Type.h revision 4a2023f5014e82389d5980d307b89c545dbbac81
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "llvm/Support/Casting.h"
23#include "llvm/Support/type_traits.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/FoldingSet.h"
26#include "llvm/ADT/PointerIntPair.h"
27#include "llvm/ADT/PointerUnion.h"
28
29using llvm::isa;
30using llvm::cast;
31using llvm::cast_or_null;
32using llvm::dyn_cast;
33using llvm::dyn_cast_or_null;
34namespace clang {
35  enum {
36    TypeAlignmentInBits = 3,
37    TypeAlignment = 1 << TypeAlignmentInBits
38  };
39  class Type;
40  class ExtQuals;
41  class QualType;
42}
43
44namespace llvm {
45  template <typename T>
46  class PointerLikeTypeTraits;
47  template<>
48  class PointerLikeTypeTraits< ::clang::Type*> {
49  public:
50    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
51    static inline ::clang::Type *getFromVoidPointer(void *P) {
52      return static_cast< ::clang::Type*>(P);
53    }
54    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
55  };
56  template<>
57  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
58  public:
59    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
60    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
61      return static_cast< ::clang::ExtQuals*>(P);
62    }
63    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
64  };
65
66  template <>
67  struct isPodLike<clang::QualType> { static const bool value = true; };
68}
69
70namespace clang {
71  class ASTContext;
72  class TypedefDecl;
73  class TemplateDecl;
74  class TemplateTypeParmDecl;
75  class NonTypeTemplateParmDecl;
76  class TemplateTemplateParmDecl;
77  class TagDecl;
78  class RecordDecl;
79  class CXXRecordDecl;
80  class EnumDecl;
81  class FieldDecl;
82  class ObjCInterfaceDecl;
83  class ObjCProtocolDecl;
84  class ObjCMethodDecl;
85  class UnresolvedUsingTypenameDecl;
86  class Expr;
87  class Stmt;
88  class SourceLocation;
89  class StmtIteratorBase;
90  class TemplateArgument;
91  class TemplateArgumentLoc;
92  class TemplateArgumentListInfo;
93  class Type;
94  class QualifiedNameType;
95  struct PrintingPolicy;
96
97  template <typename> class CanQual;
98  typedef CanQual<Type> CanQualType;
99
100  // Provide forward declarations for all of the *Type classes
101#define TYPE(Class, Base) class Class##Type;
102#include "clang/AST/TypeNodes.def"
103
104/// Qualifiers - The collection of all-type qualifiers we support.
105/// Clang supports five independent qualifiers:
106/// * C99: const, volatile, and restrict
107/// * Embedded C (TR18037): address spaces
108/// * Objective C: the GC attributes (none, weak, or strong)
109class Qualifiers {
110public:
111  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
112    Const    = 0x1,
113    Restrict = 0x2,
114    Volatile = 0x4,
115    CVRMask = Const | Volatile | Restrict
116  };
117
118  enum GC {
119    GCNone = 0,
120    Weak,
121    Strong
122  };
123
124  enum {
125    /// The maximum supported address space number.
126    /// 24 bits should be enough for anyone.
127    MaxAddressSpace = 0xffffffu,
128
129    /// The width of the "fast" qualifier mask.
130    FastWidth = 2,
131
132    /// The fast qualifier mask.
133    FastMask = (1 << FastWidth) - 1
134  };
135
136  Qualifiers() : Mask(0) {}
137
138  static Qualifiers fromFastMask(unsigned Mask) {
139    Qualifiers Qs;
140    Qs.addFastQualifiers(Mask);
141    return Qs;
142  }
143
144  static Qualifiers fromCVRMask(unsigned CVR) {
145    Qualifiers Qs;
146    Qs.addCVRQualifiers(CVR);
147    return Qs;
148  }
149
150  // Deserialize qualifiers from an opaque representation.
151  static Qualifiers fromOpaqueValue(unsigned opaque) {
152    Qualifiers Qs;
153    Qs.Mask = opaque;
154    return Qs;
155  }
156
157  // Serialize these qualifiers into an opaque representation.
158  unsigned getAsOpaqueValue() const {
159    return Mask;
160  }
161
162  bool hasConst() const { return Mask & Const; }
163  void setConst(bool flag) {
164    Mask = (Mask & ~Const) | (flag ? Const : 0);
165  }
166  void removeConst() { Mask &= ~Const; }
167  void addConst() { Mask |= Const; }
168
169  bool hasVolatile() const { return Mask & Volatile; }
170  void setVolatile(bool flag) {
171    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
172  }
173  void removeVolatile() { Mask &= ~Volatile; }
174  void addVolatile() { Mask |= Volatile; }
175
176  bool hasRestrict() const { return Mask & Restrict; }
177  void setRestrict(bool flag) {
178    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
179  }
180  void removeRestrict() { Mask &= ~Restrict; }
181  void addRestrict() { Mask |= Restrict; }
182
183  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
184  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
185  void setCVRQualifiers(unsigned mask) {
186    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
187    Mask = (Mask & ~CVRMask) | mask;
188  }
189  void removeCVRQualifiers(unsigned mask) {
190    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
191    Mask &= ~mask;
192  }
193  void removeCVRQualifiers() {
194    removeCVRQualifiers(CVRMask);
195  }
196  void addCVRQualifiers(unsigned mask) {
197    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
198    Mask |= mask;
199  }
200
201  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
202  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
203  void setObjCGCAttr(GC type) {
204    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
205  }
206  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
207  void addObjCGCAttr(GC type) {
208    assert(type);
209    setObjCGCAttr(type);
210  }
211
212  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
213  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
214  void setAddressSpace(unsigned space) {
215    assert(space <= MaxAddressSpace);
216    Mask = (Mask & ~AddressSpaceMask)
217         | (((uint32_t) space) << AddressSpaceShift);
218  }
219  void removeAddressSpace() { setAddressSpace(0); }
220  void addAddressSpace(unsigned space) {
221    assert(space);
222    setAddressSpace(space);
223  }
224
225  // Fast qualifiers are those that can be allocated directly
226  // on a QualType object.
227  bool hasFastQualifiers() const { return getFastQualifiers(); }
228  unsigned getFastQualifiers() const { return Mask & FastMask; }
229  void setFastQualifiers(unsigned mask) {
230    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
231    Mask = (Mask & ~FastMask) | mask;
232  }
233  void removeFastQualifiers(unsigned mask) {
234    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
235    Mask &= ~mask;
236  }
237  void removeFastQualifiers() {
238    removeFastQualifiers(FastMask);
239  }
240  void addFastQualifiers(unsigned mask) {
241    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
242    Mask |= mask;
243  }
244
245  /// hasNonFastQualifiers - Return true if the set contains any
246  /// qualifiers which require an ExtQuals node to be allocated.
247  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
248  Qualifiers getNonFastQualifiers() const {
249    Qualifiers Quals = *this;
250    Quals.setFastQualifiers(0);
251    return Quals;
252  }
253
254  /// hasQualifiers - Return true if the set contains any qualifiers.
255  bool hasQualifiers() const { return Mask; }
256  bool empty() const { return !Mask; }
257
258  /// \brief Add the qualifiers from the given set to this set.
259  void addQualifiers(Qualifiers Q) {
260    // If the other set doesn't have any non-boolean qualifiers, just
261    // bit-or it in.
262    if (!(Q.Mask & ~CVRMask))
263      Mask |= Q.Mask;
264    else {
265      Mask |= (Q.Mask & CVRMask);
266      if (Q.hasAddressSpace())
267        addAddressSpace(Q.getAddressSpace());
268      if (Q.hasObjCGCAttr())
269        addObjCGCAttr(Q.getObjCGCAttr());
270    }
271  }
272
273  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
274  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
275
276  operator bool() const { return hasQualifiers(); }
277
278  Qualifiers &operator+=(Qualifiers R) {
279    addQualifiers(R);
280    return *this;
281  }
282
283  // Union two qualifier sets.  If an enumerated qualifier appears
284  // in both sets, use the one from the right.
285  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
286    L += R;
287    return L;
288  }
289
290  std::string getAsString() const;
291  std::string getAsString(const PrintingPolicy &Policy) const {
292    std::string Buffer;
293    getAsStringInternal(Buffer, Policy);
294    return Buffer;
295  }
296  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
297
298  void Profile(llvm::FoldingSetNodeID &ID) const {
299    ID.AddInteger(Mask);
300  }
301
302private:
303
304  // bits:     |0 1 2|3 .. 4|5  ..  31|
305  //           |C R V|GCAttr|AddrSpace|
306  uint32_t Mask;
307
308  static const uint32_t GCAttrMask = 0x18;
309  static const uint32_t GCAttrShift = 3;
310  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
311  static const uint32_t AddressSpaceShift = 5;
312};
313
314
315/// ExtQuals - We can encode up to three bits in the low bits of a
316/// type pointer, but there are many more type qualifiers that we want
317/// to be able to apply to an arbitrary type.  Therefore we have this
318/// struct, intended to be heap-allocated and used by QualType to
319/// store qualifiers.
320///
321/// The current design tags the 'const' and 'restrict' qualifiers in
322/// two low bits on the QualType pointer; a third bit records whether
323/// the pointer is an ExtQuals node.  'const' was chosen because it is
324/// orders of magnitude more common than the other two qualifiers, in
325/// both library and user code.  It's relatively rare to see
326/// 'restrict' in user code, but many standard C headers are saturated
327/// with 'restrict' declarations, so that representing them efficiently
328/// is a critical goal of this representation.
329class ExtQuals : public llvm::FoldingSetNode {
330  // NOTE: changing the fast qualifiers should be straightforward as
331  // long as you don't make 'const' non-fast.
332  // 1. Qualifiers:
333  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
334  //       Fast qualifiers must occupy the low-order bits.
335  //    b) Update Qualifiers::FastWidth and FastMask.
336  // 2. QualType:
337  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
338  //    b) Update remove{Volatile,Restrict}, defined near the end of
339  //       this header.
340  // 3. ASTContext:
341  //    a) Update get{Volatile,Restrict}Type.
342
343  /// Context - the context to which this set belongs.  We save this
344  /// here so that QualifierCollector can use it to reapply extended
345  /// qualifiers to an arbitrary type without requiring a context to
346  /// be pushed through every single API dealing with qualifiers.
347  ASTContext& Context;
348
349  /// BaseType - the underlying type that this qualifies
350  const Type *BaseType;
351
352  /// Quals - the immutable set of qualifiers applied by this
353  /// node;  always contains extended qualifiers.
354  Qualifiers Quals;
355
356public:
357  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
358    : Context(Context), BaseType(Base), Quals(Quals)
359  {
360    assert(Quals.hasNonFastQualifiers()
361           && "ExtQuals created with no fast qualifiers");
362    assert(!Quals.hasFastQualifiers()
363           && "ExtQuals created with fast qualifiers");
364  }
365
366  Qualifiers getQualifiers() const { return Quals; }
367
368  bool hasVolatile() const { return Quals.hasVolatile(); }
369
370  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
371  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
372
373  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
374  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
375
376  const Type *getBaseType() const { return BaseType; }
377
378  ASTContext &getContext() const { return Context; }
379
380public:
381  void Profile(llvm::FoldingSetNodeID &ID) const {
382    Profile(ID, getBaseType(), Quals);
383  }
384  static void Profile(llvm::FoldingSetNodeID &ID,
385                      const Type *BaseType,
386                      Qualifiers Quals) {
387    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
388    ID.AddPointer(BaseType);
389    Quals.Profile(ID);
390  }
391};
392
393/// CallingConv - Specifies the calling convention that a function uses.
394enum CallingConv {
395  CC_Default,
396  CC_C,           // __attribute__((cdecl))
397  CC_X86StdCall,  // __attribute__((stdcall))
398  CC_X86FastCall  // __attribute__((fastcall))
399};
400
401
402/// QualType - For efficiency, we don't store CV-qualified types as nodes on
403/// their own: instead each reference to a type stores the qualifiers.  This
404/// greatly reduces the number of nodes we need to allocate for types (for
405/// example we only need one for 'int', 'const int', 'volatile int',
406/// 'const volatile int', etc).
407///
408/// As an added efficiency bonus, instead of making this a pair, we
409/// just store the two bits we care about in the low bits of the
410/// pointer.  To handle the packing/unpacking, we make QualType be a
411/// simple wrapper class that acts like a smart pointer.  A third bit
412/// indicates whether there are extended qualifiers present, in which
413/// case the pointer points to a special structure.
414class QualType {
415  // Thankfully, these are efficiently composable.
416  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
417                       Qualifiers::FastWidth> Value;
418
419  const ExtQuals *getExtQualsUnsafe() const {
420    return Value.getPointer().get<const ExtQuals*>();
421  }
422
423  const Type *getTypePtrUnsafe() const {
424    return Value.getPointer().get<const Type*>();
425  }
426
427  QualType getUnqualifiedTypeSlow() const;
428
429  friend class QualifierCollector;
430public:
431  QualType() {}
432
433  QualType(const Type *Ptr, unsigned Quals)
434    : Value(Ptr, Quals) {}
435  QualType(const ExtQuals *Ptr, unsigned Quals)
436    : Value(Ptr, Quals) {}
437
438  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
439  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
440
441  /// Retrieves a pointer to the underlying (unqualified) type.
442  /// This should really return a const Type, but it's not worth
443  /// changing all the users right now.
444  Type *getTypePtr() const {
445    if (hasLocalNonFastQualifiers())
446      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
447    return const_cast<Type*>(getTypePtrUnsafe());
448  }
449
450  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
451  static QualType getFromOpaquePtr(void *Ptr) {
452    QualType T;
453    T.Value.setFromOpaqueValue(Ptr);
454    return T;
455  }
456
457  Type &operator*() const {
458    return *getTypePtr();
459  }
460
461  Type *operator->() const {
462    return getTypePtr();
463  }
464
465  bool isCanonical() const;
466  bool isCanonicalAsParam() const;
467
468  /// isNull - Return true if this QualType doesn't point to a type yet.
469  bool isNull() const {
470    return Value.getPointer().isNull();
471  }
472
473  /// \brief Determine whether this particular QualType instance has the
474  /// "const" qualifier set, without looking through typedefs that may have
475  /// added "const" at a different level.
476  bool isLocalConstQualified() const {
477    return (getLocalFastQualifiers() & Qualifiers::Const);
478  }
479
480  /// \brief Determine whether this type is const-qualified.
481  bool isConstQualified() const;
482
483  /// \brief Determine whether this particular QualType instance has the
484  /// "restrict" qualifier set, without looking through typedefs that may have
485  /// added "restrict" at a different level.
486  bool isLocalRestrictQualified() const {
487    return (getLocalFastQualifiers() & Qualifiers::Restrict);
488  }
489
490  /// \brief Determine whether this type is restrict-qualified.
491  bool isRestrictQualified() const;
492
493  /// \brief Determine whether this particular QualType instance has the
494  /// "volatile" qualifier set, without looking through typedefs that may have
495  /// added "volatile" at a different level.
496  bool isLocalVolatileQualified() const {
497    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
498  }
499
500  /// \brief Determine whether this type is volatile-qualified.
501  bool isVolatileQualified() const;
502
503  /// \brief Determine whether this particular QualType instance has any
504  /// qualifiers, without looking through any typedefs that might add
505  /// qualifiers at a different level.
506  bool hasLocalQualifiers() const {
507    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
508  }
509
510  /// \brief Determine whether this type has any qualifiers.
511  bool hasQualifiers() const;
512
513  /// \brief Determine whether this particular QualType instance has any
514  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
515  /// instance.
516  bool hasLocalNonFastQualifiers() const {
517    return Value.getPointer().is<const ExtQuals*>();
518  }
519
520  /// \brief Retrieve the set of qualifiers local to this particular QualType
521  /// instance, not including any qualifiers acquired through typedefs or
522  /// other sugar.
523  Qualifiers getLocalQualifiers() const {
524    Qualifiers Quals;
525    if (hasLocalNonFastQualifiers())
526      Quals = getExtQualsUnsafe()->getQualifiers();
527    Quals.addFastQualifiers(getLocalFastQualifiers());
528    return Quals;
529  }
530
531  /// \brief Retrieve the set of qualifiers applied to this type.
532  Qualifiers getQualifiers() const;
533
534  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
535  /// local to this particular QualType instance, not including any qualifiers
536  /// acquired through typedefs or other sugar.
537  unsigned getLocalCVRQualifiers() const {
538    unsigned CVR = getLocalFastQualifiers();
539    if (isLocalVolatileQualified())
540      CVR |= Qualifiers::Volatile;
541    return CVR;
542  }
543
544  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
545  /// applied to this type.
546  unsigned getCVRQualifiers() const;
547
548  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
549  /// applied to this type, looking through any number of unqualified array
550  /// types to their element types' qualifiers.
551  unsigned getCVRQualifiersThroughArrayTypes() const;
552
553  bool isConstant(ASTContext& Ctx) const {
554    return QualType::isConstant(*this, Ctx);
555  }
556
557  // Don't promise in the API that anything besides 'const' can be
558  // easily added.
559
560  /// addConst - add the specified type qualifier to this QualType.
561  void addConst() {
562    addFastQualifiers(Qualifiers::Const);
563  }
564  QualType withConst() const {
565    return withFastQualifiers(Qualifiers::Const);
566  }
567
568  void addFastQualifiers(unsigned TQs) {
569    assert(!(TQs & ~Qualifiers::FastMask)
570           && "non-fast qualifier bits set in mask!");
571    Value.setInt(Value.getInt() | TQs);
572  }
573
574  // FIXME: The remove* functions are semantically broken, because they might
575  // not remove a qualifier stored on a typedef. Most of the with* functions
576  // have the same problem.
577  void removeConst();
578  void removeVolatile();
579  void removeRestrict();
580  void removeCVRQualifiers(unsigned Mask);
581
582  void removeFastQualifiers() { Value.setInt(0); }
583  void removeFastQualifiers(unsigned Mask) {
584    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
585    Value.setInt(Value.getInt() & ~Mask);
586  }
587
588  // Creates a type with the given qualifiers in addition to any
589  // qualifiers already on this type.
590  QualType withFastQualifiers(unsigned TQs) const {
591    QualType T = *this;
592    T.addFastQualifiers(TQs);
593    return T;
594  }
595
596  // Creates a type with exactly the given fast qualifiers, removing
597  // any existing fast qualifiers.
598  QualType withExactFastQualifiers(unsigned TQs) const {
599    return withoutFastQualifiers().withFastQualifiers(TQs);
600  }
601
602  // Removes fast qualifiers, but leaves any extended qualifiers in place.
603  QualType withoutFastQualifiers() const {
604    QualType T = *this;
605    T.removeFastQualifiers();
606    return T;
607  }
608
609  /// \brief Return this type with all of the instance-specific qualifiers
610  /// removed, but without removing any qualifiers that may have been applied
611  /// through typedefs.
612  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
613
614  /// \brief Return the unqualified form of the given type, which might be
615  /// desugared to eliminate qualifiers introduced via typedefs.
616  QualType getUnqualifiedType() const {
617    QualType T = getLocalUnqualifiedType();
618    if (!T.hasQualifiers())
619      return T;
620
621    return getUnqualifiedTypeSlow();
622  }
623
624  bool isMoreQualifiedThan(QualType Other) const;
625  bool isAtLeastAsQualifiedAs(QualType Other) const;
626  QualType getNonReferenceType() const;
627
628  /// getDesugaredType - Return the specified type with any "sugar" removed from
629  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
630  /// the type is already concrete, it returns it unmodified.  This is similar
631  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
632  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
633  /// concrete.
634  ///
635  /// Qualifiers are left in place.
636  QualType getDesugaredType() const {
637    return QualType::getDesugaredType(*this);
638  }
639
640  /// operator==/!= - Indicate whether the specified types and qualifiers are
641  /// identical.
642  friend bool operator==(const QualType &LHS, const QualType &RHS) {
643    return LHS.Value == RHS.Value;
644  }
645  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
646    return LHS.Value != RHS.Value;
647  }
648  std::string getAsString() const;
649
650  std::string getAsString(const PrintingPolicy &Policy) const {
651    std::string S;
652    getAsStringInternal(S, Policy);
653    return S;
654  }
655  void getAsStringInternal(std::string &Str,
656                           const PrintingPolicy &Policy) const;
657
658  void dump(const char *s) const;
659  void dump() const;
660
661  void Profile(llvm::FoldingSetNodeID &ID) const {
662    ID.AddPointer(getAsOpaquePtr());
663  }
664
665  /// getAddressSpace - Return the address space of this type.
666  inline unsigned getAddressSpace() const;
667
668  /// GCAttrTypesAttr - Returns gc attribute of this type.
669  inline Qualifiers::GC getObjCGCAttr() const;
670
671  /// isObjCGCWeak true when Type is objc's weak.
672  bool isObjCGCWeak() const {
673    return getObjCGCAttr() == Qualifiers::Weak;
674  }
675
676  /// isObjCGCStrong true when Type is objc's strong.
677  bool isObjCGCStrong() const {
678    return getObjCGCAttr() == Qualifiers::Strong;
679  }
680
681private:
682  // These methods are implemented in a separate translation unit;
683  // "static"-ize them to avoid creating temporary QualTypes in the
684  // caller.
685  static bool isConstant(QualType T, ASTContext& Ctx);
686  static QualType getDesugaredType(QualType T);
687};
688
689} // end clang.
690
691namespace llvm {
692/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
693/// to a specific Type class.
694template<> struct simplify_type<const ::clang::QualType> {
695  typedef ::clang::Type* SimpleType;
696  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
697    return Val.getTypePtr();
698  }
699};
700template<> struct simplify_type< ::clang::QualType>
701  : public simplify_type<const ::clang::QualType> {};
702
703// Teach SmallPtrSet that QualType is "basically a pointer".
704template<>
705class PointerLikeTypeTraits<clang::QualType> {
706public:
707  static inline void *getAsVoidPointer(clang::QualType P) {
708    return P.getAsOpaquePtr();
709  }
710  static inline clang::QualType getFromVoidPointer(void *P) {
711    return clang::QualType::getFromOpaquePtr(P);
712  }
713  // Various qualifiers go in low bits.
714  enum { NumLowBitsAvailable = 0 };
715};
716
717} // end namespace llvm
718
719namespace clang {
720
721/// Type - This is the base class of the type hierarchy.  A central concept
722/// with types is that each type always has a canonical type.  A canonical type
723/// is the type with any typedef names stripped out of it or the types it
724/// references.  For example, consider:
725///
726///  typedef int  foo;
727///  typedef foo* bar;
728///    'int *'    'foo *'    'bar'
729///
730/// There will be a Type object created for 'int'.  Since int is canonical, its
731/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
732/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
733/// there is a PointerType that represents 'int*', which, like 'int', is
734/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
735/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
736/// is also 'int*'.
737///
738/// Non-canonical types are useful for emitting diagnostics, without losing
739/// information about typedefs being used.  Canonical types are useful for type
740/// comparisons (they allow by-pointer equality tests) and useful for reasoning
741/// about whether something has a particular form (e.g. is a function type),
742/// because they implicitly, recursively, strip all typedefs out of a type.
743///
744/// Types, once created, are immutable.
745///
746class Type {
747public:
748  enum TypeClass {
749#define TYPE(Class, Base) Class,
750#define LAST_TYPE(Class) TypeLast = Class,
751#define ABSTRACT_TYPE(Class, Base)
752#include "clang/AST/TypeNodes.def"
753    TagFirst = Record, TagLast = Enum
754  };
755
756private:
757  QualType CanonicalType;
758
759  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
760  unsigned TC : 8;
761
762  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
763  /// Note that this should stay at the end of the ivars for Type so that
764  /// subclasses can pack their bitfields into the same word.
765  bool Dependent : 1;
766
767  Type(const Type&);           // DO NOT IMPLEMENT.
768  void operator=(const Type&); // DO NOT IMPLEMENT.
769protected:
770  // silence VC++ warning C4355: 'this' : used in base member initializer list
771  Type *this_() { return this; }
772  Type(TypeClass tc, QualType Canonical, bool dependent)
773    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
774      TC(tc), Dependent(dependent) {}
775  virtual ~Type() {}
776  virtual void Destroy(ASTContext& C);
777  friend class ASTContext;
778
779public:
780  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
781
782  bool isCanonicalUnqualified() const {
783    return CanonicalType.getTypePtr() == this;
784  }
785
786  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
787  /// object types, function types, and incomplete types.
788
789  /// \brief Determines whether the type describes an object in memory.
790  ///
791  /// Note that this definition of object type corresponds to the C++
792  /// definition of object type, which includes incomplete types, as
793  /// opposed to the C definition (which does not include incomplete
794  /// types).
795  bool isObjectType() const;
796
797  /// isIncompleteType - Return true if this is an incomplete type.
798  /// A type that can describe objects, but which lacks information needed to
799  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
800  /// routine will need to determine if the size is actually required.
801  bool isIncompleteType() const;
802
803  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
804  /// type, in other words, not a function type.
805  bool isIncompleteOrObjectType() const {
806    return !isFunctionType();
807  }
808
809  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
810  bool isPODType() const;
811
812  /// isLiteralType - Return true if this is a literal type
813  /// (C++0x [basic.types]p10)
814  bool isLiteralType() const;
815
816  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
817  /// types that have a non-constant expression. This does not include "[]".
818  bool isVariablyModifiedType() const;
819
820  /// Helper methods to distinguish type categories. All type predicates
821  /// operate on the canonical type, ignoring typedefs and qualifiers.
822
823  /// isSpecificBuiltinType - Test for a particular builtin type.
824  bool isSpecificBuiltinType(unsigned K) const;
825
826  /// isIntegerType() does *not* include complex integers (a GCC extension).
827  /// isComplexIntegerType() can be used to test for complex integers.
828  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
829  bool isEnumeralType() const;
830  bool isBooleanType() const;
831  bool isCharType() const;
832  bool isWideCharType() const;
833  bool isAnyCharacterType() const;
834  bool isIntegralType() const;
835
836  /// Floating point categories.
837  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
838  /// isComplexType() does *not* include complex integers (a GCC extension).
839  /// isComplexIntegerType() can be used to test for complex integers.
840  bool isComplexType() const;      // C99 6.2.5p11 (complex)
841  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
842  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
843  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
844  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
845  bool isVoidType() const;         // C99 6.2.5p19
846  bool isDerivedType() const;      // C99 6.2.5p20
847  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
848  bool isAggregateType() const;
849
850  // Type Predicates: Check to see if this type is structurally the specified
851  // type, ignoring typedefs and qualifiers.
852  bool isFunctionType() const;
853  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
854  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
855  bool isPointerType() const;
856  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
857  bool isBlockPointerType() const;
858  bool isVoidPointerType() const;
859  bool isReferenceType() const;
860  bool isLValueReferenceType() const;
861  bool isRValueReferenceType() const;
862  bool isFunctionPointerType() const;
863  bool isMemberPointerType() const;
864  bool isMemberFunctionPointerType() const;
865  bool isArrayType() const;
866  bool isConstantArrayType() const;
867  bool isIncompleteArrayType() const;
868  bool isVariableArrayType() const;
869  bool isDependentSizedArrayType() const;
870  bool isRecordType() const;
871  bool isClassType() const;
872  bool isStructureType() const;
873  bool isUnionType() const;
874  bool isComplexIntegerType() const;            // GCC _Complex integer type.
875  bool isVectorType() const;                    // GCC vector type.
876  bool isExtVectorType() const;                 // Extended vector type.
877  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
878  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
879  // for the common case.
880  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
881  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
882  bool isObjCQualifiedIdType() const;           // id<foo>
883  bool isObjCQualifiedClassType() const;        // Class<foo>
884  bool isObjCIdType() const;                    // id
885  bool isObjCClassType() const;                 // Class
886  bool isObjCSelType() const;                 // Class
887  bool isObjCBuiltinType() const;               // 'id' or 'Class'
888  bool isTemplateTypeParmType() const;          // C++ template type parameter
889  bool isNullPtrType() const;                   // C++0x nullptr_t
890
891  /// isDependentType - Whether this type is a dependent type, meaning
892  /// that its definition somehow depends on a template parameter
893  /// (C++ [temp.dep.type]).
894  bool isDependentType() const { return Dependent; }
895  bool isOverloadableType() const;
896
897  /// hasPointerRepresentation - Whether this type is represented
898  /// natively as a pointer; this includes pointers, references, block
899  /// pointers, and Objective-C interface, qualified id, and qualified
900  /// interface types, as well as nullptr_t.
901  bool hasPointerRepresentation() const;
902
903  /// hasObjCPointerRepresentation - Whether this type can represent
904  /// an objective pointer type for the purpose of GC'ability
905  bool hasObjCPointerRepresentation() const;
906
907  // Type Checking Functions: Check to see if this type is structurally the
908  // specified type, ignoring typedefs and qualifiers, and return a pointer to
909  // the best type we can.
910  const RecordType *getAsStructureType() const;
911  /// NOTE: getAs*ArrayType are methods on ASTContext.
912  const RecordType *getAsUnionType() const;
913  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
914  // The following is a convenience method that returns an ObjCObjectPointerType
915  // for object declared using an interface.
916  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
917  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
918  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
919  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
920
921  // Member-template getAs<specific type>'.  This scheme will eventually
922  // replace the specific getAsXXXX methods above.
923  //
924  // There are some specializations of this member template listed
925  // immediately following this class.
926  template <typename T> const T *getAs() const;
927
928  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
929  /// interface, return the interface type, otherwise return null.
930  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
931
932  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
933  /// element type of the array, potentially with type qualifiers missing.
934  /// This method should never be used when type qualifiers are meaningful.
935  const Type *getArrayElementTypeNoTypeQual() const;
936
937  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
938  /// pointer, this returns the respective pointee.
939  QualType getPointeeType() const;
940
941  /// getUnqualifiedDesugaredType() - Return the specified type with
942  /// any "sugar" removed from the type, removing any typedefs,
943  /// typeofs, etc., as well as any qualifiers.
944  const Type *getUnqualifiedDesugaredType() const;
945
946  /// More type predicates useful for type checking/promotion
947  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
948
949  /// isSignedIntegerType - Return true if this is an integer type that is
950  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
951  /// an enum decl which has a signed representation, or a vector of signed
952  /// integer element type.
953  bool isSignedIntegerType() const;
954
955  /// isUnsignedIntegerType - Return true if this is an integer type that is
956  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
957  /// decl which has an unsigned representation, or a vector of unsigned integer
958  /// element type.
959  bool isUnsignedIntegerType() const;
960
961  /// isConstantSizeType - Return true if this is not a variable sized type,
962  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
963  /// incomplete types.
964  bool isConstantSizeType() const;
965
966  /// isSpecifierType - Returns true if this type can be represented by some
967  /// set of type specifiers.
968  bool isSpecifierType() const;
969
970  const char *getTypeClassName() const;
971
972  /// \brief Determine the linkage of this type.
973  virtual Linkage getLinkage() const;
974
975  QualType getCanonicalTypeInternal() const {
976    return CanonicalType;
977  }
978  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
979  void dump() const;
980  static bool classof(const Type *) { return true; }
981};
982
983template <> inline const TypedefType *Type::getAs() const {
984  return dyn_cast<TypedefType>(this);
985}
986
987// We can do canonical leaf types faster, because we don't have to
988// worry about preserving child type decoration.
989#define TYPE(Class, Base)
990#define LEAF_TYPE(Class) \
991template <> inline const Class##Type *Type::getAs() const { \
992  return dyn_cast<Class##Type>(CanonicalType); \
993}
994#include "clang/AST/TypeNodes.def"
995
996
997/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
998/// types are always canonical and have a literal name field.
999class BuiltinType : public Type {
1000public:
1001  enum Kind {
1002    Void,
1003
1004    Bool,     // This is bool and/or _Bool.
1005    Char_U,   // This is 'char' for targets where char is unsigned.
1006    UChar,    // This is explicitly qualified unsigned char.
1007    Char16,   // This is 'char16_t' for C++.
1008    Char32,   // This is 'char32_t' for C++.
1009    UShort,
1010    UInt,
1011    ULong,
1012    ULongLong,
1013    UInt128,  // __uint128_t
1014
1015    Char_S,   // This is 'char' for targets where char is signed.
1016    SChar,    // This is explicitly qualified signed char.
1017    WChar,    // This is 'wchar_t' for C++.
1018    Short,
1019    Int,
1020    Long,
1021    LongLong,
1022    Int128,   // __int128_t
1023
1024    Float, Double, LongDouble,
1025
1026    NullPtr,  // This is the type of C++0x 'nullptr'.
1027
1028    Overload,  // This represents the type of an overloaded function declaration.
1029    Dependent, // This represents the type of a type-dependent expression.
1030
1031    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1032                   // that has not been deduced yet.
1033    ObjCId,    // This represents the ObjC 'id' type.
1034    ObjCClass, // This represents the ObjC 'Class' type.
1035    ObjCSel    // This represents the ObjC 'SEL' type.
1036  };
1037private:
1038  Kind TypeKind;
1039public:
1040  BuiltinType(Kind K)
1041    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
1042      TypeKind(K) {}
1043
1044  Kind getKind() const { return TypeKind; }
1045  const char *getName(const LangOptions &LO) const;
1046
1047  bool isSugared() const { return false; }
1048  QualType desugar() const { return QualType(this, 0); }
1049
1050  bool isInteger() const {
1051    return TypeKind >= Bool && TypeKind <= Int128;
1052  }
1053
1054  bool isSignedInteger() const {
1055    return TypeKind >= Char_S && TypeKind <= Int128;
1056  }
1057
1058  bool isUnsignedInteger() const {
1059    return TypeKind >= Bool && TypeKind <= UInt128;
1060  }
1061
1062  bool isFloatingPoint() const {
1063    return TypeKind >= Float && TypeKind <= LongDouble;
1064  }
1065
1066  virtual Linkage getLinkage() const;
1067
1068  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1069  static bool classof(const BuiltinType *) { return true; }
1070};
1071
1072/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1073/// types (_Complex float etc) as well as the GCC integer complex extensions.
1074///
1075class ComplexType : public Type, public llvm::FoldingSetNode {
1076  QualType ElementType;
1077  ComplexType(QualType Element, QualType CanonicalPtr) :
1078    Type(Complex, CanonicalPtr, Element->isDependentType()),
1079    ElementType(Element) {
1080  }
1081  friend class ASTContext;  // ASTContext creates these.
1082public:
1083  QualType getElementType() const { return ElementType; }
1084
1085  bool isSugared() const { return false; }
1086  QualType desugar() const { return QualType(this, 0); }
1087
1088  void Profile(llvm::FoldingSetNodeID &ID) {
1089    Profile(ID, getElementType());
1090  }
1091  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1092    ID.AddPointer(Element.getAsOpaquePtr());
1093  }
1094
1095  virtual Linkage getLinkage() const;
1096
1097  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1098  static bool classof(const ComplexType *) { return true; }
1099};
1100
1101/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1102///
1103class PointerType : public Type, public llvm::FoldingSetNode {
1104  QualType PointeeType;
1105
1106  PointerType(QualType Pointee, QualType CanonicalPtr) :
1107    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1108  }
1109  friend class ASTContext;  // ASTContext creates these.
1110public:
1111
1112  QualType getPointeeType() const { return PointeeType; }
1113
1114  bool isSugared() const { return false; }
1115  QualType desugar() const { return QualType(this, 0); }
1116
1117  void Profile(llvm::FoldingSetNodeID &ID) {
1118    Profile(ID, getPointeeType());
1119  }
1120  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1121    ID.AddPointer(Pointee.getAsOpaquePtr());
1122  }
1123
1124  virtual Linkage getLinkage() const;
1125
1126  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1127  static bool classof(const PointerType *) { return true; }
1128};
1129
1130/// BlockPointerType - pointer to a block type.
1131/// This type is to represent types syntactically represented as
1132/// "void (^)(int)", etc. Pointee is required to always be a function type.
1133///
1134class BlockPointerType : public Type, public llvm::FoldingSetNode {
1135  QualType PointeeType;  // Block is some kind of pointer type
1136  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1137    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1138    PointeeType(Pointee) {
1139  }
1140  friend class ASTContext;  // ASTContext creates these.
1141public:
1142
1143  // Get the pointee type. Pointee is required to always be a function type.
1144  QualType getPointeeType() const { return PointeeType; }
1145
1146  bool isSugared() const { return false; }
1147  QualType desugar() const { return QualType(this, 0); }
1148
1149  void Profile(llvm::FoldingSetNodeID &ID) {
1150      Profile(ID, getPointeeType());
1151  }
1152  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1153      ID.AddPointer(Pointee.getAsOpaquePtr());
1154  }
1155
1156  virtual Linkage getLinkage() const;
1157
1158  static bool classof(const Type *T) {
1159    return T->getTypeClass() == BlockPointer;
1160  }
1161  static bool classof(const BlockPointerType *) { return true; }
1162};
1163
1164/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1165///
1166class ReferenceType : public Type, public llvm::FoldingSetNode {
1167  QualType PointeeType;
1168
1169  /// True if the type was originally spelled with an lvalue sigil.
1170  /// This is never true of rvalue references but can also be false
1171  /// on lvalue references because of C++0x [dcl.typedef]p9,
1172  /// as follows:
1173  ///
1174  ///   typedef int &ref;    // lvalue, spelled lvalue
1175  ///   typedef int &&rvref; // rvalue
1176  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1177  ///   ref &&a;             // lvalue, inner ref
1178  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1179  ///   rvref &&a;           // rvalue, inner ref
1180  bool SpelledAsLValue;
1181
1182  /// True if the inner type is a reference type.  This only happens
1183  /// in non-canonical forms.
1184  bool InnerRef;
1185
1186protected:
1187  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1188                bool SpelledAsLValue) :
1189    Type(tc, CanonicalRef, Referencee->isDependentType()),
1190    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1191    InnerRef(Referencee->isReferenceType()) {
1192  }
1193public:
1194  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1195  bool isInnerRef() const { return InnerRef; }
1196
1197  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1198  QualType getPointeeType() const {
1199    // FIXME: this might strip inner qualifiers; okay?
1200    const ReferenceType *T = this;
1201    while (T->InnerRef)
1202      T = T->PointeeType->getAs<ReferenceType>();
1203    return T->PointeeType;
1204  }
1205
1206  void Profile(llvm::FoldingSetNodeID &ID) {
1207    Profile(ID, PointeeType, SpelledAsLValue);
1208  }
1209  static void Profile(llvm::FoldingSetNodeID &ID,
1210                      QualType Referencee,
1211                      bool SpelledAsLValue) {
1212    ID.AddPointer(Referencee.getAsOpaquePtr());
1213    ID.AddBoolean(SpelledAsLValue);
1214  }
1215
1216  virtual Linkage getLinkage() const;
1217
1218  static bool classof(const Type *T) {
1219    return T->getTypeClass() == LValueReference ||
1220           T->getTypeClass() == RValueReference;
1221  }
1222  static bool classof(const ReferenceType *) { return true; }
1223};
1224
1225/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1226///
1227class LValueReferenceType : public ReferenceType {
1228  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1229                      bool SpelledAsLValue) :
1230    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1231  {}
1232  friend class ASTContext; // ASTContext creates these
1233public:
1234  bool isSugared() const { return false; }
1235  QualType desugar() const { return QualType(this, 0); }
1236
1237  static bool classof(const Type *T) {
1238    return T->getTypeClass() == LValueReference;
1239  }
1240  static bool classof(const LValueReferenceType *) { return true; }
1241};
1242
1243/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1244///
1245class RValueReferenceType : public ReferenceType {
1246  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1247    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1248  }
1249  friend class ASTContext; // ASTContext creates these
1250public:
1251  bool isSugared() const { return false; }
1252  QualType desugar() const { return QualType(this, 0); }
1253
1254  static bool classof(const Type *T) {
1255    return T->getTypeClass() == RValueReference;
1256  }
1257  static bool classof(const RValueReferenceType *) { return true; }
1258};
1259
1260/// MemberPointerType - C++ 8.3.3 - Pointers to members
1261///
1262class MemberPointerType : public Type, public llvm::FoldingSetNode {
1263  QualType PointeeType;
1264  /// The class of which the pointee is a member. Must ultimately be a
1265  /// RecordType, but could be a typedef or a template parameter too.
1266  const Type *Class;
1267
1268  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1269    Type(MemberPointer, CanonicalPtr,
1270         Cls->isDependentType() || Pointee->isDependentType()),
1271    PointeeType(Pointee), Class(Cls) {
1272  }
1273  friend class ASTContext; // ASTContext creates these.
1274public:
1275
1276  QualType getPointeeType() const { return PointeeType; }
1277
1278  const Type *getClass() const { return Class; }
1279
1280  bool isSugared() const { return false; }
1281  QualType desugar() const { return QualType(this, 0); }
1282
1283  void Profile(llvm::FoldingSetNodeID &ID) {
1284    Profile(ID, getPointeeType(), getClass());
1285  }
1286  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1287                      const Type *Class) {
1288    ID.AddPointer(Pointee.getAsOpaquePtr());
1289    ID.AddPointer(Class);
1290  }
1291
1292  virtual Linkage getLinkage() const;
1293
1294  static bool classof(const Type *T) {
1295    return T->getTypeClass() == MemberPointer;
1296  }
1297  static bool classof(const MemberPointerType *) { return true; }
1298};
1299
1300/// ArrayType - C99 6.7.5.2 - Array Declarators.
1301///
1302class ArrayType : public Type, public llvm::FoldingSetNode {
1303public:
1304  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1305  /// an array with a static size (e.g. int X[static 4]), or an array
1306  /// with a star size (e.g. int X[*]).
1307  /// 'static' is only allowed on function parameters.
1308  enum ArraySizeModifier {
1309    Normal, Static, Star
1310  };
1311private:
1312  /// ElementType - The element type of the array.
1313  QualType ElementType;
1314
1315  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1316  /// NOTE: These fields are packed into the bitfields space in the Type class.
1317  unsigned SizeModifier : 2;
1318
1319  /// IndexTypeQuals - Capture qualifiers in declarations like:
1320  /// 'int X[static restrict 4]'. For function parameters only.
1321  unsigned IndexTypeQuals : 3;
1322
1323protected:
1324  // C++ [temp.dep.type]p1:
1325  //   A type is dependent if it is...
1326  //     - an array type constructed from any dependent type or whose
1327  //       size is specified by a constant expression that is
1328  //       value-dependent,
1329  ArrayType(TypeClass tc, QualType et, QualType can,
1330            ArraySizeModifier sm, unsigned tq)
1331    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1332      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1333
1334  friend class ASTContext;  // ASTContext creates these.
1335public:
1336  QualType getElementType() const { return ElementType; }
1337  ArraySizeModifier getSizeModifier() const {
1338    return ArraySizeModifier(SizeModifier);
1339  }
1340  Qualifiers getIndexTypeQualifiers() const {
1341    return Qualifiers::fromCVRMask(IndexTypeQuals);
1342  }
1343  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1344
1345  virtual Linkage getLinkage() const;
1346
1347  static bool classof(const Type *T) {
1348    return T->getTypeClass() == ConstantArray ||
1349           T->getTypeClass() == VariableArray ||
1350           T->getTypeClass() == IncompleteArray ||
1351           T->getTypeClass() == DependentSizedArray;
1352  }
1353  static bool classof(const ArrayType *) { return true; }
1354};
1355
1356/// ConstantArrayType - This class represents the canonical version of
1357/// C arrays with a specified constant size.  For example, the canonical
1358/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1359/// type is 'int' and the size is 404.
1360class ConstantArrayType : public ArrayType {
1361  llvm::APInt Size; // Allows us to unique the type.
1362
1363  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1364                    ArraySizeModifier sm, unsigned tq)
1365    : ArrayType(ConstantArray, et, can, sm, tq),
1366      Size(size) {}
1367protected:
1368  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1369                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1370    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1371  friend class ASTContext;  // ASTContext creates these.
1372public:
1373  const llvm::APInt &getSize() const { return Size; }
1374  bool isSugared() const { return false; }
1375  QualType desugar() const { return QualType(this, 0); }
1376
1377  void Profile(llvm::FoldingSetNodeID &ID) {
1378    Profile(ID, getElementType(), getSize(),
1379            getSizeModifier(), getIndexTypeCVRQualifiers());
1380  }
1381  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1382                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1383                      unsigned TypeQuals) {
1384    ID.AddPointer(ET.getAsOpaquePtr());
1385    ID.AddInteger(ArraySize.getZExtValue());
1386    ID.AddInteger(SizeMod);
1387    ID.AddInteger(TypeQuals);
1388  }
1389  static bool classof(const Type *T) {
1390    return T->getTypeClass() == ConstantArray;
1391  }
1392  static bool classof(const ConstantArrayType *) { return true; }
1393};
1394
1395/// IncompleteArrayType - This class represents C arrays with an unspecified
1396/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1397/// type is 'int' and the size is unspecified.
1398class IncompleteArrayType : public ArrayType {
1399
1400  IncompleteArrayType(QualType et, QualType can,
1401                      ArraySizeModifier sm, unsigned tq)
1402    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1403  friend class ASTContext;  // ASTContext creates these.
1404public:
1405  bool isSugared() const { return false; }
1406  QualType desugar() const { return QualType(this, 0); }
1407
1408  static bool classof(const Type *T) {
1409    return T->getTypeClass() == IncompleteArray;
1410  }
1411  static bool classof(const IncompleteArrayType *) { return true; }
1412
1413  friend class StmtIteratorBase;
1414
1415  void Profile(llvm::FoldingSetNodeID &ID) {
1416    Profile(ID, getElementType(), getSizeModifier(),
1417            getIndexTypeCVRQualifiers());
1418  }
1419
1420  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1421                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1422    ID.AddPointer(ET.getAsOpaquePtr());
1423    ID.AddInteger(SizeMod);
1424    ID.AddInteger(TypeQuals);
1425  }
1426};
1427
1428/// VariableArrayType - This class represents C arrays with a specified size
1429/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1430/// Since the size expression is an arbitrary expression, we store it as such.
1431///
1432/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1433/// should not be: two lexically equivalent variable array types could mean
1434/// different things, for example, these variables do not have the same type
1435/// dynamically:
1436///
1437/// void foo(int x) {
1438///   int Y[x];
1439///   ++x;
1440///   int Z[x];
1441/// }
1442///
1443class VariableArrayType : public ArrayType {
1444  /// SizeExpr - An assignment expression. VLA's are only permitted within
1445  /// a function block.
1446  Stmt *SizeExpr;
1447  /// Brackets - The left and right array brackets.
1448  SourceRange Brackets;
1449
1450  VariableArrayType(QualType et, QualType can, Expr *e,
1451                    ArraySizeModifier sm, unsigned tq,
1452                    SourceRange brackets)
1453    : ArrayType(VariableArray, et, can, sm, tq),
1454      SizeExpr((Stmt*) e), Brackets(brackets) {}
1455  friend class ASTContext;  // ASTContext creates these.
1456  virtual void Destroy(ASTContext& C);
1457
1458public:
1459  Expr *getSizeExpr() const {
1460    // We use C-style casts instead of cast<> here because we do not wish
1461    // to have a dependency of Type.h on Stmt.h/Expr.h.
1462    return (Expr*) SizeExpr;
1463  }
1464  SourceRange getBracketsRange() const { return Brackets; }
1465  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1466  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1467
1468  bool isSugared() const { return false; }
1469  QualType desugar() const { return QualType(this, 0); }
1470
1471  static bool classof(const Type *T) {
1472    return T->getTypeClass() == VariableArray;
1473  }
1474  static bool classof(const VariableArrayType *) { return true; }
1475
1476  friend class StmtIteratorBase;
1477
1478  void Profile(llvm::FoldingSetNodeID &ID) {
1479    assert(0 && "Cannnot unique VariableArrayTypes.");
1480  }
1481};
1482
1483/// DependentSizedArrayType - This type represents an array type in
1484/// C++ whose size is a value-dependent expression. For example:
1485///
1486/// \code
1487/// template<typename T, int Size>
1488/// class array {
1489///   T data[Size];
1490/// };
1491/// \endcode
1492///
1493/// For these types, we won't actually know what the array bound is
1494/// until template instantiation occurs, at which point this will
1495/// become either a ConstantArrayType or a VariableArrayType.
1496class DependentSizedArrayType : public ArrayType {
1497  ASTContext &Context;
1498
1499  /// \brief An assignment expression that will instantiate to the
1500  /// size of the array.
1501  ///
1502  /// The expression itself might be NULL, in which case the array
1503  /// type will have its size deduced from an initializer.
1504  Stmt *SizeExpr;
1505
1506  /// Brackets - The left and right array brackets.
1507  SourceRange Brackets;
1508
1509  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1510                          Expr *e, ArraySizeModifier sm, unsigned tq,
1511                          SourceRange brackets)
1512    : ArrayType(DependentSizedArray, et, can, sm, tq),
1513      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1514  friend class ASTContext;  // ASTContext creates these.
1515  virtual void Destroy(ASTContext& C);
1516
1517public:
1518  Expr *getSizeExpr() const {
1519    // We use C-style casts instead of cast<> here because we do not wish
1520    // to have a dependency of Type.h on Stmt.h/Expr.h.
1521    return (Expr*) SizeExpr;
1522  }
1523  SourceRange getBracketsRange() const { return Brackets; }
1524  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1525  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1526
1527  bool isSugared() const { return false; }
1528  QualType desugar() const { return QualType(this, 0); }
1529
1530  static bool classof(const Type *T) {
1531    return T->getTypeClass() == DependentSizedArray;
1532  }
1533  static bool classof(const DependentSizedArrayType *) { return true; }
1534
1535  friend class StmtIteratorBase;
1536
1537
1538  void Profile(llvm::FoldingSetNodeID &ID) {
1539    Profile(ID, Context, getElementType(),
1540            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1541  }
1542
1543  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1544                      QualType ET, ArraySizeModifier SizeMod,
1545                      unsigned TypeQuals, Expr *E);
1546};
1547
1548/// DependentSizedExtVectorType - This type represent an extended vector type
1549/// where either the type or size is dependent. For example:
1550/// @code
1551/// template<typename T, int Size>
1552/// class vector {
1553///   typedef T __attribute__((ext_vector_type(Size))) type;
1554/// }
1555/// @endcode
1556class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1557  ASTContext &Context;
1558  Expr *SizeExpr;
1559  /// ElementType - The element type of the array.
1560  QualType ElementType;
1561  SourceLocation loc;
1562
1563  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1564                              QualType can, Expr *SizeExpr, SourceLocation loc)
1565    : Type (DependentSizedExtVector, can, true),
1566      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1567      loc(loc) {}
1568  friend class ASTContext;
1569  virtual void Destroy(ASTContext& C);
1570
1571public:
1572  Expr *getSizeExpr() const { return SizeExpr; }
1573  QualType getElementType() const { return ElementType; }
1574  SourceLocation getAttributeLoc() const { return loc; }
1575
1576  bool isSugared() const { return false; }
1577  QualType desugar() const { return QualType(this, 0); }
1578
1579  static bool classof(const Type *T) {
1580    return T->getTypeClass() == DependentSizedExtVector;
1581  }
1582  static bool classof(const DependentSizedExtVectorType *) { return true; }
1583
1584  void Profile(llvm::FoldingSetNodeID &ID) {
1585    Profile(ID, Context, getElementType(), getSizeExpr());
1586  }
1587
1588  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1589                      QualType ElementType, Expr *SizeExpr);
1590};
1591
1592
1593/// VectorType - GCC generic vector type. This type is created using
1594/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1595/// bytes; or from an Altivec __vector or vector declaration.
1596/// Since the constructor takes the number of vector elements, the
1597/// client is responsible for converting the size into the number of elements.
1598class VectorType : public Type, public llvm::FoldingSetNode {
1599protected:
1600  /// ElementType - The element type of the vector.
1601  QualType ElementType;
1602
1603  /// NumElements - The number of elements in the vector.
1604  unsigned NumElements;
1605
1606  /// AltiVec - True if this is for an Altivec vector.
1607  bool AltiVec;
1608
1609  /// Pixel - True if this is for an Altivec vector pixel.
1610  bool Pixel;
1611
1612  VectorType(QualType vecType, unsigned nElements, QualType canonType,
1613      bool isAltiVec, bool isPixel) :
1614    Type(Vector, canonType, vecType->isDependentType()),
1615    ElementType(vecType), NumElements(nElements),
1616    AltiVec(isAltiVec), Pixel(isPixel) {}
1617  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1618             QualType canonType, bool isAltiVec, bool isPixel)
1619    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1620      NumElements(nElements), AltiVec(isAltiVec), Pixel(isPixel) {}
1621  friend class ASTContext;  // ASTContext creates these.
1622public:
1623
1624  QualType getElementType() const { return ElementType; }
1625  unsigned getNumElements() const { return NumElements; }
1626
1627  bool isSugared() const { return false; }
1628  QualType desugar() const { return QualType(this, 0); }
1629
1630  bool isAltiVec() const { return AltiVec; }
1631
1632  bool isPixel() const { return Pixel; }
1633
1634  void Profile(llvm::FoldingSetNodeID &ID) {
1635    Profile(ID, getElementType(), getNumElements(), getTypeClass(),
1636      AltiVec, Pixel);
1637  }
1638  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1639                      unsigned NumElements, TypeClass TypeClass,
1640                      bool isAltiVec, bool isPixel) {
1641    ID.AddPointer(ElementType.getAsOpaquePtr());
1642    ID.AddInteger(NumElements);
1643    ID.AddInteger(TypeClass);
1644    ID.AddBoolean(isAltiVec);
1645    ID.AddBoolean(isPixel);
1646  }
1647
1648  virtual Linkage getLinkage() const;
1649
1650  static bool classof(const Type *T) {
1651    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1652  }
1653  static bool classof(const VectorType *) { return true; }
1654};
1655
1656/// ExtVectorType - Extended vector type. This type is created using
1657/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1658/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1659/// class enables syntactic extensions, like Vector Components for accessing
1660/// points, colors, and textures (modeled after OpenGL Shading Language).
1661class ExtVectorType : public VectorType {
1662  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1663    VectorType(ExtVector, vecType, nElements, canonType, false, false) {}
1664  friend class ASTContext;  // ASTContext creates these.
1665public:
1666  static int getPointAccessorIdx(char c) {
1667    switch (c) {
1668    default: return -1;
1669    case 'x': return 0;
1670    case 'y': return 1;
1671    case 'z': return 2;
1672    case 'w': return 3;
1673    }
1674  }
1675  static int getNumericAccessorIdx(char c) {
1676    switch (c) {
1677      default: return -1;
1678      case '0': return 0;
1679      case '1': return 1;
1680      case '2': return 2;
1681      case '3': return 3;
1682      case '4': return 4;
1683      case '5': return 5;
1684      case '6': return 6;
1685      case '7': return 7;
1686      case '8': return 8;
1687      case '9': return 9;
1688      case 'A':
1689      case 'a': return 10;
1690      case 'B':
1691      case 'b': return 11;
1692      case 'C':
1693      case 'c': return 12;
1694      case 'D':
1695      case 'd': return 13;
1696      case 'E':
1697      case 'e': return 14;
1698      case 'F':
1699      case 'f': return 15;
1700    }
1701  }
1702
1703  static int getAccessorIdx(char c) {
1704    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1705    return getNumericAccessorIdx(c);
1706  }
1707
1708  bool isAccessorWithinNumElements(char c) const {
1709    if (int idx = getAccessorIdx(c)+1)
1710      return unsigned(idx-1) < NumElements;
1711    return false;
1712  }
1713  bool isSugared() const { return false; }
1714  QualType desugar() const { return QualType(this, 0); }
1715
1716  static bool classof(const Type *T) {
1717    return T->getTypeClass() == ExtVector;
1718  }
1719  static bool classof(const ExtVectorType *) { return true; }
1720};
1721
1722/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1723/// class of FunctionNoProtoType and FunctionProtoType.
1724///
1725class FunctionType : public Type {
1726  /// SubClassData - This field is owned by the subclass, put here to pack
1727  /// tightly with the ivars in Type.
1728  bool SubClassData : 1;
1729
1730  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1731  /// other bitfields.
1732  /// The qualifiers are part of FunctionProtoType because...
1733  ///
1734  /// C++ 8.3.5p4: The return type, the parameter type list and the
1735  /// cv-qualifier-seq, [...], are part of the function type.
1736  ///
1737  unsigned TypeQuals : 3;
1738
1739  /// NoReturn - Indicates if the function type is attribute noreturn.
1740  unsigned NoReturn : 1;
1741
1742  /// RegParm - How many arguments to pass inreg.
1743  unsigned RegParm : 3;
1744
1745  /// CallConv - The calling convention used by the function.
1746  unsigned CallConv : 2;
1747
1748  // The type returned by the function.
1749  QualType ResultType;
1750
1751 public:
1752  // This class is used for passing arround the information needed to
1753  // construct a call. It is not actually used for storage, just for
1754  // factoring together common arguments.
1755  // If you add a field (say Foo), other than the obvious places (both, constructors,
1756  // compile failures), what you need to update is
1757  // * Operetor==
1758  // * getFoo
1759  // * withFoo
1760  // * functionType. Add Foo, getFoo.
1761  // * ASTContext::getFooType
1762  // * ASTContext::mergeFunctionTypes
1763  // * FunctionNoProtoType::Profile
1764  // * FunctionProtoType::Profile
1765  // * TypePrinter::PrintFunctionProto
1766  // * PCH read and write
1767  // * Codegen
1768
1769  class ExtInfo {
1770   public:
1771    // Constructor with no defaults. Use this when you know that you
1772    // have all the elements (when reading a PCH file for example).
1773    ExtInfo(bool noReturn, unsigned regParm, CallingConv cc) :
1774        NoReturn(noReturn), RegParm(regParm), CC(cc) {}
1775
1776    // Constructor with all defaults. Use when for example creating a
1777    // function know to use defaults.
1778    ExtInfo() : NoReturn(false), RegParm(0), CC(CC_Default) {}
1779
1780    bool getNoReturn() const { return NoReturn; }
1781    unsigned getRegParm() const { return RegParm; }
1782    CallingConv getCC() const { return CC; }
1783
1784    bool operator==(const ExtInfo &Other) const {
1785      return getNoReturn() == Other.getNoReturn() &&
1786          getRegParm() == Other.getRegParm() &&
1787          getCC() == Other.getCC();
1788    }
1789    bool operator!=(const ExtInfo &Other) const {
1790      return !(*this == Other);
1791    }
1792
1793    // Note that we don't have setters. That is by design, use
1794    // the following with methods instead of mutating these objects.
1795
1796    ExtInfo withNoReturn(bool noReturn) const {
1797      return ExtInfo(noReturn, getRegParm(), getCC());
1798    }
1799
1800    ExtInfo withRegParm(unsigned RegParm) const {
1801      return ExtInfo(getNoReturn(), RegParm, getCC());
1802    }
1803
1804    ExtInfo withCallingConv(CallingConv cc) const {
1805      return ExtInfo(getNoReturn(), getRegParm(), cc);
1806    }
1807
1808   private:
1809    // True if we have __attribute__((noreturn))
1810    bool NoReturn;
1811    // The value passed to __attribute__((regparm(x)))
1812    unsigned RegParm;
1813    // The calling convention as specified via
1814    // __attribute__((cdecl|stdcall||fastcall))
1815    CallingConv CC;
1816  };
1817
1818protected:
1819  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1820               unsigned typeQuals, QualType Canonical, bool Dependent,
1821               const ExtInfo &Info)
1822    : Type(tc, Canonical, Dependent),
1823      SubClassData(SubclassInfo), TypeQuals(typeQuals),
1824      NoReturn(Info.getNoReturn()),
1825      RegParm(Info.getRegParm()), CallConv(Info.getCC()), ResultType(res) {}
1826  bool getSubClassData() const { return SubClassData; }
1827  unsigned getTypeQuals() const { return TypeQuals; }
1828public:
1829
1830  QualType getResultType() const { return ResultType; }
1831  unsigned getRegParmType() const { return RegParm; }
1832  bool getNoReturnAttr() const { return NoReturn; }
1833  CallingConv getCallConv() const { return (CallingConv)CallConv; }
1834  ExtInfo getExtInfo() const {
1835    return ExtInfo(NoReturn, RegParm, (CallingConv)CallConv);
1836  }
1837
1838  static llvm::StringRef getNameForCallConv(CallingConv CC);
1839
1840  static bool classof(const Type *T) {
1841    return T->getTypeClass() == FunctionNoProto ||
1842           T->getTypeClass() == FunctionProto;
1843  }
1844  static bool classof(const FunctionType *) { return true; }
1845};
1846
1847/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1848/// no information available about its arguments.
1849class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1850  FunctionNoProtoType(QualType Result, QualType Canonical,
1851                      const ExtInfo &Info)
1852    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1853                   /*Dependent=*/false, Info) {}
1854  friend class ASTContext;  // ASTContext creates these.
1855public:
1856  // No additional state past what FunctionType provides.
1857
1858  bool isSugared() const { return false; }
1859  QualType desugar() const { return QualType(this, 0); }
1860
1861  void Profile(llvm::FoldingSetNodeID &ID) {
1862    Profile(ID, getResultType(), getExtInfo());
1863  }
1864  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1865                      const ExtInfo &Info) {
1866    ID.AddInteger(Info.getCC());
1867    ID.AddInteger(Info.getRegParm());
1868    ID.AddInteger(Info.getNoReturn());
1869    ID.AddPointer(ResultType.getAsOpaquePtr());
1870  }
1871
1872  virtual Linkage getLinkage() const;
1873
1874  static bool classof(const Type *T) {
1875    return T->getTypeClass() == FunctionNoProto;
1876  }
1877  static bool classof(const FunctionNoProtoType *) { return true; }
1878};
1879
1880/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1881/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1882/// arguments, not as having a single void argument. Such a type can have an
1883/// exception specification, but this specification is not part of the canonical
1884/// type.
1885class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1886  /// hasAnyDependentType - Determine whether there are any dependent
1887  /// types within the arguments passed in.
1888  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1889    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1890      if (ArgArray[Idx]->isDependentType())
1891    return true;
1892
1893    return false;
1894  }
1895
1896  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1897                    bool isVariadic, unsigned typeQuals, bool hasExs,
1898                    bool hasAnyExs, const QualType *ExArray,
1899                    unsigned numExs, QualType Canonical,
1900                    const ExtInfo &Info)
1901    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1902                   (Result->isDependentType() ||
1903                    hasAnyDependentType(ArgArray, numArgs)),
1904                   Info),
1905      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1906      AnyExceptionSpec(hasAnyExs) {
1907    // Fill in the trailing argument array.
1908    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1909    for (unsigned i = 0; i != numArgs; ++i)
1910      ArgInfo[i] = ArgArray[i];
1911    // Fill in the exception array.
1912    QualType *Ex = ArgInfo + numArgs;
1913    for (unsigned i = 0; i != numExs; ++i)
1914      Ex[i] = ExArray[i];
1915  }
1916
1917  /// NumArgs - The number of arguments this function has, not counting '...'.
1918  unsigned NumArgs : 20;
1919
1920  /// NumExceptions - The number of types in the exception spec, if any.
1921  unsigned NumExceptions : 10;
1922
1923  /// HasExceptionSpec - Whether this function has an exception spec at all.
1924  bool HasExceptionSpec : 1;
1925
1926  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1927  bool AnyExceptionSpec : 1;
1928
1929  /// ArgInfo - There is an variable size array after the class in memory that
1930  /// holds the argument types.
1931
1932  /// Exceptions - There is another variable size array after ArgInfo that
1933  /// holds the exception types.
1934
1935  friend class ASTContext;  // ASTContext creates these.
1936
1937public:
1938  unsigned getNumArgs() const { return NumArgs; }
1939  QualType getArgType(unsigned i) const {
1940    assert(i < NumArgs && "Invalid argument number!");
1941    return arg_type_begin()[i];
1942  }
1943
1944  bool hasExceptionSpec() const { return HasExceptionSpec; }
1945  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1946  unsigned getNumExceptions() const { return NumExceptions; }
1947  QualType getExceptionType(unsigned i) const {
1948    assert(i < NumExceptions && "Invalid exception number!");
1949    return exception_begin()[i];
1950  }
1951  bool hasEmptyExceptionSpec() const {
1952    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1953      getNumExceptions() == 0;
1954  }
1955
1956  bool isVariadic() const { return getSubClassData(); }
1957  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1958
1959  typedef const QualType *arg_type_iterator;
1960  arg_type_iterator arg_type_begin() const {
1961    return reinterpret_cast<const QualType *>(this+1);
1962  }
1963  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1964
1965  typedef const QualType *exception_iterator;
1966  exception_iterator exception_begin() const {
1967    // exceptions begin where arguments end
1968    return arg_type_end();
1969  }
1970  exception_iterator exception_end() const {
1971    return exception_begin() + NumExceptions;
1972  }
1973
1974  bool isSugared() const { return false; }
1975  QualType desugar() const { return QualType(this, 0); }
1976
1977  virtual Linkage getLinkage() const;
1978
1979  static bool classof(const Type *T) {
1980    return T->getTypeClass() == FunctionProto;
1981  }
1982  static bool classof(const FunctionProtoType *) { return true; }
1983
1984  void Profile(llvm::FoldingSetNodeID &ID);
1985  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1986                      arg_type_iterator ArgTys, unsigned NumArgs,
1987                      bool isVariadic, unsigned TypeQuals,
1988                      bool hasExceptionSpec, bool anyExceptionSpec,
1989                      unsigned NumExceptions, exception_iterator Exs,
1990                      const ExtInfo &ExtInfo);
1991};
1992
1993
1994/// \brief Represents the dependent type named by a dependently-scoped
1995/// typename using declaration, e.g.
1996///   using typename Base<T>::foo;
1997/// Template instantiation turns these into the underlying type.
1998class UnresolvedUsingType : public Type {
1999  UnresolvedUsingTypenameDecl *Decl;
2000
2001  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2002    : Type(UnresolvedUsing, QualType(), true),
2003      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2004  friend class ASTContext; // ASTContext creates these.
2005public:
2006
2007  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2008
2009  bool isSugared() const { return false; }
2010  QualType desugar() const { return QualType(this, 0); }
2011
2012  static bool classof(const Type *T) {
2013    return T->getTypeClass() == UnresolvedUsing;
2014  }
2015  static bool classof(const UnresolvedUsingType *) { return true; }
2016
2017  void Profile(llvm::FoldingSetNodeID &ID) {
2018    return Profile(ID, Decl);
2019  }
2020  static void Profile(llvm::FoldingSetNodeID &ID,
2021                      UnresolvedUsingTypenameDecl *D) {
2022    ID.AddPointer(D);
2023  }
2024};
2025
2026
2027class TypedefType : public Type {
2028  TypedefDecl *Decl;
2029protected:
2030  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
2031    : Type(tc, can, can->isDependentType()),
2032      Decl(const_cast<TypedefDecl*>(D)) {
2033    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2034  }
2035  friend class ASTContext;  // ASTContext creates these.
2036public:
2037
2038  TypedefDecl *getDecl() const { return Decl; }
2039
2040  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
2041  /// potentially looking through *all* consecutive typedefs.  This returns the
2042  /// sum of the type qualifiers, so if you have:
2043  ///   typedef const int A;
2044  ///   typedef volatile A B;
2045  /// looking through the typedefs for B will give you "const volatile A".
2046  QualType LookThroughTypedefs() const;
2047
2048  bool isSugared() const { return true; }
2049  QualType desugar() const;
2050
2051  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2052  static bool classof(const TypedefType *) { return true; }
2053};
2054
2055/// TypeOfExprType (GCC extension).
2056class TypeOfExprType : public Type {
2057  Expr *TOExpr;
2058
2059protected:
2060  TypeOfExprType(Expr *E, QualType can = QualType());
2061  friend class ASTContext;  // ASTContext creates these.
2062public:
2063  Expr *getUnderlyingExpr() const { return TOExpr; }
2064
2065  /// \brief Remove a single level of sugar.
2066  QualType desugar() const;
2067
2068  /// \brief Returns whether this type directly provides sugar.
2069  bool isSugared() const { return true; }
2070
2071  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2072  static bool classof(const TypeOfExprType *) { return true; }
2073};
2074
2075/// \brief Internal representation of canonical, dependent
2076/// typeof(expr) types.
2077///
2078/// This class is used internally by the ASTContext to manage
2079/// canonical, dependent types, only. Clients will only see instances
2080/// of this class via TypeOfExprType nodes.
2081class DependentTypeOfExprType
2082  : public TypeOfExprType, public llvm::FoldingSetNode {
2083  ASTContext &Context;
2084
2085public:
2086  DependentTypeOfExprType(ASTContext &Context, Expr *E)
2087    : TypeOfExprType(E), Context(Context) { }
2088
2089  bool isSugared() const { return false; }
2090  QualType desugar() const { return QualType(this, 0); }
2091
2092  void Profile(llvm::FoldingSetNodeID &ID) {
2093    Profile(ID, Context, getUnderlyingExpr());
2094  }
2095
2096  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2097                      Expr *E);
2098};
2099
2100/// TypeOfType (GCC extension).
2101class TypeOfType : public Type {
2102  QualType TOType;
2103  TypeOfType(QualType T, QualType can)
2104    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
2105    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2106  }
2107  friend class ASTContext;  // ASTContext creates these.
2108public:
2109  QualType getUnderlyingType() const { return TOType; }
2110
2111  /// \brief Remove a single level of sugar.
2112  QualType desugar() const { return getUnderlyingType(); }
2113
2114  /// \brief Returns whether this type directly provides sugar.
2115  bool isSugared() const { return true; }
2116
2117  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2118  static bool classof(const TypeOfType *) { return true; }
2119};
2120
2121/// DecltypeType (C++0x)
2122class DecltypeType : public Type {
2123  Expr *E;
2124
2125  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2126  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2127  // from it.
2128  QualType UnderlyingType;
2129
2130protected:
2131  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2132  friend class ASTContext;  // ASTContext creates these.
2133public:
2134  Expr *getUnderlyingExpr() const { return E; }
2135  QualType getUnderlyingType() const { return UnderlyingType; }
2136
2137  /// \brief Remove a single level of sugar.
2138  QualType desugar() const { return getUnderlyingType(); }
2139
2140  /// \brief Returns whether this type directly provides sugar.
2141  bool isSugared() const { return !isDependentType(); }
2142
2143  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2144  static bool classof(const DecltypeType *) { return true; }
2145};
2146
2147/// \brief Internal representation of canonical, dependent
2148/// decltype(expr) types.
2149///
2150/// This class is used internally by the ASTContext to manage
2151/// canonical, dependent types, only. Clients will only see instances
2152/// of this class via DecltypeType nodes.
2153class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2154  ASTContext &Context;
2155
2156public:
2157  DependentDecltypeType(ASTContext &Context, Expr *E);
2158
2159  bool isSugared() const { return false; }
2160  QualType desugar() const { return QualType(this, 0); }
2161
2162  void Profile(llvm::FoldingSetNodeID &ID) {
2163    Profile(ID, Context, getUnderlyingExpr());
2164  }
2165
2166  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2167                      Expr *E);
2168};
2169
2170class TagType : public Type {
2171  /// Stores the TagDecl associated with this type. The decl will
2172  /// point to the TagDecl that actually defines the entity (or is a
2173  /// definition in progress), if there is such a definition. The
2174  /// single-bit value will be non-zero when this tag is in the
2175  /// process of being defined.
2176  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
2177  friend class ASTContext;
2178  friend class TagDecl;
2179
2180protected:
2181  TagType(TypeClass TC, const TagDecl *D, QualType can);
2182
2183public:
2184  TagDecl *getDecl() const { return decl.getPointer(); }
2185
2186  /// @brief Determines whether this type is in the process of being
2187  /// defined.
2188  bool isBeingDefined() const { return decl.getInt(); }
2189  void setBeingDefined(bool Def) const { decl.setInt(Def? 1 : 0); }
2190
2191  virtual Linkage getLinkage() const;
2192
2193  static bool classof(const Type *T) {
2194    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2195  }
2196  static bool classof(const TagType *) { return true; }
2197  static bool classof(const RecordType *) { return true; }
2198  static bool classof(const EnumType *) { return true; }
2199};
2200
2201/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2202/// to detect TagType objects of structs/unions/classes.
2203class RecordType : public TagType {
2204protected:
2205  explicit RecordType(const RecordDecl *D)
2206    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2207  explicit RecordType(TypeClass TC, RecordDecl *D)
2208    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2209  friend class ASTContext;   // ASTContext creates these.
2210public:
2211
2212  RecordDecl *getDecl() const {
2213    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2214  }
2215
2216  // FIXME: This predicate is a helper to QualType/Type. It needs to
2217  // recursively check all fields for const-ness. If any field is declared
2218  // const, it needs to return false.
2219  bool hasConstFields() const { return false; }
2220
2221  // FIXME: RecordType needs to check when it is created that all fields are in
2222  // the same address space, and return that.
2223  unsigned getAddressSpace() const { return 0; }
2224
2225  bool isSugared() const { return false; }
2226  QualType desugar() const { return QualType(this, 0); }
2227
2228  static bool classof(const TagType *T);
2229  static bool classof(const Type *T) {
2230    return isa<TagType>(T) && classof(cast<TagType>(T));
2231  }
2232  static bool classof(const RecordType *) { return true; }
2233};
2234
2235/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2236/// to detect TagType objects of enums.
2237class EnumType : public TagType {
2238  explicit EnumType(const EnumDecl *D)
2239    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2240  friend class ASTContext;   // ASTContext creates these.
2241public:
2242
2243  EnumDecl *getDecl() const {
2244    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2245  }
2246
2247  bool isSugared() const { return false; }
2248  QualType desugar() const { return QualType(this, 0); }
2249
2250  static bool classof(const TagType *T);
2251  static bool classof(const Type *T) {
2252    return isa<TagType>(T) && classof(cast<TagType>(T));
2253  }
2254  static bool classof(const EnumType *) { return true; }
2255};
2256
2257/// ElaboratedType - A non-canonical type used to represents uses of
2258/// elaborated type specifiers in C++.  For example:
2259///
2260///   void foo(union MyUnion);
2261///            ^^^^^^^^^^^^^
2262///
2263/// At the moment, for efficiency we do not create elaborated types in
2264/// C, since outside of typedefs all references to structs would
2265/// necessarily be elaborated.
2266class ElaboratedType : public Type, public llvm::FoldingSetNode {
2267public:
2268  enum TagKind {
2269    TK_struct,
2270    TK_union,
2271    TK_class,
2272    TK_enum
2273  };
2274
2275private:
2276  /// The tag that was used in this elaborated type specifier.
2277  TagKind Tag;
2278
2279  /// The underlying type.
2280  QualType UnderlyingType;
2281
2282  explicit ElaboratedType(QualType Ty, TagKind Tag, QualType Canon)
2283    : Type(Elaborated, Canon, Canon->isDependentType()),
2284      Tag(Tag), UnderlyingType(Ty) { }
2285  friend class ASTContext;   // ASTContext creates these.
2286
2287public:
2288  TagKind getTagKind() const { return Tag; }
2289  QualType getUnderlyingType() const { return UnderlyingType; }
2290
2291  /// \brief Remove a single level of sugar.
2292  QualType desugar() const { return getUnderlyingType(); }
2293
2294  /// \brief Returns whether this type directly provides sugar.
2295  bool isSugared() const { return true; }
2296
2297  static const char *getNameForTagKind(TagKind Kind) {
2298    switch (Kind) {
2299    default: assert(0 && "Unknown TagKind!");
2300    case TK_struct: return "struct";
2301    case TK_union:  return "union";
2302    case TK_class:  return "class";
2303    case TK_enum:   return "enum";
2304    }
2305  }
2306
2307  void Profile(llvm::FoldingSetNodeID &ID) {
2308    Profile(ID, getUnderlyingType(), getTagKind());
2309  }
2310  static void Profile(llvm::FoldingSetNodeID &ID, QualType T, TagKind Tag) {
2311    ID.AddPointer(T.getAsOpaquePtr());
2312    ID.AddInteger(Tag);
2313  }
2314
2315  static bool classof(const ElaboratedType*) { return true; }
2316  static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
2317};
2318
2319class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2320  unsigned Depth : 15;
2321  unsigned Index : 16;
2322  unsigned ParameterPack : 1;
2323  IdentifierInfo *Name;
2324
2325  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2326                       QualType Canon)
2327    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2328      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2329
2330  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2331    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2332      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2333
2334  friend class ASTContext;  // ASTContext creates these
2335
2336public:
2337  unsigned getDepth() const { return Depth; }
2338  unsigned getIndex() const { return Index; }
2339  bool isParameterPack() const { return ParameterPack; }
2340  IdentifierInfo *getName() const { return Name; }
2341
2342  bool isSugared() const { return false; }
2343  QualType desugar() const { return QualType(this, 0); }
2344
2345  void Profile(llvm::FoldingSetNodeID &ID) {
2346    Profile(ID, Depth, Index, ParameterPack, Name);
2347  }
2348
2349  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2350                      unsigned Index, bool ParameterPack,
2351                      IdentifierInfo *Name) {
2352    ID.AddInteger(Depth);
2353    ID.AddInteger(Index);
2354    ID.AddBoolean(ParameterPack);
2355    ID.AddPointer(Name);
2356  }
2357
2358  static bool classof(const Type *T) {
2359    return T->getTypeClass() == TemplateTypeParm;
2360  }
2361  static bool classof(const TemplateTypeParmType *T) { return true; }
2362};
2363
2364/// \brief Represents the result of substituting a type for a template
2365/// type parameter.
2366///
2367/// Within an instantiated template, all template type parameters have
2368/// been replaced with these.  They are used solely to record that a
2369/// type was originally written as a template type parameter;
2370/// therefore they are never canonical.
2371class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2372  // The original type parameter.
2373  const TemplateTypeParmType *Replaced;
2374
2375  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2376    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2377      Replaced(Param) { }
2378
2379  friend class ASTContext;
2380
2381public:
2382  IdentifierInfo *getName() const { return Replaced->getName(); }
2383
2384  /// Gets the template parameter that was substituted for.
2385  const TemplateTypeParmType *getReplacedParameter() const {
2386    return Replaced;
2387  }
2388
2389  /// Gets the type that was substituted for the template
2390  /// parameter.
2391  QualType getReplacementType() const {
2392    return getCanonicalTypeInternal();
2393  }
2394
2395  bool isSugared() const { return true; }
2396  QualType desugar() const { return getReplacementType(); }
2397
2398  void Profile(llvm::FoldingSetNodeID &ID) {
2399    Profile(ID, getReplacedParameter(), getReplacementType());
2400  }
2401  static void Profile(llvm::FoldingSetNodeID &ID,
2402                      const TemplateTypeParmType *Replaced,
2403                      QualType Replacement) {
2404    ID.AddPointer(Replaced);
2405    ID.AddPointer(Replacement.getAsOpaquePtr());
2406  }
2407
2408  static bool classof(const Type *T) {
2409    return T->getTypeClass() == SubstTemplateTypeParm;
2410  }
2411  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2412};
2413
2414/// \brief Represents the type of a template specialization as written
2415/// in the source code.
2416///
2417/// Template specialization types represent the syntactic form of a
2418/// template-id that refers to a type, e.g., @c vector<int>. Some
2419/// template specialization types are syntactic sugar, whose canonical
2420/// type will point to some other type node that represents the
2421/// instantiation or class template specialization. For example, a
2422/// class template specialization type of @c vector<int> will refer to
2423/// a tag type for the instantiation
2424/// @c std::vector<int, std::allocator<int>>.
2425///
2426/// Other template specialization types, for which the template name
2427/// is dependent, may be canonical types. These types are always
2428/// dependent.
2429class TemplateSpecializationType
2430  : public Type, public llvm::FoldingSetNode {
2431
2432  // FIXME: Currently needed for profiling expressions; can we avoid this?
2433  ASTContext &Context;
2434
2435    /// \brief The name of the template being specialized.
2436  TemplateName Template;
2437
2438  /// \brief - The number of template arguments named in this class
2439  /// template specialization.
2440  unsigned NumArgs;
2441
2442  TemplateSpecializationType(ASTContext &Context,
2443                             TemplateName T,
2444                             const TemplateArgument *Args,
2445                             unsigned NumArgs, QualType Canon);
2446
2447  virtual void Destroy(ASTContext& C);
2448
2449  friend class ASTContext;  // ASTContext creates these
2450
2451public:
2452  /// \brief Determine whether any of the given template arguments are
2453  /// dependent.
2454  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2455                                            unsigned NumArgs);
2456
2457  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2458                                            unsigned NumArgs);
2459
2460  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2461
2462  /// \brief Print a template argument list, including the '<' and '>'
2463  /// enclosing the template arguments.
2464  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2465                                               unsigned NumArgs,
2466                                               const PrintingPolicy &Policy);
2467
2468  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2469                                               unsigned NumArgs,
2470                                               const PrintingPolicy &Policy);
2471
2472  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2473                                               const PrintingPolicy &Policy);
2474
2475  typedef const TemplateArgument * iterator;
2476
2477  iterator begin() const { return getArgs(); }
2478  iterator end() const;
2479
2480  /// \brief Retrieve the name of the template that we are specializing.
2481  TemplateName getTemplateName() const { return Template; }
2482
2483  /// \brief Retrieve the template arguments.
2484  const TemplateArgument *getArgs() const {
2485    return reinterpret_cast<const TemplateArgument *>(this + 1);
2486  }
2487
2488  /// \brief Retrieve the number of template arguments.
2489  unsigned getNumArgs() const { return NumArgs; }
2490
2491  /// \brief Retrieve a specific template argument as a type.
2492  /// \precondition @c isArgType(Arg)
2493  const TemplateArgument &getArg(unsigned Idx) const;
2494
2495  bool isSugared() const { return !isDependentType(); }
2496  QualType desugar() const { return getCanonicalTypeInternal(); }
2497
2498  void Profile(llvm::FoldingSetNodeID &ID) {
2499    Profile(ID, Template, getArgs(), NumArgs, Context);
2500  }
2501
2502  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2503                      const TemplateArgument *Args, unsigned NumArgs,
2504                      ASTContext &Context);
2505
2506  static bool classof(const Type *T) {
2507    return T->getTypeClass() == TemplateSpecialization;
2508  }
2509  static bool classof(const TemplateSpecializationType *T) { return true; }
2510};
2511
2512/// \brief The injected class name of a C++ class template.  Used to
2513/// record that a type was spelled with a bare identifier rather than
2514/// as a template-id; the equivalent for non-templated classes is just
2515/// RecordType.
2516///
2517/// For consistency, template instantiation turns these into RecordTypes.
2518///
2519/// The desugared form is always a unqualified TemplateSpecializationType.
2520/// The canonical form is always either a TemplateSpecializationType
2521/// (when dependent) or a RecordType (otherwise).
2522class InjectedClassNameType : public Type {
2523  CXXRecordDecl *Decl;
2524
2525  QualType UnderlyingType;
2526
2527  friend class ASTContext; // ASTContext creates these.
2528  InjectedClassNameType(CXXRecordDecl *D, QualType TST, QualType Canon)
2529    : Type(InjectedClassName, Canon, Canon->isDependentType()),
2530      Decl(D), UnderlyingType(TST) {
2531    assert(isa<TemplateSpecializationType>(TST));
2532    assert(!TST.hasQualifiers());
2533    assert(TST->getCanonicalTypeInternal() == Canon);
2534  }
2535
2536public:
2537  QualType getUnderlyingType() const { return UnderlyingType; }
2538  const TemplateSpecializationType *getUnderlyingTST() const {
2539    return cast<TemplateSpecializationType>(UnderlyingType.getTypePtr());
2540  }
2541
2542  CXXRecordDecl *getDecl() const { return Decl; }
2543
2544  bool isSugared() const { return true; }
2545  QualType desugar() const { return UnderlyingType; }
2546
2547  static bool classof(const Type *T) {
2548    return T->getTypeClass() == InjectedClassName;
2549  }
2550  static bool classof(const InjectedClassNameType *T) { return true; }
2551};
2552
2553/// \brief The elaboration keyword that precedes a qualified type name or
2554/// introduces an elaborated-type-specifier.
2555enum ElaboratedTypeKeyword {
2556  /// \brief No keyword precedes the qualified type name.
2557  ETK_None,
2558  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
2559  /// \c typename T::type.
2560  ETK_Typename,
2561  /// \brief The "class" keyword introduces the elaborated-type-specifier.
2562  ETK_Class,
2563  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
2564  ETK_Struct,
2565  /// \brief The "union" keyword introduces the elaborated-type-specifier.
2566  ETK_Union,
2567  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
2568  ETK_Enum
2569};
2570
2571/// \brief Represents a type that was referred to via a qualified
2572/// name, e.g., N::M::type.
2573///
2574/// This type is used to keep track of a type name as written in the
2575/// source code, including any nested-name-specifiers. The type itself
2576/// is always "sugar", used to express what was written in the source
2577/// code but containing no additional semantic information.
2578class QualifiedNameType : public Type, public llvm::FoldingSetNode {
2579  /// \brief The nested name specifier containing the qualifier.
2580  NestedNameSpecifier *NNS;
2581
2582  /// \brief The type that this qualified name refers to.
2583  QualType NamedType;
2584
2585  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
2586                    QualType CanonType)
2587    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
2588      NNS(NNS), NamedType(NamedType) { }
2589
2590  friend class ASTContext;  // ASTContext creates these
2591
2592public:
2593  /// \brief Retrieve the qualification on this type.
2594  NestedNameSpecifier *getQualifier() const { return NNS; }
2595
2596  /// \brief Retrieve the type named by the qualified-id.
2597  QualType getNamedType() const { return NamedType; }
2598
2599  /// \brief Remove a single level of sugar.
2600  QualType desugar() const { return getNamedType(); }
2601
2602  /// \brief Returns whether this type directly provides sugar.
2603  bool isSugared() const { return true; }
2604
2605  void Profile(llvm::FoldingSetNodeID &ID) {
2606    Profile(ID, NNS, NamedType);
2607  }
2608
2609  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2610                      QualType NamedType) {
2611    ID.AddPointer(NNS);
2612    NamedType.Profile(ID);
2613  }
2614
2615  static bool classof(const Type *T) {
2616    return T->getTypeClass() == QualifiedName;
2617  }
2618  static bool classof(const QualifiedNameType *T) { return true; }
2619};
2620
2621/// \brief Represents a qualified type name for which the type name is
2622/// dependent.
2623///
2624/// DependentNameType represents a class of dependent types that involve a
2625/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
2626/// name of a type. The DependentNameType may start with a "typename" (for a
2627/// typename-specifier), "class", "struct", "union", or "enum" (for a
2628/// dependent elaborated-type-specifier), or nothing (in contexts where we
2629/// know that we must be referring to a type, e.g., in a base class specifier).
2630class DependentNameType : public Type, public llvm::FoldingSetNode {
2631  /// \brief The keyword used to elaborate this type.
2632  ElaboratedTypeKeyword Keyword;
2633
2634  /// \brief The nested name specifier containing the qualifier.
2635  NestedNameSpecifier *NNS;
2636
2637  typedef llvm::PointerUnion<const IdentifierInfo *,
2638                             const TemplateSpecializationType *> NameType;
2639
2640  /// \brief The type that this typename specifier refers to.
2641  NameType Name;
2642
2643  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2644                    const IdentifierInfo *Name, QualType CanonType)
2645    : Type(DependentName, CanonType, true),
2646      Keyword(Keyword), NNS(NNS), Name(Name) {
2647    assert(NNS->isDependent() &&
2648           "DependentNameType requires a dependent nested-name-specifier");
2649  }
2650
2651  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2652                    const TemplateSpecializationType *Ty, QualType CanonType)
2653    : Type(DependentName, CanonType, true),
2654      Keyword(Keyword), NNS(NNS), Name(Ty) {
2655    assert(NNS->isDependent() &&
2656           "DependentNameType requires a dependent nested-name-specifier");
2657  }
2658
2659  friend class ASTContext;  // ASTContext creates these
2660
2661public:
2662  /// \brief Retrieve the keyword used to elaborate this type.
2663  ElaboratedTypeKeyword getKeyword() const { return Keyword; }
2664
2665  /// \brief Retrieve the qualification on this type.
2666  NestedNameSpecifier *getQualifier() const { return NNS; }
2667
2668  /// \brief Retrieve the type named by the typename specifier as an
2669  /// identifier.
2670  ///
2671  /// This routine will return a non-NULL identifier pointer when the
2672  /// form of the original typename was terminated by an identifier,
2673  /// e.g., "typename T::type".
2674  const IdentifierInfo *getIdentifier() const {
2675    return Name.dyn_cast<const IdentifierInfo *>();
2676  }
2677
2678  /// \brief Retrieve the type named by the typename specifier as a
2679  /// type specialization.
2680  const TemplateSpecializationType *getTemplateId() const {
2681    return Name.dyn_cast<const TemplateSpecializationType *>();
2682  }
2683
2684  bool isSugared() const { return false; }
2685  QualType desugar() const { return QualType(this, 0); }
2686
2687  void Profile(llvm::FoldingSetNodeID &ID) {
2688    Profile(ID, Keyword, NNS, Name);
2689  }
2690
2691  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2692                      NestedNameSpecifier *NNS, NameType Name) {
2693    ID.AddInteger(Keyword);
2694    ID.AddPointer(NNS);
2695    ID.AddPointer(Name.getOpaqueValue());
2696  }
2697
2698  static bool classof(const Type *T) {
2699    return T->getTypeClass() == DependentName;
2700  }
2701  static bool classof(const DependentNameType *T) { return true; }
2702};
2703
2704/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
2705/// object oriented design.  They basically correspond to C++ classes.  There
2706/// are two kinds of interface types, normal interfaces like "NSString" and
2707/// qualified interfaces, which are qualified with a protocol list like
2708/// "NSString<NSCopyable, NSAmazing>".
2709class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
2710  ObjCInterfaceDecl *Decl;
2711
2712  /// \brief The number of protocols stored after the ObjCInterfaceType node.
2713  /// The list of protocols is sorted on protocol name. No protocol is enterred
2714  /// more than once.
2715  unsigned NumProtocols;
2716
2717  ObjCInterfaceType(QualType Canonical, ObjCInterfaceDecl *D,
2718                    ObjCProtocolDecl **Protos, unsigned NumP);
2719  friend class ASTContext;  // ASTContext creates these.
2720public:
2721  void Destroy(ASTContext& C);
2722
2723  ObjCInterfaceDecl *getDecl() const { return Decl; }
2724
2725  /// getNumProtocols - Return the number of qualifying protocols in this
2726  /// interface type, or 0 if there are none.
2727  unsigned getNumProtocols() const { return NumProtocols; }
2728
2729  /// \brief Retrieve the Ith protocol.
2730  ObjCProtocolDecl *getProtocol(unsigned I) const {
2731    assert(I < getNumProtocols() && "Out-of-range protocol access");
2732    return qual_begin()[I];
2733  }
2734
2735  /// qual_iterator and friends: this provides access to the (potentially empty)
2736  /// list of protocols qualifying this interface.
2737  typedef ObjCProtocolDecl*  const * qual_iterator;
2738  qual_iterator qual_begin() const {
2739    return reinterpret_cast<qual_iterator>(this + 1);
2740  }
2741  qual_iterator qual_end() const   {
2742    return qual_begin() + NumProtocols;
2743  }
2744  bool qual_empty() const { return NumProtocols == 0; }
2745
2746  bool isSugared() const { return false; }
2747  QualType desugar() const { return QualType(this, 0); }
2748
2749  void Profile(llvm::FoldingSetNodeID &ID);
2750  static void Profile(llvm::FoldingSetNodeID &ID,
2751                      const ObjCInterfaceDecl *Decl,
2752                      ObjCProtocolDecl * const *protocols,
2753                      unsigned NumProtocols);
2754
2755  virtual Linkage getLinkage() const;
2756
2757  static bool classof(const Type *T) {
2758    return T->getTypeClass() == ObjCInterface;
2759  }
2760  static bool classof(const ObjCInterfaceType *) { return true; }
2761};
2762
2763/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
2764/// and 'Interface <p> *'.
2765///
2766/// Duplicate protocols are removed and protocol list is canonicalized to be in
2767/// alphabetical order.
2768class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
2769  QualType PointeeType; // A builtin or interface type.
2770
2771  /// \brief The number of protocols stored after the ObjCObjectPointerType
2772  /// node.
2773  ///
2774  /// The list of protocols is sorted on protocol name. No protocol is enterred
2775  /// more than once.
2776  unsigned NumProtocols;
2777
2778  ObjCObjectPointerType(QualType Canonical, QualType T,
2779                        ObjCProtocolDecl **Protos, unsigned NumP);
2780  friend class ASTContext;  // ASTContext creates these.
2781
2782public:
2783  void Destroy(ASTContext& C);
2784
2785  // Get the pointee type. Pointee will either be:
2786  // - a built-in type (for 'id' and 'Class').
2787  // - an interface type (for user-defined types).
2788  // - a TypedefType whose canonical type is an interface (as in 'T' below).
2789  //   For example: typedef NSObject T; T *var;
2790  QualType getPointeeType() const { return PointeeType; }
2791
2792  const ObjCInterfaceType *getInterfaceType() const {
2793    return PointeeType->getAs<ObjCInterfaceType>();
2794  }
2795  /// getInterfaceDecl - returns an interface decl for user-defined types.
2796  ObjCInterfaceDecl *getInterfaceDecl() const {
2797    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
2798  }
2799  /// isObjCIdType - true for "id".
2800  bool isObjCIdType() const {
2801    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2802           !NumProtocols;
2803  }
2804  /// isObjCClassType - true for "Class".
2805  bool isObjCClassType() const {
2806    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2807           !NumProtocols;
2808  }
2809
2810  /// isObjCQualifiedIdType - true for "id <p>".
2811  bool isObjCQualifiedIdType() const {
2812    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2813           NumProtocols;
2814  }
2815  /// isObjCQualifiedClassType - true for "Class <p>".
2816  bool isObjCQualifiedClassType() const {
2817    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2818           NumProtocols;
2819  }
2820  /// qual_iterator and friends: this provides access to the (potentially empty)
2821  /// list of protocols qualifying this interface.
2822  typedef ObjCProtocolDecl*  const * qual_iterator;
2823
2824  qual_iterator qual_begin() const {
2825    return reinterpret_cast<qual_iterator> (this + 1);
2826  }
2827  qual_iterator qual_end() const   {
2828    return qual_begin() + NumProtocols;
2829  }
2830  bool qual_empty() const { return NumProtocols == 0; }
2831
2832  /// getNumProtocols - Return the number of qualifying protocols in this
2833  /// interface type, or 0 if there are none.
2834  unsigned getNumProtocols() const { return NumProtocols; }
2835
2836  /// \brief Retrieve the Ith protocol.
2837  ObjCProtocolDecl *getProtocol(unsigned I) const {
2838    assert(I < getNumProtocols() && "Out-of-range protocol access");
2839    return qual_begin()[I];
2840  }
2841
2842  bool isSugared() const { return false; }
2843  QualType desugar() const { return QualType(this, 0); }
2844
2845  virtual Linkage getLinkage() const;
2846
2847  void Profile(llvm::FoldingSetNodeID &ID);
2848  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2849                      ObjCProtocolDecl *const *protocols,
2850                      unsigned NumProtocols);
2851  static bool classof(const Type *T) {
2852    return T->getTypeClass() == ObjCObjectPointer;
2853  }
2854  static bool classof(const ObjCObjectPointerType *) { return true; }
2855};
2856
2857/// A qualifier set is used to build a set of qualifiers.
2858class QualifierCollector : public Qualifiers {
2859  ASTContext *Context;
2860
2861public:
2862  QualifierCollector(Qualifiers Qs = Qualifiers())
2863    : Qualifiers(Qs), Context(0) {}
2864  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
2865    : Qualifiers(Qs), Context(&Context) {}
2866
2867  void setContext(ASTContext &C) { Context = &C; }
2868
2869  /// Collect any qualifiers on the given type and return an
2870  /// unqualified type.
2871  const Type *strip(QualType QT) {
2872    addFastQualifiers(QT.getLocalFastQualifiers());
2873    if (QT.hasLocalNonFastQualifiers()) {
2874      const ExtQuals *EQ = QT.getExtQualsUnsafe();
2875      Context = &EQ->getContext();
2876      addQualifiers(EQ->getQualifiers());
2877      return EQ->getBaseType();
2878    }
2879    return QT.getTypePtrUnsafe();
2880  }
2881
2882  /// Apply the collected qualifiers to the given type.
2883  QualType apply(QualType QT) const;
2884
2885  /// Apply the collected qualifiers to the given type.
2886  QualType apply(const Type* T) const;
2887
2888};
2889
2890
2891// Inline function definitions.
2892
2893inline bool QualType::isCanonical() const {
2894  const Type *T = getTypePtr();
2895  if (hasLocalQualifiers())
2896    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
2897  return T->isCanonicalUnqualified();
2898}
2899
2900inline bool QualType::isCanonicalAsParam() const {
2901  if (hasLocalQualifiers()) return false;
2902  const Type *T = getTypePtr();
2903  return T->isCanonicalUnqualified() &&
2904           !isa<FunctionType>(T) && !isa<ArrayType>(T);
2905}
2906
2907inline bool QualType::isConstQualified() const {
2908  return isLocalConstQualified() ||
2909              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
2910}
2911
2912inline bool QualType::isRestrictQualified() const {
2913  return isLocalRestrictQualified() ||
2914            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
2915}
2916
2917
2918inline bool QualType::isVolatileQualified() const {
2919  return isLocalVolatileQualified() ||
2920  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
2921}
2922
2923inline bool QualType::hasQualifiers() const {
2924  return hasLocalQualifiers() ||
2925                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
2926}
2927
2928inline Qualifiers QualType::getQualifiers() const {
2929  Qualifiers Quals = getLocalQualifiers();
2930  Quals.addQualifiers(
2931                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
2932  return Quals;
2933}
2934
2935inline unsigned QualType::getCVRQualifiers() const {
2936  return getLocalCVRQualifiers() |
2937              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
2938}
2939
2940/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
2941/// type, returns them. Otherwise, if this is an array type, recurses
2942/// on the element type until some qualifiers have been found or a non-array
2943/// type reached.
2944inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
2945  if (unsigned Quals = getCVRQualifiers())
2946    return Quals;
2947  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2948  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2949    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
2950  return 0;
2951}
2952
2953inline void QualType::removeConst() {
2954  removeFastQualifiers(Qualifiers::Const);
2955}
2956
2957inline void QualType::removeRestrict() {
2958  removeFastQualifiers(Qualifiers::Restrict);
2959}
2960
2961inline void QualType::removeVolatile() {
2962  QualifierCollector Qc;
2963  const Type *Ty = Qc.strip(*this);
2964  if (Qc.hasVolatile()) {
2965    Qc.removeVolatile();
2966    *this = Qc.apply(Ty);
2967  }
2968}
2969
2970inline void QualType::removeCVRQualifiers(unsigned Mask) {
2971  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
2972
2973  // Fast path: we don't need to touch the slow qualifiers.
2974  if (!(Mask & ~Qualifiers::FastMask)) {
2975    removeFastQualifiers(Mask);
2976    return;
2977  }
2978
2979  QualifierCollector Qc;
2980  const Type *Ty = Qc.strip(*this);
2981  Qc.removeCVRQualifiers(Mask);
2982  *this = Qc.apply(Ty);
2983}
2984
2985/// getAddressSpace - Return the address space of this type.
2986inline unsigned QualType::getAddressSpace() const {
2987  if (hasLocalNonFastQualifiers()) {
2988    const ExtQuals *EQ = getExtQualsUnsafe();
2989    if (EQ->hasAddressSpace())
2990      return EQ->getAddressSpace();
2991  }
2992
2993  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2994  if (CT.hasLocalNonFastQualifiers()) {
2995    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2996    if (EQ->hasAddressSpace())
2997      return EQ->getAddressSpace();
2998  }
2999
3000  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3001    return AT->getElementType().getAddressSpace();
3002  if (const RecordType *RT = dyn_cast<RecordType>(CT))
3003    return RT->getAddressSpace();
3004  return 0;
3005}
3006
3007/// getObjCGCAttr - Return the gc attribute of this type.
3008inline Qualifiers::GC QualType::getObjCGCAttr() const {
3009  if (hasLocalNonFastQualifiers()) {
3010    const ExtQuals *EQ = getExtQualsUnsafe();
3011    if (EQ->hasObjCGCAttr())
3012      return EQ->getObjCGCAttr();
3013  }
3014
3015  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3016  if (CT.hasLocalNonFastQualifiers()) {
3017    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3018    if (EQ->hasObjCGCAttr())
3019      return EQ->getObjCGCAttr();
3020  }
3021
3022  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3023      return AT->getElementType().getObjCGCAttr();
3024  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
3025    return PT->getPointeeType().getObjCGCAttr();
3026  // We most look at all pointer types, not just pointer to interface types.
3027  if (const PointerType *PT = CT->getAs<PointerType>())
3028    return PT->getPointeeType().getObjCGCAttr();
3029  return Qualifiers::GCNone;
3030}
3031
3032inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
3033  if (const PointerType *PT = t.getAs<PointerType>()) {
3034    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
3035      return FT->getExtInfo();
3036  } else if (const FunctionType *FT = t.getAs<FunctionType>())
3037    return FT->getExtInfo();
3038
3039  return FunctionType::ExtInfo();
3040}
3041
3042inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
3043  return getFunctionExtInfo(*t);
3044}
3045
3046/// isMoreQualifiedThan - Determine whether this type is more
3047/// qualified than the Other type. For example, "const volatile int"
3048/// is more qualified than "const int", "volatile int", and
3049/// "int". However, it is not more qualified than "const volatile
3050/// int".
3051inline bool QualType::isMoreQualifiedThan(QualType Other) const {
3052  // FIXME: work on arbitrary qualifiers
3053  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3054  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3055  if (getAddressSpace() != Other.getAddressSpace())
3056    return false;
3057  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
3058}
3059
3060/// isAtLeastAsQualifiedAs - Determine whether this type is at last
3061/// as qualified as the Other type. For example, "const volatile
3062/// int" is at least as qualified as "const int", "volatile int",
3063/// "int", and "const volatile int".
3064inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
3065  // FIXME: work on arbitrary qualifiers
3066  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3067  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3068  if (getAddressSpace() != Other.getAddressSpace())
3069    return false;
3070  return (MyQuals | OtherQuals) == MyQuals;
3071}
3072
3073/// getNonReferenceType - If Type is a reference type (e.g., const
3074/// int&), returns the type that the reference refers to ("const
3075/// int"). Otherwise, returns the type itself. This routine is used
3076/// throughout Sema to implement C++ 5p6:
3077///
3078///   If an expression initially has the type "reference to T" (8.3.2,
3079///   8.5.3), the type is adjusted to "T" prior to any further
3080///   analysis, the expression designates the object or function
3081///   denoted by the reference, and the expression is an lvalue.
3082inline QualType QualType::getNonReferenceType() const {
3083  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
3084    return RefType->getPointeeType();
3085  else
3086    return *this;
3087}
3088
3089inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
3090  if (const PointerType *PT = getAs<PointerType>())
3091    return PT->getPointeeType()->getAs<ObjCInterfaceType>();
3092  return 0;
3093}
3094
3095inline bool Type::isFunctionType() const {
3096  return isa<FunctionType>(CanonicalType);
3097}
3098inline bool Type::isPointerType() const {
3099  return isa<PointerType>(CanonicalType);
3100}
3101inline bool Type::isAnyPointerType() const {
3102  return isPointerType() || isObjCObjectPointerType();
3103}
3104inline bool Type::isBlockPointerType() const {
3105  return isa<BlockPointerType>(CanonicalType);
3106}
3107inline bool Type::isReferenceType() const {
3108  return isa<ReferenceType>(CanonicalType);
3109}
3110inline bool Type::isLValueReferenceType() const {
3111  return isa<LValueReferenceType>(CanonicalType);
3112}
3113inline bool Type::isRValueReferenceType() const {
3114  return isa<RValueReferenceType>(CanonicalType);
3115}
3116inline bool Type::isFunctionPointerType() const {
3117  if (const PointerType* T = getAs<PointerType>())
3118    return T->getPointeeType()->isFunctionType();
3119  else
3120    return false;
3121}
3122inline bool Type::isMemberPointerType() const {
3123  return isa<MemberPointerType>(CanonicalType);
3124}
3125inline bool Type::isMemberFunctionPointerType() const {
3126  if (const MemberPointerType* T = getAs<MemberPointerType>())
3127    return T->getPointeeType()->isFunctionType();
3128  else
3129    return false;
3130}
3131inline bool Type::isArrayType() const {
3132  return isa<ArrayType>(CanonicalType);
3133}
3134inline bool Type::isConstantArrayType() const {
3135  return isa<ConstantArrayType>(CanonicalType);
3136}
3137inline bool Type::isIncompleteArrayType() const {
3138  return isa<IncompleteArrayType>(CanonicalType);
3139}
3140inline bool Type::isVariableArrayType() const {
3141  return isa<VariableArrayType>(CanonicalType);
3142}
3143inline bool Type::isDependentSizedArrayType() const {
3144  return isa<DependentSizedArrayType>(CanonicalType);
3145}
3146inline bool Type::isRecordType() const {
3147  return isa<RecordType>(CanonicalType);
3148}
3149inline bool Type::isAnyComplexType() const {
3150  return isa<ComplexType>(CanonicalType);
3151}
3152inline bool Type::isVectorType() const {
3153  return isa<VectorType>(CanonicalType);
3154}
3155inline bool Type::isExtVectorType() const {
3156  return isa<ExtVectorType>(CanonicalType);
3157}
3158inline bool Type::isObjCObjectPointerType() const {
3159  return isa<ObjCObjectPointerType>(CanonicalType);
3160}
3161inline bool Type::isObjCInterfaceType() const {
3162  return isa<ObjCInterfaceType>(CanonicalType);
3163}
3164inline bool Type::isObjCQualifiedIdType() const {
3165  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3166    return OPT->isObjCQualifiedIdType();
3167  return false;
3168}
3169inline bool Type::isObjCQualifiedClassType() const {
3170  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3171    return OPT->isObjCQualifiedClassType();
3172  return false;
3173}
3174inline bool Type::isObjCIdType() const {
3175  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3176    return OPT->isObjCIdType();
3177  return false;
3178}
3179inline bool Type::isObjCClassType() const {
3180  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3181    return OPT->isObjCClassType();
3182  return false;
3183}
3184inline bool Type::isObjCSelType() const {
3185  if (const PointerType *OPT = getAs<PointerType>())
3186    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3187  return false;
3188}
3189inline bool Type::isObjCBuiltinType() const {
3190  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3191}
3192inline bool Type::isTemplateTypeParmType() const {
3193  return isa<TemplateTypeParmType>(CanonicalType);
3194}
3195
3196inline bool Type::isSpecificBuiltinType(unsigned K) const {
3197  if (const BuiltinType *BT = getAs<BuiltinType>())
3198    if (BT->getKind() == (BuiltinType::Kind) K)
3199      return true;
3200  return false;
3201}
3202
3203/// \brief Determines whether this is a type for which one can define
3204/// an overloaded operator.
3205inline bool Type::isOverloadableType() const {
3206  return isDependentType() || isRecordType() || isEnumeralType();
3207}
3208
3209inline bool Type::hasPointerRepresentation() const {
3210  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3211          isObjCInterfaceType() || isObjCObjectPointerType() ||
3212          isObjCQualifiedInterfaceType() || isNullPtrType());
3213}
3214
3215inline bool Type::hasObjCPointerRepresentation() const {
3216  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
3217          isObjCQualifiedInterfaceType());
3218}
3219
3220/// Insertion operator for diagnostics.  This allows sending QualType's into a
3221/// diagnostic with <<.
3222inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3223                                           QualType T) {
3224  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3225                  Diagnostic::ak_qualtype);
3226  return DB;
3227}
3228
3229// Helper class template that is used by Type::getAs to ensure that one does
3230// not try to look through a qualified type to get to an array type.
3231template<typename T,
3232         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3233                             llvm::is_base_of<ArrayType, T>::value)>
3234struct ArrayType_cannot_be_used_with_getAs { };
3235
3236template<typename T>
3237struct ArrayType_cannot_be_used_with_getAs<T, true>;
3238
3239/// Member-template getAs<specific type>'.
3240template <typename T> const T *Type::getAs() const {
3241  ArrayType_cannot_be_used_with_getAs<T> at;
3242  (void)at;
3243
3244  // If this is directly a T type, return it.
3245  if (const T *Ty = dyn_cast<T>(this))
3246    return Ty;
3247
3248  // If the canonical form of this type isn't the right kind, reject it.
3249  if (!isa<T>(CanonicalType))
3250    return 0;
3251
3252  // If this is a typedef for the type, strip the typedef off without
3253  // losing all typedef information.
3254  return cast<T>(getUnqualifiedDesugaredType());
3255}
3256
3257}  // end namespace clang
3258
3259#endif
3260