Type.h revision 56ca8a9c0fabd65418e9b2fd85140f4ed7d3c187
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/ExceptionSpecificationType.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/Linkage.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Basic/Visibility.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/TemplateName.h"
25#include "llvm/Support/type_traits.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32#include "clang/Basic/LLVM.h"
33
34namespace clang {
35  enum {
36    TypeAlignmentInBits = 4,
37    TypeAlignment = 1 << TypeAlignmentInBits
38  };
39  class Type;
40  class ExtQuals;
41  class QualType;
42}
43
44namespace llvm {
45  template <typename T>
46  class PointerLikeTypeTraits;
47  template<>
48  class PointerLikeTypeTraits< ::clang::Type*> {
49  public:
50    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
51    static inline ::clang::Type *getFromVoidPointer(void *P) {
52      return static_cast< ::clang::Type*>(P);
53    }
54    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
55  };
56  template<>
57  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
58  public:
59    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
60    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
61      return static_cast< ::clang::ExtQuals*>(P);
62    }
63    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
64  };
65
66  template <>
67  struct isPodLike<clang::QualType> { static const bool value = true; };
68}
69
70namespace clang {
71  class ASTContext;
72  class TypedefNameDecl;
73  class TemplateDecl;
74  class TemplateTypeParmDecl;
75  class NonTypeTemplateParmDecl;
76  class TemplateTemplateParmDecl;
77  class TagDecl;
78  class RecordDecl;
79  class CXXRecordDecl;
80  class EnumDecl;
81  class FieldDecl;
82  class ObjCInterfaceDecl;
83  class ObjCProtocolDecl;
84  class ObjCMethodDecl;
85  class UnresolvedUsingTypenameDecl;
86  class Expr;
87  class Stmt;
88  class SourceLocation;
89  class StmtIteratorBase;
90  class TemplateArgument;
91  class TemplateArgumentLoc;
92  class TemplateArgumentListInfo;
93  class ElaboratedType;
94  class ExtQuals;
95  class ExtQualsTypeCommonBase;
96  struct PrintingPolicy;
97
98  template <typename> class CanQual;
99  typedef CanQual<Type> CanQualType;
100
101  // Provide forward declarations for all of the *Type classes
102#define TYPE(Class, Base) class Class##Type;
103#include "clang/AST/TypeNodes.def"
104
105/// Qualifiers - The collection of all-type qualifiers we support.
106/// Clang supports five independent qualifiers:
107/// * C99: const, volatile, and restrict
108/// * Embedded C (TR18037): address spaces
109/// * Objective C: the GC attributes (none, weak, or strong)
110class Qualifiers {
111public:
112  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
113    Const    = 0x1,
114    Restrict = 0x2,
115    Volatile = 0x4,
116    CVRMask = Const | Volatile | Restrict
117  };
118
119  enum GC {
120    GCNone = 0,
121    Weak,
122    Strong
123  };
124
125  enum ObjCLifetime {
126    /// There is no lifetime qualification on this type.
127    OCL_None,
128
129    /// This object can be modified without requiring retains or
130    /// releases.
131    OCL_ExplicitNone,
132
133    /// Assigning into this object requires the old value to be
134    /// released and the new value to be retained.  The timing of the
135    /// release of the old value is inexact: it may be moved to
136    /// immediately after the last known point where the value is
137    /// live.
138    OCL_Strong,
139
140    /// Reading or writing from this object requires a barrier call.
141    OCL_Weak,
142
143    /// Assigning into this object requires a lifetime extension.
144    OCL_Autoreleasing
145  };
146
147  enum {
148    /// The maximum supported address space number.
149    /// 24 bits should be enough for anyone.
150    MaxAddressSpace = 0xffffffu,
151
152    /// The width of the "fast" qualifier mask.
153    FastWidth = 3,
154
155    /// The fast qualifier mask.
156    FastMask = (1 << FastWidth) - 1
157  };
158
159  Qualifiers() : Mask(0) {}
160
161  static Qualifiers fromFastMask(unsigned Mask) {
162    Qualifiers Qs;
163    Qs.addFastQualifiers(Mask);
164    return Qs;
165  }
166
167  static Qualifiers fromCVRMask(unsigned CVR) {
168    Qualifiers Qs;
169    Qs.addCVRQualifiers(CVR);
170    return Qs;
171  }
172
173  // Deserialize qualifiers from an opaque representation.
174  static Qualifiers fromOpaqueValue(unsigned opaque) {
175    Qualifiers Qs;
176    Qs.Mask = opaque;
177    return Qs;
178  }
179
180  // Serialize these qualifiers into an opaque representation.
181  unsigned getAsOpaqueValue() const {
182    return Mask;
183  }
184
185  bool hasConst() const { return Mask & Const; }
186  void setConst(bool flag) {
187    Mask = (Mask & ~Const) | (flag ? Const : 0);
188  }
189  void removeConst() { Mask &= ~Const; }
190  void addConst() { Mask |= Const; }
191
192  bool hasVolatile() const { return Mask & Volatile; }
193  void setVolatile(bool flag) {
194    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
195  }
196  void removeVolatile() { Mask &= ~Volatile; }
197  void addVolatile() { Mask |= Volatile; }
198
199  bool hasRestrict() const { return Mask & Restrict; }
200  void setRestrict(bool flag) {
201    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
202  }
203  void removeRestrict() { Mask &= ~Restrict; }
204  void addRestrict() { Mask |= Restrict; }
205
206  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
207  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
208  void setCVRQualifiers(unsigned mask) {
209    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
210    Mask = (Mask & ~CVRMask) | mask;
211  }
212  void removeCVRQualifiers(unsigned mask) {
213    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
214    Mask &= ~mask;
215  }
216  void removeCVRQualifiers() {
217    removeCVRQualifiers(CVRMask);
218  }
219  void addCVRQualifiers(unsigned mask) {
220    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
221    Mask |= mask;
222  }
223
224  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
225  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
226  void setObjCGCAttr(GC type) {
227    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
228  }
229  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
230  void addObjCGCAttr(GC type) {
231    assert(type);
232    setObjCGCAttr(type);
233  }
234  Qualifiers withoutObjCGCAttr() const {
235    Qualifiers qs = *this;
236    qs.removeObjCGCAttr();
237    return qs;
238  }
239  Qualifiers withoutObjCGLifetime() const {
240    Qualifiers qs = *this;
241    qs.removeObjCLifetime();
242    return qs;
243  }
244
245  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
246  ObjCLifetime getObjCLifetime() const {
247    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
248  }
249  void setObjCLifetime(ObjCLifetime type) {
250    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
251  }
252  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
253  void addObjCLifetime(ObjCLifetime type) {
254    assert(type);
255    setObjCLifetime(type);
256  }
257
258  /// True if the lifetime is neither None or ExplicitNone.
259  bool hasNonTrivialObjCLifetime() const {
260    ObjCLifetime lifetime = getObjCLifetime();
261    return (lifetime > OCL_ExplicitNone);
262  }
263
264  /// True if the lifetime is either strong or weak.
265  bool hasStrongOrWeakObjCLifetime() const {
266    ObjCLifetime lifetime = getObjCLifetime();
267    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
268  }
269
270  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
271  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
272  void setAddressSpace(unsigned space) {
273    assert(space <= MaxAddressSpace);
274    Mask = (Mask & ~AddressSpaceMask)
275         | (((uint32_t) space) << AddressSpaceShift);
276  }
277  void removeAddressSpace() { setAddressSpace(0); }
278  void addAddressSpace(unsigned space) {
279    assert(space);
280    setAddressSpace(space);
281  }
282
283  // Fast qualifiers are those that can be allocated directly
284  // on a QualType object.
285  bool hasFastQualifiers() const { return getFastQualifiers(); }
286  unsigned getFastQualifiers() const { return Mask & FastMask; }
287  void setFastQualifiers(unsigned mask) {
288    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
289    Mask = (Mask & ~FastMask) | mask;
290  }
291  void removeFastQualifiers(unsigned mask) {
292    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
293    Mask &= ~mask;
294  }
295  void removeFastQualifiers() {
296    removeFastQualifiers(FastMask);
297  }
298  void addFastQualifiers(unsigned mask) {
299    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
300    Mask |= mask;
301  }
302
303  /// hasNonFastQualifiers - Return true if the set contains any
304  /// qualifiers which require an ExtQuals node to be allocated.
305  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
306  Qualifiers getNonFastQualifiers() const {
307    Qualifiers Quals = *this;
308    Quals.setFastQualifiers(0);
309    return Quals;
310  }
311
312  /// hasQualifiers - Return true if the set contains any qualifiers.
313  bool hasQualifiers() const { return Mask; }
314  bool empty() const { return !Mask; }
315
316  /// \brief Add the qualifiers from the given set to this set.
317  void addQualifiers(Qualifiers Q) {
318    // If the other set doesn't have any non-boolean qualifiers, just
319    // bit-or it in.
320    if (!(Q.Mask & ~CVRMask))
321      Mask |= Q.Mask;
322    else {
323      Mask |= (Q.Mask & CVRMask);
324      if (Q.hasAddressSpace())
325        addAddressSpace(Q.getAddressSpace());
326      if (Q.hasObjCGCAttr())
327        addObjCGCAttr(Q.getObjCGCAttr());
328      if (Q.hasObjCLifetime())
329        addObjCLifetime(Q.getObjCLifetime());
330    }
331  }
332
333  /// \brief Add the qualifiers from the given set to this set, given that
334  /// they don't conflict.
335  void addConsistentQualifiers(Qualifiers qs) {
336    assert(getAddressSpace() == qs.getAddressSpace() ||
337           !hasAddressSpace() || !qs.hasAddressSpace());
338    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
339           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
340    assert(getObjCLifetime() == qs.getObjCLifetime() ||
341           !hasObjCLifetime() || !qs.hasObjCLifetime());
342    Mask |= qs.Mask;
343  }
344
345  /// \brief Determines if these qualifiers compatibly include another set.
346  /// Generally this answers the question of whether an object with the other
347  /// qualifiers can be safely used as an object with these qualifiers.
348  bool compatiblyIncludes(Qualifiers other) const {
349    return
350      // Address spaces must match exactly.
351      getAddressSpace() == other.getAddressSpace() &&
352      // ObjC GC qualifiers can match, be added, or be removed, but can't be
353      // changed.
354      (getObjCGCAttr() == other.getObjCGCAttr() ||
355       !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
356      // ObjC lifetime qualifiers must match exactly.
357      getObjCLifetime() == other.getObjCLifetime() &&
358      // CVR qualifiers may subset.
359      (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
360  }
361
362  /// \brief Determines if these qualifiers compatibly include another set of
363  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
364  ///
365  /// One set of Objective-C lifetime qualifiers compatibly includes the other
366  /// if the lifetime qualifiers match, or if both are non-__weak and the
367  /// including set also contains the 'const' qualifier.
368  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
369    if (getObjCLifetime() == other.getObjCLifetime())
370      return true;
371
372    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
373      return false;
374
375    return hasConst();
376  }
377
378  bool isSupersetOf(Qualifiers Other) const;
379
380  /// \brief Determine whether this set of qualifiers is a strict superset of
381  /// another set of qualifiers, not considering qualifier compatibility.
382  bool isStrictSupersetOf(Qualifiers Other) const;
383
384  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
385  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
386
387  operator bool() const { return hasQualifiers(); }
388
389  Qualifiers &operator+=(Qualifiers R) {
390    addQualifiers(R);
391    return *this;
392  }
393
394  // Union two qualifier sets.  If an enumerated qualifier appears
395  // in both sets, use the one from the right.
396  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
397    L += R;
398    return L;
399  }
400
401  Qualifiers &operator-=(Qualifiers R) {
402    Mask = Mask & ~(R.Mask);
403    return *this;
404  }
405
406  /// \brief Compute the difference between two qualifier sets.
407  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
408    L -= R;
409    return L;
410  }
411
412  std::string getAsString() const;
413  std::string getAsString(const PrintingPolicy &Policy) const {
414    std::string Buffer;
415    getAsStringInternal(Buffer, Policy);
416    return Buffer;
417  }
418  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
419
420  void Profile(llvm::FoldingSetNodeID &ID) const {
421    ID.AddInteger(Mask);
422  }
423
424private:
425
426  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
427  //           |C R V|GCAttr|Lifetime|AddressSpace|
428  uint32_t Mask;
429
430  static const uint32_t GCAttrMask = 0x18;
431  static const uint32_t GCAttrShift = 3;
432  static const uint32_t LifetimeMask = 0xE0;
433  static const uint32_t LifetimeShift = 5;
434  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
435  static const uint32_t AddressSpaceShift = 8;
436};
437
438/// CallingConv - Specifies the calling convention that a function uses.
439enum CallingConv {
440  CC_Default,
441  CC_C,           // __attribute__((cdecl))
442  CC_X86StdCall,  // __attribute__((stdcall))
443  CC_X86FastCall, // __attribute__((fastcall))
444  CC_X86ThisCall, // __attribute__((thiscall))
445  CC_X86Pascal,   // __attribute__((pascal))
446  CC_AAPCS,       // __attribute__((pcs("aapcs")))
447  CC_AAPCS_VFP    // __attribute__((pcs("aapcs-vfp")))
448};
449
450typedef std::pair<const Type*, Qualifiers> SplitQualType;
451
452/// QualType - For efficiency, we don't store CV-qualified types as nodes on
453/// their own: instead each reference to a type stores the qualifiers.  This
454/// greatly reduces the number of nodes we need to allocate for types (for
455/// example we only need one for 'int', 'const int', 'volatile int',
456/// 'const volatile int', etc).
457///
458/// As an added efficiency bonus, instead of making this a pair, we
459/// just store the two bits we care about in the low bits of the
460/// pointer.  To handle the packing/unpacking, we make QualType be a
461/// simple wrapper class that acts like a smart pointer.  A third bit
462/// indicates whether there are extended qualifiers present, in which
463/// case the pointer points to a special structure.
464class QualType {
465  // Thankfully, these are efficiently composable.
466  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
467                       Qualifiers::FastWidth> Value;
468
469  const ExtQuals *getExtQualsUnsafe() const {
470    return Value.getPointer().get<const ExtQuals*>();
471  }
472
473  const Type *getTypePtrUnsafe() const {
474    return Value.getPointer().get<const Type*>();
475  }
476
477  const ExtQualsTypeCommonBase *getCommonPtr() const {
478    assert(!isNull() && "Cannot retrieve a NULL type pointer");
479    uintptr_t CommonPtrVal
480      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
481    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
482    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
483  }
484
485  friend class QualifierCollector;
486public:
487  QualType() {}
488
489  QualType(const Type *Ptr, unsigned Quals)
490    : Value(Ptr, Quals) {}
491  QualType(const ExtQuals *Ptr, unsigned Quals)
492    : Value(Ptr, Quals) {}
493
494  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
495  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
496
497  /// Retrieves a pointer to the underlying (unqualified) type.
498  /// This should really return a const Type, but it's not worth
499  /// changing all the users right now.
500  ///
501  /// This function requires that the type not be NULL. If the type might be
502  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
503  const Type *getTypePtr() const;
504
505  const Type *getTypePtrOrNull() const;
506
507  /// Retrieves a pointer to the name of the base type.
508  const IdentifierInfo *getBaseTypeIdentifier() const;
509
510  /// Divides a QualType into its unqualified type and a set of local
511  /// qualifiers.
512  SplitQualType split() const;
513
514  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
515  static QualType getFromOpaquePtr(const void *Ptr) {
516    QualType T;
517    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
518    return T;
519  }
520
521  const Type &operator*() const {
522    return *getTypePtr();
523  }
524
525  const Type *operator->() const {
526    return getTypePtr();
527  }
528
529  bool isCanonical() const;
530  bool isCanonicalAsParam() const;
531
532  /// isNull - Return true if this QualType doesn't point to a type yet.
533  bool isNull() const {
534    return Value.getPointer().isNull();
535  }
536
537  /// \brief Determine whether this particular QualType instance has the
538  /// "const" qualifier set, without looking through typedefs that may have
539  /// added "const" at a different level.
540  bool isLocalConstQualified() const {
541    return (getLocalFastQualifiers() & Qualifiers::Const);
542  }
543
544  /// \brief Determine whether this type is const-qualified.
545  bool isConstQualified() const;
546
547  /// \brief Determine whether this particular QualType instance has the
548  /// "restrict" qualifier set, without looking through typedefs that may have
549  /// added "restrict" at a different level.
550  bool isLocalRestrictQualified() const {
551    return (getLocalFastQualifiers() & Qualifiers::Restrict);
552  }
553
554  /// \brief Determine whether this type is restrict-qualified.
555  bool isRestrictQualified() const;
556
557  /// \brief Determine whether this particular QualType instance has the
558  /// "volatile" qualifier set, without looking through typedefs that may have
559  /// added "volatile" at a different level.
560  bool isLocalVolatileQualified() const {
561    return (getLocalFastQualifiers() & Qualifiers::Volatile);
562  }
563
564  /// \brief Determine whether this type is volatile-qualified.
565  bool isVolatileQualified() const;
566
567  /// \brief Determine whether this particular QualType instance has any
568  /// qualifiers, without looking through any typedefs that might add
569  /// qualifiers at a different level.
570  bool hasLocalQualifiers() const {
571    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
572  }
573
574  /// \brief Determine whether this type has any qualifiers.
575  bool hasQualifiers() const;
576
577  /// \brief Determine whether this particular QualType instance has any
578  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
579  /// instance.
580  bool hasLocalNonFastQualifiers() const {
581    return Value.getPointer().is<const ExtQuals*>();
582  }
583
584  /// \brief Retrieve the set of qualifiers local to this particular QualType
585  /// instance, not including any qualifiers acquired through typedefs or
586  /// other sugar.
587  Qualifiers getLocalQualifiers() const;
588
589  /// \brief Retrieve the set of qualifiers applied to this type.
590  Qualifiers getQualifiers() const;
591
592  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
593  /// local to this particular QualType instance, not including any qualifiers
594  /// acquired through typedefs or other sugar.
595  unsigned getLocalCVRQualifiers() const {
596    return getLocalFastQualifiers();
597  }
598
599  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
600  /// applied to this type.
601  unsigned getCVRQualifiers() const;
602
603  bool isConstant(ASTContext& Ctx) const {
604    return QualType::isConstant(*this, Ctx);
605  }
606
607  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
608  bool isPODType(ASTContext &Context) const;
609
610  /// isCXX11PODType() - Return true if this is a POD type according to the
611  /// more relaxed rules of the C++11 standard, regardless of the current
612  /// compilation's language.
613  /// (C++0x [basic.types]p9)
614  bool isCXX11PODType(ASTContext &Context) const;
615
616  /// isTrivialType - Return true if this is a trivial type
617  /// (C++0x [basic.types]p9)
618  bool isTrivialType(ASTContext &Context) const;
619
620  /// isTriviallyCopyableType - Return true if this is a trivially
621  /// copyable type (C++0x [basic.types]p9)
622  bool isTriviallyCopyableType(ASTContext &Context) const;
623
624  // Don't promise in the API that anything besides 'const' can be
625  // easily added.
626
627  /// addConst - add the specified type qualifier to this QualType.
628  void addConst() {
629    addFastQualifiers(Qualifiers::Const);
630  }
631  QualType withConst() const {
632    return withFastQualifiers(Qualifiers::Const);
633  }
634
635  /// addVolatile - add the specified type qualifier to this QualType.
636  void addVolatile() {
637    addFastQualifiers(Qualifiers::Volatile);
638  }
639  QualType withVolatile() const {
640    return withFastQualifiers(Qualifiers::Volatile);
641  }
642
643  QualType withCVRQualifiers(unsigned CVR) const {
644    return withFastQualifiers(CVR);
645  }
646
647  void addFastQualifiers(unsigned TQs) {
648    assert(!(TQs & ~Qualifiers::FastMask)
649           && "non-fast qualifier bits set in mask!");
650    Value.setInt(Value.getInt() | TQs);
651  }
652
653  void removeLocalConst();
654  void removeLocalVolatile();
655  void removeLocalRestrict();
656  void removeLocalCVRQualifiers(unsigned Mask);
657
658  void removeLocalFastQualifiers() { Value.setInt(0); }
659  void removeLocalFastQualifiers(unsigned Mask) {
660    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
661    Value.setInt(Value.getInt() & ~Mask);
662  }
663
664  // Creates a type with the given qualifiers in addition to any
665  // qualifiers already on this type.
666  QualType withFastQualifiers(unsigned TQs) const {
667    QualType T = *this;
668    T.addFastQualifiers(TQs);
669    return T;
670  }
671
672  // Creates a type with exactly the given fast qualifiers, removing
673  // any existing fast qualifiers.
674  QualType withExactLocalFastQualifiers(unsigned TQs) const {
675    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
676  }
677
678  // Removes fast qualifiers, but leaves any extended qualifiers in place.
679  QualType withoutLocalFastQualifiers() const {
680    QualType T = *this;
681    T.removeLocalFastQualifiers();
682    return T;
683  }
684
685  QualType getCanonicalType() const;
686
687  /// \brief Return this type with all of the instance-specific qualifiers
688  /// removed, but without removing any qualifiers that may have been applied
689  /// through typedefs.
690  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
691
692  /// \brief Retrieve the unqualified variant of the given type,
693  /// removing as little sugar as possible.
694  ///
695  /// This routine looks through various kinds of sugar to find the
696  /// least-desugared type that is unqualified. For example, given:
697  ///
698  /// \code
699  /// typedef int Integer;
700  /// typedef const Integer CInteger;
701  /// typedef CInteger DifferenceType;
702  /// \endcode
703  ///
704  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
705  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
706  ///
707  /// The resulting type might still be qualified if it's an array
708  /// type.  To strip qualifiers even from within an array type, use
709  /// ASTContext::getUnqualifiedArrayType.
710  inline QualType getUnqualifiedType() const;
711
712  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
713  /// given type, removing as little sugar as possible.
714  ///
715  /// Like getUnqualifiedType(), but also returns the set of
716  /// qualifiers that were built up.
717  ///
718  /// The resulting type might still be qualified if it's an array
719  /// type.  To strip qualifiers even from within an array type, use
720  /// ASTContext::getUnqualifiedArrayType.
721  inline SplitQualType getSplitUnqualifiedType() const;
722
723  /// \brief Determine whether this type is more qualified than the other
724  /// given type, requiring exact equality for non-CVR qualifiers.
725  bool isMoreQualifiedThan(QualType Other) const;
726
727  /// \brief Determine whether this type is at least as qualified as the other
728  /// given type, requiring exact equality for non-CVR qualifiers.
729  bool isAtLeastAsQualifiedAs(QualType Other) const;
730
731  QualType getNonReferenceType() const;
732
733  /// \brief Determine the type of a (typically non-lvalue) expression with the
734  /// specified result type.
735  ///
736  /// This routine should be used for expressions for which the return type is
737  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
738  /// an lvalue. It removes a top-level reference (since there are no
739  /// expressions of reference type) and deletes top-level cvr-qualifiers
740  /// from non-class types (in C++) or all types (in C).
741  QualType getNonLValueExprType(ASTContext &Context) const;
742
743  /// getDesugaredType - Return the specified type with any "sugar" removed from
744  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
745  /// the type is already concrete, it returns it unmodified.  This is similar
746  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
747  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
748  /// concrete.
749  ///
750  /// Qualifiers are left in place.
751  QualType getDesugaredType(const ASTContext &Context) const {
752    return getDesugaredType(*this, Context);
753  }
754
755  SplitQualType getSplitDesugaredType() const {
756    return getSplitDesugaredType(*this);
757  }
758
759  /// \brief Return the specified type with one level of "sugar" removed from
760  /// the type.
761  ///
762  /// This routine takes off the first typedef, typeof, etc. If the outer level
763  /// of the type is already concrete, it returns it unmodified.
764  QualType getSingleStepDesugaredType(const ASTContext &Context) const;
765
766  /// IgnoreParens - Returns the specified type after dropping any
767  /// outer-level parentheses.
768  QualType IgnoreParens() const {
769    if (isa<ParenType>(*this))
770      return QualType::IgnoreParens(*this);
771    return *this;
772  }
773
774  /// operator==/!= - Indicate whether the specified types and qualifiers are
775  /// identical.
776  friend bool operator==(const QualType &LHS, const QualType &RHS) {
777    return LHS.Value == RHS.Value;
778  }
779  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
780    return LHS.Value != RHS.Value;
781  }
782  std::string getAsString() const {
783    return getAsString(split());
784  }
785  static std::string getAsString(SplitQualType split) {
786    return getAsString(split.first, split.second);
787  }
788  static std::string getAsString(const Type *ty, Qualifiers qs);
789
790  std::string getAsString(const PrintingPolicy &Policy) const {
791    std::string S;
792    getAsStringInternal(S, Policy);
793    return S;
794  }
795  void getAsStringInternal(std::string &Str,
796                           const PrintingPolicy &Policy) const {
797    return getAsStringInternal(split(), Str, Policy);
798  }
799  static void getAsStringInternal(SplitQualType split, std::string &out,
800                                  const PrintingPolicy &policy) {
801    return getAsStringInternal(split.first, split.second, out, policy);
802  }
803  static void getAsStringInternal(const Type *ty, Qualifiers qs,
804                                  std::string &out,
805                                  const PrintingPolicy &policy);
806
807  void dump(const char *s) const;
808  void dump() const;
809
810  void Profile(llvm::FoldingSetNodeID &ID) const {
811    ID.AddPointer(getAsOpaquePtr());
812  }
813
814  /// getAddressSpace - Return the address space of this type.
815  inline unsigned getAddressSpace() const;
816
817  /// getObjCGCAttr - Returns gc attribute of this type.
818  inline Qualifiers::GC getObjCGCAttr() const;
819
820  /// isObjCGCWeak true when Type is objc's weak.
821  bool isObjCGCWeak() const {
822    return getObjCGCAttr() == Qualifiers::Weak;
823  }
824
825  /// isObjCGCStrong true when Type is objc's strong.
826  bool isObjCGCStrong() const {
827    return getObjCGCAttr() == Qualifiers::Strong;
828  }
829
830  /// getObjCLifetime - Returns lifetime attribute of this type.
831  Qualifiers::ObjCLifetime getObjCLifetime() const {
832    return getQualifiers().getObjCLifetime();
833  }
834
835  bool hasNonTrivialObjCLifetime() const {
836    return getQualifiers().hasNonTrivialObjCLifetime();
837  }
838
839  bool hasStrongOrWeakObjCLifetime() const {
840    return getQualifiers().hasStrongOrWeakObjCLifetime();
841  }
842
843  enum DestructionKind {
844    DK_none,
845    DK_cxx_destructor,
846    DK_objc_strong_lifetime,
847    DK_objc_weak_lifetime
848  };
849
850  /// isDestructedType - nonzero if objects of this type require
851  /// non-trivial work to clean up after.  Non-zero because it's
852  /// conceivable that qualifiers (objc_gc(weak)?) could make
853  /// something require destruction.
854  DestructionKind isDestructedType() const {
855    return isDestructedTypeImpl(*this);
856  }
857
858  /// \brief Determine whether expressions of the given type are forbidden
859  /// from being lvalues in C.
860  ///
861  /// The expression types that are forbidden to be lvalues are:
862  ///   - 'void', but not qualified void
863  ///   - function types
864  ///
865  /// The exact rule here is C99 6.3.2.1:
866  ///   An lvalue is an expression with an object type or an incomplete
867  ///   type other than void.
868  bool isCForbiddenLValueType() const;
869
870  /// \brief Determine whether this type has trivial copy/move-assignment
871  ///        semantics.
872  bool hasTrivialAssignment(ASTContext &Context, bool Copying) const;
873
874private:
875  // These methods are implemented in a separate translation unit;
876  // "static"-ize them to avoid creating temporary QualTypes in the
877  // caller.
878  static bool isConstant(QualType T, ASTContext& Ctx);
879  static QualType getDesugaredType(QualType T, const ASTContext &Context);
880  static SplitQualType getSplitDesugaredType(QualType T);
881  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
882  static QualType IgnoreParens(QualType T);
883  static DestructionKind isDestructedTypeImpl(QualType type);
884};
885
886} // end clang.
887
888namespace llvm {
889/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
890/// to a specific Type class.
891template<> struct simplify_type<const ::clang::QualType> {
892  typedef const ::clang::Type *SimpleType;
893  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
894    return Val.getTypePtr();
895  }
896};
897template<> struct simplify_type< ::clang::QualType>
898  : public simplify_type<const ::clang::QualType> {};
899
900// Teach SmallPtrSet that QualType is "basically a pointer".
901template<>
902class PointerLikeTypeTraits<clang::QualType> {
903public:
904  static inline void *getAsVoidPointer(clang::QualType P) {
905    return P.getAsOpaquePtr();
906  }
907  static inline clang::QualType getFromVoidPointer(void *P) {
908    return clang::QualType::getFromOpaquePtr(P);
909  }
910  // Various qualifiers go in low bits.
911  enum { NumLowBitsAvailable = 0 };
912};
913
914} // end namespace llvm
915
916namespace clang {
917
918/// \brief Base class that is common to both the \c ExtQuals and \c Type
919/// classes, which allows \c QualType to access the common fields between the
920/// two.
921///
922class ExtQualsTypeCommonBase {
923  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
924    : BaseType(baseType), CanonicalType(canon) {}
925
926  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
927  /// a self-referential pointer (for \c Type).
928  ///
929  /// This pointer allows an efficient mapping from a QualType to its
930  /// underlying type pointer.
931  const Type *const BaseType;
932
933  /// \brief The canonical type of this type.  A QualType.
934  QualType CanonicalType;
935
936  friend class QualType;
937  friend class Type;
938  friend class ExtQuals;
939};
940
941/// ExtQuals - We can encode up to four bits in the low bits of a
942/// type pointer, but there are many more type qualifiers that we want
943/// to be able to apply to an arbitrary type.  Therefore we have this
944/// struct, intended to be heap-allocated and used by QualType to
945/// store qualifiers.
946///
947/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
948/// in three low bits on the QualType pointer; a fourth bit records whether
949/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
950/// Objective-C GC attributes) are much more rare.
951class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
952  // NOTE: changing the fast qualifiers should be straightforward as
953  // long as you don't make 'const' non-fast.
954  // 1. Qualifiers:
955  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
956  //       Fast qualifiers must occupy the low-order bits.
957  //    b) Update Qualifiers::FastWidth and FastMask.
958  // 2. QualType:
959  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
960  //    b) Update remove{Volatile,Restrict}, defined near the end of
961  //       this header.
962  // 3. ASTContext:
963  //    a) Update get{Volatile,Restrict}Type.
964
965  /// Quals - the immutable set of qualifiers applied by this
966  /// node;  always contains extended qualifiers.
967  Qualifiers Quals;
968
969  ExtQuals *this_() { return this; }
970
971public:
972  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
973    : ExtQualsTypeCommonBase(baseType,
974                             canon.isNull() ? QualType(this_(), 0) : canon),
975      Quals(quals)
976  {
977    assert(Quals.hasNonFastQualifiers()
978           && "ExtQuals created with no fast qualifiers");
979    assert(!Quals.hasFastQualifiers()
980           && "ExtQuals created with fast qualifiers");
981  }
982
983  Qualifiers getQualifiers() const { return Quals; }
984
985  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
986  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
987
988  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
989  Qualifiers::ObjCLifetime getObjCLifetime() const {
990    return Quals.getObjCLifetime();
991  }
992
993  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
994  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
995
996  const Type *getBaseType() const { return BaseType; }
997
998public:
999  void Profile(llvm::FoldingSetNodeID &ID) const {
1000    Profile(ID, getBaseType(), Quals);
1001  }
1002  static void Profile(llvm::FoldingSetNodeID &ID,
1003                      const Type *BaseType,
1004                      Qualifiers Quals) {
1005    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1006    ID.AddPointer(BaseType);
1007    Quals.Profile(ID);
1008  }
1009};
1010
1011/// \brief The kind of C++0x ref-qualifier associated with a function type,
1012/// which determines whether a member function's "this" object can be an
1013/// lvalue, rvalue, or neither.
1014enum RefQualifierKind {
1015  /// \brief No ref-qualifier was provided.
1016  RQ_None = 0,
1017  /// \brief An lvalue ref-qualifier was provided (\c &).
1018  RQ_LValue,
1019  /// \brief An rvalue ref-qualifier was provided (\c &&).
1020  RQ_RValue
1021};
1022
1023/// Type - This is the base class of the type hierarchy.  A central concept
1024/// with types is that each type always has a canonical type.  A canonical type
1025/// is the type with any typedef names stripped out of it or the types it
1026/// references.  For example, consider:
1027///
1028///  typedef int  foo;
1029///  typedef foo* bar;
1030///    'int *'    'foo *'    'bar'
1031///
1032/// There will be a Type object created for 'int'.  Since int is canonical, its
1033/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
1034/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1035/// there is a PointerType that represents 'int*', which, like 'int', is
1036/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1037/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1038/// is also 'int*'.
1039///
1040/// Non-canonical types are useful for emitting diagnostics, without losing
1041/// information about typedefs being used.  Canonical types are useful for type
1042/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1043/// about whether something has a particular form (e.g. is a function type),
1044/// because they implicitly, recursively, strip all typedefs out of a type.
1045///
1046/// Types, once created, are immutable.
1047///
1048class Type : public ExtQualsTypeCommonBase {
1049public:
1050  enum TypeClass {
1051#define TYPE(Class, Base) Class,
1052#define LAST_TYPE(Class) TypeLast = Class,
1053#define ABSTRACT_TYPE(Class, Base)
1054#include "clang/AST/TypeNodes.def"
1055    TagFirst = Record, TagLast = Enum
1056  };
1057
1058private:
1059  Type(const Type&);           // DO NOT IMPLEMENT.
1060  void operator=(const Type&); // DO NOT IMPLEMENT.
1061
1062  /// Bitfields required by the Type class.
1063  class TypeBitfields {
1064    friend class Type;
1065    template <class T> friend class TypePropertyCache;
1066
1067    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1068    unsigned TC : 8;
1069
1070    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
1071    /// Note that this should stay at the end of the ivars for Type so that
1072    /// subclasses can pack their bitfields into the same word.
1073    unsigned Dependent : 1;
1074
1075    /// \brief Whether this type somehow involves a template parameter, even
1076    /// if the resolution of the type does not depend on a template parameter.
1077    unsigned InstantiationDependent : 1;
1078
1079    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1080    unsigned VariablyModified : 1;
1081
1082    /// \brief Whether this type contains an unexpanded parameter pack
1083    /// (for C++0x variadic templates).
1084    unsigned ContainsUnexpandedParameterPack : 1;
1085
1086    /// \brief Nonzero if the cache (i.e. the bitfields here starting
1087    /// with 'Cache') is valid.  If so, then this is a
1088    /// LangOptions::VisibilityMode+1.
1089    mutable unsigned CacheValidAndVisibility : 2;
1090
1091    /// \brief True if the visibility was set explicitly in the source code.
1092    mutable unsigned CachedExplicitVisibility : 1;
1093
1094    /// \brief Linkage of this type.
1095    mutable unsigned CachedLinkage : 2;
1096
1097    /// \brief Whether this type involves and local or unnamed types.
1098    mutable unsigned CachedLocalOrUnnamed : 1;
1099
1100    /// \brief FromAST - Whether this type comes from an AST file.
1101    mutable unsigned FromAST : 1;
1102
1103    bool isCacheValid() const {
1104      return (CacheValidAndVisibility != 0);
1105    }
1106    Visibility getVisibility() const {
1107      assert(isCacheValid() && "getting linkage from invalid cache");
1108      return static_cast<Visibility>(CacheValidAndVisibility-1);
1109    }
1110    bool isVisibilityExplicit() const {
1111      assert(isCacheValid() && "getting linkage from invalid cache");
1112      return CachedExplicitVisibility;
1113    }
1114    Linkage getLinkage() const {
1115      assert(isCacheValid() && "getting linkage from invalid cache");
1116      return static_cast<Linkage>(CachedLinkage);
1117    }
1118    bool hasLocalOrUnnamedType() const {
1119      assert(isCacheValid() && "getting linkage from invalid cache");
1120      return CachedLocalOrUnnamed;
1121    }
1122  };
1123  enum { NumTypeBits = 19 };
1124
1125protected:
1126  // These classes allow subclasses to somewhat cleanly pack bitfields
1127  // into Type.
1128
1129  class ArrayTypeBitfields {
1130    friend class ArrayType;
1131
1132    unsigned : NumTypeBits;
1133
1134    /// IndexTypeQuals - CVR qualifiers from declarations like
1135    /// 'int X[static restrict 4]'. For function parameters only.
1136    unsigned IndexTypeQuals : 3;
1137
1138    /// SizeModifier - storage class qualifiers from declarations like
1139    /// 'int X[static restrict 4]'. For function parameters only.
1140    /// Actually an ArrayType::ArraySizeModifier.
1141    unsigned SizeModifier : 3;
1142  };
1143
1144  class BuiltinTypeBitfields {
1145    friend class BuiltinType;
1146
1147    unsigned : NumTypeBits;
1148
1149    /// The kind (BuiltinType::Kind) of builtin type this is.
1150    unsigned Kind : 8;
1151  };
1152
1153  class FunctionTypeBitfields {
1154    friend class FunctionType;
1155
1156    unsigned : NumTypeBits;
1157
1158    /// Extra information which affects how the function is called, like
1159    /// regparm and the calling convention.
1160    unsigned ExtInfo : 8;
1161
1162    /// Whether the function is variadic.  Only used by FunctionProtoType.
1163    unsigned Variadic : 1;
1164
1165    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1166    /// other bitfields.
1167    /// The qualifiers are part of FunctionProtoType because...
1168    ///
1169    /// C++ 8.3.5p4: The return type, the parameter type list and the
1170    /// cv-qualifier-seq, [...], are part of the function type.
1171    unsigned TypeQuals : 3;
1172
1173    /// \brief The ref-qualifier associated with a \c FunctionProtoType.
1174    ///
1175    /// This is a value of type \c RefQualifierKind.
1176    unsigned RefQualifier : 2;
1177  };
1178
1179  class ObjCObjectTypeBitfields {
1180    friend class ObjCObjectType;
1181
1182    unsigned : NumTypeBits;
1183
1184    /// NumProtocols - The number of protocols stored directly on this
1185    /// object type.
1186    unsigned NumProtocols : 32 - NumTypeBits;
1187  };
1188
1189  class ReferenceTypeBitfields {
1190    friend class ReferenceType;
1191
1192    unsigned : NumTypeBits;
1193
1194    /// True if the type was originally spelled with an lvalue sigil.
1195    /// This is never true of rvalue references but can also be false
1196    /// on lvalue references because of C++0x [dcl.typedef]p9,
1197    /// as follows:
1198    ///
1199    ///   typedef int &ref;    // lvalue, spelled lvalue
1200    ///   typedef int &&rvref; // rvalue
1201    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1202    ///   ref &&a;             // lvalue, inner ref
1203    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1204    ///   rvref &&a;           // rvalue, inner ref
1205    unsigned SpelledAsLValue : 1;
1206
1207    /// True if the inner type is a reference type.  This only happens
1208    /// in non-canonical forms.
1209    unsigned InnerRef : 1;
1210  };
1211
1212  class TypeWithKeywordBitfields {
1213    friend class TypeWithKeyword;
1214
1215    unsigned : NumTypeBits;
1216
1217    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1218    unsigned Keyword : 8;
1219  };
1220
1221  class VectorTypeBitfields {
1222    friend class VectorType;
1223
1224    unsigned : NumTypeBits;
1225
1226    /// VecKind - The kind of vector, either a generic vector type or some
1227    /// target-specific vector type such as for AltiVec or Neon.
1228    unsigned VecKind : 3;
1229
1230    /// NumElements - The number of elements in the vector.
1231    unsigned NumElements : 29 - NumTypeBits;
1232  };
1233
1234  class AttributedTypeBitfields {
1235    friend class AttributedType;
1236
1237    unsigned : NumTypeBits;
1238
1239    /// AttrKind - an AttributedType::Kind
1240    unsigned AttrKind : 32 - NumTypeBits;
1241  };
1242
1243  union {
1244    TypeBitfields TypeBits;
1245    ArrayTypeBitfields ArrayTypeBits;
1246    AttributedTypeBitfields AttributedTypeBits;
1247    BuiltinTypeBitfields BuiltinTypeBits;
1248    FunctionTypeBitfields FunctionTypeBits;
1249    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1250    ReferenceTypeBitfields ReferenceTypeBits;
1251    TypeWithKeywordBitfields TypeWithKeywordBits;
1252    VectorTypeBitfields VectorTypeBits;
1253  };
1254
1255private:
1256  /// \brief Set whether this type comes from an AST file.
1257  void setFromAST(bool V = true) const {
1258    TypeBits.FromAST = V;
1259  }
1260
1261  template <class T> friend class TypePropertyCache;
1262
1263protected:
1264  // silence VC++ warning C4355: 'this' : used in base member initializer list
1265  Type *this_() { return this; }
1266  Type(TypeClass tc, QualType canon, bool Dependent,
1267       bool InstantiationDependent, bool VariablyModified,
1268       bool ContainsUnexpandedParameterPack)
1269    : ExtQualsTypeCommonBase(this,
1270                             canon.isNull() ? QualType(this_(), 0) : canon) {
1271    TypeBits.TC = tc;
1272    TypeBits.Dependent = Dependent;
1273    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1274    TypeBits.VariablyModified = VariablyModified;
1275    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1276    TypeBits.CacheValidAndVisibility = 0;
1277    TypeBits.CachedExplicitVisibility = false;
1278    TypeBits.CachedLocalOrUnnamed = false;
1279    TypeBits.CachedLinkage = NoLinkage;
1280    TypeBits.FromAST = false;
1281  }
1282  friend class ASTContext;
1283
1284  void setDependent(bool D = true) {
1285    TypeBits.Dependent = D;
1286    if (D)
1287      TypeBits.InstantiationDependent = true;
1288  }
1289  void setInstantiationDependent(bool D = true) {
1290    TypeBits.InstantiationDependent = D; }
1291  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1292  }
1293  void setContainsUnexpandedParameterPack(bool PP = true) {
1294    TypeBits.ContainsUnexpandedParameterPack = PP;
1295  }
1296
1297public:
1298  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1299
1300  /// \brief Whether this type comes from an AST file.
1301  bool isFromAST() const { return TypeBits.FromAST; }
1302
1303  /// \brief Whether this type is or contains an unexpanded parameter
1304  /// pack, used to support C++0x variadic templates.
1305  ///
1306  /// A type that contains a parameter pack shall be expanded by the
1307  /// ellipsis operator at some point. For example, the typedef in the
1308  /// following example contains an unexpanded parameter pack 'T':
1309  ///
1310  /// \code
1311  /// template<typename ...T>
1312  /// struct X {
1313  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1314  /// };
1315  /// \endcode
1316  ///
1317  /// Note that this routine does not specify which
1318  bool containsUnexpandedParameterPack() const {
1319    return TypeBits.ContainsUnexpandedParameterPack;
1320  }
1321
1322  /// Determines if this type would be canonical if it had no further
1323  /// qualification.
1324  bool isCanonicalUnqualified() const {
1325    return CanonicalType == QualType(this, 0);
1326  }
1327
1328  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1329  /// object types, function types, and incomplete types.
1330
1331  /// isIncompleteType - Return true if this is an incomplete type.
1332  /// A type that can describe objects, but which lacks information needed to
1333  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1334  /// routine will need to determine if the size is actually required.
1335  ///
1336  /// \brief Def If non-NULL, and the type refers to some kind of declaration
1337  /// that can be completed (such as a C struct, C++ class, or Objective-C
1338  /// class), will be set to the declaration.
1339  bool isIncompleteType(NamedDecl **Def = 0) const;
1340
1341  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1342  /// type, in other words, not a function type.
1343  bool isIncompleteOrObjectType() const {
1344    return !isFunctionType();
1345  }
1346
1347  /// \brief Determine whether this type is an object type.
1348  bool isObjectType() const {
1349    // C++ [basic.types]p8:
1350    //   An object type is a (possibly cv-qualified) type that is not a
1351    //   function type, not a reference type, and not a void type.
1352    return !isReferenceType() && !isFunctionType() && !isVoidType();
1353  }
1354
1355  /// isLiteralType - Return true if this is a literal type
1356  /// (C++0x [basic.types]p10)
1357  bool isLiteralType() const;
1358
1359  /// \brief Test if this type is a standard-layout type.
1360  /// (C++0x [basic.type]p9)
1361  bool isStandardLayoutType() const;
1362
1363  /// Helper methods to distinguish type categories. All type predicates
1364  /// operate on the canonical type, ignoring typedefs and qualifiers.
1365
1366  /// isBuiltinType - returns true if the type is a builtin type.
1367  bool isBuiltinType() const;
1368
1369  /// isSpecificBuiltinType - Test for a particular builtin type.
1370  bool isSpecificBuiltinType(unsigned K) const;
1371
1372  /// isPlaceholderType - Test for a type which does not represent an
1373  /// actual type-system type but is instead used as a placeholder for
1374  /// various convenient purposes within Clang.  All such types are
1375  /// BuiltinTypes.
1376  bool isPlaceholderType() const;
1377  const BuiltinType *getAsPlaceholderType() const;
1378
1379  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1380  bool isSpecificPlaceholderType(unsigned K) const;
1381
1382  /// isNonOverloadPlaceholderType - Test for a placeholder type
1383  /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
1384  bool isNonOverloadPlaceholderType() const;
1385
1386  /// isIntegerType() does *not* include complex integers (a GCC extension).
1387  /// isComplexIntegerType() can be used to test for complex integers.
1388  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1389  bool isEnumeralType() const;
1390  bool isBooleanType() const;
1391  bool isCharType() const;
1392  bool isWideCharType() const;
1393  bool isChar16Type() const;
1394  bool isChar32Type() const;
1395  bool isAnyCharacterType() const;
1396  bool isIntegralType(ASTContext &Ctx) const;
1397
1398  /// \brief Determine whether this type is an integral or enumeration type.
1399  bool isIntegralOrEnumerationType() const;
1400  /// \brief Determine whether this type is an integral or unscoped enumeration
1401  /// type.
1402  bool isIntegralOrUnscopedEnumerationType() const;
1403
1404  /// Floating point categories.
1405  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1406  /// isComplexType() does *not* include complex integers (a GCC extension).
1407  /// isComplexIntegerType() can be used to test for complex integers.
1408  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1409  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1410  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1411  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1412  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1413  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1414  bool isVoidType() const;         // C99 6.2.5p19
1415  bool isDerivedType() const;      // C99 6.2.5p20
1416  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1417  bool isAggregateType() const;
1418  bool isFundamentalType() const;
1419  bool isCompoundType() const;
1420
1421  // Type Predicates: Check to see if this type is structurally the specified
1422  // type, ignoring typedefs and qualifiers.
1423  bool isFunctionType() const;
1424  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1425  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1426  bool isPointerType() const;
1427  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1428  bool isBlockPointerType() const;
1429  bool isVoidPointerType() const;
1430  bool isReferenceType() const;
1431  bool isLValueReferenceType() const;
1432  bool isRValueReferenceType() const;
1433  bool isFunctionPointerType() const;
1434  bool isMemberPointerType() const;
1435  bool isMemberFunctionPointerType() const;
1436  bool isMemberDataPointerType() const;
1437  bool isArrayType() const;
1438  bool isConstantArrayType() const;
1439  bool isIncompleteArrayType() const;
1440  bool isVariableArrayType() const;
1441  bool isDependentSizedArrayType() const;
1442  bool isRecordType() const;
1443  bool isClassType() const;
1444  bool isStructureType() const;
1445  bool isStructureOrClassType() const;
1446  bool isUnionType() const;
1447  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1448  bool isVectorType() const;                    // GCC vector type.
1449  bool isExtVectorType() const;                 // Extended vector type.
1450  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1451  bool isObjCRetainableType() const;            // ObjC object or block pointer
1452  bool isObjCLifetimeType() const;              // (array of)* retainable type
1453  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1454  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1455  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1456  // for the common case.
1457  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1458  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1459  bool isObjCQualifiedIdType() const;           // id<foo>
1460  bool isObjCQualifiedClassType() const;        // Class<foo>
1461  bool isObjCObjectOrInterfaceType() const;
1462  bool isObjCIdType() const;                    // id
1463  bool isObjCClassType() const;                 // Class
1464  bool isObjCSelType() const;                 // Class
1465  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1466  bool isObjCARCBridgableType() const;
1467  bool isCARCBridgableType() const;
1468  bool isTemplateTypeParmType() const;          // C++ template type parameter
1469  bool isNullPtrType() const;                   // C++0x nullptr_t
1470  bool isAtomicType() const;                    // C11 _Atomic()
1471
1472  /// Determines if this type, which must satisfy
1473  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1474  /// than implicitly __strong.
1475  bool isObjCARCImplicitlyUnretainedType() const;
1476
1477  /// Return the implicit lifetime for this type, which must not be dependent.
1478  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1479
1480  enum ScalarTypeKind {
1481    STK_CPointer,
1482    STK_BlockPointer,
1483    STK_ObjCObjectPointer,
1484    STK_MemberPointer,
1485    STK_Bool,
1486    STK_Integral,
1487    STK_Floating,
1488    STK_IntegralComplex,
1489    STK_FloatingComplex
1490  };
1491  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1492  ScalarTypeKind getScalarTypeKind() const;
1493
1494  /// isDependentType - Whether this type is a dependent type, meaning
1495  /// that its definition somehow depends on a template parameter
1496  /// (C++ [temp.dep.type]).
1497  bool isDependentType() const { return TypeBits.Dependent; }
1498
1499  /// \brief Determine whether this type is an instantiation-dependent type,
1500  /// meaning that the type involves a template parameter (even if the
1501  /// definition does not actually depend on the type substituted for that
1502  /// template parameter).
1503  bool isInstantiationDependentType() const {
1504    return TypeBits.InstantiationDependent;
1505  }
1506
1507  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1508  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1509
1510  /// \brief Whether this type involves a variable-length array type
1511  /// with a definite size.
1512  bool hasSizedVLAType() const;
1513
1514  /// \brief Whether this type is or contains a local or unnamed type.
1515  bool hasUnnamedOrLocalType() const;
1516
1517  bool isOverloadableType() const;
1518
1519  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1520  bool isElaboratedTypeSpecifier() const;
1521
1522  bool canDecayToPointerType() const;
1523
1524  /// hasPointerRepresentation - Whether this type is represented
1525  /// natively as a pointer; this includes pointers, references, block
1526  /// pointers, and Objective-C interface, qualified id, and qualified
1527  /// interface types, as well as nullptr_t.
1528  bool hasPointerRepresentation() const;
1529
1530  /// hasObjCPointerRepresentation - Whether this type can represent
1531  /// an objective pointer type for the purpose of GC'ability
1532  bool hasObjCPointerRepresentation() const;
1533
1534  /// \brief Determine whether this type has an integer representation
1535  /// of some sort, e.g., it is an integer type or a vector.
1536  bool hasIntegerRepresentation() const;
1537
1538  /// \brief Determine whether this type has an signed integer representation
1539  /// of some sort, e.g., it is an signed integer type or a vector.
1540  bool hasSignedIntegerRepresentation() const;
1541
1542  /// \brief Determine whether this type has an unsigned integer representation
1543  /// of some sort, e.g., it is an unsigned integer type or a vector.
1544  bool hasUnsignedIntegerRepresentation() const;
1545
1546  /// \brief Determine whether this type has a floating-point representation
1547  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1548  bool hasFloatingRepresentation() const;
1549
1550  // Type Checking Functions: Check to see if this type is structurally the
1551  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1552  // the best type we can.
1553  const RecordType *getAsStructureType() const;
1554  /// NOTE: getAs*ArrayType are methods on ASTContext.
1555  const RecordType *getAsUnionType() const;
1556  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1557  // The following is a convenience method that returns an ObjCObjectPointerType
1558  // for object declared using an interface.
1559  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1560  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1561  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1562  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1563  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
1564
1565  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1566  /// because the type is a RecordType or because it is the injected-class-name
1567  /// type of a class template or class template partial specialization.
1568  CXXRecordDecl *getAsCXXRecordDecl() const;
1569
1570  /// \brief Get the AutoType whose type will be deduced for a variable with
1571  /// an initializer of this type. This looks through declarators like pointer
1572  /// types, but not through decltype or typedefs.
1573  AutoType *getContainedAutoType() const;
1574
1575  /// Member-template getAs<specific type>'.  Look through sugar for
1576  /// an instance of <specific type>.   This scheme will eventually
1577  /// replace the specific getAsXXXX methods above.
1578  ///
1579  /// There are some specializations of this member template listed
1580  /// immediately following this class.
1581  template <typename T> const T *getAs() const;
1582
1583  /// A variant of getAs<> for array types which silently discards
1584  /// qualifiers from the outermost type.
1585  const ArrayType *getAsArrayTypeUnsafe() const;
1586
1587  /// Member-template castAs<specific type>.  Look through sugar for
1588  /// the underlying instance of <specific type>.
1589  ///
1590  /// This method has the same relationship to getAs<T> as cast<T> has
1591  /// to dyn_cast<T>; which is to say, the underlying type *must*
1592  /// have the intended type, and this method will never return null.
1593  template <typename T> const T *castAs() const;
1594
1595  /// A variant of castAs<> for array type which silently discards
1596  /// qualifiers from the outermost type.
1597  const ArrayType *castAsArrayTypeUnsafe() const;
1598
1599  /// getBaseElementTypeUnsafe - Get the base element type of this
1600  /// type, potentially discarding type qualifiers.  This method
1601  /// should never be used when type qualifiers are meaningful.
1602  const Type *getBaseElementTypeUnsafe() const;
1603
1604  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1605  /// element type of the array, potentially with type qualifiers missing.
1606  /// This method should never be used when type qualifiers are meaningful.
1607  const Type *getArrayElementTypeNoTypeQual() const;
1608
1609  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1610  /// pointer, this returns the respective pointee.
1611  QualType getPointeeType() const;
1612
1613  /// getUnqualifiedDesugaredType() - Return the specified type with
1614  /// any "sugar" removed from the type, removing any typedefs,
1615  /// typeofs, etc., as well as any qualifiers.
1616  const Type *getUnqualifiedDesugaredType() const;
1617
1618  /// More type predicates useful for type checking/promotion
1619  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1620
1621  /// isSignedIntegerType - Return true if this is an integer type that is
1622  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1623  /// or an enum decl which has a signed representation.
1624  bool isSignedIntegerType() const;
1625
1626  /// isUnsignedIntegerType - Return true if this is an integer type that is
1627  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1628  /// or an enum decl which has an unsigned representation.
1629  bool isUnsignedIntegerType() const;
1630
1631  /// Determines whether this is an integer type that is signed or an
1632  /// enumeration types whose underlying type is a signed integer type.
1633  bool isSignedIntegerOrEnumerationType() const;
1634
1635  /// Determines whether this is an integer type that is unsigned or an
1636  /// enumeration types whose underlying type is a unsigned integer type.
1637  bool isUnsignedIntegerOrEnumerationType() const;
1638
1639  /// isConstantSizeType - Return true if this is not a variable sized type,
1640  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1641  /// incomplete types.
1642  bool isConstantSizeType() const;
1643
1644  /// isSpecifierType - Returns true if this type can be represented by some
1645  /// set of type specifiers.
1646  bool isSpecifierType() const;
1647
1648  /// \brief Determine the linkage of this type.
1649  Linkage getLinkage() const;
1650
1651  /// \brief Determine the visibility of this type.
1652  Visibility getVisibility() const;
1653
1654  /// \brief Return true if the visibility was explicitly set is the code.
1655  bool isVisibilityExplicit() const;
1656
1657  /// \brief Determine the linkage and visibility of this type.
1658  std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
1659
1660  /// \brief Note that the linkage is no longer known.
1661  void ClearLinkageCache();
1662
1663  const char *getTypeClassName() const;
1664
1665  QualType getCanonicalTypeInternal() const {
1666    return CanonicalType;
1667  }
1668  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1669  void dump() const;
1670
1671  static bool classof(const Type *) { return true; }
1672
1673  friend class ASTReader;
1674  friend class ASTWriter;
1675};
1676
1677template <> inline const TypedefType *Type::getAs() const {
1678  return dyn_cast<TypedefType>(this);
1679}
1680
1681// We can do canonical leaf types faster, because we don't have to
1682// worry about preserving child type decoration.
1683#define TYPE(Class, Base)
1684#define LEAF_TYPE(Class) \
1685template <> inline const Class##Type *Type::getAs() const { \
1686  return dyn_cast<Class##Type>(CanonicalType); \
1687} \
1688template <> inline const Class##Type *Type::castAs() const { \
1689  return cast<Class##Type>(CanonicalType); \
1690}
1691#include "clang/AST/TypeNodes.def"
1692
1693
1694/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1695/// types are always canonical and have a literal name field.
1696class BuiltinType : public Type {
1697public:
1698  enum Kind {
1699#define BUILTIN_TYPE(Id, SingletonId) Id,
1700#define LAST_BUILTIN_TYPE(Id) LastKind = Id
1701#include "clang/AST/BuiltinTypes.def"
1702  };
1703
1704public:
1705  BuiltinType(Kind K)
1706    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1707           /*InstantiationDependent=*/(K == Dependent),
1708           /*VariablyModified=*/false,
1709           /*Unexpanded paramter pack=*/false) {
1710    BuiltinTypeBits.Kind = K;
1711  }
1712
1713  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1714  const char *getName(const PrintingPolicy &Policy) const;
1715
1716  bool isSugared() const { return false; }
1717  QualType desugar() const { return QualType(this, 0); }
1718
1719  bool isInteger() const {
1720    return getKind() >= Bool && getKind() <= Int128;
1721  }
1722
1723  bool isSignedInteger() const {
1724    return getKind() >= Char_S && getKind() <= Int128;
1725  }
1726
1727  bool isUnsignedInteger() const {
1728    return getKind() >= Bool && getKind() <= UInt128;
1729  }
1730
1731  bool isFloatingPoint() const {
1732    return getKind() >= Half && getKind() <= LongDouble;
1733  }
1734
1735  /// Determines whether the given kind corresponds to a placeholder type.
1736  static bool isPlaceholderTypeKind(Kind K) {
1737    return K >= Overload;
1738  }
1739
1740  /// Determines whether this type is a placeholder type, i.e. a type
1741  /// which cannot appear in arbitrary positions in a fully-formed
1742  /// expression.
1743  bool isPlaceholderType() const {
1744    return isPlaceholderTypeKind(getKind());
1745  }
1746
1747  /// Determines whether this type is a placeholder type other than
1748  /// Overload.  Most placeholder types require only syntactic
1749  /// information about their context in order to be resolved (e.g.
1750  /// whether it is a call expression), which means they can (and
1751  /// should) be resolved in an earlier "phase" of analysis.
1752  /// Overload expressions sometimes pick up further information
1753  /// from their context, like whether the context expects a
1754  /// specific function-pointer type, and so frequently need
1755  /// special treatment.
1756  bool isNonOverloadPlaceholderType() const {
1757    return getKind() > Overload;
1758  }
1759
1760  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1761  static bool classof(const BuiltinType *) { return true; }
1762};
1763
1764/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1765/// types (_Complex float etc) as well as the GCC integer complex extensions.
1766///
1767class ComplexType : public Type, public llvm::FoldingSetNode {
1768  QualType ElementType;
1769  ComplexType(QualType Element, QualType CanonicalPtr) :
1770    Type(Complex, CanonicalPtr, Element->isDependentType(),
1771         Element->isInstantiationDependentType(),
1772         Element->isVariablyModifiedType(),
1773         Element->containsUnexpandedParameterPack()),
1774    ElementType(Element) {
1775  }
1776  friend class ASTContext;  // ASTContext creates these.
1777
1778public:
1779  QualType getElementType() const { return ElementType; }
1780
1781  bool isSugared() const { return false; }
1782  QualType desugar() const { return QualType(this, 0); }
1783
1784  void Profile(llvm::FoldingSetNodeID &ID) {
1785    Profile(ID, getElementType());
1786  }
1787  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1788    ID.AddPointer(Element.getAsOpaquePtr());
1789  }
1790
1791  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1792  static bool classof(const ComplexType *) { return true; }
1793};
1794
1795/// ParenType - Sugar for parentheses used when specifying types.
1796///
1797class ParenType : public Type, public llvm::FoldingSetNode {
1798  QualType Inner;
1799
1800  ParenType(QualType InnerType, QualType CanonType) :
1801    Type(Paren, CanonType, InnerType->isDependentType(),
1802         InnerType->isInstantiationDependentType(),
1803         InnerType->isVariablyModifiedType(),
1804         InnerType->containsUnexpandedParameterPack()),
1805    Inner(InnerType) {
1806  }
1807  friend class ASTContext;  // ASTContext creates these.
1808
1809public:
1810
1811  QualType getInnerType() const { return Inner; }
1812
1813  bool isSugared() const { return true; }
1814  QualType desugar() const { return getInnerType(); }
1815
1816  void Profile(llvm::FoldingSetNodeID &ID) {
1817    Profile(ID, getInnerType());
1818  }
1819  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1820    Inner.Profile(ID);
1821  }
1822
1823  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1824  static bool classof(const ParenType *) { return true; }
1825};
1826
1827/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1828///
1829class PointerType : public Type, public llvm::FoldingSetNode {
1830  QualType PointeeType;
1831
1832  PointerType(QualType Pointee, QualType CanonicalPtr) :
1833    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1834         Pointee->isInstantiationDependentType(),
1835         Pointee->isVariablyModifiedType(),
1836         Pointee->containsUnexpandedParameterPack()),
1837    PointeeType(Pointee) {
1838  }
1839  friend class ASTContext;  // ASTContext creates these.
1840
1841public:
1842
1843  QualType getPointeeType() const { return PointeeType; }
1844
1845  bool isSugared() const { return false; }
1846  QualType desugar() const { return QualType(this, 0); }
1847
1848  void Profile(llvm::FoldingSetNodeID &ID) {
1849    Profile(ID, getPointeeType());
1850  }
1851  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1852    ID.AddPointer(Pointee.getAsOpaquePtr());
1853  }
1854
1855  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1856  static bool classof(const PointerType *) { return true; }
1857};
1858
1859/// BlockPointerType - pointer to a block type.
1860/// This type is to represent types syntactically represented as
1861/// "void (^)(int)", etc. Pointee is required to always be a function type.
1862///
1863class BlockPointerType : public Type, public llvm::FoldingSetNode {
1864  QualType PointeeType;  // Block is some kind of pointer type
1865  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1866    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1867         Pointee->isInstantiationDependentType(),
1868         Pointee->isVariablyModifiedType(),
1869         Pointee->containsUnexpandedParameterPack()),
1870    PointeeType(Pointee) {
1871  }
1872  friend class ASTContext;  // ASTContext creates these.
1873
1874public:
1875
1876  // Get the pointee type. Pointee is required to always be a function type.
1877  QualType getPointeeType() const { return PointeeType; }
1878
1879  bool isSugared() const { return false; }
1880  QualType desugar() const { return QualType(this, 0); }
1881
1882  void Profile(llvm::FoldingSetNodeID &ID) {
1883      Profile(ID, getPointeeType());
1884  }
1885  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1886      ID.AddPointer(Pointee.getAsOpaquePtr());
1887  }
1888
1889  static bool classof(const Type *T) {
1890    return T->getTypeClass() == BlockPointer;
1891  }
1892  static bool classof(const BlockPointerType *) { return true; }
1893};
1894
1895/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1896///
1897class ReferenceType : public Type, public llvm::FoldingSetNode {
1898  QualType PointeeType;
1899
1900protected:
1901  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1902                bool SpelledAsLValue) :
1903    Type(tc, CanonicalRef, Referencee->isDependentType(),
1904         Referencee->isInstantiationDependentType(),
1905         Referencee->isVariablyModifiedType(),
1906         Referencee->containsUnexpandedParameterPack()),
1907    PointeeType(Referencee)
1908  {
1909    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
1910    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
1911  }
1912
1913public:
1914  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
1915  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
1916
1917  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1918  QualType getPointeeType() const {
1919    // FIXME: this might strip inner qualifiers; okay?
1920    const ReferenceType *T = this;
1921    while (T->isInnerRef())
1922      T = T->PointeeType->castAs<ReferenceType>();
1923    return T->PointeeType;
1924  }
1925
1926  void Profile(llvm::FoldingSetNodeID &ID) {
1927    Profile(ID, PointeeType, isSpelledAsLValue());
1928  }
1929  static void Profile(llvm::FoldingSetNodeID &ID,
1930                      QualType Referencee,
1931                      bool SpelledAsLValue) {
1932    ID.AddPointer(Referencee.getAsOpaquePtr());
1933    ID.AddBoolean(SpelledAsLValue);
1934  }
1935
1936  static bool classof(const Type *T) {
1937    return T->getTypeClass() == LValueReference ||
1938           T->getTypeClass() == RValueReference;
1939  }
1940  static bool classof(const ReferenceType *) { return true; }
1941};
1942
1943/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1944///
1945class LValueReferenceType : public ReferenceType {
1946  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1947                      bool SpelledAsLValue) :
1948    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1949  {}
1950  friend class ASTContext; // ASTContext creates these
1951public:
1952  bool isSugared() const { return false; }
1953  QualType desugar() const { return QualType(this, 0); }
1954
1955  static bool classof(const Type *T) {
1956    return T->getTypeClass() == LValueReference;
1957  }
1958  static bool classof(const LValueReferenceType *) { return true; }
1959};
1960
1961/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1962///
1963class RValueReferenceType : public ReferenceType {
1964  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1965    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1966  }
1967  friend class ASTContext; // ASTContext creates these
1968public:
1969  bool isSugared() const { return false; }
1970  QualType desugar() const { return QualType(this, 0); }
1971
1972  static bool classof(const Type *T) {
1973    return T->getTypeClass() == RValueReference;
1974  }
1975  static bool classof(const RValueReferenceType *) { return true; }
1976};
1977
1978/// MemberPointerType - C++ 8.3.3 - Pointers to members
1979///
1980class MemberPointerType : public Type, public llvm::FoldingSetNode {
1981  QualType PointeeType;
1982  /// The class of which the pointee is a member. Must ultimately be a
1983  /// RecordType, but could be a typedef or a template parameter too.
1984  const Type *Class;
1985
1986  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1987    Type(MemberPointer, CanonicalPtr,
1988         Cls->isDependentType() || Pointee->isDependentType(),
1989         (Cls->isInstantiationDependentType() ||
1990          Pointee->isInstantiationDependentType()),
1991         Pointee->isVariablyModifiedType(),
1992         (Cls->containsUnexpandedParameterPack() ||
1993          Pointee->containsUnexpandedParameterPack())),
1994    PointeeType(Pointee), Class(Cls) {
1995  }
1996  friend class ASTContext; // ASTContext creates these.
1997
1998public:
1999  QualType getPointeeType() const { return PointeeType; }
2000
2001  /// Returns true if the member type (i.e. the pointee type) is a
2002  /// function type rather than a data-member type.
2003  bool isMemberFunctionPointer() const {
2004    return PointeeType->isFunctionProtoType();
2005  }
2006
2007  /// Returns true if the member type (i.e. the pointee type) is a
2008  /// data type rather than a function type.
2009  bool isMemberDataPointer() const {
2010    return !PointeeType->isFunctionProtoType();
2011  }
2012
2013  const Type *getClass() const { return Class; }
2014
2015  bool isSugared() const { return false; }
2016  QualType desugar() const { return QualType(this, 0); }
2017
2018  void Profile(llvm::FoldingSetNodeID &ID) {
2019    Profile(ID, getPointeeType(), getClass());
2020  }
2021  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2022                      const Type *Class) {
2023    ID.AddPointer(Pointee.getAsOpaquePtr());
2024    ID.AddPointer(Class);
2025  }
2026
2027  static bool classof(const Type *T) {
2028    return T->getTypeClass() == MemberPointer;
2029  }
2030  static bool classof(const MemberPointerType *) { return true; }
2031};
2032
2033/// ArrayType - C99 6.7.5.2 - Array Declarators.
2034///
2035class ArrayType : public Type, public llvm::FoldingSetNode {
2036public:
2037  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
2038  /// an array with a static size (e.g. int X[static 4]), or an array
2039  /// with a star size (e.g. int X[*]).
2040  /// 'static' is only allowed on function parameters.
2041  enum ArraySizeModifier {
2042    Normal, Static, Star
2043  };
2044private:
2045  /// ElementType - The element type of the array.
2046  QualType ElementType;
2047
2048protected:
2049  // C++ [temp.dep.type]p1:
2050  //   A type is dependent if it is...
2051  //     - an array type constructed from any dependent type or whose
2052  //       size is specified by a constant expression that is
2053  //       value-dependent,
2054  ArrayType(TypeClass tc, QualType et, QualType can,
2055            ArraySizeModifier sm, unsigned tq,
2056            bool ContainsUnexpandedParameterPack)
2057    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2058           et->isInstantiationDependentType() || tc == DependentSizedArray,
2059           (tc == VariableArray || et->isVariablyModifiedType()),
2060           ContainsUnexpandedParameterPack),
2061      ElementType(et) {
2062    ArrayTypeBits.IndexTypeQuals = tq;
2063    ArrayTypeBits.SizeModifier = sm;
2064  }
2065
2066  friend class ASTContext;  // ASTContext creates these.
2067
2068public:
2069  QualType getElementType() const { return ElementType; }
2070  ArraySizeModifier getSizeModifier() const {
2071    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2072  }
2073  Qualifiers getIndexTypeQualifiers() const {
2074    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2075  }
2076  unsigned getIndexTypeCVRQualifiers() const {
2077    return ArrayTypeBits.IndexTypeQuals;
2078  }
2079
2080  static bool classof(const Type *T) {
2081    return T->getTypeClass() == ConstantArray ||
2082           T->getTypeClass() == VariableArray ||
2083           T->getTypeClass() == IncompleteArray ||
2084           T->getTypeClass() == DependentSizedArray;
2085  }
2086  static bool classof(const ArrayType *) { return true; }
2087};
2088
2089/// ConstantArrayType - This class represents the canonical version of
2090/// C arrays with a specified constant size.  For example, the canonical
2091/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
2092/// type is 'int' and the size is 404.
2093class ConstantArrayType : public ArrayType {
2094  llvm::APInt Size; // Allows us to unique the type.
2095
2096  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2097                    ArraySizeModifier sm, unsigned tq)
2098    : ArrayType(ConstantArray, et, can, sm, tq,
2099                et->containsUnexpandedParameterPack()),
2100      Size(size) {}
2101protected:
2102  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2103                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2104    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2105      Size(size) {}
2106  friend class ASTContext;  // ASTContext creates these.
2107public:
2108  const llvm::APInt &getSize() const { return Size; }
2109  bool isSugared() const { return false; }
2110  QualType desugar() const { return QualType(this, 0); }
2111
2112
2113  /// \brief Determine the number of bits required to address a member of
2114  // an array with the given element type and number of elements.
2115  static unsigned getNumAddressingBits(ASTContext &Context,
2116                                       QualType ElementType,
2117                                       const llvm::APInt &NumElements);
2118
2119  /// \brief Determine the maximum number of active bits that an array's size
2120  /// can require, which limits the maximum size of the array.
2121  static unsigned getMaxSizeBits(ASTContext &Context);
2122
2123  void Profile(llvm::FoldingSetNodeID &ID) {
2124    Profile(ID, getElementType(), getSize(),
2125            getSizeModifier(), getIndexTypeCVRQualifiers());
2126  }
2127  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2128                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2129                      unsigned TypeQuals) {
2130    ID.AddPointer(ET.getAsOpaquePtr());
2131    ID.AddInteger(ArraySize.getZExtValue());
2132    ID.AddInteger(SizeMod);
2133    ID.AddInteger(TypeQuals);
2134  }
2135  static bool classof(const Type *T) {
2136    return T->getTypeClass() == ConstantArray;
2137  }
2138  static bool classof(const ConstantArrayType *) { return true; }
2139};
2140
2141/// IncompleteArrayType - This class represents C arrays with an unspecified
2142/// size.  For example 'int A[]' has an IncompleteArrayType where the element
2143/// type is 'int' and the size is unspecified.
2144class IncompleteArrayType : public ArrayType {
2145
2146  IncompleteArrayType(QualType et, QualType can,
2147                      ArraySizeModifier sm, unsigned tq)
2148    : ArrayType(IncompleteArray, et, can, sm, tq,
2149                et->containsUnexpandedParameterPack()) {}
2150  friend class ASTContext;  // ASTContext creates these.
2151public:
2152  bool isSugared() const { return false; }
2153  QualType desugar() const { return QualType(this, 0); }
2154
2155  static bool classof(const Type *T) {
2156    return T->getTypeClass() == IncompleteArray;
2157  }
2158  static bool classof(const IncompleteArrayType *) { return true; }
2159
2160  friend class StmtIteratorBase;
2161
2162  void Profile(llvm::FoldingSetNodeID &ID) {
2163    Profile(ID, getElementType(), getSizeModifier(),
2164            getIndexTypeCVRQualifiers());
2165  }
2166
2167  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2168                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2169    ID.AddPointer(ET.getAsOpaquePtr());
2170    ID.AddInteger(SizeMod);
2171    ID.AddInteger(TypeQuals);
2172  }
2173};
2174
2175/// VariableArrayType - This class represents C arrays with a specified size
2176/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
2177/// Since the size expression is an arbitrary expression, we store it as such.
2178///
2179/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2180/// should not be: two lexically equivalent variable array types could mean
2181/// different things, for example, these variables do not have the same type
2182/// dynamically:
2183///
2184/// void foo(int x) {
2185///   int Y[x];
2186///   ++x;
2187///   int Z[x];
2188/// }
2189///
2190class VariableArrayType : public ArrayType {
2191  /// SizeExpr - An assignment expression. VLA's are only permitted within
2192  /// a function block.
2193  Stmt *SizeExpr;
2194  /// Brackets - The left and right array brackets.
2195  SourceRange Brackets;
2196
2197  VariableArrayType(QualType et, QualType can, Expr *e,
2198                    ArraySizeModifier sm, unsigned tq,
2199                    SourceRange brackets)
2200    : ArrayType(VariableArray, et, can, sm, tq,
2201                et->containsUnexpandedParameterPack()),
2202      SizeExpr((Stmt*) e), Brackets(brackets) {}
2203  friend class ASTContext;  // ASTContext creates these.
2204
2205public:
2206  Expr *getSizeExpr() const {
2207    // We use C-style casts instead of cast<> here because we do not wish
2208    // to have a dependency of Type.h on Stmt.h/Expr.h.
2209    return (Expr*) SizeExpr;
2210  }
2211  SourceRange getBracketsRange() const { return Brackets; }
2212  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2213  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2214
2215  bool isSugared() const { return false; }
2216  QualType desugar() const { return QualType(this, 0); }
2217
2218  static bool classof(const Type *T) {
2219    return T->getTypeClass() == VariableArray;
2220  }
2221  static bool classof(const VariableArrayType *) { return true; }
2222
2223  friend class StmtIteratorBase;
2224
2225  void Profile(llvm::FoldingSetNodeID &ID) {
2226    llvm_unreachable("Cannot unique VariableArrayTypes.");
2227  }
2228};
2229
2230/// DependentSizedArrayType - This type represents an array type in
2231/// C++ whose size is a value-dependent expression. For example:
2232///
2233/// \code
2234/// template<typename T, int Size>
2235/// class array {
2236///   T data[Size];
2237/// };
2238/// \endcode
2239///
2240/// For these types, we won't actually know what the array bound is
2241/// until template instantiation occurs, at which point this will
2242/// become either a ConstantArrayType or a VariableArrayType.
2243class DependentSizedArrayType : public ArrayType {
2244  const ASTContext &Context;
2245
2246  /// \brief An assignment expression that will instantiate to the
2247  /// size of the array.
2248  ///
2249  /// The expression itself might be NULL, in which case the array
2250  /// type will have its size deduced from an initializer.
2251  Stmt *SizeExpr;
2252
2253  /// Brackets - The left and right array brackets.
2254  SourceRange Brackets;
2255
2256  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2257                          Expr *e, ArraySizeModifier sm, unsigned tq,
2258                          SourceRange brackets);
2259
2260  friend class ASTContext;  // ASTContext creates these.
2261
2262public:
2263  Expr *getSizeExpr() const {
2264    // We use C-style casts instead of cast<> here because we do not wish
2265    // to have a dependency of Type.h on Stmt.h/Expr.h.
2266    return (Expr*) SizeExpr;
2267  }
2268  SourceRange getBracketsRange() const { return Brackets; }
2269  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2270  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2271
2272  bool isSugared() const { return false; }
2273  QualType desugar() const { return QualType(this, 0); }
2274
2275  static bool classof(const Type *T) {
2276    return T->getTypeClass() == DependentSizedArray;
2277  }
2278  static bool classof(const DependentSizedArrayType *) { return true; }
2279
2280  friend class StmtIteratorBase;
2281
2282
2283  void Profile(llvm::FoldingSetNodeID &ID) {
2284    Profile(ID, Context, getElementType(),
2285            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2286  }
2287
2288  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2289                      QualType ET, ArraySizeModifier SizeMod,
2290                      unsigned TypeQuals, Expr *E);
2291};
2292
2293/// DependentSizedExtVectorType - This type represent an extended vector type
2294/// where either the type or size is dependent. For example:
2295/// @code
2296/// template<typename T, int Size>
2297/// class vector {
2298///   typedef T __attribute__((ext_vector_type(Size))) type;
2299/// }
2300/// @endcode
2301class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2302  const ASTContext &Context;
2303  Expr *SizeExpr;
2304  /// ElementType - The element type of the array.
2305  QualType ElementType;
2306  SourceLocation loc;
2307
2308  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2309                              QualType can, Expr *SizeExpr, SourceLocation loc);
2310
2311  friend class ASTContext;
2312
2313public:
2314  Expr *getSizeExpr() const { return SizeExpr; }
2315  QualType getElementType() const { return ElementType; }
2316  SourceLocation getAttributeLoc() const { return loc; }
2317
2318  bool isSugared() const { return false; }
2319  QualType desugar() const { return QualType(this, 0); }
2320
2321  static bool classof(const Type *T) {
2322    return T->getTypeClass() == DependentSizedExtVector;
2323  }
2324  static bool classof(const DependentSizedExtVectorType *) { return true; }
2325
2326  void Profile(llvm::FoldingSetNodeID &ID) {
2327    Profile(ID, Context, getElementType(), getSizeExpr());
2328  }
2329
2330  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2331                      QualType ElementType, Expr *SizeExpr);
2332};
2333
2334
2335/// VectorType - GCC generic vector type. This type is created using
2336/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2337/// bytes; or from an Altivec __vector or vector declaration.
2338/// Since the constructor takes the number of vector elements, the
2339/// client is responsible for converting the size into the number of elements.
2340class VectorType : public Type, public llvm::FoldingSetNode {
2341public:
2342  enum VectorKind {
2343    GenericVector,  // not a target-specific vector type
2344    AltiVecVector,  // is AltiVec vector
2345    AltiVecPixel,   // is AltiVec 'vector Pixel'
2346    AltiVecBool,    // is AltiVec 'vector bool ...'
2347    NeonVector,     // is ARM Neon vector
2348    NeonPolyVector  // is ARM Neon polynomial vector
2349  };
2350protected:
2351  /// ElementType - The element type of the vector.
2352  QualType ElementType;
2353
2354  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2355             VectorKind vecKind);
2356
2357  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2358             QualType canonType, VectorKind vecKind);
2359
2360  friend class ASTContext;  // ASTContext creates these.
2361
2362public:
2363
2364  QualType getElementType() const { return ElementType; }
2365  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2366
2367  bool isSugared() const { return false; }
2368  QualType desugar() const { return QualType(this, 0); }
2369
2370  VectorKind getVectorKind() const {
2371    return VectorKind(VectorTypeBits.VecKind);
2372  }
2373
2374  void Profile(llvm::FoldingSetNodeID &ID) {
2375    Profile(ID, getElementType(), getNumElements(),
2376            getTypeClass(), getVectorKind());
2377  }
2378  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2379                      unsigned NumElements, TypeClass TypeClass,
2380                      VectorKind VecKind) {
2381    ID.AddPointer(ElementType.getAsOpaquePtr());
2382    ID.AddInteger(NumElements);
2383    ID.AddInteger(TypeClass);
2384    ID.AddInteger(VecKind);
2385  }
2386
2387  static bool classof(const Type *T) {
2388    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2389  }
2390  static bool classof(const VectorType *) { return true; }
2391};
2392
2393/// ExtVectorType - Extended vector type. This type is created using
2394/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2395/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2396/// class enables syntactic extensions, like Vector Components for accessing
2397/// points, colors, and textures (modeled after OpenGL Shading Language).
2398class ExtVectorType : public VectorType {
2399  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2400    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2401  friend class ASTContext;  // ASTContext creates these.
2402public:
2403  static int getPointAccessorIdx(char c) {
2404    switch (c) {
2405    default: return -1;
2406    case 'x': return 0;
2407    case 'y': return 1;
2408    case 'z': return 2;
2409    case 'w': return 3;
2410    }
2411  }
2412  static int getNumericAccessorIdx(char c) {
2413    switch (c) {
2414      default: return -1;
2415      case '0': return 0;
2416      case '1': return 1;
2417      case '2': return 2;
2418      case '3': return 3;
2419      case '4': return 4;
2420      case '5': return 5;
2421      case '6': return 6;
2422      case '7': return 7;
2423      case '8': return 8;
2424      case '9': return 9;
2425      case 'A':
2426      case 'a': return 10;
2427      case 'B':
2428      case 'b': return 11;
2429      case 'C':
2430      case 'c': return 12;
2431      case 'D':
2432      case 'd': return 13;
2433      case 'E':
2434      case 'e': return 14;
2435      case 'F':
2436      case 'f': return 15;
2437    }
2438  }
2439
2440  static int getAccessorIdx(char c) {
2441    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2442    return getNumericAccessorIdx(c);
2443  }
2444
2445  bool isAccessorWithinNumElements(char c) const {
2446    if (int idx = getAccessorIdx(c)+1)
2447      return unsigned(idx-1) < getNumElements();
2448    return false;
2449  }
2450  bool isSugared() const { return false; }
2451  QualType desugar() const { return QualType(this, 0); }
2452
2453  static bool classof(const Type *T) {
2454    return T->getTypeClass() == ExtVector;
2455  }
2456  static bool classof(const ExtVectorType *) { return true; }
2457};
2458
2459/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2460/// class of FunctionNoProtoType and FunctionProtoType.
2461///
2462class FunctionType : public Type {
2463  // The type returned by the function.
2464  QualType ResultType;
2465
2466 public:
2467  /// ExtInfo - A class which abstracts out some details necessary for
2468  /// making a call.
2469  ///
2470  /// It is not actually used directly for storing this information in
2471  /// a FunctionType, although FunctionType does currently use the
2472  /// same bit-pattern.
2473  ///
2474  // If you add a field (say Foo), other than the obvious places (both,
2475  // constructors, compile failures), what you need to update is
2476  // * Operator==
2477  // * getFoo
2478  // * withFoo
2479  // * functionType. Add Foo, getFoo.
2480  // * ASTContext::getFooType
2481  // * ASTContext::mergeFunctionTypes
2482  // * FunctionNoProtoType::Profile
2483  // * FunctionProtoType::Profile
2484  // * TypePrinter::PrintFunctionProto
2485  // * AST read and write
2486  // * Codegen
2487  class ExtInfo {
2488    // Feel free to rearrange or add bits, but if you go over 8,
2489    // you'll need to adjust both the Bits field below and
2490    // Type::FunctionTypeBitfields.
2491
2492    //   |  CC  |noreturn|produces|regparm|
2493    //   |0 .. 2|   3    |    4   | 5 .. 7|
2494    //
2495    // regparm is either 0 (no regparm attribute) or the regparm value+1.
2496    enum { CallConvMask = 0x7 };
2497    enum { NoReturnMask = 0x8 };
2498    enum { ProducesResultMask = 0x10 };
2499    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2500           RegParmOffset = 5 }; // Assumed to be the last field
2501
2502    uint16_t Bits;
2503
2504    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2505
2506    friend class FunctionType;
2507
2508   public:
2509    // Constructor with no defaults. Use this when you know that you
2510    // have all the elements (when reading an AST file for example).
2511    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2512            bool producesResult) {
2513      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2514      Bits = ((unsigned) cc) |
2515             (noReturn ? NoReturnMask : 0) |
2516             (producesResult ? ProducesResultMask : 0) |
2517             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2518    }
2519
2520    // Constructor with all defaults. Use when for example creating a
2521    // function know to use defaults.
2522    ExtInfo() : Bits(0) {}
2523
2524    bool getNoReturn() const { return Bits & NoReturnMask; }
2525    bool getProducesResult() const { return Bits & ProducesResultMask; }
2526    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2527    unsigned getRegParm() const {
2528      unsigned RegParm = Bits >> RegParmOffset;
2529      if (RegParm > 0)
2530        --RegParm;
2531      return RegParm;
2532    }
2533    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2534
2535    bool operator==(ExtInfo Other) const {
2536      return Bits == Other.Bits;
2537    }
2538    bool operator!=(ExtInfo Other) const {
2539      return Bits != Other.Bits;
2540    }
2541
2542    // Note that we don't have setters. That is by design, use
2543    // the following with methods instead of mutating these objects.
2544
2545    ExtInfo withNoReturn(bool noReturn) const {
2546      if (noReturn)
2547        return ExtInfo(Bits | NoReturnMask);
2548      else
2549        return ExtInfo(Bits & ~NoReturnMask);
2550    }
2551
2552    ExtInfo withProducesResult(bool producesResult) const {
2553      if (producesResult)
2554        return ExtInfo(Bits | ProducesResultMask);
2555      else
2556        return ExtInfo(Bits & ~ProducesResultMask);
2557    }
2558
2559    ExtInfo withRegParm(unsigned RegParm) const {
2560      assert(RegParm < 7 && "Invalid regparm value");
2561      return ExtInfo((Bits & ~RegParmMask) |
2562                     ((RegParm + 1) << RegParmOffset));
2563    }
2564
2565    ExtInfo withCallingConv(CallingConv cc) const {
2566      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2567    }
2568
2569    void Profile(llvm::FoldingSetNodeID &ID) const {
2570      ID.AddInteger(Bits);
2571    }
2572  };
2573
2574protected:
2575  FunctionType(TypeClass tc, QualType res, bool variadic,
2576               unsigned typeQuals, RefQualifierKind RefQualifier,
2577               QualType Canonical, bool Dependent,
2578               bool InstantiationDependent,
2579               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2580               ExtInfo Info)
2581    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
2582           ContainsUnexpandedParameterPack),
2583      ResultType(res) {
2584    FunctionTypeBits.ExtInfo = Info.Bits;
2585    FunctionTypeBits.Variadic = variadic;
2586    FunctionTypeBits.TypeQuals = typeQuals;
2587    FunctionTypeBits.RefQualifier = static_cast<unsigned>(RefQualifier);
2588  }
2589  bool isVariadic() const { return FunctionTypeBits.Variadic; }
2590  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2591
2592  RefQualifierKind getRefQualifier() const {
2593    return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
2594  }
2595
2596public:
2597
2598  QualType getResultType() const { return ResultType; }
2599
2600  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2601  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2602  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2603  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2604  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2605
2606  /// \brief Determine the type of an expression that calls a function of
2607  /// this type.
2608  QualType getCallResultType(ASTContext &Context) const {
2609    return getResultType().getNonLValueExprType(Context);
2610  }
2611
2612  static StringRef getNameForCallConv(CallingConv CC);
2613
2614  static bool classof(const Type *T) {
2615    return T->getTypeClass() == FunctionNoProto ||
2616           T->getTypeClass() == FunctionProto;
2617  }
2618  static bool classof(const FunctionType *) { return true; }
2619};
2620
2621/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2622/// no information available about its arguments.
2623class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2624  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2625    : FunctionType(FunctionNoProto, Result, false, 0, RQ_None, Canonical,
2626                   /*Dependent=*/false, /*InstantiationDependent=*/false,
2627                   Result->isVariablyModifiedType(),
2628                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2629
2630  friend class ASTContext;  // ASTContext creates these.
2631
2632public:
2633  // No additional state past what FunctionType provides.
2634
2635  bool isSugared() const { return false; }
2636  QualType desugar() const { return QualType(this, 0); }
2637
2638  void Profile(llvm::FoldingSetNodeID &ID) {
2639    Profile(ID, getResultType(), getExtInfo());
2640  }
2641  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2642                      ExtInfo Info) {
2643    Info.Profile(ID);
2644    ID.AddPointer(ResultType.getAsOpaquePtr());
2645  }
2646
2647  static bool classof(const Type *T) {
2648    return T->getTypeClass() == FunctionNoProto;
2649  }
2650  static bool classof(const FunctionNoProtoType *) { return true; }
2651};
2652
2653/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2654/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2655/// arguments, not as having a single void argument. Such a type can have an
2656/// exception specification, but this specification is not part of the canonical
2657/// type.
2658class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2659public:
2660  /// ExtProtoInfo - Extra information about a function prototype.
2661  struct ExtProtoInfo {
2662    ExtProtoInfo() :
2663      Variadic(false), ExceptionSpecType(EST_None), TypeQuals(0),
2664      RefQualifier(RQ_None), NumExceptions(0), Exceptions(0), NoexceptExpr(0),
2665      ConsumedArguments(0) {}
2666
2667    FunctionType::ExtInfo ExtInfo;
2668    bool Variadic;
2669    ExceptionSpecificationType ExceptionSpecType;
2670    unsigned char TypeQuals;
2671    RefQualifierKind RefQualifier;
2672    unsigned NumExceptions;
2673    const QualType *Exceptions;
2674    Expr *NoexceptExpr;
2675    const bool *ConsumedArguments;
2676  };
2677
2678private:
2679  /// \brief Determine whether there are any argument types that
2680  /// contain an unexpanded parameter pack.
2681  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2682                                                 unsigned numArgs) {
2683    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2684      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2685        return true;
2686
2687    return false;
2688  }
2689
2690  FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
2691                    QualType canonical, const ExtProtoInfo &epi);
2692
2693  /// NumArgs - The number of arguments this function has, not counting '...'.
2694  unsigned NumArgs : 19;
2695
2696  /// NumExceptions - The number of types in the exception spec, if any.
2697  unsigned NumExceptions : 9;
2698
2699  /// ExceptionSpecType - The type of exception specification this function has.
2700  unsigned ExceptionSpecType : 3;
2701
2702  /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
2703  unsigned HasAnyConsumedArgs : 1;
2704
2705  // ArgInfo - There is an variable size array after the class in memory that
2706  // holds the argument types.
2707
2708  // Exceptions - There is another variable size array after ArgInfo that
2709  // holds the exception types.
2710
2711  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2712  // to the expression in the noexcept() specifier.
2713
2714  // ConsumedArgs - A variable size array, following Exceptions
2715  // and of length NumArgs, holding flags indicating which arguments
2716  // are consumed.  This only appears if HasAnyConsumedArgs is true.
2717
2718  friend class ASTContext;  // ASTContext creates these.
2719
2720  const bool *getConsumedArgsBuffer() const {
2721    assert(hasAnyConsumedArgs());
2722
2723    // Find the end of the exceptions.
2724    Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
2725    if (getExceptionSpecType() != EST_ComputedNoexcept)
2726      eh_end += NumExceptions;
2727    else
2728      eh_end += 1; // NoexceptExpr
2729
2730    return reinterpret_cast<const bool*>(eh_end);
2731  }
2732
2733public:
2734  unsigned getNumArgs() const { return NumArgs; }
2735  QualType getArgType(unsigned i) const {
2736    assert(i < NumArgs && "Invalid argument number!");
2737    return arg_type_begin()[i];
2738  }
2739
2740  ExtProtoInfo getExtProtoInfo() const {
2741    ExtProtoInfo EPI;
2742    EPI.ExtInfo = getExtInfo();
2743    EPI.Variadic = isVariadic();
2744    EPI.ExceptionSpecType = getExceptionSpecType();
2745    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2746    EPI.RefQualifier = getRefQualifier();
2747    if (EPI.ExceptionSpecType == EST_Dynamic) {
2748      EPI.NumExceptions = NumExceptions;
2749      EPI.Exceptions = exception_begin();
2750    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2751      EPI.NoexceptExpr = getNoexceptExpr();
2752    }
2753    if (hasAnyConsumedArgs())
2754      EPI.ConsumedArguments = getConsumedArgsBuffer();
2755    return EPI;
2756  }
2757
2758  /// \brief Get the kind of exception specification on this function.
2759  ExceptionSpecificationType getExceptionSpecType() const {
2760    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2761  }
2762  /// \brief Return whether this function has any kind of exception spec.
2763  bool hasExceptionSpec() const {
2764    return getExceptionSpecType() != EST_None;
2765  }
2766  /// \brief Return whether this function has a dynamic (throw) exception spec.
2767  bool hasDynamicExceptionSpec() const {
2768    return isDynamicExceptionSpec(getExceptionSpecType());
2769  }
2770  /// \brief Return whether this function has a noexcept exception spec.
2771  bool hasNoexceptExceptionSpec() const {
2772    return isNoexceptExceptionSpec(getExceptionSpecType());
2773  }
2774  /// \brief Result type of getNoexceptSpec().
2775  enum NoexceptResult {
2776    NR_NoNoexcept,  ///< There is no noexcept specifier.
2777    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2778    NR_Dependent,   ///< The noexcept specifier is dependent.
2779    NR_Throw,       ///< The noexcept specifier evaluates to false.
2780    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2781  };
2782  /// \brief Get the meaning of the noexcept spec on this function, if any.
2783  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2784  unsigned getNumExceptions() const { return NumExceptions; }
2785  QualType getExceptionType(unsigned i) const {
2786    assert(i < NumExceptions && "Invalid exception number!");
2787    return exception_begin()[i];
2788  }
2789  Expr *getNoexceptExpr() const {
2790    if (getExceptionSpecType() != EST_ComputedNoexcept)
2791      return 0;
2792    // NoexceptExpr sits where the arguments end.
2793    return *reinterpret_cast<Expr *const *>(arg_type_end());
2794  }
2795  bool isNothrow(ASTContext &Ctx) const {
2796    ExceptionSpecificationType EST = getExceptionSpecType();
2797    assert(EST != EST_Delayed);
2798    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2799      return true;
2800    if (EST != EST_ComputedNoexcept)
2801      return false;
2802    return getNoexceptSpec(Ctx) == NR_Nothrow;
2803  }
2804
2805  using FunctionType::isVariadic;
2806
2807  /// \brief Determines whether this function prototype contains a
2808  /// parameter pack at the end.
2809  ///
2810  /// A function template whose last parameter is a parameter pack can be
2811  /// called with an arbitrary number of arguments, much like a variadic
2812  /// function. However,
2813  bool isTemplateVariadic() const;
2814
2815  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2816
2817
2818  /// \brief Retrieve the ref-qualifier associated with this function type.
2819  RefQualifierKind getRefQualifier() const {
2820    return FunctionType::getRefQualifier();
2821  }
2822
2823  typedef const QualType *arg_type_iterator;
2824  arg_type_iterator arg_type_begin() const {
2825    return reinterpret_cast<const QualType *>(this+1);
2826  }
2827  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2828
2829  typedef const QualType *exception_iterator;
2830  exception_iterator exception_begin() const {
2831    // exceptions begin where arguments end
2832    return arg_type_end();
2833  }
2834  exception_iterator exception_end() const {
2835    if (getExceptionSpecType() != EST_Dynamic)
2836      return exception_begin();
2837    return exception_begin() + NumExceptions;
2838  }
2839
2840  bool hasAnyConsumedArgs() const {
2841    return HasAnyConsumedArgs;
2842  }
2843  bool isArgConsumed(unsigned I) const {
2844    assert(I < getNumArgs() && "argument index out of range!");
2845    if (hasAnyConsumedArgs())
2846      return getConsumedArgsBuffer()[I];
2847    return false;
2848  }
2849
2850  bool isSugared() const { return false; }
2851  QualType desugar() const { return QualType(this, 0); }
2852
2853  static bool classof(const Type *T) {
2854    return T->getTypeClass() == FunctionProto;
2855  }
2856  static bool classof(const FunctionProtoType *) { return true; }
2857
2858  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
2859  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2860                      arg_type_iterator ArgTys, unsigned NumArgs,
2861                      const ExtProtoInfo &EPI, const ASTContext &Context);
2862};
2863
2864
2865/// \brief Represents the dependent type named by a dependently-scoped
2866/// typename using declaration, e.g.
2867///   using typename Base<T>::foo;
2868/// Template instantiation turns these into the underlying type.
2869class UnresolvedUsingType : public Type {
2870  UnresolvedUsingTypenameDecl *Decl;
2871
2872  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2873    : Type(UnresolvedUsing, QualType(), true, true, false,
2874           /*ContainsUnexpandedParameterPack=*/false),
2875      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2876  friend class ASTContext; // ASTContext creates these.
2877public:
2878
2879  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2880
2881  bool isSugared() const { return false; }
2882  QualType desugar() const { return QualType(this, 0); }
2883
2884  static bool classof(const Type *T) {
2885    return T->getTypeClass() == UnresolvedUsing;
2886  }
2887  static bool classof(const UnresolvedUsingType *) { return true; }
2888
2889  void Profile(llvm::FoldingSetNodeID &ID) {
2890    return Profile(ID, Decl);
2891  }
2892  static void Profile(llvm::FoldingSetNodeID &ID,
2893                      UnresolvedUsingTypenameDecl *D) {
2894    ID.AddPointer(D);
2895  }
2896};
2897
2898
2899class TypedefType : public Type {
2900  TypedefNameDecl *Decl;
2901protected:
2902  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
2903    : Type(tc, can, can->isDependentType(),
2904           can->isInstantiationDependentType(),
2905           can->isVariablyModifiedType(),
2906           /*ContainsUnexpandedParameterPack=*/false),
2907      Decl(const_cast<TypedefNameDecl*>(D)) {
2908    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2909  }
2910  friend class ASTContext;  // ASTContext creates these.
2911public:
2912
2913  TypedefNameDecl *getDecl() const { return Decl; }
2914
2915  bool isSugared() const { return true; }
2916  QualType desugar() const;
2917
2918  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2919  static bool classof(const TypedefType *) { return true; }
2920};
2921
2922/// TypeOfExprType (GCC extension).
2923class TypeOfExprType : public Type {
2924  Expr *TOExpr;
2925
2926protected:
2927  TypeOfExprType(Expr *E, QualType can = QualType());
2928  friend class ASTContext;  // ASTContext creates these.
2929public:
2930  Expr *getUnderlyingExpr() const { return TOExpr; }
2931
2932  /// \brief Remove a single level of sugar.
2933  QualType desugar() const;
2934
2935  /// \brief Returns whether this type directly provides sugar.
2936  bool isSugared() const;
2937
2938  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2939  static bool classof(const TypeOfExprType *) { return true; }
2940};
2941
2942/// \brief Internal representation of canonical, dependent
2943/// typeof(expr) types.
2944///
2945/// This class is used internally by the ASTContext to manage
2946/// canonical, dependent types, only. Clients will only see instances
2947/// of this class via TypeOfExprType nodes.
2948class DependentTypeOfExprType
2949  : public TypeOfExprType, public llvm::FoldingSetNode {
2950  const ASTContext &Context;
2951
2952public:
2953  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
2954    : TypeOfExprType(E), Context(Context) { }
2955
2956  void Profile(llvm::FoldingSetNodeID &ID) {
2957    Profile(ID, Context, getUnderlyingExpr());
2958  }
2959
2960  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2961                      Expr *E);
2962};
2963
2964/// TypeOfType (GCC extension).
2965class TypeOfType : public Type {
2966  QualType TOType;
2967  TypeOfType(QualType T, QualType can)
2968    : Type(TypeOf, can, T->isDependentType(),
2969           T->isInstantiationDependentType(),
2970           T->isVariablyModifiedType(),
2971           T->containsUnexpandedParameterPack()),
2972      TOType(T) {
2973    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2974  }
2975  friend class ASTContext;  // ASTContext creates these.
2976public:
2977  QualType getUnderlyingType() const { return TOType; }
2978
2979  /// \brief Remove a single level of sugar.
2980  QualType desugar() const { return getUnderlyingType(); }
2981
2982  /// \brief Returns whether this type directly provides sugar.
2983  bool isSugared() const { return true; }
2984
2985  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2986  static bool classof(const TypeOfType *) { return true; }
2987};
2988
2989/// DecltypeType (C++0x)
2990class DecltypeType : public Type {
2991  Expr *E;
2992
2993  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2994  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2995  // from it.
2996  QualType UnderlyingType;
2997
2998protected:
2999  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3000  friend class ASTContext;  // ASTContext creates these.
3001public:
3002  Expr *getUnderlyingExpr() const { return E; }
3003  QualType getUnderlyingType() const { return UnderlyingType; }
3004
3005  /// \brief Remove a single level of sugar.
3006  QualType desugar() const;
3007
3008  /// \brief Returns whether this type directly provides sugar.
3009  bool isSugared() const;
3010
3011  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3012  static bool classof(const DecltypeType *) { return true; }
3013};
3014
3015/// \brief Internal representation of canonical, dependent
3016/// decltype(expr) types.
3017///
3018/// This class is used internally by the ASTContext to manage
3019/// canonical, dependent types, only. Clients will only see instances
3020/// of this class via DecltypeType nodes.
3021class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3022  const ASTContext &Context;
3023
3024public:
3025  DependentDecltypeType(const ASTContext &Context, Expr *E);
3026
3027  void Profile(llvm::FoldingSetNodeID &ID) {
3028    Profile(ID, Context, getUnderlyingExpr());
3029  }
3030
3031  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3032                      Expr *E);
3033};
3034
3035/// \brief A unary type transform, which is a type constructed from another
3036class UnaryTransformType : public Type {
3037public:
3038  enum UTTKind {
3039    EnumUnderlyingType
3040  };
3041
3042private:
3043  /// The untransformed type.
3044  QualType BaseType;
3045  /// The transformed type if not dependent, otherwise the same as BaseType.
3046  QualType UnderlyingType;
3047
3048  UTTKind UKind;
3049protected:
3050  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3051                     QualType CanonicalTy);
3052  friend class ASTContext;
3053public:
3054  bool isSugared() const { return !isDependentType(); }
3055  QualType desugar() const { return UnderlyingType; }
3056
3057  QualType getUnderlyingType() const { return UnderlyingType; }
3058  QualType getBaseType() const { return BaseType; }
3059
3060  UTTKind getUTTKind() const { return UKind; }
3061
3062  static bool classof(const Type *T) {
3063    return T->getTypeClass() == UnaryTransform;
3064  }
3065  static bool classof(const UnaryTransformType *) { return true; }
3066};
3067
3068class TagType : public Type {
3069  /// Stores the TagDecl associated with this type. The decl may point to any
3070  /// TagDecl that declares the entity.
3071  TagDecl * decl;
3072
3073  friend class ASTReader;
3074
3075protected:
3076  TagType(TypeClass TC, const TagDecl *D, QualType can);
3077
3078public:
3079  TagDecl *getDecl() const;
3080
3081  /// @brief Determines whether this type is in the process of being
3082  /// defined.
3083  bool isBeingDefined() const;
3084
3085  static bool classof(const Type *T) {
3086    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3087  }
3088  static bool classof(const TagType *) { return true; }
3089  static bool classof(const RecordType *) { return true; }
3090  static bool classof(const EnumType *) { return true; }
3091};
3092
3093/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
3094/// to detect TagType objects of structs/unions/classes.
3095class RecordType : public TagType {
3096protected:
3097  explicit RecordType(const RecordDecl *D)
3098    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3099  explicit RecordType(TypeClass TC, RecordDecl *D)
3100    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3101  friend class ASTContext;   // ASTContext creates these.
3102public:
3103
3104  RecordDecl *getDecl() const {
3105    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3106  }
3107
3108  // FIXME: This predicate is a helper to QualType/Type. It needs to
3109  // recursively check all fields for const-ness. If any field is declared
3110  // const, it needs to return false.
3111  bool hasConstFields() const { return false; }
3112
3113  bool isSugared() const { return false; }
3114  QualType desugar() const { return QualType(this, 0); }
3115
3116  static bool classof(const TagType *T);
3117  static bool classof(const Type *T) {
3118    return isa<TagType>(T) && classof(cast<TagType>(T));
3119  }
3120  static bool classof(const RecordType *) { return true; }
3121};
3122
3123/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
3124/// to detect TagType objects of enums.
3125class EnumType : public TagType {
3126  explicit EnumType(const EnumDecl *D)
3127    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3128  friend class ASTContext;   // ASTContext creates these.
3129public:
3130
3131  EnumDecl *getDecl() const {
3132    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3133  }
3134
3135  bool isSugared() const { return false; }
3136  QualType desugar() const { return QualType(this, 0); }
3137
3138  static bool classof(const TagType *T);
3139  static bool classof(const Type *T) {
3140    return isa<TagType>(T) && classof(cast<TagType>(T));
3141  }
3142  static bool classof(const EnumType *) { return true; }
3143};
3144
3145/// AttributedType - An attributed type is a type to which a type
3146/// attribute has been applied.  The "modified type" is the
3147/// fully-sugared type to which the attributed type was applied;
3148/// generally it is not canonically equivalent to the attributed type.
3149/// The "equivalent type" is the minimally-desugared type which the
3150/// type is canonically equivalent to.
3151///
3152/// For example, in the following attributed type:
3153///     int32_t __attribute__((vector_size(16)))
3154///   - the modified type is the TypedefType for int32_t
3155///   - the equivalent type is VectorType(16, int32_t)
3156///   - the canonical type is VectorType(16, int)
3157class AttributedType : public Type, public llvm::FoldingSetNode {
3158public:
3159  // It is really silly to have yet another attribute-kind enum, but
3160  // clang::attr::Kind doesn't currently cover the pure type attrs.
3161  enum Kind {
3162    // Expression operand.
3163    attr_address_space,
3164    attr_regparm,
3165    attr_vector_size,
3166    attr_neon_vector_type,
3167    attr_neon_polyvector_type,
3168
3169    FirstExprOperandKind = attr_address_space,
3170    LastExprOperandKind = attr_neon_polyvector_type,
3171
3172    // Enumerated operand (string or keyword).
3173    attr_objc_gc,
3174    attr_objc_ownership,
3175    attr_pcs,
3176
3177    FirstEnumOperandKind = attr_objc_gc,
3178    LastEnumOperandKind = attr_pcs,
3179
3180    // No operand.
3181    attr_noreturn,
3182    attr_cdecl,
3183    attr_fastcall,
3184    attr_stdcall,
3185    attr_thiscall,
3186    attr_pascal
3187  };
3188
3189private:
3190  QualType ModifiedType;
3191  QualType EquivalentType;
3192
3193  friend class ASTContext; // creates these
3194
3195  AttributedType(QualType canon, Kind attrKind,
3196                 QualType modified, QualType equivalent)
3197    : Type(Attributed, canon, canon->isDependentType(),
3198           canon->isInstantiationDependentType(),
3199           canon->isVariablyModifiedType(),
3200           canon->containsUnexpandedParameterPack()),
3201      ModifiedType(modified), EquivalentType(equivalent) {
3202    AttributedTypeBits.AttrKind = attrKind;
3203  }
3204
3205public:
3206  Kind getAttrKind() const {
3207    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3208  }
3209
3210  QualType getModifiedType() const { return ModifiedType; }
3211  QualType getEquivalentType() const { return EquivalentType; }
3212
3213  bool isSugared() const { return true; }
3214  QualType desugar() const { return getEquivalentType(); }
3215
3216  void Profile(llvm::FoldingSetNodeID &ID) {
3217    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3218  }
3219
3220  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3221                      QualType modified, QualType equivalent) {
3222    ID.AddInteger(attrKind);
3223    ID.AddPointer(modified.getAsOpaquePtr());
3224    ID.AddPointer(equivalent.getAsOpaquePtr());
3225  }
3226
3227  static bool classof(const Type *T) {
3228    return T->getTypeClass() == Attributed;
3229  }
3230  static bool classof(const AttributedType *T) { return true; }
3231};
3232
3233class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3234  // Helper data collector for canonical types.
3235  struct CanonicalTTPTInfo {
3236    unsigned Depth : 15;
3237    unsigned ParameterPack : 1;
3238    unsigned Index : 16;
3239  };
3240
3241  union {
3242    // Info for the canonical type.
3243    CanonicalTTPTInfo CanTTPTInfo;
3244    // Info for the non-canonical type.
3245    TemplateTypeParmDecl *TTPDecl;
3246  };
3247
3248  /// Build a non-canonical type.
3249  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3250    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3251           /*InstantiationDependent=*/true,
3252           /*VariablyModified=*/false,
3253           Canon->containsUnexpandedParameterPack()),
3254      TTPDecl(TTPDecl) { }
3255
3256  /// Build the canonical type.
3257  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3258    : Type(TemplateTypeParm, QualType(this, 0),
3259           /*Dependent=*/true,
3260           /*InstantiationDependent=*/true,
3261           /*VariablyModified=*/false, PP) {
3262    CanTTPTInfo.Depth = D;
3263    CanTTPTInfo.Index = I;
3264    CanTTPTInfo.ParameterPack = PP;
3265  }
3266
3267  friend class ASTContext;  // ASTContext creates these
3268
3269  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3270    QualType Can = getCanonicalTypeInternal();
3271    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3272  }
3273
3274public:
3275  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3276  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3277  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3278
3279  TemplateTypeParmDecl *getDecl() const {
3280    return isCanonicalUnqualified() ? 0 : TTPDecl;
3281  }
3282
3283  IdentifierInfo *getIdentifier() const;
3284
3285  bool isSugared() const { return false; }
3286  QualType desugar() const { return QualType(this, 0); }
3287
3288  void Profile(llvm::FoldingSetNodeID &ID) {
3289    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3290  }
3291
3292  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3293                      unsigned Index, bool ParameterPack,
3294                      TemplateTypeParmDecl *TTPDecl) {
3295    ID.AddInteger(Depth);
3296    ID.AddInteger(Index);
3297    ID.AddBoolean(ParameterPack);
3298    ID.AddPointer(TTPDecl);
3299  }
3300
3301  static bool classof(const Type *T) {
3302    return T->getTypeClass() == TemplateTypeParm;
3303  }
3304  static bool classof(const TemplateTypeParmType *T) { return true; }
3305};
3306
3307/// \brief Represents the result of substituting a type for a template
3308/// type parameter.
3309///
3310/// Within an instantiated template, all template type parameters have
3311/// been replaced with these.  They are used solely to record that a
3312/// type was originally written as a template type parameter;
3313/// therefore they are never canonical.
3314class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3315  // The original type parameter.
3316  const TemplateTypeParmType *Replaced;
3317
3318  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3319    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3320           Canon->isInstantiationDependentType(),
3321           Canon->isVariablyModifiedType(),
3322           Canon->containsUnexpandedParameterPack()),
3323      Replaced(Param) { }
3324
3325  friend class ASTContext;
3326
3327public:
3328  /// Gets the template parameter that was substituted for.
3329  const TemplateTypeParmType *getReplacedParameter() const {
3330    return Replaced;
3331  }
3332
3333  /// Gets the type that was substituted for the template
3334  /// parameter.
3335  QualType getReplacementType() const {
3336    return getCanonicalTypeInternal();
3337  }
3338
3339  bool isSugared() const { return true; }
3340  QualType desugar() const { return getReplacementType(); }
3341
3342  void Profile(llvm::FoldingSetNodeID &ID) {
3343    Profile(ID, getReplacedParameter(), getReplacementType());
3344  }
3345  static void Profile(llvm::FoldingSetNodeID &ID,
3346                      const TemplateTypeParmType *Replaced,
3347                      QualType Replacement) {
3348    ID.AddPointer(Replaced);
3349    ID.AddPointer(Replacement.getAsOpaquePtr());
3350  }
3351
3352  static bool classof(const Type *T) {
3353    return T->getTypeClass() == SubstTemplateTypeParm;
3354  }
3355  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
3356};
3357
3358/// \brief Represents the result of substituting a set of types for a template
3359/// type parameter pack.
3360///
3361/// When a pack expansion in the source code contains multiple parameter packs
3362/// and those parameter packs correspond to different levels of template
3363/// parameter lists, this type node is used to represent a template type
3364/// parameter pack from an outer level, which has already had its argument pack
3365/// substituted but that still lives within a pack expansion that itself
3366/// could not be instantiated. When actually performing a substitution into
3367/// that pack expansion (e.g., when all template parameters have corresponding
3368/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3369/// at the current pack substitution index.
3370class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3371  /// \brief The original type parameter.
3372  const TemplateTypeParmType *Replaced;
3373
3374  /// \brief A pointer to the set of template arguments that this
3375  /// parameter pack is instantiated with.
3376  const TemplateArgument *Arguments;
3377
3378  /// \brief The number of template arguments in \c Arguments.
3379  unsigned NumArguments;
3380
3381  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3382                                QualType Canon,
3383                                const TemplateArgument &ArgPack);
3384
3385  friend class ASTContext;
3386
3387public:
3388  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
3389
3390  /// Gets the template parameter that was substituted for.
3391  const TemplateTypeParmType *getReplacedParameter() const {
3392    return Replaced;
3393  }
3394
3395  bool isSugared() const { return false; }
3396  QualType desugar() const { return QualType(this, 0); }
3397
3398  TemplateArgument getArgumentPack() const;
3399
3400  void Profile(llvm::FoldingSetNodeID &ID);
3401  static void Profile(llvm::FoldingSetNodeID &ID,
3402                      const TemplateTypeParmType *Replaced,
3403                      const TemplateArgument &ArgPack);
3404
3405  static bool classof(const Type *T) {
3406    return T->getTypeClass() == SubstTemplateTypeParmPack;
3407  }
3408  static bool classof(const SubstTemplateTypeParmPackType *T) { return true; }
3409};
3410
3411/// \brief Represents a C++0x auto type.
3412///
3413/// These types are usually a placeholder for a deduced type. However, within
3414/// templates and before the initializer is attached, there is no deduced type
3415/// and an auto type is type-dependent and canonical.
3416class AutoType : public Type, public llvm::FoldingSetNode {
3417  AutoType(QualType DeducedType)
3418    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3419           /*Dependent=*/DeducedType.isNull(),
3420           /*InstantiationDependent=*/DeducedType.isNull(),
3421           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3422    assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
3423           "deduced a dependent type for auto");
3424  }
3425
3426  friend class ASTContext;  // ASTContext creates these
3427
3428public:
3429  bool isSugared() const { return isDeduced(); }
3430  QualType desugar() const { return getCanonicalTypeInternal(); }
3431
3432  QualType getDeducedType() const {
3433    return isDeduced() ? getCanonicalTypeInternal() : QualType();
3434  }
3435  bool isDeduced() const {
3436    return !isDependentType();
3437  }
3438
3439  void Profile(llvm::FoldingSetNodeID &ID) {
3440    Profile(ID, getDeducedType());
3441  }
3442
3443  static void Profile(llvm::FoldingSetNodeID &ID,
3444                      QualType Deduced) {
3445    ID.AddPointer(Deduced.getAsOpaquePtr());
3446  }
3447
3448  static bool classof(const Type *T) {
3449    return T->getTypeClass() == Auto;
3450  }
3451  static bool classof(const AutoType *T) { return true; }
3452};
3453
3454/// \brief Represents a type template specialization; the template
3455/// must be a class template, a type alias template, or a template
3456/// template parameter.  A template which cannot be resolved to one of
3457/// these, e.g. because it is written with a dependent scope
3458/// specifier, is instead represented as a
3459/// @c DependentTemplateSpecializationType.
3460///
3461/// A non-dependent template specialization type is always "sugar",
3462/// typically for a @c RecordType.  For example, a class template
3463/// specialization type of @c vector<int> will refer to a tag type for
3464/// the instantiation @c std::vector<int, std::allocator<int>>
3465///
3466/// Template specializations are dependent if either the template or
3467/// any of the template arguments are dependent, in which case the
3468/// type may also be canonical.
3469///
3470/// Instances of this type are allocated with a trailing array of
3471/// TemplateArguments, followed by a QualType representing the
3472/// non-canonical aliased type when the template is a type alias
3473/// template.
3474class TemplateSpecializationType
3475  : public Type, public llvm::FoldingSetNode {
3476  /// \brief The name of the template being specialized.  This is
3477  /// either a TemplateName::Template (in which case it is a
3478  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
3479  /// TypeAliasTemplateDecl*), a
3480  /// TemplateName::SubstTemplateTemplateParmPack, or a
3481  /// TemplateName::SubstTemplateTemplateParm (in which case the
3482  /// replacement must, recursively, be one of these).
3483  TemplateName Template;
3484
3485  /// \brief - The number of template arguments named in this class
3486  /// template specialization.
3487  unsigned NumArgs;
3488
3489  TemplateSpecializationType(TemplateName T,
3490                             const TemplateArgument *Args,
3491                             unsigned NumArgs, QualType Canon,
3492                             QualType Aliased);
3493
3494  friend class ASTContext;  // ASTContext creates these
3495
3496public:
3497  /// \brief Determine whether any of the given template arguments are
3498  /// dependent.
3499  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3500                                            unsigned NumArgs,
3501                                            bool &InstantiationDependent);
3502
3503  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3504                                            unsigned NumArgs,
3505                                            bool &InstantiationDependent);
3506
3507  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
3508                                            bool &InstantiationDependent);
3509
3510  /// \brief Print a template argument list, including the '<' and '>'
3511  /// enclosing the template arguments.
3512  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
3513                                               unsigned NumArgs,
3514                                               const PrintingPolicy &Policy,
3515                                               bool SkipBrackets = false);
3516
3517  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
3518                                               unsigned NumArgs,
3519                                               const PrintingPolicy &Policy);
3520
3521  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
3522                                               const PrintingPolicy &Policy);
3523
3524  /// True if this template specialization type matches a current
3525  /// instantiation in the context in which it is found.
3526  bool isCurrentInstantiation() const {
3527    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3528  }
3529
3530  /// True if this template specialization type is for a type alias
3531  /// template.
3532  bool isTypeAlias() const;
3533  /// Get the aliased type, if this is a specialization of a type alias
3534  /// template.
3535  QualType getAliasedType() const {
3536    assert(isTypeAlias() && "not a type alias template specialization");
3537    return *reinterpret_cast<const QualType*>(end());
3538  }
3539
3540  typedef const TemplateArgument * iterator;
3541
3542  iterator begin() const { return getArgs(); }
3543  iterator end() const; // defined inline in TemplateBase.h
3544
3545  /// \brief Retrieve the name of the template that we are specializing.
3546  TemplateName getTemplateName() const { return Template; }
3547
3548  /// \brief Retrieve the template arguments.
3549  const TemplateArgument *getArgs() const {
3550    return reinterpret_cast<const TemplateArgument *>(this + 1);
3551  }
3552
3553  /// \brief Retrieve the number of template arguments.
3554  unsigned getNumArgs() const { return NumArgs; }
3555
3556  /// \brief Retrieve a specific template argument as a type.
3557  /// \precondition @c isArgType(Arg)
3558  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3559
3560  bool isSugared() const {
3561    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
3562  }
3563  QualType desugar() const { return getCanonicalTypeInternal(); }
3564
3565  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3566    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3567    if (isTypeAlias())
3568      getAliasedType().Profile(ID);
3569  }
3570
3571  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3572                      const TemplateArgument *Args,
3573                      unsigned NumArgs,
3574                      const ASTContext &Context);
3575
3576  static bool classof(const Type *T) {
3577    return T->getTypeClass() == TemplateSpecialization;
3578  }
3579  static bool classof(const TemplateSpecializationType *T) { return true; }
3580};
3581
3582/// \brief The injected class name of a C++ class template or class
3583/// template partial specialization.  Used to record that a type was
3584/// spelled with a bare identifier rather than as a template-id; the
3585/// equivalent for non-templated classes is just RecordType.
3586///
3587/// Injected class name types are always dependent.  Template
3588/// instantiation turns these into RecordTypes.
3589///
3590/// Injected class name types are always canonical.  This works
3591/// because it is impossible to compare an injected class name type
3592/// with the corresponding non-injected template type, for the same
3593/// reason that it is impossible to directly compare template
3594/// parameters from different dependent contexts: injected class name
3595/// types can only occur within the scope of a particular templated
3596/// declaration, and within that scope every template specialization
3597/// will canonicalize to the injected class name (when appropriate
3598/// according to the rules of the language).
3599class InjectedClassNameType : public Type {
3600  CXXRecordDecl *Decl;
3601
3602  /// The template specialization which this type represents.
3603  /// For example, in
3604  ///   template <class T> class A { ... };
3605  /// this is A<T>, whereas in
3606  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3607  /// this is A<B<X,Y> >.
3608  ///
3609  /// It is always unqualified, always a template specialization type,
3610  /// and always dependent.
3611  QualType InjectedType;
3612
3613  friend class ASTContext; // ASTContext creates these.
3614  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3615                          // currently suitable for AST reading, too much
3616                          // interdependencies.
3617  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3618    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3619           /*InstantiationDependent=*/true,
3620           /*VariablyModified=*/false,
3621           /*ContainsUnexpandedParameterPack=*/false),
3622      Decl(D), InjectedType(TST) {
3623    assert(isa<TemplateSpecializationType>(TST));
3624    assert(!TST.hasQualifiers());
3625    assert(TST->isDependentType());
3626  }
3627
3628public:
3629  QualType getInjectedSpecializationType() const { return InjectedType; }
3630  const TemplateSpecializationType *getInjectedTST() const {
3631    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3632  }
3633
3634  CXXRecordDecl *getDecl() const;
3635
3636  bool isSugared() const { return false; }
3637  QualType desugar() const { return QualType(this, 0); }
3638
3639  static bool classof(const Type *T) {
3640    return T->getTypeClass() == InjectedClassName;
3641  }
3642  static bool classof(const InjectedClassNameType *T) { return true; }
3643};
3644
3645/// \brief The kind of a tag type.
3646enum TagTypeKind {
3647  /// \brief The "struct" keyword.
3648  TTK_Struct,
3649  /// \brief The "union" keyword.
3650  TTK_Union,
3651  /// \brief The "class" keyword.
3652  TTK_Class,
3653  /// \brief The "enum" keyword.
3654  TTK_Enum
3655};
3656
3657/// \brief The elaboration keyword that precedes a qualified type name or
3658/// introduces an elaborated-type-specifier.
3659enum ElaboratedTypeKeyword {
3660  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3661  ETK_Struct,
3662  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3663  ETK_Union,
3664  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3665  ETK_Class,
3666  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3667  ETK_Enum,
3668  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3669  /// \c typename T::type.
3670  ETK_Typename,
3671  /// \brief No keyword precedes the qualified type name.
3672  ETK_None
3673};
3674
3675/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3676/// The keyword in stored in the free bits of the base class.
3677/// Also provides a few static helpers for converting and printing
3678/// elaborated type keyword and tag type kind enumerations.
3679class TypeWithKeyword : public Type {
3680protected:
3681  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3682                  QualType Canonical, bool Dependent,
3683                  bool InstantiationDependent, bool VariablyModified,
3684                  bool ContainsUnexpandedParameterPack)
3685  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3686         ContainsUnexpandedParameterPack) {
3687    TypeWithKeywordBits.Keyword = Keyword;
3688  }
3689
3690public:
3691  ElaboratedTypeKeyword getKeyword() const {
3692    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3693  }
3694
3695  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3696  /// into an elaborated type keyword.
3697  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3698
3699  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3700  /// into a tag type kind.  It is an error to provide a type specifier
3701  /// which *isn't* a tag kind here.
3702  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3703
3704  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3705  /// elaborated type keyword.
3706  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3707
3708  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3709  // a TagTypeKind. It is an error to provide an elaborated type keyword
3710  /// which *isn't* a tag kind here.
3711  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3712
3713  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3714
3715  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3716
3717  static const char *getTagTypeKindName(TagTypeKind Kind) {
3718    return getKeywordName(getKeywordForTagTypeKind(Kind));
3719  }
3720
3721  class CannotCastToThisType {};
3722  static CannotCastToThisType classof(const Type *);
3723};
3724
3725/// \brief Represents a type that was referred to using an elaborated type
3726/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3727/// or both.
3728///
3729/// This type is used to keep track of a type name as written in the
3730/// source code, including tag keywords and any nested-name-specifiers.
3731/// The type itself is always "sugar", used to express what was written
3732/// in the source code but containing no additional semantic information.
3733class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3734
3735  /// \brief The nested name specifier containing the qualifier.
3736  NestedNameSpecifier *NNS;
3737
3738  /// \brief The type that this qualified name refers to.
3739  QualType NamedType;
3740
3741  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3742                 QualType NamedType, QualType CanonType)
3743    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3744                      NamedType->isDependentType(),
3745                      NamedType->isInstantiationDependentType(),
3746                      NamedType->isVariablyModifiedType(),
3747                      NamedType->containsUnexpandedParameterPack()),
3748      NNS(NNS), NamedType(NamedType) {
3749    assert(!(Keyword == ETK_None && NNS == 0) &&
3750           "ElaboratedType cannot have elaborated type keyword "
3751           "and name qualifier both null.");
3752  }
3753
3754  friend class ASTContext;  // ASTContext creates these
3755
3756public:
3757  ~ElaboratedType();
3758
3759  /// \brief Retrieve the qualification on this type.
3760  NestedNameSpecifier *getQualifier() const { return NNS; }
3761
3762  /// \brief Retrieve the type named by the qualified-id.
3763  QualType getNamedType() const { return NamedType; }
3764
3765  /// \brief Remove a single level of sugar.
3766  QualType desugar() const { return getNamedType(); }
3767
3768  /// \brief Returns whether this type directly provides sugar.
3769  bool isSugared() const { return true; }
3770
3771  void Profile(llvm::FoldingSetNodeID &ID) {
3772    Profile(ID, getKeyword(), NNS, NamedType);
3773  }
3774
3775  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3776                      NestedNameSpecifier *NNS, QualType NamedType) {
3777    ID.AddInteger(Keyword);
3778    ID.AddPointer(NNS);
3779    NamedType.Profile(ID);
3780  }
3781
3782  static bool classof(const Type *T) {
3783    return T->getTypeClass() == Elaborated;
3784  }
3785  static bool classof(const ElaboratedType *T) { return true; }
3786};
3787
3788/// \brief Represents a qualified type name for which the type name is
3789/// dependent.
3790///
3791/// DependentNameType represents a class of dependent types that involve a
3792/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3793/// name of a type. The DependentNameType may start with a "typename" (for a
3794/// typename-specifier), "class", "struct", "union", or "enum" (for a
3795/// dependent elaborated-type-specifier), or nothing (in contexts where we
3796/// know that we must be referring to a type, e.g., in a base class specifier).
3797class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3798
3799  /// \brief The nested name specifier containing the qualifier.
3800  NestedNameSpecifier *NNS;
3801
3802  /// \brief The type that this typename specifier refers to.
3803  const IdentifierInfo *Name;
3804
3805  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3806                    const IdentifierInfo *Name, QualType CanonType)
3807    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3808                      /*InstantiationDependent=*/true,
3809                      /*VariablyModified=*/false,
3810                      NNS->containsUnexpandedParameterPack()),
3811      NNS(NNS), Name(Name) {
3812    assert(NNS->isDependent() &&
3813           "DependentNameType requires a dependent nested-name-specifier");
3814  }
3815
3816  friend class ASTContext;  // ASTContext creates these
3817
3818public:
3819  /// \brief Retrieve the qualification on this type.
3820  NestedNameSpecifier *getQualifier() const { return NNS; }
3821
3822  /// \brief Retrieve the type named by the typename specifier as an
3823  /// identifier.
3824  ///
3825  /// This routine will return a non-NULL identifier pointer when the
3826  /// form of the original typename was terminated by an identifier,
3827  /// e.g., "typename T::type".
3828  const IdentifierInfo *getIdentifier() const {
3829    return Name;
3830  }
3831
3832  bool isSugared() const { return false; }
3833  QualType desugar() const { return QualType(this, 0); }
3834
3835  void Profile(llvm::FoldingSetNodeID &ID) {
3836    Profile(ID, getKeyword(), NNS, Name);
3837  }
3838
3839  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3840                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
3841    ID.AddInteger(Keyword);
3842    ID.AddPointer(NNS);
3843    ID.AddPointer(Name);
3844  }
3845
3846  static bool classof(const Type *T) {
3847    return T->getTypeClass() == DependentName;
3848  }
3849  static bool classof(const DependentNameType *T) { return true; }
3850};
3851
3852/// DependentTemplateSpecializationType - Represents a template
3853/// specialization type whose template cannot be resolved, e.g.
3854///   A<T>::template B<T>
3855class DependentTemplateSpecializationType :
3856  public TypeWithKeyword, public llvm::FoldingSetNode {
3857
3858  /// \brief The nested name specifier containing the qualifier.
3859  NestedNameSpecifier *NNS;
3860
3861  /// \brief The identifier of the template.
3862  const IdentifierInfo *Name;
3863
3864  /// \brief - The number of template arguments named in this class
3865  /// template specialization.
3866  unsigned NumArgs;
3867
3868  const TemplateArgument *getArgBuffer() const {
3869    return reinterpret_cast<const TemplateArgument*>(this+1);
3870  }
3871  TemplateArgument *getArgBuffer() {
3872    return reinterpret_cast<TemplateArgument*>(this+1);
3873  }
3874
3875  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
3876                                      NestedNameSpecifier *NNS,
3877                                      const IdentifierInfo *Name,
3878                                      unsigned NumArgs,
3879                                      const TemplateArgument *Args,
3880                                      QualType Canon);
3881
3882  friend class ASTContext;  // ASTContext creates these
3883
3884public:
3885  NestedNameSpecifier *getQualifier() const { return NNS; }
3886  const IdentifierInfo *getIdentifier() const { return Name; }
3887
3888  /// \brief Retrieve the template arguments.
3889  const TemplateArgument *getArgs() const {
3890    return getArgBuffer();
3891  }
3892
3893  /// \brief Retrieve the number of template arguments.
3894  unsigned getNumArgs() const { return NumArgs; }
3895
3896  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3897
3898  typedef const TemplateArgument * iterator;
3899  iterator begin() const { return getArgs(); }
3900  iterator end() const; // inline in TemplateBase.h
3901
3902  bool isSugared() const { return false; }
3903  QualType desugar() const { return QualType(this, 0); }
3904
3905  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
3906    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
3907  }
3908
3909  static void Profile(llvm::FoldingSetNodeID &ID,
3910                      const ASTContext &Context,
3911                      ElaboratedTypeKeyword Keyword,
3912                      NestedNameSpecifier *Qualifier,
3913                      const IdentifierInfo *Name,
3914                      unsigned NumArgs,
3915                      const TemplateArgument *Args);
3916
3917  static bool classof(const Type *T) {
3918    return T->getTypeClass() == DependentTemplateSpecialization;
3919  }
3920  static bool classof(const DependentTemplateSpecializationType *T) {
3921    return true;
3922  }
3923};
3924
3925/// \brief Represents a pack expansion of types.
3926///
3927/// Pack expansions are part of C++0x variadic templates. A pack
3928/// expansion contains a pattern, which itself contains one or more
3929/// "unexpanded" parameter packs. When instantiated, a pack expansion
3930/// produces a series of types, each instantiated from the pattern of
3931/// the expansion, where the Ith instantiation of the pattern uses the
3932/// Ith arguments bound to each of the unexpanded parameter packs. The
3933/// pack expansion is considered to "expand" these unexpanded
3934/// parameter packs.
3935///
3936/// \code
3937/// template<typename ...Types> struct tuple;
3938///
3939/// template<typename ...Types>
3940/// struct tuple_of_references {
3941///   typedef tuple<Types&...> type;
3942/// };
3943/// \endcode
3944///
3945/// Here, the pack expansion \c Types&... is represented via a
3946/// PackExpansionType whose pattern is Types&.
3947class PackExpansionType : public Type, public llvm::FoldingSetNode {
3948  /// \brief The pattern of the pack expansion.
3949  QualType Pattern;
3950
3951  /// \brief The number of expansions that this pack expansion will
3952  /// generate when substituted (+1), or indicates that
3953  ///
3954  /// This field will only have a non-zero value when some of the parameter
3955  /// packs that occur within the pattern have been substituted but others have
3956  /// not.
3957  unsigned NumExpansions;
3958
3959  PackExpansionType(QualType Pattern, QualType Canon,
3960                    llvm::Optional<unsigned> NumExpansions)
3961    : Type(PackExpansion, Canon, /*Dependent=*/true,
3962           /*InstantiationDependent=*/true,
3963           /*VariableModified=*/Pattern->isVariablyModifiedType(),
3964           /*ContainsUnexpandedParameterPack=*/false),
3965      Pattern(Pattern),
3966      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
3967
3968  friend class ASTContext;  // ASTContext creates these
3969
3970public:
3971  /// \brief Retrieve the pattern of this pack expansion, which is the
3972  /// type that will be repeatedly instantiated when instantiating the
3973  /// pack expansion itself.
3974  QualType getPattern() const { return Pattern; }
3975
3976  /// \brief Retrieve the number of expansions that this pack expansion will
3977  /// generate, if known.
3978  llvm::Optional<unsigned> getNumExpansions() const {
3979    if (NumExpansions)
3980      return NumExpansions - 1;
3981
3982    return llvm::Optional<unsigned>();
3983  }
3984
3985  bool isSugared() const { return false; }
3986  QualType desugar() const { return QualType(this, 0); }
3987
3988  void Profile(llvm::FoldingSetNodeID &ID) {
3989    Profile(ID, getPattern(), getNumExpansions());
3990  }
3991
3992  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
3993                      llvm::Optional<unsigned> NumExpansions) {
3994    ID.AddPointer(Pattern.getAsOpaquePtr());
3995    ID.AddBoolean(NumExpansions);
3996    if (NumExpansions)
3997      ID.AddInteger(*NumExpansions);
3998  }
3999
4000  static bool classof(const Type *T) {
4001    return T->getTypeClass() == PackExpansion;
4002  }
4003  static bool classof(const PackExpansionType *T) {
4004    return true;
4005  }
4006};
4007
4008/// ObjCObjectType - Represents a class type in Objective C.
4009/// Every Objective C type is a combination of a base type and a
4010/// list of protocols.
4011///
4012/// Given the following declarations:
4013///   @class C;
4014///   @protocol P;
4015///
4016/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4017/// with base C and no protocols.
4018///
4019/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
4020///
4021/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
4022/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4023/// and no protocols.
4024///
4025/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
4026/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4027/// this should get its own sugar class to better represent the source.
4028class ObjCObjectType : public Type {
4029  // ObjCObjectType.NumProtocols - the number of protocols stored
4030  // after the ObjCObjectPointerType node.
4031  //
4032  // These protocols are those written directly on the type.  If
4033  // protocol qualifiers ever become additive, the iterators will need
4034  // to get kindof complicated.
4035  //
4036  // In the canonical object type, these are sorted alphabetically
4037  // and uniqued.
4038
4039  /// Either a BuiltinType or an InterfaceType or sugar for either.
4040  QualType BaseType;
4041
4042  ObjCProtocolDecl * const *getProtocolStorage() const {
4043    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4044  }
4045
4046  ObjCProtocolDecl **getProtocolStorage();
4047
4048protected:
4049  ObjCObjectType(QualType Canonical, QualType Base,
4050                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
4051
4052  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4053  ObjCObjectType(enum Nonce_ObjCInterface)
4054        : Type(ObjCInterface, QualType(), false, false, false, false),
4055      BaseType(QualType(this_(), 0)) {
4056    ObjCObjectTypeBits.NumProtocols = 0;
4057  }
4058
4059public:
4060  /// getBaseType - Gets the base type of this object type.  This is
4061  /// always (possibly sugar for) one of:
4062  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4063  ///    user, which is a typedef for an ObjCPointerType)
4064  ///  - the 'Class' builtin type (same caveat)
4065  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4066  QualType getBaseType() const { return BaseType; }
4067
4068  bool isObjCId() const {
4069    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4070  }
4071  bool isObjCClass() const {
4072    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4073  }
4074  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4075  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4076  bool isObjCUnqualifiedIdOrClass() const {
4077    if (!qual_empty()) return false;
4078    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4079      return T->getKind() == BuiltinType::ObjCId ||
4080             T->getKind() == BuiltinType::ObjCClass;
4081    return false;
4082  }
4083  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4084  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4085
4086  /// Gets the interface declaration for this object type, if the base type
4087  /// really is an interface.
4088  ObjCInterfaceDecl *getInterface() const;
4089
4090  typedef ObjCProtocolDecl * const *qual_iterator;
4091
4092  qual_iterator qual_begin() const { return getProtocolStorage(); }
4093  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4094
4095  bool qual_empty() const { return getNumProtocols() == 0; }
4096
4097  /// getNumProtocols - Return the number of qualifying protocols in this
4098  /// interface type, or 0 if there are none.
4099  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4100
4101  /// \brief Fetch a protocol by index.
4102  ObjCProtocolDecl *getProtocol(unsigned I) const {
4103    assert(I < getNumProtocols() && "Out-of-range protocol access");
4104    return qual_begin()[I];
4105  }
4106
4107  bool isSugared() const { return false; }
4108  QualType desugar() const { return QualType(this, 0); }
4109
4110  static bool classof(const Type *T) {
4111    return T->getTypeClass() == ObjCObject ||
4112           T->getTypeClass() == ObjCInterface;
4113  }
4114  static bool classof(const ObjCObjectType *) { return true; }
4115};
4116
4117/// ObjCObjectTypeImpl - A class providing a concrete implementation
4118/// of ObjCObjectType, so as to not increase the footprint of
4119/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4120/// system should not reference this type.
4121class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4122  friend class ASTContext;
4123
4124  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4125  // will need to be modified.
4126
4127  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4128                     ObjCProtocolDecl * const *Protocols,
4129                     unsigned NumProtocols)
4130    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
4131
4132public:
4133  void Profile(llvm::FoldingSetNodeID &ID);
4134  static void Profile(llvm::FoldingSetNodeID &ID,
4135                      QualType Base,
4136                      ObjCProtocolDecl *const *protocols,
4137                      unsigned NumProtocols);
4138};
4139
4140inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4141  return reinterpret_cast<ObjCProtocolDecl**>(
4142            static_cast<ObjCObjectTypeImpl*>(this) + 1);
4143}
4144
4145/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
4146/// object oriented design.  They basically correspond to C++ classes.  There
4147/// are two kinds of interface types, normal interfaces like "NSString" and
4148/// qualified interfaces, which are qualified with a protocol list like
4149/// "NSString<NSCopyable, NSAmazing>".
4150///
4151/// ObjCInterfaceType guarantees the following properties when considered
4152/// as a subtype of its superclass, ObjCObjectType:
4153///   - There are no protocol qualifiers.  To reinforce this, code which
4154///     tries to invoke the protocol methods via an ObjCInterfaceType will
4155///     fail to compile.
4156///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4157///     T->getBaseType() == QualType(T, 0).
4158class ObjCInterfaceType : public ObjCObjectType {
4159  mutable ObjCInterfaceDecl *Decl;
4160
4161  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4162    : ObjCObjectType(Nonce_ObjCInterface),
4163      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4164  friend class ASTContext;  // ASTContext creates these.
4165  friend class ASTReader;
4166  friend class ObjCInterfaceDecl;
4167
4168public:
4169  /// getDecl - Get the declaration of this interface.
4170  ObjCInterfaceDecl *getDecl() const { return Decl; }
4171
4172  bool isSugared() const { return false; }
4173  QualType desugar() const { return QualType(this, 0); }
4174
4175  static bool classof(const Type *T) {
4176    return T->getTypeClass() == ObjCInterface;
4177  }
4178  static bool classof(const ObjCInterfaceType *) { return true; }
4179
4180  // Nonsense to "hide" certain members of ObjCObjectType within this
4181  // class.  People asking for protocols on an ObjCInterfaceType are
4182  // not going to get what they want: ObjCInterfaceTypes are
4183  // guaranteed to have no protocols.
4184  enum {
4185    qual_iterator,
4186    qual_begin,
4187    qual_end,
4188    getNumProtocols,
4189    getProtocol
4190  };
4191};
4192
4193inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4194  if (const ObjCInterfaceType *T =
4195        getBaseType()->getAs<ObjCInterfaceType>())
4196    return T->getDecl();
4197  return 0;
4198}
4199
4200/// ObjCObjectPointerType - Used to represent a pointer to an
4201/// Objective C object.  These are constructed from pointer
4202/// declarators when the pointee type is an ObjCObjectType (or sugar
4203/// for one).  In addition, the 'id' and 'Class' types are typedefs
4204/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
4205/// are translated into these.
4206///
4207/// Pointers to pointers to Objective C objects are still PointerTypes;
4208/// only the first level of pointer gets it own type implementation.
4209class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4210  QualType PointeeType;
4211
4212  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4213    : Type(ObjCObjectPointer, Canonical, false, false, false, false),
4214      PointeeType(Pointee) {}
4215  friend class ASTContext;  // ASTContext creates these.
4216
4217public:
4218  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
4219  /// The result will always be an ObjCObjectType or sugar thereof.
4220  QualType getPointeeType() const { return PointeeType; }
4221
4222  /// getObjCObjectType - Gets the type pointed to by this ObjC
4223  /// pointer.  This method always returns non-null.
4224  ///
4225  /// This method is equivalent to getPointeeType() except that
4226  /// it discards any typedefs (or other sugar) between this
4227  /// type and the "outermost" object type.  So for:
4228  ///   @class A; @protocol P; @protocol Q;
4229  ///   typedef A<P> AP;
4230  ///   typedef A A1;
4231  ///   typedef A1<P> A1P;
4232  ///   typedef A1P<Q> A1PQ;
4233  /// For 'A*', getObjectType() will return 'A'.
4234  /// For 'A<P>*', getObjectType() will return 'A<P>'.
4235  /// For 'AP*', getObjectType() will return 'A<P>'.
4236  /// For 'A1*', getObjectType() will return 'A'.
4237  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
4238  /// For 'A1P*', getObjectType() will return 'A1<P>'.
4239  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
4240  ///   adding protocols to a protocol-qualified base discards the
4241  ///   old qualifiers (for now).  But if it didn't, getObjectType()
4242  ///   would return 'A1P<Q>' (and we'd have to make iterating over
4243  ///   qualifiers more complicated).
4244  const ObjCObjectType *getObjectType() const {
4245    return PointeeType->castAs<ObjCObjectType>();
4246  }
4247
4248  /// getInterfaceType - If this pointer points to an Objective C
4249  /// @interface type, gets the type for that interface.  Any protocol
4250  /// qualifiers on the interface are ignored.
4251  ///
4252  /// \return null if the base type for this pointer is 'id' or 'Class'
4253  const ObjCInterfaceType *getInterfaceType() const {
4254    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
4255  }
4256
4257  /// getInterfaceDecl - If this pointer points to an Objective @interface
4258  /// type, gets the declaration for that interface.
4259  ///
4260  /// \return null if the base type for this pointer is 'id' or 'Class'
4261  ObjCInterfaceDecl *getInterfaceDecl() const {
4262    return getObjectType()->getInterface();
4263  }
4264
4265  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
4266  /// its object type is the primitive 'id' type with no protocols.
4267  bool isObjCIdType() const {
4268    return getObjectType()->isObjCUnqualifiedId();
4269  }
4270
4271  /// isObjCClassType - True if this is equivalent to the 'Class' type,
4272  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
4273  bool isObjCClassType() const {
4274    return getObjectType()->isObjCUnqualifiedClass();
4275  }
4276
4277  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
4278  /// non-empty set of protocols.
4279  bool isObjCQualifiedIdType() const {
4280    return getObjectType()->isObjCQualifiedId();
4281  }
4282
4283  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
4284  /// some non-empty set of protocols.
4285  bool isObjCQualifiedClassType() const {
4286    return getObjectType()->isObjCQualifiedClass();
4287  }
4288
4289  /// An iterator over the qualifiers on the object type.  Provided
4290  /// for convenience.  This will always iterate over the full set of
4291  /// protocols on a type, not just those provided directly.
4292  typedef ObjCObjectType::qual_iterator qual_iterator;
4293
4294  qual_iterator qual_begin() const {
4295    return getObjectType()->qual_begin();
4296  }
4297  qual_iterator qual_end() const {
4298    return getObjectType()->qual_end();
4299  }
4300  bool qual_empty() const { return getObjectType()->qual_empty(); }
4301
4302  /// getNumProtocols - Return the number of qualifying protocols on
4303  /// the object type.
4304  unsigned getNumProtocols() const {
4305    return getObjectType()->getNumProtocols();
4306  }
4307
4308  /// \brief Retrieve a qualifying protocol by index on the object
4309  /// type.
4310  ObjCProtocolDecl *getProtocol(unsigned I) const {
4311    return getObjectType()->getProtocol(I);
4312  }
4313
4314  bool isSugared() const { return false; }
4315  QualType desugar() const { return QualType(this, 0); }
4316
4317  void Profile(llvm::FoldingSetNodeID &ID) {
4318    Profile(ID, getPointeeType());
4319  }
4320  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4321    ID.AddPointer(T.getAsOpaquePtr());
4322  }
4323  static bool classof(const Type *T) {
4324    return T->getTypeClass() == ObjCObjectPointer;
4325  }
4326  static bool classof(const ObjCObjectPointerType *) { return true; }
4327};
4328
4329class AtomicType : public Type, public llvm::FoldingSetNode {
4330  QualType ValueType;
4331
4332  AtomicType(QualType ValTy, QualType Canonical)
4333    : Type(Atomic, Canonical, ValTy->isDependentType(),
4334           ValTy->isInstantiationDependentType(),
4335           ValTy->isVariablyModifiedType(),
4336           ValTy->containsUnexpandedParameterPack()),
4337      ValueType(ValTy) {}
4338  friend class ASTContext;  // ASTContext creates these.
4339
4340  public:
4341  /// getValueType - Gets the type contained by this atomic type, i.e.
4342  /// the type returned by performing an atomic load of this atomic type.
4343  QualType getValueType() const { return ValueType; }
4344
4345  bool isSugared() const { return false; }
4346  QualType desugar() const { return QualType(this, 0); }
4347
4348  void Profile(llvm::FoldingSetNodeID &ID) {
4349    Profile(ID, getValueType());
4350  }
4351  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4352    ID.AddPointer(T.getAsOpaquePtr());
4353  }
4354  static bool classof(const Type *T) {
4355    return T->getTypeClass() == Atomic;
4356  }
4357  static bool classof(const AtomicType *) { return true; }
4358};
4359
4360/// A qualifier set is used to build a set of qualifiers.
4361class QualifierCollector : public Qualifiers {
4362public:
4363  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4364
4365  /// Collect any qualifiers on the given type and return an
4366  /// unqualified type.  The qualifiers are assumed to be consistent
4367  /// with those already in the type.
4368  const Type *strip(QualType type) {
4369    addFastQualifiers(type.getLocalFastQualifiers());
4370    if (!type.hasLocalNonFastQualifiers())
4371      return type.getTypePtrUnsafe();
4372
4373    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4374    addConsistentQualifiers(extQuals->getQualifiers());
4375    return extQuals->getBaseType();
4376  }
4377
4378  /// Apply the collected qualifiers to the given type.
4379  QualType apply(const ASTContext &Context, QualType QT) const;
4380
4381  /// Apply the collected qualifiers to the given type.
4382  QualType apply(const ASTContext &Context, const Type* T) const;
4383};
4384
4385
4386// Inline function definitions.
4387
4388inline const Type *QualType::getTypePtr() const {
4389  return getCommonPtr()->BaseType;
4390}
4391
4392inline const Type *QualType::getTypePtrOrNull() const {
4393  return (isNull() ? 0 : getCommonPtr()->BaseType);
4394}
4395
4396inline SplitQualType QualType::split() const {
4397  if (!hasLocalNonFastQualifiers())
4398    return SplitQualType(getTypePtrUnsafe(),
4399                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4400
4401  const ExtQuals *eq = getExtQualsUnsafe();
4402  Qualifiers qs = eq->getQualifiers();
4403  qs.addFastQualifiers(getLocalFastQualifiers());
4404  return SplitQualType(eq->getBaseType(), qs);
4405}
4406
4407inline Qualifiers QualType::getLocalQualifiers() const {
4408  Qualifiers Quals;
4409  if (hasLocalNonFastQualifiers())
4410    Quals = getExtQualsUnsafe()->getQualifiers();
4411  Quals.addFastQualifiers(getLocalFastQualifiers());
4412  return Quals;
4413}
4414
4415inline Qualifiers QualType::getQualifiers() const {
4416  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4417  quals.addFastQualifiers(getLocalFastQualifiers());
4418  return quals;
4419}
4420
4421inline unsigned QualType::getCVRQualifiers() const {
4422  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4423  cvr |= getLocalCVRQualifiers();
4424  return cvr;
4425}
4426
4427inline QualType QualType::getCanonicalType() const {
4428  QualType canon = getCommonPtr()->CanonicalType;
4429  return canon.withFastQualifiers(getLocalFastQualifiers());
4430}
4431
4432inline bool QualType::isCanonical() const {
4433  return getTypePtr()->isCanonicalUnqualified();
4434}
4435
4436inline bool QualType::isCanonicalAsParam() const {
4437  if (!isCanonical()) return false;
4438  if (hasLocalQualifiers()) return false;
4439
4440  const Type *T = getTypePtr();
4441  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4442    return false;
4443
4444  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4445}
4446
4447inline bool QualType::isConstQualified() const {
4448  return isLocalConstQualified() ||
4449         getCommonPtr()->CanonicalType.isLocalConstQualified();
4450}
4451
4452inline bool QualType::isRestrictQualified() const {
4453  return isLocalRestrictQualified() ||
4454         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4455}
4456
4457
4458inline bool QualType::isVolatileQualified() const {
4459  return isLocalVolatileQualified() ||
4460         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4461}
4462
4463inline bool QualType::hasQualifiers() const {
4464  return hasLocalQualifiers() ||
4465         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4466}
4467
4468inline QualType QualType::getUnqualifiedType() const {
4469  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4470    return QualType(getTypePtr(), 0);
4471
4472  return QualType(getSplitUnqualifiedTypeImpl(*this).first, 0);
4473}
4474
4475inline SplitQualType QualType::getSplitUnqualifiedType() const {
4476  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4477    return split();
4478
4479  return getSplitUnqualifiedTypeImpl(*this);
4480}
4481
4482inline void QualType::removeLocalConst() {
4483  removeLocalFastQualifiers(Qualifiers::Const);
4484}
4485
4486inline void QualType::removeLocalRestrict() {
4487  removeLocalFastQualifiers(Qualifiers::Restrict);
4488}
4489
4490inline void QualType::removeLocalVolatile() {
4491  removeLocalFastQualifiers(Qualifiers::Volatile);
4492}
4493
4494inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4495  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4496  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4497
4498  // Fast path: we don't need to touch the slow qualifiers.
4499  removeLocalFastQualifiers(Mask);
4500}
4501
4502/// getAddressSpace - Return the address space of this type.
4503inline unsigned QualType::getAddressSpace() const {
4504  return getQualifiers().getAddressSpace();
4505}
4506
4507/// getObjCGCAttr - Return the gc attribute of this type.
4508inline Qualifiers::GC QualType::getObjCGCAttr() const {
4509  return getQualifiers().getObjCGCAttr();
4510}
4511
4512inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4513  if (const PointerType *PT = t.getAs<PointerType>()) {
4514    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4515      return FT->getExtInfo();
4516  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4517    return FT->getExtInfo();
4518
4519  return FunctionType::ExtInfo();
4520}
4521
4522inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4523  return getFunctionExtInfo(*t);
4524}
4525
4526/// isMoreQualifiedThan - Determine whether this type is more
4527/// qualified than the Other type. For example, "const volatile int"
4528/// is more qualified than "const int", "volatile int", and
4529/// "int". However, it is not more qualified than "const volatile
4530/// int".
4531inline bool QualType::isMoreQualifiedThan(QualType other) const {
4532  Qualifiers myQuals = getQualifiers();
4533  Qualifiers otherQuals = other.getQualifiers();
4534  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4535}
4536
4537/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4538/// as qualified as the Other type. For example, "const volatile
4539/// int" is at least as qualified as "const int", "volatile int",
4540/// "int", and "const volatile int".
4541inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4542  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4543}
4544
4545/// getNonReferenceType - If Type is a reference type (e.g., const
4546/// int&), returns the type that the reference refers to ("const
4547/// int"). Otherwise, returns the type itself. This routine is used
4548/// throughout Sema to implement C++ 5p6:
4549///
4550///   If an expression initially has the type "reference to T" (8.3.2,
4551///   8.5.3), the type is adjusted to "T" prior to any further
4552///   analysis, the expression designates the object or function
4553///   denoted by the reference, and the expression is an lvalue.
4554inline QualType QualType::getNonReferenceType() const {
4555  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4556    return RefType->getPointeeType();
4557  else
4558    return *this;
4559}
4560
4561inline bool QualType::isCForbiddenLValueType() const {
4562  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
4563          getTypePtr()->isFunctionType());
4564}
4565
4566/// \brief Tests whether the type is categorized as a fundamental type.
4567///
4568/// \returns True for types specified in C++0x [basic.fundamental].
4569inline bool Type::isFundamentalType() const {
4570  return isVoidType() ||
4571         // FIXME: It's really annoying that we don't have an
4572         // 'isArithmeticType()' which agrees with the standard definition.
4573         (isArithmeticType() && !isEnumeralType());
4574}
4575
4576/// \brief Tests whether the type is categorized as a compound type.
4577///
4578/// \returns True for types specified in C++0x [basic.compound].
4579inline bool Type::isCompoundType() const {
4580  // C++0x [basic.compound]p1:
4581  //   Compound types can be constructed in the following ways:
4582  //    -- arrays of objects of a given type [...];
4583  return isArrayType() ||
4584  //    -- functions, which have parameters of given types [...];
4585         isFunctionType() ||
4586  //    -- pointers to void or objects or functions [...];
4587         isPointerType() ||
4588  //    -- references to objects or functions of a given type. [...]
4589         isReferenceType() ||
4590  //    -- classes containing a sequence of objects of various types, [...];
4591         isRecordType() ||
4592  //    -- unions, which are classes capable of containing objects of different
4593  //               types at different times;
4594         isUnionType() ||
4595  //    -- enumerations, which comprise a set of named constant values. [...];
4596         isEnumeralType() ||
4597  //    -- pointers to non-static class members, [...].
4598         isMemberPointerType();
4599}
4600
4601inline bool Type::isFunctionType() const {
4602  return isa<FunctionType>(CanonicalType);
4603}
4604inline bool Type::isPointerType() const {
4605  return isa<PointerType>(CanonicalType);
4606}
4607inline bool Type::isAnyPointerType() const {
4608  return isPointerType() || isObjCObjectPointerType();
4609}
4610inline bool Type::isBlockPointerType() const {
4611  return isa<BlockPointerType>(CanonicalType);
4612}
4613inline bool Type::isReferenceType() const {
4614  return isa<ReferenceType>(CanonicalType);
4615}
4616inline bool Type::isLValueReferenceType() const {
4617  return isa<LValueReferenceType>(CanonicalType);
4618}
4619inline bool Type::isRValueReferenceType() const {
4620  return isa<RValueReferenceType>(CanonicalType);
4621}
4622inline bool Type::isFunctionPointerType() const {
4623  if (const PointerType *T = getAs<PointerType>())
4624    return T->getPointeeType()->isFunctionType();
4625  else
4626    return false;
4627}
4628inline bool Type::isMemberPointerType() const {
4629  return isa<MemberPointerType>(CanonicalType);
4630}
4631inline bool Type::isMemberFunctionPointerType() const {
4632  if (const MemberPointerType* T = getAs<MemberPointerType>())
4633    return T->isMemberFunctionPointer();
4634  else
4635    return false;
4636}
4637inline bool Type::isMemberDataPointerType() const {
4638  if (const MemberPointerType* T = getAs<MemberPointerType>())
4639    return T->isMemberDataPointer();
4640  else
4641    return false;
4642}
4643inline bool Type::isArrayType() const {
4644  return isa<ArrayType>(CanonicalType);
4645}
4646inline bool Type::isConstantArrayType() const {
4647  return isa<ConstantArrayType>(CanonicalType);
4648}
4649inline bool Type::isIncompleteArrayType() const {
4650  return isa<IncompleteArrayType>(CanonicalType);
4651}
4652inline bool Type::isVariableArrayType() const {
4653  return isa<VariableArrayType>(CanonicalType);
4654}
4655inline bool Type::isDependentSizedArrayType() const {
4656  return isa<DependentSizedArrayType>(CanonicalType);
4657}
4658inline bool Type::isBuiltinType() const {
4659  return isa<BuiltinType>(CanonicalType);
4660}
4661inline bool Type::isRecordType() const {
4662  return isa<RecordType>(CanonicalType);
4663}
4664inline bool Type::isEnumeralType() const {
4665  return isa<EnumType>(CanonicalType);
4666}
4667inline bool Type::isAnyComplexType() const {
4668  return isa<ComplexType>(CanonicalType);
4669}
4670inline bool Type::isVectorType() const {
4671  return isa<VectorType>(CanonicalType);
4672}
4673inline bool Type::isExtVectorType() const {
4674  return isa<ExtVectorType>(CanonicalType);
4675}
4676inline bool Type::isObjCObjectPointerType() const {
4677  return isa<ObjCObjectPointerType>(CanonicalType);
4678}
4679inline bool Type::isObjCObjectType() const {
4680  return isa<ObjCObjectType>(CanonicalType);
4681}
4682inline bool Type::isObjCObjectOrInterfaceType() const {
4683  return isa<ObjCInterfaceType>(CanonicalType) ||
4684    isa<ObjCObjectType>(CanonicalType);
4685}
4686inline bool Type::isAtomicType() const {
4687  return isa<AtomicType>(CanonicalType);
4688}
4689
4690inline bool Type::isObjCQualifiedIdType() const {
4691  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4692    return OPT->isObjCQualifiedIdType();
4693  return false;
4694}
4695inline bool Type::isObjCQualifiedClassType() const {
4696  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4697    return OPT->isObjCQualifiedClassType();
4698  return false;
4699}
4700inline bool Type::isObjCIdType() const {
4701  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4702    return OPT->isObjCIdType();
4703  return false;
4704}
4705inline bool Type::isObjCClassType() const {
4706  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4707    return OPT->isObjCClassType();
4708  return false;
4709}
4710inline bool Type::isObjCSelType() const {
4711  if (const PointerType *OPT = getAs<PointerType>())
4712    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4713  return false;
4714}
4715inline bool Type::isObjCBuiltinType() const {
4716  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4717}
4718inline bool Type::isTemplateTypeParmType() const {
4719  return isa<TemplateTypeParmType>(CanonicalType);
4720}
4721
4722inline bool Type::isSpecificBuiltinType(unsigned K) const {
4723  if (const BuiltinType *BT = getAs<BuiltinType>())
4724    if (BT->getKind() == (BuiltinType::Kind) K)
4725      return true;
4726  return false;
4727}
4728
4729inline bool Type::isPlaceholderType() const {
4730  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4731    return BT->isPlaceholderType();
4732  return false;
4733}
4734
4735inline const BuiltinType *Type::getAsPlaceholderType() const {
4736  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4737    if (BT->isPlaceholderType())
4738      return BT;
4739  return 0;
4740}
4741
4742inline bool Type::isSpecificPlaceholderType(unsigned K) const {
4743  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
4744  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4745    return (BT->getKind() == (BuiltinType::Kind) K);
4746  return false;
4747}
4748
4749inline bool Type::isNonOverloadPlaceholderType() const {
4750  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4751    return BT->isNonOverloadPlaceholderType();
4752  return false;
4753}
4754
4755/// \brief Determines whether this is a type for which one can define
4756/// an overloaded operator.
4757inline bool Type::isOverloadableType() const {
4758  return isDependentType() || isRecordType() || isEnumeralType();
4759}
4760
4761/// \brief Determines whether this type can decay to a pointer type.
4762inline bool Type::canDecayToPointerType() const {
4763  return isFunctionType() || isArrayType();
4764}
4765
4766inline bool Type::hasPointerRepresentation() const {
4767  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
4768          isObjCObjectPointerType() || isNullPtrType());
4769}
4770
4771inline bool Type::hasObjCPointerRepresentation() const {
4772  return isObjCObjectPointerType();
4773}
4774
4775inline const Type *Type::getBaseElementTypeUnsafe() const {
4776  const Type *type = this;
4777  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
4778    type = arrayType->getElementType().getTypePtr();
4779  return type;
4780}
4781
4782/// Insertion operator for diagnostics.  This allows sending QualType's into a
4783/// diagnostic with <<.
4784inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
4785                                           QualType T) {
4786  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4787                  DiagnosticsEngine::ak_qualtype);
4788  return DB;
4789}
4790
4791/// Insertion operator for partial diagnostics.  This allows sending QualType's
4792/// into a diagnostic with <<.
4793inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
4794                                           QualType T) {
4795  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4796                  DiagnosticsEngine::ak_qualtype);
4797  return PD;
4798}
4799
4800// Helper class template that is used by Type::getAs to ensure that one does
4801// not try to look through a qualified type to get to an array type.
4802template<typename T,
4803         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
4804                             llvm::is_base_of<ArrayType, T>::value)>
4805struct ArrayType_cannot_be_used_with_getAs { };
4806
4807template<typename T>
4808struct ArrayType_cannot_be_used_with_getAs<T, true>;
4809
4810/// Member-template getAs<specific type>'.
4811template <typename T> const T *Type::getAs() const {
4812  ArrayType_cannot_be_used_with_getAs<T> at;
4813  (void)at;
4814
4815  // If this is directly a T type, return it.
4816  if (const T *Ty = dyn_cast<T>(this))
4817    return Ty;
4818
4819  // If the canonical form of this type isn't the right kind, reject it.
4820  if (!isa<T>(CanonicalType))
4821    return 0;
4822
4823  // If this is a typedef for the type, strip the typedef off without
4824  // losing all typedef information.
4825  return cast<T>(getUnqualifiedDesugaredType());
4826}
4827
4828inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
4829  // If this is directly an array type, return it.
4830  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
4831    return arr;
4832
4833  // If the canonical form of this type isn't the right kind, reject it.
4834  if (!isa<ArrayType>(CanonicalType))
4835    return 0;
4836
4837  // If this is a typedef for the type, strip the typedef off without
4838  // losing all typedef information.
4839  return cast<ArrayType>(getUnqualifiedDesugaredType());
4840}
4841
4842template <typename T> const T *Type::castAs() const {
4843  ArrayType_cannot_be_used_with_getAs<T> at;
4844  (void) at;
4845
4846  assert(isa<T>(CanonicalType));
4847  if (const T *ty = dyn_cast<T>(this)) return ty;
4848  return cast<T>(getUnqualifiedDesugaredType());
4849}
4850
4851inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
4852  assert(isa<ArrayType>(CanonicalType));
4853  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
4854  return cast<ArrayType>(getUnqualifiedDesugaredType());
4855}
4856
4857}  // end namespace clang
4858
4859#endif
4860