueReferenceType : public ReferenceType {
734  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
735    ReferenceType(RValueReference, Referencee, CanonicalRef) {
736  }
737  friend class ASTContext; // ASTContext creates these
738public:
739  virtual void getAsStringInternal(std::string &InnerString) const;
740
741  static bool classof(const Type *T) {
742    return T->getTypeClass() == RValueReference;
743  }
744  static bool classof(const RValueReferenceType *) { return true; }
745};
746
747/// MemberPointerType - C++ 8.3.3 - Pointers to members
748///
749class MemberPointerType : public Type, public llvm::FoldingSetNode {
750  QualType PointeeType;
751  /// The class of which the pointee is a member. Must ultimately be a
752  /// RecordType, but could be a typedef or a template parameter too.
753  const Type *Class;
754
755  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
756    Type(MemberPointer, CanonicalPtr,
757         Cls->isDependentType() || Pointee->isDependentType()),
758    PointeeType(Pointee), Class(Cls) {
759  }
760  friend class ASTContext; // ASTContext creates these.
761public:
762
763  QualType getPointeeType() const { return PointeeType; }
764
765  const Type *getClass() const { return Class; }
766
767  virtual void getAsStringInternal(std::string &InnerString) const;
768
769  void Profile(llvm::FoldingSetNodeID &ID) {
770    Profile(ID, getPointeeType(), getClass());
771  }
772  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
773                      const Type *Class) {
774    ID.AddPointer(Pointee.getAsOpaquePtr());
775    ID.AddPointer(Class);
776  }
777
778  static bool classof(const Type *T) {
779    return T->getTypeClass() == MemberPointer;
780  }
781  static bool classof(const MemberPointerType *) { return true; }
782};
783
784/// ArrayType - C99 6.7.5.2 - Array Declarators.
785///
786class ArrayType : public Type, public llvm::FoldingSetNode {
787public:
788  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
789  /// an array with a static size (e.g. int X[static 4]), or an array
790  /// with a star size (e.g. int X[*]).
791  /// 'static' is only allowed on function parameters.
792  enum ArraySizeModifier {
793    Normal, Static, Star
794  };
795private:
796  /// ElementType - The element type of the array.
797  QualType ElementType;
798
799  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
800  /// NOTE: These fields are packed into the bitfields space in the Type class.
801  unsigned SizeModifier : 2;
802
803  /// IndexTypeQuals - Capture qualifiers in declarations like:
804  /// 'int X[static restrict 4]'. For function parameters only.
805  unsigned IndexTypeQuals : 3;
806
807protected:
808  // C++ [temp.dep.type]p1:
809  //   A type is dependent if it is...
810  //     - an array type constructed from any dependent type or whose
811  //       size is specified by a constant expression that is
812  //       value-dependent,
813  ArrayType(TypeClass tc, QualType et, QualType can,
814            ArraySizeModifier sm, unsigned tq)
815    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
816      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
817
818  friend class ASTContext;  // ASTContext creates these.
819public:
820  QualType getElementType() const { return ElementType; }
821  ArraySizeModifier getSizeModifier() const {
822    return ArraySizeModifier(SizeModifier);
823  }
824  unsigned getIndexTypeQualifier() const { return IndexTypeQuals; }
825
826  static bool classof(const Type *T) {
827    return T->getTypeClass() == ConstantArray ||
828           T->getTypeClass() == VariableArray ||
829           T->getTypeClass() == IncompleteArray ||
830           T->getTypeClass() == DependentSizedArray;
831  }
832  static bool classof(const ArrayType *) { return true; }
833};
834
835/// ConstantArrayType - This class represents C arrays with a specified constant
836/// size.  For example 'int A[100]' has ConstantArrayType where the element type
837/// is 'int' and the size is 100.
838class ConstantArrayType : public ArrayType {
839  llvm::APInt Size; // Allows us to unique the type.
840
841  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
842                    ArraySizeModifier sm, unsigned tq)
843    : ArrayType(ConstantArray, et, can, sm, tq), Size(size) {}
844  friend class ASTContext;  // ASTContext creates these.
845public:
846  const llvm::APInt &getSize() const { return Size; }
847  virtual void getAsStringInternal(std::string &InnerString) const;
848
849  void Profile(llvm::FoldingSetNodeID &ID) {
850    Profile(ID, getElementType(), getSize(),
851            getSizeModifier(), getIndexTypeQualifier());
852  }
853  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
854                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
855                      unsigned TypeQuals) {
856    ID.AddPointer(ET.getAsOpaquePtr());
857    ID.AddInteger(ArraySize.getZExtValue());
858    ID.AddInteger(SizeMod);
859    ID.AddInteger(TypeQuals);
860  }
861  static bool classof(const Type *T) {
862    return T->getTypeClass() == ConstantArray;
863  }
864  static bool classof(const ConstantArrayType *) { return true; }
865};
866
867/// IncompleteArrayType - This class represents C arrays with an unspecified
868/// size.  For example 'int A[]' has an IncompleteArrayType where the element
869/// type is 'int' and the size is unspecified.
870class IncompleteArrayType : public ArrayType {
871  IncompleteArrayType(QualType et, QualType can,
872                    ArraySizeModifier sm, unsigned tq)
873    : ArrayType(IncompleteArray, et, can, sm, tq) {}
874  friend class ASTContext;  // ASTContext creates these.
875public:
876
877  virtual void getAsStringInternal(std::string &InnerString) const;
878
879  static bool classof(const Type *T) {
880    return T->getTypeClass() == IncompleteArray;
881  }
882  static bool classof(const IncompleteArrayType *) { return true; }
883
884  friend class StmtIteratorBase;
885
886  void Profile(llvm::FoldingSetNodeID &ID) {
887    Profile(ID, getElementType(), getSizeModifier(), getIndexTypeQualifier());
888  }
889
890  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
891                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
892    ID.AddPointer(ET.getAsOpaquePtr());
893    ID.AddInteger(SizeMod);
894    ID.AddInteger(TypeQuals);
895  }
896};
897
898/// VariableArrayType - This class represents C arrays with a specified size
899/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
900/// Since the size expression is an arbitrary expression, we store it as such.
901///
902/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
903/// should not be: two lexically equivalent variable array types could mean
904/// different things, for example, these variables do not have the same type
905/// dynamically:
906///
907/// void foo(int x) {
908///   int Y[x];
909///   ++x;
910///   int Z[x];
911/// }
912///
913class VariableArrayType : public ArrayType {
914  /// SizeExpr - An assignment expression. VLA's are only permitted within
915  /// a function block.
916  Stmt *SizeExpr;
917
918  VariableArrayType(QualType et, QualType can, Expr *e,
919                    ArraySizeModifier sm, unsigned tq)
920    : ArrayType(VariableArray, et, can, sm, tq), SizeExpr((Stmt*) e) {}
921  friend class ASTContext;  // ASTContext creates these.
922  virtual void Destroy(ASTContext& C);
923
924public:
925  Expr *getSizeExpr() const {
926    // We use C-style casts instead of cast<> here because we do not wish
927    // to have a dependency of Type.h on Stmt.h/Expr.h.
928    return (Expr*) SizeExpr;
929  }
930
931  virtual void getAsStringInternal(std::string &InnerString) const;
932
933  static bool classof(const Type *T) {
934    return T->getTypeClass() == VariableArray;
935  }
936  static bool classof(const VariableArrayType *) { return true; }
937
938  friend class StmtIteratorBase;
939
940  void Profile(llvm::FoldingSetNodeID &ID) {
941    assert(0 && "Cannnot unique VariableArrayTypes.");
942  }
943};
944
945/// DependentSizedArrayType - This type represents an array type in
946/// C++ whose size is a value-dependent expression. For example:
947/// @code
948/// template<typename T, int Size>
949/// class array {
950///   T data[Size];
951/// };
952/// @endcode
953/// For these types, we won't actually know what the array bound is
954/// until template instantiation occurs, at which point this will
955/// become either a ConstantArrayType or a VariableArrayType.
956class DependentSizedArrayType : public ArrayType {
957  /// SizeExpr - An assignment expression that will instantiate to the
958  /// size of the array.
959  Stmt *SizeExpr;
960
961  DependentSizedArrayType(QualType et, QualType can, Expr *e,
962			  ArraySizeModifier sm, unsigned tq)
963    : ArrayType(DependentSizedArray, et, can, sm, tq), SizeExpr((Stmt*) e) {}
964  friend class ASTContext;  // ASTContext creates these.
965  virtual void Destroy(ASTContext& C);
966
967public:
968  Expr *getSizeExpr() const {
969    // We use C-style casts instead of cast<> here because we do not wish
970    // to have a dependency of Type.h on Stmt.h/Expr.h.
971    return (Expr*) SizeExpr;
972  }
973
974  virtual void getAsStringInternal(std::string &InnerString) const;
975
976  static bool classof(const Type *T) {
977    return T->getTypeClass() == DependentSizedArray;
978  }
979  static bool classof(const DependentSizedArrayType *) { return true; }
980
981  friend class StmtIteratorBase;
982
983  void Profile(llvm::FoldingSetNodeID &ID) {
984    assert(0 && "Cannnot unique DependentSizedArrayTypes.");
985  }
986};
987
988/// VectorType - GCC generic vector type. This type is created using
989/// __attribute__((vector_size(n)), where "n" specifies the vector size in
990/// bytes. Since the constructor takes the number of vector elements, the
991/// client is responsible for converting the size into the number of elements.
992class VectorType : public Type, public llvm::FoldingSetNode {
993protected:
994  /// ElementType - The element type of the vector.
995  QualType ElementType;
996
997  /// NumElements - The number of elements in the vector.
998  unsigned NumElements;
999
1000  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1001    Type(Vector, canonType, vecType->isDependentType()),
1002    ElementType(vecType), NumElements(nElements) {}
1003  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1004             QualType canonType)
1005    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1006      NumElements(nElements) {}
1007  friend class ASTContext;  // ASTContext creates these.
1008public:
1009
1010  QualType getElementType() const { return ElementType; }
1011  unsigned getNumElements() const { return NumElements; }
1012
1013  virtual void getAsStringInternal(std::string &InnerString) const;
1014
1015  void Profile(llvm::FoldingSetNodeID &ID) {
1016    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1017  }
1018  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1019                      unsigned NumElements, TypeClass TypeClass) {
1020    ID.AddPointer(ElementType.getAsOpaquePtr());
1021    ID.AddInteger(NumElements);
1022    ID.AddInteger(TypeClass);
1023  }
1024  static bool classof(const Type *T) {
1025    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1026  }
1027  static bool classof(const VectorType *) { return true; }
1028};
1029
1030/// ExtVectorType - Extended vector type. This type is created using
1031/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1032/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1033/// class enables syntactic extensions, like Vector Components for accessing
1034/// points, colors, and textures (modeled after OpenGL Shading Language).
1035class ExtVectorType : public VectorType {
1036  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1037    VectorType(ExtVector, vecType, nElements, canonType) {}
1038  friend class ASTContext;  // ASTContext creates these.
1039public:
1040  static int getPointAccessorIdx(char c) {
1041    switch (c) {
1042    default: return -1;
1043    case 'x': return 0;
1044    case 'y': return 1;
1045    case 'z': return 2;
1046    case 'w': return 3;
1047    }
1048  }
1049  static int getNumericAccessorIdx(char c) {
1050    switch (c) {
1051      default: return -1;
1052      case '0': return 0;
1053      case '1': return 1;
1054      case '2': return 2;
1055      case '3': return 3;
1056      case '4': return 4;
1057      case '5': return 5;
1058      case '6': return 6;
1059      case '7': return 7;
1060      case '8': return 8;
1061      case '9': return 9;
1062      case 'a': return 10;
1063      case 'b': return 11;
1064      case 'c': return 12;
1065      case 'd': return 13;
1066      case 'e': return 14;
1067      case 'f': return 15;
1068    }
1069  }
1070
1071  static int getAccessorIdx(char c) {
1072    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1073    return getNumericAccessorIdx(c);
1074  }
1075
1076  bool isAccessorWithinNumElements(char c) const {
1077    if (int idx = getAccessorIdx(c)+1)
1078      return unsigned(idx-1) < NumElements;
1079    return false;
1080  }
1081  virtual void getAsStringInternal(std::string &InnerString) const;
1082
1083  static bool classof(const Type *T) {
1084    return T->getTypeClass() == ExtVector;
1085  }
1086  static bool classof(const ExtVectorType *) { return true; }
1087};
1088
1089/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1090/// class of FunctionNoProtoType and FunctionProtoType.
1091///
1092class FunctionType : public Type {
1093  /// SubClassData - This field is owned by the subclass, put here to pack
1094  /// tightly with the ivars in Type.
1095  bool SubClassData : 1;
1096
1097  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1098  /// other bitfields.
1099  /// The qualifiers are part of FunctionProtoType because...
1100  ///
1101  /// C++ 8.3.5p4: The return type, the parameter type list and the
1102  /// cv-qualifier-seq, [...], are part of the function type.
1103  ///
1104  unsigned TypeQuals : 3;
1105
1106  // The type returned by the function.
1107  QualType ResultType;
1108protected:
1109  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1110               unsigned typeQuals, QualType Canonical, bool Dependent)
1111    : Type(tc, Canonical, Dependent),
1112      SubClassData(SubclassInfo), TypeQuals(typeQuals), ResultType(res) {}
1113  bool getSubClassData() const { return SubClassData; }
1114  unsigned getTypeQuals() const { return TypeQuals; }
1115public:
1116
1117  QualType getResultType() const { return ResultType; }
1118
1119
1120  static bool classof(const Type *T) {
1121    return T->getTypeClass() == FunctionNoProto ||
1122           T->getTypeClass() == FunctionProto;
1123  }
1124  static bool classof(const FunctionType *) { return true; }
1125};
1126
1127/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1128/// no information available about its arguments.
1129class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1130  FunctionNoProtoType(QualType Result, QualType Canonical)
1131    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1132                   /*Dependent=*/false) {}
1133  friend class ASTContext;  // ASTContext creates these.
1134public:
1135  // No additional state past what FunctionType provides.
1136
1137  virtual void getAsStringInternal(std::string &InnerString) const;
1138
1139  void Profile(llvm::FoldingSetNodeID &ID) {
1140    Profile(ID, getResultType());
1141  }
1142  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType) {
1143    ID.AddPointer(ResultType.getAsOpaquePtr());
1144  }
1145
1146  static bool classof(const Type *T) {
1147    return T->getTypeClass() == FunctionNoProto;
1148  }
1149  static bool classof(const FunctionNoProtoType *) { return true; }
1150};
1151
1152/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1153/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1154/// arguments, not as having a single void argument. Such a type can have an
1155/// exception specification, but this specification is not part of the canonical
1156/// type.
1157class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1158  /// hasAnyDependentType - Determine whether there are any dependent
1159  /// types within the arguments passed in.
1160  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1161    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1162      if (ArgArray[Idx]->isDependentType())
1163    return true;
1164
1165    return false;
1166  }
1167
1168  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1169                    bool isVariadic, unsigned typeQuals, bool hasExs,
1170                    bool hasAnyExs, const QualType *ExArray,
1171                    unsigned numExs, QualType Canonical)
1172    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1173                   (Result->isDependentType() ||
1174                    hasAnyDependentType(ArgArray, numArgs))),
1175      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1176      AnyExceptionSpec(hasAnyExs) {
1177    // Fill in the trailing argument array.
1178    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1179    for (unsigned i = 0; i != numArgs; ++i)
1180      ArgInfo[i] = ArgArray[i];
1181    // Fill in the exception array.
1182    QualType *Ex = ArgInfo + numArgs;
1183    for (unsigned i = 0; i != numExs; ++i)
1184      Ex[i] = ExArray[i];
1185  }
1186
1187  /// NumArgs - The number of arguments this function has, not counting '...'.
1188  unsigned NumArgs : 20;
1189
1190  /// NumExceptions - The number of types in the exception spec, if any.
1191  unsigned NumExceptions : 10;
1192
1193  /// HasExceptionSpec - Whether this function has an exception spec at all.
1194  bool HasExceptionSpec : 1;
1195
1196  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1197  bool AnyExceptionSpec : 1;
1198
1199  /// ArgInfo - There is an variable size array after the class in memory that
1200  /// holds the argument types.
1201
1202  /// Exceptions - There is another variable size array after ArgInfo that
1203  /// holds the exception types.
1204
1205  friend class ASTContext;  // ASTContext creates these.
1206
1207public:
1208  unsigned getNumArgs() const { return NumArgs; }
1209  QualType getArgType(unsigned i) const {
1210    assert(i < NumArgs && "Invalid argument number!");
1211    return arg_type_begin()[i];
1212  }
1213
1214  bool hasExceptionSpec() const { return HasExceptionSpec; }
1215  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1216  unsigned getNumExceptions() const { return NumExceptions; }
1217  QualType getExceptionType(unsigned i) const {
1218    assert(i < NumExceptions && "Invalid exception number!");
1219    return exception_begin()[i];
1220  }
1221
1222  bool isVariadic() const { return getSubClassData(); }
1223  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1224
1225  typedef const QualType *arg_type_iterator;
1226  arg_type_iterator arg_type_begin() const {
1227    return reinterpret_cast<const QualType *>(this+1);
1228  }
1229  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1230
1231  typedef const QualType *exception_iterator;
1232  exception_iterator exception_begin() const {
1233    // exceptions begin where arguments end
1234    return arg_type_end();
1235  }
1236  exception_iterator exception_end() const {
1237    return exception_begin() + NumExceptions;
1238  }
1239
1240  virtual void getAsStringInternal(std::string &InnerString) const;
1241
1242  static bool classof(const Type *T) {
1243    return T->getTypeClass() == FunctionProto;
1244  }
1245  static bool classof(const FunctionProtoType *) { return true; }
1246
1247  void Profile(llvm::FoldingSetNodeID &ID);
1248  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1249                      arg_type_iterator ArgTys, unsigned NumArgs,
1250                      bool isVariadic, unsigned TypeQuals,
1251                      bool hasExceptionSpec, bool anyExceptionSpec,
1252                      unsigned NumExceptions, exception_iterator Exs);
1253};
1254
1255
1256class TypedefType : public Type {
1257  TypedefDecl *Decl;
1258protected:
1259  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1260    : Type(tc, can, can->isDependentType()), Decl(D) {
1261    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1262  }
1263  friend class ASTContext;  // ASTContext creates these.
1264public:
1265
1266  TypedefDecl *getDecl() const { return Decl; }
1267
1268  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1269  /// potentially looking through *all* consecutive typedefs.  This returns the
1270  /// sum of the type qualifiers, so if you have:
1271  ///   typedef const int A;
1272  ///   typedef volatile A B;
1273  /// looking through the typedefs for B will give you "const volatile A".
1274  QualType LookThroughTypedefs() const;
1275
1276  virtual void getAsStringInternal(std::string &InnerString) const;
1277
1278  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1279  static bool classof(const TypedefType *) { return true; }
1280};
1281
1282/// TypeOfExprType (GCC extension).
1283class TypeOfExprType : public Type {
1284  Expr *TOExpr;
1285  TypeOfExprType(Expr *E, QualType can);
1286  friend class ASTContext;  // ASTContext creates these.
1287public:
1288  Expr *getUnderlyingExpr() const { return TOExpr; }
1289
1290  virtual void getAsStringInternal(std::string &InnerString) const;
1291
1292  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1293  static bool classof(const TypeOfExprType *) { return true; }
1294};
1295
1296/// TypeOfType (GCC extension).
1297class TypeOfType : public Type {
1298  QualType TOType;
1299  TypeOfType(QualType T, QualType can)
1300    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
1301    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1302  }
1303  friend class ASTContext;  // ASTContext creates these.
1304public:
1305  QualType getUnderlyingType() const { return TOType; }
1306
1307  virtual void getAsStringInternal(std::string &InnerString) const;
1308
1309  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
1310  static bool classof(const TypeOfType *) { return true; }
1311};
1312
1313class TagType : public Type {
1314  /// Stores the TagDecl associated with this type. The decl will
1315  /// point to the TagDecl that actually defines the entity (or is a
1316  /// definition in progress), if there is such a definition. The
1317  /// single-bit value will be non-zero when this tag is in the
1318  /// process of being defined.
1319  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
1320  friend class ASTContext;
1321  friend class TagDecl;
1322
1323protected:
1324  TagType(TypeClass TC, TagDecl *D, QualType can);
1325
1326public:
1327  TagDecl *getDecl() const { return decl.getPointer(); }
1328
1329  /// @brief Determines whether this type is in the process of being
1330  /// defined.
1331  bool isBeingDefined() const { return decl.getInt(); }
1332  void setBeingDefined(bool Def) { decl.setInt(Def? 1 : 0); }
1333
1334  virtual void getAsStringInternal(std::string &InnerString) const;
1335  void getAsStringInternal(std::string &InnerString,
1336                           bool SuppressTagKind) const;
1337
1338  static bool classof(const Type *T) {
1339    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
1340  }
1341  static bool classof(const TagType *) { return true; }
1342  static bool classof(const RecordType *) { return true; }
1343  static bool classof(const EnumType *) { return true; }
1344};
1345
1346/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
1347/// to detect TagType objects of structs/unions/classes.
1348class RecordType : public TagType {
1349protected:
1350  explicit RecordType(RecordDecl *D)
1351    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
1352  explicit RecordType(TypeClass TC, RecordDecl *D)
1353    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
1354  friend class ASTContext;   // ASTContext creates these.
1355public:
1356
1357  RecordDecl *getDecl() const {
1358    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
1359  }
1360
1361  // FIXME: This predicate is a helper to QualType/Type. It needs to
1362  // recursively check all fields for const-ness. If any field is declared
1363  // const, it needs to return false.
1364  bool hasConstFields() const { return false; }
1365
1366  // FIXME: RecordType needs to check when it is created that all fields are in
1367  // the same address space, and return that.
1368  unsigned getAddressSpace() const { return 0; }
1369
1370  static bool classof(const TagType *T);
1371  static bool classof(const Type *T) {
1372    return isa<TagType>(T) && classof(cast<TagType>(T));
1373  }
1374  static bool classof(const RecordType *) { return true; }
1375};
1376
1377/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
1378/// to detect TagType objects of enums.
1379class EnumType : public TagType {
1380  explicit EnumType(EnumDecl *D)
1381    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
1382  friend class ASTContext;   // ASTContext creates these.
1383public:
1384
1385  EnumDecl *getDecl() const {
1386    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
1387  }
1388
1389  static bool classof(const TagType *T);
1390  static bool classof(const Type *T) {
1391    return isa<TagType>(T) && classof(cast<TagType>(T));
1392  }
1393  static bool classof(const EnumType *) { return true; }
1394};
1395
1396class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
1397  unsigned Depth : 16;
1398  unsigned Index : 16;
1399  IdentifierInfo *Name;
1400
1401  TemplateTypeParmType(unsigned D, unsigned I, IdentifierInfo *N,
1402                       QualType Canon)
1403    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
1404      Depth(D), Index(I), Name(N) { }
1405
1406  TemplateTypeParmType(unsigned D, unsigned I)
1407    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
1408      Depth(D), Index(I), Name(0) { }
1409
1410  friend class ASTContext;  // ASTContext creates these
1411
1412public:
1413  unsigned getDepth() const { return Depth; }
1414  unsigned getIndex() const { return Index; }
1415  IdentifierInfo *getName() const { return Name; }
1416
1417  virtual void getAsStringInternal(std::string &InnerString) const;
1418
1419  void Profile(llvm::FoldingSetNodeID &ID) {
1420    Profile(ID, Depth, Index, Name);
1421  }
1422
1423  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
1424                      unsigned Index, IdentifierInfo *Name) {
1425    ID.AddInteger(Depth);
1426    ID.AddInteger(Index);
1427    ID.AddPointer(Name);
1428  }
1429
1430  static bool classof(const Type *T) {
1431    return T->getTypeClass() == TemplateTypeParm;
1432  }
1433  static bool classof(const TemplateTypeParmType *T) { return true; }
1434};
1435
1436/// \brief Represents the type of a template specialization as written
1437/// in the source code.
1438///
1439/// Template specialization types represent the syntactic form of a
1440/// template-id that refers to a type, e.g., @c vector<int>. Some
1441/// template specialization types are syntactic sugar, whose canonical
1442/// type will point to some other type node that represents the
1443/// instantiation or class template specialization. For example, a
1444/// class template specialization type of @c vector<int> will refer to
1445/// a tag type for the instantiation
1446/// @c std::vector<int, std::allocator<int>>.
1447///
1448/// Other template specialization types, for which the template name
1449/// is dependent, may be canonical types. These types are always
1450/// dependent.
1451class TemplateSpecializationType
1452  : public Type, public llvm::FoldingSetNode {
1453
1454  /// \brief The name of the template being specialized.
1455  TemplateName Template;
1456
1457  /// \brief - The number of template arguments named in this class
1458  /// template specialization.
1459  unsigned NumArgs;
1460
1461  TemplateSpecializationType(TemplateName T,
1462                             const TemplateArgument *Args,
1463                             unsigned NumArgs, QualType Canon);
1464
1465  virtual void Destroy(ASTContext& C);
1466
1467  friend class ASTContext;  // ASTContext creates these
1468
1469public:
1470  /// \brief Determine whether any of the given template arguments are
1471  /// dependent.
1472  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
1473                                            unsigned NumArgs);
1474
1475  /// \brief Print a template argument list, including the '<' and '>'
1476  /// enclosing the template arguments.
1477  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
1478                                               unsigned NumArgs);
1479
1480  typedef const TemplateArgument * iterator;
1481
1482  iterator begin() const { return getArgs(); }
1483  iterator end() const;
1484
1485  /// \brief Retrieve the name of the template that we are specializing.
1486  TemplateName getTemplateName() const { return Template; }
1487
1488  /// \brief Retrieve the template arguments.
1489  const TemplateArgument *getArgs() const {
1490    return reinterpret_cast<const TemplateArgument *>(this + 1);
1491  }
1492
1493  /// \brief Retrieve the number of template arguments.
1494  unsigned getNumArgs() const { return NumArgs; }
1495
1496  /// \brief Retrieve a specific template argument as a type.
1497  /// \precondition @c isArgType(Arg)
1498  const TemplateArgument &getArg(unsigned Idx) const;
1499
1500  virtual void getAsStringInternal(std::string &InnerString) const;
1501
1502  void Profile(llvm::FoldingSetNodeID &ID) {
1503    Profile(ID, Template, getArgs(), NumArgs);
1504  }
1505
1506  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
1507                      const TemplateArgument *Args, unsigned NumArgs);
1508
1509  static bool classof(const Type *T) {
1510    return T->getTypeClass() == TemplateSpecialization;
1511  }
1512  static bool classof(const TemplateSpecializationType *T) { return true; }
1513};
1514
1515/// \brief Represents a type that was referred to via a qualified
1516/// name, e.g., N::M::type.
1517///
1518/// This type is used to keep track of a type name as written in the
1519/// source code, including any nested-name-specifiers. The type itself
1520/// is always "sugar", used to express what was written in the source
1521/// code but containing no additional semantic information.
1522class QualifiedNameType : public Type, public llvm::FoldingSetNode {
1523  /// \brief The nested name specifier containing the qualifier.
1524  NestedNameSpecifier *NNS;
1525
1526  /// \brief The type that this qualified name refers to.
1527  QualType NamedType;
1528
1529  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
1530                    QualType CanonType)
1531    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
1532      NNS(NNS), NamedType(NamedType) { }
1533
1534  friend class ASTContext;  // ASTContext creates these
1535
1536public:
1537  /// \brief Retrieve the qualification on this type.
1538  NestedNameSpecifier *getQualifier() const { return NNS; }
1539
1540  /// \brief Retrieve the type named by the qualified-id.
1541  QualType getNamedType() const { return NamedType; }
1542
1543  virtual void getAsStringInternal(std::string &InnerString) const;
1544
1545  void Profile(llvm::FoldingSetNodeID &ID) {
1546    Profile(ID, NNS, NamedType);
1547  }
1548
1549  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1550                      QualType NamedType) {
1551    ID.AddPointer(NNS);
1552    NamedType.Profile(ID);
1553  }
1554
1555  static bool classof(const Type *T) {
1556    return T->getTypeClass() == QualifiedName;
1557  }
1558  static bool classof(const QualifiedNameType *T) { return true; }
1559};
1560
1561/// \brief Represents a 'typename' specifier that names a type within
1562/// a dependent type, e.g., "typename T::type".
1563///
1564/// TypenameType has a very similar structure to QualifiedNameType,
1565/// which also involves a nested-name-specifier following by a type,
1566/// and (FIXME!) both can even be prefixed by the 'typename'
1567/// keyword. However, the two types serve very different roles:
1568/// QualifiedNameType is a non-semantic type that serves only as sugar
1569/// to show how a particular type was written in the source
1570/// code. TypenameType, on the other hand, only occurs when the
1571/// nested-name-specifier is dependent, such that we cannot resolve
1572/// the actual type until after instantiation.
1573class TypenameType : public Type, public llvm::FoldingSetNode {
1574  /// \brief The nested name specifier containing the qualifier.
1575  NestedNameSpecifier *NNS;
1576
1577  typedef llvm::PointerUnion<const IdentifierInfo *,
1578                             const TemplateSpecializationType *> NameType;
1579
1580  /// \brief The type that this typename specifier refers to.
1581  NameType Name;
1582
1583  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1584               QualType CanonType)
1585    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
1586    assert(NNS->isDependent() &&
1587           "TypenameType requires a dependent nested-name-specifier");
1588  }
1589
1590  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
1591               QualType CanonType)
1592    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
1593    assert(NNS->isDependent() &&
1594           "TypenameType requires a dependent nested-name-specifier");
1595  }
1596
1597  friend class ASTContext;  // ASTContext creates these
1598
1599public:
1600  /// \brief Retrieve the qualification on this type.
1601  NestedNameSpecifier *getQualifier() const { return NNS; }
1602
1603  /// \brief Retrieve the type named by the typename specifier as an
1604  /// identifier.
1605  ///
1606  /// This routine will return a non-NULL identifier pointer when the
1607  /// form of the original typename was terminated by an identifier,
1608  /// e.g., "typename T::type".
1609  const IdentifierInfo *getIdentifier() const {
1610    return Name.dyn_cast<const IdentifierInfo *>();
1611  }
1612
1613  /// \brief Retrieve the type named by the typename specifier as a
1614  /// type specialization.
1615  const TemplateSpecializationType *getTemplateId() const {
1616    return Name.dyn_cast<const TemplateSpecializationType *>();
1617  }
1618
1619  virtual void getAsStringInternal(std::string &InnerString) const;
1620
1621  void Profile(llvm::FoldingSetNodeID &ID) {
1622    Profile(ID, NNS, Name);
1623  }
1624
1625  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1626                      NameType Name) {
1627    ID.AddPointer(NNS);
1628    ID.AddPointer(Name.getOpaqueValue());
1629  }
1630
1631  static bool classof(const Type *T) {
1632    return T->getTypeClass() == Typename;
1633  }
1634  static bool classof(const TypenameType *T) { return true; }
1635};
1636
1637/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
1638/// object oriented design.  They basically correspond to C++ classes.  There
1639/// are two kinds of interface types, normal interfaces like "NSString" and
1640/// qualified interfaces, which are qualified with a protocol list like
1641/// "NSString<NSCopyable, NSAmazing>".  Qualified interface types are instances
1642/// of ObjCQualifiedInterfaceType, which is a subclass of ObjCInterfaceType.
1643class ObjCInterfaceType : public Type {
1644  ObjCInterfaceDecl *Decl;
1645protected:
1646  ObjCInterfaceType(TypeClass tc, ObjCInterfaceDecl *D) :
1647    Type(tc, QualType(), /*Dependent=*/false), Decl(D) { }
1648  friend class ASTContext;  // ASTContext creates these.
1649public:
1650
1651  ObjCInterfaceDecl *getDecl() const { return Decl; }
1652
1653  /// qual_iterator and friends: this provides access to the (potentially empty)
1654  /// list of protocols qualifying this interface.  If this is an instance of
1655  /// ObjCQualifiedInterfaceType it returns the list, otherwise it returns an
1656  /// empty list if there are no qualifying protocols.
1657  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
1658  inline qual_iterator qual_begin() const;
1659  inline qual_iterator qual_end() const;
1660  bool qual_empty() const { return getTypeClass() != ObjCQualifiedInterface; }
1661
1662  /// getNumProtocols - Return the number of qualifying protocols in this
1663  /// interface type, or 0 if there are none.
1664  inline unsigned getNumProtocols() const;
1665
1666  virtual void getAsStringInternal(std::string &InnerString) const;
1667  static bool classof(const Type *T) {
1668    return T->getTypeClass() == ObjCInterface ||
1669           T->getTypeClass() == ObjCQualifiedInterface;
1670  }
1671  static bool classof(const ObjCInterfaceType *) { return true; }
1672};
1673
1674/// ObjCQualifiedInterfaceType - This class represents interface types
1675/// conforming to a list of protocols, such as INTF<Proto1, Proto2, Proto1>.
1676///
1677/// Duplicate protocols are removed and protocol list is canonicalized to be in
1678/// alphabetical order.
1679class ObjCQualifiedInterfaceType : public ObjCInterfaceType,
1680                                   public llvm::FoldingSetNode {
1681
1682  // List of protocols for this protocol conforming object type
1683  // List is sorted on protocol name. No protocol is enterred more than once.
1684  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;
1685
1686  ObjCQualifiedInterfaceType(ObjCInterfaceDecl *D,
1687                             ObjCProtocolDecl **Protos, unsigned NumP) :
1688    ObjCInterfaceType(ObjCQualifiedInterface, D),
1689    Protocols(Protos, Protos+NumP) { }
1690  friend class ASTContext;  // ASTContext creates these.
1691public:
1692
1693  unsigned getNumProtocols() const {
1694    return Protocols.size();
1695  }
1696
1697  qual_iterator qual_begin() const { return Protocols.begin(); }
1698  qual_iterator qual_end() const   { return Protocols.end(); }
1699
1700  virtual void getAsStringInternal(std::string &InnerString) const;
1701
1702  void Profile(llvm::FoldingSetNodeID &ID);
1703  static void Profile(llvm::FoldingSetNodeID &ID,
1704                      const ObjCInterfaceDecl *Decl,
1705                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
1706
1707  static bool classof(const Type *T) {
1708    return T->getTypeClass() == ObjCQualifiedInterface;
1709  }
1710  static bool classof(const ObjCQualifiedInterfaceType *) { return true; }
1711};
1712
1713inline ObjCInterfaceType::qual_iterator ObjCInterfaceType::qual_begin() const {
1714  if (const ObjCQualifiedInterfaceType *QIT =
1715         dyn_cast<ObjCQualifiedInterfaceType>(this))
1716    return QIT->qual_begin();
1717  return 0;
1718}
1719inline ObjCInterfaceType::qual_iterator ObjCInterfaceType::qual_end() const {
1720  if (const ObjCQualifiedInterfaceType *QIT =
1721         dyn_cast<ObjCQualifiedInterfaceType>(this))
1722    return QIT->qual_end();
1723  return 0;
1724}
1725
1726/// getNumProtocols - Return the number of qualifying protocols in this
1727/// interface type, or 0 if there are none.
1728inline unsigned ObjCInterfaceType::getNumProtocols() const {
1729  if (const ObjCQualifiedInterfaceType *QIT =
1730        dyn_cast<ObjCQualifiedInterfaceType>(this))
1731    return QIT->getNumProtocols();
1732  return 0;
1733}
1734
1735/// ObjCQualifiedIdType - to represent id<protocol-list>.
1736///
1737/// Duplicate protocols are removed and protocol list is canonicalized to be in
1738/// alphabetical order.
1739class ObjCQualifiedIdType : public Type,
1740                            public llvm::FoldingSetNode {
1741  // List of protocols for this protocol conforming 'id' type
1742  // List is sorted on protocol name. No protocol is enterred more than once.
1743  llvm::SmallVector<ObjCProtocolDecl*, 8> Protocols;
1744
1745  ObjCQualifiedIdType(ObjCProtocolDecl **Protos, unsigned NumP)
1746    : Type(ObjCQualifiedId, QualType()/*these are always canonical*/,
1747           /*Dependent=*/false),
1748  Protocols(Protos, Protos+NumP) { }
1749  friend class ASTContext;  // ASTContext creates these.
1750public:
1751
1752  unsigned getNumProtocols() const {
1753    return Protocols.size();
1754  }
1755
1756  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
1757  qual_iterator qual_begin() const { return Protocols.begin(); }
1758  qual_iterator qual_end() const   { return Protocols.end(); }
1759
1760  virtual void getAsStringInternal(std::string &InnerString) const;
1761
1762  void Profile(llvm::FoldingSetNodeID &ID);
1763  static void Profile(llvm::FoldingSetNodeID &ID,
1764                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
1765
1766  static bool classof(const Type *T) {
1767    return T->getTypeClass() == ObjCQualifiedId;
1768  }
1769  static bool classof(const ObjCQualifiedIdType *) { return true; }
1770
1771};
1772
1773// Inline function definitions.
1774
1775/// getUnqualifiedType - Return the type without any qualifiers.
1776inline QualType QualType::getUnqualifiedType() const {
1777  Type *TP = getTypePtr();
1778  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(TP))
1779    TP = EXTQT->getBaseType();
1780  return QualType(TP, 0);
1781}
1782
1783/// getAddressSpace - Return the address space of this type.
1784inline unsigned QualType::getAddressSpace() const {
1785  QualType CT = getTypePtr()->getCanonicalTypeInternal();
1786  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
1787    return AT->getElementType().getAddressSpace();
1788  if (const RecordType *RT = dyn_cast<RecordType>(CT))
1789    return RT->getAddressSpace();
1790  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
1791    return EXTQT->getAddressSpace();
1792  return 0;
1793}
1794
1795/// getObjCGCAttr - Return the gc attribute of this type.
1796inline QualType::GCAttrTypes QualType::getObjCGCAttr() const {
1797  QualType CT = getTypePtr()->getCanonicalTypeInternal();
1798  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
1799      return AT->getElementType().getObjCGCAttr();
1800  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
1801    return EXTQT->getObjCGCAttr();
1802  if (const PointerType *PT = CT->getAsPointerType())
1803    return PT->getPointeeType().getObjCGCAttr();
1804  return GCNone;
1805}
1806
1807/// isMoreQualifiedThan - Determine whether this type is more
1808/// qualified than the Other type. For example, "const volatile int"
1809/// is more qualified than "const int", "volatile int", and
1810/// "int". However, it is not more qualified than "const volatile
1811/// int".
1812inline bool QualType::isMoreQualifiedThan(QualType Other) const {
1813  unsigned MyQuals = this->getCVRQualifiers();
1814  unsigned OtherQuals = Other.getCVRQualifiers();
1815  if (getAddressSpace() != Other.getAddressSpace())
1816    return false;
1817  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
1818}
1819
1820/// isAtLeastAsQualifiedAs - Determine whether this type is at last
1821/// as qualified as the Other type. For example, "const volatile
1822/// int" is at least as qualified as "const int", "volatile int",
1823/// "int", and "const volatile int".
1824inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
1825  unsigned MyQuals = this->getCVRQualifiers();
1826  unsigned OtherQuals = Other.getCVRQualifiers();
1827  if (getAddressSpace() != Other.getAddressSpace())
1828    return false;
1829  return (MyQuals | OtherQuals) == MyQuals;
1830}
1831
1832/// getNonReferenceType - If Type is a reference type (e.g., const
1833/// int&), returns the type that the reference refers to ("const
1834/// int"). Otherwise, returns the type itself. This routine is used
1835/// throughout Sema to implement C++ 5p6:
1836///
1837///   If an expression initially has the type "reference to T" (8.3.2,
1838///   8.5.3), the type is adjusted to "T" prior to any further
1839///   analysis, the expression designates the object or function
1840///   denoted by the reference, and the expression is an lvalue.
1841inline QualType QualType::getNonReferenceType() const {
1842  if (const ReferenceType *RefType = (*this)->getAsReferenceType())
1843    return RefType->getPointeeType();
1844  else
1845    return *this;
1846}
1847
1848inline const TypedefType* Type::getAsTypedefType() const {
1849  return dyn_cast<TypedefType>(this);
1850}
1851inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
1852  if (const PointerType *PT = getAsPointerType())
1853    return PT->getPointeeType()->getAsObjCInterfaceType();
1854  return 0;
1855}
1856
1857// NOTE: All of these methods use "getUnqualifiedType" to strip off address
1858// space qualifiers if present.
1859inline bool Type::isFunctionType() const {
1860  return isa<FunctionType>(CanonicalType.getUnqualifiedType());
1861}
1862inline bool Type::isPointerType() const {
1863  return isa<PointerType>(CanonicalType.getUnqualifiedType());
1864}
1865inline bool Type::isBlockPointerType() const {
1866  return isa<BlockPointerType>(CanonicalType.getUnqualifiedType());
1867}
1868inline bool Type::isReferenceType() const {
1869  return isa<ReferenceType>(CanonicalType.getUnqualifiedType());
1870}
1871inline bool Type::isLValueReferenceType() const {
1872  return isa<LValueReferenceType>(CanonicalType.getUnqualifiedType());
1873}
1874inline bool Type::isRValueReferenceType() const {
1875  return isa<RValueReferenceType>(CanonicalType.getUnqualifiedType());
1876}
1877inline bool Type::isFunctionPointerType() const {
1878  if (const PointerType* T = getAsPointerType())
1879    return T->getPointeeType()->isFunctionType();
1880  else
1881    return false;
1882}
1883inline bool Type::isMemberPointerType() const {
1884  return isa<MemberPointerType>(CanonicalType.getUnqualifiedType());
1885}
1886inline bool Type::isMemberFunctionPointerType() const {
1887  if (const MemberPointerType* T = getAsMemberPointerType())
1888    return T->getPointeeType()->isFunctionType();
1889  else
1890    return false;
1891}
1892inline bool Type::isArrayType() const {
1893  return isa<ArrayType>(CanonicalType.getUnqualifiedType());
1894}
1895inline bool Type::isConstantArrayType() const {
1896  return isa<ConstantArrayType>(CanonicalType.getUnqualifiedType());
1897}
1898inline bool Type::isIncompleteArrayType() const {
1899  return isa<IncompleteArrayType>(CanonicalType.getUnqualifiedType());
1900}
1901inline bool Type::isVariableArrayType() const {
1902  return isa<VariableArrayType>(CanonicalType.getUnqualifiedType());
1903}
1904inline bool Type::isDependentSizedArrayType() const {
1905  return isa<DependentSizedArrayType>(CanonicalType.getUnqualifiedType());
1906}
1907inline bool Type::isRecordType() const {
1908  return isa<RecordType>(CanonicalType.getUnqualifiedType());
1909}
1910inline bool Type::isAnyComplexType() const {
1911  return isa<ComplexType>(CanonicalType.getUnqualifiedType());
1912}
1913inline bool Type::isVectorType() const {
1914  return isa<VectorType>(CanonicalType.getUnqualifiedType());
1915}
1916inline bool Type::isExtVectorType() const {
1917  return isa<ExtVectorType>(CanonicalType.getUnqualifiedType());
1918}
1919inline bool Type::isObjCInterfaceType() const {
1920  return isa<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
1921}
1922inline bool Type::isObjCQualifiedInterfaceType() const {
1923  return isa<ObjCQualifiedInterfaceType>(CanonicalType.getUnqualifiedType());
1924}
1925inline bool Type::isObjCQualifiedIdType() const {
1926  return isa<ObjCQualifiedIdType>(CanonicalType.getUnqualifiedType());
1927}
1928inline bool Type::isTemplateTypeParmType() const {
1929  return isa<TemplateTypeParmType>(CanonicalType.getUnqualifiedType());
1930}
1931
1932inline bool Type::isSpecificBuiltinType(unsigned K) const {
1933  if (const BuiltinType *BT = getAsBuiltinType())
1934    if (BT->getKind() == (BuiltinType::Kind) K)
1935      return true;
1936  return false;
1937}
1938
1939/// \brief Determines whether this is a type for which one can define
1940/// an overloaded operator.
1941inline bool Type::isOverloadableType() const {
1942  return isDependentType() || isRecordType() || isEnumeralType();
1943}
1944
1945inline bool Type::hasPointerRepresentation() const {
1946  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
1947          isObjCInterfaceType() || isObjCQualifiedIdType() ||
1948          isObjCQualifiedInterfaceType() || isNullPtrType());
1949}
1950
1951inline bool Type::hasObjCPointerRepresentation() const {
1952  return (isObjCInterfaceType() || isObjCQualifiedIdType() ||
1953          isObjCQualifiedInterfaceType());
1954}
1955
1956/// Insertion operator for diagnostics.  This allows sending QualType's into a
1957/// diagnostic with <<.
1958inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
1959                                           QualType T) {
1960  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
1961                  Diagnostic::ak_qualtype);
1962  return DB;
1963}
1964
1965}  // end namespace clang
1966
1967#endif
1968