Type.h revision 4ea8425c9601895fa137f877bc784f75f20adac6
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/AST/TemplateName.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/type_traits.h"
23#include "llvm/ADT/APSInt.h"
24#include "llvm/ADT/FoldingSet.h"
25#include "llvm/ADT/PointerIntPair.h"
26#include "llvm/ADT/PointerUnion.h"
27
28using llvm::isa;
29using llvm::cast;
30using llvm::cast_or_null;
31using llvm::dyn_cast;
32using llvm::dyn_cast_or_null;
33namespace clang {
34  enum {
35    TypeAlignmentInBits = 3,
36    TypeAlignment = 1 << TypeAlignmentInBits
37  };
38  class Type; class ExtQuals;
39}
40
41namespace llvm {
42  template <typename T>
43  class PointerLikeTypeTraits;
44  template<>
45  class PointerLikeTypeTraits< ::clang::Type*> {
46  public:
47    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
48    static inline ::clang::Type *getFromVoidPointer(void *P) {
49      return static_cast< ::clang::Type*>(P);
50    }
51    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
52  };
53  template<>
54  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
55  public:
56    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
57    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
58      return static_cast< ::clang::ExtQuals*>(P);
59    }
60    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
61  };
62}
63
64namespace clang {
65  class ASTContext;
66  class TypedefDecl;
67  class TemplateDecl;
68  class TemplateTypeParmDecl;
69  class NonTypeTemplateParmDecl;
70  class TemplateTemplateParmDecl;
71  class TagDecl;
72  class RecordDecl;
73  class CXXRecordDecl;
74  class EnumDecl;
75  class FieldDecl;
76  class ObjCInterfaceDecl;
77  class ObjCProtocolDecl;
78  class ObjCMethodDecl;
79  class Expr;
80  class Stmt;
81  class SourceLocation;
82  class StmtIteratorBase;
83  class TemplateArgument;
84  class QualifiedNameType;
85  struct PrintingPolicy;
86
87  // Provide forward declarations for all of the *Type classes
88#define TYPE(Class, Base) class Class##Type;
89#include "clang/AST/TypeNodes.def"
90
91/// Qualifiers - The collection of all-type qualifiers we support.
92/// Clang supports five independent qualifiers:
93/// * C99: const, volatile, and restrict
94/// * Embedded C (TR18037): address spaces
95/// * Objective C: the GC attributes (none, weak, or strong)
96class Qualifiers {
97public:
98  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
99    Const    = 0x1,
100    Restrict = 0x2,
101    Volatile = 0x4,
102    CVRMask = Const | Volatile | Restrict
103  };
104
105  enum GC {
106    GCNone = 0,
107    Weak,
108    Strong
109  };
110
111  enum {
112    /// The maximum supported address space number.
113    /// 24 bits should be enough for anyone.
114    MaxAddressSpace = 0xffffffu,
115
116    /// The width of the "fast" qualifier mask.
117    FastWidth = 2,
118
119    /// The fast qualifier mask.
120    FastMask = (1 << FastWidth) - 1
121  };
122
123  Qualifiers() : Mask(0) {}
124
125  static Qualifiers fromFastMask(unsigned Mask) {
126    Qualifiers Qs;
127    Qs.addFastQualifiers(Mask);
128    return Qs;
129  }
130
131  static Qualifiers fromCVRMask(unsigned CVR) {
132    Qualifiers Qs;
133    Qs.addCVRQualifiers(CVR);
134    return Qs;
135  }
136
137  // Deserialize qualifiers from an opaque representation.
138  static Qualifiers fromOpaqueValue(unsigned opaque) {
139    Qualifiers Qs;
140    Qs.Mask = opaque;
141    return Qs;
142  }
143
144  // Serialize these qualifiers into an opaque representation.
145  unsigned getAsOpaqueValue() const {
146    return Mask;
147  }
148
149  bool hasConst() const { return Mask & Const; }
150  void setConst(bool flag) {
151    Mask = (Mask & ~Const) | (flag ? Const : 0);
152  }
153  void removeConst() { Mask &= ~Const; }
154  void addConst() { Mask |= Const; }
155
156  bool hasVolatile() const { return Mask & Volatile; }
157  void setVolatile(bool flag) {
158    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
159  }
160  void removeVolatile() { Mask &= ~Volatile; }
161  void addVolatile() { Mask |= Volatile; }
162
163  bool hasRestrict() const { return Mask & Restrict; }
164  void setRestrict(bool flag) {
165    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
166  }
167  void removeRestrict() { Mask &= ~Restrict; }
168  void addRestrict() { Mask |= Restrict; }
169
170  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
171  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
172  void setCVRQualifiers(unsigned mask) {
173    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
174    Mask = (Mask & ~CVRMask) | mask;
175  }
176  void removeCVRQualifiers(unsigned mask) {
177    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
178    Mask &= ~mask;
179  }
180  void removeCVRQualifiers() {
181    removeCVRQualifiers(CVRMask);
182  }
183  void addCVRQualifiers(unsigned mask) {
184    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
185    Mask |= mask;
186  }
187
188  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
189  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
190  void setObjCGCAttr(GC type) {
191    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
192  }
193  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
194  void addObjCGCAttr(GC type) {
195    assert(type);
196    setObjCGCAttr(type);
197  }
198
199  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
200  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
201  void setAddressSpace(unsigned space) {
202    assert(space <= MaxAddressSpace);
203    Mask = (Mask & ~AddressSpaceMask)
204         | (((uint32_t) space) << AddressSpaceShift);
205  }
206  void removeAddressSpace() { setAddressSpace(0); }
207  void addAddressSpace(unsigned space) {
208    assert(space);
209    setAddressSpace(space);
210  }
211
212  // Fast qualifiers are those that can be allocated directly
213  // on a QualType object.
214  bool hasFastQualifiers() const { return getFastQualifiers(); }
215  unsigned getFastQualifiers() const { return Mask & FastMask; }
216  void setFastQualifiers(unsigned mask) {
217    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
218    Mask = (Mask & ~FastMask) | mask;
219  }
220  void removeFastQualifiers(unsigned mask) {
221    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
222    Mask &= ~mask;
223  }
224  void removeFastQualifiers() {
225    removeFastQualifiers(FastMask);
226  }
227  void addFastQualifiers(unsigned mask) {
228    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
229    Mask |= mask;
230  }
231
232  /// hasNonFastQualifiers - Return true if the set contains any
233  /// qualifiers which require an ExtQuals node to be allocated.
234  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
235  Qualifiers getNonFastQualifiers() const {
236    Qualifiers Quals = *this;
237    Quals.setFastQualifiers(0);
238    return Quals;
239  }
240
241  /// hasQualifiers - Return true if the set contains any qualifiers.
242  bool hasQualifiers() const { return Mask; }
243  bool empty() const { return !Mask; }
244
245  /// \brief Add the qualifiers from the given set to this set.
246  void addQualifiers(Qualifiers Q) {
247    // If the other set doesn't have any non-boolean qualifiers, just
248    // bit-or it in.
249    if (!(Q.Mask & ~CVRMask))
250      Mask |= Q.Mask;
251    else {
252      Mask |= (Q.Mask & CVRMask);
253      if (Q.hasAddressSpace())
254        addAddressSpace(Q.getAddressSpace());
255      if (Q.hasObjCGCAttr())
256        addObjCGCAttr(Q.getObjCGCAttr());
257    }
258  }
259
260  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
261  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
262
263  operator bool() const { return hasQualifiers(); }
264
265  Qualifiers &operator+=(Qualifiers R) {
266    addQualifiers(R);
267    return *this;
268  }
269
270  // Union two qualifier sets.  If an enumerated qualifier appears
271  // in both sets, use the one from the right.
272  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
273    L += R;
274    return L;
275  }
276
277  std::string getAsString() const;
278  std::string getAsString(const PrintingPolicy &Policy) const {
279    std::string Buffer;
280    getAsStringInternal(Buffer, Policy);
281    return Buffer;
282  }
283  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
284
285  void Profile(llvm::FoldingSetNodeID &ID) const {
286    ID.AddInteger(Mask);
287  }
288
289private:
290
291  // bits:     |0 1 2|3 .. 4|5  ..  31|
292  //           |C R V|GCAttr|AddrSpace|
293  uint32_t Mask;
294
295  static const uint32_t GCAttrMask = 0x18;
296  static const uint32_t GCAttrShift = 3;
297  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
298  static const uint32_t AddressSpaceShift = 5;
299};
300
301
302/// ExtQuals - We can encode up to three bits in the low bits of a
303/// type pointer, but there are many more type qualifiers that we want
304/// to be able to apply to an arbitrary type.  Therefore we have this
305/// struct, intended to be heap-allocated and used by QualType to
306/// store qualifiers.
307///
308/// The current design tags the 'const' and 'restrict' qualifiers in
309/// two low bits on the QualType pointer; a third bit records whether
310/// the pointer is an ExtQuals node.  'const' was chosen because it is
311/// orders of magnitude more common than the other two qualifiers, in
312/// both library and user code.  It's relatively rare to see
313/// 'restrict' in user code, but many standard C headers are saturated
314/// with 'restrict' declarations, so that representing them efficiently
315/// is a critical goal of this representation.
316class ExtQuals : public llvm::FoldingSetNode {
317  // NOTE: changing the fast qualifiers should be straightforward as
318  // long as you don't make 'const' non-fast.
319  // 1. Qualifiers:
320  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
321  //       Fast qualifiers must occupy the low-order bits.
322  //    b) Update Qualifiers::FastWidth and FastMask.
323  // 2. QualType:
324  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
325  //    b) Update remove{Volatile,Restrict}, defined near the end of
326  //       this header.
327  // 3. ASTContext:
328  //    a) Update get{Volatile,Restrict}Type.
329
330  /// Context - the context to which this set belongs.  We save this
331  /// here so that QualifierCollector can use it to reapply extended
332  /// qualifiers to an arbitrary type without requiring a context to
333  /// be pushed through every single API dealing with qualifiers.
334  ASTContext& Context;
335
336  /// BaseType - the underlying type that this qualifies
337  const Type *BaseType;
338
339  /// Quals - the immutable set of qualifiers applied by this
340  /// node;  always contains extended qualifiers.
341  Qualifiers Quals;
342
343public:
344  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
345    : Context(Context), BaseType(Base), Quals(Quals)
346  {
347    assert(Quals.hasNonFastQualifiers()
348           && "ExtQuals created with no fast qualifiers");
349    assert(!Quals.hasFastQualifiers()
350           && "ExtQuals created with fast qualifiers");
351  }
352
353  Qualifiers getQualifiers() const { return Quals; }
354
355  bool hasVolatile() const { return Quals.hasVolatile(); }
356
357  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
358  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
359
360  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
361  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
362
363  const Type *getBaseType() const { return BaseType; }
364
365  ASTContext &getContext() const { return Context; }
366
367public:
368  void Profile(llvm::FoldingSetNodeID &ID) const {
369    Profile(ID, getBaseType(), Quals);
370  }
371  static void Profile(llvm::FoldingSetNodeID &ID,
372                      const Type *BaseType,
373                      Qualifiers Quals) {
374    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
375    ID.AddPointer(BaseType);
376    Quals.Profile(ID);
377  }
378};
379
380
381/// QualType - For efficiency, we don't store CV-qualified types as nodes on
382/// their own: instead each reference to a type stores the qualifiers.  This
383/// greatly reduces the number of nodes we need to allocate for types (for
384/// example we only need one for 'int', 'const int', 'volatile int',
385/// 'const volatile int', etc).
386///
387/// As an added efficiency bonus, instead of making this a pair, we
388/// just store the two bits we care about in the low bits of the
389/// pointer.  To handle the packing/unpacking, we make QualType be a
390/// simple wrapper class that acts like a smart pointer.  A third bit
391/// indicates whether there are extended qualifiers present, in which
392/// case the pointer points to a special structure.
393class QualType {
394  // Thankfully, these are efficiently composable.
395  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
396                       Qualifiers::FastWidth> Value;
397
398  bool hasExtQuals() const {
399    return Value.getPointer().is<const ExtQuals*>();
400  }
401
402  const ExtQuals *getExtQualsUnsafe() const {
403    return Value.getPointer().get<const ExtQuals*>();
404  }
405
406  const Type *getTypePtrUnsafe() const {
407    return Value.getPointer().get<const Type*>();
408  }
409
410  friend class QualifierCollector;
411public:
412  QualType() {}
413
414  QualType(const Type *Ptr, unsigned Quals)
415    : Value(Ptr, Quals) {}
416  QualType(const ExtQuals *Ptr, unsigned Quals)
417    : Value(Ptr, Quals) {}
418
419  unsigned getFastQualifiers() const { return Value.getInt(); }
420  void setFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
421
422  /// Retrieves a pointer to the underlying (unqualified) type.
423  /// This should really return a const Type, but it's not worth
424  /// changing all the users right now.
425  Type *getTypePtr() const {
426    if (hasNonFastQualifiers())
427      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
428    return const_cast<Type*>(getTypePtrUnsafe());
429  }
430
431  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
432  static QualType getFromOpaquePtr(void *Ptr) {
433    QualType T;
434    T.Value.setFromOpaqueValue(Ptr);
435    return T;
436  }
437
438  Type &operator*() const {
439    return *getTypePtr();
440  }
441
442  Type *operator->() const {
443    return getTypePtr();
444  }
445
446  bool isCanonical() const;
447  bool isCanonicalAsParam() const;
448
449  /// isNull - Return true if this QualType doesn't point to a type yet.
450  bool isNull() const {
451    return Value.getPointer().isNull();
452  }
453
454  bool isConstQualified() const {
455    return (getFastQualifiers() & Qualifiers::Const);
456  }
457  bool isRestrictQualified() const {
458    return (getFastQualifiers() & Qualifiers::Restrict);
459  }
460  bool isVolatileQualified() const {
461    return (hasNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
462  }
463
464  // Determines whether this type has any direct qualifiers.
465  bool hasQualifiers() const {
466    return getFastQualifiers() || hasNonFastQualifiers();
467  }
468
469  bool hasNonFastQualifiers() const {
470    return hasExtQuals();
471  }
472
473  // Retrieves the set of qualifiers belonging to this type.
474  Qualifiers getQualifiers() const {
475    Qualifiers Quals;
476    if (hasNonFastQualifiers())
477      Quals = getExtQualsUnsafe()->getQualifiers();
478    Quals.addFastQualifiers(getFastQualifiers());
479    return Quals;
480  }
481
482  // Retrieves the CVR qualifiers of this type.
483  unsigned getCVRQualifiers() const {
484    unsigned CVR = getFastQualifiers();
485    if (isVolatileQualified()) CVR |= Qualifiers::Volatile;
486    return CVR;
487  }
488
489  bool isConstant(ASTContext& Ctx) const {
490    return QualType::isConstant(*this, Ctx);
491  }
492
493  // Don't promise in the API that anything besides 'const' can be
494  // easily added.
495
496  /// addConst - add the specified type qualifier to this QualType.
497  void addConst() {
498    addFastQualifiers(Qualifiers::Const);
499  }
500  QualType withConst() const {
501    return withFastQualifiers(Qualifiers::Const);
502  }
503
504  void addFastQualifiers(unsigned TQs) {
505    assert(!(TQs & ~Qualifiers::FastMask)
506           && "non-fast qualifier bits set in mask!");
507    Value.setInt(Value.getInt() | TQs);
508  }
509
510  void removeConst();
511  void removeVolatile();
512  void removeRestrict();
513  void removeCVRQualifiers(unsigned Mask);
514
515  void removeFastQualifiers() { Value.setInt(0); }
516  void removeFastQualifiers(unsigned Mask) {
517    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
518    Value.setInt(Value.getInt() & ~Mask);
519  }
520
521  // Creates a type with the given qualifiers in addition to any
522  // qualifiers already on this type.
523  QualType withFastQualifiers(unsigned TQs) const {
524    QualType T = *this;
525    T.addFastQualifiers(TQs);
526    return T;
527  }
528
529  // Creates a type with exactly the given fast qualifiers, removing
530  // any existing fast qualifiers.
531  QualType withExactFastQualifiers(unsigned TQs) const {
532    return withoutFastQualifiers().withFastQualifiers(TQs);
533  }
534
535  // Removes fast qualifiers, but leaves any extended qualifiers in place.
536  QualType withoutFastQualifiers() const {
537    QualType T = *this;
538    T.removeFastQualifiers();
539    return T;
540  }
541
542  QualType getUnqualifiedType() const { return QualType(getTypePtr(), 0); }
543
544  bool isMoreQualifiedThan(QualType Other) const;
545  bool isAtLeastAsQualifiedAs(QualType Other) const;
546  QualType getNonReferenceType() const;
547
548  /// getDesugaredType - Return the specified type with any "sugar" removed from
549  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
550  /// the type is already concrete, it returns it unmodified.  This is similar
551  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
552  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
553  /// concrete.
554  ///
555  /// Qualifiers are left in place.
556  QualType getDesugaredType() const {
557    return QualType::getDesugaredType(*this);
558  }
559
560  /// operator==/!= - Indicate whether the specified types and qualifiers are
561  /// identical.
562  friend bool operator==(const QualType &LHS, const QualType &RHS) {
563    return LHS.Value == RHS.Value;
564  }
565  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
566    return LHS.Value != RHS.Value;
567  }
568  std::string getAsString() const;
569
570  std::string getAsString(const PrintingPolicy &Policy) const {
571    std::string S;
572    getAsStringInternal(S, Policy);
573    return S;
574  }
575  void getAsStringInternal(std::string &Str,
576                           const PrintingPolicy &Policy) const;
577
578  void dump(const char *s) const;
579  void dump() const;
580
581  void Profile(llvm::FoldingSetNodeID &ID) const {
582    ID.AddPointer(getAsOpaquePtr());
583  }
584
585  /// getAddressSpace - Return the address space of this type.
586  inline unsigned getAddressSpace() const;
587
588  /// GCAttrTypesAttr - Returns gc attribute of this type.
589  inline Qualifiers::GC getObjCGCAttr() const;
590
591  /// isObjCGCWeak true when Type is objc's weak.
592  bool isObjCGCWeak() const {
593    return getObjCGCAttr() == Qualifiers::Weak;
594  }
595
596  /// isObjCGCStrong true when Type is objc's strong.
597  bool isObjCGCStrong() const {
598    return getObjCGCAttr() == Qualifiers::Strong;
599  }
600
601  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
602  /// false otherwise.
603  bool getNoReturnAttr() const;
604
605private:
606  // These methods are implemented in a separate translation unit;
607  // "static"-ize them to avoid creating temporary QualTypes in the
608  // caller.
609  static bool isConstant(QualType T, ASTContext& Ctx);
610  static QualType getDesugaredType(QualType T);
611};
612
613} // end clang.
614
615namespace llvm {
616/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
617/// to a specific Type class.
618template<> struct simplify_type<const ::clang::QualType> {
619  typedef ::clang::Type* SimpleType;
620  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
621    return Val.getTypePtr();
622  }
623};
624template<> struct simplify_type< ::clang::QualType>
625  : public simplify_type<const ::clang::QualType> {};
626
627// Teach SmallPtrSet that QualType is "basically a pointer".
628template<>
629class PointerLikeTypeTraits<clang::QualType> {
630public:
631  static inline void *getAsVoidPointer(clang::QualType P) {
632    return P.getAsOpaquePtr();
633  }
634  static inline clang::QualType getFromVoidPointer(void *P) {
635    return clang::QualType::getFromOpaquePtr(P);
636  }
637  // Various qualifiers go in low bits.
638  enum { NumLowBitsAvailable = 0 };
639};
640
641} // end namespace llvm
642
643namespace clang {
644
645/// Type - This is the base class of the type hierarchy.  A central concept
646/// with types is that each type always has a canonical type.  A canonical type
647/// is the type with any typedef names stripped out of it or the types it
648/// references.  For example, consider:
649///
650///  typedef int  foo;
651///  typedef foo* bar;
652///    'int *'    'foo *'    'bar'
653///
654/// There will be a Type object created for 'int'.  Since int is canonical, its
655/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
656/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
657/// there is a PointerType that represents 'int*', which, like 'int', is
658/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
659/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
660/// is also 'int*'.
661///
662/// Non-canonical types are useful for emitting diagnostics, without losing
663/// information about typedefs being used.  Canonical types are useful for type
664/// comparisons (they allow by-pointer equality tests) and useful for reasoning
665/// about whether something has a particular form (e.g. is a function type),
666/// because they implicitly, recursively, strip all typedefs out of a type.
667///
668/// Types, once created, are immutable.
669///
670class Type {
671public:
672  enum TypeClass {
673#define TYPE(Class, Base) Class,
674#define ABSTRACT_TYPE(Class, Base)
675#include "clang/AST/TypeNodes.def"
676    TagFirst = Record, TagLast = Enum
677  };
678
679protected:
680  enum { TypeClassBitSize = 6 };
681
682private:
683  QualType CanonicalType;
684
685  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
686  bool Dependent : 1;
687
688  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
689  /// Note that this should stay at the end of the ivars for Type so that
690  /// subclasses can pack their bitfields into the same word.
691  unsigned TC : TypeClassBitSize;
692
693  Type(const Type&);           // DO NOT IMPLEMENT.
694  void operator=(const Type&); // DO NOT IMPLEMENT.
695protected:
696  // silence VC++ warning C4355: 'this' : used in base member initializer list
697  Type *this_() { return this; }
698  Type(TypeClass tc, QualType Canonical, bool dependent)
699    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
700      Dependent(dependent), TC(tc) {}
701  virtual ~Type() {}
702  virtual void Destroy(ASTContext& C);
703  friend class ASTContext;
704
705public:
706  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
707
708  bool isCanonicalUnqualified() const {
709    return CanonicalType.getTypePtr() == this;
710  }
711
712  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
713  /// object types, function types, and incomplete types.
714
715  /// \brief Determines whether the type describes an object in memory.
716  ///
717  /// Note that this definition of object type corresponds to the C++
718  /// definition of object type, which includes incomplete types, as
719  /// opposed to the C definition (which does not include incomplete
720  /// types).
721  bool isObjectType() const;
722
723  /// isIncompleteType - Return true if this is an incomplete type.
724  /// A type that can describe objects, but which lacks information needed to
725  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
726  /// routine will need to determine if the size is actually required.
727  bool isIncompleteType() const;
728
729  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
730  /// type, in other words, not a function type.
731  bool isIncompleteOrObjectType() const {
732    return !isFunctionType();
733  }
734
735  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
736  bool isPODType() const;
737
738  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
739  /// types that have a non-constant expression. This does not include "[]".
740  bool isVariablyModifiedType() const;
741
742  /// Helper methods to distinguish type categories. All type predicates
743  /// operate on the canonical type, ignoring typedefs and qualifiers.
744
745  /// isSpecificBuiltinType - Test for a particular builtin type.
746  bool isSpecificBuiltinType(unsigned K) const;
747
748  /// isIntegerType() does *not* include complex integers (a GCC extension).
749  /// isComplexIntegerType() can be used to test for complex integers.
750  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
751  bool isEnumeralType() const;
752  bool isBooleanType() const;
753  bool isCharType() const;
754  bool isWideCharType() const;
755  bool isIntegralType() const;
756
757  /// Floating point categories.
758  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
759  /// isComplexType() does *not* include complex integers (a GCC extension).
760  /// isComplexIntegerType() can be used to test for complex integers.
761  bool isComplexType() const;      // C99 6.2.5p11 (complex)
762  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
763  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
764  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
765  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
766  bool isVoidType() const;         // C99 6.2.5p19
767  bool isDerivedType() const;      // C99 6.2.5p20
768  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
769  bool isAggregateType() const;
770
771  // Type Predicates: Check to see if this type is structurally the specified
772  // type, ignoring typedefs and qualifiers.
773  bool isFunctionType() const;
774  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
775  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
776  bool isPointerType() const;
777  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
778  bool isBlockPointerType() const;
779  bool isVoidPointerType() const;
780  bool isReferenceType() const;
781  bool isLValueReferenceType() const;
782  bool isRValueReferenceType() const;
783  bool isFunctionPointerType() const;
784  bool isMemberPointerType() const;
785  bool isMemberFunctionPointerType() const;
786  bool isArrayType() const;
787  bool isConstantArrayType() const;
788  bool isIncompleteArrayType() const;
789  bool isVariableArrayType() const;
790  bool isDependentSizedArrayType() const;
791  bool isRecordType() const;
792  bool isClassType() const;
793  bool isStructureType() const;
794  bool isUnionType() const;
795  bool isComplexIntegerType() const;            // GCC _Complex integer type.
796  bool isVectorType() const;                    // GCC vector type.
797  bool isExtVectorType() const;                 // Extended vector type.
798  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
799  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
800  // for the common case.
801  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
802  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
803  bool isObjCQualifiedIdType() const;           // id<foo>
804  bool isObjCQualifiedClassType() const;        // Class<foo>
805  bool isObjCIdType() const;                    // id
806  bool isObjCClassType() const;                 // Class
807  bool isObjCBuiltinType() const;               // 'id' or 'Class'
808  bool isTemplateTypeParmType() const;          // C++ template type parameter
809  bool isNullPtrType() const;                   // C++0x nullptr_t
810
811  /// isDependentType - Whether this type is a dependent type, meaning
812  /// that its definition somehow depends on a template parameter
813  /// (C++ [temp.dep.type]).
814  bool isDependentType() const { return Dependent; }
815  bool isOverloadableType() const;
816
817  /// hasPointerRepresentation - Whether this type is represented
818  /// natively as a pointer; this includes pointers, references, block
819  /// pointers, and Objective-C interface, qualified id, and qualified
820  /// interface types, as well as nullptr_t.
821  bool hasPointerRepresentation() const;
822
823  /// hasObjCPointerRepresentation - Whether this type can represent
824  /// an objective pointer type for the purpose of GC'ability
825  bool hasObjCPointerRepresentation() const;
826
827  // Type Checking Functions: Check to see if this type is structurally the
828  // specified type, ignoring typedefs and qualifiers, and return a pointer to
829  // the best type we can.
830  const RecordType *getAsStructureType() const;
831  /// NOTE: getAs*ArrayType are methods on ASTContext.
832  const RecordType *getAsUnionType() const;
833  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
834  // The following is a convenience method that returns an ObjCObjectPointerType
835  // for object declared using an interface.
836  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
837  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
838  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
839  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
840
841  // Member-template getAs<specific type>'.  This scheme will eventually
842  // replace the specific getAsXXXX methods above.
843  //
844  // There are some specializations of this member template listed
845  // immediately following this class.
846  template <typename T> const T *getAs() const;
847
848  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
849  /// interface, return the interface type, otherwise return null.
850  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
851
852  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
853  /// element type of the array, potentially with type qualifiers missing.
854  /// This method should never be used when type qualifiers are meaningful.
855  const Type *getArrayElementTypeNoTypeQual() const;
856
857  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
858  /// pointer, this returns the respective pointee.
859  QualType getPointeeType() const;
860
861  /// getUnqualifiedDesugaredType() - Return the specified type with
862  /// any "sugar" removed from the type, removing any typedefs,
863  /// typeofs, etc., as well as any qualifiers.
864  const Type *getUnqualifiedDesugaredType() const;
865
866  /// More type predicates useful for type checking/promotion
867  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
868
869  /// isSignedIntegerType - Return true if this is an integer type that is
870  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
871  /// an enum decl which has a signed representation, or a vector of signed
872  /// integer element type.
873  bool isSignedIntegerType() const;
874
875  /// isUnsignedIntegerType - Return true if this is an integer type that is
876  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
877  /// decl which has an unsigned representation, or a vector of unsigned integer
878  /// element type.
879  bool isUnsignedIntegerType() const;
880
881  /// isConstantSizeType - Return true if this is not a variable sized type,
882  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
883  /// incomplete types.
884  bool isConstantSizeType() const;
885
886  /// isSpecifierType - Returns true if this type can be represented by some
887  /// set of type specifiers.
888  bool isSpecifierType() const;
889
890  const char *getTypeClassName() const;
891
892  QualType getCanonicalTypeInternal() const { return CanonicalType; }
893  void dump() const;
894  virtual void getAsStringInternal(std::string &InnerString,
895                                   const PrintingPolicy &Policy) const = 0;
896  static bool classof(const Type *) { return true; }
897};
898
899template <> inline const TypedefType *Type::getAs() const {
900  return dyn_cast<TypedefType>(this);
901}
902
903// We can do canonical leaf types faster, because we don't have to
904// worry about preserving child type decoration.
905#define TYPE(Class, Base)
906#define LEAF_TYPE(Class) \
907template <> inline const Class##Type *Type::getAs() const { \
908  return dyn_cast<Class##Type>(CanonicalType); \
909}
910#include "clang/AST/TypeNodes.def"
911
912
913/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
914/// types are always canonical and have a literal name field.
915class BuiltinType : public Type {
916public:
917  enum Kind {
918    Void,
919
920    Bool,     // This is bool and/or _Bool.
921    Char_U,   // This is 'char' for targets where char is unsigned.
922    UChar,    // This is explicitly qualified unsigned char.
923    Char16,   // This is 'char16_t' for C++.
924    Char32,   // This is 'char32_t' for C++.
925    UShort,
926    UInt,
927    ULong,
928    ULongLong,
929    UInt128,  // __uint128_t
930
931    Char_S,   // This is 'char' for targets where char is signed.
932    SChar,    // This is explicitly qualified signed char.
933    WChar,    // This is 'wchar_t' for C++.
934    Short,
935    Int,
936    Long,
937    LongLong,
938    Int128,   // __int128_t
939
940    Float, Double, LongDouble,
941
942    NullPtr,  // This is the type of C++0x 'nullptr'.
943
944    Overload,  // This represents the type of an overloaded function declaration.
945    Dependent, // This represents the type of a type-dependent expression.
946
947    UndeducedAuto, // In C++0x, this represents the type of an auto variable
948                   // that has not been deduced yet.
949    ObjCId,    // This represents the ObjC 'id' type.
950    ObjCClass  // This represents the ObjC 'Class' type.
951  };
952private:
953  Kind TypeKind;
954public:
955  BuiltinType(Kind K)
956    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
957      TypeKind(K) {}
958
959  Kind getKind() const { return TypeKind; }
960  const char *getName(const LangOptions &LO) const;
961
962  bool isSugared() const { return false; }
963  QualType desugar() const { return QualType(this, 0); }
964
965  virtual void getAsStringInternal(std::string &InnerString,
966                                   const PrintingPolicy &Policy) const;
967
968  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
969  static bool classof(const BuiltinType *) { return true; }
970};
971
972/// FixedWidthIntType - Used for arbitrary width types that we either don't
973/// want to or can't map to named integer types.  These always have a lower
974/// integer rank than builtin types of the same width.
975class FixedWidthIntType : public Type {
976private:
977  unsigned Width;
978  bool Signed;
979public:
980  FixedWidthIntType(unsigned W, bool S) : Type(FixedWidthInt, QualType(), false),
981                                          Width(W), Signed(S) {}
982
983  unsigned getWidth() const { return Width; }
984  bool isSigned() const { return Signed; }
985  const char *getName() const;
986
987  bool isSugared() const { return false; }
988  QualType desugar() const { return QualType(this, 0); }
989
990  virtual void getAsStringInternal(std::string &InnerString,
991                                   const PrintingPolicy &Policy) const;
992
993  static bool classof(const Type *T) { return T->getTypeClass() == FixedWidthInt; }
994  static bool classof(const FixedWidthIntType *) { return true; }
995};
996
997/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
998/// types (_Complex float etc) as well as the GCC integer complex extensions.
999///
1000class ComplexType : public Type, public llvm::FoldingSetNode {
1001  QualType ElementType;
1002  ComplexType(QualType Element, QualType CanonicalPtr) :
1003    Type(Complex, CanonicalPtr, Element->isDependentType()),
1004    ElementType(Element) {
1005  }
1006  friend class ASTContext;  // ASTContext creates these.
1007public:
1008  QualType getElementType() const { return ElementType; }
1009
1010  virtual void getAsStringInternal(std::string &InnerString,
1011                                   const PrintingPolicy &Policy) const;
1012
1013  bool isSugared() const { return false; }
1014  QualType desugar() const { return QualType(this, 0); }
1015
1016  void Profile(llvm::FoldingSetNodeID &ID) {
1017    Profile(ID, getElementType());
1018  }
1019  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1020    ID.AddPointer(Element.getAsOpaquePtr());
1021  }
1022
1023  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1024  static bool classof(const ComplexType *) { return true; }
1025};
1026
1027/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1028///
1029class PointerType : public Type, public llvm::FoldingSetNode {
1030  QualType PointeeType;
1031
1032  PointerType(QualType Pointee, QualType CanonicalPtr) :
1033    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1034  }
1035  friend class ASTContext;  // ASTContext creates these.
1036public:
1037
1038  virtual void getAsStringInternal(std::string &InnerString,
1039                                   const PrintingPolicy &Policy) const;
1040
1041  QualType getPointeeType() const { return PointeeType; }
1042
1043  bool isSugared() const { return false; }
1044  QualType desugar() const { return QualType(this, 0); }
1045
1046  void Profile(llvm::FoldingSetNodeID &ID) {
1047    Profile(ID, getPointeeType());
1048  }
1049  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1050    ID.AddPointer(Pointee.getAsOpaquePtr());
1051  }
1052
1053  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1054  static bool classof(const PointerType *) { return true; }
1055};
1056
1057/// BlockPointerType - pointer to a block type.
1058/// This type is to represent types syntactically represented as
1059/// "void (^)(int)", etc. Pointee is required to always be a function type.
1060///
1061class BlockPointerType : public Type, public llvm::FoldingSetNode {
1062  QualType PointeeType;  // Block is some kind of pointer type
1063  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1064    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1065    PointeeType(Pointee) {
1066  }
1067  friend class ASTContext;  // ASTContext creates these.
1068public:
1069
1070  // Get the pointee type. Pointee is required to always be a function type.
1071  QualType getPointeeType() const { return PointeeType; }
1072
1073  virtual void getAsStringInternal(std::string &InnerString,
1074                                   const PrintingPolicy &Policy) const;
1075
1076  bool isSugared() const { return false; }
1077  QualType desugar() const { return QualType(this, 0); }
1078
1079  void Profile(llvm::FoldingSetNodeID &ID) {
1080      Profile(ID, getPointeeType());
1081  }
1082  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1083      ID.AddPointer(Pointee.getAsOpaquePtr());
1084  }
1085
1086  static bool classof(const Type *T) {
1087    return T->getTypeClass() == BlockPointer;
1088  }
1089  static bool classof(const BlockPointerType *) { return true; }
1090};
1091
1092/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1093///
1094class ReferenceType : public Type, public llvm::FoldingSetNode {
1095  QualType PointeeType;
1096
1097  /// True if the type was originally spelled with an lvalue sigil.
1098  /// This is never true of rvalue references but can also be false
1099  /// on lvalue references because of C++0x [dcl.typedef]p9,
1100  /// as follows:
1101  ///
1102  ///   typedef int &ref;    // lvalue, spelled lvalue
1103  ///   typedef int &&rvref; // rvalue
1104  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1105  ///   ref &&a;             // lvalue, inner ref
1106  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1107  ///   rvref &&a;           // rvalue, inner ref
1108  bool SpelledAsLValue;
1109
1110  /// True if the inner type is a reference type.  This only happens
1111  /// in non-canonical forms.
1112  bool InnerRef;
1113
1114protected:
1115  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1116                bool SpelledAsLValue) :
1117    Type(tc, CanonicalRef, Referencee->isDependentType()),
1118    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1119    InnerRef(Referencee->isReferenceType()) {
1120  }
1121public:
1122  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1123
1124  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1125  QualType getPointeeType() const {
1126    // FIXME: this might strip inner qualifiers; okay?
1127    const ReferenceType *T = this;
1128    while (T->InnerRef)
1129      T = T->PointeeType->getAs<ReferenceType>();
1130    return T->PointeeType;
1131  }
1132
1133  void Profile(llvm::FoldingSetNodeID &ID) {
1134    Profile(ID, PointeeType, SpelledAsLValue);
1135  }
1136  static void Profile(llvm::FoldingSetNodeID &ID,
1137                      QualType Referencee,
1138                      bool SpelledAsLValue) {
1139    ID.AddPointer(Referencee.getAsOpaquePtr());
1140    ID.AddBoolean(SpelledAsLValue);
1141  }
1142
1143  static bool classof(const Type *T) {
1144    return T->getTypeClass() == LValueReference ||
1145           T->getTypeClass() == RValueReference;
1146  }
1147  static bool classof(const ReferenceType *) { return true; }
1148};
1149
1150/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1151///
1152class LValueReferenceType : public ReferenceType {
1153  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1154                      bool SpelledAsLValue) :
1155    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1156  {}
1157  friend class ASTContext; // ASTContext creates these
1158public:
1159  virtual void getAsStringInternal(std::string &InnerString,
1160                                   const PrintingPolicy &Policy) const;
1161
1162  bool isSugared() const { return false; }
1163  QualType desugar() const { return QualType(this, 0); }
1164
1165  static bool classof(const Type *T) {
1166    return T->getTypeClass() == LValueReference;
1167  }
1168  static bool classof(const LValueReferenceType *) { return true; }
1169};
1170
1171/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1172///
1173class RValueReferenceType : public ReferenceType {
1174  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1175    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1176  }
1177  friend class ASTContext; // ASTContext creates these
1178public:
1179  virtual void getAsStringInternal(std::string &InnerString,
1180                                   const PrintingPolicy &Policy) const;
1181
1182  bool isSugared() const { return false; }
1183  QualType desugar() const { return QualType(this, 0); }
1184
1185  static bool classof(const Type *T) {
1186    return T->getTypeClass() == RValueReference;
1187  }
1188  static bool classof(const RValueReferenceType *) { return true; }
1189};
1190
1191/// MemberPointerType - C++ 8.3.3 - Pointers to members
1192///
1193class MemberPointerType : public Type, public llvm::FoldingSetNode {
1194  QualType PointeeType;
1195  /// The class of which the pointee is a member. Must ultimately be a
1196  /// RecordType, but could be a typedef or a template parameter too.
1197  const Type *Class;
1198
1199  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1200    Type(MemberPointer, CanonicalPtr,
1201         Cls->isDependentType() || Pointee->isDependentType()),
1202    PointeeType(Pointee), Class(Cls) {
1203  }
1204  friend class ASTContext; // ASTContext creates these.
1205public:
1206
1207  QualType getPointeeType() const { return PointeeType; }
1208
1209  const Type *getClass() const { return Class; }
1210
1211  virtual void getAsStringInternal(std::string &InnerString,
1212                                   const PrintingPolicy &Policy) const;
1213
1214  bool isSugared() const { return false; }
1215  QualType desugar() const { return QualType(this, 0); }
1216
1217  void Profile(llvm::FoldingSetNodeID &ID) {
1218    Profile(ID, getPointeeType(), getClass());
1219  }
1220  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1221                      const Type *Class) {
1222    ID.AddPointer(Pointee.getAsOpaquePtr());
1223    ID.AddPointer(Class);
1224  }
1225
1226  static bool classof(const Type *T) {
1227    return T->getTypeClass() == MemberPointer;
1228  }
1229  static bool classof(const MemberPointerType *) { return true; }
1230};
1231
1232/// ArrayType - C99 6.7.5.2 - Array Declarators.
1233///
1234class ArrayType : public Type, public llvm::FoldingSetNode {
1235public:
1236  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1237  /// an array with a static size (e.g. int X[static 4]), or an array
1238  /// with a star size (e.g. int X[*]).
1239  /// 'static' is only allowed on function parameters.
1240  enum ArraySizeModifier {
1241    Normal, Static, Star
1242  };
1243private:
1244  /// ElementType - The element type of the array.
1245  QualType ElementType;
1246
1247  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1248  /// NOTE: These fields are packed into the bitfields space in the Type class.
1249  unsigned SizeModifier : 2;
1250
1251  /// IndexTypeQuals - Capture qualifiers in declarations like:
1252  /// 'int X[static restrict 4]'. For function parameters only.
1253  unsigned IndexTypeQuals : 3;
1254
1255protected:
1256  // C++ [temp.dep.type]p1:
1257  //   A type is dependent if it is...
1258  //     - an array type constructed from any dependent type or whose
1259  //       size is specified by a constant expression that is
1260  //       value-dependent,
1261  ArrayType(TypeClass tc, QualType et, QualType can,
1262            ArraySizeModifier sm, unsigned tq)
1263    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1264      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1265
1266  friend class ASTContext;  // ASTContext creates these.
1267public:
1268  QualType getElementType() const { return ElementType; }
1269  ArraySizeModifier getSizeModifier() const {
1270    return ArraySizeModifier(SizeModifier);
1271  }
1272  Qualifiers getIndexTypeQualifiers() const {
1273    return Qualifiers::fromCVRMask(IndexTypeQuals);
1274  }
1275  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1276
1277  static bool classof(const Type *T) {
1278    return T->getTypeClass() == ConstantArray ||
1279           T->getTypeClass() == VariableArray ||
1280           T->getTypeClass() == IncompleteArray ||
1281           T->getTypeClass() == DependentSizedArray;
1282  }
1283  static bool classof(const ArrayType *) { return true; }
1284};
1285
1286/// ConstantArrayType - This class represents the canonical version of
1287/// C arrays with a specified constant size.  For example, the canonical
1288/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1289/// type is 'int' and the size is 404.
1290class ConstantArrayType : public ArrayType {
1291  llvm::APInt Size; // Allows us to unique the type.
1292
1293  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1294                    ArraySizeModifier sm, unsigned tq)
1295    : ArrayType(ConstantArray, et, can, sm, tq),
1296      Size(size) {}
1297protected:
1298  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1299                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1300    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1301  friend class ASTContext;  // ASTContext creates these.
1302public:
1303  const llvm::APInt &getSize() const { return Size; }
1304  virtual void getAsStringInternal(std::string &InnerString,
1305                                   const PrintingPolicy &Policy) const;
1306
1307  bool isSugared() const { return false; }
1308  QualType desugar() const { return QualType(this, 0); }
1309
1310  void Profile(llvm::FoldingSetNodeID &ID) {
1311    Profile(ID, getElementType(), getSize(),
1312            getSizeModifier(), getIndexTypeCVRQualifiers());
1313  }
1314  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1315                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1316                      unsigned TypeQuals) {
1317    ID.AddPointer(ET.getAsOpaquePtr());
1318    ID.AddInteger(ArraySize.getZExtValue());
1319    ID.AddInteger(SizeMod);
1320    ID.AddInteger(TypeQuals);
1321  }
1322  static bool classof(const Type *T) {
1323    return T->getTypeClass() == ConstantArray;
1324  }
1325  static bool classof(const ConstantArrayType *) { return true; }
1326};
1327
1328/// IncompleteArrayType - This class represents C arrays with an unspecified
1329/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1330/// type is 'int' and the size is unspecified.
1331class IncompleteArrayType : public ArrayType {
1332
1333  IncompleteArrayType(QualType et, QualType can,
1334                      ArraySizeModifier sm, unsigned tq)
1335    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1336  friend class ASTContext;  // ASTContext creates these.
1337public:
1338  virtual void getAsStringInternal(std::string &InnerString,
1339                                   const PrintingPolicy &Policy) const;
1340
1341  bool isSugared() const { return false; }
1342  QualType desugar() const { return QualType(this, 0); }
1343
1344  static bool classof(const Type *T) {
1345    return T->getTypeClass() == IncompleteArray;
1346  }
1347  static bool classof(const IncompleteArrayType *) { return true; }
1348
1349  friend class StmtIteratorBase;
1350
1351  void Profile(llvm::FoldingSetNodeID &ID) {
1352    Profile(ID, getElementType(), getSizeModifier(),
1353            getIndexTypeCVRQualifiers());
1354  }
1355
1356  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1357                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1358    ID.AddPointer(ET.getAsOpaquePtr());
1359    ID.AddInteger(SizeMod);
1360    ID.AddInteger(TypeQuals);
1361  }
1362};
1363
1364/// VariableArrayType - This class represents C arrays with a specified size
1365/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1366/// Since the size expression is an arbitrary expression, we store it as such.
1367///
1368/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1369/// should not be: two lexically equivalent variable array types could mean
1370/// different things, for example, these variables do not have the same type
1371/// dynamically:
1372///
1373/// void foo(int x) {
1374///   int Y[x];
1375///   ++x;
1376///   int Z[x];
1377/// }
1378///
1379class VariableArrayType : public ArrayType {
1380  /// SizeExpr - An assignment expression. VLA's are only permitted within
1381  /// a function block.
1382  Stmt *SizeExpr;
1383  /// Brackets - The left and right array brackets.
1384  SourceRange Brackets;
1385
1386  VariableArrayType(QualType et, QualType can, Expr *e,
1387                    ArraySizeModifier sm, unsigned tq,
1388                    SourceRange brackets)
1389    : ArrayType(VariableArray, et, can, sm, tq),
1390      SizeExpr((Stmt*) e), Brackets(brackets) {}
1391  friend class ASTContext;  // ASTContext creates these.
1392  virtual void Destroy(ASTContext& C);
1393
1394public:
1395  Expr *getSizeExpr() const {
1396    // We use C-style casts instead of cast<> here because we do not wish
1397    // to have a dependency of Type.h on Stmt.h/Expr.h.
1398    return (Expr*) SizeExpr;
1399  }
1400  SourceRange getBracketsRange() const { return Brackets; }
1401  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1402  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1403
1404  virtual void getAsStringInternal(std::string &InnerString,
1405                                   const PrintingPolicy &Policy) const;
1406
1407  bool isSugared() const { return false; }
1408  QualType desugar() const { return QualType(this, 0); }
1409
1410  static bool classof(const Type *T) {
1411    return T->getTypeClass() == VariableArray;
1412  }
1413  static bool classof(const VariableArrayType *) { return true; }
1414
1415  friend class StmtIteratorBase;
1416
1417  void Profile(llvm::FoldingSetNodeID &ID) {
1418    assert(0 && "Cannnot unique VariableArrayTypes.");
1419  }
1420};
1421
1422/// DependentSizedArrayType - This type represents an array type in
1423/// C++ whose size is a value-dependent expression. For example:
1424/// @code
1425/// template<typename T, int Size>
1426/// class array {
1427///   T data[Size];
1428/// };
1429/// @endcode
1430/// For these types, we won't actually know what the array bound is
1431/// until template instantiation occurs, at which point this will
1432/// become either a ConstantArrayType or a VariableArrayType.
1433class DependentSizedArrayType : public ArrayType {
1434  ASTContext &Context;
1435
1436  /// SizeExpr - An assignment expression that will instantiate to the
1437  /// size of the array.
1438  Stmt *SizeExpr;
1439  /// Brackets - The left and right array brackets.
1440  SourceRange Brackets;
1441
1442  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1443                          Expr *e, ArraySizeModifier sm, unsigned tq,
1444                          SourceRange brackets)
1445    : ArrayType(DependentSizedArray, et, can, sm, tq),
1446      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1447  friend class ASTContext;  // ASTContext creates these.
1448  virtual void Destroy(ASTContext& C);
1449
1450public:
1451  Expr *getSizeExpr() const {
1452    // We use C-style casts instead of cast<> here because we do not wish
1453    // to have a dependency of Type.h on Stmt.h/Expr.h.
1454    return (Expr*) SizeExpr;
1455  }
1456  SourceRange getBracketsRange() const { return Brackets; }
1457  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1458  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1459
1460  virtual void getAsStringInternal(std::string &InnerString,
1461                                   const PrintingPolicy &Policy) const;
1462
1463  bool isSugared() const { return false; }
1464  QualType desugar() const { return QualType(this, 0); }
1465
1466  static bool classof(const Type *T) {
1467    return T->getTypeClass() == DependentSizedArray;
1468  }
1469  static bool classof(const DependentSizedArrayType *) { return true; }
1470
1471  friend class StmtIteratorBase;
1472
1473
1474  void Profile(llvm::FoldingSetNodeID &ID) {
1475    Profile(ID, Context, getElementType(),
1476            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1477  }
1478
1479  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1480                      QualType ET, ArraySizeModifier SizeMod,
1481                      unsigned TypeQuals, Expr *E);
1482};
1483
1484/// DependentSizedExtVectorType - This type represent an extended vector type
1485/// where either the type or size is dependent. For example:
1486/// @code
1487/// template<typename T, int Size>
1488/// class vector {
1489///   typedef T __attribute__((ext_vector_type(Size))) type;
1490/// }
1491/// @endcode
1492class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1493  ASTContext &Context;
1494  Expr *SizeExpr;
1495  /// ElementType - The element type of the array.
1496  QualType ElementType;
1497  SourceLocation loc;
1498
1499  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1500                              QualType can, Expr *SizeExpr, SourceLocation loc)
1501    : Type (DependentSizedExtVector, can, true),
1502      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1503      loc(loc) {}
1504  friend class ASTContext;
1505  virtual void Destroy(ASTContext& C);
1506
1507public:
1508  Expr *getSizeExpr() const { return SizeExpr; }
1509  QualType getElementType() const { return ElementType; }
1510  SourceLocation getAttributeLoc() const { return loc; }
1511
1512  virtual void getAsStringInternal(std::string &InnerString,
1513                                   const PrintingPolicy &Policy) const;
1514
1515  bool isSugared() const { return false; }
1516  QualType desugar() const { return QualType(this, 0); }
1517
1518  static bool classof(const Type *T) {
1519    return T->getTypeClass() == DependentSizedExtVector;
1520  }
1521  static bool classof(const DependentSizedExtVectorType *) { return true; }
1522
1523  void Profile(llvm::FoldingSetNodeID &ID) {
1524    Profile(ID, Context, getElementType(), getSizeExpr());
1525  }
1526
1527  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1528                      QualType ElementType, Expr *SizeExpr);
1529};
1530
1531
1532/// VectorType - GCC generic vector type. This type is created using
1533/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1534/// bytes. Since the constructor takes the number of vector elements, the
1535/// client is responsible for converting the size into the number of elements.
1536class VectorType : public Type, public llvm::FoldingSetNode {
1537protected:
1538  /// ElementType - The element type of the vector.
1539  QualType ElementType;
1540
1541  /// NumElements - The number of elements in the vector.
1542  unsigned NumElements;
1543
1544  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1545    Type(Vector, canonType, vecType->isDependentType()),
1546    ElementType(vecType), NumElements(nElements) {}
1547  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1548             QualType canonType)
1549    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1550      NumElements(nElements) {}
1551  friend class ASTContext;  // ASTContext creates these.
1552public:
1553
1554  QualType getElementType() const { return ElementType; }
1555  unsigned getNumElements() const { return NumElements; }
1556
1557  virtual void getAsStringInternal(std::string &InnerString,
1558                                   const PrintingPolicy &Policy) const;
1559
1560  bool isSugared() const { return false; }
1561  QualType desugar() const { return QualType(this, 0); }
1562
1563  void Profile(llvm::FoldingSetNodeID &ID) {
1564    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1565  }
1566  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1567                      unsigned NumElements, TypeClass TypeClass) {
1568    ID.AddPointer(ElementType.getAsOpaquePtr());
1569    ID.AddInteger(NumElements);
1570    ID.AddInteger(TypeClass);
1571  }
1572  static bool classof(const Type *T) {
1573    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1574  }
1575  static bool classof(const VectorType *) { return true; }
1576};
1577
1578/// ExtVectorType - Extended vector type. This type is created using
1579/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1580/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1581/// class enables syntactic extensions, like Vector Components for accessing
1582/// points, colors, and textures (modeled after OpenGL Shading Language).
1583class ExtVectorType : public VectorType {
1584  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1585    VectorType(ExtVector, vecType, nElements, canonType) {}
1586  friend class ASTContext;  // ASTContext creates these.
1587public:
1588  static int getPointAccessorIdx(char c) {
1589    switch (c) {
1590    default: return -1;
1591    case 'x': return 0;
1592    case 'y': return 1;
1593    case 'z': return 2;
1594    case 'w': return 3;
1595    }
1596  }
1597  static int getNumericAccessorIdx(char c) {
1598    switch (c) {
1599      default: return -1;
1600      case '0': return 0;
1601      case '1': return 1;
1602      case '2': return 2;
1603      case '3': return 3;
1604      case '4': return 4;
1605      case '5': return 5;
1606      case '6': return 6;
1607      case '7': return 7;
1608      case '8': return 8;
1609      case '9': return 9;
1610      case 'A':
1611      case 'a': return 10;
1612      case 'B':
1613      case 'b': return 11;
1614      case 'C':
1615      case 'c': return 12;
1616      case 'D':
1617      case 'd': return 13;
1618      case 'E':
1619      case 'e': return 14;
1620      case 'F':
1621      case 'f': return 15;
1622    }
1623  }
1624
1625  static int getAccessorIdx(char c) {
1626    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1627    return getNumericAccessorIdx(c);
1628  }
1629
1630  bool isAccessorWithinNumElements(char c) const {
1631    if (int idx = getAccessorIdx(c)+1)
1632      return unsigned(idx-1) < NumElements;
1633    return false;
1634  }
1635  virtual void getAsStringInternal(std::string &InnerString,
1636                                   const PrintingPolicy &Policy) const;
1637
1638  bool isSugared() const { return false; }
1639  QualType desugar() const { return QualType(this, 0); }
1640
1641  static bool classof(const Type *T) {
1642    return T->getTypeClass() == ExtVector;
1643  }
1644  static bool classof(const ExtVectorType *) { return true; }
1645};
1646
1647/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1648/// class of FunctionNoProtoType and FunctionProtoType.
1649///
1650class FunctionType : public Type {
1651  /// SubClassData - This field is owned by the subclass, put here to pack
1652  /// tightly with the ivars in Type.
1653  bool SubClassData : 1;
1654
1655  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1656  /// other bitfields.
1657  /// The qualifiers are part of FunctionProtoType because...
1658  ///
1659  /// C++ 8.3.5p4: The return type, the parameter type list and the
1660  /// cv-qualifier-seq, [...], are part of the function type.
1661  ///
1662  unsigned TypeQuals : 3;
1663
1664  /// NoReturn - Indicates if the function type is attribute noreturn.
1665  unsigned NoReturn : 1;
1666
1667  // The type returned by the function.
1668  QualType ResultType;
1669protected:
1670  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1671               unsigned typeQuals, QualType Canonical, bool Dependent,
1672               bool noReturn = false)
1673    : Type(tc, Canonical, Dependent),
1674      SubClassData(SubclassInfo), TypeQuals(typeQuals), NoReturn(noReturn),
1675      ResultType(res) {}
1676  bool getSubClassData() const { return SubClassData; }
1677  unsigned getTypeQuals() const { return TypeQuals; }
1678public:
1679
1680  QualType getResultType() const { return ResultType; }
1681  bool getNoReturnAttr() const { return NoReturn; }
1682
1683  static bool classof(const Type *T) {
1684    return T->getTypeClass() == FunctionNoProto ||
1685           T->getTypeClass() == FunctionProto;
1686  }
1687  static bool classof(const FunctionType *) { return true; }
1688};
1689
1690/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1691/// no information available about its arguments.
1692class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1693  FunctionNoProtoType(QualType Result, QualType Canonical,
1694                      bool NoReturn = false)
1695    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1696                   /*Dependent=*/false, NoReturn) {}
1697  friend class ASTContext;  // ASTContext creates these.
1698public:
1699  // No additional state past what FunctionType provides.
1700
1701  virtual void getAsStringInternal(std::string &InnerString,
1702                                   const PrintingPolicy &Policy) const;
1703
1704  bool isSugared() const { return false; }
1705  QualType desugar() const { return QualType(this, 0); }
1706
1707  void Profile(llvm::FoldingSetNodeID &ID) {
1708    Profile(ID, getResultType(), getNoReturnAttr());
1709  }
1710  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1711                      bool NoReturn) {
1712    ID.AddInteger(NoReturn);
1713    ID.AddPointer(ResultType.getAsOpaquePtr());
1714  }
1715
1716  static bool classof(const Type *T) {
1717    return T->getTypeClass() == FunctionNoProto;
1718  }
1719  static bool classof(const FunctionNoProtoType *) { return true; }
1720};
1721
1722/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1723/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1724/// arguments, not as having a single void argument. Such a type can have an
1725/// exception specification, but this specification is not part of the canonical
1726/// type.
1727class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1728  /// hasAnyDependentType - Determine whether there are any dependent
1729  /// types within the arguments passed in.
1730  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1731    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1732      if (ArgArray[Idx]->isDependentType())
1733    return true;
1734
1735    return false;
1736  }
1737
1738  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1739                    bool isVariadic, unsigned typeQuals, bool hasExs,
1740                    bool hasAnyExs, const QualType *ExArray,
1741                    unsigned numExs, QualType Canonical, bool NoReturn)
1742    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1743                   (Result->isDependentType() ||
1744                    hasAnyDependentType(ArgArray, numArgs)), NoReturn),
1745      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1746      AnyExceptionSpec(hasAnyExs) {
1747    // Fill in the trailing argument array.
1748    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1749    for (unsigned i = 0; i != numArgs; ++i)
1750      ArgInfo[i] = ArgArray[i];
1751    // Fill in the exception array.
1752    QualType *Ex = ArgInfo + numArgs;
1753    for (unsigned i = 0; i != numExs; ++i)
1754      Ex[i] = ExArray[i];
1755  }
1756
1757  /// NumArgs - The number of arguments this function has, not counting '...'.
1758  unsigned NumArgs : 20;
1759
1760  /// NumExceptions - The number of types in the exception spec, if any.
1761  unsigned NumExceptions : 10;
1762
1763  /// HasExceptionSpec - Whether this function has an exception spec at all.
1764  bool HasExceptionSpec : 1;
1765
1766  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1767  bool AnyExceptionSpec : 1;
1768
1769  /// ArgInfo - There is an variable size array after the class in memory that
1770  /// holds the argument types.
1771
1772  /// Exceptions - There is another variable size array after ArgInfo that
1773  /// holds the exception types.
1774
1775  friend class ASTContext;  // ASTContext creates these.
1776
1777public:
1778  unsigned getNumArgs() const { return NumArgs; }
1779  QualType getArgType(unsigned i) const {
1780    assert(i < NumArgs && "Invalid argument number!");
1781    return arg_type_begin()[i];
1782  }
1783
1784  bool hasExceptionSpec() const { return HasExceptionSpec; }
1785  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1786  unsigned getNumExceptions() const { return NumExceptions; }
1787  QualType getExceptionType(unsigned i) const {
1788    assert(i < NumExceptions && "Invalid exception number!");
1789    return exception_begin()[i];
1790  }
1791  bool hasEmptyExceptionSpec() const {
1792    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1793      getNumExceptions() == 0;
1794  }
1795
1796  bool isVariadic() const { return getSubClassData(); }
1797  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1798
1799  typedef const QualType *arg_type_iterator;
1800  arg_type_iterator arg_type_begin() const {
1801    return reinterpret_cast<const QualType *>(this+1);
1802  }
1803  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1804
1805  typedef const QualType *exception_iterator;
1806  exception_iterator exception_begin() const {
1807    // exceptions begin where arguments end
1808    return arg_type_end();
1809  }
1810  exception_iterator exception_end() const {
1811    return exception_begin() + NumExceptions;
1812  }
1813
1814  virtual void getAsStringInternal(std::string &InnerString,
1815                                   const PrintingPolicy &Policy) const;
1816
1817  bool isSugared() const { return false; }
1818  QualType desugar() const { return QualType(this, 0); }
1819
1820  static bool classof(const Type *T) {
1821    return T->getTypeClass() == FunctionProto;
1822  }
1823  static bool classof(const FunctionProtoType *) { return true; }
1824
1825  void Profile(llvm::FoldingSetNodeID &ID);
1826  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1827                      arg_type_iterator ArgTys, unsigned NumArgs,
1828                      bool isVariadic, unsigned TypeQuals,
1829                      bool hasExceptionSpec, bool anyExceptionSpec,
1830                      unsigned NumExceptions, exception_iterator Exs,
1831                      bool NoReturn);
1832};
1833
1834
1835class TypedefType : public Type {
1836  TypedefDecl *Decl;
1837protected:
1838  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1839    : Type(tc, can, can->isDependentType()), Decl(D) {
1840    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1841  }
1842  friend class ASTContext;  // ASTContext creates these.
1843public:
1844
1845  TypedefDecl *getDecl() const { return Decl; }
1846
1847  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1848  /// potentially looking through *all* consecutive typedefs.  This returns the
1849  /// sum of the type qualifiers, so if you have:
1850  ///   typedef const int A;
1851  ///   typedef volatile A B;
1852  /// looking through the typedefs for B will give you "const volatile A".
1853  QualType LookThroughTypedefs() const;
1854
1855  bool isSugared() const { return true; }
1856  QualType desugar() const;
1857
1858  virtual void getAsStringInternal(std::string &InnerString,
1859                                   const PrintingPolicy &Policy) const;
1860
1861  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1862  static bool classof(const TypedefType *) { return true; }
1863};
1864
1865/// TypeOfExprType (GCC extension).
1866class TypeOfExprType : public Type {
1867  Expr *TOExpr;
1868
1869protected:
1870  TypeOfExprType(Expr *E, QualType can = QualType());
1871  friend class ASTContext;  // ASTContext creates these.
1872public:
1873  Expr *getUnderlyingExpr() const { return TOExpr; }
1874
1875  /// \brief Remove a single level of sugar.
1876  QualType desugar() const;
1877
1878  /// \brief Returns whether this type directly provides sugar.
1879  bool isSugared() const { return true; }
1880
1881  virtual void getAsStringInternal(std::string &InnerString,
1882                                   const PrintingPolicy &Policy) const;
1883
1884  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1885  static bool classof(const TypeOfExprType *) { return true; }
1886};
1887
1888/// Subclass of TypeOfExprType that is used for canonical, dependent
1889/// typeof(expr) types.
1890class DependentTypeOfExprType
1891  : public TypeOfExprType, public llvm::FoldingSetNode {
1892  ASTContext &Context;
1893
1894public:
1895  DependentTypeOfExprType(ASTContext &Context, Expr *E)
1896    : TypeOfExprType(E), Context(Context) { }
1897
1898  bool isSugared() const { return false; }
1899  QualType desugar() const { return QualType(this, 0); }
1900
1901  void Profile(llvm::FoldingSetNodeID &ID) {
1902    Profile(ID, Context, getUnderlyingExpr());
1903  }
1904
1905  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1906                      Expr *E);
1907};
1908
1909/// TypeOfType (GCC extension).
1910class TypeOfType : public Type {
1911  QualType TOType;
1912  TypeOfType(QualType T, QualType can)
1913    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
1914    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1915  }
1916  friend class ASTContext;  // ASTContext creates these.
1917public:
1918  QualType getUnderlyingType() const { return TOType; }
1919
1920  /// \brief Remove a single level of sugar.
1921  QualType desugar() const { return getUnderlyingType(); }
1922
1923  /// \brief Returns whether this type directly provides sugar.
1924  bool isSugared() const { return true; }
1925
1926  virtual void getAsStringInternal(std::string &InnerString,
1927                                   const PrintingPolicy &Policy) const;
1928
1929  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
1930  static bool classof(const TypeOfType *) { return true; }
1931};
1932
1933/// DecltypeType (C++0x)
1934class DecltypeType : public Type {
1935  Expr *E;
1936
1937  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
1938  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
1939  // from it.
1940  QualType UnderlyingType;
1941
1942protected:
1943  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
1944  friend class ASTContext;  // ASTContext creates these.
1945public:
1946  Expr *getUnderlyingExpr() const { return E; }
1947  QualType getUnderlyingType() const { return UnderlyingType; }
1948
1949  /// \brief Remove a single level of sugar.
1950  QualType desugar() const { return getUnderlyingType(); }
1951
1952  /// \brief Returns whether this type directly provides sugar.
1953  bool isSugared() const { return !isDependentType(); }
1954
1955  virtual void getAsStringInternal(std::string &InnerString,
1956                                   const PrintingPolicy &Policy) const;
1957
1958  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
1959  static bool classof(const DecltypeType *) { return true; }
1960};
1961
1962/// Subclass of DecltypeType that is used for canonical, dependent
1963/// C++0x decltype types.
1964class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
1965  ASTContext &Context;
1966
1967public:
1968  DependentDecltypeType(ASTContext &Context, Expr *E);
1969
1970  bool isSugared() const { return false; }
1971  QualType desugar() const { return QualType(this, 0); }
1972
1973  void Profile(llvm::FoldingSetNodeID &ID) {
1974    Profile(ID, Context, getUnderlyingExpr());
1975  }
1976
1977  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1978                      Expr *E);
1979};
1980
1981class TagType : public Type {
1982  /// Stores the TagDecl associated with this type. The decl will
1983  /// point to the TagDecl that actually defines the entity (or is a
1984  /// definition in progress), if there is such a definition. The
1985  /// single-bit value will be non-zero when this tag is in the
1986  /// process of being defined.
1987  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
1988  friend class ASTContext;
1989  friend class TagDecl;
1990
1991protected:
1992  TagType(TypeClass TC, TagDecl *D, QualType can);
1993
1994public:
1995  TagDecl *getDecl() const { return decl.getPointer(); }
1996
1997  /// @brief Determines whether this type is in the process of being
1998  /// defined.
1999  bool isBeingDefined() const { return decl.getInt(); }
2000  void setBeingDefined(bool Def) const { decl.setInt(Def? 1 : 0); }
2001
2002  virtual void getAsStringInternal(std::string &InnerString,
2003                                   const PrintingPolicy &Policy) const;
2004
2005  static bool classof(const Type *T) {
2006    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2007  }
2008  static bool classof(const TagType *) { return true; }
2009  static bool classof(const RecordType *) { return true; }
2010  static bool classof(const EnumType *) { return true; }
2011};
2012
2013/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2014/// to detect TagType objects of structs/unions/classes.
2015class RecordType : public TagType {
2016protected:
2017  explicit RecordType(RecordDecl *D)
2018    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
2019  explicit RecordType(TypeClass TC, RecordDecl *D)
2020    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
2021  friend class ASTContext;   // ASTContext creates these.
2022public:
2023
2024  RecordDecl *getDecl() const {
2025    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2026  }
2027
2028  // FIXME: This predicate is a helper to QualType/Type. It needs to
2029  // recursively check all fields for const-ness. If any field is declared
2030  // const, it needs to return false.
2031  bool hasConstFields() const { return false; }
2032
2033  // FIXME: RecordType needs to check when it is created that all fields are in
2034  // the same address space, and return that.
2035  unsigned getAddressSpace() const { return 0; }
2036
2037  bool isSugared() const { return false; }
2038  QualType desugar() const { return QualType(this, 0); }
2039
2040  static bool classof(const TagType *T);
2041  static bool classof(const Type *T) {
2042    return isa<TagType>(T) && classof(cast<TagType>(T));
2043  }
2044  static bool classof(const RecordType *) { return true; }
2045};
2046
2047/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2048/// to detect TagType objects of enums.
2049class EnumType : public TagType {
2050  explicit EnumType(EnumDecl *D)
2051    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
2052  friend class ASTContext;   // ASTContext creates these.
2053public:
2054
2055  EnumDecl *getDecl() const {
2056    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2057  }
2058
2059  bool isSugared() const { return false; }
2060  QualType desugar() const { return QualType(this, 0); }
2061
2062  static bool classof(const TagType *T);
2063  static bool classof(const Type *T) {
2064    return isa<TagType>(T) && classof(cast<TagType>(T));
2065  }
2066  static bool classof(const EnumType *) { return true; }
2067};
2068
2069/// ElaboratedType - A non-canonical type used to represents uses of
2070/// elaborated type specifiers in C++.  For example:
2071///
2072///   void foo(union MyUnion);
2073///            ^^^^^^^^^^^^^
2074///
2075/// At the moment, for efficiency we do not create elaborated types in
2076/// C, since outside of typedefs all references to structs would
2077/// necessarily be elaborated.
2078class ElaboratedType : public Type, public llvm::FoldingSetNode {
2079public:
2080  enum TagKind {
2081    TK_struct,
2082    TK_union,
2083    TK_class,
2084    TK_enum
2085  };
2086
2087private:
2088  /// The tag that was used in this elaborated type specifier.
2089  TagKind Tag;
2090
2091  /// The underlying type.
2092  QualType UnderlyingType;
2093
2094  explicit ElaboratedType(QualType Ty, TagKind Tag, QualType Canon)
2095    : Type(Elaborated, Canon, Canon->isDependentType()),
2096      Tag(Tag), UnderlyingType(Ty) { }
2097  friend class ASTContext;   // ASTContext creates these.
2098
2099public:
2100  TagKind getTagKind() const { return Tag; }
2101  QualType getUnderlyingType() const { return UnderlyingType; }
2102
2103  /// \brief Remove a single level of sugar.
2104  QualType desugar() const { return getUnderlyingType(); }
2105
2106  /// \brief Returns whether this type directly provides sugar.
2107  bool isSugared() const { return true; }
2108
2109  static const char *getNameForTagKind(TagKind Kind) {
2110    switch (Kind) {
2111    default: assert(0 && "Unknown TagKind!");
2112    case TK_struct: return "struct";
2113    case TK_union:  return "union";
2114    case TK_class:  return "class";
2115    case TK_enum:   return "enum";
2116    }
2117  }
2118
2119  virtual void getAsStringInternal(std::string &InnerString,
2120                                   const PrintingPolicy &Policy) const;
2121
2122  void Profile(llvm::FoldingSetNodeID &ID) {
2123    Profile(ID, getUnderlyingType(), getTagKind());
2124  }
2125  static void Profile(llvm::FoldingSetNodeID &ID, QualType T, TagKind Tag) {
2126    ID.AddPointer(T.getAsOpaquePtr());
2127    ID.AddInteger(Tag);
2128  }
2129
2130  static bool classof(const ElaboratedType*) { return true; }
2131  static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
2132};
2133
2134class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2135  unsigned Depth : 15;
2136  unsigned Index : 16;
2137  unsigned ParameterPack : 1;
2138  IdentifierInfo *Name;
2139
2140  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2141                       QualType Canon)
2142    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2143      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2144
2145  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2146    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2147      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2148
2149  friend class ASTContext;  // ASTContext creates these
2150
2151public:
2152  unsigned getDepth() const { return Depth; }
2153  unsigned getIndex() const { return Index; }
2154  bool isParameterPack() const { return ParameterPack; }
2155  IdentifierInfo *getName() const { return Name; }
2156
2157  virtual void getAsStringInternal(std::string &InnerString,
2158                                   const PrintingPolicy &Policy) const;
2159
2160  bool isSugared() const { return false; }
2161  QualType desugar() const { return QualType(this, 0); }
2162
2163  void Profile(llvm::FoldingSetNodeID &ID) {
2164    Profile(ID, Depth, Index, ParameterPack, Name);
2165  }
2166
2167  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2168                      unsigned Index, bool ParameterPack,
2169                      IdentifierInfo *Name) {
2170    ID.AddInteger(Depth);
2171    ID.AddInteger(Index);
2172    ID.AddBoolean(ParameterPack);
2173    ID.AddPointer(Name);
2174  }
2175
2176  static bool classof(const Type *T) {
2177    return T->getTypeClass() == TemplateTypeParm;
2178  }
2179  static bool classof(const TemplateTypeParmType *T) { return true; }
2180};
2181
2182/// \brief Represents the result of substituting a type for a template
2183/// type parameter.
2184///
2185/// Within an instantiated template, all template type parameters have
2186/// been replaced with these.  They are used solely to record that a
2187/// type was originally written as a template type parameter;
2188/// therefore they are never canonical.
2189class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2190  // The original type parameter.
2191  const TemplateTypeParmType *Replaced;
2192
2193  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2194    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2195      Replaced(Param) { }
2196
2197  friend class ASTContext;
2198
2199public:
2200  IdentifierInfo *getName() const { return Replaced->getName(); }
2201
2202  /// Gets the template parameter that was substituted for.
2203  const TemplateTypeParmType *getReplacedParameter() const {
2204    return Replaced;
2205  }
2206
2207  /// Gets the type that was substituted for the template
2208  /// parameter.
2209  QualType getReplacementType() const {
2210    return getCanonicalTypeInternal();
2211  }
2212
2213  virtual void getAsStringInternal(std::string &InnerString,
2214                                   const PrintingPolicy &Policy) const;
2215
2216  bool isSugared() const { return true; }
2217  QualType desugar() const { return getReplacementType(); }
2218
2219  void Profile(llvm::FoldingSetNodeID &ID) {
2220    Profile(ID, getReplacedParameter(), getReplacementType());
2221  }
2222  static void Profile(llvm::FoldingSetNodeID &ID,
2223                      const TemplateTypeParmType *Replaced,
2224                      QualType Replacement) {
2225    ID.AddPointer(Replaced);
2226    ID.AddPointer(Replacement.getAsOpaquePtr());
2227  }
2228
2229  static bool classof(const Type *T) {
2230    return T->getTypeClass() == SubstTemplateTypeParm;
2231  }
2232  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2233};
2234
2235/// \brief Represents the type of a template specialization as written
2236/// in the source code.
2237///
2238/// Template specialization types represent the syntactic form of a
2239/// template-id that refers to a type, e.g., @c vector<int>. Some
2240/// template specialization types are syntactic sugar, whose canonical
2241/// type will point to some other type node that represents the
2242/// instantiation or class template specialization. For example, a
2243/// class template specialization type of @c vector<int> will refer to
2244/// a tag type for the instantiation
2245/// @c std::vector<int, std::allocator<int>>.
2246///
2247/// Other template specialization types, for which the template name
2248/// is dependent, may be canonical types. These types are always
2249/// dependent.
2250class TemplateSpecializationType
2251  : public Type, public llvm::FoldingSetNode {
2252
2253  // FIXME: Currently needed for profiling expressions; can we avoid this?
2254  ASTContext &Context;
2255
2256    /// \brief The name of the template being specialized.
2257  TemplateName Template;
2258
2259  /// \brief - The number of template arguments named in this class
2260  /// template specialization.
2261  unsigned NumArgs;
2262
2263  TemplateSpecializationType(ASTContext &Context,
2264                             TemplateName T,
2265                             const TemplateArgument *Args,
2266                             unsigned NumArgs, QualType Canon);
2267
2268  virtual void Destroy(ASTContext& C);
2269
2270  friend class ASTContext;  // ASTContext creates these
2271
2272public:
2273  /// \brief Determine whether any of the given template arguments are
2274  /// dependent.
2275  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2276                                            unsigned NumArgs);
2277
2278  /// \brief Print a template argument list, including the '<' and '>'
2279  /// enclosing the template arguments.
2280  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2281                                               unsigned NumArgs,
2282                                               const PrintingPolicy &Policy);
2283
2284  typedef const TemplateArgument * iterator;
2285
2286  iterator begin() const { return getArgs(); }
2287  iterator end() const;
2288
2289  /// \brief Retrieve the name of the template that we are specializing.
2290  TemplateName getTemplateName() const { return Template; }
2291
2292  /// \brief Retrieve the template arguments.
2293  const TemplateArgument *getArgs() const {
2294    return reinterpret_cast<const TemplateArgument *>(this + 1);
2295  }
2296
2297  /// \brief Retrieve the number of template arguments.
2298  unsigned getNumArgs() const { return NumArgs; }
2299
2300  /// \brief Retrieve a specific template argument as a type.
2301  /// \precondition @c isArgType(Arg)
2302  const TemplateArgument &getArg(unsigned Idx) const;
2303
2304  virtual void getAsStringInternal(std::string &InnerString,
2305                                   const PrintingPolicy &Policy) const;
2306
2307  bool isSugared() const { return !isDependentType(); }
2308  QualType desugar() const { return getCanonicalTypeInternal(); }
2309
2310  void Profile(llvm::FoldingSetNodeID &ID) {
2311    Profile(ID, Template, getArgs(), NumArgs, Context);
2312  }
2313
2314  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2315                      const TemplateArgument *Args, unsigned NumArgs,
2316                      ASTContext &Context);
2317
2318  static bool classof(const Type *T) {
2319    return T->getTypeClass() == TemplateSpecialization;
2320  }
2321  static bool classof(const TemplateSpecializationType *T) { return true; }
2322};
2323
2324/// \brief Represents a type that was referred to via a qualified
2325/// name, e.g., N::M::type.
2326///
2327/// This type is used to keep track of a type name as written in the
2328/// source code, including any nested-name-specifiers. The type itself
2329/// is always "sugar", used to express what was written in the source
2330/// code but containing no additional semantic information.
2331class QualifiedNameType : public Type, public llvm::FoldingSetNode {
2332  /// \brief The nested name specifier containing the qualifier.
2333  NestedNameSpecifier *NNS;
2334
2335  /// \brief The type that this qualified name refers to.
2336  QualType NamedType;
2337
2338  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
2339                    QualType CanonType)
2340    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
2341      NNS(NNS), NamedType(NamedType) { }
2342
2343  friend class ASTContext;  // ASTContext creates these
2344
2345public:
2346  /// \brief Retrieve the qualification on this type.
2347  NestedNameSpecifier *getQualifier() const { return NNS; }
2348
2349  /// \brief Retrieve the type named by the qualified-id.
2350  QualType getNamedType() const { return NamedType; }
2351
2352  /// \brief Remove a single level of sugar.
2353  QualType desugar() const { return getNamedType(); }
2354
2355  /// \brief Returns whether this type directly provides sugar.
2356  bool isSugared() const { return true; }
2357
2358  virtual void getAsStringInternal(std::string &InnerString,
2359                                   const PrintingPolicy &Policy) const;
2360
2361  void Profile(llvm::FoldingSetNodeID &ID) {
2362    Profile(ID, NNS, NamedType);
2363  }
2364
2365  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2366                      QualType NamedType) {
2367    ID.AddPointer(NNS);
2368    NamedType.Profile(ID);
2369  }
2370
2371  static bool classof(const Type *T) {
2372    return T->getTypeClass() == QualifiedName;
2373  }
2374  static bool classof(const QualifiedNameType *T) { return true; }
2375};
2376
2377/// \brief Represents a 'typename' specifier that names a type within
2378/// a dependent type, e.g., "typename T::type".
2379///
2380/// TypenameType has a very similar structure to QualifiedNameType,
2381/// which also involves a nested-name-specifier following by a type,
2382/// and (FIXME!) both can even be prefixed by the 'typename'
2383/// keyword. However, the two types serve very different roles:
2384/// QualifiedNameType is a non-semantic type that serves only as sugar
2385/// to show how a particular type was written in the source
2386/// code. TypenameType, on the other hand, only occurs when the
2387/// nested-name-specifier is dependent, such that we cannot resolve
2388/// the actual type until after instantiation.
2389class TypenameType : public Type, public llvm::FoldingSetNode {
2390  /// \brief The nested name specifier containing the qualifier.
2391  NestedNameSpecifier *NNS;
2392
2393  typedef llvm::PointerUnion<const IdentifierInfo *,
2394                             const TemplateSpecializationType *> NameType;
2395
2396  /// \brief The type that this typename specifier refers to.
2397  NameType Name;
2398
2399  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
2400               QualType CanonType)
2401    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
2402    assert(NNS->isDependent() &&
2403           "TypenameType requires a dependent nested-name-specifier");
2404  }
2405
2406  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
2407               QualType CanonType)
2408    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
2409    assert(NNS->isDependent() &&
2410           "TypenameType requires a dependent nested-name-specifier");
2411  }
2412
2413  friend class ASTContext;  // ASTContext creates these
2414
2415public:
2416  /// \brief Retrieve the qualification on this type.
2417  NestedNameSpecifier *getQualifier() const { return NNS; }
2418
2419  /// \brief Retrieve the type named by the typename specifier as an
2420  /// identifier.
2421  ///
2422  /// This routine will return a non-NULL identifier pointer when the
2423  /// form of the original typename was terminated by an identifier,
2424  /// e.g., "typename T::type".
2425  const IdentifierInfo *getIdentifier() const {
2426    return Name.dyn_cast<const IdentifierInfo *>();
2427  }
2428
2429  /// \brief Retrieve the type named by the typename specifier as a
2430  /// type specialization.
2431  const TemplateSpecializationType *getTemplateId() const {
2432    return Name.dyn_cast<const TemplateSpecializationType *>();
2433  }
2434
2435  virtual void getAsStringInternal(std::string &InnerString,
2436                                   const PrintingPolicy &Policy) const;
2437
2438  bool isSugared() const { return false; }
2439  QualType desugar() const { return QualType(this, 0); }
2440
2441  void Profile(llvm::FoldingSetNodeID &ID) {
2442    Profile(ID, NNS, Name);
2443  }
2444
2445  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2446                      NameType Name) {
2447    ID.AddPointer(NNS);
2448    ID.AddPointer(Name.getOpaqueValue());
2449  }
2450
2451  static bool classof(const Type *T) {
2452    return T->getTypeClass() == Typename;
2453  }
2454  static bool classof(const TypenameType *T) { return true; }
2455};
2456
2457/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
2458/// object oriented design.  They basically correspond to C++ classes.  There
2459/// are two kinds of interface types, normal interfaces like "NSString" and
2460/// qualified interfaces, which are qualified with a protocol list like
2461/// "NSString<NSCopyable, NSAmazing>".
2462class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
2463  ObjCInterfaceDecl *Decl;
2464
2465  // List of protocols for this protocol conforming object type
2466  // List is sorted on protocol name. No protocol is enterred more than once.
2467  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;
2468
2469  ObjCInterfaceType(QualType Canonical, ObjCInterfaceDecl *D,
2470                    ObjCProtocolDecl **Protos, unsigned NumP) :
2471    Type(ObjCInterface, Canonical, /*Dependent=*/false),
2472    Decl(D), Protocols(Protos, Protos+NumP) { }
2473  friend class ASTContext;  // ASTContext creates these.
2474public:
2475  ObjCInterfaceDecl *getDecl() const { return Decl; }
2476
2477  /// getNumProtocols - Return the number of qualifying protocols in this
2478  /// interface type, or 0 if there are none.
2479  unsigned getNumProtocols() const { return Protocols.size(); }
2480
2481  /// qual_iterator and friends: this provides access to the (potentially empty)
2482  /// list of protocols qualifying this interface.
2483  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
2484  qual_iterator qual_begin() const { return Protocols.begin(); }
2485  qual_iterator qual_end() const   { return Protocols.end(); }
2486  bool qual_empty() const { return Protocols.size() == 0; }
2487
2488  virtual void getAsStringInternal(std::string &InnerString,
2489                                   const PrintingPolicy &Policy) const;
2490
2491  bool isSugared() const { return false; }
2492  QualType desugar() const { return QualType(this, 0); }
2493
2494  void Profile(llvm::FoldingSetNodeID &ID);
2495  static void Profile(llvm::FoldingSetNodeID &ID,
2496                      const ObjCInterfaceDecl *Decl,
2497                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2498
2499  static bool classof(const Type *T) {
2500    return T->getTypeClass() == ObjCInterface;
2501  }
2502  static bool classof(const ObjCInterfaceType *) { return true; }
2503};
2504
2505/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
2506/// and 'Interface <p> *'.
2507///
2508/// Duplicate protocols are removed and protocol list is canonicalized to be in
2509/// alphabetical order.
2510class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
2511  QualType PointeeType; // A builtin or interface type.
2512
2513  // List of protocols for this protocol conforming object type
2514  // List is sorted on protocol name. No protocol is entered more than once.
2515  llvm::SmallVector<ObjCProtocolDecl*, 8> Protocols;
2516
2517  ObjCObjectPointerType(QualType Canonical, QualType T,
2518                        ObjCProtocolDecl **Protos, unsigned NumP) :
2519    Type(ObjCObjectPointer, Canonical, /*Dependent=*/false),
2520    PointeeType(T), Protocols(Protos, Protos+NumP) { }
2521  friend class ASTContext;  // ASTContext creates these.
2522
2523public:
2524  // Get the pointee type. Pointee will either be:
2525  // - a built-in type (for 'id' and 'Class').
2526  // - an interface type (for user-defined types).
2527  // - a TypedefType whose canonical type is an interface (as in 'T' below).
2528  //   For example: typedef NSObject T; T *var;
2529  QualType getPointeeType() const { return PointeeType; }
2530
2531  const ObjCInterfaceType *getInterfaceType() const {
2532    return PointeeType->getAs<ObjCInterfaceType>();
2533  }
2534  /// getInterfaceDecl - returns an interface decl for user-defined types.
2535  ObjCInterfaceDecl *getInterfaceDecl() const {
2536    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
2537  }
2538  /// isObjCIdType - true for "id".
2539  bool isObjCIdType() const {
2540    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2541           !Protocols.size();
2542  }
2543  /// isObjCClassType - true for "Class".
2544  bool isObjCClassType() const {
2545    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2546           !Protocols.size();
2547  }
2548  /// isObjCQualifiedIdType - true for "id <p>".
2549  bool isObjCQualifiedIdType() const {
2550    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2551           Protocols.size();
2552  }
2553  /// isObjCQualifiedClassType - true for "Class <p>".
2554  bool isObjCQualifiedClassType() const {
2555    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2556           Protocols.size();
2557  }
2558  /// qual_iterator and friends: this provides access to the (potentially empty)
2559  /// list of protocols qualifying this interface.
2560  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
2561
2562  qual_iterator qual_begin() const { return Protocols.begin(); }
2563  qual_iterator qual_end() const   { return Protocols.end(); }
2564  bool qual_empty() const { return Protocols.size() == 0; }
2565
2566  /// getNumProtocols - Return the number of qualifying protocols in this
2567  /// interface type, or 0 if there are none.
2568  unsigned getNumProtocols() const { return Protocols.size(); }
2569
2570  bool isSugared() const { return false; }
2571  QualType desugar() const { return QualType(this, 0); }
2572
2573  void Profile(llvm::FoldingSetNodeID &ID);
2574  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2575                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2576  virtual void getAsStringInternal(std::string &InnerString,
2577                                   const PrintingPolicy &Policy) const;
2578  static bool classof(const Type *T) {
2579    return T->getTypeClass() == ObjCObjectPointer;
2580  }
2581  static bool classof(const ObjCObjectPointerType *) { return true; }
2582};
2583
2584/// A qualifier set is used to build a set of qualifiers.
2585class QualifierCollector : public Qualifiers {
2586  ASTContext *Context;
2587
2588public:
2589  QualifierCollector(Qualifiers Qs = Qualifiers())
2590    : Qualifiers(Qs), Context(0) {}
2591  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
2592    : Qualifiers(Qs), Context(&Context) {}
2593
2594  void setContext(ASTContext &C) { Context = &C; }
2595
2596  /// Collect any qualifiers on the given type and return an
2597  /// unqualified type.
2598  const Type *strip(QualType QT) {
2599    addFastQualifiers(QT.getFastQualifiers());
2600    if (QT.hasNonFastQualifiers()) {
2601      const ExtQuals *EQ = QT.getExtQualsUnsafe();
2602      Context = &EQ->getContext();
2603      addQualifiers(EQ->getQualifiers());
2604      return EQ->getBaseType();
2605    }
2606    return QT.getTypePtrUnsafe();
2607  }
2608
2609  /// Apply the collected qualifiers to the given type.
2610  QualType apply(QualType QT) const;
2611
2612  /// Apply the collected qualifiers to the given type.
2613  QualType apply(const Type* T) const;
2614
2615};
2616
2617
2618// Inline function definitions.
2619
2620inline bool QualType::isCanonical() const {
2621  const Type *T = getTypePtr();
2622  if (hasQualifiers())
2623    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
2624  return T->isCanonicalUnqualified();
2625}
2626
2627inline bool QualType::isCanonicalAsParam() const {
2628  if (hasQualifiers()) return false;
2629  const Type *T = getTypePtr();
2630  return T->isCanonicalUnqualified() &&
2631           !isa<FunctionType>(T) && !isa<ArrayType>(T);
2632}
2633
2634inline void QualType::removeConst() {
2635  removeFastQualifiers(Qualifiers::Const);
2636}
2637
2638inline void QualType::removeRestrict() {
2639  removeFastQualifiers(Qualifiers::Restrict);
2640}
2641
2642inline void QualType::removeVolatile() {
2643  QualifierCollector Qc;
2644  const Type *Ty = Qc.strip(*this);
2645  if (Qc.hasVolatile()) {
2646    Qc.removeVolatile();
2647    *this = Qc.apply(Ty);
2648  }
2649}
2650
2651inline void QualType::removeCVRQualifiers(unsigned Mask) {
2652  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
2653
2654  // Fast path: we don't need to touch the slow qualifiers.
2655  if (!(Mask & ~Qualifiers::FastMask)) {
2656    removeFastQualifiers(Mask);
2657    return;
2658  }
2659
2660  QualifierCollector Qc;
2661  const Type *Ty = Qc.strip(*this);
2662  Qc.removeCVRQualifiers(Mask);
2663  *this = Qc.apply(Ty);
2664}
2665
2666/// getAddressSpace - Return the address space of this type.
2667inline unsigned QualType::getAddressSpace() const {
2668  if (hasNonFastQualifiers()) {
2669    const ExtQuals *EQ = getExtQualsUnsafe();
2670    if (EQ->hasAddressSpace())
2671      return EQ->getAddressSpace();
2672  }
2673
2674  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2675  if (CT.hasNonFastQualifiers()) {
2676    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2677    if (EQ->hasAddressSpace())
2678      return EQ->getAddressSpace();
2679  }
2680
2681  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2682    return AT->getElementType().getAddressSpace();
2683  if (const RecordType *RT = dyn_cast<RecordType>(CT))
2684    return RT->getAddressSpace();
2685  return 0;
2686}
2687
2688/// getObjCGCAttr - Return the gc attribute of this type.
2689inline Qualifiers::GC QualType::getObjCGCAttr() const {
2690  if (hasNonFastQualifiers()) {
2691    const ExtQuals *EQ = getExtQualsUnsafe();
2692    if (EQ->hasObjCGCAttr())
2693      return EQ->getObjCGCAttr();
2694  }
2695
2696  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2697  if (CT.hasNonFastQualifiers()) {
2698    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2699    if (EQ->hasObjCGCAttr())
2700      return EQ->getObjCGCAttr();
2701  }
2702
2703  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2704      return AT->getElementType().getObjCGCAttr();
2705  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
2706    return PT->getPointeeType().getObjCGCAttr();
2707  // We most look at all pointer types, not just pointer to interface types.
2708  if (const PointerType *PT = CT->getAs<PointerType>())
2709    return PT->getPointeeType().getObjCGCAttr();
2710  return Qualifiers::GCNone;
2711}
2712
2713  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
2714  /// false otherwise.
2715inline bool QualType::getNoReturnAttr() const {
2716  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2717  if (const PointerType *PT = getTypePtr()->getAs<PointerType>()) {
2718    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
2719      return FT->getNoReturnAttr();
2720  } else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
2721    return FT->getNoReturnAttr();
2722
2723  return false;
2724}
2725
2726/// isMoreQualifiedThan - Determine whether this type is more
2727/// qualified than the Other type. For example, "const volatile int"
2728/// is more qualified than "const int", "volatile int", and
2729/// "int". However, it is not more qualified than "const volatile
2730/// int".
2731inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2732  // FIXME: work on arbitrary qualifiers
2733  unsigned MyQuals = this->getCVRQualifiers();
2734  unsigned OtherQuals = Other.getCVRQualifiers();
2735  if (getAddressSpace() != Other.getAddressSpace())
2736    return false;
2737  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2738}
2739
2740/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2741/// as qualified as the Other type. For example, "const volatile
2742/// int" is at least as qualified as "const int", "volatile int",
2743/// "int", and "const volatile int".
2744inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2745  // FIXME: work on arbitrary qualifiers
2746  unsigned MyQuals = this->getCVRQualifiers();
2747  unsigned OtherQuals = Other.getCVRQualifiers();
2748  if (getAddressSpace() != Other.getAddressSpace())
2749    return false;
2750  return (MyQuals | OtherQuals) == MyQuals;
2751}
2752
2753/// getNonReferenceType - If Type is a reference type (e.g., const
2754/// int&), returns the type that the reference refers to ("const
2755/// int"). Otherwise, returns the type itself. This routine is used
2756/// throughout Sema to implement C++ 5p6:
2757///
2758///   If an expression initially has the type "reference to T" (8.3.2,
2759///   8.5.3), the type is adjusted to "T" prior to any further
2760///   analysis, the expression designates the object or function
2761///   denoted by the reference, and the expression is an lvalue.
2762inline QualType QualType::getNonReferenceType() const {
2763  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
2764    return RefType->getPointeeType();
2765  else
2766    return *this;
2767}
2768
2769inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
2770  if (const PointerType *PT = getAs<PointerType>())
2771    return PT->getPointeeType()->getAs<ObjCInterfaceType>();
2772  return 0;
2773}
2774
2775// NOTE: All of these methods use "getUnqualifiedType" to strip off address
2776// space qualifiers if present.
2777inline bool Type::isFunctionType() const {
2778  return isa<FunctionType>(CanonicalType.getUnqualifiedType());
2779}
2780inline bool Type::isPointerType() const {
2781  return isa<PointerType>(CanonicalType.getUnqualifiedType());
2782}
2783inline bool Type::isAnyPointerType() const {
2784  return isPointerType() || isObjCObjectPointerType();
2785}
2786inline bool Type::isBlockPointerType() const {
2787  return isa<BlockPointerType>(CanonicalType.getUnqualifiedType());
2788}
2789inline bool Type::isReferenceType() const {
2790  return isa<ReferenceType>(CanonicalType.getUnqualifiedType());
2791}
2792inline bool Type::isLValueReferenceType() const {
2793  return isa<LValueReferenceType>(CanonicalType.getUnqualifiedType());
2794}
2795inline bool Type::isRValueReferenceType() const {
2796  return isa<RValueReferenceType>(CanonicalType.getUnqualifiedType());
2797}
2798inline bool Type::isFunctionPointerType() const {
2799  if (const PointerType* T = getAs<PointerType>())
2800    return T->getPointeeType()->isFunctionType();
2801  else
2802    return false;
2803}
2804inline bool Type::isMemberPointerType() const {
2805  return isa<MemberPointerType>(CanonicalType.getUnqualifiedType());
2806}
2807inline bool Type::isMemberFunctionPointerType() const {
2808  if (const MemberPointerType* T = getAs<MemberPointerType>())
2809    return T->getPointeeType()->isFunctionType();
2810  else
2811    return false;
2812}
2813inline bool Type::isArrayType() const {
2814  return isa<ArrayType>(CanonicalType.getUnqualifiedType());
2815}
2816inline bool Type::isConstantArrayType() const {
2817  return isa<ConstantArrayType>(CanonicalType.getUnqualifiedType());
2818}
2819inline bool Type::isIncompleteArrayType() const {
2820  return isa<IncompleteArrayType>(CanonicalType.getUnqualifiedType());
2821}
2822inline bool Type::isVariableArrayType() const {
2823  return isa<VariableArrayType>(CanonicalType.getUnqualifiedType());
2824}
2825inline bool Type::isDependentSizedArrayType() const {
2826  return isa<DependentSizedArrayType>(CanonicalType.getUnqualifiedType());
2827}
2828inline bool Type::isRecordType() const {
2829  return isa<RecordType>(CanonicalType.getUnqualifiedType());
2830}
2831inline bool Type::isAnyComplexType() const {
2832  return isa<ComplexType>(CanonicalType.getUnqualifiedType());
2833}
2834inline bool Type::isVectorType() const {
2835  return isa<VectorType>(CanonicalType.getUnqualifiedType());
2836}
2837inline bool Type::isExtVectorType() const {
2838  return isa<ExtVectorType>(CanonicalType.getUnqualifiedType());
2839}
2840inline bool Type::isObjCObjectPointerType() const {
2841  return isa<ObjCObjectPointerType>(CanonicalType.getUnqualifiedType());
2842}
2843inline bool Type::isObjCInterfaceType() const {
2844  return isa<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
2845}
2846inline bool Type::isObjCQualifiedIdType() const {
2847  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2848    return OPT->isObjCQualifiedIdType();
2849  return false;
2850}
2851inline bool Type::isObjCQualifiedClassType() const {
2852  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2853    return OPT->isObjCQualifiedClassType();
2854  return false;
2855}
2856inline bool Type::isObjCIdType() const {
2857  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2858    return OPT->isObjCIdType();
2859  return false;
2860}
2861inline bool Type::isObjCClassType() const {
2862  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2863    return OPT->isObjCClassType();
2864  return false;
2865}
2866inline bool Type::isObjCBuiltinType() const {
2867  return isObjCIdType() || isObjCClassType();
2868}
2869inline bool Type::isTemplateTypeParmType() const {
2870  return isa<TemplateTypeParmType>(CanonicalType.getUnqualifiedType());
2871}
2872
2873inline bool Type::isSpecificBuiltinType(unsigned K) const {
2874  if (const BuiltinType *BT = getAs<BuiltinType>())
2875    if (BT->getKind() == (BuiltinType::Kind) K)
2876      return true;
2877  return false;
2878}
2879
2880/// \brief Determines whether this is a type for which one can define
2881/// an overloaded operator.
2882inline bool Type::isOverloadableType() const {
2883  return isDependentType() || isRecordType() || isEnumeralType();
2884}
2885
2886inline bool Type::hasPointerRepresentation() const {
2887  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
2888          isObjCInterfaceType() || isObjCObjectPointerType() ||
2889          isObjCQualifiedInterfaceType() || isNullPtrType());
2890}
2891
2892inline bool Type::hasObjCPointerRepresentation() const {
2893  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
2894          isObjCQualifiedInterfaceType());
2895}
2896
2897/// Insertion operator for diagnostics.  This allows sending QualType's into a
2898/// diagnostic with <<.
2899inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2900                                           QualType T) {
2901  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
2902                  Diagnostic::ak_qualtype);
2903  return DB;
2904}
2905
2906/// Member-template getAs<specific type>'.
2907template <typename T> const T *Type::getAs() const {
2908  // If this is directly a T type, return it.
2909  if (const T *Ty = dyn_cast<T>(this))
2910    return Ty;
2911
2912  // If the canonical form of this type isn't the right kind, reject it.
2913  if (!isa<T>(CanonicalType))
2914    return 0;
2915
2916  // If this is a typedef for the type, strip the typedef off without
2917  // losing all typedef information.
2918  return cast<T>(getUnqualifiedDesugaredType());
2919}
2920
2921}  // end namespace clang
2922
2923#endif
2924