Type.h revision 470301bac9c8abfc6b451b3b669c6695a9fd1518
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/AST/TemplateName.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/ADT/APSInt.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/PointerUnion.h"
26
27using llvm::isa;
28using llvm::cast;
29using llvm::cast_or_null;
30using llvm::dyn_cast;
31using llvm::dyn_cast_or_null;
32namespace clang { class Type; }
33
34namespace llvm {
35  template <typename T>
36  class PointerLikeTypeTraits;
37  template<>
38  class PointerLikeTypeTraits< ::clang::Type*> {
39  public:
40    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
41    static inline ::clang::Type *getFromVoidPointer(void *P) {
42      return static_cast< ::clang::Type*>(P);
43    }
44    enum { NumLowBitsAvailable = 3 };
45  };
46}
47
48namespace clang {
49  class ASTContext;
50  class TypedefDecl;
51  class TemplateDecl;
52  class TemplateTypeParmDecl;
53  class NonTypeTemplateParmDecl;
54  class TemplateTemplateParmDecl;
55  class TagDecl;
56  class RecordDecl;
57  class CXXRecordDecl;
58  class EnumDecl;
59  class FieldDecl;
60  class ObjCInterfaceDecl;
61  class ObjCProtocolDecl;
62  class ObjCMethodDecl;
63  class Expr;
64  class Stmt;
65  class SourceLocation;
66  class StmtIteratorBase;
67  class TemplateArgument;
68  class QualifiedNameType;
69  struct PrintingPolicy;
70
71  // Provide forward declarations for all of the *Type classes
72#define TYPE(Class, Base) class Class##Type;
73#include "clang/AST/TypeNodes.def"
74
75/// QualType - For efficiency, we don't store CVR-qualified types as nodes on
76/// their own: instead each reference to a type stores the qualifiers.  This
77/// greatly reduces the number of nodes we need to allocate for types (for
78/// example we only need one for 'int', 'const int', 'volatile int',
79/// 'const volatile int', etc).
80///
81/// As an added efficiency bonus, instead of making this a pair, we just store
82/// the three bits we care about in the low bits of the pointer.  To handle the
83/// packing/unpacking, we make QualType be a simple wrapper class that acts like
84/// a smart pointer.
85class QualType {
86  llvm::PointerIntPair<Type*, 3> Value;
87public:
88  enum TQ {   // NOTE: These flags must be kept in sync with DeclSpec::TQ.
89    Const    = 0x1,
90    Restrict = 0x2,
91    Volatile = 0x4,
92    CVRFlags = Const|Restrict|Volatile
93  };
94
95  enum GCAttrTypes {
96    GCNone = 0,
97    Weak,
98    Strong
99  };
100
101  QualType() {}
102
103  QualType(const Type *Ptr, unsigned Quals)
104    : Value(const_cast<Type*>(Ptr), Quals) {}
105
106  unsigned getCVRQualifiers() const { return Value.getInt(); }
107  void setCVRQualifiers(unsigned Quals) { Value.setInt(Quals); }
108  Type *getTypePtr() const { return Value.getPointer(); }
109
110  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
111  static QualType getFromOpaquePtr(void *Ptr) {
112    QualType T;
113    T.Value.setFromOpaqueValue(Ptr);
114    return T;
115  }
116
117  Type &operator*() const {
118    return *getTypePtr();
119  }
120
121  Type *operator->() const {
122    return getTypePtr();
123  }
124
125  /// isNull - Return true if this QualType doesn't point to a type yet.
126  bool isNull() const {
127    return getTypePtr() == 0;
128  }
129
130  bool isConstQualified() const {
131    return (getCVRQualifiers() & Const) ? true : false;
132  }
133  bool isVolatileQualified() const {
134    return (getCVRQualifiers() & Volatile) ? true : false;
135  }
136  bool isRestrictQualified() const {
137    return (getCVRQualifiers() & Restrict) ? true : false;
138  }
139
140  bool isConstant(ASTContext& Ctx) const;
141
142  /// addConst/addVolatile/addRestrict - add the specified type qual to this
143  /// QualType.
144  void addConst()    { Value.setInt(Value.getInt() | Const); }
145  void addVolatile() { Value.setInt(Value.getInt() | Volatile); }
146  void addRestrict() { Value.setInt(Value.getInt() | Restrict); }
147
148  void removeConst()    { Value.setInt(Value.getInt() & ~Const); }
149  void removeVolatile() { Value.setInt(Value.getInt() & ~Volatile); }
150  void removeRestrict() { Value.setInt(Value.getInt() & ~Restrict); }
151
152  QualType getQualifiedType(unsigned TQs) const {
153    return QualType(getTypePtr(), TQs);
154  }
155  QualType getWithAdditionalQualifiers(unsigned TQs) const {
156    return QualType(getTypePtr(), TQs|getCVRQualifiers());
157  }
158
159  QualType withConst() const { return getWithAdditionalQualifiers(Const); }
160  QualType withVolatile() const { return getWithAdditionalQualifiers(Volatile);}
161  QualType withRestrict() const { return getWithAdditionalQualifiers(Restrict);}
162
163  QualType getUnqualifiedType() const;
164  bool isMoreQualifiedThan(QualType Other) const;
165  bool isAtLeastAsQualifiedAs(QualType Other) const;
166  QualType getNonReferenceType() const;
167
168  /// getDesugaredType - Return the specified type with any "sugar" removed from
169  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
170  /// the type is already concrete, it returns it unmodified.  This is similar
171  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
172  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
173  /// concrete.
174  QualType getDesugaredType(bool ForDisplay = false) const;
175
176  /// operator==/!= - Indicate whether the specified types and qualifiers are
177  /// identical.
178  bool operator==(const QualType &RHS) const {
179    return Value == RHS.Value;
180  }
181  bool operator!=(const QualType &RHS) const {
182    return Value != RHS.Value;
183  }
184  std::string getAsString() const;
185
186  std::string getAsString(const PrintingPolicy &Policy) const {
187    std::string S;
188    getAsStringInternal(S, Policy);
189    return S;
190  }
191  void getAsStringInternal(std::string &Str,
192                           const PrintingPolicy &Policy) const;
193
194  void dump(const char *s) const;
195  void dump() const;
196
197  void Profile(llvm::FoldingSetNodeID &ID) const {
198    ID.AddPointer(getAsOpaquePtr());
199  }
200
201public:
202
203  /// getAddressSpace - Return the address space of this type.
204  inline unsigned getAddressSpace() const;
205
206  /// GCAttrTypesAttr - Returns gc attribute of this type.
207  inline QualType::GCAttrTypes getObjCGCAttr() const;
208
209  /// isObjCGCWeak true when Type is objc's weak.
210  bool isObjCGCWeak() const {
211    return getObjCGCAttr() == Weak;
212  }
213
214  /// isObjCGCStrong true when Type is objc's strong.
215  bool isObjCGCStrong() const {
216    return getObjCGCAttr() == Strong;
217  }
218};
219
220} // end clang.
221
222namespace llvm {
223/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
224/// to a specific Type class.
225template<> struct simplify_type<const ::clang::QualType> {
226  typedef ::clang::Type* SimpleType;
227  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
228    return Val.getTypePtr();
229  }
230};
231template<> struct simplify_type< ::clang::QualType>
232  : public simplify_type<const ::clang::QualType> {};
233
234// Teach SmallPtrSet that QualType is "basically a pointer".
235template<>
236class PointerLikeTypeTraits<clang::QualType> {
237public:
238  static inline void *getAsVoidPointer(clang::QualType P) {
239    return P.getAsOpaquePtr();
240  }
241  static inline clang::QualType getFromVoidPointer(void *P) {
242    return clang::QualType::getFromOpaquePtr(P);
243  }
244  // CVR qualifiers go in low bits.
245  enum { NumLowBitsAvailable = 0 };
246};
247} // end namespace llvm
248
249namespace clang {
250
251/// Type - This is the base class of the type hierarchy.  A central concept
252/// with types is that each type always has a canonical type.  A canonical type
253/// is the type with any typedef names stripped out of it or the types it
254/// references.  For example, consider:
255///
256///  typedef int  foo;
257///  typedef foo* bar;
258///    'int *'    'foo *'    'bar'
259///
260/// There will be a Type object created for 'int'.  Since int is canonical, its
261/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
262/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
263/// there is a PointerType that represents 'int*', which, like 'int', is
264/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
265/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
266/// is also 'int*'.
267///
268/// Non-canonical types are useful for emitting diagnostics, without losing
269/// information about typedefs being used.  Canonical types are useful for type
270/// comparisons (they allow by-pointer equality tests) and useful for reasoning
271/// about whether something has a particular form (e.g. is a function type),
272/// because they implicitly, recursively, strip all typedefs out of a type.
273///
274/// Types, once created, are immutable.
275///
276class Type {
277public:
278  enum TypeClass {
279#define TYPE(Class, Base) Class,
280#define ABSTRACT_TYPE(Class, Base)
281#include "clang/AST/TypeNodes.def"
282    TagFirst = Record, TagLast = Enum
283  };
284
285private:
286  QualType CanonicalType;
287
288  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
289  bool Dependent : 1;
290
291  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
292  /// Note that this should stay at the end of the ivars for Type so that
293  /// subclasses can pack their bitfields into the same word.
294  unsigned TC : 6;
295
296  Type(const Type&);           // DO NOT IMPLEMENT.
297  void operator=(const Type&); // DO NOT IMPLEMENT.
298protected:
299  // silence VC++ warning C4355: 'this' : used in base member initializer list
300  Type *this_() { return this; }
301  Type(TypeClass tc, QualType Canonical, bool dependent)
302    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
303      Dependent(dependent), TC(tc) {}
304  virtual ~Type() {}
305  virtual void Destroy(ASTContext& C);
306  friend class ASTContext;
307
308public:
309  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
310
311  bool isCanonical() const { return CanonicalType.getTypePtr() == this; }
312
313  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
314  /// object types, function types, and incomplete types.
315
316  /// \brief Determines whether the type describes an object in memory.
317  ///
318  /// Note that this definition of object type corresponds to the C++
319  /// definition of object type, which includes incomplete types, as
320  /// opposed to the C definition (which does not include incomplete
321  /// types).
322  bool isObjectType() const;
323
324  /// isIncompleteType - Return true if this is an incomplete type.
325  /// A type that can describe objects, but which lacks information needed to
326  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
327  /// routine will need to determine if the size is actually required.
328  bool isIncompleteType() const;
329
330  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
331  /// type, in other words, not a function type.
332  bool isIncompleteOrObjectType() const {
333    return !isFunctionType();
334  }
335
336  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
337  bool isPODType() const;
338
339  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
340  /// types that have a non-constant expression. This does not include "[]".
341  bool isVariablyModifiedType() const;
342
343  /// Helper methods to distinguish type categories. All type predicates
344  /// operate on the canonical type, ignoring typedefs and qualifiers.
345
346  /// isSpecificBuiltinType - Test for a particular builtin type.
347  bool isSpecificBuiltinType(unsigned K) const;
348
349  /// isIntegerType() does *not* include complex integers (a GCC extension).
350  /// isComplexIntegerType() can be used to test for complex integers.
351  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
352  bool isEnumeralType() const;
353  bool isBooleanType() const;
354  bool isCharType() const;
355  bool isWideCharType() const;
356  bool isIntegralType() const;
357
358  /// Floating point categories.
359  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
360  /// isComplexType() does *not* include complex integers (a GCC extension).
361  /// isComplexIntegerType() can be used to test for complex integers.
362  bool isComplexType() const;      // C99 6.2.5p11 (complex)
363  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
364  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
365  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
366  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
367  bool isVoidType() const;         // C99 6.2.5p19
368  bool isDerivedType() const;      // C99 6.2.5p20
369  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
370  bool isAggregateType() const;
371
372  // Type Predicates: Check to see if this type is structurally the specified
373  // type, ignoring typedefs and qualifiers.
374  bool isFunctionType() const;
375  bool isFunctionNoProtoType() const { return getAsFunctionNoProtoType() != 0; }
376  bool isFunctionProtoType() const { return getAsFunctionProtoType() != 0; }
377  bool isPointerType() const;
378  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
379  bool isBlockPointerType() const;
380  bool isVoidPointerType() const;
381  bool isReferenceType() const;
382  bool isLValueReferenceType() const;
383  bool isRValueReferenceType() const;
384  bool isFunctionPointerType() const;
385  bool isMemberPointerType() const;
386  bool isMemberFunctionPointerType() const;
387  bool isArrayType() const;
388  bool isConstantArrayType() const;
389  bool isIncompleteArrayType() const;
390  bool isVariableArrayType() const;
391  bool isDependentSizedArrayType() const;
392  bool isRecordType() const;
393  bool isClassType() const;
394  bool isStructureType() const;
395  bool isUnionType() const;
396  bool isComplexIntegerType() const;            // GCC _Complex integer type.
397  bool isVectorType() const;                    // GCC vector type.
398  bool isExtVectorType() const;                 // Extended vector type.
399  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
400  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
401  // for the common case.
402  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
403  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
404  bool isObjCQualifiedIdType() const;           // id<foo>
405  bool isObjCQualifiedClassType() const;        // Class<foo>
406  bool isObjCIdType() const;                    // id
407  bool isObjCClassType() const;                 // Class
408  bool isObjCBuiltinType() const;               // 'id' or 'Class'
409  bool isTemplateTypeParmType() const;          // C++ template type parameter
410  bool isNullPtrType() const;                   // C++0x nullptr_t
411
412  /// isDependentType - Whether this type is a dependent type, meaning
413  /// that its definition somehow depends on a template parameter
414  /// (C++ [temp.dep.type]).
415  bool isDependentType() const { return Dependent; }
416  bool isOverloadableType() const;
417
418  /// hasPointerRepresentation - Whether this type is represented
419  /// natively as a pointer; this includes pointers, references, block
420  /// pointers, and Objective-C interface, qualified id, and qualified
421  /// interface types, as well as nullptr_t.
422  bool hasPointerRepresentation() const;
423
424  /// hasObjCPointerRepresentation - Whether this type can represent
425  /// an objective pointer type for the purpose of GC'ability
426  bool hasObjCPointerRepresentation() const;
427
428  // Type Checking Functions: Check to see if this type is structurally the
429  // specified type, ignoring typedefs and qualifiers, and return a pointer to
430  // the best type we can.
431  const BuiltinType *getAsBuiltinType() const;
432  const FunctionType *getAsFunctionType() const;
433  const FunctionNoProtoType *getAsFunctionNoProtoType() const;
434  const FunctionProtoType *getAsFunctionProtoType() const;
435  const PointerType *getAsPointerType() const;
436  const BlockPointerType *getAsBlockPointerType() const;
437  const ReferenceType *getAsReferenceType() const;
438  const LValueReferenceType *getAsLValueReferenceType() const;
439  const RValueReferenceType *getAsRValueReferenceType() const;
440  const MemberPointerType *getAsMemberPointerType() const;
441  const TagType *getAsTagType() const;
442  const RecordType *getAsRecordType() const;
443  const RecordType *getAsStructureType() const;
444  /// NOTE: getAs*ArrayType are methods on ASTContext.
445  const TypedefType *getAsTypedefType() const;
446  const RecordType *getAsUnionType() const;
447  const EnumType *getAsEnumType() const;
448  const VectorType *getAsVectorType() const; // GCC vector type.
449  const ComplexType *getAsComplexType() const;
450  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
451  const ExtVectorType *getAsExtVectorType() const; // Extended vector type.
452  const ObjCObjectPointerType *getAsObjCObjectPointerType() const;
453  // The following is a convenience method that returns an ObjCObjectPointerType
454  // for object declared using an interface.
455  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
456  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
457  const ObjCInterfaceType *getAsObjCInterfaceType() const;
458  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
459  const TemplateTypeParmType *getAsTemplateTypeParmType() const;
460
461  // Member-template getAs<specific type>'.  This scheme will eventually
462  // replace the specific getAsXXXX methods above.
463  template <typename T> const T *getAs() const;
464
465  const TemplateSpecializationType *
466    getAsTemplateSpecializationType() const;
467
468  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
469  /// interface, return the interface type, otherwise return null.
470  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
471
472  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
473  /// element type of the array, potentially with type qualifiers missing.
474  /// This method should never be used when type qualifiers are meaningful.
475  const Type *getArrayElementTypeNoTypeQual() const;
476
477  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
478  /// pointer, this returns the respective pointee.
479  QualType getPointeeType() const;
480
481  /// getDesugaredType - Return the specified type with any "sugar" removed from
482  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
483  /// the type is already concrete, it returns it unmodified.  This is similar
484  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
485  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
486  /// concrete.
487  QualType getDesugaredType(bool ForDisplay = false) const;
488
489  /// More type predicates useful for type checking/promotion
490  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
491
492  /// isSignedIntegerType - Return true if this is an integer type that is
493  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
494  /// an enum decl which has a signed representation, or a vector of signed
495  /// integer element type.
496  bool isSignedIntegerType() const;
497
498  /// isUnsignedIntegerType - Return true if this is an integer type that is
499  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
500  /// decl which has an unsigned representation, or a vector of unsigned integer
501  /// element type.
502  bool isUnsignedIntegerType() const;
503
504  /// isConstantSizeType - Return true if this is not a variable sized type,
505  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
506  /// incomplete types.
507  bool isConstantSizeType() const;
508
509  /// isSpecifierType - Returns true if this type can be represented by some
510  /// set of type specifiers.
511  bool isSpecifierType() const;
512
513  QualType getCanonicalTypeInternal() const { return CanonicalType; }
514  void dump() const;
515  virtual void getAsStringInternal(std::string &InnerString,
516                                   const PrintingPolicy &Policy) const = 0;
517  static bool classof(const Type *) { return true; }
518};
519
520/// ExtQualType - TR18037 (C embedded extensions) 6.2.5p26
521/// This supports all kinds of type attributes; including,
522/// address space qualified types, objective-c's __weak and
523/// __strong attributes.
524///
525class ExtQualType : public Type, public llvm::FoldingSetNode {
526  /// BaseType - This is the underlying type that this qualifies.  All CVR
527  /// qualifiers are stored on the QualType that references this type, so we
528  /// can't have any here.
529  Type *BaseType;
530
531  /// Address Space ID - The address space ID this type is qualified with.
532  unsigned AddressSpace;
533  /// GC __weak/__strong attributes
534  QualType::GCAttrTypes GCAttrType;
535
536  ExtQualType(Type *Base, QualType CanonicalPtr, unsigned AddrSpace,
537              QualType::GCAttrTypes gcAttr) :
538      Type(ExtQual, CanonicalPtr, Base->isDependentType()), BaseType(Base),
539      AddressSpace(AddrSpace), GCAttrType(gcAttr) {
540    assert(!isa<ExtQualType>(BaseType) &&
541           "Cannot have ExtQualType of ExtQualType");
542  }
543  friend class ASTContext;  // ASTContext creates these.
544public:
545  Type *getBaseType() const { return BaseType; }
546  QualType::GCAttrTypes getObjCGCAttr() const { return GCAttrType; }
547  unsigned getAddressSpace() const { return AddressSpace; }
548
549  virtual void getAsStringInternal(std::string &InnerString,
550                                   const PrintingPolicy &Policy) const;
551
552  void Profile(llvm::FoldingSetNodeID &ID) {
553    Profile(ID, getBaseType(), AddressSpace, GCAttrType);
554  }
555  static void Profile(llvm::FoldingSetNodeID &ID, Type *Base,
556                      unsigned AddrSpace, QualType::GCAttrTypes gcAttr) {
557    ID.AddPointer(Base);
558    ID.AddInteger(AddrSpace);
559    ID.AddInteger(gcAttr);
560  }
561
562  static bool classof(const Type *T) { return T->getTypeClass() == ExtQual; }
563  static bool classof(const ExtQualType *) { return true; }
564};
565
566
567/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
568/// types are always canonical and have a literal name field.
569class BuiltinType : public Type {
570public:
571  enum Kind {
572    Void,
573
574    Bool,     // This is bool and/or _Bool.
575    Char_U,   // This is 'char' for targets where char is unsigned.
576    UChar,    // This is explicitly qualified unsigned char.
577    Char16,   // This is 'char16_t' for C++.
578    Char32,   // This is 'char32_t' for C++.
579    UShort,
580    UInt,
581    ULong,
582    ULongLong,
583    UInt128,  // __uint128_t
584
585    Char_S,   // This is 'char' for targets where char is signed.
586    SChar,    // This is explicitly qualified signed char.
587    WChar,    // This is 'wchar_t' for C++.
588    Short,
589    Int,
590    Long,
591    LongLong,
592    Int128,   // __int128_t
593
594    Float, Double, LongDouble,
595
596    NullPtr,  // This is the type of C++0x 'nullptr'.
597
598    Overload,  // This represents the type of an overloaded function declaration.
599    Dependent, // This represents the type of a type-dependent expression.
600
601    UndeducedAuto, // In C++0x, this represents the type of an auto variable
602                   // that has not been deduced yet.
603    ObjCId,    // This represents the ObjC 'id' type.
604    ObjCClass  // This represents the ObjC 'Class' type.
605  };
606private:
607  Kind TypeKind;
608public:
609  BuiltinType(Kind K)
610    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
611      TypeKind(K) {}
612
613  Kind getKind() const { return TypeKind; }
614  const char *getName(const LangOptions &LO) const;
615
616  virtual void getAsStringInternal(std::string &InnerString,
617                                   const PrintingPolicy &Policy) const;
618
619  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
620  static bool classof(const BuiltinType *) { return true; }
621};
622
623/// FixedWidthIntType - Used for arbitrary width types that we either don't
624/// want to or can't map to named integer types.  These always have a lower
625/// integer rank than builtin types of the same width.
626class FixedWidthIntType : public Type {
627private:
628  unsigned Width;
629  bool Signed;
630public:
631  FixedWidthIntType(unsigned W, bool S) : Type(FixedWidthInt, QualType(), false),
632                                          Width(W), Signed(S) {}
633
634  unsigned getWidth() const { return Width; }
635  bool isSigned() const { return Signed; }
636  const char *getName() const;
637
638  virtual void getAsStringInternal(std::string &InnerString,
639                                   const PrintingPolicy &Policy) const;
640
641  static bool classof(const Type *T) { return T->getTypeClass() == FixedWidthInt; }
642  static bool classof(const FixedWidthIntType *) { return true; }
643};
644
645/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
646/// types (_Complex float etc) as well as the GCC integer complex extensions.
647///
648class ComplexType : public Type, public llvm::FoldingSetNode {
649  QualType ElementType;
650  ComplexType(QualType Element, QualType CanonicalPtr) :
651    Type(Complex, CanonicalPtr, Element->isDependentType()),
652    ElementType(Element) {
653  }
654  friend class ASTContext;  // ASTContext creates these.
655public:
656  QualType getElementType() const { return ElementType; }
657
658  virtual void getAsStringInternal(std::string &InnerString,
659                                   const PrintingPolicy &Policy) const;
660
661  void Profile(llvm::FoldingSetNodeID &ID) {
662    Profile(ID, getElementType());
663  }
664  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
665    ID.AddPointer(Element.getAsOpaquePtr());
666  }
667
668  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
669  static bool classof(const ComplexType *) { return true; }
670};
671
672/// PointerType - C99 6.7.5.1 - Pointer Declarators.
673///
674class PointerType : public Type, public llvm::FoldingSetNode {
675  QualType PointeeType;
676
677  PointerType(QualType Pointee, QualType CanonicalPtr) :
678    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
679  }
680  friend class ASTContext;  // ASTContext creates these.
681public:
682
683  virtual void getAsStringInternal(std::string &InnerString,
684                                   const PrintingPolicy &Policy) const;
685
686  QualType getPointeeType() const { return PointeeType; }
687
688  void Profile(llvm::FoldingSetNodeID &ID) {
689    Profile(ID, getPointeeType());
690  }
691  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
692    ID.AddPointer(Pointee.getAsOpaquePtr());
693  }
694
695  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
696  static bool classof(const PointerType *) { return true; }
697};
698
699/// BlockPointerType - pointer to a block type.
700/// This type is to represent types syntactically represented as
701/// "void (^)(int)", etc. Pointee is required to always be a function type.
702///
703class BlockPointerType : public Type, public llvm::FoldingSetNode {
704  QualType PointeeType;  // Block is some kind of pointer type
705  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
706    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
707    PointeeType(Pointee) {
708  }
709  friend class ASTContext;  // ASTContext creates these.
710public:
711
712  // Get the pointee type. Pointee is required to always be a function type.
713  QualType getPointeeType() const { return PointeeType; }
714
715  virtual void getAsStringInternal(std::string &InnerString,
716                                   const PrintingPolicy &Policy) const;
717
718  void Profile(llvm::FoldingSetNodeID &ID) {
719      Profile(ID, getPointeeType());
720  }
721  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
722      ID.AddPointer(Pointee.getAsOpaquePtr());
723  }
724
725  static bool classof(const Type *T) {
726    return T->getTypeClass() == BlockPointer;
727  }
728  static bool classof(const BlockPointerType *) { return true; }
729};
730
731/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
732///
733class ReferenceType : public Type, public llvm::FoldingSetNode {
734  QualType PointeeType;
735
736protected:
737  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef) :
738    Type(tc, CanonicalRef, Referencee->isDependentType()),
739    PointeeType(Referencee) {
740  }
741public:
742  QualType getPointeeType() const { return PointeeType; }
743
744  void Profile(llvm::FoldingSetNodeID &ID) {
745    Profile(ID, getPointeeType());
746  }
747  static void Profile(llvm::FoldingSetNodeID &ID, QualType Referencee) {
748    ID.AddPointer(Referencee.getAsOpaquePtr());
749  }
750
751  static bool classof(const Type *T) {
752    return T->getTypeClass() == LValueReference ||
753           T->getTypeClass() == RValueReference;
754  }
755  static bool classof(const ReferenceType *) { return true; }
756};
757
758/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
759///
760class LValueReferenceType : public ReferenceType {
761  LValueReferenceType(QualType Referencee, QualType CanonicalRef) :
762    ReferenceType(LValueReference, Referencee, CanonicalRef) {
763  }
764  friend class ASTContext; // ASTContext creates these
765public:
766  virtual void getAsStringInternal(std::string &InnerString,
767                                   const PrintingPolicy &Policy) const;
768
769  static bool classof(const Type *T) {
770    return T->getTypeClass() == LValueReference;
771  }
772  static bool classof(const LValueReferenceType *) { return true; }
773};
774
775/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
776///
777class RValueReferenceType : public ReferenceType {
778  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
779    ReferenceType(RValueReference, Referencee, CanonicalRef) {
780  }
781  friend class ASTContext; // ASTContext creates these
782public:
783  virtual void getAsStringInternal(std::string &InnerString,
784                                   const PrintingPolicy &Policy) const;
785
786  static bool classof(const Type *T) {
787    return T->getTypeClass() == RValueReference;
788  }
789  static bool classof(const RValueReferenceType *) { return true; }
790};
791
792/// MemberPointerType - C++ 8.3.3 - Pointers to members
793///
794class MemberPointerType : public Type, public llvm::FoldingSetNode {
795  QualType PointeeType;
796  /// The class of which the pointee is a member. Must ultimately be a
797  /// RecordType, but could be a typedef or a template parameter too.
798  const Type *Class;
799
800  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
801    Type(MemberPointer, CanonicalPtr,
802         Cls->isDependentType() || Pointee->isDependentType()),
803    PointeeType(Pointee), Class(Cls) {
804  }
805  friend class ASTContext; // ASTContext creates these.
806public:
807
808  QualType getPointeeType() const { return PointeeType; }
809
810  const Type *getClass() const { return Class; }
811
812  virtual void getAsStringInternal(std::string &InnerString,
813                                   const PrintingPolicy &Policy) const;
814
815  void Profile(llvm::FoldingSetNodeID &ID) {
816    Profile(ID, getPointeeType(), getClass());
817  }
818  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
819                      const Type *Class) {
820    ID.AddPointer(Pointee.getAsOpaquePtr());
821    ID.AddPointer(Class);
822  }
823
824  static bool classof(const Type *T) {
825    return T->getTypeClass() == MemberPointer;
826  }
827  static bool classof(const MemberPointerType *) { return true; }
828};
829
830/// ArrayType - C99 6.7.5.2 - Array Declarators.
831///
832class ArrayType : public Type, public llvm::FoldingSetNode {
833public:
834  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
835  /// an array with a static size (e.g. int X[static 4]), or an array
836  /// with a star size (e.g. int X[*]).
837  /// 'static' is only allowed on function parameters.
838  enum ArraySizeModifier {
839    Normal, Static, Star
840  };
841private:
842  /// ElementType - The element type of the array.
843  QualType ElementType;
844
845  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
846  /// NOTE: These fields are packed into the bitfields space in the Type class.
847  unsigned SizeModifier : 2;
848
849  /// IndexTypeQuals - Capture qualifiers in declarations like:
850  /// 'int X[static restrict 4]'. For function parameters only.
851  unsigned IndexTypeQuals : 3;
852
853protected:
854  // C++ [temp.dep.type]p1:
855  //   A type is dependent if it is...
856  //     - an array type constructed from any dependent type or whose
857  //       size is specified by a constant expression that is
858  //       value-dependent,
859  ArrayType(TypeClass tc, QualType et, QualType can,
860            ArraySizeModifier sm, unsigned tq)
861    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
862      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
863
864  friend class ASTContext;  // ASTContext creates these.
865public:
866  QualType getElementType() const { return ElementType; }
867  ArraySizeModifier getSizeModifier() const {
868    return ArraySizeModifier(SizeModifier);
869  }
870  unsigned getIndexTypeQualifier() const { return IndexTypeQuals; }
871
872  static bool classof(const Type *T) {
873    return T->getTypeClass() == ConstantArray ||
874           T->getTypeClass() == ConstantArrayWithExpr ||
875           T->getTypeClass() == ConstantArrayWithoutExpr ||
876           T->getTypeClass() == VariableArray ||
877           T->getTypeClass() == IncompleteArray ||
878           T->getTypeClass() == DependentSizedArray;
879  }
880  static bool classof(const ArrayType *) { return true; }
881};
882
883/// ConstantArrayType - This class represents the canonical version of
884/// C arrays with a specified constant size.  For example, the canonical
885/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
886/// type is 'int' and the size is 404.
887class ConstantArrayType : public ArrayType {
888  llvm::APInt Size; // Allows us to unique the type.
889
890  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
891                    ArraySizeModifier sm, unsigned tq)
892    : ArrayType(ConstantArray, et, can, sm, tq),
893      Size(size) {}
894protected:
895  ConstantArrayType(TypeClass tc, QualType et, QualType can,
896                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
897    : ArrayType(tc, et, can, sm, tq), Size(size) {}
898  friend class ASTContext;  // ASTContext creates these.
899public:
900  const llvm::APInt &getSize() const { return Size; }
901  virtual void getAsStringInternal(std::string &InnerString,
902                                   const PrintingPolicy &Policy) const;
903
904  void Profile(llvm::FoldingSetNodeID &ID) {
905    Profile(ID, getElementType(), getSize(),
906            getSizeModifier(), getIndexTypeQualifier());
907  }
908  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
909                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
910                      unsigned TypeQuals) {
911    ID.AddPointer(ET.getAsOpaquePtr());
912    ID.AddInteger(ArraySize.getZExtValue());
913    ID.AddInteger(SizeMod);
914    ID.AddInteger(TypeQuals);
915  }
916  static bool classof(const Type *T) {
917    return T->getTypeClass() == ConstantArray ||
918           T->getTypeClass() == ConstantArrayWithExpr ||
919           T->getTypeClass() == ConstantArrayWithoutExpr;
920  }
921  static bool classof(const ConstantArrayType *) { return true; }
922};
923
924/// ConstantArrayWithExprType - This class represents C arrays with a
925/// constant size specified by means of an integer constant expression.
926/// For example 'int A[sizeof(int)]' has ConstantArrayWithExprType where
927/// the element type is 'int' and the size expression is 'sizeof(int)'.
928/// These types are non-canonical.
929class ConstantArrayWithExprType : public ConstantArrayType {
930  /// SizeExpr - The ICE occurring in the concrete syntax.
931  Expr *SizeExpr;
932  /// Brackets - The left and right array brackets.
933  SourceRange Brackets;
934
935  ConstantArrayWithExprType(QualType et, QualType can,
936                            const llvm::APInt &size, Expr *e,
937                            ArraySizeModifier sm, unsigned tq,
938                            SourceRange brackets)
939    : ConstantArrayType(ConstantArrayWithExpr, et, can, size, sm, tq),
940      SizeExpr(e), Brackets(brackets) {}
941  friend class ASTContext;  // ASTContext creates these.
942  virtual void Destroy(ASTContext& C);
943
944public:
945  Expr *getSizeExpr() const { return SizeExpr; }
946  SourceRange getBracketsRange() const { return Brackets; }
947  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
948  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
949
950  virtual void getAsStringInternal(std::string &InnerString,
951                                   const PrintingPolicy &Policy) const;
952
953  static bool classof(const Type *T) {
954    return T->getTypeClass() == ConstantArrayWithExpr;
955  }
956  static bool classof(const ConstantArrayWithExprType *) { return true; }
957
958  void Profile(llvm::FoldingSetNodeID &ID) {
959    assert(0 && "Cannot unique ConstantArrayWithExprTypes.");
960  }
961};
962
963/// ConstantArrayWithoutExprType - This class represents C arrays with a
964/// constant size that was not specified by an integer constant expression,
965/// but inferred by static semantics.
966/// For example 'int A[] = { 0, 1, 2 }' has ConstantArrayWithoutExprType.
967/// These types are non-canonical: the corresponding canonical type,
968/// having the size specified in an APInt object, is a ConstantArrayType.
969class ConstantArrayWithoutExprType : public ConstantArrayType {
970
971  ConstantArrayWithoutExprType(QualType et, QualType can,
972                               const llvm::APInt &size,
973                               ArraySizeModifier sm, unsigned tq)
974    : ConstantArrayType(ConstantArrayWithoutExpr, et, can, size, sm, tq) {}
975  friend class ASTContext;  // ASTContext creates these.
976
977public:
978  virtual void getAsStringInternal(std::string &InnerString,
979                                   const PrintingPolicy &Policy) const;
980
981  static bool classof(const Type *T) {
982    return T->getTypeClass() == ConstantArrayWithoutExpr;
983  }
984  static bool classof(const ConstantArrayWithoutExprType *) { return true; }
985
986  void Profile(llvm::FoldingSetNodeID &ID) {
987    assert(0 && "Cannot unique ConstantArrayWithoutExprTypes.");
988  }
989};
990
991/// IncompleteArrayType - This class represents C arrays with an unspecified
992/// size.  For example 'int A[]' has an IncompleteArrayType where the element
993/// type is 'int' and the size is unspecified.
994class IncompleteArrayType : public ArrayType {
995
996  IncompleteArrayType(QualType et, QualType can,
997                      ArraySizeModifier sm, unsigned tq)
998    : ArrayType(IncompleteArray, et, can, sm, tq) {}
999  friend class ASTContext;  // ASTContext creates these.
1000public:
1001  virtual void getAsStringInternal(std::string &InnerString,
1002                                   const PrintingPolicy &Policy) const;
1003
1004  static bool classof(const Type *T) {
1005    return T->getTypeClass() == IncompleteArray;
1006  }
1007  static bool classof(const IncompleteArrayType *) { return true; }
1008
1009  friend class StmtIteratorBase;
1010
1011  void Profile(llvm::FoldingSetNodeID &ID) {
1012    Profile(ID, getElementType(), getSizeModifier(), getIndexTypeQualifier());
1013  }
1014
1015  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1016                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1017    ID.AddPointer(ET.getAsOpaquePtr());
1018    ID.AddInteger(SizeMod);
1019    ID.AddInteger(TypeQuals);
1020  }
1021};
1022
1023/// VariableArrayType - This class represents C arrays with a specified size
1024/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1025/// Since the size expression is an arbitrary expression, we store it as such.
1026///
1027/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1028/// should not be: two lexically equivalent variable array types could mean
1029/// different things, for example, these variables do not have the same type
1030/// dynamically:
1031///
1032/// void foo(int x) {
1033///   int Y[x];
1034///   ++x;
1035///   int Z[x];
1036/// }
1037///
1038class VariableArrayType : public ArrayType {
1039  /// SizeExpr - An assignment expression. VLA's are only permitted within
1040  /// a function block.
1041  Stmt *SizeExpr;
1042  /// Brackets - The left and right array brackets.
1043  SourceRange Brackets;
1044
1045  VariableArrayType(QualType et, QualType can, Expr *e,
1046                    ArraySizeModifier sm, unsigned tq,
1047                    SourceRange brackets)
1048    : ArrayType(VariableArray, et, can, sm, tq),
1049      SizeExpr((Stmt*) e), Brackets(brackets) {}
1050  friend class ASTContext;  // ASTContext creates these.
1051  virtual void Destroy(ASTContext& C);
1052
1053public:
1054  Expr *getSizeExpr() const {
1055    // We use C-style casts instead of cast<> here because we do not wish
1056    // to have a dependency of Type.h on Stmt.h/Expr.h.
1057    return (Expr*) SizeExpr;
1058  }
1059  SourceRange getBracketsRange() const { return Brackets; }
1060  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1061  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1062
1063  virtual void getAsStringInternal(std::string &InnerString,
1064                                   const PrintingPolicy &Policy) const;
1065
1066  static bool classof(const Type *T) {
1067    return T->getTypeClass() == VariableArray;
1068  }
1069  static bool classof(const VariableArrayType *) { return true; }
1070
1071  friend class StmtIteratorBase;
1072
1073  void Profile(llvm::FoldingSetNodeID &ID) {
1074    assert(0 && "Cannnot unique VariableArrayTypes.");
1075  }
1076};
1077
1078/// DependentSizedArrayType - This type represents an array type in
1079/// C++ whose size is a value-dependent expression. For example:
1080/// @code
1081/// template<typename T, int Size>
1082/// class array {
1083///   T data[Size];
1084/// };
1085/// @endcode
1086/// For these types, we won't actually know what the array bound is
1087/// until template instantiation occurs, at which point this will
1088/// become either a ConstantArrayType or a VariableArrayType.
1089class DependentSizedArrayType : public ArrayType {
1090  /// SizeExpr - An assignment expression that will instantiate to the
1091  /// size of the array.
1092  Stmt *SizeExpr;
1093  /// Brackets - The left and right array brackets.
1094  SourceRange Brackets;
1095
1096  DependentSizedArrayType(QualType et, QualType can, Expr *e,
1097			  ArraySizeModifier sm, unsigned tq,
1098                          SourceRange brackets)
1099    : ArrayType(DependentSizedArray, et, can, sm, tq),
1100      SizeExpr((Stmt*) e), Brackets(brackets) {}
1101  friend class ASTContext;  // ASTContext creates these.
1102  virtual void Destroy(ASTContext& C);
1103
1104public:
1105  Expr *getSizeExpr() const {
1106    // We use C-style casts instead of cast<> here because we do not wish
1107    // to have a dependency of Type.h on Stmt.h/Expr.h.
1108    return (Expr*) SizeExpr;
1109  }
1110  SourceRange getBracketsRange() const { return Brackets; }
1111  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1112  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1113
1114  virtual void getAsStringInternal(std::string &InnerString,
1115                                   const PrintingPolicy &Policy) const;
1116
1117  static bool classof(const Type *T) {
1118    return T->getTypeClass() == DependentSizedArray;
1119  }
1120  static bool classof(const DependentSizedArrayType *) { return true; }
1121
1122  friend class StmtIteratorBase;
1123
1124  void Profile(llvm::FoldingSetNodeID &ID) {
1125    assert(0 && "Cannnot unique DependentSizedArrayTypes.");
1126  }
1127};
1128
1129/// DependentSizedExtVectorType - This type represent an extended vector type
1130/// where either the type or size is dependent. For example:
1131/// @code
1132/// template<typename T, int Size>
1133/// class vector {
1134///   typedef T __attribute__((ext_vector_type(Size))) type;
1135/// }
1136/// @endcode
1137class DependentSizedExtVectorType : public Type {
1138  Expr *SizeExpr;
1139  /// ElementType - The element type of the array.
1140  QualType ElementType;
1141  SourceLocation loc;
1142
1143  DependentSizedExtVectorType(QualType ElementType, QualType can,
1144                              Expr *SizeExpr, SourceLocation loc)
1145    : Type (DependentSizedExtVector, can, true),
1146    SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {}
1147  friend class ASTContext;
1148  virtual void Destroy(ASTContext& C);
1149
1150public:
1151  const Expr *getSizeExpr() const { return SizeExpr; }
1152  QualType getElementType() const { return ElementType; }
1153  SourceLocation getAttributeLoc() const { return loc; }
1154
1155  virtual void getAsStringInternal(std::string &InnerString,
1156                                   const PrintingPolicy &Policy) const;
1157
1158  static bool classof(const Type *T) {
1159    return T->getTypeClass() == DependentSizedExtVector;
1160  }
1161  static bool classof(const DependentSizedExtVectorType *) { return true; }
1162};
1163
1164
1165/// VectorType - GCC generic vector type. This type is created using
1166/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1167/// bytes. Since the constructor takes the number of vector elements, the
1168/// client is responsible for converting the size into the number of elements.
1169class VectorType : public Type, public llvm::FoldingSetNode {
1170protected:
1171  /// ElementType - The element type of the vector.
1172  QualType ElementType;
1173
1174  /// NumElements - The number of elements in the vector.
1175  unsigned NumElements;
1176
1177  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1178    Type(Vector, canonType, vecType->isDependentType()),
1179    ElementType(vecType), NumElements(nElements) {}
1180  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1181             QualType canonType)
1182    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1183      NumElements(nElements) {}
1184  friend class ASTContext;  // ASTContext creates these.
1185public:
1186
1187  QualType getElementType() const { return ElementType; }
1188  unsigned getNumElements() const { return NumElements; }
1189
1190  virtual void getAsStringInternal(std::string &InnerString,
1191                                   const PrintingPolicy &Policy) const;
1192
1193  void Profile(llvm::FoldingSetNodeID &ID) {
1194    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1195  }
1196  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1197                      unsigned NumElements, TypeClass TypeClass) {
1198    ID.AddPointer(ElementType.getAsOpaquePtr());
1199    ID.AddInteger(NumElements);
1200    ID.AddInteger(TypeClass);
1201  }
1202  static bool classof(const Type *T) {
1203    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1204  }
1205  static bool classof(const VectorType *) { return true; }
1206};
1207
1208/// ExtVectorType - Extended vector type. This type is created using
1209/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1210/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1211/// class enables syntactic extensions, like Vector Components for accessing
1212/// points, colors, and textures (modeled after OpenGL Shading Language).
1213class ExtVectorType : public VectorType {
1214  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1215    VectorType(ExtVector, vecType, nElements, canonType) {}
1216  friend class ASTContext;  // ASTContext creates these.
1217public:
1218  static int getPointAccessorIdx(char c) {
1219    switch (c) {
1220    default: return -1;
1221    case 'x': return 0;
1222    case 'y': return 1;
1223    case 'z': return 2;
1224    case 'w': return 3;
1225    }
1226  }
1227  static int getNumericAccessorIdx(char c) {
1228    switch (c) {
1229      default: return -1;
1230      case '0': return 0;
1231      case '1': return 1;
1232      case '2': return 2;
1233      case '3': return 3;
1234      case '4': return 4;
1235      case '5': return 5;
1236      case '6': return 6;
1237      case '7': return 7;
1238      case '8': return 8;
1239      case '9': return 9;
1240      case 'A':
1241      case 'a': return 10;
1242      case 'B':
1243      case 'b': return 11;
1244      case 'C':
1245      case 'c': return 12;
1246      case 'D':
1247      case 'd': return 13;
1248      case 'E':
1249      case 'e': return 14;
1250      case 'F':
1251      case 'f': return 15;
1252    }
1253  }
1254
1255  static int getAccessorIdx(char c) {
1256    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1257    return getNumericAccessorIdx(c);
1258  }
1259
1260  bool isAccessorWithinNumElements(char c) const {
1261    if (int idx = getAccessorIdx(c)+1)
1262      return unsigned(idx-1) < NumElements;
1263    return false;
1264  }
1265  virtual void getAsStringInternal(std::string &InnerString,
1266                                   const PrintingPolicy &Policy) const;
1267
1268  static bool classof(const Type *T) {
1269    return T->getTypeClass() == ExtVector;
1270  }
1271  static bool classof(const ExtVectorType *) { return true; }
1272};
1273
1274/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1275/// class of FunctionNoProtoType and FunctionProtoType.
1276///
1277class FunctionType : public Type {
1278  /// SubClassData - This field is owned by the subclass, put here to pack
1279  /// tightly with the ivars in Type.
1280  bool SubClassData : 1;
1281
1282  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1283  /// other bitfields.
1284  /// The qualifiers are part of FunctionProtoType because...
1285  ///
1286  /// C++ 8.3.5p4: The return type, the parameter type list and the
1287  /// cv-qualifier-seq, [...], are part of the function type.
1288  ///
1289  unsigned TypeQuals : 3;
1290
1291  // The type returned by the function.
1292  QualType ResultType;
1293protected:
1294  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1295               unsigned typeQuals, QualType Canonical, bool Dependent)
1296    : Type(tc, Canonical, Dependent),
1297      SubClassData(SubclassInfo), TypeQuals(typeQuals), ResultType(res) {}
1298  bool getSubClassData() const { return SubClassData; }
1299  unsigned getTypeQuals() const { return TypeQuals; }
1300public:
1301
1302  QualType getResultType() const { return ResultType; }
1303
1304
1305  static bool classof(const Type *T) {
1306    return T->getTypeClass() == FunctionNoProto ||
1307           T->getTypeClass() == FunctionProto;
1308  }
1309  static bool classof(const FunctionType *) { return true; }
1310};
1311
1312/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1313/// no information available about its arguments.
1314class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1315  FunctionNoProtoType(QualType Result, QualType Canonical)
1316    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1317                   /*Dependent=*/false) {}
1318  friend class ASTContext;  // ASTContext creates these.
1319public:
1320  // No additional state past what FunctionType provides.
1321
1322  virtual void getAsStringInternal(std::string &InnerString,
1323                                   const PrintingPolicy &Policy) const;
1324
1325  void Profile(llvm::FoldingSetNodeID &ID) {
1326    Profile(ID, getResultType());
1327  }
1328  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType) {
1329    ID.AddPointer(ResultType.getAsOpaquePtr());
1330  }
1331
1332  static bool classof(const Type *T) {
1333    return T->getTypeClass() == FunctionNoProto;
1334  }
1335  static bool classof(const FunctionNoProtoType *) { return true; }
1336};
1337
1338/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1339/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1340/// arguments, not as having a single void argument. Such a type can have an
1341/// exception specification, but this specification is not part of the canonical
1342/// type.
1343class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1344  /// hasAnyDependentType - Determine whether there are any dependent
1345  /// types within the arguments passed in.
1346  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1347    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1348      if (ArgArray[Idx]->isDependentType())
1349    return true;
1350
1351    return false;
1352  }
1353
1354  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1355                    bool isVariadic, unsigned typeQuals, bool hasExs,
1356                    bool hasAnyExs, const QualType *ExArray,
1357                    unsigned numExs, QualType Canonical)
1358    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1359                   (Result->isDependentType() ||
1360                    hasAnyDependentType(ArgArray, numArgs))),
1361      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1362      AnyExceptionSpec(hasAnyExs) {
1363    // Fill in the trailing argument array.
1364    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1365    for (unsigned i = 0; i != numArgs; ++i)
1366      ArgInfo[i] = ArgArray[i];
1367    // Fill in the exception array.
1368    QualType *Ex = ArgInfo + numArgs;
1369    for (unsigned i = 0; i != numExs; ++i)
1370      Ex[i] = ExArray[i];
1371  }
1372
1373  /// NumArgs - The number of arguments this function has, not counting '...'.
1374  unsigned NumArgs : 20;
1375
1376  /// NumExceptions - The number of types in the exception spec, if any.
1377  unsigned NumExceptions : 10;
1378
1379  /// HasExceptionSpec - Whether this function has an exception spec at all.
1380  bool HasExceptionSpec : 1;
1381
1382  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1383  bool AnyExceptionSpec : 1;
1384
1385  /// ArgInfo - There is an variable size array after the class in memory that
1386  /// holds the argument types.
1387
1388  /// Exceptions - There is another variable size array after ArgInfo that
1389  /// holds the exception types.
1390
1391  friend class ASTContext;  // ASTContext creates these.
1392
1393public:
1394  unsigned getNumArgs() const { return NumArgs; }
1395  QualType getArgType(unsigned i) const {
1396    assert(i < NumArgs && "Invalid argument number!");
1397    return arg_type_begin()[i];
1398  }
1399
1400  bool hasExceptionSpec() const { return HasExceptionSpec; }
1401  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1402  unsigned getNumExceptions() const { return NumExceptions; }
1403  QualType getExceptionType(unsigned i) const {
1404    assert(i < NumExceptions && "Invalid exception number!");
1405    return exception_begin()[i];
1406  }
1407  bool hasEmptyExceptionSpec() const {
1408    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1409      getNumExceptions() == 0;
1410  }
1411
1412  bool isVariadic() const { return getSubClassData(); }
1413  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1414
1415  typedef const QualType *arg_type_iterator;
1416  arg_type_iterator arg_type_begin() const {
1417    return reinterpret_cast<const QualType *>(this+1);
1418  }
1419  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1420
1421  typedef const QualType *exception_iterator;
1422  exception_iterator exception_begin() const {
1423    // exceptions begin where arguments end
1424    return arg_type_end();
1425  }
1426  exception_iterator exception_end() const {
1427    return exception_begin() + NumExceptions;
1428  }
1429
1430  virtual void getAsStringInternal(std::string &InnerString,
1431                                   const PrintingPolicy &Policy) const;
1432
1433  static bool classof(const Type *T) {
1434    return T->getTypeClass() == FunctionProto;
1435  }
1436  static bool classof(const FunctionProtoType *) { return true; }
1437
1438  void Profile(llvm::FoldingSetNodeID &ID);
1439  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1440                      arg_type_iterator ArgTys, unsigned NumArgs,
1441                      bool isVariadic, unsigned TypeQuals,
1442                      bool hasExceptionSpec, bool anyExceptionSpec,
1443                      unsigned NumExceptions, exception_iterator Exs);
1444};
1445
1446
1447class TypedefType : public Type {
1448  TypedefDecl *Decl;
1449protected:
1450  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1451    : Type(tc, can, can->isDependentType()), Decl(D) {
1452    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1453  }
1454  friend class ASTContext;  // ASTContext creates these.
1455public:
1456
1457  TypedefDecl *getDecl() const { return Decl; }
1458
1459  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1460  /// potentially looking through *all* consecutive typedefs.  This returns the
1461  /// sum of the type qualifiers, so if you have:
1462  ///   typedef const int A;
1463  ///   typedef volatile A B;
1464  /// looking through the typedefs for B will give you "const volatile A".
1465  QualType LookThroughTypedefs() const;
1466
1467  virtual void getAsStringInternal(std::string &InnerString,
1468                                   const PrintingPolicy &Policy) const;
1469
1470  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1471  static bool classof(const TypedefType *) { return true; }
1472};
1473
1474/// TypeOfExprType (GCC extension).
1475class TypeOfExprType : public Type {
1476  Expr *TOExpr;
1477  TypeOfExprType(Expr *E, QualType can = QualType());
1478  friend class ASTContext;  // ASTContext creates these.
1479public:
1480  Expr *getUnderlyingExpr() const { return TOExpr; }
1481
1482  virtual void getAsStringInternal(std::string &InnerString,
1483                                   const PrintingPolicy &Policy) const;
1484
1485  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1486  static bool classof(const TypeOfExprType *) { return true; }
1487};
1488
1489/// TypeOfType (GCC extension).
1490class TypeOfType : public Type {
1491  QualType TOType;
1492  TypeOfType(QualType T, QualType can)
1493    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
1494    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1495  }
1496  friend class ASTContext;  // ASTContext creates these.
1497public:
1498  QualType getUnderlyingType() const { return TOType; }
1499
1500  virtual void getAsStringInternal(std::string &InnerString,
1501                                   const PrintingPolicy &Policy) const;
1502
1503  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
1504  static bool classof(const TypeOfType *) { return true; }
1505};
1506
1507/// DecltypeType (C++0x)
1508class DecltypeType : public Type {
1509  Expr *E;
1510
1511  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
1512  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
1513  // from it.
1514  QualType UnderlyingType;
1515
1516  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
1517  friend class ASTContext;  // ASTContext creates these.
1518public:
1519  Expr *getUnderlyingExpr() const { return E; }
1520  QualType getUnderlyingType() const { return UnderlyingType; }
1521
1522  virtual void getAsStringInternal(std::string &InnerString,
1523                                   const PrintingPolicy &Policy) const;
1524
1525  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
1526  static bool classof(const DecltypeType *) { return true; }
1527};
1528
1529class TagType : public Type {
1530  /// Stores the TagDecl associated with this type. The decl will
1531  /// point to the TagDecl that actually defines the entity (or is a
1532  /// definition in progress), if there is such a definition. The
1533  /// single-bit value will be non-zero when this tag is in the
1534  /// process of being defined.
1535  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
1536  friend class ASTContext;
1537  friend class TagDecl;
1538
1539protected:
1540  TagType(TypeClass TC, TagDecl *D, QualType can);
1541
1542public:
1543  TagDecl *getDecl() const { return decl.getPointer(); }
1544
1545  /// @brief Determines whether this type is in the process of being
1546  /// defined.
1547  bool isBeingDefined() const { return decl.getInt(); }
1548  void setBeingDefined(bool Def) { decl.setInt(Def? 1 : 0); }
1549
1550  virtual void getAsStringInternal(std::string &InnerString,
1551                                   const PrintingPolicy &Policy) const;
1552
1553  static bool classof(const Type *T) {
1554    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
1555  }
1556  static bool classof(const TagType *) { return true; }
1557  static bool classof(const RecordType *) { return true; }
1558  static bool classof(const EnumType *) { return true; }
1559};
1560
1561/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
1562/// to detect TagType objects of structs/unions/classes.
1563class RecordType : public TagType {
1564protected:
1565  explicit RecordType(RecordDecl *D)
1566    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
1567  explicit RecordType(TypeClass TC, RecordDecl *D)
1568    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
1569  friend class ASTContext;   // ASTContext creates these.
1570public:
1571
1572  RecordDecl *getDecl() const {
1573    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
1574  }
1575
1576  // FIXME: This predicate is a helper to QualType/Type. It needs to
1577  // recursively check all fields for const-ness. If any field is declared
1578  // const, it needs to return false.
1579  bool hasConstFields() const { return false; }
1580
1581  // FIXME: RecordType needs to check when it is created that all fields are in
1582  // the same address space, and return that.
1583  unsigned getAddressSpace() const { return 0; }
1584
1585  static bool classof(const TagType *T);
1586  static bool classof(const Type *T) {
1587    return isa<TagType>(T) && classof(cast<TagType>(T));
1588  }
1589  static bool classof(const RecordType *) { return true; }
1590};
1591
1592/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
1593/// to detect TagType objects of enums.
1594class EnumType : public TagType {
1595  explicit EnumType(EnumDecl *D)
1596    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
1597  friend class ASTContext;   // ASTContext creates these.
1598public:
1599
1600  EnumDecl *getDecl() const {
1601    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
1602  }
1603
1604  static bool classof(const TagType *T);
1605  static bool classof(const Type *T) {
1606    return isa<TagType>(T) && classof(cast<TagType>(T));
1607  }
1608  static bool classof(const EnumType *) { return true; }
1609};
1610
1611class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
1612  unsigned Depth : 15;
1613  unsigned Index : 16;
1614  unsigned ParameterPack : 1;
1615  IdentifierInfo *Name;
1616
1617  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
1618                       QualType Canon)
1619    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
1620      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
1621
1622  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
1623    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
1624      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
1625
1626  friend class ASTContext;  // ASTContext creates these
1627
1628public:
1629  unsigned getDepth() const { return Depth; }
1630  unsigned getIndex() const { return Index; }
1631  bool isParameterPack() const { return ParameterPack; }
1632  IdentifierInfo *getName() const { return Name; }
1633
1634  virtual void getAsStringInternal(std::string &InnerString,
1635                                   const PrintingPolicy &Policy) const;
1636
1637  void Profile(llvm::FoldingSetNodeID &ID) {
1638    Profile(ID, Depth, Index, ParameterPack, Name);
1639  }
1640
1641  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
1642                      unsigned Index, bool ParameterPack,
1643                      IdentifierInfo *Name) {
1644    ID.AddInteger(Depth);
1645    ID.AddInteger(Index);
1646    ID.AddBoolean(ParameterPack);
1647    ID.AddPointer(Name);
1648  }
1649
1650  static bool classof(const Type *T) {
1651    return T->getTypeClass() == TemplateTypeParm;
1652  }
1653  static bool classof(const TemplateTypeParmType *T) { return true; }
1654};
1655
1656/// \brief Represents the type of a template specialization as written
1657/// in the source code.
1658///
1659/// Template specialization types represent the syntactic form of a
1660/// template-id that refers to a type, e.g., @c vector<int>. Some
1661/// template specialization types are syntactic sugar, whose canonical
1662/// type will point to some other type node that represents the
1663/// instantiation or class template specialization. For example, a
1664/// class template specialization type of @c vector<int> will refer to
1665/// a tag type for the instantiation
1666/// @c std::vector<int, std::allocator<int>>.
1667///
1668/// Other template specialization types, for which the template name
1669/// is dependent, may be canonical types. These types are always
1670/// dependent.
1671class TemplateSpecializationType
1672  : public Type, public llvm::FoldingSetNode {
1673
1674  /// \brief The name of the template being specialized.
1675  TemplateName Template;
1676
1677  /// \brief - The number of template arguments named in this class
1678  /// template specialization.
1679  unsigned NumArgs;
1680
1681  TemplateSpecializationType(TemplateName T,
1682                             const TemplateArgument *Args,
1683                             unsigned NumArgs, QualType Canon);
1684
1685  virtual void Destroy(ASTContext& C);
1686
1687  friend class ASTContext;  // ASTContext creates these
1688
1689public:
1690  /// \brief Determine whether any of the given template arguments are
1691  /// dependent.
1692  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
1693                                            unsigned NumArgs);
1694
1695  /// \brief Print a template argument list, including the '<' and '>'
1696  /// enclosing the template arguments.
1697  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
1698                                               unsigned NumArgs,
1699                                               const PrintingPolicy &Policy);
1700
1701  typedef const TemplateArgument * iterator;
1702
1703  iterator begin() const { return getArgs(); }
1704  iterator end() const;
1705
1706  /// \brief Retrieve the name of the template that we are specializing.
1707  TemplateName getTemplateName() const { return Template; }
1708
1709  /// \brief Retrieve the template arguments.
1710  const TemplateArgument *getArgs() const {
1711    return reinterpret_cast<const TemplateArgument *>(this + 1);
1712  }
1713
1714  /// \brief Retrieve the number of template arguments.
1715  unsigned getNumArgs() const { return NumArgs; }
1716
1717  /// \brief Retrieve a specific template argument as a type.
1718  /// \precondition @c isArgType(Arg)
1719  const TemplateArgument &getArg(unsigned Idx) const;
1720
1721  virtual void getAsStringInternal(std::string &InnerString,
1722                                   const PrintingPolicy &Policy) const;
1723
1724  void Profile(llvm::FoldingSetNodeID &ID) {
1725    Profile(ID, Template, getArgs(), NumArgs);
1726  }
1727
1728  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
1729                      const TemplateArgument *Args, unsigned NumArgs);
1730
1731  static bool classof(const Type *T) {
1732    return T->getTypeClass() == TemplateSpecialization;
1733  }
1734  static bool classof(const TemplateSpecializationType *T) { return true; }
1735};
1736
1737/// \brief Represents a type that was referred to via a qualified
1738/// name, e.g., N::M::type.
1739///
1740/// This type is used to keep track of a type name as written in the
1741/// source code, including any nested-name-specifiers. The type itself
1742/// is always "sugar", used to express what was written in the source
1743/// code but containing no additional semantic information.
1744class QualifiedNameType : public Type, public llvm::FoldingSetNode {
1745  /// \brief The nested name specifier containing the qualifier.
1746  NestedNameSpecifier *NNS;
1747
1748  /// \brief The type that this qualified name refers to.
1749  QualType NamedType;
1750
1751  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
1752                    QualType CanonType)
1753    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
1754      NNS(NNS), NamedType(NamedType) { }
1755
1756  friend class ASTContext;  // ASTContext creates these
1757
1758public:
1759  /// \brief Retrieve the qualification on this type.
1760  NestedNameSpecifier *getQualifier() const { return NNS; }
1761
1762  /// \brief Retrieve the type named by the qualified-id.
1763  QualType getNamedType() const { return NamedType; }
1764
1765  virtual void getAsStringInternal(std::string &InnerString,
1766                                   const PrintingPolicy &Policy) const;
1767
1768  void Profile(llvm::FoldingSetNodeID &ID) {
1769    Profile(ID, NNS, NamedType);
1770  }
1771
1772  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1773                      QualType NamedType) {
1774    ID.AddPointer(NNS);
1775    NamedType.Profile(ID);
1776  }
1777
1778  static bool classof(const Type *T) {
1779    return T->getTypeClass() == QualifiedName;
1780  }
1781  static bool classof(const QualifiedNameType *T) { return true; }
1782};
1783
1784/// \brief Represents a 'typename' specifier that names a type within
1785/// a dependent type, e.g., "typename T::type".
1786///
1787/// TypenameType has a very similar structure to QualifiedNameType,
1788/// which also involves a nested-name-specifier following by a type,
1789/// and (FIXME!) both can even be prefixed by the 'typename'
1790/// keyword. However, the two types serve very different roles:
1791/// QualifiedNameType is a non-semantic type that serves only as sugar
1792/// to show how a particular type was written in the source
1793/// code. TypenameType, on the other hand, only occurs when the
1794/// nested-name-specifier is dependent, such that we cannot resolve
1795/// the actual type until after instantiation.
1796class TypenameType : public Type, public llvm::FoldingSetNode {
1797  /// \brief The nested name specifier containing the qualifier.
1798  NestedNameSpecifier *NNS;
1799
1800  typedef llvm::PointerUnion<const IdentifierInfo *,
1801                             const TemplateSpecializationType *> NameType;
1802
1803  /// \brief The type that this typename specifier refers to.
1804  NameType Name;
1805
1806  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1807               QualType CanonType)
1808    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
1809    assert(NNS->isDependent() &&
1810           "TypenameType requires a dependent nested-name-specifier");
1811  }
1812
1813  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
1814               QualType CanonType)
1815    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
1816    assert(NNS->isDependent() &&
1817           "TypenameType requires a dependent nested-name-specifier");
1818  }
1819
1820  friend class ASTContext;  // ASTContext creates these
1821
1822public:
1823  /// \brief Retrieve the qualification on this type.
1824  NestedNameSpecifier *getQualifier() const { return NNS; }
1825
1826  /// \brief Retrieve the type named by the typename specifier as an
1827  /// identifier.
1828  ///
1829  /// This routine will return a non-NULL identifier pointer when the
1830  /// form of the original typename was terminated by an identifier,
1831  /// e.g., "typename T::type".
1832  const IdentifierInfo *getIdentifier() const {
1833    return Name.dyn_cast<const IdentifierInfo *>();
1834  }
1835
1836  /// \brief Retrieve the type named by the typename specifier as a
1837  /// type specialization.
1838  const TemplateSpecializationType *getTemplateId() const {
1839    return Name.dyn_cast<const TemplateSpecializationType *>();
1840  }
1841
1842  virtual void getAsStringInternal(std::string &InnerString,
1843                                   const PrintingPolicy &Policy) const;
1844
1845  void Profile(llvm::FoldingSetNodeID &ID) {
1846    Profile(ID, NNS, Name);
1847  }
1848
1849  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1850                      NameType Name) {
1851    ID.AddPointer(NNS);
1852    ID.AddPointer(Name.getOpaqueValue());
1853  }
1854
1855  static bool classof(const Type *T) {
1856    return T->getTypeClass() == Typename;
1857  }
1858  static bool classof(const TypenameType *T) { return true; }
1859};
1860
1861/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
1862/// object oriented design.  They basically correspond to C++ classes.  There
1863/// are two kinds of interface types, normal interfaces like "NSString" and
1864/// qualified interfaces, which are qualified with a protocol list like
1865/// "NSString<NSCopyable, NSAmazing>".
1866class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
1867  ObjCInterfaceDecl *Decl;
1868
1869  // List of protocols for this protocol conforming object type
1870  // List is sorted on protocol name. No protocol is enterred more than once.
1871  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;
1872
1873  ObjCInterfaceType(ObjCInterfaceDecl *D,
1874                    ObjCProtocolDecl **Protos, unsigned NumP) :
1875    Type(ObjCInterface, QualType(), /*Dependent=*/false),
1876    Decl(D), Protocols(Protos, Protos+NumP) { }
1877  friend class ASTContext;  // ASTContext creates these.
1878public:
1879  ObjCInterfaceDecl *getDecl() const { return Decl; }
1880
1881  /// getNumProtocols - Return the number of qualifying protocols in this
1882  /// interface type, or 0 if there are none.
1883  unsigned getNumProtocols() const { return Protocols.size(); }
1884
1885  /// qual_iterator and friends: this provides access to the (potentially empty)
1886  /// list of protocols qualifying this interface.
1887  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
1888  qual_iterator qual_begin() const { return Protocols.begin(); }
1889  qual_iterator qual_end() const   { return Protocols.end(); }
1890  bool qual_empty() const { return Protocols.size() == 0; }
1891
1892  virtual void getAsStringInternal(std::string &InnerString,
1893                                   const PrintingPolicy &Policy) const;
1894
1895  void Profile(llvm::FoldingSetNodeID &ID);
1896  static void Profile(llvm::FoldingSetNodeID &ID,
1897                      const ObjCInterfaceDecl *Decl,
1898                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
1899
1900  static bool classof(const Type *T) {
1901    return T->getTypeClass() == ObjCInterface;
1902  }
1903  static bool classof(const ObjCInterfaceType *) { return true; }
1904};
1905
1906/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
1907/// and 'Interface <p> *'.
1908///
1909/// Duplicate protocols are removed and protocol list is canonicalized to be in
1910/// alphabetical order.
1911class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
1912  QualType PointeeType; // A builtin or interface type.
1913
1914  // List of protocols for this protocol conforming object type
1915  // List is sorted on protocol name. No protocol is entered more than once.
1916  llvm::SmallVector<ObjCProtocolDecl*, 8> Protocols;
1917
1918  ObjCObjectPointerType(QualType T, ObjCProtocolDecl **Protos, unsigned NumP) :
1919    Type(ObjCObjectPointer, QualType(), /*Dependent=*/false),
1920    PointeeType(T), Protocols(Protos, Protos+NumP) { }
1921  friend class ASTContext;  // ASTContext creates these.
1922
1923public:
1924  // Get the pointee type. Pointee will either be:
1925  // - a built-in type (for 'id' and 'Class').
1926  // - an interface type (for user-defined types).
1927  // - a TypedefType whose canonical type is an interface (as in 'T' below).
1928  //   For example: typedef NSObject T; T *var;
1929  QualType getPointeeType() const { return PointeeType; }
1930
1931  const ObjCInterfaceType *getInterfaceType() const {
1932    return PointeeType->getAsObjCInterfaceType();
1933  }
1934  /// getInterfaceDecl - returns an interface decl for user-defined types.
1935  ObjCInterfaceDecl *getInterfaceDecl() const {
1936    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
1937  }
1938  /// isObjCIdType - true for "id".
1939  bool isObjCIdType() const {
1940    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
1941           !Protocols.size();
1942  }
1943  /// isObjCClassType - true for "Class".
1944  bool isObjCClassType() const {
1945    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
1946           !Protocols.size();
1947  }
1948  /// isObjCQualifiedIdType - true for "id <p>".
1949  bool isObjCQualifiedIdType() const {
1950    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
1951           Protocols.size();
1952  }
1953  /// isObjCQualifiedClassType - true for "Class <p>".
1954  bool isObjCQualifiedClassType() const {
1955    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
1956           Protocols.size();
1957  }
1958  /// qual_iterator and friends: this provides access to the (potentially empty)
1959  /// list of protocols qualifying this interface.
1960  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
1961
1962  qual_iterator qual_begin() const { return Protocols.begin(); }
1963  qual_iterator qual_end() const   { return Protocols.end(); }
1964  bool qual_empty() const { return Protocols.size() == 0; }
1965
1966  /// getNumProtocols - Return the number of qualifying protocols in this
1967  /// interface type, or 0 if there are none.
1968  unsigned getNumProtocols() const { return Protocols.size(); }
1969
1970  void Profile(llvm::FoldingSetNodeID &ID);
1971  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
1972                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
1973  virtual void getAsStringInternal(std::string &InnerString,
1974                                   const PrintingPolicy &Policy) const;
1975  static bool classof(const Type *T) {
1976    return T->getTypeClass() == ObjCObjectPointer;
1977  }
1978  static bool classof(const ObjCObjectPointerType *) { return true; }
1979};
1980
1981// Inline function definitions.
1982
1983/// getUnqualifiedType - Return the type without any qualifiers.
1984inline QualType QualType::getUnqualifiedType() const {
1985  Type *TP = getTypePtr();
1986  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(TP))
1987    TP = EXTQT->getBaseType();
1988  return QualType(TP, 0);
1989}
1990
1991/// getAddressSpace - Return the address space of this type.
1992inline unsigned QualType::getAddressSpace() const {
1993  QualType CT = getTypePtr()->getCanonicalTypeInternal();
1994  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
1995    return AT->getElementType().getAddressSpace();
1996  if (const RecordType *RT = dyn_cast<RecordType>(CT))
1997    return RT->getAddressSpace();
1998  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
1999    return EXTQT->getAddressSpace();
2000  return 0;
2001}
2002
2003/// getObjCGCAttr - Return the gc attribute of this type.
2004inline QualType::GCAttrTypes QualType::getObjCGCAttr() const {
2005  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2006  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2007      return AT->getElementType().getObjCGCAttr();
2008  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
2009    return EXTQT->getObjCGCAttr();
2010  if (const ObjCObjectPointerType *PT = CT->getAsObjCObjectPointerType())
2011    return PT->getPointeeType().getObjCGCAttr();
2012  return GCNone;
2013}
2014
2015/// isMoreQualifiedThan - Determine whether this type is more
2016/// qualified than the Other type. For example, "const volatile int"
2017/// is more qualified than "const int", "volatile int", and
2018/// "int". However, it is not more qualified than "const volatile
2019/// int".
2020inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2021  unsigned MyQuals = this->getCVRQualifiers();
2022  unsigned OtherQuals = Other.getCVRQualifiers();
2023  if (getAddressSpace() != Other.getAddressSpace())
2024    return false;
2025  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2026}
2027
2028/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2029/// as qualified as the Other type. For example, "const volatile
2030/// int" is at least as qualified as "const int", "volatile int",
2031/// "int", and "const volatile int".
2032inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2033  unsigned MyQuals = this->getCVRQualifiers();
2034  unsigned OtherQuals = Other.getCVRQualifiers();
2035  if (getAddressSpace() != Other.getAddressSpace())
2036    return false;
2037  return (MyQuals | OtherQuals) == MyQuals;
2038}
2039
2040/// getNonReferenceType - If Type is a reference type (e.g., const
2041/// int&), returns the type that the reference refers to ("const
2042/// int"). Otherwise, returns the type itself. This routine is used
2043/// throughout Sema to implement C++ 5p6:
2044///
2045///   If an expression initially has the type "reference to T" (8.3.2,
2046///   8.5.3), the type is adjusted to "T" prior to any further
2047///   analysis, the expression designates the object or function
2048///   denoted by the reference, and the expression is an lvalue.
2049inline QualType QualType::getNonReferenceType() const {
2050  if (const ReferenceType *RefType = (*this)->getAsReferenceType())
2051    return RefType->getPointeeType();
2052  else
2053    return *this;
2054}
2055
2056inline const TypedefType* Type::getAsTypedefType() const {
2057  return dyn_cast<TypedefType>(this);
2058}
2059inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
2060  if (const PointerType *PT = getAsPointerType())
2061    return PT->getPointeeType()->getAsObjCInterfaceType();
2062  return 0;
2063}
2064
2065// NOTE: All of these methods use "getUnqualifiedType" to strip off address
2066// space qualifiers if present.
2067inline bool Type::isFunctionType() const {
2068  return isa<FunctionType>(CanonicalType.getUnqualifiedType());
2069}
2070inline bool Type::isPointerType() const {
2071  return isa<PointerType>(CanonicalType.getUnqualifiedType());
2072}
2073inline bool Type::isAnyPointerType() const {
2074  return isPointerType() || isObjCObjectPointerType();
2075}
2076inline bool Type::isBlockPointerType() const {
2077  return isa<BlockPointerType>(CanonicalType.getUnqualifiedType());
2078}
2079inline bool Type::isReferenceType() const {
2080  return isa<ReferenceType>(CanonicalType.getUnqualifiedType());
2081}
2082inline bool Type::isLValueReferenceType() const {
2083  return isa<LValueReferenceType>(CanonicalType.getUnqualifiedType());
2084}
2085inline bool Type::isRValueReferenceType() const {
2086  return isa<RValueReferenceType>(CanonicalType.getUnqualifiedType());
2087}
2088inline bool Type::isFunctionPointerType() const {
2089  if (const PointerType* T = getAsPointerType())
2090    return T->getPointeeType()->isFunctionType();
2091  else
2092    return false;
2093}
2094inline bool Type::isMemberPointerType() const {
2095  return isa<MemberPointerType>(CanonicalType.getUnqualifiedType());
2096}
2097inline bool Type::isMemberFunctionPointerType() const {
2098  if (const MemberPointerType* T = getAsMemberPointerType())
2099    return T->getPointeeType()->isFunctionType();
2100  else
2101    return false;
2102}
2103inline bool Type::isArrayType() const {
2104  return isa<ArrayType>(CanonicalType.getUnqualifiedType());
2105}
2106inline bool Type::isConstantArrayType() const {
2107  return isa<ConstantArrayType>(CanonicalType.getUnqualifiedType());
2108}
2109inline bool Type::isIncompleteArrayType() const {
2110  return isa<IncompleteArrayType>(CanonicalType.getUnqualifiedType());
2111}
2112inline bool Type::isVariableArrayType() const {
2113  return isa<VariableArrayType>(CanonicalType.getUnqualifiedType());
2114}
2115inline bool Type::isDependentSizedArrayType() const {
2116  return isa<DependentSizedArrayType>(CanonicalType.getUnqualifiedType());
2117}
2118inline bool Type::isRecordType() const {
2119  return isa<RecordType>(CanonicalType.getUnqualifiedType());
2120}
2121inline bool Type::isAnyComplexType() const {
2122  return isa<ComplexType>(CanonicalType.getUnqualifiedType());
2123}
2124inline bool Type::isVectorType() const {
2125  return isa<VectorType>(CanonicalType.getUnqualifiedType());
2126}
2127inline bool Type::isExtVectorType() const {
2128  return isa<ExtVectorType>(CanonicalType.getUnqualifiedType());
2129}
2130inline bool Type::isObjCObjectPointerType() const {
2131  return isa<ObjCObjectPointerType>(CanonicalType.getUnqualifiedType());
2132}
2133inline bool Type::isObjCInterfaceType() const {
2134  return isa<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
2135}
2136inline bool Type::isObjCQualifiedIdType() const {
2137  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2138    return OPT->isObjCQualifiedIdType();
2139  return false;
2140}
2141inline bool Type::isObjCQualifiedClassType() const {
2142  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2143    return OPT->isObjCQualifiedClassType();
2144  return false;
2145}
2146inline bool Type::isObjCIdType() const {
2147  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2148    return OPT->isObjCIdType();
2149  return false;
2150}
2151inline bool Type::isObjCClassType() const {
2152  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2153    return OPT->isObjCClassType();
2154  return false;
2155}
2156inline bool Type::isObjCBuiltinType() const {
2157  return isObjCIdType() || isObjCClassType();
2158}
2159
2160inline bool Type::isTemplateTypeParmType() const {
2161  return isa<TemplateTypeParmType>(CanonicalType.getUnqualifiedType());
2162}
2163
2164inline bool Type::isSpecificBuiltinType(unsigned K) const {
2165  if (const BuiltinType *BT = getAsBuiltinType())
2166    if (BT->getKind() == (BuiltinType::Kind) K)
2167      return true;
2168  return false;
2169}
2170
2171/// \brief Determines whether this is a type for which one can define
2172/// an overloaded operator.
2173inline bool Type::isOverloadableType() const {
2174  return isDependentType() || isRecordType() || isEnumeralType();
2175}
2176
2177inline bool Type::hasPointerRepresentation() const {
2178  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
2179          isObjCInterfaceType() || isObjCObjectPointerType() ||
2180          isObjCQualifiedInterfaceType() || isNullPtrType());
2181}
2182
2183inline bool Type::hasObjCPointerRepresentation() const {
2184  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
2185          isObjCQualifiedInterfaceType());
2186}
2187
2188/// Insertion operator for diagnostics.  This allows sending QualType's into a
2189/// diagnostic with <<.
2190inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2191                                           QualType T) {
2192  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
2193                  Diagnostic::ak_qualtype);
2194  return DB;
2195}
2196
2197/// Member-template getAs<specific type>'.
2198template <typename T> const T *Type::getAs() const {
2199  // If this is directly a T type, return it.
2200  if (const T *Ty = dyn_cast<T>(this))
2201    return Ty;
2202
2203  // If the canonical form of this type isn't the right kind, reject it.
2204  if (!isa<T>(CanonicalType)) {
2205    // Look through type qualifiers
2206    if (isa<T>(CanonicalType.getUnqualifiedType()))
2207      return CanonicalType.getUnqualifiedType()->getAs<T>();
2208    return 0;
2209  }
2210
2211  // If this is a typedef for a pointer type, strip the typedef off without
2212  // losing all typedef information.
2213  return cast<T>(getDesugaredType());
2214}
2215
2216}  // end namespace clang
2217
2218#endif
2219