Type.h revision 49f4e1cbd839da27ff4814b4ea6d85a79f786cbd
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Basic/Visibility.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/TemplateName.h"
24#include "llvm/Support/Casting.h"
25#include "llvm/Support/type_traits.h"
26#include "llvm/ADT/APSInt.h"
27#include "llvm/ADT/FoldingSet.h"
28#include "llvm/ADT/PointerIntPair.h"
29#include "llvm/ADT/PointerUnion.h"
30
31using llvm::isa;
32using llvm::cast;
33using llvm::cast_or_null;
34using llvm::dyn_cast;
35using llvm::dyn_cast_or_null;
36namespace clang {
37  enum {
38    TypeAlignmentInBits = 4,
39    TypeAlignment = 1 << TypeAlignmentInBits
40  };
41  class Type;
42  class ExtQuals;
43  class QualType;
44}
45
46namespace llvm {
47  template <typename T>
48  class PointerLikeTypeTraits;
49  template<>
50  class PointerLikeTypeTraits< ::clang::Type*> {
51  public:
52    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
53    static inline ::clang::Type *getFromVoidPointer(void *P) {
54      return static_cast< ::clang::Type*>(P);
55    }
56    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
57  };
58  template<>
59  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
60  public:
61    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
62    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
63      return static_cast< ::clang::ExtQuals*>(P);
64    }
65    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
66  };
67
68  template <>
69  struct isPodLike<clang::QualType> { static const bool value = true; };
70}
71
72namespace clang {
73  class ASTContext;
74  class TypedefDecl;
75  class TemplateDecl;
76  class TemplateTypeParmDecl;
77  class NonTypeTemplateParmDecl;
78  class TemplateTemplateParmDecl;
79  class TagDecl;
80  class RecordDecl;
81  class CXXRecordDecl;
82  class EnumDecl;
83  class FieldDecl;
84  class ObjCInterfaceDecl;
85  class ObjCProtocolDecl;
86  class ObjCMethodDecl;
87  class UnresolvedUsingTypenameDecl;
88  class Expr;
89  class Stmt;
90  class SourceLocation;
91  class StmtIteratorBase;
92  class TemplateArgument;
93  class TemplateArgumentLoc;
94  class TemplateArgumentListInfo;
95  class Type;
96  class ElaboratedType;
97  struct PrintingPolicy;
98
99  template <typename> class CanQual;
100  typedef CanQual<Type> CanQualType;
101
102  // Provide forward declarations for all of the *Type classes
103#define TYPE(Class, Base) class Class##Type;
104#include "clang/AST/TypeNodes.def"
105
106/// Qualifiers - The collection of all-type qualifiers we support.
107/// Clang supports five independent qualifiers:
108/// * C99: const, volatile, and restrict
109/// * Embedded C (TR18037): address spaces
110/// * Objective C: the GC attributes (none, weak, or strong)
111class Qualifiers {
112public:
113  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
114    Const    = 0x1,
115    Restrict = 0x2,
116    Volatile = 0x4,
117    CVRMask = Const | Volatile | Restrict
118  };
119
120  enum GC {
121    GCNone = 0,
122    Weak,
123    Strong
124  };
125
126  enum {
127    /// The maximum supported address space number.
128    /// 24 bits should be enough for anyone.
129    MaxAddressSpace = 0xffffffu,
130
131    /// The width of the "fast" qualifier mask.
132    FastWidth = 3,
133
134    /// The fast qualifier mask.
135    FastMask = (1 << FastWidth) - 1
136  };
137
138  Qualifiers() : Mask(0) {}
139
140  static Qualifiers fromFastMask(unsigned Mask) {
141    Qualifiers Qs;
142    Qs.addFastQualifiers(Mask);
143    return Qs;
144  }
145
146  static Qualifiers fromCVRMask(unsigned CVR) {
147    Qualifiers Qs;
148    Qs.addCVRQualifiers(CVR);
149    return Qs;
150  }
151
152  // Deserialize qualifiers from an opaque representation.
153  static Qualifiers fromOpaqueValue(unsigned opaque) {
154    Qualifiers Qs;
155    Qs.Mask = opaque;
156    return Qs;
157  }
158
159  // Serialize these qualifiers into an opaque representation.
160  unsigned getAsOpaqueValue() const {
161    return Mask;
162  }
163
164  bool hasConst() const { return Mask & Const; }
165  void setConst(bool flag) {
166    Mask = (Mask & ~Const) | (flag ? Const : 0);
167  }
168  void removeConst() { Mask &= ~Const; }
169  void addConst() { Mask |= Const; }
170
171  bool hasVolatile() const { return Mask & Volatile; }
172  void setVolatile(bool flag) {
173    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
174  }
175  void removeVolatile() { Mask &= ~Volatile; }
176  void addVolatile() { Mask |= Volatile; }
177
178  bool hasRestrict() const { return Mask & Restrict; }
179  void setRestrict(bool flag) {
180    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
181  }
182  void removeRestrict() { Mask &= ~Restrict; }
183  void addRestrict() { Mask |= Restrict; }
184
185  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
186  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
187  void setCVRQualifiers(unsigned mask) {
188    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
189    Mask = (Mask & ~CVRMask) | mask;
190  }
191  void removeCVRQualifiers(unsigned mask) {
192    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
193    Mask &= ~mask;
194  }
195  void removeCVRQualifiers() {
196    removeCVRQualifiers(CVRMask);
197  }
198  void addCVRQualifiers(unsigned mask) {
199    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
200    Mask |= mask;
201  }
202
203  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
204  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
205  void setObjCGCAttr(GC type) {
206    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
207  }
208  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
209  void addObjCGCAttr(GC type) {
210    assert(type);
211    setObjCGCAttr(type);
212  }
213
214  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
215  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
216  void setAddressSpace(unsigned space) {
217    assert(space <= MaxAddressSpace);
218    Mask = (Mask & ~AddressSpaceMask)
219         | (((uint32_t) space) << AddressSpaceShift);
220  }
221  void removeAddressSpace() { setAddressSpace(0); }
222  void addAddressSpace(unsigned space) {
223    assert(space);
224    setAddressSpace(space);
225  }
226
227  // Fast qualifiers are those that can be allocated directly
228  // on a QualType object.
229  bool hasFastQualifiers() const { return getFastQualifiers(); }
230  unsigned getFastQualifiers() const { return Mask & FastMask; }
231  void setFastQualifiers(unsigned mask) {
232    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
233    Mask = (Mask & ~FastMask) | mask;
234  }
235  void removeFastQualifiers(unsigned mask) {
236    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
237    Mask &= ~mask;
238  }
239  void removeFastQualifiers() {
240    removeFastQualifiers(FastMask);
241  }
242  void addFastQualifiers(unsigned mask) {
243    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
244    Mask |= mask;
245  }
246
247  /// hasNonFastQualifiers - Return true if the set contains any
248  /// qualifiers which require an ExtQuals node to be allocated.
249  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
250  Qualifiers getNonFastQualifiers() const {
251    Qualifiers Quals = *this;
252    Quals.setFastQualifiers(0);
253    return Quals;
254  }
255
256  /// hasQualifiers - Return true if the set contains any qualifiers.
257  bool hasQualifiers() const { return Mask; }
258  bool empty() const { return !Mask; }
259
260  /// \brief Add the qualifiers from the given set to this set.
261  void addQualifiers(Qualifiers Q) {
262    // If the other set doesn't have any non-boolean qualifiers, just
263    // bit-or it in.
264    if (!(Q.Mask & ~CVRMask))
265      Mask |= Q.Mask;
266    else {
267      Mask |= (Q.Mask & CVRMask);
268      if (Q.hasAddressSpace())
269        addAddressSpace(Q.getAddressSpace());
270      if (Q.hasObjCGCAttr())
271        addObjCGCAttr(Q.getObjCGCAttr());
272    }
273  }
274
275  bool isSupersetOf(Qualifiers Other) const;
276
277  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
278  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
279
280  operator bool() const { return hasQualifiers(); }
281
282  Qualifiers &operator+=(Qualifiers R) {
283    addQualifiers(R);
284    return *this;
285  }
286
287  // Union two qualifier sets.  If an enumerated qualifier appears
288  // in both sets, use the one from the right.
289  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
290    L += R;
291    return L;
292  }
293
294  Qualifiers &operator-=(Qualifiers R) {
295    Mask = Mask & ~(R.Mask);
296    return *this;
297  }
298
299  /// \brief Compute the difference between two qualifier sets.
300  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
301    L -= R;
302    return L;
303  }
304
305  std::string getAsString() const;
306  std::string getAsString(const PrintingPolicy &Policy) const {
307    std::string Buffer;
308    getAsStringInternal(Buffer, Policy);
309    return Buffer;
310  }
311  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
312
313  void Profile(llvm::FoldingSetNodeID &ID) const {
314    ID.AddInteger(Mask);
315  }
316
317private:
318
319  // bits:     |0 1 2|3 .. 4|5  ..  31|
320  //           |C R V|GCAttr|AddrSpace|
321  uint32_t Mask;
322
323  static const uint32_t GCAttrMask = 0x18;
324  static const uint32_t GCAttrShift = 3;
325  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
326  static const uint32_t AddressSpaceShift = 5;
327};
328
329
330/// ExtQuals - We can encode up to four bits in the low bits of a
331/// type pointer, but there are many more type qualifiers that we want
332/// to be able to apply to an arbitrary type.  Therefore we have this
333/// struct, intended to be heap-allocated and used by QualType to
334/// store qualifiers.
335///
336/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
337/// in three low bits on the QualType pointer; a fourth bit records whether
338/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
339/// Objective-C GC attributes) are much more rare.
340class ExtQuals : public llvm::FoldingSetNode {
341  // NOTE: changing the fast qualifiers should be straightforward as
342  // long as you don't make 'const' non-fast.
343  // 1. Qualifiers:
344  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
345  //       Fast qualifiers must occupy the low-order bits.
346  //    b) Update Qualifiers::FastWidth and FastMask.
347  // 2. QualType:
348  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
349  //    b) Update remove{Volatile,Restrict}, defined near the end of
350  //       this header.
351  // 3. ASTContext:
352  //    a) Update get{Volatile,Restrict}Type.
353
354  /// BaseType - the underlying type that this qualifies
355  const Type *BaseType;
356
357  /// Quals - the immutable set of qualifiers applied by this
358  /// node;  always contains extended qualifiers.
359  Qualifiers Quals;
360
361public:
362  ExtQuals(const Type *Base, Qualifiers Quals) : BaseType(Base), Quals(Quals)
363  {
364    assert(Quals.hasNonFastQualifiers()
365           && "ExtQuals created with no fast qualifiers");
366    assert(!Quals.hasFastQualifiers()
367           && "ExtQuals created with fast qualifiers");
368  }
369
370  Qualifiers getQualifiers() const { return Quals; }
371
372  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
373  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
374
375  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
376  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
377
378  const Type *getBaseType() const { return BaseType; }
379
380public:
381  void Profile(llvm::FoldingSetNodeID &ID) const {
382    Profile(ID, getBaseType(), Quals);
383  }
384  static void Profile(llvm::FoldingSetNodeID &ID,
385                      const Type *BaseType,
386                      Qualifiers Quals) {
387    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
388    ID.AddPointer(BaseType);
389    Quals.Profile(ID);
390  }
391};
392
393/// CallingConv - Specifies the calling convention that a function uses.
394enum CallingConv {
395  CC_Default,
396  CC_C,           // __attribute__((cdecl))
397  CC_X86StdCall,  // __attribute__((stdcall))
398  CC_X86FastCall, // __attribute__((fastcall))
399  CC_X86ThisCall, // __attribute__((thiscall))
400  CC_X86Pascal    // __attribute__((pascal))
401};
402
403typedef std::pair<const Type*, Qualifiers> SplitQualType;
404
405/// QualType - For efficiency, we don't store CV-qualified types as nodes on
406/// their own: instead each reference to a type stores the qualifiers.  This
407/// greatly reduces the number of nodes we need to allocate for types (for
408/// example we only need one for 'int', 'const int', 'volatile int',
409/// 'const volatile int', etc).
410///
411/// As an added efficiency bonus, instead of making this a pair, we
412/// just store the two bits we care about in the low bits of the
413/// pointer.  To handle the packing/unpacking, we make QualType be a
414/// simple wrapper class that acts like a smart pointer.  A third bit
415/// indicates whether there are extended qualifiers present, in which
416/// case the pointer points to a special structure.
417class QualType {
418  // Thankfully, these are efficiently composable.
419  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
420                       Qualifiers::FastWidth> Value;
421
422  const ExtQuals *getExtQualsUnsafe() const {
423    return Value.getPointer().get<const ExtQuals*>();
424  }
425
426  const Type *getTypePtrUnsafe() const {
427    return Value.getPointer().get<const Type*>();
428  }
429
430  QualType getUnqualifiedTypeSlow() const;
431
432  friend class QualifierCollector;
433public:
434  QualType() {}
435
436  QualType(const Type *Ptr, unsigned Quals)
437    : Value(Ptr, Quals) {}
438  QualType(const ExtQuals *Ptr, unsigned Quals)
439    : Value(Ptr, Quals) {}
440
441  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
442  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
443
444  /// Retrieves a pointer to the underlying (unqualified) type.
445  /// This should really return a const Type, but it's not worth
446  /// changing all the users right now.
447  Type *getTypePtr() const {
448    if (hasLocalNonFastQualifiers())
449      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
450    return const_cast<Type*>(getTypePtrUnsafe());
451  }
452
453  /// Divides a QualType into its unqualified type and a set of local
454  /// qualifiers.
455  SplitQualType split() const {
456    if (!hasLocalNonFastQualifiers())
457      return SplitQualType(getTypePtrUnsafe(),
458                           Qualifiers::fromFastMask(getLocalFastQualifiers()));
459
460    const ExtQuals *eq = getExtQualsUnsafe();
461    Qualifiers qs = eq->getQualifiers();
462    qs.addFastQualifiers(getLocalFastQualifiers());
463    return SplitQualType(eq->getBaseType(), qs);
464  }
465
466  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
467  static QualType getFromOpaquePtr(void *Ptr) {
468    QualType T;
469    T.Value.setFromOpaqueValue(Ptr);
470    return T;
471  }
472
473  Type &operator*() const {
474    return *getTypePtr();
475  }
476
477  Type *operator->() const {
478    return getTypePtr();
479  }
480
481  bool isCanonical() const;
482  bool isCanonicalAsParam() const;
483
484  /// isNull - Return true if this QualType doesn't point to a type yet.
485  bool isNull() const {
486    return Value.getPointer().isNull();
487  }
488
489  /// \brief Determine whether this particular QualType instance has the
490  /// "const" qualifier set, without looking through typedefs that may have
491  /// added "const" at a different level.
492  bool isLocalConstQualified() const {
493    return (getLocalFastQualifiers() & Qualifiers::Const);
494  }
495
496  /// \brief Determine whether this type is const-qualified.
497  bool isConstQualified() const;
498
499  /// \brief Determine whether this particular QualType instance has the
500  /// "restrict" qualifier set, without looking through typedefs that may have
501  /// added "restrict" at a different level.
502  bool isLocalRestrictQualified() const {
503    return (getLocalFastQualifiers() & Qualifiers::Restrict);
504  }
505
506  /// \brief Determine whether this type is restrict-qualified.
507  bool isRestrictQualified() const;
508
509  /// \brief Determine whether this particular QualType instance has the
510  /// "volatile" qualifier set, without looking through typedefs that may have
511  /// added "volatile" at a different level.
512  bool isLocalVolatileQualified() const {
513    return (getLocalFastQualifiers() & Qualifiers::Volatile);
514  }
515
516  /// \brief Determine whether this type is volatile-qualified.
517  bool isVolatileQualified() const;
518
519  /// \brief Determine whether this particular QualType instance has any
520  /// qualifiers, without looking through any typedefs that might add
521  /// qualifiers at a different level.
522  bool hasLocalQualifiers() const {
523    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
524  }
525
526  /// \brief Determine whether this type has any qualifiers.
527  bool hasQualifiers() const;
528
529  /// \brief Determine whether this particular QualType instance has any
530  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
531  /// instance.
532  bool hasLocalNonFastQualifiers() const {
533    return Value.getPointer().is<const ExtQuals*>();
534  }
535
536  /// \brief Retrieve the set of qualifiers local to this particular QualType
537  /// instance, not including any qualifiers acquired through typedefs or
538  /// other sugar.
539  Qualifiers getLocalQualifiers() const {
540    Qualifiers Quals;
541    if (hasLocalNonFastQualifiers())
542      Quals = getExtQualsUnsafe()->getQualifiers();
543    Quals.addFastQualifiers(getLocalFastQualifiers());
544    return Quals;
545  }
546
547  /// \brief Retrieve the set of qualifiers applied to this type.
548  Qualifiers getQualifiers() const;
549
550  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
551  /// local to this particular QualType instance, not including any qualifiers
552  /// acquired through typedefs or other sugar.
553  unsigned getLocalCVRQualifiers() const {
554    return getLocalFastQualifiers();
555  }
556
557  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
558  /// applied to this type.
559  unsigned getCVRQualifiers() const;
560
561  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
562  /// applied to this type, looking through any number of unqualified array
563  /// types to their element types' qualifiers.
564  unsigned getCVRQualifiersThroughArrayTypes() const;
565
566  bool isConstant(ASTContext& Ctx) const {
567    return QualType::isConstant(*this, Ctx);
568  }
569
570  // Don't promise in the API that anything besides 'const' can be
571  // easily added.
572
573  /// addConst - add the specified type qualifier to this QualType.
574  void addConst() {
575    addFastQualifiers(Qualifiers::Const);
576  }
577  QualType withConst() const {
578    return withFastQualifiers(Qualifiers::Const);
579  }
580
581  void addFastQualifiers(unsigned TQs) {
582    assert(!(TQs & ~Qualifiers::FastMask)
583           && "non-fast qualifier bits set in mask!");
584    Value.setInt(Value.getInt() | TQs);
585  }
586
587  void removeLocalConst();
588  void removeLocalVolatile();
589  void removeLocalRestrict();
590  void removeLocalCVRQualifiers(unsigned Mask);
591
592  void removeLocalFastQualifiers() { Value.setInt(0); }
593  void removeLocalFastQualifiers(unsigned Mask) {
594    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
595    Value.setInt(Value.getInt() & ~Mask);
596  }
597
598  // Creates a type with the given qualifiers in addition to any
599  // qualifiers already on this type.
600  QualType withFastQualifiers(unsigned TQs) const {
601    QualType T = *this;
602    T.addFastQualifiers(TQs);
603    return T;
604  }
605
606  // Creates a type with exactly the given fast qualifiers, removing
607  // any existing fast qualifiers.
608  QualType withExactLocalFastQualifiers(unsigned TQs) const {
609    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
610  }
611
612  // Removes fast qualifiers, but leaves any extended qualifiers in place.
613  QualType withoutLocalFastQualifiers() const {
614    QualType T = *this;
615    T.removeLocalFastQualifiers();
616    return T;
617  }
618
619  /// \brief Return this type with all of the instance-specific qualifiers
620  /// removed, but without removing any qualifiers that may have been applied
621  /// through typedefs.
622  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
623
624  /// \brief Return the unqualified form of the given type, which might be
625  /// desugared to eliminate qualifiers introduced via typedefs.
626  QualType getUnqualifiedType() const {
627    QualType T = getLocalUnqualifiedType();
628    if (!T.hasQualifiers())
629      return T;
630
631    return getUnqualifiedTypeSlow();
632  }
633
634  bool isMoreQualifiedThan(QualType Other) const;
635  bool isAtLeastAsQualifiedAs(QualType Other) const;
636  QualType getNonReferenceType() const;
637
638  /// \brief Determine the type of a (typically non-lvalue) expression with the
639  /// specified result type.
640  ///
641  /// This routine should be used for expressions for which the return type is
642  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
643  /// an lvalue. It removes a top-level reference (since there are no
644  /// expressions of reference type) and deletes top-level cvr-qualifiers
645  /// from non-class types (in C++) or all types (in C).
646  QualType getNonLValueExprType(ASTContext &Context) const;
647
648  /// getDesugaredType - Return the specified type with any "sugar" removed from
649  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
650  /// the type is already concrete, it returns it unmodified.  This is similar
651  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
652  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
653  /// concrete.
654  ///
655  /// Qualifiers are left in place.
656  QualType getDesugaredType(ASTContext &Context) const {
657    return getDesugaredType(*this, Context);
658  }
659
660  SplitQualType getSplitDesugaredType() const {
661    return getSplitDesugaredType(*this);
662  }
663
664  /// operator==/!= - Indicate whether the specified types and qualifiers are
665  /// identical.
666  friend bool operator==(const QualType &LHS, const QualType &RHS) {
667    return LHS.Value == RHS.Value;
668  }
669  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
670    return LHS.Value != RHS.Value;
671  }
672  std::string getAsString() const {
673    return getAsString(split());
674  }
675  static std::string getAsString(SplitQualType split) {
676    return getAsString(split.first, split.second);
677  }
678  static std::string getAsString(const Type *ty, Qualifiers qs);
679
680  std::string getAsString(const PrintingPolicy &Policy) const {
681    std::string S;
682    getAsStringInternal(S, Policy);
683    return S;
684  }
685  void getAsStringInternal(std::string &Str,
686                           const PrintingPolicy &Policy) const {
687    return getAsStringInternal(split(), Str, Policy);
688  }
689  static void getAsStringInternal(SplitQualType split, std::string &out,
690                                  const PrintingPolicy &policy) {
691    return getAsStringInternal(split.first, split.second, out, policy);
692  }
693  static void getAsStringInternal(const Type *ty, Qualifiers qs,
694                                  std::string &out,
695                                  const PrintingPolicy &policy);
696
697  void dump(const char *s) const;
698  void dump() const;
699
700  void Profile(llvm::FoldingSetNodeID &ID) const {
701    ID.AddPointer(getAsOpaquePtr());
702  }
703
704  /// getAddressSpace - Return the address space of this type.
705  inline unsigned getAddressSpace() const;
706
707  /// GCAttrTypesAttr - Returns gc attribute of this type.
708  inline Qualifiers::GC getObjCGCAttr() const;
709
710  /// isObjCGCWeak true when Type is objc's weak.
711  bool isObjCGCWeak() const {
712    return getObjCGCAttr() == Qualifiers::Weak;
713  }
714
715  /// isObjCGCStrong true when Type is objc's strong.
716  bool isObjCGCStrong() const {
717    return getObjCGCAttr() == Qualifiers::Strong;
718  }
719
720private:
721  // These methods are implemented in a separate translation unit;
722  // "static"-ize them to avoid creating temporary QualTypes in the
723  // caller.
724  static bool isConstant(QualType T, ASTContext& Ctx);
725  static QualType getDesugaredType(QualType T, ASTContext &Context);
726  static SplitQualType getSplitDesugaredType(QualType T);
727};
728
729} // end clang.
730
731namespace llvm {
732/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
733/// to a specific Type class.
734template<> struct simplify_type<const ::clang::QualType> {
735  typedef ::clang::Type* SimpleType;
736  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
737    return Val.getTypePtr();
738  }
739};
740template<> struct simplify_type< ::clang::QualType>
741  : public simplify_type<const ::clang::QualType> {};
742
743// Teach SmallPtrSet that QualType is "basically a pointer".
744template<>
745class PointerLikeTypeTraits<clang::QualType> {
746public:
747  static inline void *getAsVoidPointer(clang::QualType P) {
748    return P.getAsOpaquePtr();
749  }
750  static inline clang::QualType getFromVoidPointer(void *P) {
751    return clang::QualType::getFromOpaquePtr(P);
752  }
753  // Various qualifiers go in low bits.
754  enum { NumLowBitsAvailable = 0 };
755};
756
757} // end namespace llvm
758
759namespace clang {
760
761/// Type - This is the base class of the type hierarchy.  A central concept
762/// with types is that each type always has a canonical type.  A canonical type
763/// is the type with any typedef names stripped out of it or the types it
764/// references.  For example, consider:
765///
766///  typedef int  foo;
767///  typedef foo* bar;
768///    'int *'    'foo *'    'bar'
769///
770/// There will be a Type object created for 'int'.  Since int is canonical, its
771/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
772/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
773/// there is a PointerType that represents 'int*', which, like 'int', is
774/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
775/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
776/// is also 'int*'.
777///
778/// Non-canonical types are useful for emitting diagnostics, without losing
779/// information about typedefs being used.  Canonical types are useful for type
780/// comparisons (they allow by-pointer equality tests) and useful for reasoning
781/// about whether something has a particular form (e.g. is a function type),
782/// because they implicitly, recursively, strip all typedefs out of a type.
783///
784/// Types, once created, are immutable.
785///
786class Type {
787public:
788  enum TypeClass {
789#define TYPE(Class, Base) Class,
790#define LAST_TYPE(Class) TypeLast = Class,
791#define ABSTRACT_TYPE(Class, Base)
792#include "clang/AST/TypeNodes.def"
793    TagFirst = Record, TagLast = Enum
794  };
795
796private:
797  Type(const Type&);           // DO NOT IMPLEMENT.
798  void operator=(const Type&); // DO NOT IMPLEMENT.
799
800  QualType CanonicalType;
801
802  /// Bitfields required by the Type class.
803  class TypeBitfields {
804    friend class Type;
805    template <class T> friend class TypePropertyCache;
806
807    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
808    unsigned TC : 8;
809
810    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
811    /// Note that this should stay at the end of the ivars for Type so that
812    /// subclasses can pack their bitfields into the same word.
813    unsigned Dependent : 1;
814
815    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
816    unsigned VariablyModified : 1;
817
818    /// \brief Nonzero if the cache (i.e. the bitfields here starting
819    /// with 'Cache') is valid.  If so, then this is a
820    /// LangOptions::VisibilityMode+1.
821    mutable unsigned CacheValidAndVisibility : 2;
822
823    /// \brief Linkage of this type.
824    mutable unsigned CachedLinkage : 2;
825
826    /// \brief Whether this type involves and local or unnamed types.
827    mutable unsigned CachedLocalOrUnnamed : 1;
828
829    /// \brief FromAST - Whether this type comes from an AST file.
830    mutable unsigned FromAST : 1;
831
832    bool isCacheValid() const {
833      return (CacheValidAndVisibility != 0);
834    }
835    Visibility getVisibility() const {
836      assert(isCacheValid() && "getting linkage from invalid cache");
837      return static_cast<Visibility>(CacheValidAndVisibility-1);
838    }
839    Linkage getLinkage() const {
840      assert(isCacheValid() && "getting linkage from invalid cache");
841      return static_cast<Linkage>(CachedLinkage);
842    }
843    bool hasLocalOrUnnamedType() const {
844      assert(isCacheValid() && "getting linkage from invalid cache");
845      return CachedLocalOrUnnamed;
846    }
847  };
848  enum { NumTypeBits = 16 };
849
850protected:
851  // These classes allow subclasses to somewhat cleanly pack bitfields
852  // into Type.
853
854  class ArrayTypeBitfields {
855    friend class ArrayType;
856
857    unsigned : NumTypeBits;
858
859    /// IndexTypeQuals - CVR qualifiers from declarations like
860    /// 'int X[static restrict 4]'. For function parameters only.
861    unsigned IndexTypeQuals : 3;
862
863    /// SizeModifier - storage class qualifiers from declarations like
864    /// 'int X[static restrict 4]'. For function parameters only.
865    /// Actually an ArrayType::ArraySizeModifier.
866    unsigned SizeModifier : 3;
867  };
868
869  class BuiltinTypeBitfields {
870    friend class BuiltinType;
871
872    unsigned : NumTypeBits;
873
874    /// The kind (BuiltinType::Kind) of builtin type this is.
875    unsigned Kind : 8;
876  };
877
878  class FunctionTypeBitfields {
879    friend class FunctionType;
880
881    unsigned : NumTypeBits;
882
883    /// Extra information which affects how the function is called, like
884    /// regparm and the calling convention.
885    unsigned ExtInfo : 8;
886
887    /// A bit to be used by the subclass.
888    unsigned SubclassInfo : 1;
889
890    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
891    /// other bitfields.
892    /// The qualifiers are part of FunctionProtoType because...
893    ///
894    /// C++ 8.3.5p4: The return type, the parameter type list and the
895    /// cv-qualifier-seq, [...], are part of the function type.
896    unsigned TypeQuals : 3;
897  };
898
899  class ObjCObjectTypeBitfields {
900    friend class ObjCObjectType;
901
902    unsigned : NumTypeBits;
903
904    /// NumProtocols - The number of protocols stored directly on this
905    /// object type.
906    unsigned NumProtocols : 32 - NumTypeBits;
907  };
908
909  class ReferenceTypeBitfields {
910    friend class ReferenceType;
911
912    unsigned : NumTypeBits;
913
914    /// True if the type was originally spelled with an lvalue sigil.
915    /// This is never true of rvalue references but can also be false
916    /// on lvalue references because of C++0x [dcl.typedef]p9,
917    /// as follows:
918    ///
919    ///   typedef int &ref;    // lvalue, spelled lvalue
920    ///   typedef int &&rvref; // rvalue
921    ///   ref &a;              // lvalue, inner ref, spelled lvalue
922    ///   ref &&a;             // lvalue, inner ref
923    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
924    ///   rvref &&a;           // rvalue, inner ref
925    unsigned SpelledAsLValue : 1;
926
927    /// True if the inner type is a reference type.  This only happens
928    /// in non-canonical forms.
929    unsigned InnerRef : 1;
930  };
931
932  class TypeWithKeywordBitfields {
933    friend class TypeWithKeyword;
934
935    unsigned : NumTypeBits;
936
937    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
938    unsigned Keyword : 8;
939  };
940
941  class VectorTypeBitfields {
942    friend class VectorType;
943
944    unsigned : NumTypeBits;
945
946    /// VecKind - The kind of vector, either a generic vector type or some
947    /// target-specific vector type such as for AltiVec or Neon.
948    unsigned VecKind : 3;
949
950    /// NumElements - The number of elements in the vector.
951    unsigned NumElements : 29 - NumTypeBits;
952  };
953
954  union {
955    TypeBitfields TypeBits;
956    ArrayTypeBitfields ArrayTypeBits;
957    BuiltinTypeBitfields BuiltinTypeBits;
958    FunctionTypeBitfields FunctionTypeBits;
959    ObjCObjectTypeBitfields ObjCObjectTypeBits;
960    ReferenceTypeBitfields ReferenceTypeBits;
961    TypeWithKeywordBitfields TypeWithKeywordBits;
962    VectorTypeBitfields VectorTypeBits;
963  };
964
965private:
966  /// \brief Set whether this type comes from an AST file.
967  void setFromAST(bool V = true) const {
968    TypeBits.FromAST = V;
969  }
970
971  template <class T> friend class TypePropertyCache;
972
973protected:
974  // silence VC++ warning C4355: 'this' : used in base member initializer list
975  Type *this_() { return this; }
976  Type(TypeClass tc, QualType Canonical, bool Dependent, bool VariablyModified)
977    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical) {
978    TypeBits.TC = tc;
979    TypeBits.Dependent = Dependent;
980    TypeBits.VariablyModified = VariablyModified;
981    TypeBits.CacheValidAndVisibility = 0;
982    TypeBits.CachedLocalOrUnnamed = false;
983    TypeBits.CachedLinkage = NoLinkage;
984    TypeBits.FromAST = false;
985  }
986  friend class ASTContext;
987
988  void setDependent(bool D = true) { TypeBits.Dependent = D; }
989  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
990
991public:
992  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
993
994  /// \brief Whether this type comes from an AST file.
995  bool isFromAST() const { return TypeBits.FromAST; }
996
997  bool isCanonicalUnqualified() const {
998    return CanonicalType.getTypePtr() == this;
999  }
1000
1001  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1002  /// object types, function types, and incomplete types.
1003
1004  /// isIncompleteType - Return true if this is an incomplete type.
1005  /// A type that can describe objects, but which lacks information needed to
1006  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1007  /// routine will need to determine if the size is actually required.
1008  bool isIncompleteType() const;
1009
1010  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1011  /// type, in other words, not a function type.
1012  bool isIncompleteOrObjectType() const {
1013    return !isFunctionType();
1014  }
1015
1016  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
1017  bool isPODType() const;
1018
1019  /// isLiteralType - Return true if this is a literal type
1020  /// (C++0x [basic.types]p10)
1021  bool isLiteralType() const;
1022
1023  /// Helper methods to distinguish type categories. All type predicates
1024  /// operate on the canonical type, ignoring typedefs and qualifiers.
1025
1026  /// isBuiltinType - returns true if the type is a builtin type.
1027  bool isBuiltinType() const;
1028
1029  /// isSpecificBuiltinType - Test for a particular builtin type.
1030  bool isSpecificBuiltinType(unsigned K) const;
1031
1032  /// isPlaceholderType - Test for a type which does not represent an
1033  /// actual type-system type but is instead used as a placeholder for
1034  /// various convenient purposes within Clang.  All such types are
1035  /// BuiltinTypes.
1036  bool isPlaceholderType() const;
1037
1038  /// isIntegerType() does *not* include complex integers (a GCC extension).
1039  /// isComplexIntegerType() can be used to test for complex integers.
1040  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1041  bool isEnumeralType() const;
1042  bool isBooleanType() const;
1043  bool isCharType() const;
1044  bool isWideCharType() const;
1045  bool isAnyCharacterType() const;
1046  bool isIntegralType(ASTContext &Ctx) const;
1047
1048  /// \brief Determine whether this type is an integral or enumeration type.
1049  bool isIntegralOrEnumerationType() const;
1050  /// \brief Determine whether this type is an integral or unscoped enumeration
1051  /// type.
1052  bool isIntegralOrUnscopedEnumerationType() const;
1053
1054  /// Floating point categories.
1055  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1056  /// isComplexType() does *not* include complex integers (a GCC extension).
1057  /// isComplexIntegerType() can be used to test for complex integers.
1058  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1059  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1060  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1061  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1062  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1063  bool isVoidType() const;         // C99 6.2.5p19
1064  bool isDerivedType() const;      // C99 6.2.5p20
1065  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1066  bool isAggregateType() const;
1067
1068  // Type Predicates: Check to see if this type is structurally the specified
1069  // type, ignoring typedefs and qualifiers.
1070  bool isFunctionType() const;
1071  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1072  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1073  bool isPointerType() const;
1074  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1075  bool isBlockPointerType() const;
1076  bool isVoidPointerType() const;
1077  bool isReferenceType() const;
1078  bool isLValueReferenceType() const;
1079  bool isRValueReferenceType() const;
1080  bool isFunctionPointerType() const;
1081  bool isMemberPointerType() const;
1082  bool isMemberFunctionPointerType() const;
1083  bool isMemberDataPointerType() const;
1084  bool isArrayType() const;
1085  bool isConstantArrayType() const;
1086  bool isIncompleteArrayType() const;
1087  bool isVariableArrayType() const;
1088  bool isDependentSizedArrayType() const;
1089  bool isRecordType() const;
1090  bool isClassType() const;
1091  bool isStructureType() const;
1092  bool isStructureOrClassType() const;
1093  bool isUnionType() const;
1094  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1095  bool isVectorType() const;                    // GCC vector type.
1096  bool isExtVectorType() const;                 // Extended vector type.
1097  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
1098  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1099  // for the common case.
1100  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1101  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1102  bool isObjCQualifiedIdType() const;           // id<foo>
1103  bool isObjCQualifiedClassType() const;        // Class<foo>
1104  bool isObjCObjectOrInterfaceType() const;
1105  bool isObjCIdType() const;                    // id
1106  bool isObjCClassType() const;                 // Class
1107  bool isObjCSelType() const;                 // Class
1108  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1109  bool isTemplateTypeParmType() const;          // C++ template type parameter
1110  bool isNullPtrType() const;                   // C++0x nullptr_t
1111
1112  enum ScalarTypeKind {
1113    STK_Pointer,
1114    STK_MemberPointer,
1115    STK_Bool,
1116    STK_Integral,
1117    STK_Floating,
1118    STK_IntegralComplex,
1119    STK_FloatingComplex
1120  };
1121  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1122  ScalarTypeKind getScalarTypeKind() const;
1123
1124  /// isDependentType - Whether this type is a dependent type, meaning
1125  /// that its definition somehow depends on a template parameter
1126  /// (C++ [temp.dep.type]).
1127  bool isDependentType() const { return TypeBits.Dependent; }
1128
1129  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1130  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1131
1132  /// \brief Whether this type is or contains a local or unnamed type.
1133  bool hasUnnamedOrLocalType() const;
1134
1135  bool isOverloadableType() const;
1136
1137  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1138  bool isElaboratedTypeSpecifier() const;
1139
1140  /// hasPointerRepresentation - Whether this type is represented
1141  /// natively as a pointer; this includes pointers, references, block
1142  /// pointers, and Objective-C interface, qualified id, and qualified
1143  /// interface types, as well as nullptr_t.
1144  bool hasPointerRepresentation() const;
1145
1146  /// hasObjCPointerRepresentation - Whether this type can represent
1147  /// an objective pointer type for the purpose of GC'ability
1148  bool hasObjCPointerRepresentation() const;
1149
1150  /// \brief Determine whether this type has an integer representation
1151  /// of some sort, e.g., it is an integer type or a vector.
1152  bool hasIntegerRepresentation() const;
1153
1154  /// \brief Determine whether this type has an signed integer representation
1155  /// of some sort, e.g., it is an signed integer type or a vector.
1156  bool hasSignedIntegerRepresentation() const;
1157
1158  /// \brief Determine whether this type has an unsigned integer representation
1159  /// of some sort, e.g., it is an unsigned integer type or a vector.
1160  bool hasUnsignedIntegerRepresentation() const;
1161
1162  /// \brief Determine whether this type has a floating-point representation
1163  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1164  bool hasFloatingRepresentation() const;
1165
1166  // Type Checking Functions: Check to see if this type is structurally the
1167  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1168  // the best type we can.
1169  const RecordType *getAsStructureType() const;
1170  /// NOTE: getAs*ArrayType are methods on ASTContext.
1171  const RecordType *getAsUnionType() const;
1172  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1173  // The following is a convenience method that returns an ObjCObjectPointerType
1174  // for object declared using an interface.
1175  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1176  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1177  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1178  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
1179
1180  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1181  /// because the type is a RecordType or because it is the injected-class-name
1182  /// type of a class template or class template partial specialization.
1183  CXXRecordDecl *getAsCXXRecordDecl() const;
1184
1185  // Member-template getAs<specific type>'.  Look through sugar for
1186  // an instance of <specific type>.   This scheme will eventually
1187  // replace the specific getAsXXXX methods above.
1188  //
1189  // There are some specializations of this member template listed
1190  // immediately following this class.
1191  template <typename T> const T *getAs() const;
1192
1193  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1194  /// element type of the array, potentially with type qualifiers missing.
1195  /// This method should never be used when type qualifiers are meaningful.
1196  const Type *getArrayElementTypeNoTypeQual() const;
1197
1198  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1199  /// pointer, this returns the respective pointee.
1200  QualType getPointeeType() const;
1201
1202  /// getUnqualifiedDesugaredType() - Return the specified type with
1203  /// any "sugar" removed from the type, removing any typedefs,
1204  /// typeofs, etc., as well as any qualifiers.
1205  const Type *getUnqualifiedDesugaredType() const;
1206
1207  /// More type predicates useful for type checking/promotion
1208  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1209
1210  /// isSignedIntegerType - Return true if this is an integer type that is
1211  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1212  /// an enum decl which has a signed representation, or a vector of signed
1213  /// integer element type.
1214  bool isSignedIntegerType() const;
1215
1216  /// isUnsignedIntegerType - Return true if this is an integer type that is
1217  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1218  /// decl which has an unsigned representation, or a vector of unsigned integer
1219  /// element type.
1220  bool isUnsignedIntegerType() const;
1221
1222  /// isConstantSizeType - Return true if this is not a variable sized type,
1223  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1224  /// incomplete types.
1225  bool isConstantSizeType() const;
1226
1227  /// isSpecifierType - Returns true if this type can be represented by some
1228  /// set of type specifiers.
1229  bool isSpecifierType() const;
1230
1231  /// \brief Determine the linkage of this type.
1232  Linkage getLinkage() const;
1233
1234  /// \brief Determine the visibility of this type.
1235  Visibility getVisibility() const;
1236
1237  /// \brief Determine the linkage and visibility of this type.
1238  std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
1239
1240  /// \brief Note that the linkage is no longer known.
1241  void ClearLinkageCache();
1242
1243  const char *getTypeClassName() const;
1244
1245  QualType getCanonicalTypeInternal() const {
1246    return CanonicalType;
1247  }
1248  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1249  void dump() const;
1250  static bool classof(const Type *) { return true; }
1251
1252  friend class ASTReader;
1253  friend class ASTWriter;
1254};
1255
1256template <> inline const TypedefType *Type::getAs() const {
1257  return dyn_cast<TypedefType>(this);
1258}
1259
1260// We can do canonical leaf types faster, because we don't have to
1261// worry about preserving child type decoration.
1262#define TYPE(Class, Base)
1263#define LEAF_TYPE(Class) \
1264template <> inline const Class##Type *Type::getAs() const { \
1265  return dyn_cast<Class##Type>(CanonicalType); \
1266}
1267#include "clang/AST/TypeNodes.def"
1268
1269
1270/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1271/// types are always canonical and have a literal name field.
1272class BuiltinType : public Type {
1273public:
1274  enum Kind {
1275    Void,
1276
1277    Bool,     // This is bool and/or _Bool.
1278    Char_U,   // This is 'char' for targets where char is unsigned.
1279    UChar,    // This is explicitly qualified unsigned char.
1280    Char16,   // This is 'char16_t' for C++.
1281    Char32,   // This is 'char32_t' for C++.
1282    UShort,
1283    UInt,
1284    ULong,
1285    ULongLong,
1286    UInt128,  // __uint128_t
1287
1288    Char_S,   // This is 'char' for targets where char is signed.
1289    SChar,    // This is explicitly qualified signed char.
1290    WChar,    // This is 'wchar_t' for C++.
1291    Short,
1292    Int,
1293    Long,
1294    LongLong,
1295    Int128,   // __int128_t
1296
1297    Float, Double, LongDouble,
1298
1299    NullPtr,  // This is the type of C++0x 'nullptr'.
1300
1301    /// This represents the type of an expression whose type is
1302    /// totally unknown, e.g. 'T::foo'.  It is permitted for this to
1303    /// appear in situations where the structure of the type is
1304    /// theoretically deducible.
1305    Dependent,
1306
1307    Overload,  // This represents the type of an overloaded function declaration.
1308
1309    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1310                   // that has not been deduced yet.
1311
1312    /// The primitive Objective C 'id' type.  The type pointed to by the
1313    /// user-visible 'id' type.  Only ever shows up in an AST as the base
1314    /// type of an ObjCObjectType.
1315    ObjCId,
1316
1317    /// The primitive Objective C 'Class' type.  The type pointed to by the
1318    /// user-visible 'Class' type.  Only ever shows up in an AST as the
1319    /// base type of an ObjCObjectType.
1320    ObjCClass,
1321
1322    ObjCSel    // This represents the ObjC 'SEL' type.
1323  };
1324
1325public:
1326  BuiltinType(Kind K)
1327    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1328           /*VariablyModified=*/false) {
1329    BuiltinTypeBits.Kind = K;
1330  }
1331
1332  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1333  const char *getName(const LangOptions &LO) const;
1334
1335  bool isSugared() const { return false; }
1336  QualType desugar() const { return QualType(this, 0); }
1337
1338  bool isInteger() const {
1339    return getKind() >= Bool && getKind() <= Int128;
1340  }
1341
1342  bool isSignedInteger() const {
1343    return getKind() >= Char_S && getKind() <= Int128;
1344  }
1345
1346  bool isUnsignedInteger() const {
1347    return getKind() >= Bool && getKind() <= UInt128;
1348  }
1349
1350  bool isFloatingPoint() const {
1351    return getKind() >= Float && getKind() <= LongDouble;
1352  }
1353
1354  /// Determines whether this type is a "forbidden" placeholder type,
1355  /// i.e. a type which cannot appear in arbitrary positions in a
1356  /// fully-formed expression.
1357  bool isPlaceholderType() const {
1358    return getKind() == Overload ||
1359           getKind() == UndeducedAuto;
1360  }
1361
1362  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1363  static bool classof(const BuiltinType *) { return true; }
1364};
1365
1366/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1367/// types (_Complex float etc) as well as the GCC integer complex extensions.
1368///
1369class ComplexType : public Type, public llvm::FoldingSetNode {
1370  QualType ElementType;
1371  ComplexType(QualType Element, QualType CanonicalPtr) :
1372    Type(Complex, CanonicalPtr, Element->isDependentType(),
1373         Element->isVariablyModifiedType()),
1374    ElementType(Element) {
1375  }
1376  friend class ASTContext;  // ASTContext creates these.
1377
1378public:
1379  QualType getElementType() const { return ElementType; }
1380
1381  bool isSugared() const { return false; }
1382  QualType desugar() const { return QualType(this, 0); }
1383
1384  void Profile(llvm::FoldingSetNodeID &ID) {
1385    Profile(ID, getElementType());
1386  }
1387  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1388    ID.AddPointer(Element.getAsOpaquePtr());
1389  }
1390
1391  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1392  static bool classof(const ComplexType *) { return true; }
1393};
1394
1395/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1396///
1397class PointerType : public Type, public llvm::FoldingSetNode {
1398  QualType PointeeType;
1399
1400  PointerType(QualType Pointee, QualType CanonicalPtr) :
1401    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1402         Pointee->isVariablyModifiedType()),
1403    PointeeType(Pointee) {
1404  }
1405  friend class ASTContext;  // ASTContext creates these.
1406
1407public:
1408
1409  QualType getPointeeType() const { return PointeeType; }
1410
1411  bool isSugared() const { return false; }
1412  QualType desugar() const { return QualType(this, 0); }
1413
1414  void Profile(llvm::FoldingSetNodeID &ID) {
1415    Profile(ID, getPointeeType());
1416  }
1417  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1418    ID.AddPointer(Pointee.getAsOpaquePtr());
1419  }
1420
1421  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1422  static bool classof(const PointerType *) { return true; }
1423};
1424
1425/// BlockPointerType - pointer to a block type.
1426/// This type is to represent types syntactically represented as
1427/// "void (^)(int)", etc. Pointee is required to always be a function type.
1428///
1429class BlockPointerType : public Type, public llvm::FoldingSetNode {
1430  QualType PointeeType;  // Block is some kind of pointer type
1431  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1432    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1433         Pointee->isVariablyModifiedType()),
1434    PointeeType(Pointee) {
1435  }
1436  friend class ASTContext;  // ASTContext creates these.
1437
1438public:
1439
1440  // Get the pointee type. Pointee is required to always be a function type.
1441  QualType getPointeeType() const { return PointeeType; }
1442
1443  bool isSugared() const { return false; }
1444  QualType desugar() const { return QualType(this, 0); }
1445
1446  void Profile(llvm::FoldingSetNodeID &ID) {
1447      Profile(ID, getPointeeType());
1448  }
1449  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1450      ID.AddPointer(Pointee.getAsOpaquePtr());
1451  }
1452
1453  static bool classof(const Type *T) {
1454    return T->getTypeClass() == BlockPointer;
1455  }
1456  static bool classof(const BlockPointerType *) { return true; }
1457};
1458
1459/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1460///
1461class ReferenceType : public Type, public llvm::FoldingSetNode {
1462  QualType PointeeType;
1463
1464protected:
1465  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1466                bool SpelledAsLValue) :
1467    Type(tc, CanonicalRef, Referencee->isDependentType(),
1468         Referencee->isVariablyModifiedType()), PointeeType(Referencee) {
1469    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
1470    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
1471  }
1472
1473public:
1474  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
1475  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
1476
1477  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1478  QualType getPointeeType() const {
1479    // FIXME: this might strip inner qualifiers; okay?
1480    const ReferenceType *T = this;
1481    while (T->isInnerRef())
1482      T = T->PointeeType->getAs<ReferenceType>();
1483    return T->PointeeType;
1484  }
1485
1486  void Profile(llvm::FoldingSetNodeID &ID) {
1487    Profile(ID, PointeeType, isSpelledAsLValue());
1488  }
1489  static void Profile(llvm::FoldingSetNodeID &ID,
1490                      QualType Referencee,
1491                      bool SpelledAsLValue) {
1492    ID.AddPointer(Referencee.getAsOpaquePtr());
1493    ID.AddBoolean(SpelledAsLValue);
1494  }
1495
1496  static bool classof(const Type *T) {
1497    return T->getTypeClass() == LValueReference ||
1498           T->getTypeClass() == RValueReference;
1499  }
1500  static bool classof(const ReferenceType *) { return true; }
1501};
1502
1503/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1504///
1505class LValueReferenceType : public ReferenceType {
1506  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1507                      bool SpelledAsLValue) :
1508    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1509  {}
1510  friend class ASTContext; // ASTContext creates these
1511public:
1512  bool isSugared() const { return false; }
1513  QualType desugar() const { return QualType(this, 0); }
1514
1515  static bool classof(const Type *T) {
1516    return T->getTypeClass() == LValueReference;
1517  }
1518  static bool classof(const LValueReferenceType *) { return true; }
1519};
1520
1521/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1522///
1523class RValueReferenceType : public ReferenceType {
1524  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1525    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1526  }
1527  friend class ASTContext; // ASTContext creates these
1528public:
1529  bool isSugared() const { return false; }
1530  QualType desugar() const { return QualType(this, 0); }
1531
1532  static bool classof(const Type *T) {
1533    return T->getTypeClass() == RValueReference;
1534  }
1535  static bool classof(const RValueReferenceType *) { return true; }
1536};
1537
1538/// MemberPointerType - C++ 8.3.3 - Pointers to members
1539///
1540class MemberPointerType : public Type, public llvm::FoldingSetNode {
1541  QualType PointeeType;
1542  /// The class of which the pointee is a member. Must ultimately be a
1543  /// RecordType, but could be a typedef or a template parameter too.
1544  const Type *Class;
1545
1546  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1547    Type(MemberPointer, CanonicalPtr,
1548         Cls->isDependentType() || Pointee->isDependentType(),
1549         Pointee->isVariablyModifiedType()),
1550    PointeeType(Pointee), Class(Cls) {
1551  }
1552  friend class ASTContext; // ASTContext creates these.
1553
1554public:
1555  QualType getPointeeType() const { return PointeeType; }
1556
1557  /// Returns true if the member type (i.e. the pointee type) is a
1558  /// function type rather than a data-member type.
1559  bool isMemberFunctionPointer() const {
1560    return PointeeType->isFunctionProtoType();
1561  }
1562
1563  /// Returns true if the member type (i.e. the pointee type) is a
1564  /// data type rather than a function type.
1565  bool isMemberDataPointer() const {
1566    return !PointeeType->isFunctionProtoType();
1567  }
1568
1569  const Type *getClass() const { return Class; }
1570
1571  bool isSugared() const { return false; }
1572  QualType desugar() const { return QualType(this, 0); }
1573
1574  void Profile(llvm::FoldingSetNodeID &ID) {
1575    Profile(ID, getPointeeType(), getClass());
1576  }
1577  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1578                      const Type *Class) {
1579    ID.AddPointer(Pointee.getAsOpaquePtr());
1580    ID.AddPointer(Class);
1581  }
1582
1583  static bool classof(const Type *T) {
1584    return T->getTypeClass() == MemberPointer;
1585  }
1586  static bool classof(const MemberPointerType *) { return true; }
1587};
1588
1589/// ArrayType - C99 6.7.5.2 - Array Declarators.
1590///
1591class ArrayType : public Type, public llvm::FoldingSetNode {
1592public:
1593  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1594  /// an array with a static size (e.g. int X[static 4]), or an array
1595  /// with a star size (e.g. int X[*]).
1596  /// 'static' is only allowed on function parameters.
1597  enum ArraySizeModifier {
1598    Normal, Static, Star
1599  };
1600private:
1601  /// ElementType - The element type of the array.
1602  QualType ElementType;
1603
1604protected:
1605  // C++ [temp.dep.type]p1:
1606  //   A type is dependent if it is...
1607  //     - an array type constructed from any dependent type or whose
1608  //       size is specified by a constant expression that is
1609  //       value-dependent,
1610  ArrayType(TypeClass tc, QualType et, QualType can,
1611            ArraySizeModifier sm, unsigned tq)
1612    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
1613           (tc == VariableArray || et->isVariablyModifiedType())),
1614      ElementType(et) {
1615    ArrayTypeBits.IndexTypeQuals = tq;
1616    ArrayTypeBits.SizeModifier = sm;
1617  }
1618
1619  friend class ASTContext;  // ASTContext creates these.
1620
1621public:
1622  QualType getElementType() const { return ElementType; }
1623  ArraySizeModifier getSizeModifier() const {
1624    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
1625  }
1626  Qualifiers getIndexTypeQualifiers() const {
1627    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
1628  }
1629  unsigned getIndexTypeCVRQualifiers() const {
1630    return ArrayTypeBits.IndexTypeQuals;
1631  }
1632
1633  static bool classof(const Type *T) {
1634    return T->getTypeClass() == ConstantArray ||
1635           T->getTypeClass() == VariableArray ||
1636           T->getTypeClass() == IncompleteArray ||
1637           T->getTypeClass() == DependentSizedArray;
1638  }
1639  static bool classof(const ArrayType *) { return true; }
1640};
1641
1642/// ConstantArrayType - This class represents the canonical version of
1643/// C arrays with a specified constant size.  For example, the canonical
1644/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1645/// type is 'int' and the size is 404.
1646class ConstantArrayType : public ArrayType {
1647  llvm::APInt Size; // Allows us to unique the type.
1648
1649  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1650                    ArraySizeModifier sm, unsigned tq)
1651    : ArrayType(ConstantArray, et, can, sm, tq),
1652      Size(size) {}
1653protected:
1654  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1655                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1656    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1657  friend class ASTContext;  // ASTContext creates these.
1658public:
1659  const llvm::APInt &getSize() const { return Size; }
1660  bool isSugared() const { return false; }
1661  QualType desugar() const { return QualType(this, 0); }
1662
1663
1664  /// \brief Determine the number of bits required to address a member of
1665  // an array with the given element type and number of elements.
1666  static unsigned getNumAddressingBits(ASTContext &Context,
1667                                       QualType ElementType,
1668                                       const llvm::APInt &NumElements);
1669
1670  /// \brief Determine the maximum number of active bits that an array's size
1671  /// can require, which limits the maximum size of the array.
1672  static unsigned getMaxSizeBits(ASTContext &Context);
1673
1674  void Profile(llvm::FoldingSetNodeID &ID) {
1675    Profile(ID, getElementType(), getSize(),
1676            getSizeModifier(), getIndexTypeCVRQualifiers());
1677  }
1678  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1679                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1680                      unsigned TypeQuals) {
1681    ID.AddPointer(ET.getAsOpaquePtr());
1682    ID.AddInteger(ArraySize.getZExtValue());
1683    ID.AddInteger(SizeMod);
1684    ID.AddInteger(TypeQuals);
1685  }
1686  static bool classof(const Type *T) {
1687    return T->getTypeClass() == ConstantArray;
1688  }
1689  static bool classof(const ConstantArrayType *) { return true; }
1690};
1691
1692/// IncompleteArrayType - This class represents C arrays with an unspecified
1693/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1694/// type is 'int' and the size is unspecified.
1695class IncompleteArrayType : public ArrayType {
1696
1697  IncompleteArrayType(QualType et, QualType can,
1698                      ArraySizeModifier sm, unsigned tq)
1699    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1700  friend class ASTContext;  // ASTContext creates these.
1701public:
1702  bool isSugared() const { return false; }
1703  QualType desugar() const { return QualType(this, 0); }
1704
1705  static bool classof(const Type *T) {
1706    return T->getTypeClass() == IncompleteArray;
1707  }
1708  static bool classof(const IncompleteArrayType *) { return true; }
1709
1710  friend class StmtIteratorBase;
1711
1712  void Profile(llvm::FoldingSetNodeID &ID) {
1713    Profile(ID, getElementType(), getSizeModifier(),
1714            getIndexTypeCVRQualifiers());
1715  }
1716
1717  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1718                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1719    ID.AddPointer(ET.getAsOpaquePtr());
1720    ID.AddInteger(SizeMod);
1721    ID.AddInteger(TypeQuals);
1722  }
1723};
1724
1725/// VariableArrayType - This class represents C arrays with a specified size
1726/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1727/// Since the size expression is an arbitrary expression, we store it as such.
1728///
1729/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1730/// should not be: two lexically equivalent variable array types could mean
1731/// different things, for example, these variables do not have the same type
1732/// dynamically:
1733///
1734/// void foo(int x) {
1735///   int Y[x];
1736///   ++x;
1737///   int Z[x];
1738/// }
1739///
1740class VariableArrayType : public ArrayType {
1741  /// SizeExpr - An assignment expression. VLA's are only permitted within
1742  /// a function block.
1743  Stmt *SizeExpr;
1744  /// Brackets - The left and right array brackets.
1745  SourceRange Brackets;
1746
1747  VariableArrayType(QualType et, QualType can, Expr *e,
1748                    ArraySizeModifier sm, unsigned tq,
1749                    SourceRange brackets)
1750    : ArrayType(VariableArray, et, can, sm, tq),
1751      SizeExpr((Stmt*) e), Brackets(brackets) {}
1752  friend class ASTContext;  // ASTContext creates these.
1753
1754public:
1755  Expr *getSizeExpr() const {
1756    // We use C-style casts instead of cast<> here because we do not wish
1757    // to have a dependency of Type.h on Stmt.h/Expr.h.
1758    return (Expr*) SizeExpr;
1759  }
1760  SourceRange getBracketsRange() const { return Brackets; }
1761  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1762  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1763
1764  bool isSugared() const { return false; }
1765  QualType desugar() const { return QualType(this, 0); }
1766
1767  static bool classof(const Type *T) {
1768    return T->getTypeClass() == VariableArray;
1769  }
1770  static bool classof(const VariableArrayType *) { return true; }
1771
1772  friend class StmtIteratorBase;
1773
1774  void Profile(llvm::FoldingSetNodeID &ID) {
1775    assert(0 && "Cannnot unique VariableArrayTypes.");
1776  }
1777};
1778
1779/// DependentSizedArrayType - This type represents an array type in
1780/// C++ whose size is a value-dependent expression. For example:
1781///
1782/// \code
1783/// template<typename T, int Size>
1784/// class array {
1785///   T data[Size];
1786/// };
1787/// \endcode
1788///
1789/// For these types, we won't actually know what the array bound is
1790/// until template instantiation occurs, at which point this will
1791/// become either a ConstantArrayType or a VariableArrayType.
1792class DependentSizedArrayType : public ArrayType {
1793  ASTContext &Context;
1794
1795  /// \brief An assignment expression that will instantiate to the
1796  /// size of the array.
1797  ///
1798  /// The expression itself might be NULL, in which case the array
1799  /// type will have its size deduced from an initializer.
1800  Stmt *SizeExpr;
1801
1802  /// Brackets - The left and right array brackets.
1803  SourceRange Brackets;
1804
1805  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1806                          Expr *e, ArraySizeModifier sm, unsigned tq,
1807                          SourceRange brackets)
1808    : ArrayType(DependentSizedArray, et, can, sm, tq),
1809      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1810  friend class ASTContext;  // ASTContext creates these.
1811
1812public:
1813  Expr *getSizeExpr() const {
1814    // We use C-style casts instead of cast<> here because we do not wish
1815    // to have a dependency of Type.h on Stmt.h/Expr.h.
1816    return (Expr*) SizeExpr;
1817  }
1818  SourceRange getBracketsRange() const { return Brackets; }
1819  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1820  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1821
1822  bool isSugared() const { return false; }
1823  QualType desugar() const { return QualType(this, 0); }
1824
1825  static bool classof(const Type *T) {
1826    return T->getTypeClass() == DependentSizedArray;
1827  }
1828  static bool classof(const DependentSizedArrayType *) { return true; }
1829
1830  friend class StmtIteratorBase;
1831
1832
1833  void Profile(llvm::FoldingSetNodeID &ID) {
1834    Profile(ID, Context, getElementType(),
1835            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1836  }
1837
1838  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1839                      QualType ET, ArraySizeModifier SizeMod,
1840                      unsigned TypeQuals, Expr *E);
1841};
1842
1843/// DependentSizedExtVectorType - This type represent an extended vector type
1844/// where either the type or size is dependent. For example:
1845/// @code
1846/// template<typename T, int Size>
1847/// class vector {
1848///   typedef T __attribute__((ext_vector_type(Size))) type;
1849/// }
1850/// @endcode
1851class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1852  ASTContext &Context;
1853  Expr *SizeExpr;
1854  /// ElementType - The element type of the array.
1855  QualType ElementType;
1856  SourceLocation loc;
1857
1858  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1859                              QualType can, Expr *SizeExpr, SourceLocation loc)
1860    : Type(DependentSizedExtVector, can, /*Dependent=*/true,
1861           ElementType->isVariablyModifiedType()),
1862      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1863      loc(loc) {}
1864  friend class ASTContext;
1865
1866public:
1867  Expr *getSizeExpr() const { return SizeExpr; }
1868  QualType getElementType() const { return ElementType; }
1869  SourceLocation getAttributeLoc() const { return loc; }
1870
1871  bool isSugared() const { return false; }
1872  QualType desugar() const { return QualType(this, 0); }
1873
1874  static bool classof(const Type *T) {
1875    return T->getTypeClass() == DependentSizedExtVector;
1876  }
1877  static bool classof(const DependentSizedExtVectorType *) { return true; }
1878
1879  void Profile(llvm::FoldingSetNodeID &ID) {
1880    Profile(ID, Context, getElementType(), getSizeExpr());
1881  }
1882
1883  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1884                      QualType ElementType, Expr *SizeExpr);
1885};
1886
1887
1888/// VectorType - GCC generic vector type. This type is created using
1889/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1890/// bytes; or from an Altivec __vector or vector declaration.
1891/// Since the constructor takes the number of vector elements, the
1892/// client is responsible for converting the size into the number of elements.
1893class VectorType : public Type, public llvm::FoldingSetNode {
1894public:
1895  enum VectorKind {
1896    GenericVector,  // not a target-specific vector type
1897    AltiVecVector,  // is AltiVec vector
1898    AltiVecPixel,   // is AltiVec 'vector Pixel'
1899    AltiVecBool,    // is AltiVec 'vector bool ...'
1900    NeonVector,     // is ARM Neon vector
1901    NeonPolyVector  // is ARM Neon polynomial vector
1902  };
1903protected:
1904  /// ElementType - The element type of the vector.
1905  QualType ElementType;
1906
1907  VectorType(QualType vecType, unsigned nElements, QualType canonType,
1908             VectorKind vecKind) :
1909    Type(Vector, canonType, vecType->isDependentType(),
1910         vecType->isVariablyModifiedType()), ElementType(vecType) {
1911    VectorTypeBits.VecKind = vecKind;
1912    VectorTypeBits.NumElements = nElements;
1913  }
1914
1915  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1916             QualType canonType, VectorKind vecKind)
1917    : Type(tc, canonType, vecType->isDependentType(),
1918           vecType->isVariablyModifiedType()), ElementType(vecType) {
1919    VectorTypeBits.VecKind = vecKind;
1920    VectorTypeBits.NumElements = nElements;
1921  }
1922  friend class ASTContext;  // ASTContext creates these.
1923
1924public:
1925
1926  QualType getElementType() const { return ElementType; }
1927  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
1928
1929  bool isSugared() const { return false; }
1930  QualType desugar() const { return QualType(this, 0); }
1931
1932  VectorKind getVectorKind() const {
1933    return VectorKind(VectorTypeBits.VecKind);
1934  }
1935
1936  void Profile(llvm::FoldingSetNodeID &ID) {
1937    Profile(ID, getElementType(), getNumElements(),
1938            getTypeClass(), getVectorKind());
1939  }
1940  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1941                      unsigned NumElements, TypeClass TypeClass,
1942                      VectorKind VecKind) {
1943    ID.AddPointer(ElementType.getAsOpaquePtr());
1944    ID.AddInteger(NumElements);
1945    ID.AddInteger(TypeClass);
1946    ID.AddInteger(VecKind);
1947  }
1948
1949  static bool classof(const Type *T) {
1950    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1951  }
1952  static bool classof(const VectorType *) { return true; }
1953};
1954
1955/// ExtVectorType - Extended vector type. This type is created using
1956/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1957/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1958/// class enables syntactic extensions, like Vector Components for accessing
1959/// points, colors, and textures (modeled after OpenGL Shading Language).
1960class ExtVectorType : public VectorType {
1961  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1962    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
1963  friend class ASTContext;  // ASTContext creates these.
1964public:
1965  static int getPointAccessorIdx(char c) {
1966    switch (c) {
1967    default: return -1;
1968    case 'x': return 0;
1969    case 'y': return 1;
1970    case 'z': return 2;
1971    case 'w': return 3;
1972    }
1973  }
1974  static int getNumericAccessorIdx(char c) {
1975    switch (c) {
1976      default: return -1;
1977      case '0': return 0;
1978      case '1': return 1;
1979      case '2': return 2;
1980      case '3': return 3;
1981      case '4': return 4;
1982      case '5': return 5;
1983      case '6': return 6;
1984      case '7': return 7;
1985      case '8': return 8;
1986      case '9': return 9;
1987      case 'A':
1988      case 'a': return 10;
1989      case 'B':
1990      case 'b': return 11;
1991      case 'C':
1992      case 'c': return 12;
1993      case 'D':
1994      case 'd': return 13;
1995      case 'E':
1996      case 'e': return 14;
1997      case 'F':
1998      case 'f': return 15;
1999    }
2000  }
2001
2002  static int getAccessorIdx(char c) {
2003    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2004    return getNumericAccessorIdx(c);
2005  }
2006
2007  bool isAccessorWithinNumElements(char c) const {
2008    if (int idx = getAccessorIdx(c)+1)
2009      return unsigned(idx-1) < getNumElements();
2010    return false;
2011  }
2012  bool isSugared() const { return false; }
2013  QualType desugar() const { return QualType(this, 0); }
2014
2015  static bool classof(const Type *T) {
2016    return T->getTypeClass() == ExtVector;
2017  }
2018  static bool classof(const ExtVectorType *) { return true; }
2019};
2020
2021/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2022/// class of FunctionNoProtoType and FunctionProtoType.
2023///
2024class FunctionType : public Type {
2025  // The type returned by the function.
2026  QualType ResultType;
2027
2028 public:
2029  // This class is used for passing arround the information needed to
2030  // construct a call. It is not actually used for storage, just for
2031  // factoring together common arguments.
2032  // If you add a field (say Foo), other than the obvious places (both, constructors,
2033  // compile failures), what you need to update is
2034  // * Operetor==
2035  // * getFoo
2036  // * withFoo
2037  // * functionType. Add Foo, getFoo.
2038  // * ASTContext::getFooType
2039  // * ASTContext::mergeFunctionTypes
2040  // * FunctionNoProtoType::Profile
2041  // * FunctionProtoType::Profile
2042  // * TypePrinter::PrintFunctionProto
2043  // * AST read and write
2044  // * Codegen
2045
2046  class ExtInfo {
2047    enum { CallConvMask = 0x7 };
2048    enum { NoReturnMask = 0x8 };
2049    enum { RegParmMask = ~(CallConvMask | NoReturnMask),
2050           RegParmOffset = 4 };
2051
2052    unsigned Bits;
2053
2054    ExtInfo(unsigned Bits) : Bits(Bits) {}
2055
2056    friend class FunctionType;
2057
2058   public:
2059    // Constructor with no defaults. Use this when you know that you
2060    // have all the elements (when reading an AST file for example).
2061    ExtInfo(bool noReturn, unsigned regParm, CallingConv cc) {
2062      Bits = ((unsigned) cc) |
2063             (noReturn ? NoReturnMask : 0) |
2064             (regParm << RegParmOffset);
2065    }
2066
2067    // Constructor with all defaults. Use when for example creating a
2068    // function know to use defaults.
2069    ExtInfo() : Bits(0) {}
2070
2071    bool getNoReturn() const { return Bits & NoReturnMask; }
2072    unsigned getRegParm() const { return Bits >> RegParmOffset; }
2073    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2074
2075    bool operator==(ExtInfo Other) const {
2076      return Bits == Other.Bits;
2077    }
2078    bool operator!=(ExtInfo Other) const {
2079      return Bits != Other.Bits;
2080    }
2081
2082    // Note that we don't have setters. That is by design, use
2083    // the following with methods instead of mutating these objects.
2084
2085    ExtInfo withNoReturn(bool noReturn) const {
2086      if (noReturn)
2087        return ExtInfo(Bits | NoReturnMask);
2088      else
2089        return ExtInfo(Bits & ~NoReturnMask);
2090    }
2091
2092    ExtInfo withRegParm(unsigned RegParm) const {
2093      return ExtInfo((Bits & ~RegParmMask) | (RegParm << RegParmOffset));
2094    }
2095
2096    ExtInfo withCallingConv(CallingConv cc) const {
2097      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2098    }
2099
2100    void Profile(llvm::FoldingSetNodeID &ID) {
2101      ID.AddInteger(Bits);
2102    }
2103  };
2104
2105protected:
2106  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
2107               unsigned typeQuals, QualType Canonical, bool Dependent,
2108               bool VariablyModified, ExtInfo Info)
2109    : Type(tc, Canonical, Dependent, VariablyModified), ResultType(res) {
2110    FunctionTypeBits.ExtInfo = Info.Bits;
2111    FunctionTypeBits.SubclassInfo = SubclassInfo;
2112    FunctionTypeBits.TypeQuals = typeQuals;
2113  }
2114  bool getSubClassData() const { return FunctionTypeBits.SubclassInfo; }
2115  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2116public:
2117
2118  QualType getResultType() const { return ResultType; }
2119
2120  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2121  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2122  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2123  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2124
2125  /// \brief Determine the type of an expression that calls a function of
2126  /// this type.
2127  QualType getCallResultType(ASTContext &Context) const {
2128    return getResultType().getNonLValueExprType(Context);
2129  }
2130
2131  static llvm::StringRef getNameForCallConv(CallingConv CC);
2132
2133  static bool classof(const Type *T) {
2134    return T->getTypeClass() == FunctionNoProto ||
2135           T->getTypeClass() == FunctionProto;
2136  }
2137  static bool classof(const FunctionType *) { return true; }
2138};
2139
2140/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2141/// no information available about its arguments.
2142class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2143  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2144    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
2145                   /*Dependent=*/false, Result->isVariablyModifiedType(),
2146                   Info) {}
2147  friend class ASTContext;  // ASTContext creates these.
2148
2149public:
2150  // No additional state past what FunctionType provides.
2151
2152  bool isSugared() const { return false; }
2153  QualType desugar() const { return QualType(this, 0); }
2154
2155  void Profile(llvm::FoldingSetNodeID &ID) {
2156    Profile(ID, getResultType(), getExtInfo());
2157  }
2158  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2159                      ExtInfo Info) {
2160    Info.Profile(ID);
2161    ID.AddPointer(ResultType.getAsOpaquePtr());
2162  }
2163
2164  static bool classof(const Type *T) {
2165    return T->getTypeClass() == FunctionNoProto;
2166  }
2167  static bool classof(const FunctionNoProtoType *) { return true; }
2168};
2169
2170/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2171/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2172/// arguments, not as having a single void argument. Such a type can have an
2173/// exception specification, but this specification is not part of the canonical
2174/// type.
2175class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2176  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
2177                    bool isVariadic, unsigned typeQuals, bool hasExs,
2178                    bool hasAnyExs, const QualType *ExArray,
2179                    unsigned numExs, QualType Canonical,
2180                    const ExtInfo &Info);
2181
2182  /// NumArgs - The number of arguments this function has, not counting '...'.
2183  unsigned NumArgs : 20;
2184
2185  /// NumExceptions - The number of types in the exception spec, if any.
2186  unsigned NumExceptions : 10;
2187
2188  /// HasExceptionSpec - Whether this function has an exception spec at all.
2189  unsigned HasExceptionSpec : 1;
2190
2191  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
2192  unsigned AnyExceptionSpec : 1;
2193
2194  /// ArgInfo - There is an variable size array after the class in memory that
2195  /// holds the argument types.
2196
2197  /// Exceptions - There is another variable size array after ArgInfo that
2198  /// holds the exception types.
2199
2200  friend class ASTContext;  // ASTContext creates these.
2201
2202public:
2203  unsigned getNumArgs() const { return NumArgs; }
2204  QualType getArgType(unsigned i) const {
2205    assert(i < NumArgs && "Invalid argument number!");
2206    return arg_type_begin()[i];
2207  }
2208
2209  bool hasExceptionSpec() const { return HasExceptionSpec; }
2210  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
2211  unsigned getNumExceptions() const { return NumExceptions; }
2212  QualType getExceptionType(unsigned i) const {
2213    assert(i < NumExceptions && "Invalid exception number!");
2214    return exception_begin()[i];
2215  }
2216  bool hasEmptyExceptionSpec() const {
2217    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
2218      getNumExceptions() == 0;
2219  }
2220
2221  bool isVariadic() const { return getSubClassData(); }
2222  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2223
2224  typedef const QualType *arg_type_iterator;
2225  arg_type_iterator arg_type_begin() const {
2226    return reinterpret_cast<const QualType *>(this+1);
2227  }
2228  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2229
2230  typedef const QualType *exception_iterator;
2231  exception_iterator exception_begin() const {
2232    // exceptions begin where arguments end
2233    return arg_type_end();
2234  }
2235  exception_iterator exception_end() const {
2236    return exception_begin() + NumExceptions;
2237  }
2238
2239  bool isSugared() const { return false; }
2240  QualType desugar() const { return QualType(this, 0); }
2241
2242  static bool classof(const Type *T) {
2243    return T->getTypeClass() == FunctionProto;
2244  }
2245  static bool classof(const FunctionProtoType *) { return true; }
2246
2247  void Profile(llvm::FoldingSetNodeID &ID);
2248  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2249                      arg_type_iterator ArgTys, unsigned NumArgs,
2250                      bool isVariadic, unsigned TypeQuals,
2251                      bool hasExceptionSpec, bool anyExceptionSpec,
2252                      unsigned NumExceptions, exception_iterator Exs,
2253                      ExtInfo ExtInfo);
2254};
2255
2256
2257/// \brief Represents the dependent type named by a dependently-scoped
2258/// typename using declaration, e.g.
2259///   using typename Base<T>::foo;
2260/// Template instantiation turns these into the underlying type.
2261class UnresolvedUsingType : public Type {
2262  UnresolvedUsingTypenameDecl *Decl;
2263
2264  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2265    : Type(UnresolvedUsing, QualType(), true, false),
2266      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2267  friend class ASTContext; // ASTContext creates these.
2268public:
2269
2270  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2271
2272  bool isSugared() const { return false; }
2273  QualType desugar() const { return QualType(this, 0); }
2274
2275  static bool classof(const Type *T) {
2276    return T->getTypeClass() == UnresolvedUsing;
2277  }
2278  static bool classof(const UnresolvedUsingType *) { return true; }
2279
2280  void Profile(llvm::FoldingSetNodeID &ID) {
2281    return Profile(ID, Decl);
2282  }
2283  static void Profile(llvm::FoldingSetNodeID &ID,
2284                      UnresolvedUsingTypenameDecl *D) {
2285    ID.AddPointer(D);
2286  }
2287};
2288
2289
2290class TypedefType : public Type {
2291  TypedefDecl *Decl;
2292protected:
2293  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
2294    : Type(tc, can, can->isDependentType(), can->isVariablyModifiedType()),
2295      Decl(const_cast<TypedefDecl*>(D)) {
2296    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2297  }
2298  friend class ASTContext;  // ASTContext creates these.
2299public:
2300
2301  TypedefDecl *getDecl() const { return Decl; }
2302
2303  bool isSugared() const { return true; }
2304  QualType desugar() const;
2305
2306  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2307  static bool classof(const TypedefType *) { return true; }
2308};
2309
2310/// TypeOfExprType (GCC extension).
2311class TypeOfExprType : public Type {
2312  Expr *TOExpr;
2313
2314protected:
2315  TypeOfExprType(Expr *E, QualType can = QualType());
2316  friend class ASTContext;  // ASTContext creates these.
2317public:
2318  Expr *getUnderlyingExpr() const { return TOExpr; }
2319
2320  /// \brief Remove a single level of sugar.
2321  QualType desugar() const;
2322
2323  /// \brief Returns whether this type directly provides sugar.
2324  bool isSugared() const { return true; }
2325
2326  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2327  static bool classof(const TypeOfExprType *) { return true; }
2328};
2329
2330/// \brief Internal representation of canonical, dependent
2331/// typeof(expr) types.
2332///
2333/// This class is used internally by the ASTContext to manage
2334/// canonical, dependent types, only. Clients will only see instances
2335/// of this class via TypeOfExprType nodes.
2336class DependentTypeOfExprType
2337  : public TypeOfExprType, public llvm::FoldingSetNode {
2338  ASTContext &Context;
2339
2340public:
2341  DependentTypeOfExprType(ASTContext &Context, Expr *E)
2342    : TypeOfExprType(E), Context(Context) { }
2343
2344  bool isSugared() const { return false; }
2345  QualType desugar() const { return QualType(this, 0); }
2346
2347  void Profile(llvm::FoldingSetNodeID &ID) {
2348    Profile(ID, Context, getUnderlyingExpr());
2349  }
2350
2351  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2352                      Expr *E);
2353};
2354
2355/// TypeOfType (GCC extension).
2356class TypeOfType : public Type {
2357  QualType TOType;
2358  TypeOfType(QualType T, QualType can)
2359    : Type(TypeOf, can, T->isDependentType(), T->isVariablyModifiedType()),
2360      TOType(T) {
2361    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2362  }
2363  friend class ASTContext;  // ASTContext creates these.
2364public:
2365  QualType getUnderlyingType() const { return TOType; }
2366
2367  /// \brief Remove a single level of sugar.
2368  QualType desugar() const { return getUnderlyingType(); }
2369
2370  /// \brief Returns whether this type directly provides sugar.
2371  bool isSugared() const { return true; }
2372
2373  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2374  static bool classof(const TypeOfType *) { return true; }
2375};
2376
2377/// DecltypeType (C++0x)
2378class DecltypeType : public Type {
2379  Expr *E;
2380
2381  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2382  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2383  // from it.
2384  QualType UnderlyingType;
2385
2386protected:
2387  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2388  friend class ASTContext;  // ASTContext creates these.
2389public:
2390  Expr *getUnderlyingExpr() const { return E; }
2391  QualType getUnderlyingType() const { return UnderlyingType; }
2392
2393  /// \brief Remove a single level of sugar.
2394  QualType desugar() const { return getUnderlyingType(); }
2395
2396  /// \brief Returns whether this type directly provides sugar.
2397  bool isSugared() const { return !isDependentType(); }
2398
2399  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2400  static bool classof(const DecltypeType *) { return true; }
2401};
2402
2403/// \brief Internal representation of canonical, dependent
2404/// decltype(expr) types.
2405///
2406/// This class is used internally by the ASTContext to manage
2407/// canonical, dependent types, only. Clients will only see instances
2408/// of this class via DecltypeType nodes.
2409class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2410  ASTContext &Context;
2411
2412public:
2413  DependentDecltypeType(ASTContext &Context, Expr *E);
2414
2415  bool isSugared() const { return false; }
2416  QualType desugar() const { return QualType(this, 0); }
2417
2418  void Profile(llvm::FoldingSetNodeID &ID) {
2419    Profile(ID, Context, getUnderlyingExpr());
2420  }
2421
2422  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2423                      Expr *E);
2424};
2425
2426class TagType : public Type {
2427  /// Stores the TagDecl associated with this type. The decl may point to any
2428  /// TagDecl that declares the entity.
2429  TagDecl * decl;
2430
2431protected:
2432  TagType(TypeClass TC, const TagDecl *D, QualType can);
2433
2434public:
2435  TagDecl *getDecl() const;
2436
2437  /// @brief Determines whether this type is in the process of being
2438  /// defined.
2439  bool isBeingDefined() const;
2440
2441  static bool classof(const Type *T) {
2442    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2443  }
2444  static bool classof(const TagType *) { return true; }
2445  static bool classof(const RecordType *) { return true; }
2446  static bool classof(const EnumType *) { return true; }
2447};
2448
2449/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2450/// to detect TagType objects of structs/unions/classes.
2451class RecordType : public TagType {
2452protected:
2453  explicit RecordType(const RecordDecl *D)
2454    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2455  explicit RecordType(TypeClass TC, RecordDecl *D)
2456    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2457  friend class ASTContext;   // ASTContext creates these.
2458public:
2459
2460  RecordDecl *getDecl() const {
2461    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2462  }
2463
2464  // FIXME: This predicate is a helper to QualType/Type. It needs to
2465  // recursively check all fields for const-ness. If any field is declared
2466  // const, it needs to return false.
2467  bool hasConstFields() const { return false; }
2468
2469  // FIXME: RecordType needs to check when it is created that all fields are in
2470  // the same address space, and return that.
2471  unsigned getAddressSpace() const { return 0; }
2472
2473  bool isSugared() const { return false; }
2474  QualType desugar() const { return QualType(this, 0); }
2475
2476  static bool classof(const TagType *T);
2477  static bool classof(const Type *T) {
2478    return isa<TagType>(T) && classof(cast<TagType>(T));
2479  }
2480  static bool classof(const RecordType *) { return true; }
2481};
2482
2483/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2484/// to detect TagType objects of enums.
2485class EnumType : public TagType {
2486  explicit EnumType(const EnumDecl *D)
2487    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2488  friend class ASTContext;   // ASTContext creates these.
2489public:
2490
2491  EnumDecl *getDecl() const {
2492    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2493  }
2494
2495  bool isSugared() const { return false; }
2496  QualType desugar() const { return QualType(this, 0); }
2497
2498  static bool classof(const TagType *T);
2499  static bool classof(const Type *T) {
2500    return isa<TagType>(T) && classof(cast<TagType>(T));
2501  }
2502  static bool classof(const EnumType *) { return true; }
2503};
2504
2505class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2506  unsigned Depth : 15;
2507  unsigned ParameterPack : 1;
2508  unsigned Index : 16;
2509  IdentifierInfo *Name;
2510
2511  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2512                       QualType Canon)
2513    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
2514           /*VariablyModified=*/false),
2515      Depth(D), ParameterPack(PP), Index(I), Name(N) { }
2516
2517  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2518    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true,
2519           /*VariablyModified=*/false),
2520      Depth(D), ParameterPack(PP), Index(I), Name(0) { }
2521
2522  friend class ASTContext;  // ASTContext creates these
2523
2524public:
2525  unsigned getDepth() const { return Depth; }
2526  unsigned getIndex() const { return Index; }
2527  bool isParameterPack() const { return ParameterPack; }
2528  IdentifierInfo *getName() const { return Name; }
2529
2530  bool isSugared() const { return false; }
2531  QualType desugar() const { return QualType(this, 0); }
2532
2533  void Profile(llvm::FoldingSetNodeID &ID) {
2534    Profile(ID, Depth, Index, ParameterPack, Name);
2535  }
2536
2537  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2538                      unsigned Index, bool ParameterPack,
2539                      IdentifierInfo *Name) {
2540    ID.AddInteger(Depth);
2541    ID.AddInteger(Index);
2542    ID.AddBoolean(ParameterPack);
2543    ID.AddPointer(Name);
2544  }
2545
2546  static bool classof(const Type *T) {
2547    return T->getTypeClass() == TemplateTypeParm;
2548  }
2549  static bool classof(const TemplateTypeParmType *T) { return true; }
2550};
2551
2552/// \brief Represents the result of substituting a type for a template
2553/// type parameter.
2554///
2555/// Within an instantiated template, all template type parameters have
2556/// been replaced with these.  They are used solely to record that a
2557/// type was originally written as a template type parameter;
2558/// therefore they are never canonical.
2559class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2560  // The original type parameter.
2561  const TemplateTypeParmType *Replaced;
2562
2563  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2564    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
2565           Canon->isVariablyModifiedType()),
2566      Replaced(Param) { }
2567
2568  friend class ASTContext;
2569
2570public:
2571  IdentifierInfo *getName() const { return Replaced->getName(); }
2572
2573  /// Gets the template parameter that was substituted for.
2574  const TemplateTypeParmType *getReplacedParameter() const {
2575    return Replaced;
2576  }
2577
2578  /// Gets the type that was substituted for the template
2579  /// parameter.
2580  QualType getReplacementType() const {
2581    return getCanonicalTypeInternal();
2582  }
2583
2584  bool isSugared() const { return true; }
2585  QualType desugar() const { return getReplacementType(); }
2586
2587  void Profile(llvm::FoldingSetNodeID &ID) {
2588    Profile(ID, getReplacedParameter(), getReplacementType());
2589  }
2590  static void Profile(llvm::FoldingSetNodeID &ID,
2591                      const TemplateTypeParmType *Replaced,
2592                      QualType Replacement) {
2593    ID.AddPointer(Replaced);
2594    ID.AddPointer(Replacement.getAsOpaquePtr());
2595  }
2596
2597  static bool classof(const Type *T) {
2598    return T->getTypeClass() == SubstTemplateTypeParm;
2599  }
2600  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2601};
2602
2603/// \brief Represents the type of a template specialization as written
2604/// in the source code.
2605///
2606/// Template specialization types represent the syntactic form of a
2607/// template-id that refers to a type, e.g., @c vector<int>. Some
2608/// template specialization types are syntactic sugar, whose canonical
2609/// type will point to some other type node that represents the
2610/// instantiation or class template specialization. For example, a
2611/// class template specialization type of @c vector<int> will refer to
2612/// a tag type for the instantiation
2613/// @c std::vector<int, std::allocator<int>>.
2614///
2615/// Other template specialization types, for which the template name
2616/// is dependent, may be canonical types. These types are always
2617/// dependent.
2618class TemplateSpecializationType
2619  : public Type, public llvm::FoldingSetNode {
2620  /// \brief The name of the template being specialized.
2621  TemplateName Template;
2622
2623  /// \brief - The number of template arguments named in this class
2624  /// template specialization.
2625  unsigned NumArgs;
2626
2627  TemplateSpecializationType(TemplateName T,
2628                             const TemplateArgument *Args,
2629                             unsigned NumArgs, QualType Canon);
2630
2631  friend class ASTContext;  // ASTContext creates these
2632
2633public:
2634  /// \brief Determine whether any of the given template arguments are
2635  /// dependent.
2636  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2637                                            unsigned NumArgs);
2638
2639  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2640                                            unsigned NumArgs);
2641
2642  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2643
2644  /// \brief Print a template argument list, including the '<' and '>'
2645  /// enclosing the template arguments.
2646  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2647                                               unsigned NumArgs,
2648                                               const PrintingPolicy &Policy);
2649
2650  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2651                                               unsigned NumArgs,
2652                                               const PrintingPolicy &Policy);
2653
2654  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2655                                               const PrintingPolicy &Policy);
2656
2657  /// True if this template specialization type matches a current
2658  /// instantiation in the context in which it is found.
2659  bool isCurrentInstantiation() const {
2660    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
2661  }
2662
2663  typedef const TemplateArgument * iterator;
2664
2665  iterator begin() const { return getArgs(); }
2666  iterator end() const; // defined inline in TemplateBase.h
2667
2668  /// \brief Retrieve the name of the template that we are specializing.
2669  TemplateName getTemplateName() const { return Template; }
2670
2671  /// \brief Retrieve the template arguments.
2672  const TemplateArgument *getArgs() const {
2673    return reinterpret_cast<const TemplateArgument *>(this + 1);
2674  }
2675
2676  /// \brief Retrieve the number of template arguments.
2677  unsigned getNumArgs() const { return NumArgs; }
2678
2679  /// \brief Retrieve a specific template argument as a type.
2680  /// \precondition @c isArgType(Arg)
2681  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
2682
2683  bool isSugared() const {
2684    return !isDependentType() || isCurrentInstantiation();
2685  }
2686  QualType desugar() const { return getCanonicalTypeInternal(); }
2687
2688  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Ctx) {
2689    Profile(ID, Template, getArgs(), NumArgs, Ctx);
2690  }
2691
2692  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2693                      const TemplateArgument *Args,
2694                      unsigned NumArgs,
2695                      ASTContext &Context);
2696
2697  static bool classof(const Type *T) {
2698    return T->getTypeClass() == TemplateSpecialization;
2699  }
2700  static bool classof(const TemplateSpecializationType *T) { return true; }
2701};
2702
2703/// \brief The injected class name of a C++ class template or class
2704/// template partial specialization.  Used to record that a type was
2705/// spelled with a bare identifier rather than as a template-id; the
2706/// equivalent for non-templated classes is just RecordType.
2707///
2708/// Injected class name types are always dependent.  Template
2709/// instantiation turns these into RecordTypes.
2710///
2711/// Injected class name types are always canonical.  This works
2712/// because it is impossible to compare an injected class name type
2713/// with the corresponding non-injected template type, for the same
2714/// reason that it is impossible to directly compare template
2715/// parameters from different dependent contexts: injected class name
2716/// types can only occur within the scope of a particular templated
2717/// declaration, and within that scope every template specialization
2718/// will canonicalize to the injected class name (when appropriate
2719/// according to the rules of the language).
2720class InjectedClassNameType : public Type {
2721  CXXRecordDecl *Decl;
2722
2723  /// The template specialization which this type represents.
2724  /// For example, in
2725  ///   template <class T> class A { ... };
2726  /// this is A<T>, whereas in
2727  ///   template <class X, class Y> class A<B<X,Y> > { ... };
2728  /// this is A<B<X,Y> >.
2729  ///
2730  /// It is always unqualified, always a template specialization type,
2731  /// and always dependent.
2732  QualType InjectedType;
2733
2734  friend class ASTContext; // ASTContext creates these.
2735  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
2736                          // currently suitable for AST reading, too much
2737                          // interdependencies.
2738  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
2739    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
2740           /*VariablyModified=*/false),
2741      Decl(D), InjectedType(TST) {
2742    assert(isa<TemplateSpecializationType>(TST));
2743    assert(!TST.hasQualifiers());
2744    assert(TST->isDependentType());
2745  }
2746
2747public:
2748  QualType getInjectedSpecializationType() const { return InjectedType; }
2749  const TemplateSpecializationType *getInjectedTST() const {
2750    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
2751  }
2752
2753  CXXRecordDecl *getDecl() const;
2754
2755  bool isSugared() const { return false; }
2756  QualType desugar() const { return QualType(this, 0); }
2757
2758  static bool classof(const Type *T) {
2759    return T->getTypeClass() == InjectedClassName;
2760  }
2761  static bool classof(const InjectedClassNameType *T) { return true; }
2762};
2763
2764/// \brief The kind of a tag type.
2765enum TagTypeKind {
2766  /// \brief The "struct" keyword.
2767  TTK_Struct,
2768  /// \brief The "union" keyword.
2769  TTK_Union,
2770  /// \brief The "class" keyword.
2771  TTK_Class,
2772  /// \brief The "enum" keyword.
2773  TTK_Enum
2774};
2775
2776/// \brief The elaboration keyword that precedes a qualified type name or
2777/// introduces an elaborated-type-specifier.
2778enum ElaboratedTypeKeyword {
2779  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
2780  ETK_Struct,
2781  /// \brief The "union" keyword introduces the elaborated-type-specifier.
2782  ETK_Union,
2783  /// \brief The "class" keyword introduces the elaborated-type-specifier.
2784  ETK_Class,
2785  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
2786  ETK_Enum,
2787  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
2788  /// \c typename T::type.
2789  ETK_Typename,
2790  /// \brief No keyword precedes the qualified type name.
2791  ETK_None
2792};
2793
2794/// A helper class for Type nodes having an ElaboratedTypeKeyword.
2795/// The keyword in stored in the free bits of the base class.
2796/// Also provides a few static helpers for converting and printing
2797/// elaborated type keyword and tag type kind enumerations.
2798class TypeWithKeyword : public Type {
2799protected:
2800  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
2801                  QualType Canonical, bool Dependent, bool VariablyModified)
2802    : Type(tc, Canonical, Dependent, VariablyModified) {
2803    TypeWithKeywordBits.Keyword = Keyword;
2804  }
2805
2806public:
2807  ElaboratedTypeKeyword getKeyword() const {
2808    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
2809  }
2810
2811  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
2812  /// into an elaborated type keyword.
2813  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
2814
2815  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
2816  /// into a tag type kind.  It is an error to provide a type specifier
2817  /// which *isn't* a tag kind here.
2818  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
2819
2820  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
2821  /// elaborated type keyword.
2822  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
2823
2824  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
2825  // a TagTypeKind. It is an error to provide an elaborated type keyword
2826  /// which *isn't* a tag kind here.
2827  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
2828
2829  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
2830
2831  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
2832
2833  static const char *getTagTypeKindName(TagTypeKind Kind) {
2834    return getKeywordName(getKeywordForTagTypeKind(Kind));
2835  }
2836
2837  class CannotCastToThisType {};
2838  static CannotCastToThisType classof(const Type *);
2839};
2840
2841/// \brief Represents a type that was referred to using an elaborated type
2842/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
2843/// or both.
2844///
2845/// This type is used to keep track of a type name as written in the
2846/// source code, including tag keywords and any nested-name-specifiers.
2847/// The type itself is always "sugar", used to express what was written
2848/// in the source code but containing no additional semantic information.
2849class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
2850
2851  /// \brief The nested name specifier containing the qualifier.
2852  NestedNameSpecifier *NNS;
2853
2854  /// \brief The type that this qualified name refers to.
2855  QualType NamedType;
2856
2857  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2858                 QualType NamedType, QualType CanonType)
2859    : TypeWithKeyword(Keyword, Elaborated, CanonType,
2860                      NamedType->isDependentType(),
2861                      NamedType->isVariablyModifiedType()),
2862      NNS(NNS), NamedType(NamedType) {
2863    assert(!(Keyword == ETK_None && NNS == 0) &&
2864           "ElaboratedType cannot have elaborated type keyword "
2865           "and name qualifier both null.");
2866  }
2867
2868  friend class ASTContext;  // ASTContext creates these
2869
2870public:
2871  ~ElaboratedType();
2872
2873  /// \brief Retrieve the qualification on this type.
2874  NestedNameSpecifier *getQualifier() const { return NNS; }
2875
2876  /// \brief Retrieve the type named by the qualified-id.
2877  QualType getNamedType() const { return NamedType; }
2878
2879  /// \brief Remove a single level of sugar.
2880  QualType desugar() const { return getNamedType(); }
2881
2882  /// \brief Returns whether this type directly provides sugar.
2883  bool isSugared() const { return true; }
2884
2885  void Profile(llvm::FoldingSetNodeID &ID) {
2886    Profile(ID, getKeyword(), NNS, NamedType);
2887  }
2888
2889  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2890                      NestedNameSpecifier *NNS, QualType NamedType) {
2891    ID.AddInteger(Keyword);
2892    ID.AddPointer(NNS);
2893    NamedType.Profile(ID);
2894  }
2895
2896  static bool classof(const Type *T) {
2897    return T->getTypeClass() == Elaborated;
2898  }
2899  static bool classof(const ElaboratedType *T) { return true; }
2900};
2901
2902/// \brief Represents a qualified type name for which the type name is
2903/// dependent.
2904///
2905/// DependentNameType represents a class of dependent types that involve a
2906/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
2907/// name of a type. The DependentNameType may start with a "typename" (for a
2908/// typename-specifier), "class", "struct", "union", or "enum" (for a
2909/// dependent elaborated-type-specifier), or nothing (in contexts where we
2910/// know that we must be referring to a type, e.g., in a base class specifier).
2911class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
2912
2913  /// \brief The nested name specifier containing the qualifier.
2914  NestedNameSpecifier *NNS;
2915
2916  /// \brief The type that this typename specifier refers to.
2917  const IdentifierInfo *Name;
2918
2919  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2920                    const IdentifierInfo *Name, QualType CanonType)
2921    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
2922                      /*VariablyModified=*/false),
2923      NNS(NNS), Name(Name) {
2924    assert(NNS->isDependent() &&
2925           "DependentNameType requires a dependent nested-name-specifier");
2926  }
2927
2928  friend class ASTContext;  // ASTContext creates these
2929
2930public:
2931  /// \brief Retrieve the qualification on this type.
2932  NestedNameSpecifier *getQualifier() const { return NNS; }
2933
2934  /// \brief Retrieve the type named by the typename specifier as an
2935  /// identifier.
2936  ///
2937  /// This routine will return a non-NULL identifier pointer when the
2938  /// form of the original typename was terminated by an identifier,
2939  /// e.g., "typename T::type".
2940  const IdentifierInfo *getIdentifier() const {
2941    return Name;
2942  }
2943
2944  bool isSugared() const { return false; }
2945  QualType desugar() const { return QualType(this, 0); }
2946
2947  void Profile(llvm::FoldingSetNodeID &ID) {
2948    Profile(ID, getKeyword(), NNS, Name);
2949  }
2950
2951  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2952                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
2953    ID.AddInteger(Keyword);
2954    ID.AddPointer(NNS);
2955    ID.AddPointer(Name);
2956  }
2957
2958  static bool classof(const Type *T) {
2959    return T->getTypeClass() == DependentName;
2960  }
2961  static bool classof(const DependentNameType *T) { return true; }
2962};
2963
2964/// DependentTemplateSpecializationType - Represents a template
2965/// specialization type whose template cannot be resolved, e.g.
2966///   A<T>::template B<T>
2967class DependentTemplateSpecializationType :
2968  public TypeWithKeyword, public llvm::FoldingSetNode {
2969
2970  /// \brief The nested name specifier containing the qualifier.
2971  NestedNameSpecifier *NNS;
2972
2973  /// \brief The identifier of the template.
2974  const IdentifierInfo *Name;
2975
2976  /// \brief - The number of template arguments named in this class
2977  /// template specialization.
2978  unsigned NumArgs;
2979
2980  const TemplateArgument *getArgBuffer() const {
2981    return reinterpret_cast<const TemplateArgument*>(this+1);
2982  }
2983  TemplateArgument *getArgBuffer() {
2984    return reinterpret_cast<TemplateArgument*>(this+1);
2985  }
2986
2987  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
2988                                      NestedNameSpecifier *NNS,
2989                                      const IdentifierInfo *Name,
2990                                      unsigned NumArgs,
2991                                      const TemplateArgument *Args,
2992                                      QualType Canon);
2993
2994  friend class ASTContext;  // ASTContext creates these
2995
2996public:
2997  NestedNameSpecifier *getQualifier() const { return NNS; }
2998  const IdentifierInfo *getIdentifier() const { return Name; }
2999
3000  /// \brief Retrieve the template arguments.
3001  const TemplateArgument *getArgs() const {
3002    return getArgBuffer();
3003  }
3004
3005  /// \brief Retrieve the number of template arguments.
3006  unsigned getNumArgs() const { return NumArgs; }
3007
3008  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3009
3010  typedef const TemplateArgument * iterator;
3011  iterator begin() const { return getArgs(); }
3012  iterator end() const; // inline in TemplateBase.h
3013
3014  bool isSugared() const { return false; }
3015  QualType desugar() const { return QualType(this, 0); }
3016
3017  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context) {
3018    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
3019  }
3020
3021  static void Profile(llvm::FoldingSetNodeID &ID,
3022                      ASTContext &Context,
3023                      ElaboratedTypeKeyword Keyword,
3024                      NestedNameSpecifier *Qualifier,
3025                      const IdentifierInfo *Name,
3026                      unsigned NumArgs,
3027                      const TemplateArgument *Args);
3028
3029  static bool classof(const Type *T) {
3030    return T->getTypeClass() == DependentTemplateSpecialization;
3031  }
3032  static bool classof(const DependentTemplateSpecializationType *T) {
3033    return true;
3034  }
3035};
3036
3037/// ObjCObjectType - Represents a class type in Objective C.
3038/// Every Objective C type is a combination of a base type and a
3039/// list of protocols.
3040///
3041/// Given the following declarations:
3042///   @class C;
3043///   @protocol P;
3044///
3045/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
3046/// with base C and no protocols.
3047///
3048/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
3049///
3050/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
3051/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
3052/// and no protocols.
3053///
3054/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
3055/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
3056/// this should get its own sugar class to better represent the source.
3057class ObjCObjectType : public Type {
3058  // ObjCObjectType.NumProtocols - the number of protocols stored
3059  // after the ObjCObjectPointerType node.
3060  //
3061  // These protocols are those written directly on the type.  If
3062  // protocol qualifiers ever become additive, the iterators will need
3063  // to get kindof complicated.
3064  //
3065  // In the canonical object type, these are sorted alphabetically
3066  // and uniqued.
3067
3068  /// Either a BuiltinType or an InterfaceType or sugar for either.
3069  QualType BaseType;
3070
3071  ObjCProtocolDecl * const *getProtocolStorage() const {
3072    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
3073  }
3074
3075  ObjCProtocolDecl **getProtocolStorage();
3076
3077protected:
3078  ObjCObjectType(QualType Canonical, QualType Base,
3079                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
3080
3081  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
3082  ObjCObjectType(enum Nonce_ObjCInterface)
3083    : Type(ObjCInterface, QualType(), false, false),
3084      BaseType(QualType(this_(), 0)) {
3085    ObjCObjectTypeBits.NumProtocols = 0;
3086  }
3087
3088public:
3089  /// getBaseType - Gets the base type of this object type.  This is
3090  /// always (possibly sugar for) one of:
3091  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
3092  ///    user, which is a typedef for an ObjCPointerType)
3093  ///  - the 'Class' builtin type (same caveat)
3094  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
3095  QualType getBaseType() const { return BaseType; }
3096
3097  bool isObjCId() const {
3098    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
3099  }
3100  bool isObjCClass() const {
3101    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
3102  }
3103  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
3104  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
3105  bool isObjCUnqualifiedIdOrClass() const {
3106    if (!qual_empty()) return false;
3107    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
3108      return T->getKind() == BuiltinType::ObjCId ||
3109             T->getKind() == BuiltinType::ObjCClass;
3110    return false;
3111  }
3112  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
3113  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
3114
3115  /// Gets the interface declaration for this object type, if the base type
3116  /// really is an interface.
3117  ObjCInterfaceDecl *getInterface() const;
3118
3119  typedef ObjCProtocolDecl * const *qual_iterator;
3120
3121  qual_iterator qual_begin() const { return getProtocolStorage(); }
3122  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
3123
3124  bool qual_empty() const { return getNumProtocols() == 0; }
3125
3126  /// getNumProtocols - Return the number of qualifying protocols in this
3127  /// interface type, or 0 if there are none.
3128  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
3129
3130  /// \brief Fetch a protocol by index.
3131  ObjCProtocolDecl *getProtocol(unsigned I) const {
3132    assert(I < getNumProtocols() && "Out-of-range protocol access");
3133    return qual_begin()[I];
3134  }
3135
3136  bool isSugared() const { return false; }
3137  QualType desugar() const { return QualType(this, 0); }
3138
3139  static bool classof(const Type *T) {
3140    return T->getTypeClass() == ObjCObject ||
3141           T->getTypeClass() == ObjCInterface;
3142  }
3143  static bool classof(const ObjCObjectType *) { return true; }
3144};
3145
3146/// ObjCObjectTypeImpl - A class providing a concrete implementation
3147/// of ObjCObjectType, so as to not increase the footprint of
3148/// ObjCInterfaceType.  Code outside of ASTContext and the core type
3149/// system should not reference this type.
3150class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
3151  friend class ASTContext;
3152
3153  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
3154  // will need to be modified.
3155
3156  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
3157                     ObjCProtocolDecl * const *Protocols,
3158                     unsigned NumProtocols)
3159    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
3160
3161public:
3162  void Profile(llvm::FoldingSetNodeID &ID);
3163  static void Profile(llvm::FoldingSetNodeID &ID,
3164                      QualType Base,
3165                      ObjCProtocolDecl *const *protocols,
3166                      unsigned NumProtocols);
3167};
3168
3169inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
3170  return reinterpret_cast<ObjCProtocolDecl**>(
3171            static_cast<ObjCObjectTypeImpl*>(this) + 1);
3172}
3173
3174/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
3175/// object oriented design.  They basically correspond to C++ classes.  There
3176/// are two kinds of interface types, normal interfaces like "NSString" and
3177/// qualified interfaces, which are qualified with a protocol list like
3178/// "NSString<NSCopyable, NSAmazing>".
3179///
3180/// ObjCInterfaceType guarantees the following properties when considered
3181/// as a subtype of its superclass, ObjCObjectType:
3182///   - There are no protocol qualifiers.  To reinforce this, code which
3183///     tries to invoke the protocol methods via an ObjCInterfaceType will
3184///     fail to compile.
3185///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
3186///     T->getBaseType() == QualType(T, 0).
3187class ObjCInterfaceType : public ObjCObjectType {
3188  ObjCInterfaceDecl *Decl;
3189
3190  ObjCInterfaceType(const ObjCInterfaceDecl *D)
3191    : ObjCObjectType(Nonce_ObjCInterface),
3192      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
3193  friend class ASTContext;  // ASTContext creates these.
3194
3195public:
3196  /// getDecl - Get the declaration of this interface.
3197  ObjCInterfaceDecl *getDecl() const { return Decl; }
3198
3199  bool isSugared() const { return false; }
3200  QualType desugar() const { return QualType(this, 0); }
3201
3202  static bool classof(const Type *T) {
3203    return T->getTypeClass() == ObjCInterface;
3204  }
3205  static bool classof(const ObjCInterfaceType *) { return true; }
3206
3207  // Nonsense to "hide" certain members of ObjCObjectType within this
3208  // class.  People asking for protocols on an ObjCInterfaceType are
3209  // not going to get what they want: ObjCInterfaceTypes are
3210  // guaranteed to have no protocols.
3211  enum {
3212    qual_iterator,
3213    qual_begin,
3214    qual_end,
3215    getNumProtocols,
3216    getProtocol
3217  };
3218};
3219
3220inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
3221  if (const ObjCInterfaceType *T =
3222        getBaseType()->getAs<ObjCInterfaceType>())
3223    return T->getDecl();
3224  return 0;
3225}
3226
3227/// ObjCObjectPointerType - Used to represent a pointer to an
3228/// Objective C object.  These are constructed from pointer
3229/// declarators when the pointee type is an ObjCObjectType (or sugar
3230/// for one).  In addition, the 'id' and 'Class' types are typedefs
3231/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
3232/// are translated into these.
3233///
3234/// Pointers to pointers to Objective C objects are still PointerTypes;
3235/// only the first level of pointer gets it own type implementation.
3236class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
3237  QualType PointeeType;
3238
3239  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
3240    : Type(ObjCObjectPointer, Canonical, false, false),
3241      PointeeType(Pointee) {}
3242  friend class ASTContext;  // ASTContext creates these.
3243
3244public:
3245  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
3246  /// The result will always be an ObjCObjectType or sugar thereof.
3247  QualType getPointeeType() const { return PointeeType; }
3248
3249  /// getObjCObjectType - Gets the type pointed to by this ObjC
3250  /// pointer.  This method always returns non-null.
3251  ///
3252  /// This method is equivalent to getPointeeType() except that
3253  /// it discards any typedefs (or other sugar) between this
3254  /// type and the "outermost" object type.  So for:
3255  ///   @class A; @protocol P; @protocol Q;
3256  ///   typedef A<P> AP;
3257  ///   typedef A A1;
3258  ///   typedef A1<P> A1P;
3259  ///   typedef A1P<Q> A1PQ;
3260  /// For 'A*', getObjectType() will return 'A'.
3261  /// For 'A<P>*', getObjectType() will return 'A<P>'.
3262  /// For 'AP*', getObjectType() will return 'A<P>'.
3263  /// For 'A1*', getObjectType() will return 'A'.
3264  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
3265  /// For 'A1P*', getObjectType() will return 'A1<P>'.
3266  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
3267  ///   adding protocols to a protocol-qualified base discards the
3268  ///   old qualifiers (for now).  But if it didn't, getObjectType()
3269  ///   would return 'A1P<Q>' (and we'd have to make iterating over
3270  ///   qualifiers more complicated).
3271  const ObjCObjectType *getObjectType() const {
3272    return PointeeType->getAs<ObjCObjectType>();
3273  }
3274
3275  /// getInterfaceType - If this pointer points to an Objective C
3276  /// @interface type, gets the type for that interface.  Any protocol
3277  /// qualifiers on the interface are ignored.
3278  ///
3279  /// \return null if the base type for this pointer is 'id' or 'Class'
3280  const ObjCInterfaceType *getInterfaceType() const {
3281    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
3282  }
3283
3284  /// getInterfaceDecl - If this pointer points to an Objective @interface
3285  /// type, gets the declaration for that interface.
3286  ///
3287  /// \return null if the base type for this pointer is 'id' or 'Class'
3288  ObjCInterfaceDecl *getInterfaceDecl() const {
3289    return getObjectType()->getInterface();
3290  }
3291
3292  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
3293  /// its object type is the primitive 'id' type with no protocols.
3294  bool isObjCIdType() const {
3295    return getObjectType()->isObjCUnqualifiedId();
3296  }
3297
3298  /// isObjCClassType - True if this is equivalent to the 'Class' type,
3299  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
3300  bool isObjCClassType() const {
3301    return getObjectType()->isObjCUnqualifiedClass();
3302  }
3303
3304  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
3305  /// non-empty set of protocols.
3306  bool isObjCQualifiedIdType() const {
3307    return getObjectType()->isObjCQualifiedId();
3308  }
3309
3310  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
3311  /// some non-empty set of protocols.
3312  bool isObjCQualifiedClassType() const {
3313    return getObjectType()->isObjCQualifiedClass();
3314  }
3315
3316  /// An iterator over the qualifiers on the object type.  Provided
3317  /// for convenience.  This will always iterate over the full set of
3318  /// protocols on a type, not just those provided directly.
3319  typedef ObjCObjectType::qual_iterator qual_iterator;
3320
3321  qual_iterator qual_begin() const {
3322    return getObjectType()->qual_begin();
3323  }
3324  qual_iterator qual_end() const {
3325    return getObjectType()->qual_end();
3326  }
3327  bool qual_empty() const { return getObjectType()->qual_empty(); }
3328
3329  /// getNumProtocols - Return the number of qualifying protocols on
3330  /// the object type.
3331  unsigned getNumProtocols() const {
3332    return getObjectType()->getNumProtocols();
3333  }
3334
3335  /// \brief Retrieve a qualifying protocol by index on the object
3336  /// type.
3337  ObjCProtocolDecl *getProtocol(unsigned I) const {
3338    return getObjectType()->getProtocol(I);
3339  }
3340
3341  bool isSugared() const { return false; }
3342  QualType desugar() const { return QualType(this, 0); }
3343
3344  void Profile(llvm::FoldingSetNodeID &ID) {
3345    Profile(ID, getPointeeType());
3346  }
3347  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
3348    ID.AddPointer(T.getAsOpaquePtr());
3349  }
3350  static bool classof(const Type *T) {
3351    return T->getTypeClass() == ObjCObjectPointer;
3352  }
3353  static bool classof(const ObjCObjectPointerType *) { return true; }
3354};
3355
3356/// A qualifier set is used to build a set of qualifiers.
3357class QualifierCollector : public Qualifiers {
3358public:
3359  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
3360
3361  /// Collect any qualifiers on the given type and return an
3362  /// unqualified type.
3363  const Type *strip(QualType QT) {
3364    addFastQualifiers(QT.getLocalFastQualifiers());
3365    if (QT.hasLocalNonFastQualifiers()) {
3366      const ExtQuals *EQ = QT.getExtQualsUnsafe();
3367      addQualifiers(EQ->getQualifiers());
3368      return EQ->getBaseType();
3369    }
3370    return QT.getTypePtrUnsafe();
3371  }
3372
3373  /// Apply the collected qualifiers to the given type.
3374  QualType apply(ASTContext &Context, QualType QT) const;
3375
3376  /// Apply the collected qualifiers to the given type.
3377  QualType apply(ASTContext &Context, const Type* T) const;
3378};
3379
3380
3381// Inline function definitions.
3382
3383inline bool QualType::isCanonical() const {
3384  const Type *T = getTypePtr();
3385  if (hasLocalQualifiers())
3386    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
3387  return T->isCanonicalUnqualified();
3388}
3389
3390inline bool QualType::isCanonicalAsParam() const {
3391  if (hasLocalQualifiers()) return false;
3392
3393  const Type *T = getTypePtr();
3394  if ((*this)->isPointerType()) {
3395    QualType BaseType = (*this)->getAs<PointerType>()->getPointeeType();
3396    if (isa<VariableArrayType>(BaseType)) {
3397      ArrayType *AT = dyn_cast<ArrayType>(BaseType);
3398      VariableArrayType *VAT = cast<VariableArrayType>(AT);
3399      if (VAT->getSizeExpr())
3400        T = BaseType.getTypePtr();
3401    }
3402  }
3403  return T->isCanonicalUnqualified() &&
3404           !isa<FunctionType>(T) && !isa<ArrayType>(T);
3405}
3406
3407inline bool QualType::isConstQualified() const {
3408  return isLocalConstQualified() ||
3409              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
3410}
3411
3412inline bool QualType::isRestrictQualified() const {
3413  return isLocalRestrictQualified() ||
3414            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
3415}
3416
3417
3418inline bool QualType::isVolatileQualified() const {
3419  return isLocalVolatileQualified() ||
3420  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
3421}
3422
3423inline bool QualType::hasQualifiers() const {
3424  return hasLocalQualifiers() ||
3425                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
3426}
3427
3428inline Qualifiers QualType::getQualifiers() const {
3429  Qualifiers Quals = getLocalQualifiers();
3430  Quals.addQualifiers(
3431                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
3432  return Quals;
3433}
3434
3435inline unsigned QualType::getCVRQualifiers() const {
3436  return getLocalCVRQualifiers() |
3437              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
3438}
3439
3440/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
3441/// type, returns them. Otherwise, if this is an array type, recurses
3442/// on the element type until some qualifiers have been found or a non-array
3443/// type reached.
3444inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
3445  if (unsigned Quals = getCVRQualifiers())
3446    return Quals;
3447  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3448  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3449    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
3450  return 0;
3451}
3452
3453inline void QualType::removeLocalConst() {
3454  removeLocalFastQualifiers(Qualifiers::Const);
3455}
3456
3457inline void QualType::removeLocalRestrict() {
3458  removeLocalFastQualifiers(Qualifiers::Restrict);
3459}
3460
3461inline void QualType::removeLocalVolatile() {
3462  removeLocalFastQualifiers(Qualifiers::Volatile);
3463}
3464
3465inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
3466  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
3467  assert(Qualifiers::CVRMask == Qualifiers::FastMask);
3468
3469  // Fast path: we don't need to touch the slow qualifiers.
3470  removeLocalFastQualifiers(Mask);
3471}
3472
3473/// getAddressSpace - Return the address space of this type.
3474inline unsigned QualType::getAddressSpace() const {
3475  if (hasLocalNonFastQualifiers()) {
3476    const ExtQuals *EQ = getExtQualsUnsafe();
3477    if (EQ->hasAddressSpace())
3478      return EQ->getAddressSpace();
3479  }
3480
3481  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3482  if (CT.hasLocalNonFastQualifiers()) {
3483    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3484    if (EQ->hasAddressSpace())
3485      return EQ->getAddressSpace();
3486  }
3487
3488  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3489    return AT->getElementType().getAddressSpace();
3490  if (const RecordType *RT = dyn_cast<RecordType>(CT))
3491    return RT->getAddressSpace();
3492  return 0;
3493}
3494
3495/// getObjCGCAttr - Return the gc attribute of this type.
3496inline Qualifiers::GC QualType::getObjCGCAttr() const {
3497  if (hasLocalNonFastQualifiers()) {
3498    const ExtQuals *EQ = getExtQualsUnsafe();
3499    if (EQ->hasObjCGCAttr())
3500      return EQ->getObjCGCAttr();
3501  }
3502
3503  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3504  if (CT.hasLocalNonFastQualifiers()) {
3505    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3506    if (EQ->hasObjCGCAttr())
3507      return EQ->getObjCGCAttr();
3508  }
3509
3510  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3511      return AT->getElementType().getObjCGCAttr();
3512  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
3513    return PT->getPointeeType().getObjCGCAttr();
3514  // We most look at all pointer types, not just pointer to interface types.
3515  if (const PointerType *PT = CT->getAs<PointerType>())
3516    return PT->getPointeeType().getObjCGCAttr();
3517  return Qualifiers::GCNone;
3518}
3519
3520inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
3521  if (const PointerType *PT = t.getAs<PointerType>()) {
3522    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
3523      return FT->getExtInfo();
3524  } else if (const FunctionType *FT = t.getAs<FunctionType>())
3525    return FT->getExtInfo();
3526
3527  return FunctionType::ExtInfo();
3528}
3529
3530inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
3531  return getFunctionExtInfo(*t);
3532}
3533
3534/// \brief Determine whether this set of qualifiers is a superset of the given
3535/// set of qualifiers.
3536inline bool Qualifiers::isSupersetOf(Qualifiers Other) const {
3537  return Mask != Other.Mask && (Mask | Other.Mask) == Mask;
3538}
3539
3540/// isMoreQualifiedThan - Determine whether this type is more
3541/// qualified than the Other type. For example, "const volatile int"
3542/// is more qualified than "const int", "volatile int", and
3543/// "int". However, it is not more qualified than "const volatile
3544/// int".
3545inline bool QualType::isMoreQualifiedThan(QualType Other) const {
3546  // FIXME: work on arbitrary qualifiers
3547  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3548  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3549  if (getAddressSpace() != Other.getAddressSpace())
3550    return false;
3551  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
3552}
3553
3554/// isAtLeastAsQualifiedAs - Determine whether this type is at last
3555/// as qualified as the Other type. For example, "const volatile
3556/// int" is at least as qualified as "const int", "volatile int",
3557/// "int", and "const volatile int".
3558inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
3559  // FIXME: work on arbitrary qualifiers
3560  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3561  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3562  if (getAddressSpace() != Other.getAddressSpace())
3563    return false;
3564  return (MyQuals | OtherQuals) == MyQuals;
3565}
3566
3567/// getNonReferenceType - If Type is a reference type (e.g., const
3568/// int&), returns the type that the reference refers to ("const
3569/// int"). Otherwise, returns the type itself. This routine is used
3570/// throughout Sema to implement C++ 5p6:
3571///
3572///   If an expression initially has the type "reference to T" (8.3.2,
3573///   8.5.3), the type is adjusted to "T" prior to any further
3574///   analysis, the expression designates the object or function
3575///   denoted by the reference, and the expression is an lvalue.
3576inline QualType QualType::getNonReferenceType() const {
3577  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
3578    return RefType->getPointeeType();
3579  else
3580    return *this;
3581}
3582
3583inline bool Type::isFunctionType() const {
3584  return isa<FunctionType>(CanonicalType);
3585}
3586inline bool Type::isPointerType() const {
3587  return isa<PointerType>(CanonicalType);
3588}
3589inline bool Type::isAnyPointerType() const {
3590  return isPointerType() || isObjCObjectPointerType();
3591}
3592inline bool Type::isBlockPointerType() const {
3593  return isa<BlockPointerType>(CanonicalType);
3594}
3595inline bool Type::isReferenceType() const {
3596  return isa<ReferenceType>(CanonicalType);
3597}
3598inline bool Type::isLValueReferenceType() const {
3599  return isa<LValueReferenceType>(CanonicalType);
3600}
3601inline bool Type::isRValueReferenceType() const {
3602  return isa<RValueReferenceType>(CanonicalType);
3603}
3604inline bool Type::isFunctionPointerType() const {
3605  if (const PointerType* T = getAs<PointerType>())
3606    return T->getPointeeType()->isFunctionType();
3607  else
3608    return false;
3609}
3610inline bool Type::isMemberPointerType() const {
3611  return isa<MemberPointerType>(CanonicalType);
3612}
3613inline bool Type::isMemberFunctionPointerType() const {
3614  if (const MemberPointerType* T = getAs<MemberPointerType>())
3615    return T->isMemberFunctionPointer();
3616  else
3617    return false;
3618}
3619inline bool Type::isMemberDataPointerType() const {
3620  if (const MemberPointerType* T = getAs<MemberPointerType>())
3621    return T->isMemberDataPointer();
3622  else
3623    return false;
3624}
3625inline bool Type::isArrayType() const {
3626  return isa<ArrayType>(CanonicalType);
3627}
3628inline bool Type::isConstantArrayType() const {
3629  return isa<ConstantArrayType>(CanonicalType);
3630}
3631inline bool Type::isIncompleteArrayType() const {
3632  return isa<IncompleteArrayType>(CanonicalType);
3633}
3634inline bool Type::isVariableArrayType() const {
3635  return isa<VariableArrayType>(CanonicalType);
3636}
3637inline bool Type::isDependentSizedArrayType() const {
3638  return isa<DependentSizedArrayType>(CanonicalType);
3639}
3640inline bool Type::isBuiltinType() const {
3641  return isa<BuiltinType>(CanonicalType);
3642}
3643inline bool Type::isRecordType() const {
3644  return isa<RecordType>(CanonicalType);
3645}
3646inline bool Type::isEnumeralType() const {
3647  return isa<EnumType>(CanonicalType);
3648}
3649inline bool Type::isAnyComplexType() const {
3650  return isa<ComplexType>(CanonicalType);
3651}
3652inline bool Type::isVectorType() const {
3653  return isa<VectorType>(CanonicalType);
3654}
3655inline bool Type::isExtVectorType() const {
3656  return isa<ExtVectorType>(CanonicalType);
3657}
3658inline bool Type::isObjCObjectPointerType() const {
3659  return isa<ObjCObjectPointerType>(CanonicalType);
3660}
3661inline bool Type::isObjCObjectType() const {
3662  return isa<ObjCObjectType>(CanonicalType);
3663}
3664inline bool Type::isObjCObjectOrInterfaceType() const {
3665  return isa<ObjCInterfaceType>(CanonicalType) ||
3666    isa<ObjCObjectType>(CanonicalType);
3667}
3668
3669inline bool Type::isObjCQualifiedIdType() const {
3670  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3671    return OPT->isObjCQualifiedIdType();
3672  return false;
3673}
3674inline bool Type::isObjCQualifiedClassType() const {
3675  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3676    return OPT->isObjCQualifiedClassType();
3677  return false;
3678}
3679inline bool Type::isObjCIdType() const {
3680  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3681    return OPT->isObjCIdType();
3682  return false;
3683}
3684inline bool Type::isObjCClassType() const {
3685  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3686    return OPT->isObjCClassType();
3687  return false;
3688}
3689inline bool Type::isObjCSelType() const {
3690  if (const PointerType *OPT = getAs<PointerType>())
3691    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3692  return false;
3693}
3694inline bool Type::isObjCBuiltinType() const {
3695  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3696}
3697inline bool Type::isTemplateTypeParmType() const {
3698  return isa<TemplateTypeParmType>(CanonicalType);
3699}
3700
3701inline bool Type::isSpecificBuiltinType(unsigned K) const {
3702  if (const BuiltinType *BT = getAs<BuiltinType>())
3703    if (BT->getKind() == (BuiltinType::Kind) K)
3704      return true;
3705  return false;
3706}
3707
3708inline bool Type::isPlaceholderType() const {
3709  if (const BuiltinType *BT = getAs<BuiltinType>())
3710    return BT->isPlaceholderType();
3711  return false;
3712}
3713
3714/// \brief Determines whether this is a type for which one can define
3715/// an overloaded operator.
3716inline bool Type::isOverloadableType() const {
3717  return isDependentType() || isRecordType() || isEnumeralType();
3718}
3719
3720inline bool Type::hasPointerRepresentation() const {
3721  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3722          isObjCObjectPointerType() || isNullPtrType());
3723}
3724
3725inline bool Type::hasObjCPointerRepresentation() const {
3726  return isObjCObjectPointerType();
3727}
3728
3729/// Insertion operator for diagnostics.  This allows sending QualType's into a
3730/// diagnostic with <<.
3731inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3732                                           QualType T) {
3733  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3734                  Diagnostic::ak_qualtype);
3735  return DB;
3736}
3737
3738/// Insertion operator for partial diagnostics.  This allows sending QualType's
3739/// into a diagnostic with <<.
3740inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
3741                                           QualType T) {
3742  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3743                  Diagnostic::ak_qualtype);
3744  return PD;
3745}
3746
3747// Helper class template that is used by Type::getAs to ensure that one does
3748// not try to look through a qualified type to get to an array type.
3749template<typename T,
3750         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3751                             llvm::is_base_of<ArrayType, T>::value)>
3752struct ArrayType_cannot_be_used_with_getAs { };
3753
3754template<typename T>
3755struct ArrayType_cannot_be_used_with_getAs<T, true>;
3756
3757/// Member-template getAs<specific type>'.
3758template <typename T> const T *Type::getAs() const {
3759  ArrayType_cannot_be_used_with_getAs<T> at;
3760  (void)at;
3761
3762  // If this is directly a T type, return it.
3763  if (const T *Ty = dyn_cast<T>(this))
3764    return Ty;
3765
3766  // If the canonical form of this type isn't the right kind, reject it.
3767  if (!isa<T>(CanonicalType))
3768    return 0;
3769
3770  // If this is a typedef for the type, strip the typedef off without
3771  // losing all typedef information.
3772  return cast<T>(getUnqualifiedDesugaredType());
3773}
3774
3775}  // end namespace clang
3776
3777#endif
3778