Type.h revision 4e3d355931542dc1a40c35c108f7e0b72876584c
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/AST/TemplateName.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/ADT/APSInt.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/PointerUnion.h"
26
27using llvm::isa;
28using llvm::cast;
29using llvm::cast_or_null;
30using llvm::dyn_cast;
31using llvm::dyn_cast_or_null;
32namespace clang { class Type; }
33
34namespace llvm {
35  template <typename T>
36  class PointerLikeTypeTraits;
37  template<>
38  class PointerLikeTypeTraits< ::clang::Type*> {
39  public:
40    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
41    static inline ::clang::Type *getFromVoidPointer(void *P) {
42      return static_cast< ::clang::Type*>(P);
43    }
44    enum { NumLowBitsAvailable = 3 };
45  };
46}
47
48namespace clang {
49  class ASTContext;
50  class TypedefDecl;
51  class TemplateDecl;
52  class TemplateTypeParmDecl;
53  class NonTypeTemplateParmDecl;
54  class TemplateTemplateParmDecl;
55  class TagDecl;
56  class RecordDecl;
57  class CXXRecordDecl;
58  class EnumDecl;
59  class FieldDecl;
60  class ObjCInterfaceDecl;
61  class ObjCProtocolDecl;
62  class ObjCMethodDecl;
63  class Expr;
64  class Stmt;
65  class SourceLocation;
66  class StmtIteratorBase;
67  class TemplateArgument;
68  class QualifiedNameType;
69  class PrintingPolicy;
70
71  // Provide forward declarations for all of the *Type classes
72#define TYPE(Class, Base) class Class##Type;
73#include "clang/AST/TypeNodes.def"
74
75/// QualType - For efficiency, we don't store CVR-qualified types as nodes on
76/// their own: instead each reference to a type stores the qualifiers.  This
77/// greatly reduces the number of nodes we need to allocate for types (for
78/// example we only need one for 'int', 'const int', 'volatile int',
79/// 'const volatile int', etc).
80///
81/// As an added efficiency bonus, instead of making this a pair, we just store
82/// the three bits we care about in the low bits of the pointer.  To handle the
83/// packing/unpacking, we make QualType be a simple wrapper class that acts like
84/// a smart pointer.
85class QualType {
86  llvm::PointerIntPair<Type*, 3> Value;
87public:
88  enum TQ {   // NOTE: These flags must be kept in sync with DeclSpec::TQ.
89    Const    = 0x1,
90    Restrict = 0x2,
91    Volatile = 0x4,
92    CVRFlags = Const|Restrict|Volatile
93  };
94
95  enum GCAttrTypes {
96    GCNone = 0,
97    Weak,
98    Strong
99  };
100
101  QualType() {}
102
103  QualType(const Type *Ptr, unsigned Quals)
104    : Value(const_cast<Type*>(Ptr), Quals) {}
105
106  unsigned getCVRQualifiers() const { return Value.getInt(); }
107  void setCVRQualifiers(unsigned Quals) { Value.setInt(Quals); }
108  Type *getTypePtr() const { return Value.getPointer(); }
109
110  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
111  static QualType getFromOpaquePtr(void *Ptr) {
112    QualType T;
113    T.Value.setFromOpaqueValue(Ptr);
114    return T;
115  }
116
117  Type &operator*() const {
118    return *getTypePtr();
119  }
120
121  Type *operator->() const {
122    return getTypePtr();
123  }
124
125  /// isNull - Return true if this QualType doesn't point to a type yet.
126  bool isNull() const {
127    return getTypePtr() == 0;
128  }
129
130  bool isConstQualified() const {
131    return (getCVRQualifiers() & Const) ? true : false;
132  }
133  bool isVolatileQualified() const {
134    return (getCVRQualifiers() & Volatile) ? true : false;
135  }
136  bool isRestrictQualified() const {
137    return (getCVRQualifiers() & Restrict) ? true : false;
138  }
139
140  bool isConstant(ASTContext& Ctx) const;
141
142  /// addConst/addVolatile/addRestrict - add the specified type qual to this
143  /// QualType.
144  void addConst()    { Value.setInt(Value.getInt() | Const); }
145  void addVolatile() { Value.setInt(Value.getInt() | Volatile); }
146  void addRestrict() { Value.setInt(Value.getInt() | Restrict); }
147
148  void removeConst()    { Value.setInt(Value.getInt() & ~Const); }
149  void removeVolatile() { Value.setInt(Value.getInt() & ~Volatile); }
150  void removeRestrict() { Value.setInt(Value.getInt() & ~Restrict); }
151
152  QualType getQualifiedType(unsigned TQs) const {
153    return QualType(getTypePtr(), TQs);
154  }
155  QualType getWithAdditionalQualifiers(unsigned TQs) const {
156    return QualType(getTypePtr(), TQs|getCVRQualifiers());
157  }
158
159  QualType withConst() const { return getWithAdditionalQualifiers(Const); }
160  QualType withVolatile() const { return getWithAdditionalQualifiers(Volatile);}
161  QualType withRestrict() const { return getWithAdditionalQualifiers(Restrict);}
162
163  QualType getUnqualifiedType() const;
164  bool isMoreQualifiedThan(QualType Other) const;
165  bool isAtLeastAsQualifiedAs(QualType Other) const;
166  QualType getNonReferenceType() const;
167
168  /// getDesugaredType - Return the specified type with any "sugar" removed from
169  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
170  /// the type is already concrete, it returns it unmodified.  This is similar
171  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
172  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
173  /// concrete.
174  QualType getDesugaredType(bool ForDisplay = false) const;
175
176  /// operator==/!= - Indicate whether the specified types and qualifiers are
177  /// identical.
178  bool operator==(const QualType &RHS) const {
179    return Value == RHS.Value;
180  }
181  bool operator!=(const QualType &RHS) const {
182    return Value != RHS.Value;
183  }
184  std::string getAsString() const;
185
186  std::string getAsString(const PrintingPolicy &Policy) const {
187    std::string S;
188    getAsStringInternal(S, Policy);
189    return S;
190  }
191  void getAsStringInternal(std::string &Str, const PrintingPolicy &Policy) const;
192
193  void dump(const char *s) const;
194  void dump() const;
195
196  void Profile(llvm::FoldingSetNodeID &ID) const {
197    ID.AddPointer(getAsOpaquePtr());
198  }
199
200public:
201
202  /// getAddressSpace - Return the address space of this type.
203  inline unsigned getAddressSpace() const;
204
205  /// GCAttrTypesAttr - Returns gc attribute of this type.
206  inline QualType::GCAttrTypes getObjCGCAttr() const;
207
208  /// isObjCGCWeak true when Type is objc's weak.
209  bool isObjCGCWeak() const {
210    return getObjCGCAttr() == Weak;
211  }
212
213  /// isObjCGCStrong true when Type is objc's strong.
214  bool isObjCGCStrong() const {
215    return getObjCGCAttr() == Strong;
216  }
217};
218
219} // end clang.
220
221namespace llvm {
222/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
223/// to a specific Type class.
224template<> struct simplify_type<const ::clang::QualType> {
225  typedef ::clang::Type* SimpleType;
226  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
227    return Val.getTypePtr();
228  }
229};
230template<> struct simplify_type< ::clang::QualType>
231  : public simplify_type<const ::clang::QualType> {};
232
233// Teach SmallPtrSet that QualType is "basically a pointer".
234template<>
235class PointerLikeTypeTraits<clang::QualType> {
236public:
237  static inline void *getAsVoidPointer(clang::QualType P) {
238    return P.getAsOpaquePtr();
239  }
240  static inline clang::QualType getFromVoidPointer(void *P) {
241    return clang::QualType::getFromOpaquePtr(P);
242  }
243  // CVR qualifiers go in low bits.
244  enum { NumLowBitsAvailable = 0 };
245};
246} // end namespace llvm
247
248namespace clang {
249
250/// Type - This is the base class of the type hierarchy.  A central concept
251/// with types is that each type always has a canonical type.  A canonical type
252/// is the type with any typedef names stripped out of it or the types it
253/// references.  For example, consider:
254///
255///  typedef int  foo;
256///  typedef foo* bar;
257///    'int *'    'foo *'    'bar'
258///
259/// There will be a Type object created for 'int'.  Since int is canonical, its
260/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
261/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
262/// there is a PointerType that represents 'int*', which, like 'int', is
263/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
264/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
265/// is also 'int*'.
266///
267/// Non-canonical types are useful for emitting diagnostics, without losing
268/// information about typedefs being used.  Canonical types are useful for type
269/// comparisons (they allow by-pointer equality tests) and useful for reasoning
270/// about whether something has a particular form (e.g. is a function type),
271/// because they implicitly, recursively, strip all typedefs out of a type.
272///
273/// Types, once created, are immutable.
274///
275class Type {
276public:
277  enum TypeClass {
278#define TYPE(Class, Base) Class,
279#define ABSTRACT_TYPE(Class, Base)
280#include "clang/AST/TypeNodes.def"
281    TagFirst = Record, TagLast = Enum
282  };
283
284private:
285  QualType CanonicalType;
286
287  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
288  bool Dependent : 1;
289
290  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
291  /// Note that this should stay at the end of the ivars for Type so that
292  /// subclasses can pack their bitfields into the same word.
293  unsigned TC : 5;
294
295  Type(const Type&);           // DO NOT IMPLEMENT.
296  void operator=(const Type&); // DO NOT IMPLEMENT.
297protected:
298  // silence VC++ warning C4355: 'this' : used in base member initializer list
299  Type *this_() { return this; }
300  Type(TypeClass tc, QualType Canonical, bool dependent)
301    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
302      Dependent(dependent), TC(tc) {}
303  virtual ~Type() {}
304  virtual void Destroy(ASTContext& C);
305  friend class ASTContext;
306
307public:
308  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
309
310  bool isCanonical() const { return CanonicalType.getTypePtr() == this; }
311
312  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
313  /// object types, function types, and incomplete types.
314
315  /// \brief Determines whether the type describes an object in memory.
316  ///
317  /// Note that this definition of object type corresponds to the C++
318  /// definition of object type, which includes incomplete types, as
319  /// opposed to the C definition (which does not include incomplete
320  /// types).
321  bool isObjectType() const;
322
323  /// isIncompleteType - Return true if this is an incomplete type.
324  /// A type that can describe objects, but which lacks information needed to
325  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
326  /// routine will need to determine if the size is actually required.
327  bool isIncompleteType() const;
328
329  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
330  /// type, in other words, not a function type.
331  bool isIncompleteOrObjectType() const {
332    return !isFunctionType();
333  }
334
335  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
336  bool isPODType() const;
337
338  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
339  /// types that have a non-constant expression. This does not include "[]".
340  bool isVariablyModifiedType() const;
341
342  /// Helper methods to distinguish type categories. All type predicates
343  /// operate on the canonical type, ignoring typedefs and qualifiers.
344
345  /// isSpecificBuiltinType - Test for a particular builtin type.
346  bool isSpecificBuiltinType(unsigned K) const;
347
348  /// isIntegerType() does *not* include complex integers (a GCC extension).
349  /// isComplexIntegerType() can be used to test for complex integers.
350  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
351  bool isEnumeralType() const;
352  bool isBooleanType() const;
353  bool isCharType() const;
354  bool isWideCharType() const;
355  bool isIntegralType() const;
356
357  /// Floating point categories.
358  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
359  /// isComplexType() does *not* include complex integers (a GCC extension).
360  /// isComplexIntegerType() can be used to test for complex integers.
361  bool isComplexType() const;      // C99 6.2.5p11 (complex)
362  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
363  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
364  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
365  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
366  bool isVoidType() const;         // C99 6.2.5p19
367  bool isDerivedType() const;      // C99 6.2.5p20
368  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
369  bool isAggregateType() const;
370
371  // Type Predicates: Check to see if this type is structurally the specified
372  // type, ignoring typedefs and qualifiers.
373  bool isFunctionType() const;
374  bool isFunctionNoProtoType() const { return getAsFunctionNoProtoType() != 0; }
375  bool isFunctionProtoType() const { return getAsFunctionProtoType() != 0; }
376  bool isPointerType() const;
377  bool isBlockPointerType() const;
378  bool isReferenceType() const;
379  bool isLValueReferenceType() const;
380  bool isRValueReferenceType() const;
381  bool isFunctionPointerType() const;
382  bool isMemberPointerType() const;
383  bool isMemberFunctionPointerType() const;
384  bool isArrayType() const;
385  bool isConstantArrayType() const;
386  bool isIncompleteArrayType() const;
387  bool isVariableArrayType() const;
388  bool isDependentSizedArrayType() const;
389  bool isRecordType() const;
390  bool isClassType() const;
391  bool isStructureType() const;
392  bool isUnionType() const;
393  bool isComplexIntegerType() const;            // GCC _Complex integer type.
394  bool isVectorType() const;                    // GCC vector type.
395  bool isExtVectorType() const;                 // Extended vector type.
396  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
397  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
398  bool isObjCQualifiedIdType() const;           // id<foo>
399  bool isTemplateTypeParmType() const;          // C++ template type parameter
400  bool isNullPtrType() const;                   // C++0x nullptr_t
401
402  /// isDependentType - Whether this type is a dependent type, meaning
403  /// that its definition somehow depends on a template parameter
404  /// (C++ [temp.dep.type]).
405  bool isDependentType() const { return Dependent; }
406  bool isOverloadableType() const;
407
408  /// hasPointerRepresentation - Whether this type is represented
409  /// natively as a pointer; this includes pointers, references, block
410  /// pointers, and Objective-C interface, qualified id, and qualified
411  /// interface types, as well as nullptr_t.
412  bool hasPointerRepresentation() const;
413
414  /// hasObjCPointerRepresentation - Whether this type can represent
415  /// an objective pointer type for the purpose of GC'ability
416  bool hasObjCPointerRepresentation() const;
417
418  // Type Checking Functions: Check to see if this type is structurally the
419  // specified type, ignoring typedefs and qualifiers, and return a pointer to
420  // the best type we can.
421  const BuiltinType *getAsBuiltinType() const;
422  const FunctionType *getAsFunctionType() const;
423  const FunctionNoProtoType *getAsFunctionNoProtoType() const;
424  const FunctionProtoType *getAsFunctionProtoType() const;
425  const PointerType *getAsPointerType() const;
426  const BlockPointerType *getAsBlockPointerType() const;
427  const ReferenceType *getAsReferenceType() const;
428  const LValueReferenceType *getAsLValueReferenceType() const;
429  const RValueReferenceType *getAsRValueReferenceType() const;
430  const MemberPointerType *getAsMemberPointerType() const;
431  const TagType *getAsTagType() const;
432  const RecordType *getAsRecordType() const;
433  const RecordType *getAsStructureType() const;
434  /// NOTE: getAs*ArrayType are methods on ASTContext.
435  const TypedefType *getAsTypedefType() const;
436  const RecordType *getAsUnionType() const;
437  const EnumType *getAsEnumType() const;
438  const VectorType *getAsVectorType() const; // GCC vector type.
439  const ComplexType *getAsComplexType() const;
440  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
441  const ExtVectorType *getAsExtVectorType() const; // Extended vector type.
442  const ObjCInterfaceType *getAsObjCInterfaceType() const;
443  const ObjCQualifiedInterfaceType *getAsObjCQualifiedInterfaceType() const;
444  const ObjCQualifiedIdType *getAsObjCQualifiedIdType() const;
445  const TemplateTypeParmType *getAsTemplateTypeParmType() const;
446
447  const TemplateSpecializationType *
448    getAsTemplateSpecializationType() const;
449
450  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
451  /// interface, return the interface type, otherwise return null.
452  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
453
454  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
455  /// element type of the array, potentially with type qualifiers missing.
456  /// This method should never be used when type qualifiers are meaningful.
457  const Type *getArrayElementTypeNoTypeQual() const;
458
459  /// getDesugaredType - Return the specified type with any "sugar" removed from
460  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
461  /// the type is already concrete, it returns it unmodified.  This is similar
462  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
463  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
464  /// concrete.
465  QualType getDesugaredType(bool ForDisplay = false) const;
466
467  /// More type predicates useful for type checking/promotion
468  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
469
470  /// isSignedIntegerType - Return true if this is an integer type that is
471  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
472  /// an enum decl which has a signed representation, or a vector of signed
473  /// integer element type.
474  bool isSignedIntegerType() const;
475
476  /// isUnsignedIntegerType - Return true if this is an integer type that is
477  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
478  /// decl which has an unsigned representation, or a vector of unsigned integer
479  /// element type.
480  bool isUnsignedIntegerType() const;
481
482  /// isConstantSizeType - Return true if this is not a variable sized type,
483  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
484  /// incomplete types.
485  bool isConstantSizeType() const;
486
487  /// isSpecifierType - Returns true if this type can be represented by some
488  /// set of type specifiers.
489  bool isSpecifierType() const;
490
491  QualType getCanonicalTypeInternal() const { return CanonicalType; }
492  void dump() const;
493  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const = 0;
494  static bool classof(const Type *) { return true; }
495};
496
497/// ExtQualType - TR18037 (C embedded extensions) 6.2.5p26
498/// This supports all kinds of type attributes; including,
499/// address space qualified types, objective-c's __weak and
500/// __strong attributes.
501///
502class ExtQualType : public Type, public llvm::FoldingSetNode {
503  /// BaseType - This is the underlying type that this qualifies.  All CVR
504  /// qualifiers are stored on the QualType that references this type, so we
505  /// can't have any here.
506  Type *BaseType;
507
508  /// Address Space ID - The address space ID this type is qualified with.
509  unsigned AddressSpace;
510  /// GC __weak/__strong attributes
511  QualType::GCAttrTypes GCAttrType;
512
513  ExtQualType(Type *Base, QualType CanonicalPtr, unsigned AddrSpace,
514              QualType::GCAttrTypes gcAttr) :
515      Type(ExtQual, CanonicalPtr, Base->isDependentType()), BaseType(Base),
516      AddressSpace(AddrSpace), GCAttrType(gcAttr) {
517    assert(!isa<ExtQualType>(BaseType) &&
518           "Cannot have ExtQualType of ExtQualType");
519  }
520  friend class ASTContext;  // ASTContext creates these.
521public:
522  Type *getBaseType() const { return BaseType; }
523  QualType::GCAttrTypes getObjCGCAttr() const { return GCAttrType; }
524  unsigned getAddressSpace() const { return AddressSpace; }
525
526  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
527
528  void Profile(llvm::FoldingSetNodeID &ID) {
529    Profile(ID, getBaseType(), AddressSpace, GCAttrType);
530  }
531  static void Profile(llvm::FoldingSetNodeID &ID, Type *Base,
532                      unsigned AddrSpace, QualType::GCAttrTypes gcAttr) {
533    ID.AddPointer(Base);
534    ID.AddInteger(AddrSpace);
535    ID.AddInteger(gcAttr);
536  }
537
538  static bool classof(const Type *T) { return T->getTypeClass() == ExtQual; }
539  static bool classof(const ExtQualType *) { return true; }
540};
541
542
543/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
544/// types are always canonical and have a literal name field.
545class BuiltinType : public Type {
546public:
547  enum Kind {
548    Void,
549
550    Bool,     // This is bool and/or _Bool.
551    Char_U,   // This is 'char' for targets where char is unsigned.
552    UChar,    // This is explicitly qualified unsigned char.
553    UShort,
554    UInt,
555    ULong,
556    ULongLong,
557    UInt128,  // __uint128_t
558
559    Char_S,   // This is 'char' for targets where char is signed.
560    SChar,    // This is explicitly qualified signed char.
561    WChar,    // This is 'wchar_t' for C++.
562    Short,
563    Int,
564    Long,
565    LongLong,
566    Int128,   // __int128_t
567
568    Float, Double, LongDouble,
569
570    NullPtr,  // This is the type of C++0x 'nullptr'.
571
572    Overload,  // This represents the type of an overloaded function declaration.
573    Dependent  // This represents the type of a type-dependent expression.
574  };
575private:
576  Kind TypeKind;
577public:
578  BuiltinType(Kind K)
579    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
580      TypeKind(K) {}
581
582  Kind getKind() const { return TypeKind; }
583  const char *getName(bool CPlusPlus) const;
584
585  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
586
587  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
588  static bool classof(const BuiltinType *) { return true; }
589};
590
591/// FixedWidthIntType - Used for arbitrary width types that we either don't
592/// want to or can't map to named integer types.  These always have a lower
593/// integer rank than builtin types of the same width.
594class FixedWidthIntType : public Type {
595private:
596  unsigned Width;
597  bool Signed;
598public:
599  FixedWidthIntType(unsigned W, bool S) : Type(FixedWidthInt, QualType(), false),
600                                          Width(W), Signed(S) {}
601
602  unsigned getWidth() const { return Width; }
603  bool isSigned() const { return Signed; }
604  const char *getName() const;
605
606  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
607
608  static bool classof(const Type *T) { return T->getTypeClass() == FixedWidthInt; }
609  static bool classof(const FixedWidthIntType *) { return true; }
610};
611
612/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
613/// types (_Complex float etc) as well as the GCC integer complex extensions.
614///
615class ComplexType : public Type, public llvm::FoldingSetNode {
616  QualType ElementType;
617  ComplexType(QualType Element, QualType CanonicalPtr) :
618    Type(Complex, CanonicalPtr, Element->isDependentType()),
619    ElementType(Element) {
620  }
621  friend class ASTContext;  // ASTContext creates these.
622public:
623  QualType getElementType() const { return ElementType; }
624
625  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
626
627  void Profile(llvm::FoldingSetNodeID &ID) {
628    Profile(ID, getElementType());
629  }
630  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
631    ID.AddPointer(Element.getAsOpaquePtr());
632  }
633
634  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
635  static bool classof(const ComplexType *) { return true; }
636};
637
638/// PointerType - C99 6.7.5.1 - Pointer Declarators.
639///
640class PointerType : public Type, public llvm::FoldingSetNode {
641  QualType PointeeType;
642
643  PointerType(QualType Pointee, QualType CanonicalPtr) :
644    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
645  }
646  friend class ASTContext;  // ASTContext creates these.
647public:
648
649  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
650
651  QualType getPointeeType() const { return PointeeType; }
652
653  void Profile(llvm::FoldingSetNodeID &ID) {
654    Profile(ID, getPointeeType());
655  }
656  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
657    ID.AddPointer(Pointee.getAsOpaquePtr());
658  }
659
660  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
661  static bool classof(const PointerType *) { return true; }
662};
663
664/// BlockPointerType - pointer to a block type.
665/// This type is to represent types syntactically represented as
666/// "void (^)(int)", etc. Pointee is required to always be a function type.
667///
668class BlockPointerType : public Type, public llvm::FoldingSetNode {
669  QualType PointeeType;  // Block is some kind of pointer type
670  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
671    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
672    PointeeType(Pointee) {
673  }
674  friend class ASTContext;  // ASTContext creates these.
675public:
676
677  // Get the pointee type. Pointee is required to always be a function type.
678  QualType getPointeeType() const { return PointeeType; }
679
680  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
681
682  void Profile(llvm::FoldingSetNodeID &ID) {
683      Profile(ID, getPointeeType());
684  }
685  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
686      ID.AddPointer(Pointee.getAsOpaquePtr());
687  }
688
689  static bool classof(const Type *T) {
690    return T->getTypeClass() == BlockPointer;
691  }
692  static bool classof(const BlockPointerType *) { return true; }
693};
694
695/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
696///
697class ReferenceType : public Type, public llvm::FoldingSetNode {
698  QualType PointeeType;
699
700protected:
701  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef) :
702    Type(tc, CanonicalRef, Referencee->isDependentType()),
703    PointeeType(Referencee) {
704  }
705public:
706  QualType getPointeeType() const { return PointeeType; }
707
708  void Profile(llvm::FoldingSetNodeID &ID) {
709    Profile(ID, getPointeeType());
710  }
711  static void Profile(llvm::FoldingSetNodeID &ID, QualType Referencee) {
712    ID.AddPointer(Referencee.getAsOpaquePtr());
713  }
714
715  static bool classof(const Type *T) {
716    return T->getTypeClass() == LValueReference ||
717           T->getTypeClass() == RValueReference;
718  }
719  static bool classof(const ReferenceType *) { return true; }
720};
721
722/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
723///
724class LValueReferenceType : public ReferenceType {
725  LValueReferenceType(QualType Referencee, QualType CanonicalRef) :
726    ReferenceType(LValueReference, Referencee, CanonicalRef) {
727  }
728  friend class ASTContext; // ASTContext creates these
729public:
730  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
731
732  static bool classof(const Type *T) {
733    return T->getTypeClass() == LValueReference;
734  }
735  static bool classof(const LValueReferenceType *) { return true; }
736};
737
738/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
739///
740class RValueReferenceType : public ReferenceType {
741  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
742    ReferenceType(RValueReference, Referencee, CanonicalRef) {
743  }
744  friend class ASTContext; // ASTContext creates these
745public:
746  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
747
748  static bool classof(const Type *T) {
749    return T->getTypeClass() == RValueReference;
750  }
751  static bool classof(const RValueReferenceType *) { return true; }
752};
753
754/// MemberPointerType - C++ 8.3.3 - Pointers to members
755///
756class MemberPointerType : public Type, public llvm::FoldingSetNode {
757  QualType PointeeType;
758  /// The class of which the pointee is a member. Must ultimately be a
759  /// RecordType, but could be a typedef or a template parameter too.
760  const Type *Class;
761
762  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
763    Type(MemberPointer, CanonicalPtr,
764         Cls->isDependentType() || Pointee->isDependentType()),
765    PointeeType(Pointee), Class(Cls) {
766  }
767  friend class ASTContext; // ASTContext creates these.
768public:
769
770  QualType getPointeeType() const { return PointeeType; }
771
772  const Type *getClass() const { return Class; }
773
774  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
775
776  void Profile(llvm::FoldingSetNodeID &ID) {
777    Profile(ID, getPointeeType(), getClass());
778  }
779  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
780                      const Type *Class) {
781    ID.AddPointer(Pointee.getAsOpaquePtr());
782    ID.AddPointer(Class);
783  }
784
785  static bool classof(const Type *T) {
786    return T->getTypeClass() == MemberPointer;
787  }
788  static bool classof(const MemberPointerType *) { return true; }
789};
790
791/// ArrayType - C99 6.7.5.2 - Array Declarators.
792///
793class ArrayType : public Type, public llvm::FoldingSetNode {
794public:
795  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
796  /// an array with a static size (e.g. int X[static 4]), or an array
797  /// with a star size (e.g. int X[*]).
798  /// 'static' is only allowed on function parameters.
799  enum ArraySizeModifier {
800    Normal, Static, Star
801  };
802private:
803  /// ElementType - The element type of the array.
804  QualType ElementType;
805
806  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
807  /// NOTE: These fields are packed into the bitfields space in the Type class.
808  unsigned SizeModifier : 2;
809
810  /// IndexTypeQuals - Capture qualifiers in declarations like:
811  /// 'int X[static restrict 4]'. For function parameters only.
812  unsigned IndexTypeQuals : 3;
813
814protected:
815  // C++ [temp.dep.type]p1:
816  //   A type is dependent if it is...
817  //     - an array type constructed from any dependent type or whose
818  //       size is specified by a constant expression that is
819  //       value-dependent,
820  ArrayType(TypeClass tc, QualType et, QualType can,
821            ArraySizeModifier sm, unsigned tq)
822    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
823      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
824
825  friend class ASTContext;  // ASTContext creates these.
826public:
827  QualType getElementType() const { return ElementType; }
828  ArraySizeModifier getSizeModifier() const {
829    return ArraySizeModifier(SizeModifier);
830  }
831  unsigned getIndexTypeQualifier() const { return IndexTypeQuals; }
832
833  static bool classof(const Type *T) {
834    return T->getTypeClass() == ConstantArray ||
835           T->getTypeClass() == VariableArray ||
836           T->getTypeClass() == IncompleteArray ||
837           T->getTypeClass() == DependentSizedArray;
838  }
839  static bool classof(const ArrayType *) { return true; }
840};
841
842/// ConstantArrayType - This class represents C arrays with a specified constant
843/// size.  For example 'int A[100]' has ConstantArrayType where the element type
844/// is 'int' and the size is 100.
845class ConstantArrayType : public ArrayType {
846  llvm::APInt Size; // Allows us to unique the type.
847
848  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
849                    ArraySizeModifier sm, unsigned tq)
850    : ArrayType(ConstantArray, et, can, sm, tq), Size(size) {}
851  friend class ASTContext;  // ASTContext creates these.
852public:
853  const llvm::APInt &getSize() const { return Size; }
854  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
855
856  void Profile(llvm::FoldingSetNodeID &ID) {
857    Profile(ID, getElementType(), getSize(),
858            getSizeModifier(), getIndexTypeQualifier());
859  }
860  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
861                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
862                      unsigned TypeQuals) {
863    ID.AddPointer(ET.getAsOpaquePtr());
864    ID.AddInteger(ArraySize.getZExtValue());
865    ID.AddInteger(SizeMod);
866    ID.AddInteger(TypeQuals);
867  }
868  static bool classof(const Type *T) {
869    return T->getTypeClass() == ConstantArray;
870  }
871  static bool classof(const ConstantArrayType *) { return true; }
872};
873
874/// IncompleteArrayType - This class represents C arrays with an unspecified
875/// size.  For example 'int A[]' has an IncompleteArrayType where the element
876/// type is 'int' and the size is unspecified.
877class IncompleteArrayType : public ArrayType {
878  IncompleteArrayType(QualType et, QualType can,
879                    ArraySizeModifier sm, unsigned tq)
880    : ArrayType(IncompleteArray, et, can, sm, tq) {}
881  friend class ASTContext;  // ASTContext creates these.
882public:
883
884  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
885
886  static bool classof(const Type *T) {
887    return T->getTypeClass() == IncompleteArray;
888  }
889  static bool classof(const IncompleteArrayType *) { return true; }
890
891  friend class StmtIteratorBase;
892
893  void Profile(llvm::FoldingSetNodeID &ID) {
894    Profile(ID, getElementType(), getSizeModifier(), getIndexTypeQualifier());
895  }
896
897  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
898                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
899    ID.AddPointer(ET.getAsOpaquePtr());
900    ID.AddInteger(SizeMod);
901    ID.AddInteger(TypeQuals);
902  }
903};
904
905/// VariableArrayType - This class represents C arrays with a specified size
906/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
907/// Since the size expression is an arbitrary expression, we store it as such.
908///
909/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
910/// should not be: two lexically equivalent variable array types could mean
911/// different things, for example, these variables do not have the same type
912/// dynamically:
913///
914/// void foo(int x) {
915///   int Y[x];
916///   ++x;
917///   int Z[x];
918/// }
919///
920class VariableArrayType : public ArrayType {
921  /// SizeExpr - An assignment expression. VLA's are only permitted within
922  /// a function block.
923  Stmt *SizeExpr;
924
925  VariableArrayType(QualType et, QualType can, Expr *e,
926                    ArraySizeModifier sm, unsigned tq)
927    : ArrayType(VariableArray, et, can, sm, tq), SizeExpr((Stmt*) e) {}
928  friend class ASTContext;  // ASTContext creates these.
929  virtual void Destroy(ASTContext& C);
930
931public:
932  Expr *getSizeExpr() const {
933    // We use C-style casts instead of cast<> here because we do not wish
934    // to have a dependency of Type.h on Stmt.h/Expr.h.
935    return (Expr*) SizeExpr;
936  }
937
938  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
939
940  static bool classof(const Type *T) {
941    return T->getTypeClass() == VariableArray;
942  }
943  static bool classof(const VariableArrayType *) { return true; }
944
945  friend class StmtIteratorBase;
946
947  void Profile(llvm::FoldingSetNodeID &ID) {
948    assert(0 && "Cannnot unique VariableArrayTypes.");
949  }
950};
951
952/// DependentSizedArrayType - This type represents an array type in
953/// C++ whose size is a value-dependent expression. For example:
954/// @code
955/// template<typename T, int Size>
956/// class array {
957///   T data[Size];
958/// };
959/// @endcode
960/// For these types, we won't actually know what the array bound is
961/// until template instantiation occurs, at which point this will
962/// become either a ConstantArrayType or a VariableArrayType.
963class DependentSizedArrayType : public ArrayType {
964  /// SizeExpr - An assignment expression that will instantiate to the
965  /// size of the array.
966  Stmt *SizeExpr;
967
968  DependentSizedArrayType(QualType et, QualType can, Expr *e,
969			  ArraySizeModifier sm, unsigned tq)
970    : ArrayType(DependentSizedArray, et, can, sm, tq), SizeExpr((Stmt*) e) {}
971  friend class ASTContext;  // ASTContext creates these.
972  virtual void Destroy(ASTContext& C);
973
974public:
975  Expr *getSizeExpr() const {
976    // We use C-style casts instead of cast<> here because we do not wish
977    // to have a dependency of Type.h on Stmt.h/Expr.h.
978    return (Expr*) SizeExpr;
979  }
980
981  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
982
983  static bool classof(const Type *T) {
984    return T->getTypeClass() == DependentSizedArray;
985  }
986  static bool classof(const DependentSizedArrayType *) { return true; }
987
988  friend class StmtIteratorBase;
989
990  void Profile(llvm::FoldingSetNodeID &ID) {
991    assert(0 && "Cannnot unique DependentSizedArrayTypes.");
992  }
993};
994
995/// VectorType - GCC generic vector type. This type is created using
996/// __attribute__((vector_size(n)), where "n" specifies the vector size in
997/// bytes. Since the constructor takes the number of vector elements, the
998/// client is responsible for converting the size into the number of elements.
999class VectorType : public Type, public llvm::FoldingSetNode {
1000protected:
1001  /// ElementType - The element type of the vector.
1002  QualType ElementType;
1003
1004  /// NumElements - The number of elements in the vector.
1005  unsigned NumElements;
1006
1007  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1008    Type(Vector, canonType, vecType->isDependentType()),
1009    ElementType(vecType), NumElements(nElements) {}
1010  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1011             QualType canonType)
1012    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1013      NumElements(nElements) {}
1014  friend class ASTContext;  // ASTContext creates these.
1015public:
1016
1017  QualType getElementType() const { return ElementType; }
1018  unsigned getNumElements() const { return NumElements; }
1019
1020  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1021
1022  void Profile(llvm::FoldingSetNodeID &ID) {
1023    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1024  }
1025  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1026                      unsigned NumElements, TypeClass TypeClass) {
1027    ID.AddPointer(ElementType.getAsOpaquePtr());
1028    ID.AddInteger(NumElements);
1029    ID.AddInteger(TypeClass);
1030  }
1031  static bool classof(const Type *T) {
1032    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1033  }
1034  static bool classof(const VectorType *) { return true; }
1035};
1036
1037/// ExtVectorType - Extended vector type. This type is created using
1038/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1039/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1040/// class enables syntactic extensions, like Vector Components for accessing
1041/// points, colors, and textures (modeled after OpenGL Shading Language).
1042class ExtVectorType : public VectorType {
1043  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1044    VectorType(ExtVector, vecType, nElements, canonType) {}
1045  friend class ASTContext;  // ASTContext creates these.
1046public:
1047  static int getPointAccessorIdx(char c) {
1048    switch (c) {
1049    default: return -1;
1050    case 'x': return 0;
1051    case 'y': return 1;
1052    case 'z': return 2;
1053    case 'w': return 3;
1054    }
1055  }
1056  static int getNumericAccessorIdx(char c) {
1057    switch (c) {
1058      default: return -1;
1059      case '0': return 0;
1060      case '1': return 1;
1061      case '2': return 2;
1062      case '3': return 3;
1063      case '4': return 4;
1064      case '5': return 5;
1065      case '6': return 6;
1066      case '7': return 7;
1067      case '8': return 8;
1068      case '9': return 9;
1069      case 'a': return 10;
1070      case 'b': return 11;
1071      case 'c': return 12;
1072      case 'd': return 13;
1073      case 'e': return 14;
1074      case 'f': return 15;
1075    }
1076  }
1077
1078  static int getAccessorIdx(char c) {
1079    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1080    return getNumericAccessorIdx(c);
1081  }
1082
1083  bool isAccessorWithinNumElements(char c) const {
1084    if (int idx = getAccessorIdx(c)+1)
1085      return unsigned(idx-1) < NumElements;
1086    return false;
1087  }
1088  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1089
1090  static bool classof(const Type *T) {
1091    return T->getTypeClass() == ExtVector;
1092  }
1093  static bool classof(const ExtVectorType *) { return true; }
1094};
1095
1096/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1097/// class of FunctionNoProtoType and FunctionProtoType.
1098///
1099class FunctionType : public Type {
1100  /// SubClassData - This field is owned by the subclass, put here to pack
1101  /// tightly with the ivars in Type.
1102  bool SubClassData : 1;
1103
1104  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1105  /// other bitfields.
1106  /// The qualifiers are part of FunctionProtoType because...
1107  ///
1108  /// C++ 8.3.5p4: The return type, the parameter type list and the
1109  /// cv-qualifier-seq, [...], are part of the function type.
1110  ///
1111  unsigned TypeQuals : 3;
1112
1113  // The type returned by the function.
1114  QualType ResultType;
1115protected:
1116  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1117               unsigned typeQuals, QualType Canonical, bool Dependent)
1118    : Type(tc, Canonical, Dependent),
1119      SubClassData(SubclassInfo), TypeQuals(typeQuals), ResultType(res) {}
1120  bool getSubClassData() const { return SubClassData; }
1121  unsigned getTypeQuals() const { return TypeQuals; }
1122public:
1123
1124  QualType getResultType() const { return ResultType; }
1125
1126
1127  static bool classof(const Type *T) {
1128    return T->getTypeClass() == FunctionNoProto ||
1129           T->getTypeClass() == FunctionProto;
1130  }
1131  static bool classof(const FunctionType *) { return true; }
1132};
1133
1134/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1135/// no information available about its arguments.
1136class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1137  FunctionNoProtoType(QualType Result, QualType Canonical)
1138    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1139                   /*Dependent=*/false) {}
1140  friend class ASTContext;  // ASTContext creates these.
1141public:
1142  // No additional state past what FunctionType provides.
1143
1144  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1145
1146  void Profile(llvm::FoldingSetNodeID &ID) {
1147    Profile(ID, getResultType());
1148  }
1149  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType) {
1150    ID.AddPointer(ResultType.getAsOpaquePtr());
1151  }
1152
1153  static bool classof(const Type *T) {
1154    return T->getTypeClass() == FunctionNoProto;
1155  }
1156  static bool classof(const FunctionNoProtoType *) { return true; }
1157};
1158
1159/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1160/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1161/// arguments, not as having a single void argument. Such a type can have an
1162/// exception specification, but this specification is not part of the canonical
1163/// type.
1164class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1165  /// hasAnyDependentType - Determine whether there are any dependent
1166  /// types within the arguments passed in.
1167  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1168    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1169      if (ArgArray[Idx]->isDependentType())
1170    return true;
1171
1172    return false;
1173  }
1174
1175  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1176                    bool isVariadic, unsigned typeQuals, bool hasExs,
1177                    bool hasAnyExs, const QualType *ExArray,
1178                    unsigned numExs, QualType Canonical)
1179    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1180                   (Result->isDependentType() ||
1181                    hasAnyDependentType(ArgArray, numArgs))),
1182      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1183      AnyExceptionSpec(hasAnyExs) {
1184    // Fill in the trailing argument array.
1185    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1186    for (unsigned i = 0; i != numArgs; ++i)
1187      ArgInfo[i] = ArgArray[i];
1188    // Fill in the exception array.
1189    QualType *Ex = ArgInfo + numArgs;
1190    for (unsigned i = 0; i != numExs; ++i)
1191      Ex[i] = ExArray[i];
1192  }
1193
1194  /// NumArgs - The number of arguments this function has, not counting '...'.
1195  unsigned NumArgs : 20;
1196
1197  /// NumExceptions - The number of types in the exception spec, if any.
1198  unsigned NumExceptions : 10;
1199
1200  /// HasExceptionSpec - Whether this function has an exception spec at all.
1201  bool HasExceptionSpec : 1;
1202
1203  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1204  bool AnyExceptionSpec : 1;
1205
1206  /// ArgInfo - There is an variable size array after the class in memory that
1207  /// holds the argument types.
1208
1209  /// Exceptions - There is another variable size array after ArgInfo that
1210  /// holds the exception types.
1211
1212  friend class ASTContext;  // ASTContext creates these.
1213
1214public:
1215  unsigned getNumArgs() const { return NumArgs; }
1216  QualType getArgType(unsigned i) const {
1217    assert(i < NumArgs && "Invalid argument number!");
1218    return arg_type_begin()[i];
1219  }
1220
1221  bool hasExceptionSpec() const { return HasExceptionSpec; }
1222  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1223  unsigned getNumExceptions() const { return NumExceptions; }
1224  QualType getExceptionType(unsigned i) const {
1225    assert(i < NumExceptions && "Invalid exception number!");
1226    return exception_begin()[i];
1227  }
1228  bool hasEmptyExceptionSpec() const {
1229    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1230      getNumExceptions() == 0;
1231  }
1232
1233  bool isVariadic() const { return getSubClassData(); }
1234  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1235
1236  typedef const QualType *arg_type_iterator;
1237  arg_type_iterator arg_type_begin() const {
1238    return reinterpret_cast<const QualType *>(this+1);
1239  }
1240  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1241
1242  typedef const QualType *exception_iterator;
1243  exception_iterator exception_begin() const {
1244    // exceptions begin where arguments end
1245    return arg_type_end();
1246  }
1247  exception_iterator exception_end() const {
1248    return exception_begin() + NumExceptions;
1249  }
1250
1251  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1252
1253  static bool classof(const Type *T) {
1254    return T->getTypeClass() == FunctionProto;
1255  }
1256  static bool classof(const FunctionProtoType *) { return true; }
1257
1258  void Profile(llvm::FoldingSetNodeID &ID);
1259  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1260                      arg_type_iterator ArgTys, unsigned NumArgs,
1261                      bool isVariadic, unsigned TypeQuals,
1262                      bool hasExceptionSpec, bool anyExceptionSpec,
1263                      unsigned NumExceptions, exception_iterator Exs);
1264};
1265
1266
1267class TypedefType : public Type {
1268  TypedefDecl *Decl;
1269protected:
1270  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1271    : Type(tc, can, can->isDependentType()), Decl(D) {
1272    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1273  }
1274  friend class ASTContext;  // ASTContext creates these.
1275public:
1276
1277  TypedefDecl *getDecl() const { return Decl; }
1278
1279  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1280  /// potentially looking through *all* consecutive typedefs.  This returns the
1281  /// sum of the type qualifiers, so if you have:
1282  ///   typedef const int A;
1283  ///   typedef volatile A B;
1284  /// looking through the typedefs for B will give you "const volatile A".
1285  QualType LookThroughTypedefs() const;
1286
1287  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1288
1289  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1290  static bool classof(const TypedefType *) { return true; }
1291};
1292
1293/// TypeOfExprType (GCC extension).
1294class TypeOfExprType : public Type {
1295  Expr *TOExpr;
1296  TypeOfExprType(Expr *E, QualType can);
1297  friend class ASTContext;  // ASTContext creates these.
1298public:
1299  Expr *getUnderlyingExpr() const { return TOExpr; }
1300
1301  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1302
1303  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1304  static bool classof(const TypeOfExprType *) { return true; }
1305};
1306
1307/// TypeOfType (GCC extension).
1308class TypeOfType : public Type {
1309  QualType TOType;
1310  TypeOfType(QualType T, QualType can)
1311    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
1312    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1313  }
1314  friend class ASTContext;  // ASTContext creates these.
1315public:
1316  QualType getUnderlyingType() const { return TOType; }
1317
1318  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1319
1320  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
1321  static bool classof(const TypeOfType *) { return true; }
1322};
1323
1324class TagType : public Type {
1325  /// Stores the TagDecl associated with this type. The decl will
1326  /// point to the TagDecl that actually defines the entity (or is a
1327  /// definition in progress), if there is such a definition. The
1328  /// single-bit value will be non-zero when this tag is in the
1329  /// process of being defined.
1330  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
1331  friend class ASTContext;
1332  friend class TagDecl;
1333
1334protected:
1335  TagType(TypeClass TC, TagDecl *D, QualType can);
1336
1337public:
1338  TagDecl *getDecl() const { return decl.getPointer(); }
1339
1340  /// @brief Determines whether this type is in the process of being
1341  /// defined.
1342  bool isBeingDefined() const { return decl.getInt(); }
1343  void setBeingDefined(bool Def) { decl.setInt(Def? 1 : 0); }
1344
1345  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1346
1347  static bool classof(const Type *T) {
1348    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
1349  }
1350  static bool classof(const TagType *) { return true; }
1351  static bool classof(const RecordType *) { return true; }
1352  static bool classof(const EnumType *) { return true; }
1353};
1354
1355/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
1356/// to detect TagType objects of structs/unions/classes.
1357class RecordType : public TagType {
1358protected:
1359  explicit RecordType(RecordDecl *D)
1360    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
1361  explicit RecordType(TypeClass TC, RecordDecl *D)
1362    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
1363  friend class ASTContext;   // ASTContext creates these.
1364public:
1365
1366  RecordDecl *getDecl() const {
1367    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
1368  }
1369
1370  // FIXME: This predicate is a helper to QualType/Type. It needs to
1371  // recursively check all fields for const-ness. If any field is declared
1372  // const, it needs to return false.
1373  bool hasConstFields() const { return false; }
1374
1375  // FIXME: RecordType needs to check when it is created that all fields are in
1376  // the same address space, and return that.
1377  unsigned getAddressSpace() const { return 0; }
1378
1379  static bool classof(const TagType *T);
1380  static bool classof(const Type *T) {
1381    return isa<TagType>(T) && classof(cast<TagType>(T));
1382  }
1383  static bool classof(const RecordType *) { return true; }
1384};
1385
1386/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
1387/// to detect TagType objects of enums.
1388class EnumType : public TagType {
1389  explicit EnumType(EnumDecl *D)
1390    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
1391  friend class ASTContext;   // ASTContext creates these.
1392public:
1393
1394  EnumDecl *getDecl() const {
1395    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
1396  }
1397
1398  static bool classof(const TagType *T);
1399  static bool classof(const Type *T) {
1400    return isa<TagType>(T) && classof(cast<TagType>(T));
1401  }
1402  static bool classof(const EnumType *) { return true; }
1403};
1404
1405class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
1406  unsigned Depth : 15;
1407  unsigned Index : 16;
1408  unsigned ParameterPack : 1;
1409  IdentifierInfo *Name;
1410
1411  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
1412                       QualType Canon)
1413    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
1414      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
1415
1416  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
1417    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
1418      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
1419
1420  friend class ASTContext;  // ASTContext creates these
1421
1422public:
1423  unsigned getDepth() const { return Depth; }
1424  unsigned getIndex() const { return Index; }
1425  bool isParameterPack() const { return ParameterPack; }
1426  IdentifierInfo *getName() const { return Name; }
1427
1428  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1429
1430  void Profile(llvm::FoldingSetNodeID &ID) {
1431    Profile(ID, Depth, Index, ParameterPack, Name);
1432  }
1433
1434  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
1435                      unsigned Index, bool ParameterPack,
1436                      IdentifierInfo *Name) {
1437    ID.AddInteger(Depth);
1438    ID.AddInteger(Index);
1439    ID.AddBoolean(ParameterPack);
1440    ID.AddPointer(Name);
1441  }
1442
1443  static bool classof(const Type *T) {
1444    return T->getTypeClass() == TemplateTypeParm;
1445  }
1446  static bool classof(const TemplateTypeParmType *T) { return true; }
1447};
1448
1449/// \brief Represents the type of a template specialization as written
1450/// in the source code.
1451///
1452/// Template specialization types represent the syntactic form of a
1453/// template-id that refers to a type, e.g., @c vector<int>. Some
1454/// template specialization types are syntactic sugar, whose canonical
1455/// type will point to some other type node that represents the
1456/// instantiation or class template specialization. For example, a
1457/// class template specialization type of @c vector<int> will refer to
1458/// a tag type for the instantiation
1459/// @c std::vector<int, std::allocator<int>>.
1460///
1461/// Other template specialization types, for which the template name
1462/// is dependent, may be canonical types. These types are always
1463/// dependent.
1464class TemplateSpecializationType
1465  : public Type, public llvm::FoldingSetNode {
1466
1467  /// \brief The name of the template being specialized.
1468  TemplateName Template;
1469
1470  /// \brief - The number of template arguments named in this class
1471  /// template specialization.
1472  unsigned NumArgs;
1473
1474  TemplateSpecializationType(TemplateName T,
1475                             const TemplateArgument *Args,
1476                             unsigned NumArgs, QualType Canon);
1477
1478  virtual void Destroy(ASTContext& C);
1479
1480  friend class ASTContext;  // ASTContext creates these
1481
1482public:
1483  /// \brief Determine whether any of the given template arguments are
1484  /// dependent.
1485  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
1486                                            unsigned NumArgs);
1487
1488  /// \brief Print a template argument list, including the '<' and '>'
1489  /// enclosing the template arguments.
1490  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
1491                                               unsigned NumArgs,
1492                                               const PrintingPolicy &Policy);
1493
1494  typedef const TemplateArgument * iterator;
1495
1496  iterator begin() const { return getArgs(); }
1497  iterator end() const;
1498
1499  /// \brief Retrieve the name of the template that we are specializing.
1500  TemplateName getTemplateName() const { return Template; }
1501
1502  /// \brief Retrieve the template arguments.
1503  const TemplateArgument *getArgs() const {
1504    return reinterpret_cast<const TemplateArgument *>(this + 1);
1505  }
1506
1507  /// \brief Retrieve the number of template arguments.
1508  unsigned getNumArgs() const { return NumArgs; }
1509
1510  /// \brief Retrieve a specific template argument as a type.
1511  /// \precondition @c isArgType(Arg)
1512  const TemplateArgument &getArg(unsigned Idx) const;
1513
1514  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1515
1516  void Profile(llvm::FoldingSetNodeID &ID) {
1517    Profile(ID, Template, getArgs(), NumArgs);
1518  }
1519
1520  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
1521                      const TemplateArgument *Args, unsigned NumArgs);
1522
1523  static bool classof(const Type *T) {
1524    return T->getTypeClass() == TemplateSpecialization;
1525  }
1526  static bool classof(const TemplateSpecializationType *T) { return true; }
1527};
1528
1529/// \brief Represents a type that was referred to via a qualified
1530/// name, e.g., N::M::type.
1531///
1532/// This type is used to keep track of a type name as written in the
1533/// source code, including any nested-name-specifiers. The type itself
1534/// is always "sugar", used to express what was written in the source
1535/// code but containing no additional semantic information.
1536class QualifiedNameType : public Type, public llvm::FoldingSetNode {
1537  /// \brief The nested name specifier containing the qualifier.
1538  NestedNameSpecifier *NNS;
1539
1540  /// \brief The type that this qualified name refers to.
1541  QualType NamedType;
1542
1543  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
1544                    QualType CanonType)
1545    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
1546      NNS(NNS), NamedType(NamedType) { }
1547
1548  friend class ASTContext;  // ASTContext creates these
1549
1550public:
1551  /// \brief Retrieve the qualification on this type.
1552  NestedNameSpecifier *getQualifier() const { return NNS; }
1553
1554  /// \brief Retrieve the type named by the qualified-id.
1555  QualType getNamedType() const { return NamedType; }
1556
1557  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1558
1559  void Profile(llvm::FoldingSetNodeID &ID) {
1560    Profile(ID, NNS, NamedType);
1561  }
1562
1563  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1564                      QualType NamedType) {
1565    ID.AddPointer(NNS);
1566    NamedType.Profile(ID);
1567  }
1568
1569  static bool classof(const Type *T) {
1570    return T->getTypeClass() == QualifiedName;
1571  }
1572  static bool classof(const QualifiedNameType *T) { return true; }
1573};
1574
1575/// \brief Represents a 'typename' specifier that names a type within
1576/// a dependent type, e.g., "typename T::type".
1577///
1578/// TypenameType has a very similar structure to QualifiedNameType,
1579/// which also involves a nested-name-specifier following by a type,
1580/// and (FIXME!) both can even be prefixed by the 'typename'
1581/// keyword. However, the two types serve very different roles:
1582/// QualifiedNameType is a non-semantic type that serves only as sugar
1583/// to show how a particular type was written in the source
1584/// code. TypenameType, on the other hand, only occurs when the
1585/// nested-name-specifier is dependent, such that we cannot resolve
1586/// the actual type until after instantiation.
1587class TypenameType : public Type, public llvm::FoldingSetNode {
1588  /// \brief The nested name specifier containing the qualifier.
1589  NestedNameSpecifier *NNS;
1590
1591  typedef llvm::PointerUnion<const IdentifierInfo *,
1592                             const TemplateSpecializationType *> NameType;
1593
1594  /// \brief The type that this typename specifier refers to.
1595  NameType Name;
1596
1597  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1598               QualType CanonType)
1599    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
1600    assert(NNS->isDependent() &&
1601           "TypenameType requires a dependent nested-name-specifier");
1602  }
1603
1604  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
1605               QualType CanonType)
1606    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
1607    assert(NNS->isDependent() &&
1608           "TypenameType requires a dependent nested-name-specifier");
1609  }
1610
1611  friend class ASTContext;  // ASTContext creates these
1612
1613public:
1614  /// \brief Retrieve the qualification on this type.
1615  NestedNameSpecifier *getQualifier() const { return NNS; }
1616
1617  /// \brief Retrieve the type named by the typename specifier as an
1618  /// identifier.
1619  ///
1620  /// This routine will return a non-NULL identifier pointer when the
1621  /// form of the original typename was terminated by an identifier,
1622  /// e.g., "typename T::type".
1623  const IdentifierInfo *getIdentifier() const {
1624    return Name.dyn_cast<const IdentifierInfo *>();
1625  }
1626
1627  /// \brief Retrieve the type named by the typename specifier as a
1628  /// type specialization.
1629  const TemplateSpecializationType *getTemplateId() const {
1630    return Name.dyn_cast<const TemplateSpecializationType *>();
1631  }
1632
1633  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1634
1635  void Profile(llvm::FoldingSetNodeID &ID) {
1636    Profile(ID, NNS, Name);
1637  }
1638
1639  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1640                      NameType Name) {
1641    ID.AddPointer(NNS);
1642    ID.AddPointer(Name.getOpaqueValue());
1643  }
1644
1645  static bool classof(const Type *T) {
1646    return T->getTypeClass() == Typename;
1647  }
1648  static bool classof(const TypenameType *T) { return true; }
1649};
1650
1651/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
1652/// object oriented design.  They basically correspond to C++ classes.  There
1653/// are two kinds of interface types, normal interfaces like "NSString" and
1654/// qualified interfaces, which are qualified with a protocol list like
1655/// "NSString<NSCopyable, NSAmazing>".  Qualified interface types are instances
1656/// of ObjCQualifiedInterfaceType, which is a subclass of ObjCInterfaceType.
1657class ObjCInterfaceType : public Type {
1658  ObjCInterfaceDecl *Decl;
1659protected:
1660  ObjCInterfaceType(TypeClass tc, ObjCInterfaceDecl *D) :
1661    Type(tc, QualType(), /*Dependent=*/false), Decl(D) { }
1662  friend class ASTContext;  // ASTContext creates these.
1663public:
1664
1665  ObjCInterfaceDecl *getDecl() const { return Decl; }
1666
1667  /// qual_iterator and friends: this provides access to the (potentially empty)
1668  /// list of protocols qualifying this interface.  If this is an instance of
1669  /// ObjCQualifiedInterfaceType it returns the list, otherwise it returns an
1670  /// empty list if there are no qualifying protocols.
1671  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
1672  inline qual_iterator qual_begin() const;
1673  inline qual_iterator qual_end() const;
1674  bool qual_empty() const { return getTypeClass() != ObjCQualifiedInterface; }
1675
1676  /// getNumProtocols - Return the number of qualifying protocols in this
1677  /// interface type, or 0 if there are none.
1678  inline unsigned getNumProtocols() const;
1679
1680  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1681  static bool classof(const Type *T) {
1682    return T->getTypeClass() == ObjCInterface ||
1683           T->getTypeClass() == ObjCQualifiedInterface;
1684  }
1685  static bool classof(const ObjCInterfaceType *) { return true; }
1686};
1687
1688/// ObjCQualifiedInterfaceType - This class represents interface types
1689/// conforming to a list of protocols, such as INTF<Proto1, Proto2, Proto1>.
1690///
1691/// Duplicate protocols are removed and protocol list is canonicalized to be in
1692/// alphabetical order.
1693class ObjCQualifiedInterfaceType : public ObjCInterfaceType,
1694                                   public llvm::FoldingSetNode {
1695
1696  // List of protocols for this protocol conforming object type
1697  // List is sorted on protocol name. No protocol is enterred more than once.
1698  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;
1699
1700  ObjCQualifiedInterfaceType(ObjCInterfaceDecl *D,
1701                             ObjCProtocolDecl **Protos, unsigned NumP) :
1702    ObjCInterfaceType(ObjCQualifiedInterface, D),
1703    Protocols(Protos, Protos+NumP) { }
1704  friend class ASTContext;  // ASTContext creates these.
1705public:
1706
1707  unsigned getNumProtocols() const {
1708    return Protocols.size();
1709  }
1710
1711  qual_iterator qual_begin() const { return Protocols.begin(); }
1712  qual_iterator qual_end() const   { return Protocols.end(); }
1713
1714  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1715
1716  void Profile(llvm::FoldingSetNodeID &ID);
1717  static void Profile(llvm::FoldingSetNodeID &ID,
1718                      const ObjCInterfaceDecl *Decl,
1719                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
1720
1721  static bool classof(const Type *T) {
1722    return T->getTypeClass() == ObjCQualifiedInterface;
1723  }
1724  static bool classof(const ObjCQualifiedInterfaceType *) { return true; }
1725};
1726
1727inline ObjCInterfaceType::qual_iterator ObjCInterfaceType::qual_begin() const {
1728  if (const ObjCQualifiedInterfaceType *QIT =
1729         dyn_cast<ObjCQualifiedInterfaceType>(this))
1730    return QIT->qual_begin();
1731  return 0;
1732}
1733inline ObjCInterfaceType::qual_iterator ObjCInterfaceType::qual_end() const {
1734  if (const ObjCQualifiedInterfaceType *QIT =
1735         dyn_cast<ObjCQualifiedInterfaceType>(this))
1736    return QIT->qual_end();
1737  return 0;
1738}
1739
1740/// getNumProtocols - Return the number of qualifying protocols in this
1741/// interface type, or 0 if there are none.
1742inline unsigned ObjCInterfaceType::getNumProtocols() const {
1743  if (const ObjCQualifiedInterfaceType *QIT =
1744        dyn_cast<ObjCQualifiedInterfaceType>(this))
1745    return QIT->getNumProtocols();
1746  return 0;
1747}
1748
1749/// ObjCQualifiedIdType - to represent id<protocol-list>.
1750///
1751/// Duplicate protocols are removed and protocol list is canonicalized to be in
1752/// alphabetical order.
1753class ObjCQualifiedIdType : public Type,
1754                            public llvm::FoldingSetNode {
1755  // List of protocols for this protocol conforming 'id' type
1756  // List is sorted on protocol name. No protocol is enterred more than once.
1757  llvm::SmallVector<ObjCProtocolDecl*, 8> Protocols;
1758
1759  ObjCQualifiedIdType(ObjCProtocolDecl **Protos, unsigned NumP)
1760    : Type(ObjCQualifiedId, QualType()/*these are always canonical*/,
1761           /*Dependent=*/false),
1762  Protocols(Protos, Protos+NumP) { }
1763  friend class ASTContext;  // ASTContext creates these.
1764public:
1765
1766  unsigned getNumProtocols() const {
1767    return Protocols.size();
1768  }
1769
1770  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
1771  qual_iterator qual_begin() const { return Protocols.begin(); }
1772  qual_iterator qual_end() const   { return Protocols.end(); }
1773
1774  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1775
1776  void Profile(llvm::FoldingSetNodeID &ID);
1777  static void Profile(llvm::FoldingSetNodeID &ID,
1778                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
1779
1780  static bool classof(const Type *T) {
1781    return T->getTypeClass() == ObjCQualifiedId;
1782  }
1783  static bool classof(const ObjCQualifiedIdType *) { return true; }
1784
1785};
1786
1787// Inline function definitions.
1788
1789/// getUnqualifiedType - Return the type without any qualifiers.
1790inline QualType QualType::getUnqualifiedType() const {
1791  Type *TP = getTypePtr();
1792  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(TP))
1793    TP = EXTQT->getBaseType();
1794  return QualType(TP, 0);
1795}
1796
1797/// getAddressSpace - Return the address space of this type.
1798inline unsigned QualType::getAddressSpace() const {
1799  QualType CT = getTypePtr()->getCanonicalTypeInternal();
1800  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
1801    return AT->getElementType().getAddressSpace();
1802  if (const RecordType *RT = dyn_cast<RecordType>(CT))
1803    return RT->getAddressSpace();
1804  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
1805    return EXTQT->getAddressSpace();
1806  return 0;
1807}
1808
1809/// getObjCGCAttr - Return the gc attribute of this type.
1810inline QualType::GCAttrTypes QualType::getObjCGCAttr() const {
1811  QualType CT = getTypePtr()->getCanonicalTypeInternal();
1812  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
1813      return AT->getElementType().getObjCGCAttr();
1814  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
1815    return EXTQT->getObjCGCAttr();
1816  if (const PointerType *PT = CT->getAsPointerType())
1817    return PT->getPointeeType().getObjCGCAttr();
1818  return GCNone;
1819}
1820
1821/// isMoreQualifiedThan - Determine whether this type is more
1822/// qualified than the Other type. For example, "const volatile int"
1823/// is more qualified than "const int", "volatile int", and
1824/// "int". However, it is not more qualified than "const volatile
1825/// int".
1826inline bool QualType::isMoreQualifiedThan(QualType Other) const {
1827  unsigned MyQuals = this->getCVRQualifiers();
1828  unsigned OtherQuals = Other.getCVRQualifiers();
1829  if (getAddressSpace() != Other.getAddressSpace())
1830    return false;
1831  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
1832}
1833
1834/// isAtLeastAsQualifiedAs - Determine whether this type is at last
1835/// as qualified as the Other type. For example, "const volatile
1836/// int" is at least as qualified as "const int", "volatile int",
1837/// "int", and "const volatile int".
1838inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
1839  unsigned MyQuals = this->getCVRQualifiers();
1840  unsigned OtherQuals = Other.getCVRQualifiers();
1841  if (getAddressSpace() != Other.getAddressSpace())
1842    return false;
1843  return (MyQuals | OtherQuals) == MyQuals;
1844}
1845
1846/// getNonReferenceType - If Type is a reference type (e.g., const
1847/// int&), returns the type that the reference refers to ("const
1848/// int"). Otherwise, returns the type itself. This routine is used
1849/// throughout Sema to implement C++ 5p6:
1850///
1851///   If an expression initially has the type "reference to T" (8.3.2,
1852///   8.5.3), the type is adjusted to "T" prior to any further
1853///   analysis, the expression designates the object or function
1854///   denoted by the reference, and the expression is an lvalue.
1855inline QualType QualType::getNonReferenceType() const {
1856  if (const ReferenceType *RefType = (*this)->getAsReferenceType())
1857    return RefType->getPointeeType();
1858  else
1859    return *this;
1860}
1861
1862inline const TypedefType* Type::getAsTypedefType() const {
1863  return dyn_cast<TypedefType>(this);
1864}
1865inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
1866  if (const PointerType *PT = getAsPointerType())
1867    return PT->getPointeeType()->getAsObjCInterfaceType();
1868  return 0;
1869}
1870
1871// NOTE: All of these methods use "getUnqualifiedType" to strip off address
1872// space qualifiers if present.
1873inline bool Type::isFunctionType() const {
1874  return isa<FunctionType>(CanonicalType.getUnqualifiedType());
1875}
1876inline bool Type::isPointerType() const {
1877  return isa<PointerType>(CanonicalType.getUnqualifiedType());
1878}
1879inline bool Type::isBlockPointerType() const {
1880  return isa<BlockPointerType>(CanonicalType.getUnqualifiedType());
1881}
1882inline bool Type::isReferenceType() const {
1883  return isa<ReferenceType>(CanonicalType.getUnqualifiedType());
1884}
1885inline bool Type::isLValueReferenceType() const {
1886  return isa<LValueReferenceType>(CanonicalType.getUnqualifiedType());
1887}
1888inline bool Type::isRValueReferenceType() const {
1889  return isa<RValueReferenceType>(CanonicalType.getUnqualifiedType());
1890}
1891inline bool Type::isFunctionPointerType() const {
1892  if (const PointerType* T = getAsPointerType())
1893    return T->getPointeeType()->isFunctionType();
1894  else
1895    return false;
1896}
1897inline bool Type::isMemberPointerType() const {
1898  return isa<MemberPointerType>(CanonicalType.getUnqualifiedType());
1899}
1900inline bool Type::isMemberFunctionPointerType() const {
1901  if (const MemberPointerType* T = getAsMemberPointerType())
1902    return T->getPointeeType()->isFunctionType();
1903  else
1904    return false;
1905}
1906inline bool Type::isArrayType() const {
1907  return isa<ArrayType>(CanonicalType.getUnqualifiedType());
1908}
1909inline bool Type::isConstantArrayType() const {
1910  return isa<ConstantArrayType>(CanonicalType.getUnqualifiedType());
1911}
1912inline bool Type::isIncompleteArrayType() const {
1913  return isa<IncompleteArrayType>(CanonicalType.getUnqualifiedType());
1914}
1915inline bool Type::isVariableArrayType() const {
1916  return isa<VariableArrayType>(CanonicalType.getUnqualifiedType());
1917}
1918inline bool Type::isDependentSizedArrayType() const {
1919  return isa<DependentSizedArrayType>(CanonicalType.getUnqualifiedType());
1920}
1921inline bool Type::isRecordType() const {
1922  return isa<RecordType>(CanonicalType.getUnqualifiedType());
1923}
1924inline bool Type::isAnyComplexType() const {
1925  return isa<ComplexType>(CanonicalType.getUnqualifiedType());
1926}
1927inline bool Type::isVectorType() const {
1928  return isa<VectorType>(CanonicalType.getUnqualifiedType());
1929}
1930inline bool Type::isExtVectorType() const {
1931  return isa<ExtVectorType>(CanonicalType.getUnqualifiedType());
1932}
1933inline bool Type::isObjCInterfaceType() const {
1934  return isa<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
1935}
1936inline bool Type::isObjCQualifiedInterfaceType() const {
1937  return isa<ObjCQualifiedInterfaceType>(CanonicalType.getUnqualifiedType());
1938}
1939inline bool Type::isObjCQualifiedIdType() const {
1940  return isa<ObjCQualifiedIdType>(CanonicalType.getUnqualifiedType());
1941}
1942inline bool Type::isTemplateTypeParmType() const {
1943  return isa<TemplateTypeParmType>(CanonicalType.getUnqualifiedType());
1944}
1945
1946inline bool Type::isSpecificBuiltinType(unsigned K) const {
1947  if (const BuiltinType *BT = getAsBuiltinType())
1948    if (BT->getKind() == (BuiltinType::Kind) K)
1949      return true;
1950  return false;
1951}
1952
1953/// \brief Determines whether this is a type for which one can define
1954/// an overloaded operator.
1955inline bool Type::isOverloadableType() const {
1956  return isDependentType() || isRecordType() || isEnumeralType();
1957}
1958
1959inline bool Type::hasPointerRepresentation() const {
1960  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
1961          isObjCInterfaceType() || isObjCQualifiedIdType() ||
1962          isObjCQualifiedInterfaceType() || isNullPtrType());
1963}
1964
1965inline bool Type::hasObjCPointerRepresentation() const {
1966  return (isObjCInterfaceType() || isObjCQualifiedIdType() ||
1967          isObjCQualifiedInterfaceType());
1968}
1969
1970/// Insertion operator for diagnostics.  This allows sending QualType's into a
1971/// diagnostic with <<.
1972inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
1973                                           QualType T) {
1974  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
1975                  Diagnostic::ak_qualtype);
1976  return DB;
1977}
1978
1979}  // end namespace clang
1980
1981#endif
1982