Type.h revision 47c24b1d94f446c43e3a64732867eabed7d9c961
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/type_traits.h"
25#include "llvm/ADT/APSInt.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/ADT/PointerIntPair.h"
28#include "llvm/ADT/PointerUnion.h"
29
30using llvm::isa;
31using llvm::cast;
32using llvm::cast_or_null;
33using llvm::dyn_cast;
34using llvm::dyn_cast_or_null;
35namespace clang {
36  enum {
37    TypeAlignmentInBits = 3,
38    TypeAlignment = 1 << TypeAlignmentInBits
39  };
40  class Type;
41  class ExtQuals;
42  class QualType;
43}
44
45namespace llvm {
46  template <typename T>
47  class PointerLikeTypeTraits;
48  template<>
49  class PointerLikeTypeTraits< ::clang::Type*> {
50  public:
51    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
52    static inline ::clang::Type *getFromVoidPointer(void *P) {
53      return static_cast< ::clang::Type*>(P);
54    }
55    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
56  };
57  template<>
58  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
59  public:
60    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
61    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
62      return static_cast< ::clang::ExtQuals*>(P);
63    }
64    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
65  };
66
67  template <>
68  struct isPodLike<clang::QualType> { static const bool value = true; };
69}
70
71namespace clang {
72  class ASTContext;
73  class TypedefDecl;
74  class TemplateDecl;
75  class TemplateTypeParmDecl;
76  class NonTypeTemplateParmDecl;
77  class TemplateTemplateParmDecl;
78  class TagDecl;
79  class RecordDecl;
80  class CXXRecordDecl;
81  class EnumDecl;
82  class FieldDecl;
83  class ObjCInterfaceDecl;
84  class ObjCProtocolDecl;
85  class ObjCMethodDecl;
86  class UnresolvedUsingTypenameDecl;
87  class Expr;
88  class Stmt;
89  class SourceLocation;
90  class StmtIteratorBase;
91  class TemplateArgument;
92  class TemplateArgumentLoc;
93  class TemplateArgumentListInfo;
94  class Type;
95  class QualifiedNameType;
96  struct PrintingPolicy;
97
98  template <typename> class CanQual;
99  typedef CanQual<Type> CanQualType;
100
101  // Provide forward declarations for all of the *Type classes
102#define TYPE(Class, Base) class Class##Type;
103#include "clang/AST/TypeNodes.def"
104
105/// Qualifiers - The collection of all-type qualifiers we support.
106/// Clang supports five independent qualifiers:
107/// * C99: const, volatile, and restrict
108/// * Embedded C (TR18037): address spaces
109/// * Objective C: the GC attributes (none, weak, or strong)
110class Qualifiers {
111public:
112  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
113    Const    = 0x1,
114    Restrict = 0x2,
115    Volatile = 0x4,
116    CVRMask = Const | Volatile | Restrict
117  };
118
119  enum GC {
120    GCNone = 0,
121    Weak,
122    Strong
123  };
124
125  enum {
126    /// The maximum supported address space number.
127    /// 24 bits should be enough for anyone.
128    MaxAddressSpace = 0xffffffu,
129
130    /// The width of the "fast" qualifier mask.
131    FastWidth = 2,
132
133    /// The fast qualifier mask.
134    FastMask = (1 << FastWidth) - 1
135  };
136
137  Qualifiers() : Mask(0) {}
138
139  static Qualifiers fromFastMask(unsigned Mask) {
140    Qualifiers Qs;
141    Qs.addFastQualifiers(Mask);
142    return Qs;
143  }
144
145  static Qualifiers fromCVRMask(unsigned CVR) {
146    Qualifiers Qs;
147    Qs.addCVRQualifiers(CVR);
148    return Qs;
149  }
150
151  // Deserialize qualifiers from an opaque representation.
152  static Qualifiers fromOpaqueValue(unsigned opaque) {
153    Qualifiers Qs;
154    Qs.Mask = opaque;
155    return Qs;
156  }
157
158  // Serialize these qualifiers into an opaque representation.
159  unsigned getAsOpaqueValue() const {
160    return Mask;
161  }
162
163  bool hasConst() const { return Mask & Const; }
164  void setConst(bool flag) {
165    Mask = (Mask & ~Const) | (flag ? Const : 0);
166  }
167  void removeConst() { Mask &= ~Const; }
168  void addConst() { Mask |= Const; }
169
170  bool hasVolatile() const { return Mask & Volatile; }
171  void setVolatile(bool flag) {
172    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
173  }
174  void removeVolatile() { Mask &= ~Volatile; }
175  void addVolatile() { Mask |= Volatile; }
176
177  bool hasRestrict() const { return Mask & Restrict; }
178  void setRestrict(bool flag) {
179    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
180  }
181  void removeRestrict() { Mask &= ~Restrict; }
182  void addRestrict() { Mask |= Restrict; }
183
184  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
185  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
186  void setCVRQualifiers(unsigned mask) {
187    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
188    Mask = (Mask & ~CVRMask) | mask;
189  }
190  void removeCVRQualifiers(unsigned mask) {
191    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
192    Mask &= ~mask;
193  }
194  void removeCVRQualifiers() {
195    removeCVRQualifiers(CVRMask);
196  }
197  void addCVRQualifiers(unsigned mask) {
198    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
199    Mask |= mask;
200  }
201
202  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
203  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
204  void setObjCGCAttr(GC type) {
205    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
206  }
207  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
208  void addObjCGCAttr(GC type) {
209    assert(type);
210    setObjCGCAttr(type);
211  }
212
213  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
214  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
215  void setAddressSpace(unsigned space) {
216    assert(space <= MaxAddressSpace);
217    Mask = (Mask & ~AddressSpaceMask)
218         | (((uint32_t) space) << AddressSpaceShift);
219  }
220  void removeAddressSpace() { setAddressSpace(0); }
221  void addAddressSpace(unsigned space) {
222    assert(space);
223    setAddressSpace(space);
224  }
225
226  // Fast qualifiers are those that can be allocated directly
227  // on a QualType object.
228  bool hasFastQualifiers() const { return getFastQualifiers(); }
229  unsigned getFastQualifiers() const { return Mask & FastMask; }
230  void setFastQualifiers(unsigned mask) {
231    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
232    Mask = (Mask & ~FastMask) | mask;
233  }
234  void removeFastQualifiers(unsigned mask) {
235    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
236    Mask &= ~mask;
237  }
238  void removeFastQualifiers() {
239    removeFastQualifiers(FastMask);
240  }
241  void addFastQualifiers(unsigned mask) {
242    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
243    Mask |= mask;
244  }
245
246  /// hasNonFastQualifiers - Return true if the set contains any
247  /// qualifiers which require an ExtQuals node to be allocated.
248  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
249  Qualifiers getNonFastQualifiers() const {
250    Qualifiers Quals = *this;
251    Quals.setFastQualifiers(0);
252    return Quals;
253  }
254
255  /// hasQualifiers - Return true if the set contains any qualifiers.
256  bool hasQualifiers() const { return Mask; }
257  bool empty() const { return !Mask; }
258
259  /// \brief Add the qualifiers from the given set to this set.
260  void addQualifiers(Qualifiers Q) {
261    // If the other set doesn't have any non-boolean qualifiers, just
262    // bit-or it in.
263    if (!(Q.Mask & ~CVRMask))
264      Mask |= Q.Mask;
265    else {
266      Mask |= (Q.Mask & CVRMask);
267      if (Q.hasAddressSpace())
268        addAddressSpace(Q.getAddressSpace());
269      if (Q.hasObjCGCAttr())
270        addObjCGCAttr(Q.getObjCGCAttr());
271    }
272  }
273
274  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
275  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
276
277  operator bool() const { return hasQualifiers(); }
278
279  Qualifiers &operator+=(Qualifiers R) {
280    addQualifiers(R);
281    return *this;
282  }
283
284  // Union two qualifier sets.  If an enumerated qualifier appears
285  // in both sets, use the one from the right.
286  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
287    L += R;
288    return L;
289  }
290
291  std::string getAsString() const;
292  std::string getAsString(const PrintingPolicy &Policy) const {
293    std::string Buffer;
294    getAsStringInternal(Buffer, Policy);
295    return Buffer;
296  }
297  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
298
299  void Profile(llvm::FoldingSetNodeID &ID) const {
300    ID.AddInteger(Mask);
301  }
302
303private:
304
305  // bits:     |0 1 2|3 .. 4|5  ..  31|
306  //           |C R V|GCAttr|AddrSpace|
307  uint32_t Mask;
308
309  static const uint32_t GCAttrMask = 0x18;
310  static const uint32_t GCAttrShift = 3;
311  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
312  static const uint32_t AddressSpaceShift = 5;
313};
314
315
316/// ExtQuals - We can encode up to three bits in the low bits of a
317/// type pointer, but there are many more type qualifiers that we want
318/// to be able to apply to an arbitrary type.  Therefore we have this
319/// struct, intended to be heap-allocated and used by QualType to
320/// store qualifiers.
321///
322/// The current design tags the 'const' and 'restrict' qualifiers in
323/// two low bits on the QualType pointer; a third bit records whether
324/// the pointer is an ExtQuals node.  'const' was chosen because it is
325/// orders of magnitude more common than the other two qualifiers, in
326/// both library and user code.  It's relatively rare to see
327/// 'restrict' in user code, but many standard C headers are saturated
328/// with 'restrict' declarations, so that representing them efficiently
329/// is a critical goal of this representation.
330class ExtQuals : public llvm::FoldingSetNode {
331  // NOTE: changing the fast qualifiers should be straightforward as
332  // long as you don't make 'const' non-fast.
333  // 1. Qualifiers:
334  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
335  //       Fast qualifiers must occupy the low-order bits.
336  //    b) Update Qualifiers::FastWidth and FastMask.
337  // 2. QualType:
338  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
339  //    b) Update remove{Volatile,Restrict}, defined near the end of
340  //       this header.
341  // 3. ASTContext:
342  //    a) Update get{Volatile,Restrict}Type.
343
344  /// Context - the context to which this set belongs.  We save this
345  /// here so that QualifierCollector can use it to reapply extended
346  /// qualifiers to an arbitrary type without requiring a context to
347  /// be pushed through every single API dealing with qualifiers.
348  ASTContext& Context;
349
350  /// BaseType - the underlying type that this qualifies
351  const Type *BaseType;
352
353  /// Quals - the immutable set of qualifiers applied by this
354  /// node;  always contains extended qualifiers.
355  Qualifiers Quals;
356
357public:
358  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
359    : Context(Context), BaseType(Base), Quals(Quals)
360  {
361    assert(Quals.hasNonFastQualifiers()
362           && "ExtQuals created with no fast qualifiers");
363    assert(!Quals.hasFastQualifiers()
364           && "ExtQuals created with fast qualifiers");
365  }
366
367  Qualifiers getQualifiers() const { return Quals; }
368
369  bool hasVolatile() const { return Quals.hasVolatile(); }
370
371  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
372  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
373
374  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
375  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
376
377  const Type *getBaseType() const { return BaseType; }
378
379  ASTContext &getContext() const { return Context; }
380
381public:
382  void Profile(llvm::FoldingSetNodeID &ID) const {
383    Profile(ID, getBaseType(), Quals);
384  }
385  static void Profile(llvm::FoldingSetNodeID &ID,
386                      const Type *BaseType,
387                      Qualifiers Quals) {
388    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
389    ID.AddPointer(BaseType);
390    Quals.Profile(ID);
391  }
392};
393
394/// CallingConv - Specifies the calling convention that a function uses.
395enum CallingConv {
396  CC_Default,
397  CC_C,           // __attribute__((cdecl))
398  CC_X86StdCall,  // __attribute__((stdcall))
399  CC_X86FastCall  // __attribute__((fastcall))
400};
401
402
403/// QualType - For efficiency, we don't store CV-qualified types as nodes on
404/// their own: instead each reference to a type stores the qualifiers.  This
405/// greatly reduces the number of nodes we need to allocate for types (for
406/// example we only need one for 'int', 'const int', 'volatile int',
407/// 'const volatile int', etc).
408///
409/// As an added efficiency bonus, instead of making this a pair, we
410/// just store the two bits we care about in the low bits of the
411/// pointer.  To handle the packing/unpacking, we make QualType be a
412/// simple wrapper class that acts like a smart pointer.  A third bit
413/// indicates whether there are extended qualifiers present, in which
414/// case the pointer points to a special structure.
415class QualType {
416  // Thankfully, these are efficiently composable.
417  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
418                       Qualifiers::FastWidth> Value;
419
420  const ExtQuals *getExtQualsUnsafe() const {
421    return Value.getPointer().get<const ExtQuals*>();
422  }
423
424  const Type *getTypePtrUnsafe() const {
425    return Value.getPointer().get<const Type*>();
426  }
427
428  QualType getUnqualifiedTypeSlow() const;
429
430  friend class QualifierCollector;
431public:
432  QualType() {}
433
434  QualType(const Type *Ptr, unsigned Quals)
435    : Value(Ptr, Quals) {}
436  QualType(const ExtQuals *Ptr, unsigned Quals)
437    : Value(Ptr, Quals) {}
438
439  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
440  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
441
442  /// Retrieves a pointer to the underlying (unqualified) type.
443  /// This should really return a const Type, but it's not worth
444  /// changing all the users right now.
445  Type *getTypePtr() const {
446    if (hasLocalNonFastQualifiers())
447      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
448    return const_cast<Type*>(getTypePtrUnsafe());
449  }
450
451  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
452  static QualType getFromOpaquePtr(void *Ptr) {
453    QualType T;
454    T.Value.setFromOpaqueValue(Ptr);
455    return T;
456  }
457
458  Type &operator*() const {
459    return *getTypePtr();
460  }
461
462  Type *operator->() const {
463    return getTypePtr();
464  }
465
466  bool isCanonical() const;
467  bool isCanonicalAsParam() const;
468
469  /// isNull - Return true if this QualType doesn't point to a type yet.
470  bool isNull() const {
471    return Value.getPointer().isNull();
472  }
473
474  /// \brief Determine whether this particular QualType instance has the
475  /// "const" qualifier set, without looking through typedefs that may have
476  /// added "const" at a different level.
477  bool isLocalConstQualified() const {
478    return (getLocalFastQualifiers() & Qualifiers::Const);
479  }
480
481  /// \brief Determine whether this type is const-qualified.
482  bool isConstQualified() const;
483
484  /// \brief Determine whether this particular QualType instance has the
485  /// "restrict" qualifier set, without looking through typedefs that may have
486  /// added "restrict" at a different level.
487  bool isLocalRestrictQualified() const {
488    return (getLocalFastQualifiers() & Qualifiers::Restrict);
489  }
490
491  /// \brief Determine whether this type is restrict-qualified.
492  bool isRestrictQualified() const;
493
494  /// \brief Determine whether this particular QualType instance has the
495  /// "volatile" qualifier set, without looking through typedefs that may have
496  /// added "volatile" at a different level.
497  bool isLocalVolatileQualified() const {
498    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
499  }
500
501  /// \brief Determine whether this type is volatile-qualified.
502  bool isVolatileQualified() const;
503
504  /// \brief Determine whether this particular QualType instance has any
505  /// qualifiers, without looking through any typedefs that might add
506  /// qualifiers at a different level.
507  bool hasLocalQualifiers() const {
508    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
509  }
510
511  /// \brief Determine whether this type has any qualifiers.
512  bool hasQualifiers() const;
513
514  /// \brief Determine whether this particular QualType instance has any
515  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
516  /// instance.
517  bool hasLocalNonFastQualifiers() const {
518    return Value.getPointer().is<const ExtQuals*>();
519  }
520
521  /// \brief Retrieve the set of qualifiers local to this particular QualType
522  /// instance, not including any qualifiers acquired through typedefs or
523  /// other sugar.
524  Qualifiers getLocalQualifiers() const {
525    Qualifiers Quals;
526    if (hasLocalNonFastQualifiers())
527      Quals = getExtQualsUnsafe()->getQualifiers();
528    Quals.addFastQualifiers(getLocalFastQualifiers());
529    return Quals;
530  }
531
532  /// \brief Retrieve the set of qualifiers applied to this type.
533  Qualifiers getQualifiers() const;
534
535  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
536  /// local to this particular QualType instance, not including any qualifiers
537  /// acquired through typedefs or other sugar.
538  unsigned getLocalCVRQualifiers() const {
539    unsigned CVR = getLocalFastQualifiers();
540    if (isLocalVolatileQualified())
541      CVR |= Qualifiers::Volatile;
542    return CVR;
543  }
544
545  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
546  /// applied to this type.
547  unsigned getCVRQualifiers() const;
548
549  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
550  /// applied to this type, looking through any number of unqualified array
551  /// types to their element types' qualifiers.
552  unsigned getCVRQualifiersThroughArrayTypes() const;
553
554  bool isConstant(ASTContext& Ctx) const {
555    return QualType::isConstant(*this, Ctx);
556  }
557
558  // Don't promise in the API that anything besides 'const' can be
559  // easily added.
560
561  /// addConst - add the specified type qualifier to this QualType.
562  void addConst() {
563    addFastQualifiers(Qualifiers::Const);
564  }
565  QualType withConst() const {
566    return withFastQualifiers(Qualifiers::Const);
567  }
568
569  void addFastQualifiers(unsigned TQs) {
570    assert(!(TQs & ~Qualifiers::FastMask)
571           && "non-fast qualifier bits set in mask!");
572    Value.setInt(Value.getInt() | TQs);
573  }
574
575  // FIXME: The remove* functions are semantically broken, because they might
576  // not remove a qualifier stored on a typedef. Most of the with* functions
577  // have the same problem.
578  void removeConst();
579  void removeVolatile();
580  void removeRestrict();
581  void removeCVRQualifiers(unsigned Mask);
582
583  void removeFastQualifiers() { Value.setInt(0); }
584  void removeFastQualifiers(unsigned Mask) {
585    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
586    Value.setInt(Value.getInt() & ~Mask);
587  }
588
589  // Creates a type with the given qualifiers in addition to any
590  // qualifiers already on this type.
591  QualType withFastQualifiers(unsigned TQs) const {
592    QualType T = *this;
593    T.addFastQualifiers(TQs);
594    return T;
595  }
596
597  // Creates a type with exactly the given fast qualifiers, removing
598  // any existing fast qualifiers.
599  QualType withExactFastQualifiers(unsigned TQs) const {
600    return withoutFastQualifiers().withFastQualifiers(TQs);
601  }
602
603  // Removes fast qualifiers, but leaves any extended qualifiers in place.
604  QualType withoutFastQualifiers() const {
605    QualType T = *this;
606    T.removeFastQualifiers();
607    return T;
608  }
609
610  /// \brief Return this type with all of the instance-specific qualifiers
611  /// removed, but without removing any qualifiers that may have been applied
612  /// through typedefs.
613  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
614
615  /// \brief Return the unqualified form of the given type, which might be
616  /// desugared to eliminate qualifiers introduced via typedefs.
617  QualType getUnqualifiedType() const {
618    QualType T = getLocalUnqualifiedType();
619    if (!T.hasQualifiers())
620      return T;
621
622    return getUnqualifiedTypeSlow();
623  }
624
625  bool isMoreQualifiedThan(QualType Other) const;
626  bool isAtLeastAsQualifiedAs(QualType Other) const;
627  QualType getNonReferenceType() const;
628
629  /// getDesugaredType - Return the specified type with any "sugar" removed from
630  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
631  /// the type is already concrete, it returns it unmodified.  This is similar
632  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
633  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
634  /// concrete.
635  ///
636  /// Qualifiers are left in place.
637  QualType getDesugaredType() const {
638    return QualType::getDesugaredType(*this);
639  }
640
641  /// operator==/!= - Indicate whether the specified types and qualifiers are
642  /// identical.
643  friend bool operator==(const QualType &LHS, const QualType &RHS) {
644    return LHS.Value == RHS.Value;
645  }
646  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
647    return LHS.Value != RHS.Value;
648  }
649  std::string getAsString() const;
650
651  std::string getAsString(const PrintingPolicy &Policy) const {
652    std::string S;
653    getAsStringInternal(S, Policy);
654    return S;
655  }
656  void getAsStringInternal(std::string &Str,
657                           const PrintingPolicy &Policy) const;
658
659  void dump(const char *s) const;
660  void dump() const;
661
662  void Profile(llvm::FoldingSetNodeID &ID) const {
663    ID.AddPointer(getAsOpaquePtr());
664  }
665
666  /// getAddressSpace - Return the address space of this type.
667  inline unsigned getAddressSpace() const;
668
669  /// GCAttrTypesAttr - Returns gc attribute of this type.
670  inline Qualifiers::GC getObjCGCAttr() const;
671
672  /// isObjCGCWeak true when Type is objc's weak.
673  bool isObjCGCWeak() const {
674    return getObjCGCAttr() == Qualifiers::Weak;
675  }
676
677  /// isObjCGCStrong true when Type is objc's strong.
678  bool isObjCGCStrong() const {
679    return getObjCGCAttr() == Qualifiers::Strong;
680  }
681
682private:
683  // These methods are implemented in a separate translation unit;
684  // "static"-ize them to avoid creating temporary QualTypes in the
685  // caller.
686  static bool isConstant(QualType T, ASTContext& Ctx);
687  static QualType getDesugaredType(QualType T);
688};
689
690} // end clang.
691
692namespace llvm {
693/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
694/// to a specific Type class.
695template<> struct simplify_type<const ::clang::QualType> {
696  typedef ::clang::Type* SimpleType;
697  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
698    return Val.getTypePtr();
699  }
700};
701template<> struct simplify_type< ::clang::QualType>
702  : public simplify_type<const ::clang::QualType> {};
703
704// Teach SmallPtrSet that QualType is "basically a pointer".
705template<>
706class PointerLikeTypeTraits<clang::QualType> {
707public:
708  static inline void *getAsVoidPointer(clang::QualType P) {
709    return P.getAsOpaquePtr();
710  }
711  static inline clang::QualType getFromVoidPointer(void *P) {
712    return clang::QualType::getFromOpaquePtr(P);
713  }
714  // Various qualifiers go in low bits.
715  enum { NumLowBitsAvailable = 0 };
716};
717
718} // end namespace llvm
719
720namespace clang {
721
722/// Type - This is the base class of the type hierarchy.  A central concept
723/// with types is that each type always has a canonical type.  A canonical type
724/// is the type with any typedef names stripped out of it or the types it
725/// references.  For example, consider:
726///
727///  typedef int  foo;
728///  typedef foo* bar;
729///    'int *'    'foo *'    'bar'
730///
731/// There will be a Type object created for 'int'.  Since int is canonical, its
732/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
733/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
734/// there is a PointerType that represents 'int*', which, like 'int', is
735/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
736/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
737/// is also 'int*'.
738///
739/// Non-canonical types are useful for emitting diagnostics, without losing
740/// information about typedefs being used.  Canonical types are useful for type
741/// comparisons (they allow by-pointer equality tests) and useful for reasoning
742/// about whether something has a particular form (e.g. is a function type),
743/// because they implicitly, recursively, strip all typedefs out of a type.
744///
745/// Types, once created, are immutable.
746///
747class Type {
748public:
749  enum TypeClass {
750#define TYPE(Class, Base) Class,
751#define LAST_TYPE(Class) TypeLast = Class,
752#define ABSTRACT_TYPE(Class, Base)
753#include "clang/AST/TypeNodes.def"
754    TagFirst = Record, TagLast = Enum
755  };
756
757private:
758  QualType CanonicalType;
759
760  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
761  unsigned TC : 8;
762
763  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
764  /// Note that this should stay at the end of the ivars for Type so that
765  /// subclasses can pack their bitfields into the same word.
766  bool Dependent : 1;
767
768  Type(const Type&);           // DO NOT IMPLEMENT.
769  void operator=(const Type&); // DO NOT IMPLEMENT.
770protected:
771  // silence VC++ warning C4355: 'this' : used in base member initializer list
772  Type *this_() { return this; }
773  Type(TypeClass tc, QualType Canonical, bool dependent)
774    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
775      TC(tc), Dependent(dependent) {}
776  virtual ~Type() {}
777  virtual void Destroy(ASTContext& C);
778  friend class ASTContext;
779
780public:
781  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
782
783  bool isCanonicalUnqualified() const {
784    return CanonicalType.getTypePtr() == this;
785  }
786
787  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
788  /// object types, function types, and incomplete types.
789
790  /// \brief Determines whether the type describes an object in memory.
791  ///
792  /// Note that this definition of object type corresponds to the C++
793  /// definition of object type, which includes incomplete types, as
794  /// opposed to the C definition (which does not include incomplete
795  /// types).
796  bool isObjectType() const;
797
798  /// isIncompleteType - Return true if this is an incomplete type.
799  /// A type that can describe objects, but which lacks information needed to
800  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
801  /// routine will need to determine if the size is actually required.
802  bool isIncompleteType() const;
803
804  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
805  /// type, in other words, not a function type.
806  bool isIncompleteOrObjectType() const {
807    return !isFunctionType();
808  }
809
810  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
811  bool isPODType() const;
812
813  /// isLiteralType - Return true if this is a literal type
814  /// (C++0x [basic.types]p10)
815  bool isLiteralType() const;
816
817  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
818  /// types that have a non-constant expression. This does not include "[]".
819  bool isVariablyModifiedType() const;
820
821  /// Helper methods to distinguish type categories. All type predicates
822  /// operate on the canonical type, ignoring typedefs and qualifiers.
823
824  /// isSpecificBuiltinType - Test for a particular builtin type.
825  bool isSpecificBuiltinType(unsigned K) const;
826
827  /// isIntegerType() does *not* include complex integers (a GCC extension).
828  /// isComplexIntegerType() can be used to test for complex integers.
829  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
830  bool isEnumeralType() const;
831  bool isBooleanType() const;
832  bool isCharType() const;
833  bool isWideCharType() const;
834  bool isAnyCharacterType() const;
835  bool isIntegralType() const;
836
837  /// Floating point categories.
838  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
839  /// isComplexType() does *not* include complex integers (a GCC extension).
840  /// isComplexIntegerType() can be used to test for complex integers.
841  bool isComplexType() const;      // C99 6.2.5p11 (complex)
842  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
843  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
844  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
845  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
846  bool isVoidType() const;         // C99 6.2.5p19
847  bool isDerivedType() const;      // C99 6.2.5p20
848  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
849  bool isAggregateType() const;
850
851  // Type Predicates: Check to see if this type is structurally the specified
852  // type, ignoring typedefs and qualifiers.
853  bool isFunctionType() const;
854  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
855  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
856  bool isPointerType() const;
857  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
858  bool isBlockPointerType() const;
859  bool isVoidPointerType() const;
860  bool isReferenceType() const;
861  bool isLValueReferenceType() const;
862  bool isRValueReferenceType() const;
863  bool isFunctionPointerType() const;
864  bool isMemberPointerType() const;
865  bool isMemberFunctionPointerType() const;
866  bool isArrayType() const;
867  bool isConstantArrayType() const;
868  bool isIncompleteArrayType() const;
869  bool isVariableArrayType() const;
870  bool isDependentSizedArrayType() const;
871  bool isRecordType() const;
872  bool isClassType() const;
873  bool isStructureType() const;
874  bool isUnionType() const;
875  bool isComplexIntegerType() const;            // GCC _Complex integer type.
876  bool isVectorType() const;                    // GCC vector type.
877  bool isExtVectorType() const;                 // Extended vector type.
878  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
879  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
880  // for the common case.
881  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
882  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
883  bool isObjCQualifiedIdType() const;           // id<foo>
884  bool isObjCQualifiedClassType() const;        // Class<foo>
885  bool isObjCIdType() const;                    // id
886  bool isObjCClassType() const;                 // Class
887  bool isObjCSelType() const;                 // Class
888  bool isObjCBuiltinType() const;               // 'id' or 'Class'
889  bool isTemplateTypeParmType() const;          // C++ template type parameter
890  bool isNullPtrType() const;                   // C++0x nullptr_t
891
892  /// isDependentType - Whether this type is a dependent type, meaning
893  /// that its definition somehow depends on a template parameter
894  /// (C++ [temp.dep.type]).
895  bool isDependentType() const { return Dependent; }
896  bool isOverloadableType() const;
897
898  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
899  bool isElaboratedTypeSpecifier() const;
900
901  /// hasPointerRepresentation - Whether this type is represented
902  /// natively as a pointer; this includes pointers, references, block
903  /// pointers, and Objective-C interface, qualified id, and qualified
904  /// interface types, as well as nullptr_t.
905  bool hasPointerRepresentation() const;
906
907  /// hasObjCPointerRepresentation - Whether this type can represent
908  /// an objective pointer type for the purpose of GC'ability
909  bool hasObjCPointerRepresentation() const;
910
911  // Type Checking Functions: Check to see if this type is structurally the
912  // specified type, ignoring typedefs and qualifiers, and return a pointer to
913  // the best type we can.
914  const RecordType *getAsStructureType() const;
915  /// NOTE: getAs*ArrayType are methods on ASTContext.
916  const RecordType *getAsUnionType() const;
917  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
918  // The following is a convenience method that returns an ObjCObjectPointerType
919  // for object declared using an interface.
920  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
921  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
922  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
923  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
924
925  // Member-template getAs<specific type>'.  This scheme will eventually
926  // replace the specific getAsXXXX methods above.
927  //
928  // There are some specializations of this member template listed
929  // immediately following this class.
930  template <typename T> const T *getAs() const;
931
932  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
933  /// interface, return the interface type, otherwise return null.
934  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
935
936  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
937  /// element type of the array, potentially with type qualifiers missing.
938  /// This method should never be used when type qualifiers are meaningful.
939  const Type *getArrayElementTypeNoTypeQual() const;
940
941  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
942  /// pointer, this returns the respective pointee.
943  QualType getPointeeType() const;
944
945  /// getUnqualifiedDesugaredType() - Return the specified type with
946  /// any "sugar" removed from the type, removing any typedefs,
947  /// typeofs, etc., as well as any qualifiers.
948  const Type *getUnqualifiedDesugaredType() const;
949
950  /// More type predicates useful for type checking/promotion
951  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
952
953  /// isSignedIntegerType - Return true if this is an integer type that is
954  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
955  /// an enum decl which has a signed representation, or a vector of signed
956  /// integer element type.
957  bool isSignedIntegerType() const;
958
959  /// isUnsignedIntegerType - Return true if this is an integer type that is
960  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
961  /// decl which has an unsigned representation, or a vector of unsigned integer
962  /// element type.
963  bool isUnsignedIntegerType() const;
964
965  /// isConstantSizeType - Return true if this is not a variable sized type,
966  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
967  /// incomplete types.
968  bool isConstantSizeType() const;
969
970  /// isSpecifierType - Returns true if this type can be represented by some
971  /// set of type specifiers.
972  bool isSpecifierType() const;
973
974  const char *getTypeClassName() const;
975
976  /// \brief Determine the linkage of this type.
977  virtual Linkage getLinkage() const;
978
979  QualType getCanonicalTypeInternal() const {
980    return CanonicalType;
981  }
982  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
983  void dump() const;
984  static bool classof(const Type *) { return true; }
985};
986
987template <> inline const TypedefType *Type::getAs() const {
988  return dyn_cast<TypedefType>(this);
989}
990
991// We can do canonical leaf types faster, because we don't have to
992// worry about preserving child type decoration.
993#define TYPE(Class, Base)
994#define LEAF_TYPE(Class) \
995template <> inline const Class##Type *Type::getAs() const { \
996  return dyn_cast<Class##Type>(CanonicalType); \
997}
998#include "clang/AST/TypeNodes.def"
999
1000
1001/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1002/// types are always canonical and have a literal name field.
1003class BuiltinType : public Type {
1004public:
1005  enum Kind {
1006    Void,
1007
1008    Bool,     // This is bool and/or _Bool.
1009    Char_U,   // This is 'char' for targets where char is unsigned.
1010    UChar,    // This is explicitly qualified unsigned char.
1011    Char16,   // This is 'char16_t' for C++.
1012    Char32,   // This is 'char32_t' for C++.
1013    UShort,
1014    UInt,
1015    ULong,
1016    ULongLong,
1017    UInt128,  // __uint128_t
1018
1019    Char_S,   // This is 'char' for targets where char is signed.
1020    SChar,    // This is explicitly qualified signed char.
1021    WChar,    // This is 'wchar_t' for C++.
1022    Short,
1023    Int,
1024    Long,
1025    LongLong,
1026    Int128,   // __int128_t
1027
1028    Float, Double, LongDouble,
1029
1030    NullPtr,  // This is the type of C++0x 'nullptr'.
1031
1032    Overload,  // This represents the type of an overloaded function declaration.
1033    Dependent, // This represents the type of a type-dependent expression.
1034
1035    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1036                   // that has not been deduced yet.
1037    ObjCId,    // This represents the ObjC 'id' type.
1038    ObjCClass, // This represents the ObjC 'Class' type.
1039    ObjCSel    // This represents the ObjC 'SEL' type.
1040  };
1041private:
1042  Kind TypeKind;
1043public:
1044  BuiltinType(Kind K)
1045    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
1046      TypeKind(K) {}
1047
1048  Kind getKind() const { return TypeKind; }
1049  const char *getName(const LangOptions &LO) const;
1050
1051  bool isSugared() const { return false; }
1052  QualType desugar() const { return QualType(this, 0); }
1053
1054  bool isInteger() const {
1055    return TypeKind >= Bool && TypeKind <= Int128;
1056  }
1057
1058  bool isSignedInteger() const {
1059    return TypeKind >= Char_S && TypeKind <= Int128;
1060  }
1061
1062  bool isUnsignedInteger() const {
1063    return TypeKind >= Bool && TypeKind <= UInt128;
1064  }
1065
1066  bool isFloatingPoint() const {
1067    return TypeKind >= Float && TypeKind <= LongDouble;
1068  }
1069
1070  virtual Linkage getLinkage() const;
1071
1072  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1073  static bool classof(const BuiltinType *) { return true; }
1074};
1075
1076/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1077/// types (_Complex float etc) as well as the GCC integer complex extensions.
1078///
1079class ComplexType : public Type, public llvm::FoldingSetNode {
1080  QualType ElementType;
1081  ComplexType(QualType Element, QualType CanonicalPtr) :
1082    Type(Complex, CanonicalPtr, Element->isDependentType()),
1083    ElementType(Element) {
1084  }
1085  friend class ASTContext;  // ASTContext creates these.
1086public:
1087  QualType getElementType() const { return ElementType; }
1088
1089  bool isSugared() const { return false; }
1090  QualType desugar() const { return QualType(this, 0); }
1091
1092  void Profile(llvm::FoldingSetNodeID &ID) {
1093    Profile(ID, getElementType());
1094  }
1095  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1096    ID.AddPointer(Element.getAsOpaquePtr());
1097  }
1098
1099  virtual Linkage getLinkage() const;
1100
1101  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1102  static bool classof(const ComplexType *) { return true; }
1103};
1104
1105/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1106///
1107class PointerType : public Type, public llvm::FoldingSetNode {
1108  QualType PointeeType;
1109
1110  PointerType(QualType Pointee, QualType CanonicalPtr) :
1111    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1112  }
1113  friend class ASTContext;  // ASTContext creates these.
1114public:
1115
1116  QualType getPointeeType() const { return PointeeType; }
1117
1118  bool isSugared() const { return false; }
1119  QualType desugar() const { return QualType(this, 0); }
1120
1121  void Profile(llvm::FoldingSetNodeID &ID) {
1122    Profile(ID, getPointeeType());
1123  }
1124  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1125    ID.AddPointer(Pointee.getAsOpaquePtr());
1126  }
1127
1128  virtual Linkage getLinkage() const;
1129
1130  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1131  static bool classof(const PointerType *) { return true; }
1132};
1133
1134/// BlockPointerType - pointer to a block type.
1135/// This type is to represent types syntactically represented as
1136/// "void (^)(int)", etc. Pointee is required to always be a function type.
1137///
1138class BlockPointerType : public Type, public llvm::FoldingSetNode {
1139  QualType PointeeType;  // Block is some kind of pointer type
1140  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1141    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1142    PointeeType(Pointee) {
1143  }
1144  friend class ASTContext;  // ASTContext creates these.
1145public:
1146
1147  // Get the pointee type. Pointee is required to always be a function type.
1148  QualType getPointeeType() const { return PointeeType; }
1149
1150  bool isSugared() const { return false; }
1151  QualType desugar() const { return QualType(this, 0); }
1152
1153  void Profile(llvm::FoldingSetNodeID &ID) {
1154      Profile(ID, getPointeeType());
1155  }
1156  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1157      ID.AddPointer(Pointee.getAsOpaquePtr());
1158  }
1159
1160  virtual Linkage getLinkage() const;
1161
1162  static bool classof(const Type *T) {
1163    return T->getTypeClass() == BlockPointer;
1164  }
1165  static bool classof(const BlockPointerType *) { return true; }
1166};
1167
1168/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1169///
1170class ReferenceType : public Type, public llvm::FoldingSetNode {
1171  QualType PointeeType;
1172
1173  /// True if the type was originally spelled with an lvalue sigil.
1174  /// This is never true of rvalue references but can also be false
1175  /// on lvalue references because of C++0x [dcl.typedef]p9,
1176  /// as follows:
1177  ///
1178  ///   typedef int &ref;    // lvalue, spelled lvalue
1179  ///   typedef int &&rvref; // rvalue
1180  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1181  ///   ref &&a;             // lvalue, inner ref
1182  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1183  ///   rvref &&a;           // rvalue, inner ref
1184  bool SpelledAsLValue;
1185
1186  /// True if the inner type is a reference type.  This only happens
1187  /// in non-canonical forms.
1188  bool InnerRef;
1189
1190protected:
1191  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1192                bool SpelledAsLValue) :
1193    Type(tc, CanonicalRef, Referencee->isDependentType()),
1194    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1195    InnerRef(Referencee->isReferenceType()) {
1196  }
1197public:
1198  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1199  bool isInnerRef() const { return InnerRef; }
1200
1201  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1202  QualType getPointeeType() const {
1203    // FIXME: this might strip inner qualifiers; okay?
1204    const ReferenceType *T = this;
1205    while (T->InnerRef)
1206      T = T->PointeeType->getAs<ReferenceType>();
1207    return T->PointeeType;
1208  }
1209
1210  void Profile(llvm::FoldingSetNodeID &ID) {
1211    Profile(ID, PointeeType, SpelledAsLValue);
1212  }
1213  static void Profile(llvm::FoldingSetNodeID &ID,
1214                      QualType Referencee,
1215                      bool SpelledAsLValue) {
1216    ID.AddPointer(Referencee.getAsOpaquePtr());
1217    ID.AddBoolean(SpelledAsLValue);
1218  }
1219
1220  virtual Linkage getLinkage() const;
1221
1222  static bool classof(const Type *T) {
1223    return T->getTypeClass() == LValueReference ||
1224           T->getTypeClass() == RValueReference;
1225  }
1226  static bool classof(const ReferenceType *) { return true; }
1227};
1228
1229/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1230///
1231class LValueReferenceType : public ReferenceType {
1232  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1233                      bool SpelledAsLValue) :
1234    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1235  {}
1236  friend class ASTContext; // ASTContext creates these
1237public:
1238  bool isSugared() const { return false; }
1239  QualType desugar() const { return QualType(this, 0); }
1240
1241  static bool classof(const Type *T) {
1242    return T->getTypeClass() == LValueReference;
1243  }
1244  static bool classof(const LValueReferenceType *) { return true; }
1245};
1246
1247/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1248///
1249class RValueReferenceType : public ReferenceType {
1250  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1251    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1252  }
1253  friend class ASTContext; // ASTContext creates these
1254public:
1255  bool isSugared() const { return false; }
1256  QualType desugar() const { return QualType(this, 0); }
1257
1258  static bool classof(const Type *T) {
1259    return T->getTypeClass() == RValueReference;
1260  }
1261  static bool classof(const RValueReferenceType *) { return true; }
1262};
1263
1264/// MemberPointerType - C++ 8.3.3 - Pointers to members
1265///
1266class MemberPointerType : public Type, public llvm::FoldingSetNode {
1267  QualType PointeeType;
1268  /// The class of which the pointee is a member. Must ultimately be a
1269  /// RecordType, but could be a typedef or a template parameter too.
1270  const Type *Class;
1271
1272  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1273    Type(MemberPointer, CanonicalPtr,
1274         Cls->isDependentType() || Pointee->isDependentType()),
1275    PointeeType(Pointee), Class(Cls) {
1276  }
1277  friend class ASTContext; // ASTContext creates these.
1278public:
1279
1280  QualType getPointeeType() const { return PointeeType; }
1281
1282  const Type *getClass() const { return Class; }
1283
1284  bool isSugared() const { return false; }
1285  QualType desugar() const { return QualType(this, 0); }
1286
1287  void Profile(llvm::FoldingSetNodeID &ID) {
1288    Profile(ID, getPointeeType(), getClass());
1289  }
1290  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1291                      const Type *Class) {
1292    ID.AddPointer(Pointee.getAsOpaquePtr());
1293    ID.AddPointer(Class);
1294  }
1295
1296  virtual Linkage getLinkage() const;
1297
1298  static bool classof(const Type *T) {
1299    return T->getTypeClass() == MemberPointer;
1300  }
1301  static bool classof(const MemberPointerType *) { return true; }
1302};
1303
1304/// ArrayType - C99 6.7.5.2 - Array Declarators.
1305///
1306class ArrayType : public Type, public llvm::FoldingSetNode {
1307public:
1308  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1309  /// an array with a static size (e.g. int X[static 4]), or an array
1310  /// with a star size (e.g. int X[*]).
1311  /// 'static' is only allowed on function parameters.
1312  enum ArraySizeModifier {
1313    Normal, Static, Star
1314  };
1315private:
1316  /// ElementType - The element type of the array.
1317  QualType ElementType;
1318
1319  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1320  /// NOTE: These fields are packed into the bitfields space in the Type class.
1321  unsigned SizeModifier : 2;
1322
1323  /// IndexTypeQuals - Capture qualifiers in declarations like:
1324  /// 'int X[static restrict 4]'. For function parameters only.
1325  unsigned IndexTypeQuals : 3;
1326
1327protected:
1328  // C++ [temp.dep.type]p1:
1329  //   A type is dependent if it is...
1330  //     - an array type constructed from any dependent type or whose
1331  //       size is specified by a constant expression that is
1332  //       value-dependent,
1333  ArrayType(TypeClass tc, QualType et, QualType can,
1334            ArraySizeModifier sm, unsigned tq)
1335    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1336      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1337
1338  friend class ASTContext;  // ASTContext creates these.
1339public:
1340  QualType getElementType() const { return ElementType; }
1341  ArraySizeModifier getSizeModifier() const {
1342    return ArraySizeModifier(SizeModifier);
1343  }
1344  Qualifiers getIndexTypeQualifiers() const {
1345    return Qualifiers::fromCVRMask(IndexTypeQuals);
1346  }
1347  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1348
1349  virtual Linkage getLinkage() const;
1350
1351  static bool classof(const Type *T) {
1352    return T->getTypeClass() == ConstantArray ||
1353           T->getTypeClass() == VariableArray ||
1354           T->getTypeClass() == IncompleteArray ||
1355           T->getTypeClass() == DependentSizedArray;
1356  }
1357  static bool classof(const ArrayType *) { return true; }
1358};
1359
1360/// ConstantArrayType - This class represents the canonical version of
1361/// C arrays with a specified constant size.  For example, the canonical
1362/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1363/// type is 'int' and the size is 404.
1364class ConstantArrayType : public ArrayType {
1365  llvm::APInt Size; // Allows us to unique the type.
1366
1367  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1368                    ArraySizeModifier sm, unsigned tq)
1369    : ArrayType(ConstantArray, et, can, sm, tq),
1370      Size(size) {}
1371protected:
1372  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1373                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1374    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1375  friend class ASTContext;  // ASTContext creates these.
1376public:
1377  const llvm::APInt &getSize() const { return Size; }
1378  bool isSugared() const { return false; }
1379  QualType desugar() const { return QualType(this, 0); }
1380
1381  void Profile(llvm::FoldingSetNodeID &ID) {
1382    Profile(ID, getElementType(), getSize(),
1383            getSizeModifier(), getIndexTypeCVRQualifiers());
1384  }
1385  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1386                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1387                      unsigned TypeQuals) {
1388    ID.AddPointer(ET.getAsOpaquePtr());
1389    ID.AddInteger(ArraySize.getZExtValue());
1390    ID.AddInteger(SizeMod);
1391    ID.AddInteger(TypeQuals);
1392  }
1393  static bool classof(const Type *T) {
1394    return T->getTypeClass() == ConstantArray;
1395  }
1396  static bool classof(const ConstantArrayType *) { return true; }
1397};
1398
1399/// IncompleteArrayType - This class represents C arrays with an unspecified
1400/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1401/// type is 'int' and the size is unspecified.
1402class IncompleteArrayType : public ArrayType {
1403
1404  IncompleteArrayType(QualType et, QualType can,
1405                      ArraySizeModifier sm, unsigned tq)
1406    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1407  friend class ASTContext;  // ASTContext creates these.
1408public:
1409  bool isSugared() const { return false; }
1410  QualType desugar() const { return QualType(this, 0); }
1411
1412  static bool classof(const Type *T) {
1413    return T->getTypeClass() == IncompleteArray;
1414  }
1415  static bool classof(const IncompleteArrayType *) { return true; }
1416
1417  friend class StmtIteratorBase;
1418
1419  void Profile(llvm::FoldingSetNodeID &ID) {
1420    Profile(ID, getElementType(), getSizeModifier(),
1421            getIndexTypeCVRQualifiers());
1422  }
1423
1424  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1425                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1426    ID.AddPointer(ET.getAsOpaquePtr());
1427    ID.AddInteger(SizeMod);
1428    ID.AddInteger(TypeQuals);
1429  }
1430};
1431
1432/// VariableArrayType - This class represents C arrays with a specified size
1433/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1434/// Since the size expression is an arbitrary expression, we store it as such.
1435///
1436/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1437/// should not be: two lexically equivalent variable array types could mean
1438/// different things, for example, these variables do not have the same type
1439/// dynamically:
1440///
1441/// void foo(int x) {
1442///   int Y[x];
1443///   ++x;
1444///   int Z[x];
1445/// }
1446///
1447class VariableArrayType : public ArrayType {
1448  /// SizeExpr - An assignment expression. VLA's are only permitted within
1449  /// a function block.
1450  Stmt *SizeExpr;
1451  /// Brackets - The left and right array brackets.
1452  SourceRange Brackets;
1453
1454  VariableArrayType(QualType et, QualType can, Expr *e,
1455                    ArraySizeModifier sm, unsigned tq,
1456                    SourceRange brackets)
1457    : ArrayType(VariableArray, et, can, sm, tq),
1458      SizeExpr((Stmt*) e), Brackets(brackets) {}
1459  friend class ASTContext;  // ASTContext creates these.
1460  virtual void Destroy(ASTContext& C);
1461
1462public:
1463  Expr *getSizeExpr() const {
1464    // We use C-style casts instead of cast<> here because we do not wish
1465    // to have a dependency of Type.h on Stmt.h/Expr.h.
1466    return (Expr*) SizeExpr;
1467  }
1468  SourceRange getBracketsRange() const { return Brackets; }
1469  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1470  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1471
1472  bool isSugared() const { return false; }
1473  QualType desugar() const { return QualType(this, 0); }
1474
1475  static bool classof(const Type *T) {
1476    return T->getTypeClass() == VariableArray;
1477  }
1478  static bool classof(const VariableArrayType *) { return true; }
1479
1480  friend class StmtIteratorBase;
1481
1482  void Profile(llvm::FoldingSetNodeID &ID) {
1483    assert(0 && "Cannnot unique VariableArrayTypes.");
1484  }
1485};
1486
1487/// DependentSizedArrayType - This type represents an array type in
1488/// C++ whose size is a value-dependent expression. For example:
1489///
1490/// \code
1491/// template<typename T, int Size>
1492/// class array {
1493///   T data[Size];
1494/// };
1495/// \endcode
1496///
1497/// For these types, we won't actually know what the array bound is
1498/// until template instantiation occurs, at which point this will
1499/// become either a ConstantArrayType or a VariableArrayType.
1500class DependentSizedArrayType : public ArrayType {
1501  ASTContext &Context;
1502
1503  /// \brief An assignment expression that will instantiate to the
1504  /// size of the array.
1505  ///
1506  /// The expression itself might be NULL, in which case the array
1507  /// type will have its size deduced from an initializer.
1508  Stmt *SizeExpr;
1509
1510  /// Brackets - The left and right array brackets.
1511  SourceRange Brackets;
1512
1513  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1514                          Expr *e, ArraySizeModifier sm, unsigned tq,
1515                          SourceRange brackets)
1516    : ArrayType(DependentSizedArray, et, can, sm, tq),
1517      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1518  friend class ASTContext;  // ASTContext creates these.
1519  virtual void Destroy(ASTContext& C);
1520
1521public:
1522  Expr *getSizeExpr() const {
1523    // We use C-style casts instead of cast<> here because we do not wish
1524    // to have a dependency of Type.h on Stmt.h/Expr.h.
1525    return (Expr*) SizeExpr;
1526  }
1527  SourceRange getBracketsRange() const { return Brackets; }
1528  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1529  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1530
1531  bool isSugared() const { return false; }
1532  QualType desugar() const { return QualType(this, 0); }
1533
1534  static bool classof(const Type *T) {
1535    return T->getTypeClass() == DependentSizedArray;
1536  }
1537  static bool classof(const DependentSizedArrayType *) { return true; }
1538
1539  friend class StmtIteratorBase;
1540
1541
1542  void Profile(llvm::FoldingSetNodeID &ID) {
1543    Profile(ID, Context, getElementType(),
1544            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1545  }
1546
1547  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1548                      QualType ET, ArraySizeModifier SizeMod,
1549                      unsigned TypeQuals, Expr *E);
1550};
1551
1552/// DependentSizedExtVectorType - This type represent an extended vector type
1553/// where either the type or size is dependent. For example:
1554/// @code
1555/// template<typename T, int Size>
1556/// class vector {
1557///   typedef T __attribute__((ext_vector_type(Size))) type;
1558/// }
1559/// @endcode
1560class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1561  ASTContext &Context;
1562  Expr *SizeExpr;
1563  /// ElementType - The element type of the array.
1564  QualType ElementType;
1565  SourceLocation loc;
1566
1567  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1568                              QualType can, Expr *SizeExpr, SourceLocation loc)
1569    : Type (DependentSizedExtVector, can, true),
1570      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1571      loc(loc) {}
1572  friend class ASTContext;
1573  virtual void Destroy(ASTContext& C);
1574
1575public:
1576  Expr *getSizeExpr() const { return SizeExpr; }
1577  QualType getElementType() const { return ElementType; }
1578  SourceLocation getAttributeLoc() const { return loc; }
1579
1580  bool isSugared() const { return false; }
1581  QualType desugar() const { return QualType(this, 0); }
1582
1583  static bool classof(const Type *T) {
1584    return T->getTypeClass() == DependentSizedExtVector;
1585  }
1586  static bool classof(const DependentSizedExtVectorType *) { return true; }
1587
1588  void Profile(llvm::FoldingSetNodeID &ID) {
1589    Profile(ID, Context, getElementType(), getSizeExpr());
1590  }
1591
1592  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1593                      QualType ElementType, Expr *SizeExpr);
1594};
1595
1596
1597/// VectorType - GCC generic vector type. This type is created using
1598/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1599/// bytes; or from an Altivec __vector or vector declaration.
1600/// Since the constructor takes the number of vector elements, the
1601/// client is responsible for converting the size into the number of elements.
1602class VectorType : public Type, public llvm::FoldingSetNode {
1603protected:
1604  /// ElementType - The element type of the vector.
1605  QualType ElementType;
1606
1607  /// NumElements - The number of elements in the vector.
1608  unsigned NumElements;
1609
1610  /// AltiVec - True if this is for an Altivec vector.
1611  bool AltiVec;
1612
1613  /// Pixel - True if this is for an Altivec vector pixel.
1614  bool Pixel;
1615
1616  VectorType(QualType vecType, unsigned nElements, QualType canonType,
1617      bool isAltiVec, bool isPixel) :
1618    Type(Vector, canonType, vecType->isDependentType()),
1619    ElementType(vecType), NumElements(nElements),
1620    AltiVec(isAltiVec), Pixel(isPixel) {}
1621  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1622             QualType canonType, bool isAltiVec, bool isPixel)
1623    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1624      NumElements(nElements), AltiVec(isAltiVec), Pixel(isPixel) {}
1625  friend class ASTContext;  // ASTContext creates these.
1626public:
1627
1628  QualType getElementType() const { return ElementType; }
1629  unsigned getNumElements() const { return NumElements; }
1630
1631  bool isSugared() const { return false; }
1632  QualType desugar() const { return QualType(this, 0); }
1633
1634  bool isAltiVec() const { return AltiVec; }
1635
1636  bool isPixel() const { return Pixel; }
1637
1638  void Profile(llvm::FoldingSetNodeID &ID) {
1639    Profile(ID, getElementType(), getNumElements(), getTypeClass(),
1640      AltiVec, Pixel);
1641  }
1642  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1643                      unsigned NumElements, TypeClass TypeClass,
1644                      bool isAltiVec, bool isPixel) {
1645    ID.AddPointer(ElementType.getAsOpaquePtr());
1646    ID.AddInteger(NumElements);
1647    ID.AddInteger(TypeClass);
1648    ID.AddBoolean(isAltiVec);
1649    ID.AddBoolean(isPixel);
1650  }
1651
1652  virtual Linkage getLinkage() const;
1653
1654  static bool classof(const Type *T) {
1655    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1656  }
1657  static bool classof(const VectorType *) { return true; }
1658};
1659
1660/// ExtVectorType - Extended vector type. This type is created using
1661/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1662/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1663/// class enables syntactic extensions, like Vector Components for accessing
1664/// points, colors, and textures (modeled after OpenGL Shading Language).
1665class ExtVectorType : public VectorType {
1666  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1667    VectorType(ExtVector, vecType, nElements, canonType, false, false) {}
1668  friend class ASTContext;  // ASTContext creates these.
1669public:
1670  static int getPointAccessorIdx(char c) {
1671    switch (c) {
1672    default: return -1;
1673    case 'x': return 0;
1674    case 'y': return 1;
1675    case 'z': return 2;
1676    case 'w': return 3;
1677    }
1678  }
1679  static int getNumericAccessorIdx(char c) {
1680    switch (c) {
1681      default: return -1;
1682      case '0': return 0;
1683      case '1': return 1;
1684      case '2': return 2;
1685      case '3': return 3;
1686      case '4': return 4;
1687      case '5': return 5;
1688      case '6': return 6;
1689      case '7': return 7;
1690      case '8': return 8;
1691      case '9': return 9;
1692      case 'A':
1693      case 'a': return 10;
1694      case 'B':
1695      case 'b': return 11;
1696      case 'C':
1697      case 'c': return 12;
1698      case 'D':
1699      case 'd': return 13;
1700      case 'E':
1701      case 'e': return 14;
1702      case 'F':
1703      case 'f': return 15;
1704    }
1705  }
1706
1707  static int getAccessorIdx(char c) {
1708    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1709    return getNumericAccessorIdx(c);
1710  }
1711
1712  bool isAccessorWithinNumElements(char c) const {
1713    if (int idx = getAccessorIdx(c)+1)
1714      return unsigned(idx-1) < NumElements;
1715    return false;
1716  }
1717  bool isSugared() const { return false; }
1718  QualType desugar() const { return QualType(this, 0); }
1719
1720  static bool classof(const Type *T) {
1721    return T->getTypeClass() == ExtVector;
1722  }
1723  static bool classof(const ExtVectorType *) { return true; }
1724};
1725
1726/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1727/// class of FunctionNoProtoType and FunctionProtoType.
1728///
1729class FunctionType : public Type {
1730  /// SubClassData - This field is owned by the subclass, put here to pack
1731  /// tightly with the ivars in Type.
1732  bool SubClassData : 1;
1733
1734  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1735  /// other bitfields.
1736  /// The qualifiers are part of FunctionProtoType because...
1737  ///
1738  /// C++ 8.3.5p4: The return type, the parameter type list and the
1739  /// cv-qualifier-seq, [...], are part of the function type.
1740  ///
1741  unsigned TypeQuals : 3;
1742
1743  /// NoReturn - Indicates if the function type is attribute noreturn.
1744  unsigned NoReturn : 1;
1745
1746  /// RegParm - How many arguments to pass inreg.
1747  unsigned RegParm : 3;
1748
1749  /// CallConv - The calling convention used by the function.
1750  unsigned CallConv : 2;
1751
1752  // The type returned by the function.
1753  QualType ResultType;
1754
1755 public:
1756  // This class is used for passing arround the information needed to
1757  // construct a call. It is not actually used for storage, just for
1758  // factoring together common arguments.
1759  // If you add a field (say Foo), other than the obvious places (both, constructors,
1760  // compile failures), what you need to update is
1761  // * Operetor==
1762  // * getFoo
1763  // * withFoo
1764  // * functionType. Add Foo, getFoo.
1765  // * ASTContext::getFooType
1766  // * ASTContext::mergeFunctionTypes
1767  // * FunctionNoProtoType::Profile
1768  // * FunctionProtoType::Profile
1769  // * TypePrinter::PrintFunctionProto
1770  // * PCH read and write
1771  // * Codegen
1772
1773  class ExtInfo {
1774   public:
1775    // Constructor with no defaults. Use this when you know that you
1776    // have all the elements (when reading a PCH file for example).
1777    ExtInfo(bool noReturn, unsigned regParm, CallingConv cc) :
1778        NoReturn(noReturn), RegParm(regParm), CC(cc) {}
1779
1780    // Constructor with all defaults. Use when for example creating a
1781    // function know to use defaults.
1782    ExtInfo() : NoReturn(false), RegParm(0), CC(CC_Default) {}
1783
1784    bool getNoReturn() const { return NoReturn; }
1785    unsigned getRegParm() const { return RegParm; }
1786    CallingConv getCC() const { return CC; }
1787
1788    bool operator==(const ExtInfo &Other) const {
1789      return getNoReturn() == Other.getNoReturn() &&
1790          getRegParm() == Other.getRegParm() &&
1791          getCC() == Other.getCC();
1792    }
1793    bool operator!=(const ExtInfo &Other) const {
1794      return !(*this == Other);
1795    }
1796
1797    // Note that we don't have setters. That is by design, use
1798    // the following with methods instead of mutating these objects.
1799
1800    ExtInfo withNoReturn(bool noReturn) const {
1801      return ExtInfo(noReturn, getRegParm(), getCC());
1802    }
1803
1804    ExtInfo withRegParm(unsigned RegParm) const {
1805      return ExtInfo(getNoReturn(), RegParm, getCC());
1806    }
1807
1808    ExtInfo withCallingConv(CallingConv cc) const {
1809      return ExtInfo(getNoReturn(), getRegParm(), cc);
1810    }
1811
1812   private:
1813    // True if we have __attribute__((noreturn))
1814    bool NoReturn;
1815    // The value passed to __attribute__((regparm(x)))
1816    unsigned RegParm;
1817    // The calling convention as specified via
1818    // __attribute__((cdecl|stdcall||fastcall))
1819    CallingConv CC;
1820  };
1821
1822protected:
1823  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1824               unsigned typeQuals, QualType Canonical, bool Dependent,
1825               const ExtInfo &Info)
1826    : Type(tc, Canonical, Dependent),
1827      SubClassData(SubclassInfo), TypeQuals(typeQuals),
1828      NoReturn(Info.getNoReturn()),
1829      RegParm(Info.getRegParm()), CallConv(Info.getCC()), ResultType(res) {}
1830  bool getSubClassData() const { return SubClassData; }
1831  unsigned getTypeQuals() const { return TypeQuals; }
1832public:
1833
1834  QualType getResultType() const { return ResultType; }
1835  unsigned getRegParmType() const { return RegParm; }
1836  bool getNoReturnAttr() const { return NoReturn; }
1837  CallingConv getCallConv() const { return (CallingConv)CallConv; }
1838  ExtInfo getExtInfo() const {
1839    return ExtInfo(NoReturn, RegParm, (CallingConv)CallConv);
1840  }
1841
1842  static llvm::StringRef getNameForCallConv(CallingConv CC);
1843
1844  static bool classof(const Type *T) {
1845    return T->getTypeClass() == FunctionNoProto ||
1846           T->getTypeClass() == FunctionProto;
1847  }
1848  static bool classof(const FunctionType *) { return true; }
1849};
1850
1851/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1852/// no information available about its arguments.
1853class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1854  FunctionNoProtoType(QualType Result, QualType Canonical,
1855                      const ExtInfo &Info)
1856    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1857                   /*Dependent=*/false, Info) {}
1858  friend class ASTContext;  // ASTContext creates these.
1859public:
1860  // No additional state past what FunctionType provides.
1861
1862  bool isSugared() const { return false; }
1863  QualType desugar() const { return QualType(this, 0); }
1864
1865  void Profile(llvm::FoldingSetNodeID &ID) {
1866    Profile(ID, getResultType(), getExtInfo());
1867  }
1868  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1869                      const ExtInfo &Info) {
1870    ID.AddInteger(Info.getCC());
1871    ID.AddInteger(Info.getRegParm());
1872    ID.AddInteger(Info.getNoReturn());
1873    ID.AddPointer(ResultType.getAsOpaquePtr());
1874  }
1875
1876  virtual Linkage getLinkage() const;
1877
1878  static bool classof(const Type *T) {
1879    return T->getTypeClass() == FunctionNoProto;
1880  }
1881  static bool classof(const FunctionNoProtoType *) { return true; }
1882};
1883
1884/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1885/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1886/// arguments, not as having a single void argument. Such a type can have an
1887/// exception specification, but this specification is not part of the canonical
1888/// type.
1889class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1890  /// hasAnyDependentType - Determine whether there are any dependent
1891  /// types within the arguments passed in.
1892  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1893    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1894      if (ArgArray[Idx]->isDependentType())
1895    return true;
1896
1897    return false;
1898  }
1899
1900  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1901                    bool isVariadic, unsigned typeQuals, bool hasExs,
1902                    bool hasAnyExs, const QualType *ExArray,
1903                    unsigned numExs, QualType Canonical,
1904                    const ExtInfo &Info)
1905    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1906                   (Result->isDependentType() ||
1907                    hasAnyDependentType(ArgArray, numArgs)),
1908                   Info),
1909      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1910      AnyExceptionSpec(hasAnyExs) {
1911    // Fill in the trailing argument array.
1912    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1913    for (unsigned i = 0; i != numArgs; ++i)
1914      ArgInfo[i] = ArgArray[i];
1915    // Fill in the exception array.
1916    QualType *Ex = ArgInfo + numArgs;
1917    for (unsigned i = 0; i != numExs; ++i)
1918      Ex[i] = ExArray[i];
1919  }
1920
1921  /// NumArgs - The number of arguments this function has, not counting '...'.
1922  unsigned NumArgs : 20;
1923
1924  /// NumExceptions - The number of types in the exception spec, if any.
1925  unsigned NumExceptions : 10;
1926
1927  /// HasExceptionSpec - Whether this function has an exception spec at all.
1928  bool HasExceptionSpec : 1;
1929
1930  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1931  bool AnyExceptionSpec : 1;
1932
1933  /// ArgInfo - There is an variable size array after the class in memory that
1934  /// holds the argument types.
1935
1936  /// Exceptions - There is another variable size array after ArgInfo that
1937  /// holds the exception types.
1938
1939  friend class ASTContext;  // ASTContext creates these.
1940
1941public:
1942  unsigned getNumArgs() const { return NumArgs; }
1943  QualType getArgType(unsigned i) const {
1944    assert(i < NumArgs && "Invalid argument number!");
1945    return arg_type_begin()[i];
1946  }
1947
1948  bool hasExceptionSpec() const { return HasExceptionSpec; }
1949  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1950  unsigned getNumExceptions() const { return NumExceptions; }
1951  QualType getExceptionType(unsigned i) const {
1952    assert(i < NumExceptions && "Invalid exception number!");
1953    return exception_begin()[i];
1954  }
1955  bool hasEmptyExceptionSpec() const {
1956    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1957      getNumExceptions() == 0;
1958  }
1959
1960  bool isVariadic() const { return getSubClassData(); }
1961  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1962
1963  typedef const QualType *arg_type_iterator;
1964  arg_type_iterator arg_type_begin() const {
1965    return reinterpret_cast<const QualType *>(this+1);
1966  }
1967  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1968
1969  typedef const QualType *exception_iterator;
1970  exception_iterator exception_begin() const {
1971    // exceptions begin where arguments end
1972    return arg_type_end();
1973  }
1974  exception_iterator exception_end() const {
1975    return exception_begin() + NumExceptions;
1976  }
1977
1978  bool isSugared() const { return false; }
1979  QualType desugar() const { return QualType(this, 0); }
1980
1981  virtual Linkage getLinkage() const;
1982
1983  static bool classof(const Type *T) {
1984    return T->getTypeClass() == FunctionProto;
1985  }
1986  static bool classof(const FunctionProtoType *) { return true; }
1987
1988  void Profile(llvm::FoldingSetNodeID &ID);
1989  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1990                      arg_type_iterator ArgTys, unsigned NumArgs,
1991                      bool isVariadic, unsigned TypeQuals,
1992                      bool hasExceptionSpec, bool anyExceptionSpec,
1993                      unsigned NumExceptions, exception_iterator Exs,
1994                      const ExtInfo &ExtInfo);
1995};
1996
1997
1998/// \brief Represents the dependent type named by a dependently-scoped
1999/// typename using declaration, e.g.
2000///   using typename Base<T>::foo;
2001/// Template instantiation turns these into the underlying type.
2002class UnresolvedUsingType : public Type {
2003  UnresolvedUsingTypenameDecl *Decl;
2004
2005  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2006    : Type(UnresolvedUsing, QualType(), true),
2007      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2008  friend class ASTContext; // ASTContext creates these.
2009public:
2010
2011  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2012
2013  bool isSugared() const { return false; }
2014  QualType desugar() const { return QualType(this, 0); }
2015
2016  static bool classof(const Type *T) {
2017    return T->getTypeClass() == UnresolvedUsing;
2018  }
2019  static bool classof(const UnresolvedUsingType *) { return true; }
2020
2021  void Profile(llvm::FoldingSetNodeID &ID) {
2022    return Profile(ID, Decl);
2023  }
2024  static void Profile(llvm::FoldingSetNodeID &ID,
2025                      UnresolvedUsingTypenameDecl *D) {
2026    ID.AddPointer(D);
2027  }
2028};
2029
2030
2031class TypedefType : public Type {
2032  TypedefDecl *Decl;
2033protected:
2034  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
2035    : Type(tc, can, can->isDependentType()),
2036      Decl(const_cast<TypedefDecl*>(D)) {
2037    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2038  }
2039  friend class ASTContext;  // ASTContext creates these.
2040public:
2041
2042  TypedefDecl *getDecl() const { return Decl; }
2043
2044  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
2045  /// potentially looking through *all* consecutive typedefs.  This returns the
2046  /// sum of the type qualifiers, so if you have:
2047  ///   typedef const int A;
2048  ///   typedef volatile A B;
2049  /// looking through the typedefs for B will give you "const volatile A".
2050  QualType LookThroughTypedefs() const;
2051
2052  bool isSugared() const { return true; }
2053  QualType desugar() const;
2054
2055  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2056  static bool classof(const TypedefType *) { return true; }
2057};
2058
2059/// TypeOfExprType (GCC extension).
2060class TypeOfExprType : public Type {
2061  Expr *TOExpr;
2062
2063protected:
2064  TypeOfExprType(Expr *E, QualType can = QualType());
2065  friend class ASTContext;  // ASTContext creates these.
2066public:
2067  Expr *getUnderlyingExpr() const { return TOExpr; }
2068
2069  /// \brief Remove a single level of sugar.
2070  QualType desugar() const;
2071
2072  /// \brief Returns whether this type directly provides sugar.
2073  bool isSugared() const { return true; }
2074
2075  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2076  static bool classof(const TypeOfExprType *) { return true; }
2077};
2078
2079/// \brief Internal representation of canonical, dependent
2080/// typeof(expr) types.
2081///
2082/// This class is used internally by the ASTContext to manage
2083/// canonical, dependent types, only. Clients will only see instances
2084/// of this class via TypeOfExprType nodes.
2085class DependentTypeOfExprType
2086  : public TypeOfExprType, public llvm::FoldingSetNode {
2087  ASTContext &Context;
2088
2089public:
2090  DependentTypeOfExprType(ASTContext &Context, Expr *E)
2091    : TypeOfExprType(E), Context(Context) { }
2092
2093  bool isSugared() const { return false; }
2094  QualType desugar() const { return QualType(this, 0); }
2095
2096  void Profile(llvm::FoldingSetNodeID &ID) {
2097    Profile(ID, Context, getUnderlyingExpr());
2098  }
2099
2100  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2101                      Expr *E);
2102};
2103
2104/// TypeOfType (GCC extension).
2105class TypeOfType : public Type {
2106  QualType TOType;
2107  TypeOfType(QualType T, QualType can)
2108    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
2109    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2110  }
2111  friend class ASTContext;  // ASTContext creates these.
2112public:
2113  QualType getUnderlyingType() const { return TOType; }
2114
2115  /// \brief Remove a single level of sugar.
2116  QualType desugar() const { return getUnderlyingType(); }
2117
2118  /// \brief Returns whether this type directly provides sugar.
2119  bool isSugared() const { return true; }
2120
2121  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2122  static bool classof(const TypeOfType *) { return true; }
2123};
2124
2125/// DecltypeType (C++0x)
2126class DecltypeType : public Type {
2127  Expr *E;
2128
2129  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2130  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2131  // from it.
2132  QualType UnderlyingType;
2133
2134protected:
2135  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2136  friend class ASTContext;  // ASTContext creates these.
2137public:
2138  Expr *getUnderlyingExpr() const { return E; }
2139  QualType getUnderlyingType() const { return UnderlyingType; }
2140
2141  /// \brief Remove a single level of sugar.
2142  QualType desugar() const { return getUnderlyingType(); }
2143
2144  /// \brief Returns whether this type directly provides sugar.
2145  bool isSugared() const { return !isDependentType(); }
2146
2147  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2148  static bool classof(const DecltypeType *) { return true; }
2149};
2150
2151/// \brief Internal representation of canonical, dependent
2152/// decltype(expr) types.
2153///
2154/// This class is used internally by the ASTContext to manage
2155/// canonical, dependent types, only. Clients will only see instances
2156/// of this class via DecltypeType nodes.
2157class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2158  ASTContext &Context;
2159
2160public:
2161  DependentDecltypeType(ASTContext &Context, Expr *E);
2162
2163  bool isSugared() const { return false; }
2164  QualType desugar() const { return QualType(this, 0); }
2165
2166  void Profile(llvm::FoldingSetNodeID &ID) {
2167    Profile(ID, Context, getUnderlyingExpr());
2168  }
2169
2170  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2171                      Expr *E);
2172};
2173
2174class TagType : public Type {
2175  /// Stores the TagDecl associated with this type. The decl will
2176  /// point to the TagDecl that actually defines the entity (or is a
2177  /// definition in progress), if there is such a definition. The
2178  /// single-bit value will be non-zero when this tag is in the
2179  /// process of being defined.
2180  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
2181  friend class ASTContext;
2182  friend class TagDecl;
2183
2184protected:
2185  TagType(TypeClass TC, const TagDecl *D, QualType can);
2186
2187public:
2188  TagDecl *getDecl() const { return decl.getPointer(); }
2189
2190  /// @brief Determines whether this type is in the process of being
2191  /// defined.
2192  bool isBeingDefined() const { return decl.getInt(); }
2193  void setBeingDefined(bool Def) const { decl.setInt(Def? 1 : 0); }
2194
2195  virtual Linkage getLinkage() const;
2196
2197  static bool classof(const Type *T) {
2198    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2199  }
2200  static bool classof(const TagType *) { return true; }
2201  static bool classof(const RecordType *) { return true; }
2202  static bool classof(const EnumType *) { return true; }
2203};
2204
2205/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2206/// to detect TagType objects of structs/unions/classes.
2207class RecordType : public TagType {
2208protected:
2209  explicit RecordType(const RecordDecl *D)
2210    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2211  explicit RecordType(TypeClass TC, RecordDecl *D)
2212    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2213  friend class ASTContext;   // ASTContext creates these.
2214public:
2215
2216  RecordDecl *getDecl() const {
2217    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2218  }
2219
2220  // FIXME: This predicate is a helper to QualType/Type. It needs to
2221  // recursively check all fields for const-ness. If any field is declared
2222  // const, it needs to return false.
2223  bool hasConstFields() const { return false; }
2224
2225  // FIXME: RecordType needs to check when it is created that all fields are in
2226  // the same address space, and return that.
2227  unsigned getAddressSpace() const { return 0; }
2228
2229  bool isSugared() const { return false; }
2230  QualType desugar() const { return QualType(this, 0); }
2231
2232  static bool classof(const TagType *T);
2233  static bool classof(const Type *T) {
2234    return isa<TagType>(T) && classof(cast<TagType>(T));
2235  }
2236  static bool classof(const RecordType *) { return true; }
2237};
2238
2239/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2240/// to detect TagType objects of enums.
2241class EnumType : public TagType {
2242  explicit EnumType(const EnumDecl *D)
2243    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2244  friend class ASTContext;   // ASTContext creates these.
2245public:
2246
2247  EnumDecl *getDecl() const {
2248    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2249  }
2250
2251  bool isSugared() const { return false; }
2252  QualType desugar() const { return QualType(this, 0); }
2253
2254  static bool classof(const TagType *T);
2255  static bool classof(const Type *T) {
2256    return isa<TagType>(T) && classof(cast<TagType>(T));
2257  }
2258  static bool classof(const EnumType *) { return true; }
2259};
2260
2261/// ElaboratedType - A non-canonical type used to represents uses of
2262/// elaborated type specifiers in C++.  For example:
2263///
2264///   void foo(union MyUnion);
2265///            ^^^^^^^^^^^^^
2266///
2267/// At the moment, for efficiency we do not create elaborated types in
2268/// C, since outside of typedefs all references to structs would
2269/// necessarily be elaborated.
2270class ElaboratedType : public Type, public llvm::FoldingSetNode {
2271public:
2272  enum TagKind {
2273    TK_struct,
2274    TK_union,
2275    TK_class,
2276    TK_enum
2277  };
2278
2279private:
2280  /// The tag that was used in this elaborated type specifier.
2281  TagKind Tag;
2282
2283  /// The underlying type.
2284  QualType UnderlyingType;
2285
2286  explicit ElaboratedType(QualType Ty, TagKind Tag, QualType Canon)
2287    : Type(Elaborated, Canon, Canon->isDependentType()),
2288      Tag(Tag), UnderlyingType(Ty) { }
2289  friend class ASTContext;   // ASTContext creates these.
2290
2291public:
2292  TagKind getTagKind() const { return Tag; }
2293  QualType getUnderlyingType() const { return UnderlyingType; }
2294
2295  /// \brief Remove a single level of sugar.
2296  QualType desugar() const { return getUnderlyingType(); }
2297
2298  /// \brief Returns whether this type directly provides sugar.
2299  bool isSugared() const { return true; }
2300
2301  static const char *getNameForTagKind(TagKind Kind) {
2302    switch (Kind) {
2303    default: assert(0 && "Unknown TagKind!");
2304    case TK_struct: return "struct";
2305    case TK_union:  return "union";
2306    case TK_class:  return "class";
2307    case TK_enum:   return "enum";
2308    }
2309  }
2310
2311  void Profile(llvm::FoldingSetNodeID &ID) {
2312    Profile(ID, getUnderlyingType(), getTagKind());
2313  }
2314  static void Profile(llvm::FoldingSetNodeID &ID, QualType T, TagKind Tag) {
2315    ID.AddPointer(T.getAsOpaquePtr());
2316    ID.AddInteger(Tag);
2317  }
2318
2319  static bool classof(const ElaboratedType*) { return true; }
2320  static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
2321};
2322
2323class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2324  unsigned Depth : 15;
2325  unsigned Index : 16;
2326  unsigned ParameterPack : 1;
2327  IdentifierInfo *Name;
2328
2329  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2330                       QualType Canon)
2331    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2332      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2333
2334  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2335    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2336      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2337
2338  friend class ASTContext;  // ASTContext creates these
2339
2340public:
2341  unsigned getDepth() const { return Depth; }
2342  unsigned getIndex() const { return Index; }
2343  bool isParameterPack() const { return ParameterPack; }
2344  IdentifierInfo *getName() const { return Name; }
2345
2346  bool isSugared() const { return false; }
2347  QualType desugar() const { return QualType(this, 0); }
2348
2349  void Profile(llvm::FoldingSetNodeID &ID) {
2350    Profile(ID, Depth, Index, ParameterPack, Name);
2351  }
2352
2353  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2354                      unsigned Index, bool ParameterPack,
2355                      IdentifierInfo *Name) {
2356    ID.AddInteger(Depth);
2357    ID.AddInteger(Index);
2358    ID.AddBoolean(ParameterPack);
2359    ID.AddPointer(Name);
2360  }
2361
2362  static bool classof(const Type *T) {
2363    return T->getTypeClass() == TemplateTypeParm;
2364  }
2365  static bool classof(const TemplateTypeParmType *T) { return true; }
2366};
2367
2368/// \brief Represents the result of substituting a type for a template
2369/// type parameter.
2370///
2371/// Within an instantiated template, all template type parameters have
2372/// been replaced with these.  They are used solely to record that a
2373/// type was originally written as a template type parameter;
2374/// therefore they are never canonical.
2375class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2376  // The original type parameter.
2377  const TemplateTypeParmType *Replaced;
2378
2379  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2380    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2381      Replaced(Param) { }
2382
2383  friend class ASTContext;
2384
2385public:
2386  IdentifierInfo *getName() const { return Replaced->getName(); }
2387
2388  /// Gets the template parameter that was substituted for.
2389  const TemplateTypeParmType *getReplacedParameter() const {
2390    return Replaced;
2391  }
2392
2393  /// Gets the type that was substituted for the template
2394  /// parameter.
2395  QualType getReplacementType() const {
2396    return getCanonicalTypeInternal();
2397  }
2398
2399  bool isSugared() const { return true; }
2400  QualType desugar() const { return getReplacementType(); }
2401
2402  void Profile(llvm::FoldingSetNodeID &ID) {
2403    Profile(ID, getReplacedParameter(), getReplacementType());
2404  }
2405  static void Profile(llvm::FoldingSetNodeID &ID,
2406                      const TemplateTypeParmType *Replaced,
2407                      QualType Replacement) {
2408    ID.AddPointer(Replaced);
2409    ID.AddPointer(Replacement.getAsOpaquePtr());
2410  }
2411
2412  static bool classof(const Type *T) {
2413    return T->getTypeClass() == SubstTemplateTypeParm;
2414  }
2415  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2416};
2417
2418/// \brief Represents the type of a template specialization as written
2419/// in the source code.
2420///
2421/// Template specialization types represent the syntactic form of a
2422/// template-id that refers to a type, e.g., @c vector<int>. Some
2423/// template specialization types are syntactic sugar, whose canonical
2424/// type will point to some other type node that represents the
2425/// instantiation or class template specialization. For example, a
2426/// class template specialization type of @c vector<int> will refer to
2427/// a tag type for the instantiation
2428/// @c std::vector<int, std::allocator<int>>.
2429///
2430/// Other template specialization types, for which the template name
2431/// is dependent, may be canonical types. These types are always
2432/// dependent.
2433class TemplateSpecializationType
2434  : public Type, public llvm::FoldingSetNode {
2435
2436  // FIXME: Currently needed for profiling expressions; can we avoid this?
2437  ASTContext &Context;
2438
2439    /// \brief The name of the template being specialized.
2440  TemplateName Template;
2441
2442  /// \brief - The number of template arguments named in this class
2443  /// template specialization.
2444  unsigned NumArgs;
2445
2446  TemplateSpecializationType(ASTContext &Context,
2447                             TemplateName T,
2448                             const TemplateArgument *Args,
2449                             unsigned NumArgs, QualType Canon);
2450
2451  virtual void Destroy(ASTContext& C);
2452
2453  friend class ASTContext;  // ASTContext creates these
2454
2455public:
2456  /// \brief Determine whether any of the given template arguments are
2457  /// dependent.
2458  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2459                                            unsigned NumArgs);
2460
2461  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2462                                            unsigned NumArgs);
2463
2464  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2465
2466  /// \brief Print a template argument list, including the '<' and '>'
2467  /// enclosing the template arguments.
2468  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2469                                               unsigned NumArgs,
2470                                               const PrintingPolicy &Policy);
2471
2472  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2473                                               unsigned NumArgs,
2474                                               const PrintingPolicy &Policy);
2475
2476  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2477                                               const PrintingPolicy &Policy);
2478
2479  typedef const TemplateArgument * iterator;
2480
2481  iterator begin() const { return getArgs(); }
2482  iterator end() const;
2483
2484  /// \brief Retrieve the name of the template that we are specializing.
2485  TemplateName getTemplateName() const { return Template; }
2486
2487  /// \brief Retrieve the template arguments.
2488  const TemplateArgument *getArgs() const {
2489    return reinterpret_cast<const TemplateArgument *>(this + 1);
2490  }
2491
2492  /// \brief Retrieve the number of template arguments.
2493  unsigned getNumArgs() const { return NumArgs; }
2494
2495  /// \brief Retrieve a specific template argument as a type.
2496  /// \precondition @c isArgType(Arg)
2497  const TemplateArgument &getArg(unsigned Idx) const;
2498
2499  bool isSugared() const { return !isDependentType(); }
2500  QualType desugar() const { return getCanonicalTypeInternal(); }
2501
2502  void Profile(llvm::FoldingSetNodeID &ID) {
2503    Profile(ID, Template, getArgs(), NumArgs, Context);
2504  }
2505
2506  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2507                      const TemplateArgument *Args, unsigned NumArgs,
2508                      ASTContext &Context);
2509
2510  static bool classof(const Type *T) {
2511    return T->getTypeClass() == TemplateSpecialization;
2512  }
2513  static bool classof(const TemplateSpecializationType *T) { return true; }
2514};
2515
2516/// \brief The injected class name of a C++ class template.  Used to
2517/// record that a type was spelled with a bare identifier rather than
2518/// as a template-id; the equivalent for non-templated classes is just
2519/// RecordType.
2520///
2521/// For consistency, template instantiation turns these into RecordTypes.
2522///
2523/// The desugared form is always a unqualified TemplateSpecializationType.
2524/// The canonical form is always either a TemplateSpecializationType
2525/// (when dependent) or a RecordType (otherwise).
2526class InjectedClassNameType : public Type {
2527  CXXRecordDecl *Decl;
2528
2529  QualType UnderlyingType;
2530
2531  friend class ASTContext; // ASTContext creates these.
2532  InjectedClassNameType(CXXRecordDecl *D, QualType TST, QualType Canon)
2533    : Type(InjectedClassName, Canon, Canon->isDependentType()),
2534      Decl(D), UnderlyingType(TST) {
2535    assert(isa<TemplateSpecializationType>(TST));
2536    assert(!TST.hasQualifiers());
2537    assert(TST->getCanonicalTypeInternal() == Canon);
2538  }
2539
2540public:
2541  QualType getUnderlyingType() const { return UnderlyingType; }
2542  const TemplateSpecializationType *getUnderlyingTST() const {
2543    return cast<TemplateSpecializationType>(UnderlyingType.getTypePtr());
2544  }
2545
2546  CXXRecordDecl *getDecl() const { return Decl; }
2547
2548  bool isSugared() const { return true; }
2549  QualType desugar() const { return UnderlyingType; }
2550
2551  static bool classof(const Type *T) {
2552    return T->getTypeClass() == InjectedClassName;
2553  }
2554  static bool classof(const InjectedClassNameType *T) { return true; }
2555};
2556
2557/// \brief The elaboration keyword that precedes a qualified type name or
2558/// introduces an elaborated-type-specifier.
2559enum ElaboratedTypeKeyword {
2560  /// \brief No keyword precedes the qualified type name.
2561  ETK_None,
2562  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
2563  /// \c typename T::type.
2564  ETK_Typename,
2565  /// \brief The "class" keyword introduces the elaborated-type-specifier.
2566  ETK_Class,
2567  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
2568  ETK_Struct,
2569  /// \brief The "union" keyword introduces the elaborated-type-specifier.
2570  ETK_Union,
2571  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
2572  ETK_Enum
2573};
2574
2575/// \brief Represents a type that was referred to via a qualified
2576/// name, e.g., N::M::type.
2577///
2578/// This type is used to keep track of a type name as written in the
2579/// source code, including any nested-name-specifiers. The type itself
2580/// is always "sugar", used to express what was written in the source
2581/// code but containing no additional semantic information.
2582class QualifiedNameType : public Type, public llvm::FoldingSetNode {
2583  /// \brief The nested name specifier containing the qualifier.
2584  NestedNameSpecifier *NNS;
2585
2586  /// \brief The type that this qualified name refers to.
2587  QualType NamedType;
2588
2589  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
2590                    QualType CanonType)
2591    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
2592      NNS(NNS), NamedType(NamedType) { }
2593
2594  friend class ASTContext;  // ASTContext creates these
2595
2596public:
2597  /// \brief Retrieve the qualification on this type.
2598  NestedNameSpecifier *getQualifier() const { return NNS; }
2599
2600  /// \brief Retrieve the type named by the qualified-id.
2601  QualType getNamedType() const { return NamedType; }
2602
2603  /// \brief Remove a single level of sugar.
2604  QualType desugar() const { return getNamedType(); }
2605
2606  /// \brief Returns whether this type directly provides sugar.
2607  bool isSugared() const { return true; }
2608
2609  void Profile(llvm::FoldingSetNodeID &ID) {
2610    Profile(ID, NNS, NamedType);
2611  }
2612
2613  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2614                      QualType NamedType) {
2615    ID.AddPointer(NNS);
2616    NamedType.Profile(ID);
2617  }
2618
2619  static bool classof(const Type *T) {
2620    return T->getTypeClass() == QualifiedName;
2621  }
2622  static bool classof(const QualifiedNameType *T) { return true; }
2623};
2624
2625/// \brief Represents a qualified type name for which the type name is
2626/// dependent.
2627///
2628/// DependentNameType represents a class of dependent types that involve a
2629/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
2630/// name of a type. The DependentNameType may start with a "typename" (for a
2631/// typename-specifier), "class", "struct", "union", or "enum" (for a
2632/// dependent elaborated-type-specifier), or nothing (in contexts where we
2633/// know that we must be referring to a type, e.g., in a base class specifier).
2634class DependentNameType : public Type, public llvm::FoldingSetNode {
2635  /// \brief The keyword used to elaborate this type.
2636  ElaboratedTypeKeyword Keyword;
2637
2638  /// \brief The nested name specifier containing the qualifier.
2639  NestedNameSpecifier *NNS;
2640
2641  typedef llvm::PointerUnion<const IdentifierInfo *,
2642                             const TemplateSpecializationType *> NameType;
2643
2644  /// \brief The type that this typename specifier refers to.
2645  NameType Name;
2646
2647  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2648                    const IdentifierInfo *Name, QualType CanonType)
2649    : Type(DependentName, CanonType, true),
2650      Keyword(Keyword), NNS(NNS), Name(Name) {
2651    assert(NNS->isDependent() &&
2652           "DependentNameType requires a dependent nested-name-specifier");
2653  }
2654
2655  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2656                    const TemplateSpecializationType *Ty, QualType CanonType)
2657    : Type(DependentName, CanonType, true),
2658      Keyword(Keyword), NNS(NNS), Name(Ty) {
2659    assert(NNS->isDependent() &&
2660           "DependentNameType requires a dependent nested-name-specifier");
2661  }
2662
2663  friend class ASTContext;  // ASTContext creates these
2664
2665public:
2666  /// \brief Retrieve the keyword used to elaborate this type.
2667  ElaboratedTypeKeyword getKeyword() const { return Keyword; }
2668
2669  /// \brief Retrieve the qualification on this type.
2670  NestedNameSpecifier *getQualifier() const { return NNS; }
2671
2672  /// \brief Retrieve the type named by the typename specifier as an
2673  /// identifier.
2674  ///
2675  /// This routine will return a non-NULL identifier pointer when the
2676  /// form of the original typename was terminated by an identifier,
2677  /// e.g., "typename T::type".
2678  const IdentifierInfo *getIdentifier() const {
2679    return Name.dyn_cast<const IdentifierInfo *>();
2680  }
2681
2682  /// \brief Retrieve the type named by the typename specifier as a
2683  /// type specialization.
2684  const TemplateSpecializationType *getTemplateId() const {
2685    return Name.dyn_cast<const TemplateSpecializationType *>();
2686  }
2687
2688  bool isSugared() const { return false; }
2689  QualType desugar() const { return QualType(this, 0); }
2690
2691  void Profile(llvm::FoldingSetNodeID &ID) {
2692    Profile(ID, Keyword, NNS, Name);
2693  }
2694
2695  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2696                      NestedNameSpecifier *NNS, NameType Name) {
2697    ID.AddInteger(Keyword);
2698    ID.AddPointer(NNS);
2699    ID.AddPointer(Name.getOpaqueValue());
2700  }
2701
2702  static bool classof(const Type *T) {
2703    return T->getTypeClass() == DependentName;
2704  }
2705  static bool classof(const DependentNameType *T) { return true; }
2706};
2707
2708/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
2709/// object oriented design.  They basically correspond to C++ classes.  There
2710/// are two kinds of interface types, normal interfaces like "NSString" and
2711/// qualified interfaces, which are qualified with a protocol list like
2712/// "NSString<NSCopyable, NSAmazing>".
2713class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
2714  ObjCInterfaceDecl *Decl;
2715
2716  /// \brief The number of protocols stored after the ObjCInterfaceType node.
2717  /// The list of protocols is sorted on protocol name. No protocol is enterred
2718  /// more than once.
2719  unsigned NumProtocols;
2720
2721  ObjCInterfaceType(QualType Canonical, ObjCInterfaceDecl *D,
2722                    ObjCProtocolDecl **Protos, unsigned NumP);
2723  friend class ASTContext;  // ASTContext creates these.
2724public:
2725  void Destroy(ASTContext& C);
2726
2727  ObjCInterfaceDecl *getDecl() const { return Decl; }
2728
2729  /// getNumProtocols - Return the number of qualifying protocols in this
2730  /// interface type, or 0 if there are none.
2731  unsigned getNumProtocols() const { return NumProtocols; }
2732
2733  /// \brief Retrieve the Ith protocol.
2734  ObjCProtocolDecl *getProtocol(unsigned I) const {
2735    assert(I < getNumProtocols() && "Out-of-range protocol access");
2736    return qual_begin()[I];
2737  }
2738
2739  /// qual_iterator and friends: this provides access to the (potentially empty)
2740  /// list of protocols qualifying this interface.
2741  typedef ObjCProtocolDecl*  const * qual_iterator;
2742  qual_iterator qual_begin() const {
2743    return reinterpret_cast<qual_iterator>(this + 1);
2744  }
2745  qual_iterator qual_end() const   {
2746    return qual_begin() + NumProtocols;
2747  }
2748  bool qual_empty() const { return NumProtocols == 0; }
2749
2750  bool isSugared() const { return false; }
2751  QualType desugar() const { return QualType(this, 0); }
2752
2753  void Profile(llvm::FoldingSetNodeID &ID);
2754  static void Profile(llvm::FoldingSetNodeID &ID,
2755                      const ObjCInterfaceDecl *Decl,
2756                      ObjCProtocolDecl * const *protocols,
2757                      unsigned NumProtocols);
2758
2759  virtual Linkage getLinkage() const;
2760
2761  static bool classof(const Type *T) {
2762    return T->getTypeClass() == ObjCInterface;
2763  }
2764  static bool classof(const ObjCInterfaceType *) { return true; }
2765};
2766
2767/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
2768/// and 'Interface <p> *'.
2769///
2770/// Duplicate protocols are removed and protocol list is canonicalized to be in
2771/// alphabetical order.
2772class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
2773  QualType PointeeType; // A builtin or interface type.
2774
2775  /// \brief The number of protocols stored after the ObjCObjectPointerType
2776  /// node.
2777  ///
2778  /// The list of protocols is sorted on protocol name. No protocol is enterred
2779  /// more than once.
2780  unsigned NumProtocols;
2781
2782  ObjCObjectPointerType(QualType Canonical, QualType T,
2783                        ObjCProtocolDecl **Protos, unsigned NumP);
2784  friend class ASTContext;  // ASTContext creates these.
2785
2786public:
2787  void Destroy(ASTContext& C);
2788
2789  // Get the pointee type. Pointee will either be:
2790  // - a built-in type (for 'id' and 'Class').
2791  // - an interface type (for user-defined types).
2792  // - a TypedefType whose canonical type is an interface (as in 'T' below).
2793  //   For example: typedef NSObject T; T *var;
2794  QualType getPointeeType() const { return PointeeType; }
2795
2796  const ObjCInterfaceType *getInterfaceType() const {
2797    return PointeeType->getAs<ObjCInterfaceType>();
2798  }
2799  /// getInterfaceDecl - returns an interface decl for user-defined types.
2800  ObjCInterfaceDecl *getInterfaceDecl() const {
2801    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
2802  }
2803  /// isObjCIdType - true for "id".
2804  bool isObjCIdType() const {
2805    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2806           !NumProtocols;
2807  }
2808  /// isObjCClassType - true for "Class".
2809  bool isObjCClassType() const {
2810    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2811           !NumProtocols;
2812  }
2813
2814  /// isObjCQualifiedIdType - true for "id <p>".
2815  bool isObjCQualifiedIdType() const {
2816    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2817           NumProtocols;
2818  }
2819  /// isObjCQualifiedClassType - true for "Class <p>".
2820  bool isObjCQualifiedClassType() const {
2821    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2822           NumProtocols;
2823  }
2824  /// qual_iterator and friends: this provides access to the (potentially empty)
2825  /// list of protocols qualifying this interface.
2826  typedef ObjCProtocolDecl*  const * qual_iterator;
2827
2828  qual_iterator qual_begin() const {
2829    return reinterpret_cast<qual_iterator> (this + 1);
2830  }
2831  qual_iterator qual_end() const   {
2832    return qual_begin() + NumProtocols;
2833  }
2834  bool qual_empty() const { return NumProtocols == 0; }
2835
2836  /// getNumProtocols - Return the number of qualifying protocols in this
2837  /// interface type, or 0 if there are none.
2838  unsigned getNumProtocols() const { return NumProtocols; }
2839
2840  /// \brief Retrieve the Ith protocol.
2841  ObjCProtocolDecl *getProtocol(unsigned I) const {
2842    assert(I < getNumProtocols() && "Out-of-range protocol access");
2843    return qual_begin()[I];
2844  }
2845
2846  bool isSugared() const { return false; }
2847  QualType desugar() const { return QualType(this, 0); }
2848
2849  virtual Linkage getLinkage() const;
2850
2851  void Profile(llvm::FoldingSetNodeID &ID);
2852  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2853                      ObjCProtocolDecl *const *protocols,
2854                      unsigned NumProtocols);
2855  static bool classof(const Type *T) {
2856    return T->getTypeClass() == ObjCObjectPointer;
2857  }
2858  static bool classof(const ObjCObjectPointerType *) { return true; }
2859};
2860
2861/// A qualifier set is used to build a set of qualifiers.
2862class QualifierCollector : public Qualifiers {
2863  ASTContext *Context;
2864
2865public:
2866  QualifierCollector(Qualifiers Qs = Qualifiers())
2867    : Qualifiers(Qs), Context(0) {}
2868  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
2869    : Qualifiers(Qs), Context(&Context) {}
2870
2871  void setContext(ASTContext &C) { Context = &C; }
2872
2873  /// Collect any qualifiers on the given type and return an
2874  /// unqualified type.
2875  const Type *strip(QualType QT) {
2876    addFastQualifiers(QT.getLocalFastQualifiers());
2877    if (QT.hasLocalNonFastQualifiers()) {
2878      const ExtQuals *EQ = QT.getExtQualsUnsafe();
2879      Context = &EQ->getContext();
2880      addQualifiers(EQ->getQualifiers());
2881      return EQ->getBaseType();
2882    }
2883    return QT.getTypePtrUnsafe();
2884  }
2885
2886  /// Apply the collected qualifiers to the given type.
2887  QualType apply(QualType QT) const;
2888
2889  /// Apply the collected qualifiers to the given type.
2890  QualType apply(const Type* T) const;
2891
2892};
2893
2894
2895// Inline function definitions.
2896
2897inline bool QualType::isCanonical() const {
2898  const Type *T = getTypePtr();
2899  if (hasLocalQualifiers())
2900    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
2901  return T->isCanonicalUnqualified();
2902}
2903
2904inline bool QualType::isCanonicalAsParam() const {
2905  if (hasLocalQualifiers()) return false;
2906  const Type *T = getTypePtr();
2907  return T->isCanonicalUnqualified() &&
2908           !isa<FunctionType>(T) && !isa<ArrayType>(T);
2909}
2910
2911inline bool QualType::isConstQualified() const {
2912  return isLocalConstQualified() ||
2913              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
2914}
2915
2916inline bool QualType::isRestrictQualified() const {
2917  return isLocalRestrictQualified() ||
2918            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
2919}
2920
2921
2922inline bool QualType::isVolatileQualified() const {
2923  return isLocalVolatileQualified() ||
2924  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
2925}
2926
2927inline bool QualType::hasQualifiers() const {
2928  return hasLocalQualifiers() ||
2929                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
2930}
2931
2932inline Qualifiers QualType::getQualifiers() const {
2933  Qualifiers Quals = getLocalQualifiers();
2934  Quals.addQualifiers(
2935                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
2936  return Quals;
2937}
2938
2939inline unsigned QualType::getCVRQualifiers() const {
2940  return getLocalCVRQualifiers() |
2941              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
2942}
2943
2944/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
2945/// type, returns them. Otherwise, if this is an array type, recurses
2946/// on the element type until some qualifiers have been found or a non-array
2947/// type reached.
2948inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
2949  if (unsigned Quals = getCVRQualifiers())
2950    return Quals;
2951  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2952  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2953    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
2954  return 0;
2955}
2956
2957inline void QualType::removeConst() {
2958  removeFastQualifiers(Qualifiers::Const);
2959}
2960
2961inline void QualType::removeRestrict() {
2962  removeFastQualifiers(Qualifiers::Restrict);
2963}
2964
2965inline void QualType::removeVolatile() {
2966  QualifierCollector Qc;
2967  const Type *Ty = Qc.strip(*this);
2968  if (Qc.hasVolatile()) {
2969    Qc.removeVolatile();
2970    *this = Qc.apply(Ty);
2971  }
2972}
2973
2974inline void QualType::removeCVRQualifiers(unsigned Mask) {
2975  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
2976
2977  // Fast path: we don't need to touch the slow qualifiers.
2978  if (!(Mask & ~Qualifiers::FastMask)) {
2979    removeFastQualifiers(Mask);
2980    return;
2981  }
2982
2983  QualifierCollector Qc;
2984  const Type *Ty = Qc.strip(*this);
2985  Qc.removeCVRQualifiers(Mask);
2986  *this = Qc.apply(Ty);
2987}
2988
2989/// getAddressSpace - Return the address space of this type.
2990inline unsigned QualType::getAddressSpace() const {
2991  if (hasLocalNonFastQualifiers()) {
2992    const ExtQuals *EQ = getExtQualsUnsafe();
2993    if (EQ->hasAddressSpace())
2994      return EQ->getAddressSpace();
2995  }
2996
2997  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2998  if (CT.hasLocalNonFastQualifiers()) {
2999    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3000    if (EQ->hasAddressSpace())
3001      return EQ->getAddressSpace();
3002  }
3003
3004  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3005    return AT->getElementType().getAddressSpace();
3006  if (const RecordType *RT = dyn_cast<RecordType>(CT))
3007    return RT->getAddressSpace();
3008  return 0;
3009}
3010
3011/// getObjCGCAttr - Return the gc attribute of this type.
3012inline Qualifiers::GC QualType::getObjCGCAttr() const {
3013  if (hasLocalNonFastQualifiers()) {
3014    const ExtQuals *EQ = getExtQualsUnsafe();
3015    if (EQ->hasObjCGCAttr())
3016      return EQ->getObjCGCAttr();
3017  }
3018
3019  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3020  if (CT.hasLocalNonFastQualifiers()) {
3021    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3022    if (EQ->hasObjCGCAttr())
3023      return EQ->getObjCGCAttr();
3024  }
3025
3026  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3027      return AT->getElementType().getObjCGCAttr();
3028  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
3029    return PT->getPointeeType().getObjCGCAttr();
3030  // We most look at all pointer types, not just pointer to interface types.
3031  if (const PointerType *PT = CT->getAs<PointerType>())
3032    return PT->getPointeeType().getObjCGCAttr();
3033  return Qualifiers::GCNone;
3034}
3035
3036inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
3037  if (const PointerType *PT = t.getAs<PointerType>()) {
3038    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
3039      return FT->getExtInfo();
3040  } else if (const FunctionType *FT = t.getAs<FunctionType>())
3041    return FT->getExtInfo();
3042
3043  return FunctionType::ExtInfo();
3044}
3045
3046inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
3047  return getFunctionExtInfo(*t);
3048}
3049
3050/// isMoreQualifiedThan - Determine whether this type is more
3051/// qualified than the Other type. For example, "const volatile int"
3052/// is more qualified than "const int", "volatile int", and
3053/// "int". However, it is not more qualified than "const volatile
3054/// int".
3055inline bool QualType::isMoreQualifiedThan(QualType Other) const {
3056  // FIXME: work on arbitrary qualifiers
3057  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3058  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3059  if (getAddressSpace() != Other.getAddressSpace())
3060    return false;
3061  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
3062}
3063
3064/// isAtLeastAsQualifiedAs - Determine whether this type is at last
3065/// as qualified as the Other type. For example, "const volatile
3066/// int" is at least as qualified as "const int", "volatile int",
3067/// "int", and "const volatile int".
3068inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
3069  // FIXME: work on arbitrary qualifiers
3070  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3071  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3072  if (getAddressSpace() != Other.getAddressSpace())
3073    return false;
3074  return (MyQuals | OtherQuals) == MyQuals;
3075}
3076
3077/// getNonReferenceType - If Type is a reference type (e.g., const
3078/// int&), returns the type that the reference refers to ("const
3079/// int"). Otherwise, returns the type itself. This routine is used
3080/// throughout Sema to implement C++ 5p6:
3081///
3082///   If an expression initially has the type "reference to T" (8.3.2,
3083///   8.5.3), the type is adjusted to "T" prior to any further
3084///   analysis, the expression designates the object or function
3085///   denoted by the reference, and the expression is an lvalue.
3086inline QualType QualType::getNonReferenceType() const {
3087  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
3088    return RefType->getPointeeType();
3089  else
3090    return *this;
3091}
3092
3093inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
3094  if (const PointerType *PT = getAs<PointerType>())
3095    return PT->getPointeeType()->getAs<ObjCInterfaceType>();
3096  return 0;
3097}
3098
3099inline bool Type::isFunctionType() const {
3100  return isa<FunctionType>(CanonicalType);
3101}
3102inline bool Type::isPointerType() const {
3103  return isa<PointerType>(CanonicalType);
3104}
3105inline bool Type::isAnyPointerType() const {
3106  return isPointerType() || isObjCObjectPointerType();
3107}
3108inline bool Type::isBlockPointerType() const {
3109  return isa<BlockPointerType>(CanonicalType);
3110}
3111inline bool Type::isReferenceType() const {
3112  return isa<ReferenceType>(CanonicalType);
3113}
3114inline bool Type::isLValueReferenceType() const {
3115  return isa<LValueReferenceType>(CanonicalType);
3116}
3117inline bool Type::isRValueReferenceType() const {
3118  return isa<RValueReferenceType>(CanonicalType);
3119}
3120inline bool Type::isFunctionPointerType() const {
3121  if (const PointerType* T = getAs<PointerType>())
3122    return T->getPointeeType()->isFunctionType();
3123  else
3124    return false;
3125}
3126inline bool Type::isMemberPointerType() const {
3127  return isa<MemberPointerType>(CanonicalType);
3128}
3129inline bool Type::isMemberFunctionPointerType() const {
3130  if (const MemberPointerType* T = getAs<MemberPointerType>())
3131    return T->getPointeeType()->isFunctionType();
3132  else
3133    return false;
3134}
3135inline bool Type::isArrayType() const {
3136  return isa<ArrayType>(CanonicalType);
3137}
3138inline bool Type::isConstantArrayType() const {
3139  return isa<ConstantArrayType>(CanonicalType);
3140}
3141inline bool Type::isIncompleteArrayType() const {
3142  return isa<IncompleteArrayType>(CanonicalType);
3143}
3144inline bool Type::isVariableArrayType() const {
3145  return isa<VariableArrayType>(CanonicalType);
3146}
3147inline bool Type::isDependentSizedArrayType() const {
3148  return isa<DependentSizedArrayType>(CanonicalType);
3149}
3150inline bool Type::isRecordType() const {
3151  return isa<RecordType>(CanonicalType);
3152}
3153inline bool Type::isAnyComplexType() const {
3154  return isa<ComplexType>(CanonicalType);
3155}
3156inline bool Type::isVectorType() const {
3157  return isa<VectorType>(CanonicalType);
3158}
3159inline bool Type::isExtVectorType() const {
3160  return isa<ExtVectorType>(CanonicalType);
3161}
3162inline bool Type::isObjCObjectPointerType() const {
3163  return isa<ObjCObjectPointerType>(CanonicalType);
3164}
3165inline bool Type::isObjCInterfaceType() const {
3166  return isa<ObjCInterfaceType>(CanonicalType);
3167}
3168inline bool Type::isObjCQualifiedIdType() const {
3169  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3170    return OPT->isObjCQualifiedIdType();
3171  return false;
3172}
3173inline bool Type::isObjCQualifiedClassType() const {
3174  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3175    return OPT->isObjCQualifiedClassType();
3176  return false;
3177}
3178inline bool Type::isObjCIdType() const {
3179  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3180    return OPT->isObjCIdType();
3181  return false;
3182}
3183inline bool Type::isObjCClassType() const {
3184  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3185    return OPT->isObjCClassType();
3186  return false;
3187}
3188inline bool Type::isObjCSelType() const {
3189  if (const PointerType *OPT = getAs<PointerType>())
3190    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3191  return false;
3192}
3193inline bool Type::isObjCBuiltinType() const {
3194  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3195}
3196inline bool Type::isTemplateTypeParmType() const {
3197  return isa<TemplateTypeParmType>(CanonicalType);
3198}
3199
3200inline bool Type::isSpecificBuiltinType(unsigned K) const {
3201  if (const BuiltinType *BT = getAs<BuiltinType>())
3202    if (BT->getKind() == (BuiltinType::Kind) K)
3203      return true;
3204  return false;
3205}
3206
3207/// \brief Determines whether this is a type for which one can define
3208/// an overloaded operator.
3209inline bool Type::isOverloadableType() const {
3210  return isDependentType() || isRecordType() || isEnumeralType();
3211}
3212
3213inline bool Type::hasPointerRepresentation() const {
3214  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3215          isObjCInterfaceType() || isObjCObjectPointerType() ||
3216          isObjCQualifiedInterfaceType() || isNullPtrType());
3217}
3218
3219inline bool Type::hasObjCPointerRepresentation() const {
3220  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
3221          isObjCQualifiedInterfaceType());
3222}
3223
3224/// Insertion operator for diagnostics.  This allows sending QualType's into a
3225/// diagnostic with <<.
3226inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3227                                           QualType T) {
3228  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3229                  Diagnostic::ak_qualtype);
3230  return DB;
3231}
3232
3233/// Insertion operator for partial diagnostics.  This allows sending QualType's
3234/// into a diagnostic with <<.
3235inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
3236                                           QualType T) {
3237  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3238                  Diagnostic::ak_qualtype);
3239  return PD;
3240}
3241
3242// Helper class template that is used by Type::getAs to ensure that one does
3243// not try to look through a qualified type to get to an array type.
3244template<typename T,
3245         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3246                             llvm::is_base_of<ArrayType, T>::value)>
3247struct ArrayType_cannot_be_used_with_getAs { };
3248
3249template<typename T>
3250struct ArrayType_cannot_be_used_with_getAs<T, true>;
3251
3252/// Member-template getAs<specific type>'.
3253template <typename T> const T *Type::getAs() const {
3254  ArrayType_cannot_be_used_with_getAs<T> at;
3255  (void)at;
3256
3257  // If this is directly a T type, return it.
3258  if (const T *Ty = dyn_cast<T>(this))
3259    return Ty;
3260
3261  // If the canonical form of this type isn't the right kind, reject it.
3262  if (!isa<T>(CanonicalType))
3263    return 0;
3264
3265  // If this is a typedef for the type, strip the typedef off without
3266  // losing all typedef information.
3267  return cast<T>(getUnqualifiedDesugaredType());
3268}
3269
3270}  // end namespace clang
3271
3272#endif
3273