Type.h revision 6a2ccc51d9b8357e1433e0029d544d95c5877a5c
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/ExceptionSpecificationType.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/Linkage.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Basic/Visibility.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/TemplateName.h"
25#include "llvm/Support/type_traits.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32#include "clang/Basic/LLVM.h"
33
34namespace clang {
35  enum {
36    TypeAlignmentInBits = 4,
37    TypeAlignment = 1 << TypeAlignmentInBits
38  };
39  class Type;
40  class ExtQuals;
41  class QualType;
42}
43
44namespace llvm {
45  template <typename T>
46  class PointerLikeTypeTraits;
47  template<>
48  class PointerLikeTypeTraits< ::clang::Type*> {
49  public:
50    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
51    static inline ::clang::Type *getFromVoidPointer(void *P) {
52      return static_cast< ::clang::Type*>(P);
53    }
54    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
55  };
56  template<>
57  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
58  public:
59    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
60    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
61      return static_cast< ::clang::ExtQuals*>(P);
62    }
63    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
64  };
65
66  template <>
67  struct isPodLike<clang::QualType> { static const bool value = true; };
68}
69
70namespace clang {
71  class ASTContext;
72  class TypedefNameDecl;
73  class TemplateDecl;
74  class TemplateTypeParmDecl;
75  class NonTypeTemplateParmDecl;
76  class TemplateTemplateParmDecl;
77  class TagDecl;
78  class RecordDecl;
79  class CXXRecordDecl;
80  class EnumDecl;
81  class FieldDecl;
82  class ObjCInterfaceDecl;
83  class ObjCProtocolDecl;
84  class ObjCMethodDecl;
85  class UnresolvedUsingTypenameDecl;
86  class Expr;
87  class Stmt;
88  class SourceLocation;
89  class StmtIteratorBase;
90  class TemplateArgument;
91  class TemplateArgumentLoc;
92  class TemplateArgumentListInfo;
93  class ElaboratedType;
94  class ExtQuals;
95  class ExtQualsTypeCommonBase;
96  struct PrintingPolicy;
97
98  template <typename> class CanQual;
99  typedef CanQual<Type> CanQualType;
100
101  // Provide forward declarations for all of the *Type classes
102#define TYPE(Class, Base) class Class##Type;
103#include "clang/AST/TypeNodes.def"
104
105/// Qualifiers - The collection of all-type qualifiers we support.
106/// Clang supports five independent qualifiers:
107/// * C99: const, volatile, and restrict
108/// * Embedded C (TR18037): address spaces
109/// * Objective C: the GC attributes (none, weak, or strong)
110class Qualifiers {
111public:
112  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
113    Const    = 0x1,
114    Restrict = 0x2,
115    Volatile = 0x4,
116    CVRMask = Const | Volatile | Restrict
117  };
118
119  enum GC {
120    GCNone = 0,
121    Weak,
122    Strong
123  };
124
125  enum ObjCLifetime {
126    /// There is no lifetime qualification on this type.
127    OCL_None,
128
129    /// This object can be modified without requiring retains or
130    /// releases.
131    OCL_ExplicitNone,
132
133    /// Assigning into this object requires the old value to be
134    /// released and the new value to be retained.  The timing of the
135    /// release of the old value is inexact: it may be moved to
136    /// immediately after the last known point where the value is
137    /// live.
138    OCL_Strong,
139
140    /// Reading or writing from this object requires a barrier call.
141    OCL_Weak,
142
143    /// Assigning into this object requires a lifetime extension.
144    OCL_Autoreleasing
145  };
146
147  enum {
148    /// The maximum supported address space number.
149    /// 24 bits should be enough for anyone.
150    MaxAddressSpace = 0xffffffu,
151
152    /// The width of the "fast" qualifier mask.
153    FastWidth = 3,
154
155    /// The fast qualifier mask.
156    FastMask = (1 << FastWidth) - 1
157  };
158
159  Qualifiers() : Mask(0) {}
160
161  static Qualifiers fromFastMask(unsigned Mask) {
162    Qualifiers Qs;
163    Qs.addFastQualifiers(Mask);
164    return Qs;
165  }
166
167  static Qualifiers fromCVRMask(unsigned CVR) {
168    Qualifiers Qs;
169    Qs.addCVRQualifiers(CVR);
170    return Qs;
171  }
172
173  // Deserialize qualifiers from an opaque representation.
174  static Qualifiers fromOpaqueValue(unsigned opaque) {
175    Qualifiers Qs;
176    Qs.Mask = opaque;
177    return Qs;
178  }
179
180  // Serialize these qualifiers into an opaque representation.
181  unsigned getAsOpaqueValue() const {
182    return Mask;
183  }
184
185  bool hasConst() const { return Mask & Const; }
186  void setConst(bool flag) {
187    Mask = (Mask & ~Const) | (flag ? Const : 0);
188  }
189  void removeConst() { Mask &= ~Const; }
190  void addConst() { Mask |= Const; }
191
192  bool hasVolatile() const { return Mask & Volatile; }
193  void setVolatile(bool flag) {
194    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
195  }
196  void removeVolatile() { Mask &= ~Volatile; }
197  void addVolatile() { Mask |= Volatile; }
198
199  bool hasRestrict() const { return Mask & Restrict; }
200  void setRestrict(bool flag) {
201    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
202  }
203  void removeRestrict() { Mask &= ~Restrict; }
204  void addRestrict() { Mask |= Restrict; }
205
206  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
207  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
208  void setCVRQualifiers(unsigned mask) {
209    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
210    Mask = (Mask & ~CVRMask) | mask;
211  }
212  void removeCVRQualifiers(unsigned mask) {
213    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
214    Mask &= ~mask;
215  }
216  void removeCVRQualifiers() {
217    removeCVRQualifiers(CVRMask);
218  }
219  void addCVRQualifiers(unsigned mask) {
220    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
221    Mask |= mask;
222  }
223
224  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
225  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
226  void setObjCGCAttr(GC type) {
227    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
228  }
229  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
230  void addObjCGCAttr(GC type) {
231    assert(type);
232    setObjCGCAttr(type);
233  }
234  Qualifiers withoutObjCGCAttr() const {
235    Qualifiers qs = *this;
236    qs.removeObjCGCAttr();
237    return qs;
238  }
239  Qualifiers withoutObjCGLifetime() const {
240    Qualifiers qs = *this;
241    qs.removeObjCLifetime();
242    return qs;
243  }
244
245  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
246  ObjCLifetime getObjCLifetime() const {
247    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
248  }
249  void setObjCLifetime(ObjCLifetime type) {
250    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
251  }
252  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
253  void addObjCLifetime(ObjCLifetime type) {
254    assert(type);
255    setObjCLifetime(type);
256  }
257
258  /// True if the lifetime is neither None or ExplicitNone.
259  bool hasNonTrivialObjCLifetime() const {
260    ObjCLifetime lifetime = getObjCLifetime();
261    return (lifetime > OCL_ExplicitNone);
262  }
263
264  /// True if the lifetime is either strong or weak.
265  bool hasStrongOrWeakObjCLifetime() const {
266    ObjCLifetime lifetime = getObjCLifetime();
267    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
268  }
269
270  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
271  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
272  void setAddressSpace(unsigned space) {
273    assert(space <= MaxAddressSpace);
274    Mask = (Mask & ~AddressSpaceMask)
275         | (((uint32_t) space) << AddressSpaceShift);
276  }
277  void removeAddressSpace() { setAddressSpace(0); }
278  void addAddressSpace(unsigned space) {
279    assert(space);
280    setAddressSpace(space);
281  }
282
283  // Fast qualifiers are those that can be allocated directly
284  // on a QualType object.
285  bool hasFastQualifiers() const { return getFastQualifiers(); }
286  unsigned getFastQualifiers() const { return Mask & FastMask; }
287  void setFastQualifiers(unsigned mask) {
288    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
289    Mask = (Mask & ~FastMask) | mask;
290  }
291  void removeFastQualifiers(unsigned mask) {
292    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
293    Mask &= ~mask;
294  }
295  void removeFastQualifiers() {
296    removeFastQualifiers(FastMask);
297  }
298  void addFastQualifiers(unsigned mask) {
299    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
300    Mask |= mask;
301  }
302
303  /// hasNonFastQualifiers - Return true if the set contains any
304  /// qualifiers which require an ExtQuals node to be allocated.
305  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
306  Qualifiers getNonFastQualifiers() const {
307    Qualifiers Quals = *this;
308    Quals.setFastQualifiers(0);
309    return Quals;
310  }
311
312  /// hasQualifiers - Return true if the set contains any qualifiers.
313  bool hasQualifiers() const { return Mask; }
314  bool empty() const { return !Mask; }
315
316  /// \brief Add the qualifiers from the given set to this set.
317  void addQualifiers(Qualifiers Q) {
318    // If the other set doesn't have any non-boolean qualifiers, just
319    // bit-or it in.
320    if (!(Q.Mask & ~CVRMask))
321      Mask |= Q.Mask;
322    else {
323      Mask |= (Q.Mask & CVRMask);
324      if (Q.hasAddressSpace())
325        addAddressSpace(Q.getAddressSpace());
326      if (Q.hasObjCGCAttr())
327        addObjCGCAttr(Q.getObjCGCAttr());
328      if (Q.hasObjCLifetime())
329        addObjCLifetime(Q.getObjCLifetime());
330    }
331  }
332
333  /// \brief Add the qualifiers from the given set to this set, given that
334  /// they don't conflict.
335  void addConsistentQualifiers(Qualifiers qs) {
336    assert(getAddressSpace() == qs.getAddressSpace() ||
337           !hasAddressSpace() || !qs.hasAddressSpace());
338    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
339           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
340    assert(getObjCLifetime() == qs.getObjCLifetime() ||
341           !hasObjCLifetime() || !qs.hasObjCLifetime());
342    Mask |= qs.Mask;
343  }
344
345  /// \brief Determines if these qualifiers compatibly include another set.
346  /// Generally this answers the question of whether an object with the other
347  /// qualifiers can be safely used as an object with these qualifiers.
348  bool compatiblyIncludes(Qualifiers other) const {
349    return
350      // Address spaces must match exactly.
351      getAddressSpace() == other.getAddressSpace() &&
352      // ObjC GC qualifiers can match, be added, or be removed, but can't be
353      // changed.
354      (getObjCGCAttr() == other.getObjCGCAttr() ||
355       !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
356      // ObjC lifetime qualifiers must match exactly.
357      getObjCLifetime() == other.getObjCLifetime() &&
358      // CVR qualifiers may subset.
359      (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
360  }
361
362  /// \brief Determines if these qualifiers compatibly include another set of
363  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
364  ///
365  /// One set of Objective-C lifetime qualifiers compatibly includes the other
366  /// if the lifetime qualifiers match, or if both are non-__weak and the
367  /// including set also contains the 'const' qualifier.
368  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
369    if (getObjCLifetime() == other.getObjCLifetime())
370      return true;
371
372    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
373      return false;
374
375    return hasConst();
376  }
377
378  bool isSupersetOf(Qualifiers Other) const;
379
380  /// \brief Determine whether this set of qualifiers is a strict superset of
381  /// another set of qualifiers, not considering qualifier compatibility.
382  bool isStrictSupersetOf(Qualifiers Other) const;
383
384  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
385  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
386
387  operator bool() const { return hasQualifiers(); }
388
389  Qualifiers &operator+=(Qualifiers R) {
390    addQualifiers(R);
391    return *this;
392  }
393
394  // Union two qualifier sets.  If an enumerated qualifier appears
395  // in both sets, use the one from the right.
396  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
397    L += R;
398    return L;
399  }
400
401  Qualifiers &operator-=(Qualifiers R) {
402    Mask = Mask & ~(R.Mask);
403    return *this;
404  }
405
406  /// \brief Compute the difference between two qualifier sets.
407  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
408    L -= R;
409    return L;
410  }
411
412  std::string getAsString() const;
413  std::string getAsString(const PrintingPolicy &Policy) const {
414    std::string Buffer;
415    getAsStringInternal(Buffer, Policy);
416    return Buffer;
417  }
418  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
419
420  void Profile(llvm::FoldingSetNodeID &ID) const {
421    ID.AddInteger(Mask);
422  }
423
424private:
425
426  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
427  //           |C R V|GCAttr|Lifetime|AddressSpace|
428  uint32_t Mask;
429
430  static const uint32_t GCAttrMask = 0x18;
431  static const uint32_t GCAttrShift = 3;
432  static const uint32_t LifetimeMask = 0xE0;
433  static const uint32_t LifetimeShift = 5;
434  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
435  static const uint32_t AddressSpaceShift = 8;
436};
437
438/// CallingConv - Specifies the calling convention that a function uses.
439enum CallingConv {
440  CC_Default,
441  CC_C,           // __attribute__((cdecl))
442  CC_X86StdCall,  // __attribute__((stdcall))
443  CC_X86FastCall, // __attribute__((fastcall))
444  CC_X86ThisCall, // __attribute__((thiscall))
445  CC_X86Pascal,   // __attribute__((pascal))
446  CC_AAPCS,       // __attribute__((pcs("aapcs")))
447  CC_AAPCS_VFP    // __attribute__((pcs("aapcs-vfp")))
448};
449
450typedef std::pair<const Type*, Qualifiers> SplitQualType;
451
452/// QualType - For efficiency, we don't store CV-qualified types as nodes on
453/// their own: instead each reference to a type stores the qualifiers.  This
454/// greatly reduces the number of nodes we need to allocate for types (for
455/// example we only need one for 'int', 'const int', 'volatile int',
456/// 'const volatile int', etc).
457///
458/// As an added efficiency bonus, instead of making this a pair, we
459/// just store the two bits we care about in the low bits of the
460/// pointer.  To handle the packing/unpacking, we make QualType be a
461/// simple wrapper class that acts like a smart pointer.  A third bit
462/// indicates whether there are extended qualifiers present, in which
463/// case the pointer points to a special structure.
464class QualType {
465  // Thankfully, these are efficiently composable.
466  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
467                       Qualifiers::FastWidth> Value;
468
469  const ExtQuals *getExtQualsUnsafe() const {
470    return Value.getPointer().get<const ExtQuals*>();
471  }
472
473  const Type *getTypePtrUnsafe() const {
474    return Value.getPointer().get<const Type*>();
475  }
476
477  const ExtQualsTypeCommonBase *getCommonPtr() const {
478    assert(!isNull() && "Cannot retrieve a NULL type pointer");
479    uintptr_t CommonPtrVal
480      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
481    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
482    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
483  }
484
485  friend class QualifierCollector;
486public:
487  QualType() {}
488
489  QualType(const Type *Ptr, unsigned Quals)
490    : Value(Ptr, Quals) {}
491  QualType(const ExtQuals *Ptr, unsigned Quals)
492    : Value(Ptr, Quals) {}
493
494  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
495  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
496
497  /// Retrieves a pointer to the underlying (unqualified) type.
498  /// This should really return a const Type, but it's not worth
499  /// changing all the users right now.
500  ///
501  /// This function requires that the type not be NULL. If the type might be
502  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
503  const Type *getTypePtr() const;
504
505  const Type *getTypePtrOrNull() const;
506
507  /// Retrieves a pointer to the name of the base type.
508  const IdentifierInfo *getBaseTypeIdentifier() const;
509
510  /// Divides a QualType into its unqualified type and a set of local
511  /// qualifiers.
512  SplitQualType split() const;
513
514  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
515  static QualType getFromOpaquePtr(const void *Ptr) {
516    QualType T;
517    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
518    return T;
519  }
520
521  const Type &operator*() const {
522    return *getTypePtr();
523  }
524
525  const Type *operator->() const {
526    return getTypePtr();
527  }
528
529  bool isCanonical() const;
530  bool isCanonicalAsParam() const;
531
532  /// isNull - Return true if this QualType doesn't point to a type yet.
533  bool isNull() const {
534    return Value.getPointer().isNull();
535  }
536
537  /// \brief Determine whether this particular QualType instance has the
538  /// "const" qualifier set, without looking through typedefs that may have
539  /// added "const" at a different level.
540  bool isLocalConstQualified() const {
541    return (getLocalFastQualifiers() & Qualifiers::Const);
542  }
543
544  /// \brief Determine whether this type is const-qualified.
545  bool isConstQualified() const;
546
547  /// \brief Determine whether this particular QualType instance has the
548  /// "restrict" qualifier set, without looking through typedefs that may have
549  /// added "restrict" at a different level.
550  bool isLocalRestrictQualified() const {
551    return (getLocalFastQualifiers() & Qualifiers::Restrict);
552  }
553
554  /// \brief Determine whether this type is restrict-qualified.
555  bool isRestrictQualified() const;
556
557  /// \brief Determine whether this particular QualType instance has the
558  /// "volatile" qualifier set, without looking through typedefs that may have
559  /// added "volatile" at a different level.
560  bool isLocalVolatileQualified() const {
561    return (getLocalFastQualifiers() & Qualifiers::Volatile);
562  }
563
564  /// \brief Determine whether this type is volatile-qualified.
565  bool isVolatileQualified() const;
566
567  /// \brief Determine whether this particular QualType instance has any
568  /// qualifiers, without looking through any typedefs that might add
569  /// qualifiers at a different level.
570  bool hasLocalQualifiers() const {
571    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
572  }
573
574  /// \brief Determine whether this type has any qualifiers.
575  bool hasQualifiers() const;
576
577  /// \brief Determine whether this particular QualType instance has any
578  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
579  /// instance.
580  bool hasLocalNonFastQualifiers() const {
581    return Value.getPointer().is<const ExtQuals*>();
582  }
583
584  /// \brief Retrieve the set of qualifiers local to this particular QualType
585  /// instance, not including any qualifiers acquired through typedefs or
586  /// other sugar.
587  Qualifiers getLocalQualifiers() const;
588
589  /// \brief Retrieve the set of qualifiers applied to this type.
590  Qualifiers getQualifiers() const;
591
592  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
593  /// local to this particular QualType instance, not including any qualifiers
594  /// acquired through typedefs or other sugar.
595  unsigned getLocalCVRQualifiers() const {
596    return getLocalFastQualifiers();
597  }
598
599  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
600  /// applied to this type.
601  unsigned getCVRQualifiers() const;
602
603  bool isConstant(ASTContext& Ctx) const {
604    return QualType::isConstant(*this, Ctx);
605  }
606
607  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
608  bool isPODType(ASTContext &Context) const;
609
610  /// isCXX11PODType() - Return true if this is a POD type according to the
611  /// more relaxed rules of the C++11 standard, regardless of the current
612  /// compilation's language.
613  /// (C++0x [basic.types]p9)
614  bool isCXX11PODType(ASTContext &Context) const;
615
616  /// isTrivialType - Return true if this is a trivial type
617  /// (C++0x [basic.types]p9)
618  bool isTrivialType(ASTContext &Context) const;
619
620  /// isTriviallyCopyableType - Return true if this is a trivially
621  /// copyable type (C++0x [basic.types]p9)
622  bool isTriviallyCopyableType(ASTContext &Context) const;
623
624  // Don't promise in the API that anything besides 'const' can be
625  // easily added.
626
627  /// addConst - add the specified type qualifier to this QualType.
628  void addConst() {
629    addFastQualifiers(Qualifiers::Const);
630  }
631  QualType withConst() const {
632    return withFastQualifiers(Qualifiers::Const);
633  }
634
635  /// addVolatile - add the specified type qualifier to this QualType.
636  void addVolatile() {
637    addFastQualifiers(Qualifiers::Volatile);
638  }
639  QualType withVolatile() const {
640    return withFastQualifiers(Qualifiers::Volatile);
641  }
642
643  QualType withCVRQualifiers(unsigned CVR) const {
644    return withFastQualifiers(CVR);
645  }
646
647  void addFastQualifiers(unsigned TQs) {
648    assert(!(TQs & ~Qualifiers::FastMask)
649           && "non-fast qualifier bits set in mask!");
650    Value.setInt(Value.getInt() | TQs);
651  }
652
653  void removeLocalConst();
654  void removeLocalVolatile();
655  void removeLocalRestrict();
656  void removeLocalCVRQualifiers(unsigned Mask);
657
658  void removeLocalFastQualifiers() { Value.setInt(0); }
659  void removeLocalFastQualifiers(unsigned Mask) {
660    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
661    Value.setInt(Value.getInt() & ~Mask);
662  }
663
664  // Creates a type with the given qualifiers in addition to any
665  // qualifiers already on this type.
666  QualType withFastQualifiers(unsigned TQs) const {
667    QualType T = *this;
668    T.addFastQualifiers(TQs);
669    return T;
670  }
671
672  // Creates a type with exactly the given fast qualifiers, removing
673  // any existing fast qualifiers.
674  QualType withExactLocalFastQualifiers(unsigned TQs) const {
675    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
676  }
677
678  // Removes fast qualifiers, but leaves any extended qualifiers in place.
679  QualType withoutLocalFastQualifiers() const {
680    QualType T = *this;
681    T.removeLocalFastQualifiers();
682    return T;
683  }
684
685  QualType getCanonicalType() const;
686
687  /// \brief Return this type with all of the instance-specific qualifiers
688  /// removed, but without removing any qualifiers that may have been applied
689  /// through typedefs.
690  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
691
692  /// \brief Retrieve the unqualified variant of the given type,
693  /// removing as little sugar as possible.
694  ///
695  /// This routine looks through various kinds of sugar to find the
696  /// least-desugared type that is unqualified. For example, given:
697  ///
698  /// \code
699  /// typedef int Integer;
700  /// typedef const Integer CInteger;
701  /// typedef CInteger DifferenceType;
702  /// \endcode
703  ///
704  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
705  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
706  ///
707  /// The resulting type might still be qualified if it's an array
708  /// type.  To strip qualifiers even from within an array type, use
709  /// ASTContext::getUnqualifiedArrayType.
710  inline QualType getUnqualifiedType() const;
711
712  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
713  /// given type, removing as little sugar as possible.
714  ///
715  /// Like getUnqualifiedType(), but also returns the set of
716  /// qualifiers that were built up.
717  ///
718  /// The resulting type might still be qualified if it's an array
719  /// type.  To strip qualifiers even from within an array type, use
720  /// ASTContext::getUnqualifiedArrayType.
721  inline SplitQualType getSplitUnqualifiedType() const;
722
723  /// \brief Determine whether this type is more qualified than the other
724  /// given type, requiring exact equality for non-CVR qualifiers.
725  bool isMoreQualifiedThan(QualType Other) const;
726
727  /// \brief Determine whether this type is at least as qualified as the other
728  /// given type, requiring exact equality for non-CVR qualifiers.
729  bool isAtLeastAsQualifiedAs(QualType Other) const;
730
731  QualType getNonReferenceType() const;
732
733  /// \brief Determine the type of a (typically non-lvalue) expression with the
734  /// specified result type.
735  ///
736  /// This routine should be used for expressions for which the return type is
737  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
738  /// an lvalue. It removes a top-level reference (since there are no
739  /// expressions of reference type) and deletes top-level cvr-qualifiers
740  /// from non-class types (in C++) or all types (in C).
741  QualType getNonLValueExprType(ASTContext &Context) const;
742
743  /// getDesugaredType - Return the specified type with any "sugar" removed from
744  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
745  /// the type is already concrete, it returns it unmodified.  This is similar
746  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
747  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
748  /// concrete.
749  ///
750  /// Qualifiers are left in place.
751  QualType getDesugaredType(const ASTContext &Context) const {
752    return getDesugaredType(*this, Context);
753  }
754
755  SplitQualType getSplitDesugaredType() const {
756    return getSplitDesugaredType(*this);
757  }
758
759  /// \brief Return the specified type with one level of "sugar" removed from
760  /// the type.
761  ///
762  /// This routine takes off the first typedef, typeof, etc. If the outer level
763  /// of the type is already concrete, it returns it unmodified.
764  QualType getSingleStepDesugaredType(const ASTContext &Context) const;
765
766  /// IgnoreParens - Returns the specified type after dropping any
767  /// outer-level parentheses.
768  QualType IgnoreParens() const {
769    if (isa<ParenType>(*this))
770      return QualType::IgnoreParens(*this);
771    return *this;
772  }
773
774  /// operator==/!= - Indicate whether the specified types and qualifiers are
775  /// identical.
776  friend bool operator==(const QualType &LHS, const QualType &RHS) {
777    return LHS.Value == RHS.Value;
778  }
779  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
780    return LHS.Value != RHS.Value;
781  }
782  std::string getAsString() const {
783    return getAsString(split());
784  }
785  static std::string getAsString(SplitQualType split) {
786    return getAsString(split.first, split.second);
787  }
788  static std::string getAsString(const Type *ty, Qualifiers qs);
789
790  std::string getAsString(const PrintingPolicy &Policy) const {
791    std::string S;
792    getAsStringInternal(S, Policy);
793    return S;
794  }
795  void getAsStringInternal(std::string &Str,
796                           const PrintingPolicy &Policy) const {
797    return getAsStringInternal(split(), Str, Policy);
798  }
799  static void getAsStringInternal(SplitQualType split, std::string &out,
800                                  const PrintingPolicy &policy) {
801    return getAsStringInternal(split.first, split.second, out, policy);
802  }
803  static void getAsStringInternal(const Type *ty, Qualifiers qs,
804                                  std::string &out,
805                                  const PrintingPolicy &policy);
806
807  void dump(const char *s) const;
808  void dump() const;
809
810  void Profile(llvm::FoldingSetNodeID &ID) const {
811    ID.AddPointer(getAsOpaquePtr());
812  }
813
814  /// getAddressSpace - Return the address space of this type.
815  inline unsigned getAddressSpace() const;
816
817  /// getObjCGCAttr - Returns gc attribute of this type.
818  inline Qualifiers::GC getObjCGCAttr() const;
819
820  /// isObjCGCWeak true when Type is objc's weak.
821  bool isObjCGCWeak() const {
822    return getObjCGCAttr() == Qualifiers::Weak;
823  }
824
825  /// isObjCGCStrong true when Type is objc's strong.
826  bool isObjCGCStrong() const {
827    return getObjCGCAttr() == Qualifiers::Strong;
828  }
829
830  /// getObjCLifetime - Returns lifetime attribute of this type.
831  Qualifiers::ObjCLifetime getObjCLifetime() const {
832    return getQualifiers().getObjCLifetime();
833  }
834
835  bool hasNonTrivialObjCLifetime() const {
836    return getQualifiers().hasNonTrivialObjCLifetime();
837  }
838
839  bool hasStrongOrWeakObjCLifetime() const {
840    return getQualifiers().hasStrongOrWeakObjCLifetime();
841  }
842
843  enum DestructionKind {
844    DK_none,
845    DK_cxx_destructor,
846    DK_objc_strong_lifetime,
847    DK_objc_weak_lifetime
848  };
849
850  /// isDestructedType - nonzero if objects of this type require
851  /// non-trivial work to clean up after.  Non-zero because it's
852  /// conceivable that qualifiers (objc_gc(weak)?) could make
853  /// something require destruction.
854  DestructionKind isDestructedType() const {
855    return isDestructedTypeImpl(*this);
856  }
857
858  /// \brief Determine whether expressions of the given type are forbidden
859  /// from being lvalues in C.
860  ///
861  /// The expression types that are forbidden to be lvalues are:
862  ///   - 'void', but not qualified void
863  ///   - function types
864  ///
865  /// The exact rule here is C99 6.3.2.1:
866  ///   An lvalue is an expression with an object type or an incomplete
867  ///   type other than void.
868  bool isCForbiddenLValueType() const;
869
870  /// \brief Determine whether this type has trivial copy/move-assignment
871  ///        semantics.
872  bool hasTrivialAssignment(ASTContext &Context, bool Copying) const;
873
874private:
875  // These methods are implemented in a separate translation unit;
876  // "static"-ize them to avoid creating temporary QualTypes in the
877  // caller.
878  static bool isConstant(QualType T, ASTContext& Ctx);
879  static QualType getDesugaredType(QualType T, const ASTContext &Context);
880  static SplitQualType getSplitDesugaredType(QualType T);
881  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
882  static QualType IgnoreParens(QualType T);
883  static DestructionKind isDestructedTypeImpl(QualType type);
884};
885
886} // end clang.
887
888namespace llvm {
889/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
890/// to a specific Type class.
891template<> struct simplify_type<const ::clang::QualType> {
892  typedef const ::clang::Type *SimpleType;
893  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
894    return Val.getTypePtr();
895  }
896};
897template<> struct simplify_type< ::clang::QualType>
898  : public simplify_type<const ::clang::QualType> {};
899
900// Teach SmallPtrSet that QualType is "basically a pointer".
901template<>
902class PointerLikeTypeTraits<clang::QualType> {
903public:
904  static inline void *getAsVoidPointer(clang::QualType P) {
905    return P.getAsOpaquePtr();
906  }
907  static inline clang::QualType getFromVoidPointer(void *P) {
908    return clang::QualType::getFromOpaquePtr(P);
909  }
910  // Various qualifiers go in low bits.
911  enum { NumLowBitsAvailable = 0 };
912};
913
914} // end namespace llvm
915
916namespace clang {
917
918/// \brief Base class that is common to both the \c ExtQuals and \c Type
919/// classes, which allows \c QualType to access the common fields between the
920/// two.
921///
922class ExtQualsTypeCommonBase {
923  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
924    : BaseType(baseType), CanonicalType(canon) {}
925
926  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
927  /// a self-referential pointer (for \c Type).
928  ///
929  /// This pointer allows an efficient mapping from a QualType to its
930  /// underlying type pointer.
931  const Type *const BaseType;
932
933  /// \brief The canonical type of this type.  A QualType.
934  QualType CanonicalType;
935
936  friend class QualType;
937  friend class Type;
938  friend class ExtQuals;
939};
940
941/// ExtQuals - We can encode up to four bits in the low bits of a
942/// type pointer, but there are many more type qualifiers that we want
943/// to be able to apply to an arbitrary type.  Therefore we have this
944/// struct, intended to be heap-allocated and used by QualType to
945/// store qualifiers.
946///
947/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
948/// in three low bits on the QualType pointer; a fourth bit records whether
949/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
950/// Objective-C GC attributes) are much more rare.
951class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
952  // NOTE: changing the fast qualifiers should be straightforward as
953  // long as you don't make 'const' non-fast.
954  // 1. Qualifiers:
955  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
956  //       Fast qualifiers must occupy the low-order bits.
957  //    b) Update Qualifiers::FastWidth and FastMask.
958  // 2. QualType:
959  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
960  //    b) Update remove{Volatile,Restrict}, defined near the end of
961  //       this header.
962  // 3. ASTContext:
963  //    a) Update get{Volatile,Restrict}Type.
964
965  /// Quals - the immutable set of qualifiers applied by this
966  /// node;  always contains extended qualifiers.
967  Qualifiers Quals;
968
969  ExtQuals *this_() { return this; }
970
971public:
972  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
973    : ExtQualsTypeCommonBase(baseType,
974                             canon.isNull() ? QualType(this_(), 0) : canon),
975      Quals(quals)
976  {
977    assert(Quals.hasNonFastQualifiers()
978           && "ExtQuals created with no fast qualifiers");
979    assert(!Quals.hasFastQualifiers()
980           && "ExtQuals created with fast qualifiers");
981  }
982
983  Qualifiers getQualifiers() const { return Quals; }
984
985  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
986  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
987
988  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
989  Qualifiers::ObjCLifetime getObjCLifetime() const {
990    return Quals.getObjCLifetime();
991  }
992
993  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
994  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
995
996  const Type *getBaseType() const { return BaseType; }
997
998public:
999  void Profile(llvm::FoldingSetNodeID &ID) const {
1000    Profile(ID, getBaseType(), Quals);
1001  }
1002  static void Profile(llvm::FoldingSetNodeID &ID,
1003                      const Type *BaseType,
1004                      Qualifiers Quals) {
1005    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1006    ID.AddPointer(BaseType);
1007    Quals.Profile(ID);
1008  }
1009};
1010
1011/// \brief The kind of C++0x ref-qualifier associated with a function type,
1012/// which determines whether a member function's "this" object can be an
1013/// lvalue, rvalue, or neither.
1014enum RefQualifierKind {
1015  /// \brief No ref-qualifier was provided.
1016  RQ_None = 0,
1017  /// \brief An lvalue ref-qualifier was provided (\c &).
1018  RQ_LValue,
1019  /// \brief An rvalue ref-qualifier was provided (\c &&).
1020  RQ_RValue
1021};
1022
1023/// Type - This is the base class of the type hierarchy.  A central concept
1024/// with types is that each type always has a canonical type.  A canonical type
1025/// is the type with any typedef names stripped out of it or the types it
1026/// references.  For example, consider:
1027///
1028///  typedef int  foo;
1029///  typedef foo* bar;
1030///    'int *'    'foo *'    'bar'
1031///
1032/// There will be a Type object created for 'int'.  Since int is canonical, its
1033/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
1034/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1035/// there is a PointerType that represents 'int*', which, like 'int', is
1036/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1037/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1038/// is also 'int*'.
1039///
1040/// Non-canonical types are useful for emitting diagnostics, without losing
1041/// information about typedefs being used.  Canonical types are useful for type
1042/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1043/// about whether something has a particular form (e.g. is a function type),
1044/// because they implicitly, recursively, strip all typedefs out of a type.
1045///
1046/// Types, once created, are immutable.
1047///
1048class Type : public ExtQualsTypeCommonBase {
1049public:
1050  enum TypeClass {
1051#define TYPE(Class, Base) Class,
1052#define LAST_TYPE(Class) TypeLast = Class,
1053#define ABSTRACT_TYPE(Class, Base)
1054#include "clang/AST/TypeNodes.def"
1055    TagFirst = Record, TagLast = Enum
1056  };
1057
1058private:
1059  Type(const Type&);           // DO NOT IMPLEMENT.
1060  void operator=(const Type&); // DO NOT IMPLEMENT.
1061
1062  /// Bitfields required by the Type class.
1063  class TypeBitfields {
1064    friend class Type;
1065    template <class T> friend class TypePropertyCache;
1066
1067    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1068    unsigned TC : 8;
1069
1070    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
1071    /// Note that this should stay at the end of the ivars for Type so that
1072    /// subclasses can pack their bitfields into the same word.
1073    unsigned Dependent : 1;
1074
1075    /// \brief Whether this type somehow involves a template parameter, even
1076    /// if the resolution of the type does not depend on a template parameter.
1077    unsigned InstantiationDependent : 1;
1078
1079    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1080    unsigned VariablyModified : 1;
1081
1082    /// \brief Whether this type contains an unexpanded parameter pack
1083    /// (for C++0x variadic templates).
1084    unsigned ContainsUnexpandedParameterPack : 1;
1085
1086    /// \brief Nonzero if the cache (i.e. the bitfields here starting
1087    /// with 'Cache') is valid.  If so, then this is a
1088    /// LangOptions::VisibilityMode+1.
1089    mutable unsigned CacheValidAndVisibility : 2;
1090
1091    /// \brief Linkage of this type.
1092    mutable unsigned CachedLinkage : 2;
1093
1094    /// \brief Whether this type involves and local or unnamed types.
1095    mutable unsigned CachedLocalOrUnnamed : 1;
1096
1097    /// \brief FromAST - Whether this type comes from an AST file.
1098    mutable unsigned FromAST : 1;
1099
1100    bool isCacheValid() const {
1101      return (CacheValidAndVisibility != 0);
1102    }
1103    Visibility getVisibility() const {
1104      assert(isCacheValid() && "getting linkage from invalid cache");
1105      return static_cast<Visibility>(CacheValidAndVisibility-1);
1106    }
1107    Linkage getLinkage() const {
1108      assert(isCacheValid() && "getting linkage from invalid cache");
1109      return static_cast<Linkage>(CachedLinkage);
1110    }
1111    bool hasLocalOrUnnamedType() const {
1112      assert(isCacheValid() && "getting linkage from invalid cache");
1113      return CachedLocalOrUnnamed;
1114    }
1115  };
1116  enum { NumTypeBits = 18 };
1117
1118protected:
1119  // These classes allow subclasses to somewhat cleanly pack bitfields
1120  // into Type.
1121
1122  class ArrayTypeBitfields {
1123    friend class ArrayType;
1124
1125    unsigned : NumTypeBits;
1126
1127    /// IndexTypeQuals - CVR qualifiers from declarations like
1128    /// 'int X[static restrict 4]'. For function parameters only.
1129    unsigned IndexTypeQuals : 3;
1130
1131    /// SizeModifier - storage class qualifiers from declarations like
1132    /// 'int X[static restrict 4]'. For function parameters only.
1133    /// Actually an ArrayType::ArraySizeModifier.
1134    unsigned SizeModifier : 3;
1135  };
1136
1137  class BuiltinTypeBitfields {
1138    friend class BuiltinType;
1139
1140    unsigned : NumTypeBits;
1141
1142    /// The kind (BuiltinType::Kind) of builtin type this is.
1143    unsigned Kind : 8;
1144  };
1145
1146  class FunctionTypeBitfields {
1147    friend class FunctionType;
1148
1149    unsigned : NumTypeBits;
1150
1151    /// Extra information which affects how the function is called, like
1152    /// regparm and the calling convention.
1153    unsigned ExtInfo : 8;
1154
1155    /// Whether the function is variadic.  Only used by FunctionProtoType.
1156    unsigned Variadic : 1;
1157
1158    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1159    /// other bitfields.
1160    /// The qualifiers are part of FunctionProtoType because...
1161    ///
1162    /// C++ 8.3.5p4: The return type, the parameter type list and the
1163    /// cv-qualifier-seq, [...], are part of the function type.
1164    unsigned TypeQuals : 3;
1165
1166    /// \brief The ref-qualifier associated with a \c FunctionProtoType.
1167    ///
1168    /// This is a value of type \c RefQualifierKind.
1169    unsigned RefQualifier : 2;
1170  };
1171
1172  class ObjCObjectTypeBitfields {
1173    friend class ObjCObjectType;
1174
1175    unsigned : NumTypeBits;
1176
1177    /// NumProtocols - The number of protocols stored directly on this
1178    /// object type.
1179    unsigned NumProtocols : 32 - NumTypeBits;
1180  };
1181
1182  class ReferenceTypeBitfields {
1183    friend class ReferenceType;
1184
1185    unsigned : NumTypeBits;
1186
1187    /// True if the type was originally spelled with an lvalue sigil.
1188    /// This is never true of rvalue references but can also be false
1189    /// on lvalue references because of C++0x [dcl.typedef]p9,
1190    /// as follows:
1191    ///
1192    ///   typedef int &ref;    // lvalue, spelled lvalue
1193    ///   typedef int &&rvref; // rvalue
1194    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1195    ///   ref &&a;             // lvalue, inner ref
1196    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1197    ///   rvref &&a;           // rvalue, inner ref
1198    unsigned SpelledAsLValue : 1;
1199
1200    /// True if the inner type is a reference type.  This only happens
1201    /// in non-canonical forms.
1202    unsigned InnerRef : 1;
1203  };
1204
1205  class TypeWithKeywordBitfields {
1206    friend class TypeWithKeyword;
1207
1208    unsigned : NumTypeBits;
1209
1210    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1211    unsigned Keyword : 8;
1212  };
1213
1214  class VectorTypeBitfields {
1215    friend class VectorType;
1216
1217    unsigned : NumTypeBits;
1218
1219    /// VecKind - The kind of vector, either a generic vector type or some
1220    /// target-specific vector type such as for AltiVec or Neon.
1221    unsigned VecKind : 3;
1222
1223    /// NumElements - The number of elements in the vector.
1224    unsigned NumElements : 29 - NumTypeBits;
1225  };
1226
1227  class AttributedTypeBitfields {
1228    friend class AttributedType;
1229
1230    unsigned : NumTypeBits;
1231
1232    /// AttrKind - an AttributedType::Kind
1233    unsigned AttrKind : 32 - NumTypeBits;
1234  };
1235
1236  union {
1237    TypeBitfields TypeBits;
1238    ArrayTypeBitfields ArrayTypeBits;
1239    AttributedTypeBitfields AttributedTypeBits;
1240    BuiltinTypeBitfields BuiltinTypeBits;
1241    FunctionTypeBitfields FunctionTypeBits;
1242    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1243    ReferenceTypeBitfields ReferenceTypeBits;
1244    TypeWithKeywordBitfields TypeWithKeywordBits;
1245    VectorTypeBitfields VectorTypeBits;
1246  };
1247
1248private:
1249  /// \brief Set whether this type comes from an AST file.
1250  void setFromAST(bool V = true) const {
1251    TypeBits.FromAST = V;
1252  }
1253
1254  template <class T> friend class TypePropertyCache;
1255
1256protected:
1257  // silence VC++ warning C4355: 'this' : used in base member initializer list
1258  Type *this_() { return this; }
1259  Type(TypeClass tc, QualType canon, bool Dependent,
1260       bool InstantiationDependent, bool VariablyModified,
1261       bool ContainsUnexpandedParameterPack)
1262    : ExtQualsTypeCommonBase(this,
1263                             canon.isNull() ? QualType(this_(), 0) : canon) {
1264    TypeBits.TC = tc;
1265    TypeBits.Dependent = Dependent;
1266    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1267    TypeBits.VariablyModified = VariablyModified;
1268    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1269    TypeBits.CacheValidAndVisibility = 0;
1270    TypeBits.CachedLocalOrUnnamed = false;
1271    TypeBits.CachedLinkage = NoLinkage;
1272    TypeBits.FromAST = false;
1273  }
1274  friend class ASTContext;
1275
1276  void setDependent(bool D = true) {
1277    TypeBits.Dependent = D;
1278    if (D)
1279      TypeBits.InstantiationDependent = true;
1280  }
1281  void setInstantiationDependent(bool D = true) {
1282    TypeBits.InstantiationDependent = D; }
1283  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1284  }
1285  void setContainsUnexpandedParameterPack(bool PP = true) {
1286    TypeBits.ContainsUnexpandedParameterPack = PP;
1287  }
1288
1289public:
1290  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1291
1292  /// \brief Whether this type comes from an AST file.
1293  bool isFromAST() const { return TypeBits.FromAST; }
1294
1295  /// \brief Whether this type is or contains an unexpanded parameter
1296  /// pack, used to support C++0x variadic templates.
1297  ///
1298  /// A type that contains a parameter pack shall be expanded by the
1299  /// ellipsis operator at some point. For example, the typedef in the
1300  /// following example contains an unexpanded parameter pack 'T':
1301  ///
1302  /// \code
1303  /// template<typename ...T>
1304  /// struct X {
1305  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1306  /// };
1307  /// \endcode
1308  ///
1309  /// Note that this routine does not specify which
1310  bool containsUnexpandedParameterPack() const {
1311    return TypeBits.ContainsUnexpandedParameterPack;
1312  }
1313
1314  /// Determines if this type would be canonical if it had no further
1315  /// qualification.
1316  bool isCanonicalUnqualified() const {
1317    return CanonicalType == QualType(this, 0);
1318  }
1319
1320  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1321  /// object types, function types, and incomplete types.
1322
1323  /// isIncompleteType - Return true if this is an incomplete type.
1324  /// A type that can describe objects, but which lacks information needed to
1325  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1326  /// routine will need to determine if the size is actually required.
1327  bool isIncompleteType() const;
1328
1329  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1330  /// type, in other words, not a function type.
1331  bool isIncompleteOrObjectType() const {
1332    return !isFunctionType();
1333  }
1334
1335  /// \brief Determine whether this type is an object type.
1336  bool isObjectType() const {
1337    // C++ [basic.types]p8:
1338    //   An object type is a (possibly cv-qualified) type that is not a
1339    //   function type, not a reference type, and not a void type.
1340    return !isReferenceType() && !isFunctionType() && !isVoidType();
1341  }
1342
1343  /// isLiteralType - Return true if this is a literal type
1344  /// (C++0x [basic.types]p10)
1345  bool isLiteralType() const;
1346
1347  /// \brief Test if this type is a standard-layout type.
1348  /// (C++0x [basic.type]p9)
1349  bool isStandardLayoutType() const;
1350
1351  /// Helper methods to distinguish type categories. All type predicates
1352  /// operate on the canonical type, ignoring typedefs and qualifiers.
1353
1354  /// isBuiltinType - returns true if the type is a builtin type.
1355  bool isBuiltinType() const;
1356
1357  /// isSpecificBuiltinType - Test for a particular builtin type.
1358  bool isSpecificBuiltinType(unsigned K) const;
1359
1360  /// isPlaceholderType - Test for a type which does not represent an
1361  /// actual type-system type but is instead used as a placeholder for
1362  /// various convenient purposes within Clang.  All such types are
1363  /// BuiltinTypes.
1364  bool isPlaceholderType() const;
1365  const BuiltinType *getAsPlaceholderType() const;
1366
1367  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1368  bool isSpecificPlaceholderType(unsigned K) const;
1369
1370  /// isIntegerType() does *not* include complex integers (a GCC extension).
1371  /// isComplexIntegerType() can be used to test for complex integers.
1372  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1373  bool isEnumeralType() const;
1374  bool isBooleanType() const;
1375  bool isCharType() const;
1376  bool isWideCharType() const;
1377  bool isChar16Type() const;
1378  bool isChar32Type() const;
1379  bool isAnyCharacterType() const;
1380  bool isIntegralType(ASTContext &Ctx) const;
1381
1382  /// \brief Determine whether this type is an integral or enumeration type.
1383  bool isIntegralOrEnumerationType() const;
1384  /// \brief Determine whether this type is an integral or unscoped enumeration
1385  /// type.
1386  bool isIntegralOrUnscopedEnumerationType() const;
1387
1388  /// Floating point categories.
1389  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1390  /// isComplexType() does *not* include complex integers (a GCC extension).
1391  /// isComplexIntegerType() can be used to test for complex integers.
1392  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1393  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1394  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1395  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1396  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1397  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1398  bool isVoidType() const;         // C99 6.2.5p19
1399  bool isDerivedType() const;      // C99 6.2.5p20
1400  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1401  bool isAggregateType() const;
1402  bool isFundamentalType() const;
1403  bool isCompoundType() const;
1404
1405  // Type Predicates: Check to see if this type is structurally the specified
1406  // type, ignoring typedefs and qualifiers.
1407  bool isFunctionType() const;
1408  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1409  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1410  bool isPointerType() const;
1411  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1412  bool isBlockPointerType() const;
1413  bool isVoidPointerType() const;
1414  bool isReferenceType() const;
1415  bool isLValueReferenceType() const;
1416  bool isRValueReferenceType() const;
1417  bool isFunctionPointerType() const;
1418  bool isMemberPointerType() const;
1419  bool isMemberFunctionPointerType() const;
1420  bool isMemberDataPointerType() const;
1421  bool isArrayType() const;
1422  bool isConstantArrayType() const;
1423  bool isIncompleteArrayType() const;
1424  bool isVariableArrayType() const;
1425  bool isDependentSizedArrayType() const;
1426  bool isRecordType() const;
1427  bool isClassType() const;
1428  bool isStructureType() const;
1429  bool isStructureOrClassType() const;
1430  bool isUnionType() const;
1431  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1432  bool isVectorType() const;                    // GCC vector type.
1433  bool isExtVectorType() const;                 // Extended vector type.
1434  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1435  bool isObjCRetainableType() const;            // ObjC object or block pointer
1436  bool isObjCLifetimeType() const;              // (array of)* retainable type
1437  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1438  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1439  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1440  // for the common case.
1441  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1442  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1443  bool isObjCQualifiedIdType() const;           // id<foo>
1444  bool isObjCQualifiedClassType() const;        // Class<foo>
1445  bool isObjCObjectOrInterfaceType() const;
1446  bool isObjCIdType() const;                    // id
1447  bool isObjCClassType() const;                 // Class
1448  bool isObjCSelType() const;                 // Class
1449  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1450  bool isObjCARCBridgableType() const;
1451  bool isCARCBridgableType() const;
1452  bool isTemplateTypeParmType() const;          // C++ template type parameter
1453  bool isNullPtrType() const;                   // C++0x nullptr_t
1454  bool isAtomicType() const;                    // C1X _Atomic()
1455
1456  /// Determines if this type, which must satisfy
1457  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1458  /// than implicitly __strong.
1459  bool isObjCARCImplicitlyUnretainedType() const;
1460
1461  /// Return the implicit lifetime for this type, which must not be dependent.
1462  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1463
1464  enum ScalarTypeKind {
1465    STK_CPointer,
1466    STK_BlockPointer,
1467    STK_ObjCObjectPointer,
1468    STK_MemberPointer,
1469    STK_Bool,
1470    STK_Integral,
1471    STK_Floating,
1472    STK_IntegralComplex,
1473    STK_FloatingComplex
1474  };
1475  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1476  ScalarTypeKind getScalarTypeKind() const;
1477
1478  /// isDependentType - Whether this type is a dependent type, meaning
1479  /// that its definition somehow depends on a template parameter
1480  /// (C++ [temp.dep.type]).
1481  bool isDependentType() const { return TypeBits.Dependent; }
1482
1483  /// \brief Determine whether this type is an instantiation-dependent type,
1484  /// meaning that the type involves a template parameter (even if the
1485  /// definition does not actually depend on the type substituted for that
1486  /// template parameter).
1487  bool isInstantiationDependentType() const {
1488    return TypeBits.InstantiationDependent;
1489  }
1490
1491  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1492  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1493
1494  /// \brief Whether this type involves a variable-length array type
1495  /// with a definite size.
1496  bool hasSizedVLAType() const;
1497
1498  /// \brief Whether this type is or contains a local or unnamed type.
1499  bool hasUnnamedOrLocalType() const;
1500
1501  bool isOverloadableType() const;
1502
1503  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1504  bool isElaboratedTypeSpecifier() const;
1505
1506  bool canDecayToPointerType() const;
1507
1508  /// hasPointerRepresentation - Whether this type is represented
1509  /// natively as a pointer; this includes pointers, references, block
1510  /// pointers, and Objective-C interface, qualified id, and qualified
1511  /// interface types, as well as nullptr_t.
1512  bool hasPointerRepresentation() const;
1513
1514  /// hasObjCPointerRepresentation - Whether this type can represent
1515  /// an objective pointer type for the purpose of GC'ability
1516  bool hasObjCPointerRepresentation() const;
1517
1518  /// \brief Determine whether this type has an integer representation
1519  /// of some sort, e.g., it is an integer type or a vector.
1520  bool hasIntegerRepresentation() const;
1521
1522  /// \brief Determine whether this type has an signed integer representation
1523  /// of some sort, e.g., it is an signed integer type or a vector.
1524  bool hasSignedIntegerRepresentation() const;
1525
1526  /// \brief Determine whether this type has an unsigned integer representation
1527  /// of some sort, e.g., it is an unsigned integer type or a vector.
1528  bool hasUnsignedIntegerRepresentation() const;
1529
1530  /// \brief Determine whether this type has a floating-point representation
1531  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1532  bool hasFloatingRepresentation() const;
1533
1534  // Type Checking Functions: Check to see if this type is structurally the
1535  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1536  // the best type we can.
1537  const RecordType *getAsStructureType() const;
1538  /// NOTE: getAs*ArrayType are methods on ASTContext.
1539  const RecordType *getAsUnionType() const;
1540  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1541  // The following is a convenience method that returns an ObjCObjectPointerType
1542  // for object declared using an interface.
1543  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1544  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1545  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1546  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1547  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
1548
1549  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1550  /// because the type is a RecordType or because it is the injected-class-name
1551  /// type of a class template or class template partial specialization.
1552  CXXRecordDecl *getAsCXXRecordDecl() const;
1553
1554  /// \brief Get the AutoType whose type will be deduced for a variable with
1555  /// an initializer of this type. This looks through declarators like pointer
1556  /// types, but not through decltype or typedefs.
1557  AutoType *getContainedAutoType() const;
1558
1559  /// Member-template getAs<specific type>'.  Look through sugar for
1560  /// an instance of <specific type>.   This scheme will eventually
1561  /// replace the specific getAsXXXX methods above.
1562  ///
1563  /// There are some specializations of this member template listed
1564  /// immediately following this class.
1565  template <typename T> const T *getAs() const;
1566
1567  /// A variant of getAs<> for array types which silently discards
1568  /// qualifiers from the outermost type.
1569  const ArrayType *getAsArrayTypeUnsafe() const;
1570
1571  /// Member-template castAs<specific type>.  Look through sugar for
1572  /// the underlying instance of <specific type>.
1573  ///
1574  /// This method has the same relationship to getAs<T> as cast<T> has
1575  /// to dyn_cast<T>; which is to say, the underlying type *must*
1576  /// have the intended type, and this method will never return null.
1577  template <typename T> const T *castAs() const;
1578
1579  /// A variant of castAs<> for array type which silently discards
1580  /// qualifiers from the outermost type.
1581  const ArrayType *castAsArrayTypeUnsafe() const;
1582
1583  /// getBaseElementTypeUnsafe - Get the base element type of this
1584  /// type, potentially discarding type qualifiers.  This method
1585  /// should never be used when type qualifiers are meaningful.
1586  const Type *getBaseElementTypeUnsafe() const;
1587
1588  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1589  /// element type of the array, potentially with type qualifiers missing.
1590  /// This method should never be used when type qualifiers are meaningful.
1591  const Type *getArrayElementTypeNoTypeQual() const;
1592
1593  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1594  /// pointer, this returns the respective pointee.
1595  QualType getPointeeType() const;
1596
1597  /// getUnqualifiedDesugaredType() - Return the specified type with
1598  /// any "sugar" removed from the type, removing any typedefs,
1599  /// typeofs, etc., as well as any qualifiers.
1600  const Type *getUnqualifiedDesugaredType() const;
1601
1602  /// More type predicates useful for type checking/promotion
1603  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1604
1605  /// isSignedIntegerType - Return true if this is an integer type that is
1606  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1607  /// or an enum decl which has a signed representation.
1608  bool isSignedIntegerType() const;
1609
1610  /// isUnsignedIntegerType - Return true if this is an integer type that is
1611  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1612  /// or an enum decl which has an unsigned representation.
1613  bool isUnsignedIntegerType() const;
1614
1615  /// Determines whether this is an integer type that is signed or an
1616  /// enumeration types whose underlying type is a signed integer type.
1617  bool isSignedIntegerOrEnumerationType() const;
1618
1619  /// Determines whether this is an integer type that is unsigned or an
1620  /// enumeration types whose underlying type is a unsigned integer type.
1621  bool isUnsignedIntegerOrEnumerationType() const;
1622
1623  /// isConstantSizeType - Return true if this is not a variable sized type,
1624  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1625  /// incomplete types.
1626  bool isConstantSizeType() const;
1627
1628  /// isSpecifierType - Returns true if this type can be represented by some
1629  /// set of type specifiers.
1630  bool isSpecifierType() const;
1631
1632  /// \brief Determine the linkage of this type.
1633  Linkage getLinkage() const;
1634
1635  /// \brief Determine the visibility of this type.
1636  Visibility getVisibility() const;
1637
1638  /// \brief Determine the linkage and visibility of this type.
1639  std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
1640
1641  /// \brief Note that the linkage is no longer known.
1642  void ClearLinkageCache();
1643
1644  const char *getTypeClassName() const;
1645
1646  QualType getCanonicalTypeInternal() const {
1647    return CanonicalType;
1648  }
1649  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1650  void dump() const;
1651
1652  static bool classof(const Type *) { return true; }
1653
1654  friend class ASTReader;
1655  friend class ASTWriter;
1656};
1657
1658template <> inline const TypedefType *Type::getAs() const {
1659  return dyn_cast<TypedefType>(this);
1660}
1661
1662// We can do canonical leaf types faster, because we don't have to
1663// worry about preserving child type decoration.
1664#define TYPE(Class, Base)
1665#define LEAF_TYPE(Class) \
1666template <> inline const Class##Type *Type::getAs() const { \
1667  return dyn_cast<Class##Type>(CanonicalType); \
1668} \
1669template <> inline const Class##Type *Type::castAs() const { \
1670  return cast<Class##Type>(CanonicalType); \
1671}
1672#include "clang/AST/TypeNodes.def"
1673
1674
1675/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1676/// types are always canonical and have a literal name field.
1677class BuiltinType : public Type {
1678public:
1679  enum Kind {
1680    Void,
1681
1682    Bool,     // This is bool and/or _Bool.
1683    Char_U,   // This is 'char' for targets where char is unsigned.
1684    UChar,    // This is explicitly qualified unsigned char.
1685    WChar_U,  // This is 'wchar_t' for C++, when unsigned.
1686    Char16,   // This is 'char16_t' for C++.
1687    Char32,   // This is 'char32_t' for C++.
1688    UShort,
1689    UInt,
1690    ULong,
1691    ULongLong,
1692    UInt128,  // __uint128_t
1693
1694    Char_S,   // This is 'char' for targets where char is signed.
1695    SChar,    // This is explicitly qualified signed char.
1696    WChar_S,  // This is 'wchar_t' for C++, when signed.
1697    Short,
1698    Int,
1699    Long,
1700    LongLong,
1701    Int128,   // __int128_t
1702
1703    Half,     // This is the 'half' type in OpenCL,
1704              // __fp16 in case of ARM NEON.
1705    Float, Double, LongDouble,
1706
1707    NullPtr,  // This is the type of C++0x 'nullptr'.
1708
1709    /// The primitive Objective C 'id' type.  The user-visible 'id'
1710    /// type is a typedef of an ObjCObjectPointerType to an
1711    /// ObjCObjectType with this as its base.  In fact, this only ever
1712    /// shows up in an AST as the base type of an ObjCObjectType.
1713    ObjCId,
1714
1715    /// The primitive Objective C 'Class' type.  The user-visible
1716    /// 'Class' type is a typedef of an ObjCObjectPointerType to an
1717    /// ObjCObjectType with this as its base.  In fact, this only ever
1718    /// shows up in an AST as the base type of an ObjCObjectType.
1719    ObjCClass,
1720
1721    /// The primitive Objective C 'SEL' type.  The user-visible 'SEL'
1722    /// type is a typedef of a PointerType to this.
1723    ObjCSel,
1724
1725    /// This represents the type of an expression whose type is
1726    /// totally unknown, e.g. 'T::foo'.  It is permitted for this to
1727    /// appear in situations where the structure of the type is
1728    /// theoretically deducible.
1729    Dependent,
1730
1731    /// The type of an unresolved overload set.  A placeholder type.
1732    /// Expressions with this type have one of the following basic
1733    /// forms, with parentheses generally permitted:
1734    ///   foo          # possibly qualified, not if an implicit access
1735    ///   foo          # possibly qualified, not if an implicit access
1736    ///   &foo         # possibly qualified, not if an implicit access
1737    ///   x->foo       # only if might be a static member function
1738    ///   &x->foo      # only if might be a static member function
1739    ///   &Class::foo  # when a pointer-to-member; sub-expr also has this type
1740    /// OverloadExpr::find can be used to analyze the expression.
1741    Overload,
1742
1743    /// The type of a bound C++ non-static member function.
1744    /// A placeholder type.  Expressions with this type have one of the
1745    /// following basic forms:
1746    ///   foo          # if an implicit access
1747    ///   x->foo       # if only contains non-static members
1748    BoundMember,
1749
1750    /// __builtin_any_type.  A placeholder type.  Useful for clients
1751    /// like debuggers that don't know what type to give something.
1752    /// Only a small number of operations are valid on expressions of
1753    /// unknown type, most notably explicit casts.
1754    UnknownAny
1755  };
1756
1757public:
1758  BuiltinType(Kind K)
1759    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1760           /*InstantiationDependent=*/(K == Dependent),
1761           /*VariablyModified=*/false,
1762           /*Unexpanded paramter pack=*/false) {
1763    BuiltinTypeBits.Kind = K;
1764  }
1765
1766  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1767  const char *getName(const PrintingPolicy &Policy) const;
1768
1769  bool isSugared() const { return false; }
1770  QualType desugar() const { return QualType(this, 0); }
1771
1772  bool isInteger() const {
1773    return getKind() >= Bool && getKind() <= Int128;
1774  }
1775
1776  bool isSignedInteger() const {
1777    return getKind() >= Char_S && getKind() <= Int128;
1778  }
1779
1780  bool isUnsignedInteger() const {
1781    return getKind() >= Bool && getKind() <= UInt128;
1782  }
1783
1784  bool isFloatingPoint() const {
1785    return getKind() >= Half && getKind() <= LongDouble;
1786  }
1787
1788  /// Determines whether this type is a placeholder type, i.e. a type
1789  /// which cannot appear in arbitrary positions in a fully-formed
1790  /// expression.
1791  bool isPlaceholderType() const {
1792    return getKind() >= Overload;
1793  }
1794
1795  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1796  static bool classof(const BuiltinType *) { return true; }
1797};
1798
1799/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1800/// types (_Complex float etc) as well as the GCC integer complex extensions.
1801///
1802class ComplexType : public Type, public llvm::FoldingSetNode {
1803  QualType ElementType;
1804  ComplexType(QualType Element, QualType CanonicalPtr) :
1805    Type(Complex, CanonicalPtr, Element->isDependentType(),
1806         Element->isInstantiationDependentType(),
1807         Element->isVariablyModifiedType(),
1808         Element->containsUnexpandedParameterPack()),
1809    ElementType(Element) {
1810  }
1811  friend class ASTContext;  // ASTContext creates these.
1812
1813public:
1814  QualType getElementType() const { return ElementType; }
1815
1816  bool isSugared() const { return false; }
1817  QualType desugar() const { return QualType(this, 0); }
1818
1819  void Profile(llvm::FoldingSetNodeID &ID) {
1820    Profile(ID, getElementType());
1821  }
1822  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1823    ID.AddPointer(Element.getAsOpaquePtr());
1824  }
1825
1826  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1827  static bool classof(const ComplexType *) { return true; }
1828};
1829
1830/// ParenType - Sugar for parentheses used when specifying types.
1831///
1832class ParenType : public Type, public llvm::FoldingSetNode {
1833  QualType Inner;
1834
1835  ParenType(QualType InnerType, QualType CanonType) :
1836    Type(Paren, CanonType, InnerType->isDependentType(),
1837         InnerType->isInstantiationDependentType(),
1838         InnerType->isVariablyModifiedType(),
1839         InnerType->containsUnexpandedParameterPack()),
1840    Inner(InnerType) {
1841  }
1842  friend class ASTContext;  // ASTContext creates these.
1843
1844public:
1845
1846  QualType getInnerType() const { return Inner; }
1847
1848  bool isSugared() const { return true; }
1849  QualType desugar() const { return getInnerType(); }
1850
1851  void Profile(llvm::FoldingSetNodeID &ID) {
1852    Profile(ID, getInnerType());
1853  }
1854  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1855    Inner.Profile(ID);
1856  }
1857
1858  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1859  static bool classof(const ParenType *) { return true; }
1860};
1861
1862/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1863///
1864class PointerType : public Type, public llvm::FoldingSetNode {
1865  QualType PointeeType;
1866
1867  PointerType(QualType Pointee, QualType CanonicalPtr) :
1868    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1869         Pointee->isInstantiationDependentType(),
1870         Pointee->isVariablyModifiedType(),
1871         Pointee->containsUnexpandedParameterPack()),
1872    PointeeType(Pointee) {
1873  }
1874  friend class ASTContext;  // ASTContext creates these.
1875
1876public:
1877
1878  QualType getPointeeType() const { return PointeeType; }
1879
1880  bool isSugared() const { return false; }
1881  QualType desugar() const { return QualType(this, 0); }
1882
1883  void Profile(llvm::FoldingSetNodeID &ID) {
1884    Profile(ID, getPointeeType());
1885  }
1886  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1887    ID.AddPointer(Pointee.getAsOpaquePtr());
1888  }
1889
1890  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1891  static bool classof(const PointerType *) { return true; }
1892};
1893
1894/// BlockPointerType - pointer to a block type.
1895/// This type is to represent types syntactically represented as
1896/// "void (^)(int)", etc. Pointee is required to always be a function type.
1897///
1898class BlockPointerType : public Type, public llvm::FoldingSetNode {
1899  QualType PointeeType;  // Block is some kind of pointer type
1900  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1901    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1902         Pointee->isInstantiationDependentType(),
1903         Pointee->isVariablyModifiedType(),
1904         Pointee->containsUnexpandedParameterPack()),
1905    PointeeType(Pointee) {
1906  }
1907  friend class ASTContext;  // ASTContext creates these.
1908
1909public:
1910
1911  // Get the pointee type. Pointee is required to always be a function type.
1912  QualType getPointeeType() const { return PointeeType; }
1913
1914  bool isSugared() const { return false; }
1915  QualType desugar() const { return QualType(this, 0); }
1916
1917  void Profile(llvm::FoldingSetNodeID &ID) {
1918      Profile(ID, getPointeeType());
1919  }
1920  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1921      ID.AddPointer(Pointee.getAsOpaquePtr());
1922  }
1923
1924  static bool classof(const Type *T) {
1925    return T->getTypeClass() == BlockPointer;
1926  }
1927  static bool classof(const BlockPointerType *) { return true; }
1928};
1929
1930/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1931///
1932class ReferenceType : public Type, public llvm::FoldingSetNode {
1933  QualType PointeeType;
1934
1935protected:
1936  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1937                bool SpelledAsLValue) :
1938    Type(tc, CanonicalRef, Referencee->isDependentType(),
1939         Referencee->isInstantiationDependentType(),
1940         Referencee->isVariablyModifiedType(),
1941         Referencee->containsUnexpandedParameterPack()),
1942    PointeeType(Referencee)
1943  {
1944    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
1945    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
1946  }
1947
1948public:
1949  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
1950  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
1951
1952  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1953  QualType getPointeeType() const {
1954    // FIXME: this might strip inner qualifiers; okay?
1955    const ReferenceType *T = this;
1956    while (T->isInnerRef())
1957      T = T->PointeeType->castAs<ReferenceType>();
1958    return T->PointeeType;
1959  }
1960
1961  void Profile(llvm::FoldingSetNodeID &ID) {
1962    Profile(ID, PointeeType, isSpelledAsLValue());
1963  }
1964  static void Profile(llvm::FoldingSetNodeID &ID,
1965                      QualType Referencee,
1966                      bool SpelledAsLValue) {
1967    ID.AddPointer(Referencee.getAsOpaquePtr());
1968    ID.AddBoolean(SpelledAsLValue);
1969  }
1970
1971  static bool classof(const Type *T) {
1972    return T->getTypeClass() == LValueReference ||
1973           T->getTypeClass() == RValueReference;
1974  }
1975  static bool classof(const ReferenceType *) { return true; }
1976};
1977
1978/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1979///
1980class LValueReferenceType : public ReferenceType {
1981  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1982                      bool SpelledAsLValue) :
1983    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1984  {}
1985  friend class ASTContext; // ASTContext creates these
1986public:
1987  bool isSugared() const { return false; }
1988  QualType desugar() const { return QualType(this, 0); }
1989
1990  static bool classof(const Type *T) {
1991    return T->getTypeClass() == LValueReference;
1992  }
1993  static bool classof(const LValueReferenceType *) { return true; }
1994};
1995
1996/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1997///
1998class RValueReferenceType : public ReferenceType {
1999  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
2000    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
2001  }
2002  friend class ASTContext; // ASTContext creates these
2003public:
2004  bool isSugared() const { return false; }
2005  QualType desugar() const { return QualType(this, 0); }
2006
2007  static bool classof(const Type *T) {
2008    return T->getTypeClass() == RValueReference;
2009  }
2010  static bool classof(const RValueReferenceType *) { return true; }
2011};
2012
2013/// MemberPointerType - C++ 8.3.3 - Pointers to members
2014///
2015class MemberPointerType : public Type, public llvm::FoldingSetNode {
2016  QualType PointeeType;
2017  /// The class of which the pointee is a member. Must ultimately be a
2018  /// RecordType, but could be a typedef or a template parameter too.
2019  const Type *Class;
2020
2021  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
2022    Type(MemberPointer, CanonicalPtr,
2023         Cls->isDependentType() || Pointee->isDependentType(),
2024         (Cls->isInstantiationDependentType() ||
2025          Pointee->isInstantiationDependentType()),
2026         Pointee->isVariablyModifiedType(),
2027         (Cls->containsUnexpandedParameterPack() ||
2028          Pointee->containsUnexpandedParameterPack())),
2029    PointeeType(Pointee), Class(Cls) {
2030  }
2031  friend class ASTContext; // ASTContext creates these.
2032
2033public:
2034  QualType getPointeeType() const { return PointeeType; }
2035
2036  /// Returns true if the member type (i.e. the pointee type) is a
2037  /// function type rather than a data-member type.
2038  bool isMemberFunctionPointer() const {
2039    return PointeeType->isFunctionProtoType();
2040  }
2041
2042  /// Returns true if the member type (i.e. the pointee type) is a
2043  /// data type rather than a function type.
2044  bool isMemberDataPointer() const {
2045    return !PointeeType->isFunctionProtoType();
2046  }
2047
2048  const Type *getClass() const { return Class; }
2049
2050  bool isSugared() const { return false; }
2051  QualType desugar() const { return QualType(this, 0); }
2052
2053  void Profile(llvm::FoldingSetNodeID &ID) {
2054    Profile(ID, getPointeeType(), getClass());
2055  }
2056  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2057                      const Type *Class) {
2058    ID.AddPointer(Pointee.getAsOpaquePtr());
2059    ID.AddPointer(Class);
2060  }
2061
2062  static bool classof(const Type *T) {
2063    return T->getTypeClass() == MemberPointer;
2064  }
2065  static bool classof(const MemberPointerType *) { return true; }
2066};
2067
2068/// ArrayType - C99 6.7.5.2 - Array Declarators.
2069///
2070class ArrayType : public Type, public llvm::FoldingSetNode {
2071public:
2072  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
2073  /// an array with a static size (e.g. int X[static 4]), or an array
2074  /// with a star size (e.g. int X[*]).
2075  /// 'static' is only allowed on function parameters.
2076  enum ArraySizeModifier {
2077    Normal, Static, Star
2078  };
2079private:
2080  /// ElementType - The element type of the array.
2081  QualType ElementType;
2082
2083protected:
2084  // C++ [temp.dep.type]p1:
2085  //   A type is dependent if it is...
2086  //     - an array type constructed from any dependent type or whose
2087  //       size is specified by a constant expression that is
2088  //       value-dependent,
2089  ArrayType(TypeClass tc, QualType et, QualType can,
2090            ArraySizeModifier sm, unsigned tq,
2091            bool ContainsUnexpandedParameterPack)
2092    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2093           et->isInstantiationDependentType() || tc == DependentSizedArray,
2094           (tc == VariableArray || et->isVariablyModifiedType()),
2095           ContainsUnexpandedParameterPack),
2096      ElementType(et) {
2097    ArrayTypeBits.IndexTypeQuals = tq;
2098    ArrayTypeBits.SizeModifier = sm;
2099  }
2100
2101  friend class ASTContext;  // ASTContext creates these.
2102
2103public:
2104  QualType getElementType() const { return ElementType; }
2105  ArraySizeModifier getSizeModifier() const {
2106    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2107  }
2108  Qualifiers getIndexTypeQualifiers() const {
2109    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2110  }
2111  unsigned getIndexTypeCVRQualifiers() const {
2112    return ArrayTypeBits.IndexTypeQuals;
2113  }
2114
2115  static bool classof(const Type *T) {
2116    return T->getTypeClass() == ConstantArray ||
2117           T->getTypeClass() == VariableArray ||
2118           T->getTypeClass() == IncompleteArray ||
2119           T->getTypeClass() == DependentSizedArray;
2120  }
2121  static bool classof(const ArrayType *) { return true; }
2122};
2123
2124/// ConstantArrayType - This class represents the canonical version of
2125/// C arrays with a specified constant size.  For example, the canonical
2126/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
2127/// type is 'int' and the size is 404.
2128class ConstantArrayType : public ArrayType {
2129  llvm::APInt Size; // Allows us to unique the type.
2130
2131  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2132                    ArraySizeModifier sm, unsigned tq)
2133    : ArrayType(ConstantArray, et, can, sm, tq,
2134                et->containsUnexpandedParameterPack()),
2135      Size(size) {}
2136protected:
2137  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2138                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2139    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2140      Size(size) {}
2141  friend class ASTContext;  // ASTContext creates these.
2142public:
2143  const llvm::APInt &getSize() const { return Size; }
2144  bool isSugared() const { return false; }
2145  QualType desugar() const { return QualType(this, 0); }
2146
2147
2148  /// \brief Determine the number of bits required to address a member of
2149  // an array with the given element type and number of elements.
2150  static unsigned getNumAddressingBits(ASTContext &Context,
2151                                       QualType ElementType,
2152                                       const llvm::APInt &NumElements);
2153
2154  /// \brief Determine the maximum number of active bits that an array's size
2155  /// can require, which limits the maximum size of the array.
2156  static unsigned getMaxSizeBits(ASTContext &Context);
2157
2158  void Profile(llvm::FoldingSetNodeID &ID) {
2159    Profile(ID, getElementType(), getSize(),
2160            getSizeModifier(), getIndexTypeCVRQualifiers());
2161  }
2162  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2163                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2164                      unsigned TypeQuals) {
2165    ID.AddPointer(ET.getAsOpaquePtr());
2166    ID.AddInteger(ArraySize.getZExtValue());
2167    ID.AddInteger(SizeMod);
2168    ID.AddInteger(TypeQuals);
2169  }
2170  static bool classof(const Type *T) {
2171    return T->getTypeClass() == ConstantArray;
2172  }
2173  static bool classof(const ConstantArrayType *) { return true; }
2174};
2175
2176/// IncompleteArrayType - This class represents C arrays with an unspecified
2177/// size.  For example 'int A[]' has an IncompleteArrayType where the element
2178/// type is 'int' and the size is unspecified.
2179class IncompleteArrayType : public ArrayType {
2180
2181  IncompleteArrayType(QualType et, QualType can,
2182                      ArraySizeModifier sm, unsigned tq)
2183    : ArrayType(IncompleteArray, et, can, sm, tq,
2184                et->containsUnexpandedParameterPack()) {}
2185  friend class ASTContext;  // ASTContext creates these.
2186public:
2187  bool isSugared() const { return false; }
2188  QualType desugar() const { return QualType(this, 0); }
2189
2190  static bool classof(const Type *T) {
2191    return T->getTypeClass() == IncompleteArray;
2192  }
2193  static bool classof(const IncompleteArrayType *) { return true; }
2194
2195  friend class StmtIteratorBase;
2196
2197  void Profile(llvm::FoldingSetNodeID &ID) {
2198    Profile(ID, getElementType(), getSizeModifier(),
2199            getIndexTypeCVRQualifiers());
2200  }
2201
2202  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2203                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2204    ID.AddPointer(ET.getAsOpaquePtr());
2205    ID.AddInteger(SizeMod);
2206    ID.AddInteger(TypeQuals);
2207  }
2208};
2209
2210/// VariableArrayType - This class represents C arrays with a specified size
2211/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
2212/// Since the size expression is an arbitrary expression, we store it as such.
2213///
2214/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2215/// should not be: two lexically equivalent variable array types could mean
2216/// different things, for example, these variables do not have the same type
2217/// dynamically:
2218///
2219/// void foo(int x) {
2220///   int Y[x];
2221///   ++x;
2222///   int Z[x];
2223/// }
2224///
2225class VariableArrayType : public ArrayType {
2226  /// SizeExpr - An assignment expression. VLA's are only permitted within
2227  /// a function block.
2228  Stmt *SizeExpr;
2229  /// Brackets - The left and right array brackets.
2230  SourceRange Brackets;
2231
2232  VariableArrayType(QualType et, QualType can, Expr *e,
2233                    ArraySizeModifier sm, unsigned tq,
2234                    SourceRange brackets)
2235    : ArrayType(VariableArray, et, can, sm, tq,
2236                et->containsUnexpandedParameterPack()),
2237      SizeExpr((Stmt*) e), Brackets(brackets) {}
2238  friend class ASTContext;  // ASTContext creates these.
2239
2240public:
2241  Expr *getSizeExpr() const {
2242    // We use C-style casts instead of cast<> here because we do not wish
2243    // to have a dependency of Type.h on Stmt.h/Expr.h.
2244    return (Expr*) SizeExpr;
2245  }
2246  SourceRange getBracketsRange() const { return Brackets; }
2247  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2248  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2249
2250  bool isSugared() const { return false; }
2251  QualType desugar() const { return QualType(this, 0); }
2252
2253  static bool classof(const Type *T) {
2254    return T->getTypeClass() == VariableArray;
2255  }
2256  static bool classof(const VariableArrayType *) { return true; }
2257
2258  friend class StmtIteratorBase;
2259
2260  void Profile(llvm::FoldingSetNodeID &ID) {
2261    llvm_unreachable("Cannot unique VariableArrayTypes.");
2262  }
2263};
2264
2265/// DependentSizedArrayType - This type represents an array type in
2266/// C++ whose size is a value-dependent expression. For example:
2267///
2268/// \code
2269/// template<typename T, int Size>
2270/// class array {
2271///   T data[Size];
2272/// };
2273/// \endcode
2274///
2275/// For these types, we won't actually know what the array bound is
2276/// until template instantiation occurs, at which point this will
2277/// become either a ConstantArrayType or a VariableArrayType.
2278class DependentSizedArrayType : public ArrayType {
2279  const ASTContext &Context;
2280
2281  /// \brief An assignment expression that will instantiate to the
2282  /// size of the array.
2283  ///
2284  /// The expression itself might be NULL, in which case the array
2285  /// type will have its size deduced from an initializer.
2286  Stmt *SizeExpr;
2287
2288  /// Brackets - The left and right array brackets.
2289  SourceRange Brackets;
2290
2291  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2292                          Expr *e, ArraySizeModifier sm, unsigned tq,
2293                          SourceRange brackets);
2294
2295  friend class ASTContext;  // ASTContext creates these.
2296
2297public:
2298  Expr *getSizeExpr() const {
2299    // We use C-style casts instead of cast<> here because we do not wish
2300    // to have a dependency of Type.h on Stmt.h/Expr.h.
2301    return (Expr*) SizeExpr;
2302  }
2303  SourceRange getBracketsRange() const { return Brackets; }
2304  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2305  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2306
2307  bool isSugared() const { return false; }
2308  QualType desugar() const { return QualType(this, 0); }
2309
2310  static bool classof(const Type *T) {
2311    return T->getTypeClass() == DependentSizedArray;
2312  }
2313  static bool classof(const DependentSizedArrayType *) { return true; }
2314
2315  friend class StmtIteratorBase;
2316
2317
2318  void Profile(llvm::FoldingSetNodeID &ID) {
2319    Profile(ID, Context, getElementType(),
2320            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2321  }
2322
2323  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2324                      QualType ET, ArraySizeModifier SizeMod,
2325                      unsigned TypeQuals, Expr *E);
2326};
2327
2328/// DependentSizedExtVectorType - This type represent an extended vector type
2329/// where either the type or size is dependent. For example:
2330/// @code
2331/// template<typename T, int Size>
2332/// class vector {
2333///   typedef T __attribute__((ext_vector_type(Size))) type;
2334/// }
2335/// @endcode
2336class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2337  const ASTContext &Context;
2338  Expr *SizeExpr;
2339  /// ElementType - The element type of the array.
2340  QualType ElementType;
2341  SourceLocation loc;
2342
2343  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2344                              QualType can, Expr *SizeExpr, SourceLocation loc);
2345
2346  friend class ASTContext;
2347
2348public:
2349  Expr *getSizeExpr() const { return SizeExpr; }
2350  QualType getElementType() const { return ElementType; }
2351  SourceLocation getAttributeLoc() const { return loc; }
2352
2353  bool isSugared() const { return false; }
2354  QualType desugar() const { return QualType(this, 0); }
2355
2356  static bool classof(const Type *T) {
2357    return T->getTypeClass() == DependentSizedExtVector;
2358  }
2359  static bool classof(const DependentSizedExtVectorType *) { return true; }
2360
2361  void Profile(llvm::FoldingSetNodeID &ID) {
2362    Profile(ID, Context, getElementType(), getSizeExpr());
2363  }
2364
2365  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2366                      QualType ElementType, Expr *SizeExpr);
2367};
2368
2369
2370/// VectorType - GCC generic vector type. This type is created using
2371/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2372/// bytes; or from an Altivec __vector or vector declaration.
2373/// Since the constructor takes the number of vector elements, the
2374/// client is responsible for converting the size into the number of elements.
2375class VectorType : public Type, public llvm::FoldingSetNode {
2376public:
2377  enum VectorKind {
2378    GenericVector,  // not a target-specific vector type
2379    AltiVecVector,  // is AltiVec vector
2380    AltiVecPixel,   // is AltiVec 'vector Pixel'
2381    AltiVecBool,    // is AltiVec 'vector bool ...'
2382    NeonVector,     // is ARM Neon vector
2383    NeonPolyVector  // is ARM Neon polynomial vector
2384  };
2385protected:
2386  /// ElementType - The element type of the vector.
2387  QualType ElementType;
2388
2389  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2390             VectorKind vecKind);
2391
2392  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2393             QualType canonType, VectorKind vecKind);
2394
2395  friend class ASTContext;  // ASTContext creates these.
2396
2397public:
2398
2399  QualType getElementType() const { return ElementType; }
2400  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2401
2402  bool isSugared() const { return false; }
2403  QualType desugar() const { return QualType(this, 0); }
2404
2405  VectorKind getVectorKind() const {
2406    return VectorKind(VectorTypeBits.VecKind);
2407  }
2408
2409  void Profile(llvm::FoldingSetNodeID &ID) {
2410    Profile(ID, getElementType(), getNumElements(),
2411            getTypeClass(), getVectorKind());
2412  }
2413  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2414                      unsigned NumElements, TypeClass TypeClass,
2415                      VectorKind VecKind) {
2416    ID.AddPointer(ElementType.getAsOpaquePtr());
2417    ID.AddInteger(NumElements);
2418    ID.AddInteger(TypeClass);
2419    ID.AddInteger(VecKind);
2420  }
2421
2422  static bool classof(const Type *T) {
2423    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2424  }
2425  static bool classof(const VectorType *) { return true; }
2426};
2427
2428/// ExtVectorType - Extended vector type. This type is created using
2429/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2430/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2431/// class enables syntactic extensions, like Vector Components for accessing
2432/// points, colors, and textures (modeled after OpenGL Shading Language).
2433class ExtVectorType : public VectorType {
2434  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2435    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2436  friend class ASTContext;  // ASTContext creates these.
2437public:
2438  static int getPointAccessorIdx(char c) {
2439    switch (c) {
2440    default: return -1;
2441    case 'x': return 0;
2442    case 'y': return 1;
2443    case 'z': return 2;
2444    case 'w': return 3;
2445    }
2446  }
2447  static int getNumericAccessorIdx(char c) {
2448    switch (c) {
2449      default: return -1;
2450      case '0': return 0;
2451      case '1': return 1;
2452      case '2': return 2;
2453      case '3': return 3;
2454      case '4': return 4;
2455      case '5': return 5;
2456      case '6': return 6;
2457      case '7': return 7;
2458      case '8': return 8;
2459      case '9': return 9;
2460      case 'A':
2461      case 'a': return 10;
2462      case 'B':
2463      case 'b': return 11;
2464      case 'C':
2465      case 'c': return 12;
2466      case 'D':
2467      case 'd': return 13;
2468      case 'E':
2469      case 'e': return 14;
2470      case 'F':
2471      case 'f': return 15;
2472    }
2473  }
2474
2475  static int getAccessorIdx(char c) {
2476    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2477    return getNumericAccessorIdx(c);
2478  }
2479
2480  bool isAccessorWithinNumElements(char c) const {
2481    if (int idx = getAccessorIdx(c)+1)
2482      return unsigned(idx-1) < getNumElements();
2483    return false;
2484  }
2485  bool isSugared() const { return false; }
2486  QualType desugar() const { return QualType(this, 0); }
2487
2488  static bool classof(const Type *T) {
2489    return T->getTypeClass() == ExtVector;
2490  }
2491  static bool classof(const ExtVectorType *) { return true; }
2492};
2493
2494/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2495/// class of FunctionNoProtoType and FunctionProtoType.
2496///
2497class FunctionType : public Type {
2498  // The type returned by the function.
2499  QualType ResultType;
2500
2501 public:
2502  /// ExtInfo - A class which abstracts out some details necessary for
2503  /// making a call.
2504  ///
2505  /// It is not actually used directly for storing this information in
2506  /// a FunctionType, although FunctionType does currently use the
2507  /// same bit-pattern.
2508  ///
2509  // If you add a field (say Foo), other than the obvious places (both,
2510  // constructors, compile failures), what you need to update is
2511  // * Operator==
2512  // * getFoo
2513  // * withFoo
2514  // * functionType. Add Foo, getFoo.
2515  // * ASTContext::getFooType
2516  // * ASTContext::mergeFunctionTypes
2517  // * FunctionNoProtoType::Profile
2518  // * FunctionProtoType::Profile
2519  // * TypePrinter::PrintFunctionProto
2520  // * AST read and write
2521  // * Codegen
2522  class ExtInfo {
2523    // Feel free to rearrange or add bits, but if you go over 8,
2524    // you'll need to adjust both the Bits field below and
2525    // Type::FunctionTypeBitfields.
2526
2527    //   |  CC  |noreturn|produces|regparm|
2528    //   |0 .. 2|   3    |    4   | 5 .. 7|
2529    //
2530    // regparm is either 0 (no regparm attribute) or the regparm value+1.
2531    enum { CallConvMask = 0x7 };
2532    enum { NoReturnMask = 0x8 };
2533    enum { ProducesResultMask = 0x10 };
2534    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2535           RegParmOffset = 5 }; // Assumed to be the last field
2536
2537    uint16_t Bits;
2538
2539    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2540
2541    friend class FunctionType;
2542
2543   public:
2544    // Constructor with no defaults. Use this when you know that you
2545    // have all the elements (when reading an AST file for example).
2546    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2547            bool producesResult) {
2548      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2549      Bits = ((unsigned) cc) |
2550             (noReturn ? NoReturnMask : 0) |
2551             (producesResult ? ProducesResultMask : 0) |
2552             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2553    }
2554
2555    // Constructor with all defaults. Use when for example creating a
2556    // function know to use defaults.
2557    ExtInfo() : Bits(0) {}
2558
2559    bool getNoReturn() const { return Bits & NoReturnMask; }
2560    bool getProducesResult() const { return Bits & ProducesResultMask; }
2561    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2562    unsigned getRegParm() const {
2563      unsigned RegParm = Bits >> RegParmOffset;
2564      if (RegParm > 0)
2565        --RegParm;
2566      return RegParm;
2567    }
2568    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2569
2570    bool operator==(ExtInfo Other) const {
2571      return Bits == Other.Bits;
2572    }
2573    bool operator!=(ExtInfo Other) const {
2574      return Bits != Other.Bits;
2575    }
2576
2577    // Note that we don't have setters. That is by design, use
2578    // the following with methods instead of mutating these objects.
2579
2580    ExtInfo withNoReturn(bool noReturn) const {
2581      if (noReturn)
2582        return ExtInfo(Bits | NoReturnMask);
2583      else
2584        return ExtInfo(Bits & ~NoReturnMask);
2585    }
2586
2587    ExtInfo withProducesResult(bool producesResult) const {
2588      if (producesResult)
2589        return ExtInfo(Bits | ProducesResultMask);
2590      else
2591        return ExtInfo(Bits & ~ProducesResultMask);
2592    }
2593
2594    ExtInfo withRegParm(unsigned RegParm) const {
2595      assert(RegParm < 7 && "Invalid regparm value");
2596      return ExtInfo((Bits & ~RegParmMask) |
2597                     ((RegParm + 1) << RegParmOffset));
2598    }
2599
2600    ExtInfo withCallingConv(CallingConv cc) const {
2601      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2602    }
2603
2604    void Profile(llvm::FoldingSetNodeID &ID) const {
2605      ID.AddInteger(Bits);
2606    }
2607  };
2608
2609protected:
2610  FunctionType(TypeClass tc, QualType res, bool variadic,
2611               unsigned typeQuals, RefQualifierKind RefQualifier,
2612               QualType Canonical, bool Dependent,
2613               bool InstantiationDependent,
2614               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2615               ExtInfo Info)
2616    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
2617           ContainsUnexpandedParameterPack),
2618      ResultType(res) {
2619    FunctionTypeBits.ExtInfo = Info.Bits;
2620    FunctionTypeBits.Variadic = variadic;
2621    FunctionTypeBits.TypeQuals = typeQuals;
2622    FunctionTypeBits.RefQualifier = static_cast<unsigned>(RefQualifier);
2623  }
2624  bool isVariadic() const { return FunctionTypeBits.Variadic; }
2625  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2626
2627  RefQualifierKind getRefQualifier() const {
2628    return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
2629  }
2630
2631public:
2632
2633  QualType getResultType() const { return ResultType; }
2634
2635  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2636  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2637  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2638  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2639  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2640
2641  /// \brief Determine the type of an expression that calls a function of
2642  /// this type.
2643  QualType getCallResultType(ASTContext &Context) const {
2644    return getResultType().getNonLValueExprType(Context);
2645  }
2646
2647  static StringRef getNameForCallConv(CallingConv CC);
2648
2649  static bool classof(const Type *T) {
2650    return T->getTypeClass() == FunctionNoProto ||
2651           T->getTypeClass() == FunctionProto;
2652  }
2653  static bool classof(const FunctionType *) { return true; }
2654};
2655
2656/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2657/// no information available about its arguments.
2658class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2659  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2660    : FunctionType(FunctionNoProto, Result, false, 0, RQ_None, Canonical,
2661                   /*Dependent=*/false, /*InstantiationDependent=*/false,
2662                   Result->isVariablyModifiedType(),
2663                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2664
2665  friend class ASTContext;  // ASTContext creates these.
2666
2667public:
2668  // No additional state past what FunctionType provides.
2669
2670  bool isSugared() const { return false; }
2671  QualType desugar() const { return QualType(this, 0); }
2672
2673  void Profile(llvm::FoldingSetNodeID &ID) {
2674    Profile(ID, getResultType(), getExtInfo());
2675  }
2676  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2677                      ExtInfo Info) {
2678    Info.Profile(ID);
2679    ID.AddPointer(ResultType.getAsOpaquePtr());
2680  }
2681
2682  static bool classof(const Type *T) {
2683    return T->getTypeClass() == FunctionNoProto;
2684  }
2685  static bool classof(const FunctionNoProtoType *) { return true; }
2686};
2687
2688/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2689/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2690/// arguments, not as having a single void argument. Such a type can have an
2691/// exception specification, but this specification is not part of the canonical
2692/// type.
2693class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2694public:
2695  /// ExtProtoInfo - Extra information about a function prototype.
2696  struct ExtProtoInfo {
2697    ExtProtoInfo() :
2698      Variadic(false), ExceptionSpecType(EST_None), TypeQuals(0),
2699      RefQualifier(RQ_None), NumExceptions(0), Exceptions(0), NoexceptExpr(0),
2700      ConsumedArguments(0) {}
2701
2702    FunctionType::ExtInfo ExtInfo;
2703    bool Variadic;
2704    ExceptionSpecificationType ExceptionSpecType;
2705    unsigned char TypeQuals;
2706    RefQualifierKind RefQualifier;
2707    unsigned NumExceptions;
2708    const QualType *Exceptions;
2709    Expr *NoexceptExpr;
2710    const bool *ConsumedArguments;
2711  };
2712
2713private:
2714  /// \brief Determine whether there are any argument types that
2715  /// contain an unexpanded parameter pack.
2716  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2717                                                 unsigned numArgs) {
2718    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2719      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2720        return true;
2721
2722    return false;
2723  }
2724
2725  FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
2726                    QualType canonical, const ExtProtoInfo &epi);
2727
2728  /// NumArgs - The number of arguments this function has, not counting '...'.
2729  unsigned NumArgs : 19;
2730
2731  /// NumExceptions - The number of types in the exception spec, if any.
2732  unsigned NumExceptions : 9;
2733
2734  /// ExceptionSpecType - The type of exception specification this function has.
2735  unsigned ExceptionSpecType : 3;
2736
2737  /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
2738  unsigned HasAnyConsumedArgs : 1;
2739
2740  // ArgInfo - There is an variable size array after the class in memory that
2741  // holds the argument types.
2742
2743  // Exceptions - There is another variable size array after ArgInfo that
2744  // holds the exception types.
2745
2746  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2747  // to the expression in the noexcept() specifier.
2748
2749  // ConsumedArgs - A variable size array, following Exceptions
2750  // and of length NumArgs, holding flags indicating which arguments
2751  // are consumed.  This only appears if HasAnyConsumedArgs is true.
2752
2753  friend class ASTContext;  // ASTContext creates these.
2754
2755  const bool *getConsumedArgsBuffer() const {
2756    assert(hasAnyConsumedArgs());
2757
2758    // Find the end of the exceptions.
2759    Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
2760    if (getExceptionSpecType() != EST_ComputedNoexcept)
2761      eh_end += NumExceptions;
2762    else
2763      eh_end += 1; // NoexceptExpr
2764
2765    return reinterpret_cast<const bool*>(eh_end);
2766  }
2767
2768public:
2769  unsigned getNumArgs() const { return NumArgs; }
2770  QualType getArgType(unsigned i) const {
2771    assert(i < NumArgs && "Invalid argument number!");
2772    return arg_type_begin()[i];
2773  }
2774
2775  ExtProtoInfo getExtProtoInfo() const {
2776    ExtProtoInfo EPI;
2777    EPI.ExtInfo = getExtInfo();
2778    EPI.Variadic = isVariadic();
2779    EPI.ExceptionSpecType = getExceptionSpecType();
2780    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2781    EPI.RefQualifier = getRefQualifier();
2782    if (EPI.ExceptionSpecType == EST_Dynamic) {
2783      EPI.NumExceptions = NumExceptions;
2784      EPI.Exceptions = exception_begin();
2785    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2786      EPI.NoexceptExpr = getNoexceptExpr();
2787    }
2788    if (hasAnyConsumedArgs())
2789      EPI.ConsumedArguments = getConsumedArgsBuffer();
2790    return EPI;
2791  }
2792
2793  /// \brief Get the kind of exception specification on this function.
2794  ExceptionSpecificationType getExceptionSpecType() const {
2795    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2796  }
2797  /// \brief Return whether this function has any kind of exception spec.
2798  bool hasExceptionSpec() const {
2799    return getExceptionSpecType() != EST_None;
2800  }
2801  /// \brief Return whether this function has a dynamic (throw) exception spec.
2802  bool hasDynamicExceptionSpec() const {
2803    return isDynamicExceptionSpec(getExceptionSpecType());
2804  }
2805  /// \brief Return whether this function has a noexcept exception spec.
2806  bool hasNoexceptExceptionSpec() const {
2807    return isNoexceptExceptionSpec(getExceptionSpecType());
2808  }
2809  /// \brief Result type of getNoexceptSpec().
2810  enum NoexceptResult {
2811    NR_NoNoexcept,  ///< There is no noexcept specifier.
2812    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2813    NR_Dependent,   ///< The noexcept specifier is dependent.
2814    NR_Throw,       ///< The noexcept specifier evaluates to false.
2815    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2816  };
2817  /// \brief Get the meaning of the noexcept spec on this function, if any.
2818  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2819  unsigned getNumExceptions() const { return NumExceptions; }
2820  QualType getExceptionType(unsigned i) const {
2821    assert(i < NumExceptions && "Invalid exception number!");
2822    return exception_begin()[i];
2823  }
2824  Expr *getNoexceptExpr() const {
2825    if (getExceptionSpecType() != EST_ComputedNoexcept)
2826      return 0;
2827    // NoexceptExpr sits where the arguments end.
2828    return *reinterpret_cast<Expr *const *>(arg_type_end());
2829  }
2830  bool isNothrow(ASTContext &Ctx) const {
2831    ExceptionSpecificationType EST = getExceptionSpecType();
2832    assert(EST != EST_Delayed);
2833    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2834      return true;
2835    if (EST != EST_ComputedNoexcept)
2836      return false;
2837    return getNoexceptSpec(Ctx) == NR_Nothrow;
2838  }
2839
2840  using FunctionType::isVariadic;
2841
2842  /// \brief Determines whether this function prototype contains a
2843  /// parameter pack at the end.
2844  ///
2845  /// A function template whose last parameter is a parameter pack can be
2846  /// called with an arbitrary number of arguments, much like a variadic
2847  /// function. However,
2848  bool isTemplateVariadic() const;
2849
2850  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2851
2852
2853  /// \brief Retrieve the ref-qualifier associated with this function type.
2854  RefQualifierKind getRefQualifier() const {
2855    return FunctionType::getRefQualifier();
2856  }
2857
2858  typedef const QualType *arg_type_iterator;
2859  arg_type_iterator arg_type_begin() const {
2860    return reinterpret_cast<const QualType *>(this+1);
2861  }
2862  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2863
2864  typedef const QualType *exception_iterator;
2865  exception_iterator exception_begin() const {
2866    // exceptions begin where arguments end
2867    return arg_type_end();
2868  }
2869  exception_iterator exception_end() const {
2870    if (getExceptionSpecType() != EST_Dynamic)
2871      return exception_begin();
2872    return exception_begin() + NumExceptions;
2873  }
2874
2875  bool hasAnyConsumedArgs() const {
2876    return HasAnyConsumedArgs;
2877  }
2878  bool isArgConsumed(unsigned I) const {
2879    assert(I < getNumArgs() && "argument index out of range!");
2880    if (hasAnyConsumedArgs())
2881      return getConsumedArgsBuffer()[I];
2882    return false;
2883  }
2884
2885  bool isSugared() const { return false; }
2886  QualType desugar() const { return QualType(this, 0); }
2887
2888  static bool classof(const Type *T) {
2889    return T->getTypeClass() == FunctionProto;
2890  }
2891  static bool classof(const FunctionProtoType *) { return true; }
2892
2893  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
2894  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2895                      arg_type_iterator ArgTys, unsigned NumArgs,
2896                      const ExtProtoInfo &EPI, const ASTContext &Context);
2897};
2898
2899
2900/// \brief Represents the dependent type named by a dependently-scoped
2901/// typename using declaration, e.g.
2902///   using typename Base<T>::foo;
2903/// Template instantiation turns these into the underlying type.
2904class UnresolvedUsingType : public Type {
2905  UnresolvedUsingTypenameDecl *Decl;
2906
2907  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2908    : Type(UnresolvedUsing, QualType(), true, true, false,
2909           /*ContainsUnexpandedParameterPack=*/false),
2910      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2911  friend class ASTContext; // ASTContext creates these.
2912public:
2913
2914  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2915
2916  bool isSugared() const { return false; }
2917  QualType desugar() const { return QualType(this, 0); }
2918
2919  static bool classof(const Type *T) {
2920    return T->getTypeClass() == UnresolvedUsing;
2921  }
2922  static bool classof(const UnresolvedUsingType *) { return true; }
2923
2924  void Profile(llvm::FoldingSetNodeID &ID) {
2925    return Profile(ID, Decl);
2926  }
2927  static void Profile(llvm::FoldingSetNodeID &ID,
2928                      UnresolvedUsingTypenameDecl *D) {
2929    ID.AddPointer(D);
2930  }
2931};
2932
2933
2934class TypedefType : public Type {
2935  TypedefNameDecl *Decl;
2936protected:
2937  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
2938    : Type(tc, can, can->isDependentType(),
2939           can->isInstantiationDependentType(),
2940           can->isVariablyModifiedType(),
2941           /*ContainsUnexpandedParameterPack=*/false),
2942      Decl(const_cast<TypedefNameDecl*>(D)) {
2943    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2944  }
2945  friend class ASTContext;  // ASTContext creates these.
2946public:
2947
2948  TypedefNameDecl *getDecl() const { return Decl; }
2949
2950  bool isSugared() const { return true; }
2951  QualType desugar() const;
2952
2953  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2954  static bool classof(const TypedefType *) { return true; }
2955};
2956
2957/// TypeOfExprType (GCC extension).
2958class TypeOfExprType : public Type {
2959  Expr *TOExpr;
2960
2961protected:
2962  TypeOfExprType(Expr *E, QualType can = QualType());
2963  friend class ASTContext;  // ASTContext creates these.
2964public:
2965  Expr *getUnderlyingExpr() const { return TOExpr; }
2966
2967  /// \brief Remove a single level of sugar.
2968  QualType desugar() const;
2969
2970  /// \brief Returns whether this type directly provides sugar.
2971  bool isSugared() const;
2972
2973  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2974  static bool classof(const TypeOfExprType *) { return true; }
2975};
2976
2977/// \brief Internal representation of canonical, dependent
2978/// typeof(expr) types.
2979///
2980/// This class is used internally by the ASTContext to manage
2981/// canonical, dependent types, only. Clients will only see instances
2982/// of this class via TypeOfExprType nodes.
2983class DependentTypeOfExprType
2984  : public TypeOfExprType, public llvm::FoldingSetNode {
2985  const ASTContext &Context;
2986
2987public:
2988  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
2989    : TypeOfExprType(E), Context(Context) { }
2990
2991  void Profile(llvm::FoldingSetNodeID &ID) {
2992    Profile(ID, Context, getUnderlyingExpr());
2993  }
2994
2995  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2996                      Expr *E);
2997};
2998
2999/// TypeOfType (GCC extension).
3000class TypeOfType : public Type {
3001  QualType TOType;
3002  TypeOfType(QualType T, QualType can)
3003    : Type(TypeOf, can, T->isDependentType(),
3004           T->isInstantiationDependentType(),
3005           T->isVariablyModifiedType(),
3006           T->containsUnexpandedParameterPack()),
3007      TOType(T) {
3008    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3009  }
3010  friend class ASTContext;  // ASTContext creates these.
3011public:
3012  QualType getUnderlyingType() const { return TOType; }
3013
3014  /// \brief Remove a single level of sugar.
3015  QualType desugar() const { return getUnderlyingType(); }
3016
3017  /// \brief Returns whether this type directly provides sugar.
3018  bool isSugared() const { return true; }
3019
3020  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
3021  static bool classof(const TypeOfType *) { return true; }
3022};
3023
3024/// DecltypeType (C++0x)
3025class DecltypeType : public Type {
3026  Expr *E;
3027
3028  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
3029  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
3030  // from it.
3031  QualType UnderlyingType;
3032
3033protected:
3034  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3035  friend class ASTContext;  // ASTContext creates these.
3036public:
3037  Expr *getUnderlyingExpr() const { return E; }
3038  QualType getUnderlyingType() const { return UnderlyingType; }
3039
3040  /// \brief Remove a single level of sugar.
3041  QualType desugar() const;
3042
3043  /// \brief Returns whether this type directly provides sugar.
3044  bool isSugared() const;
3045
3046  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3047  static bool classof(const DecltypeType *) { return true; }
3048};
3049
3050/// \brief Internal representation of canonical, dependent
3051/// decltype(expr) types.
3052///
3053/// This class is used internally by the ASTContext to manage
3054/// canonical, dependent types, only. Clients will only see instances
3055/// of this class via DecltypeType nodes.
3056class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3057  const ASTContext &Context;
3058
3059public:
3060  DependentDecltypeType(const ASTContext &Context, Expr *E);
3061
3062  void Profile(llvm::FoldingSetNodeID &ID) {
3063    Profile(ID, Context, getUnderlyingExpr());
3064  }
3065
3066  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3067                      Expr *E);
3068};
3069
3070/// \brief A unary type transform, which is a type constructed from another
3071class UnaryTransformType : public Type {
3072public:
3073  enum UTTKind {
3074    EnumUnderlyingType
3075  };
3076
3077private:
3078  /// The untransformed type.
3079  QualType BaseType;
3080  /// The transformed type if not dependent, otherwise the same as BaseType.
3081  QualType UnderlyingType;
3082
3083  UTTKind UKind;
3084protected:
3085  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3086                     QualType CanonicalTy);
3087  friend class ASTContext;
3088public:
3089  bool isSugared() const { return !isDependentType(); }
3090  QualType desugar() const { return UnderlyingType; }
3091
3092  QualType getUnderlyingType() const { return UnderlyingType; }
3093  QualType getBaseType() const { return BaseType; }
3094
3095  UTTKind getUTTKind() const { return UKind; }
3096
3097  static bool classof(const Type *T) {
3098    return T->getTypeClass() == UnaryTransform;
3099  }
3100  static bool classof(const UnaryTransformType *) { return true; }
3101};
3102
3103class TagType : public Type {
3104  /// Stores the TagDecl associated with this type. The decl may point to any
3105  /// TagDecl that declares the entity.
3106  TagDecl * decl;
3107
3108protected:
3109  TagType(TypeClass TC, const TagDecl *D, QualType can);
3110
3111public:
3112  TagDecl *getDecl() const;
3113
3114  /// @brief Determines whether this type is in the process of being
3115  /// defined.
3116  bool isBeingDefined() const;
3117
3118  static bool classof(const Type *T) {
3119    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3120  }
3121  static bool classof(const TagType *) { return true; }
3122  static bool classof(const RecordType *) { return true; }
3123  static bool classof(const EnumType *) { return true; }
3124};
3125
3126/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
3127/// to detect TagType objects of structs/unions/classes.
3128class RecordType : public TagType {
3129protected:
3130  explicit RecordType(const RecordDecl *D)
3131    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3132  explicit RecordType(TypeClass TC, RecordDecl *D)
3133    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3134  friend class ASTContext;   // ASTContext creates these.
3135public:
3136
3137  RecordDecl *getDecl() const {
3138    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3139  }
3140
3141  // FIXME: This predicate is a helper to QualType/Type. It needs to
3142  // recursively check all fields for const-ness. If any field is declared
3143  // const, it needs to return false.
3144  bool hasConstFields() const { return false; }
3145
3146  bool isSugared() const { return false; }
3147  QualType desugar() const { return QualType(this, 0); }
3148
3149  static bool classof(const TagType *T);
3150  static bool classof(const Type *T) {
3151    return isa<TagType>(T) && classof(cast<TagType>(T));
3152  }
3153  static bool classof(const RecordType *) { return true; }
3154};
3155
3156/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
3157/// to detect TagType objects of enums.
3158class EnumType : public TagType {
3159  explicit EnumType(const EnumDecl *D)
3160    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3161  friend class ASTContext;   // ASTContext creates these.
3162public:
3163
3164  EnumDecl *getDecl() const {
3165    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3166  }
3167
3168  bool isSugared() const { return false; }
3169  QualType desugar() const { return QualType(this, 0); }
3170
3171  static bool classof(const TagType *T);
3172  static bool classof(const Type *T) {
3173    return isa<TagType>(T) && classof(cast<TagType>(T));
3174  }
3175  static bool classof(const EnumType *) { return true; }
3176};
3177
3178/// AttributedType - An attributed type is a type to which a type
3179/// attribute has been applied.  The "modified type" is the
3180/// fully-sugared type to which the attributed type was applied;
3181/// generally it is not canonically equivalent to the attributed type.
3182/// The "equivalent type" is the minimally-desugared type which the
3183/// type is canonically equivalent to.
3184///
3185/// For example, in the following attributed type:
3186///     int32_t __attribute__((vector_size(16)))
3187///   - the modified type is the TypedefType for int32_t
3188///   - the equivalent type is VectorType(16, int32_t)
3189///   - the canonical type is VectorType(16, int)
3190class AttributedType : public Type, public llvm::FoldingSetNode {
3191public:
3192  // It is really silly to have yet another attribute-kind enum, but
3193  // clang::attr::Kind doesn't currently cover the pure type attrs.
3194  enum Kind {
3195    // Expression operand.
3196    attr_address_space,
3197    attr_regparm,
3198    attr_vector_size,
3199    attr_neon_vector_type,
3200    attr_neon_polyvector_type,
3201
3202    FirstExprOperandKind = attr_address_space,
3203    LastExprOperandKind = attr_neon_polyvector_type,
3204
3205    // Enumerated operand (string or keyword).
3206    attr_objc_gc,
3207    attr_objc_ownership,
3208    attr_pcs,
3209
3210    FirstEnumOperandKind = attr_objc_gc,
3211    LastEnumOperandKind = attr_pcs,
3212
3213    // No operand.
3214    attr_noreturn,
3215    attr_cdecl,
3216    attr_fastcall,
3217    attr_stdcall,
3218    attr_thiscall,
3219    attr_pascal
3220  };
3221
3222private:
3223  QualType ModifiedType;
3224  QualType EquivalentType;
3225
3226  friend class ASTContext; // creates these
3227
3228  AttributedType(QualType canon, Kind attrKind,
3229                 QualType modified, QualType equivalent)
3230    : Type(Attributed, canon, canon->isDependentType(),
3231           canon->isInstantiationDependentType(),
3232           canon->isVariablyModifiedType(),
3233           canon->containsUnexpandedParameterPack()),
3234      ModifiedType(modified), EquivalentType(equivalent) {
3235    AttributedTypeBits.AttrKind = attrKind;
3236  }
3237
3238public:
3239  Kind getAttrKind() const {
3240    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3241  }
3242
3243  QualType getModifiedType() const { return ModifiedType; }
3244  QualType getEquivalentType() const { return EquivalentType; }
3245
3246  bool isSugared() const { return true; }
3247  QualType desugar() const { return getEquivalentType(); }
3248
3249  void Profile(llvm::FoldingSetNodeID &ID) {
3250    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3251  }
3252
3253  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3254                      QualType modified, QualType equivalent) {
3255    ID.AddInteger(attrKind);
3256    ID.AddPointer(modified.getAsOpaquePtr());
3257    ID.AddPointer(equivalent.getAsOpaquePtr());
3258  }
3259
3260  static bool classof(const Type *T) {
3261    return T->getTypeClass() == Attributed;
3262  }
3263  static bool classof(const AttributedType *T) { return true; }
3264};
3265
3266class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3267  // Helper data collector for canonical types.
3268  struct CanonicalTTPTInfo {
3269    unsigned Depth : 15;
3270    unsigned ParameterPack : 1;
3271    unsigned Index : 16;
3272  };
3273
3274  union {
3275    // Info for the canonical type.
3276    CanonicalTTPTInfo CanTTPTInfo;
3277    // Info for the non-canonical type.
3278    TemplateTypeParmDecl *TTPDecl;
3279  };
3280
3281  /// Build a non-canonical type.
3282  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3283    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3284           /*InstantiationDependent=*/true,
3285           /*VariablyModified=*/false,
3286           Canon->containsUnexpandedParameterPack()),
3287      TTPDecl(TTPDecl) { }
3288
3289  /// Build the canonical type.
3290  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3291    : Type(TemplateTypeParm, QualType(this, 0),
3292           /*Dependent=*/true,
3293           /*InstantiationDependent=*/true,
3294           /*VariablyModified=*/false, PP) {
3295    CanTTPTInfo.Depth = D;
3296    CanTTPTInfo.Index = I;
3297    CanTTPTInfo.ParameterPack = PP;
3298  }
3299
3300  friend class ASTContext;  // ASTContext creates these
3301
3302  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3303    QualType Can = getCanonicalTypeInternal();
3304    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3305  }
3306
3307public:
3308  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3309  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3310  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3311
3312  TemplateTypeParmDecl *getDecl() const {
3313    return isCanonicalUnqualified() ? 0 : TTPDecl;
3314  }
3315
3316  IdentifierInfo *getIdentifier() const;
3317
3318  bool isSugared() const { return false; }
3319  QualType desugar() const { return QualType(this, 0); }
3320
3321  void Profile(llvm::FoldingSetNodeID &ID) {
3322    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3323  }
3324
3325  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3326                      unsigned Index, bool ParameterPack,
3327                      TemplateTypeParmDecl *TTPDecl) {
3328    ID.AddInteger(Depth);
3329    ID.AddInteger(Index);
3330    ID.AddBoolean(ParameterPack);
3331    ID.AddPointer(TTPDecl);
3332  }
3333
3334  static bool classof(const Type *T) {
3335    return T->getTypeClass() == TemplateTypeParm;
3336  }
3337  static bool classof(const TemplateTypeParmType *T) { return true; }
3338};
3339
3340/// \brief Represents the result of substituting a type for a template
3341/// type parameter.
3342///
3343/// Within an instantiated template, all template type parameters have
3344/// been replaced with these.  They are used solely to record that a
3345/// type was originally written as a template type parameter;
3346/// therefore they are never canonical.
3347class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3348  // The original type parameter.
3349  const TemplateTypeParmType *Replaced;
3350
3351  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3352    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3353           Canon->isInstantiationDependentType(),
3354           Canon->isVariablyModifiedType(),
3355           Canon->containsUnexpandedParameterPack()),
3356      Replaced(Param) { }
3357
3358  friend class ASTContext;
3359
3360public:
3361  /// Gets the template parameter that was substituted for.
3362  const TemplateTypeParmType *getReplacedParameter() const {
3363    return Replaced;
3364  }
3365
3366  /// Gets the type that was substituted for the template
3367  /// parameter.
3368  QualType getReplacementType() const {
3369    return getCanonicalTypeInternal();
3370  }
3371
3372  bool isSugared() const { return true; }
3373  QualType desugar() const { return getReplacementType(); }
3374
3375  void Profile(llvm::FoldingSetNodeID &ID) {
3376    Profile(ID, getReplacedParameter(), getReplacementType());
3377  }
3378  static void Profile(llvm::FoldingSetNodeID &ID,
3379                      const TemplateTypeParmType *Replaced,
3380                      QualType Replacement) {
3381    ID.AddPointer(Replaced);
3382    ID.AddPointer(Replacement.getAsOpaquePtr());
3383  }
3384
3385  static bool classof(const Type *T) {
3386    return T->getTypeClass() == SubstTemplateTypeParm;
3387  }
3388  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
3389};
3390
3391/// \brief Represents the result of substituting a set of types for a template
3392/// type parameter pack.
3393///
3394/// When a pack expansion in the source code contains multiple parameter packs
3395/// and those parameter packs correspond to different levels of template
3396/// parameter lists, this type node is used to represent a template type
3397/// parameter pack from an outer level, which has already had its argument pack
3398/// substituted but that still lives within a pack expansion that itself
3399/// could not be instantiated. When actually performing a substitution into
3400/// that pack expansion (e.g., when all template parameters have corresponding
3401/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3402/// at the current pack substitution index.
3403class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3404  /// \brief The original type parameter.
3405  const TemplateTypeParmType *Replaced;
3406
3407  /// \brief A pointer to the set of template arguments that this
3408  /// parameter pack is instantiated with.
3409  const TemplateArgument *Arguments;
3410
3411  /// \brief The number of template arguments in \c Arguments.
3412  unsigned NumArguments;
3413
3414  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3415                                QualType Canon,
3416                                const TemplateArgument &ArgPack);
3417
3418  friend class ASTContext;
3419
3420public:
3421  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
3422
3423  /// Gets the template parameter that was substituted for.
3424  const TemplateTypeParmType *getReplacedParameter() const {
3425    return Replaced;
3426  }
3427
3428  bool isSugared() const { return false; }
3429  QualType desugar() const { return QualType(this, 0); }
3430
3431  TemplateArgument getArgumentPack() const;
3432
3433  void Profile(llvm::FoldingSetNodeID &ID);
3434  static void Profile(llvm::FoldingSetNodeID &ID,
3435                      const TemplateTypeParmType *Replaced,
3436                      const TemplateArgument &ArgPack);
3437
3438  static bool classof(const Type *T) {
3439    return T->getTypeClass() == SubstTemplateTypeParmPack;
3440  }
3441  static bool classof(const SubstTemplateTypeParmPackType *T) { return true; }
3442};
3443
3444/// \brief Represents a C++0x auto type.
3445///
3446/// These types are usually a placeholder for a deduced type. However, within
3447/// templates and before the initializer is attached, there is no deduced type
3448/// and an auto type is type-dependent and canonical.
3449class AutoType : public Type, public llvm::FoldingSetNode {
3450  AutoType(QualType DeducedType)
3451    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3452           /*Dependent=*/DeducedType.isNull(),
3453           /*InstantiationDependent=*/DeducedType.isNull(),
3454           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3455    assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
3456           "deduced a dependent type for auto");
3457  }
3458
3459  friend class ASTContext;  // ASTContext creates these
3460
3461public:
3462  bool isSugared() const { return isDeduced(); }
3463  QualType desugar() const { return getCanonicalTypeInternal(); }
3464
3465  QualType getDeducedType() const {
3466    return isDeduced() ? getCanonicalTypeInternal() : QualType();
3467  }
3468  bool isDeduced() const {
3469    return !isDependentType();
3470  }
3471
3472  void Profile(llvm::FoldingSetNodeID &ID) {
3473    Profile(ID, getDeducedType());
3474  }
3475
3476  static void Profile(llvm::FoldingSetNodeID &ID,
3477                      QualType Deduced) {
3478    ID.AddPointer(Deduced.getAsOpaquePtr());
3479  }
3480
3481  static bool classof(const Type *T) {
3482    return T->getTypeClass() == Auto;
3483  }
3484  static bool classof(const AutoType *T) { return true; }
3485};
3486
3487/// \brief Represents a type template specialization; the template
3488/// must be a class template, a type alias template, or a template
3489/// template parameter.  A template which cannot be resolved to one of
3490/// these, e.g. because it is written with a dependent scope
3491/// specifier, is instead represented as a
3492/// @c DependentTemplateSpecializationType.
3493///
3494/// A non-dependent template specialization type is always "sugar",
3495/// typically for a @c RecordType.  For example, a class template
3496/// specialization type of @c vector<int> will refer to a tag type for
3497/// the instantiation @c std::vector<int, std::allocator<int>>
3498///
3499/// Template specializations are dependent if either the template or
3500/// any of the template arguments are dependent, in which case the
3501/// type may also be canonical.
3502///
3503/// Instances of this type are allocated with a trailing array of
3504/// TemplateArguments, followed by a QualType representing the
3505/// non-canonical aliased type when the template is a type alias
3506/// template.
3507class TemplateSpecializationType
3508  : public Type, public llvm::FoldingSetNode {
3509  /// \brief The name of the template being specialized.  This is
3510  /// either a TemplateName::Template (in which case it is a
3511  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
3512  /// TypeAliasTemplateDecl*), a
3513  /// TemplateName::SubstTemplateTemplateParmPack, or a
3514  /// TemplateName::SubstTemplateTemplateParm (in which case the
3515  /// replacement must, recursively, be one of these).
3516  TemplateName Template;
3517
3518  /// \brief - The number of template arguments named in this class
3519  /// template specialization.
3520  unsigned NumArgs;
3521
3522  TemplateSpecializationType(TemplateName T,
3523                             const TemplateArgument *Args,
3524                             unsigned NumArgs, QualType Canon,
3525                             QualType Aliased);
3526
3527  friend class ASTContext;  // ASTContext creates these
3528
3529public:
3530  /// \brief Determine whether any of the given template arguments are
3531  /// dependent.
3532  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3533                                            unsigned NumArgs,
3534                                            bool &InstantiationDependent);
3535
3536  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3537                                            unsigned NumArgs,
3538                                            bool &InstantiationDependent);
3539
3540  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
3541                                            bool &InstantiationDependent);
3542
3543  /// \brief Print a template argument list, including the '<' and '>'
3544  /// enclosing the template arguments.
3545  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
3546                                               unsigned NumArgs,
3547                                               const PrintingPolicy &Policy,
3548                                               bool SkipBrackets = false);
3549
3550  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
3551                                               unsigned NumArgs,
3552                                               const PrintingPolicy &Policy);
3553
3554  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
3555                                               const PrintingPolicy &Policy);
3556
3557  /// True if this template specialization type matches a current
3558  /// instantiation in the context in which it is found.
3559  bool isCurrentInstantiation() const {
3560    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3561  }
3562
3563  /// True if this template specialization type is for a type alias
3564  /// template.
3565  bool isTypeAlias() const;
3566  /// Get the aliased type, if this is a specialization of a type alias
3567  /// template.
3568  QualType getAliasedType() const {
3569    assert(isTypeAlias() && "not a type alias template specialization");
3570    return *reinterpret_cast<const QualType*>(end());
3571  }
3572
3573  typedef const TemplateArgument * iterator;
3574
3575  iterator begin() const { return getArgs(); }
3576  iterator end() const; // defined inline in TemplateBase.h
3577
3578  /// \brief Retrieve the name of the template that we are specializing.
3579  TemplateName getTemplateName() const { return Template; }
3580
3581  /// \brief Retrieve the template arguments.
3582  const TemplateArgument *getArgs() const {
3583    return reinterpret_cast<const TemplateArgument *>(this + 1);
3584  }
3585
3586  /// \brief Retrieve the number of template arguments.
3587  unsigned getNumArgs() const { return NumArgs; }
3588
3589  /// \brief Retrieve a specific template argument as a type.
3590  /// \precondition @c isArgType(Arg)
3591  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3592
3593  bool isSugared() const {
3594    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
3595  }
3596  QualType desugar() const { return getCanonicalTypeInternal(); }
3597
3598  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3599    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3600    if (isTypeAlias())
3601      getAliasedType().Profile(ID);
3602  }
3603
3604  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3605                      const TemplateArgument *Args,
3606                      unsigned NumArgs,
3607                      const ASTContext &Context);
3608
3609  static bool classof(const Type *T) {
3610    return T->getTypeClass() == TemplateSpecialization;
3611  }
3612  static bool classof(const TemplateSpecializationType *T) { return true; }
3613};
3614
3615/// \brief The injected class name of a C++ class template or class
3616/// template partial specialization.  Used to record that a type was
3617/// spelled with a bare identifier rather than as a template-id; the
3618/// equivalent for non-templated classes is just RecordType.
3619///
3620/// Injected class name types are always dependent.  Template
3621/// instantiation turns these into RecordTypes.
3622///
3623/// Injected class name types are always canonical.  This works
3624/// because it is impossible to compare an injected class name type
3625/// with the corresponding non-injected template type, for the same
3626/// reason that it is impossible to directly compare template
3627/// parameters from different dependent contexts: injected class name
3628/// types can only occur within the scope of a particular templated
3629/// declaration, and within that scope every template specialization
3630/// will canonicalize to the injected class name (when appropriate
3631/// according to the rules of the language).
3632class InjectedClassNameType : public Type {
3633  CXXRecordDecl *Decl;
3634
3635  /// The template specialization which this type represents.
3636  /// For example, in
3637  ///   template <class T> class A { ... };
3638  /// this is A<T>, whereas in
3639  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3640  /// this is A<B<X,Y> >.
3641  ///
3642  /// It is always unqualified, always a template specialization type,
3643  /// and always dependent.
3644  QualType InjectedType;
3645
3646  friend class ASTContext; // ASTContext creates these.
3647  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3648                          // currently suitable for AST reading, too much
3649                          // interdependencies.
3650  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3651    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3652           /*InstantiationDependent=*/true,
3653           /*VariablyModified=*/false,
3654           /*ContainsUnexpandedParameterPack=*/false),
3655      Decl(D), InjectedType(TST) {
3656    assert(isa<TemplateSpecializationType>(TST));
3657    assert(!TST.hasQualifiers());
3658    assert(TST->isDependentType());
3659  }
3660
3661public:
3662  QualType getInjectedSpecializationType() const { return InjectedType; }
3663  const TemplateSpecializationType *getInjectedTST() const {
3664    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3665  }
3666
3667  CXXRecordDecl *getDecl() const;
3668
3669  bool isSugared() const { return false; }
3670  QualType desugar() const { return QualType(this, 0); }
3671
3672  static bool classof(const Type *T) {
3673    return T->getTypeClass() == InjectedClassName;
3674  }
3675  static bool classof(const InjectedClassNameType *T) { return true; }
3676};
3677
3678/// \brief The kind of a tag type.
3679enum TagTypeKind {
3680  /// \brief The "struct" keyword.
3681  TTK_Struct,
3682  /// \brief The "union" keyword.
3683  TTK_Union,
3684  /// \brief The "class" keyword.
3685  TTK_Class,
3686  /// \brief The "enum" keyword.
3687  TTK_Enum
3688};
3689
3690/// \brief The elaboration keyword that precedes a qualified type name or
3691/// introduces an elaborated-type-specifier.
3692enum ElaboratedTypeKeyword {
3693  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3694  ETK_Struct,
3695  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3696  ETK_Union,
3697  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3698  ETK_Class,
3699  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3700  ETK_Enum,
3701  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3702  /// \c typename T::type.
3703  ETK_Typename,
3704  /// \brief No keyword precedes the qualified type name.
3705  ETK_None
3706};
3707
3708/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3709/// The keyword in stored in the free bits of the base class.
3710/// Also provides a few static helpers for converting and printing
3711/// elaborated type keyword and tag type kind enumerations.
3712class TypeWithKeyword : public Type {
3713protected:
3714  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3715                  QualType Canonical, bool Dependent,
3716                  bool InstantiationDependent, bool VariablyModified,
3717                  bool ContainsUnexpandedParameterPack)
3718  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3719         ContainsUnexpandedParameterPack) {
3720    TypeWithKeywordBits.Keyword = Keyword;
3721  }
3722
3723public:
3724  ElaboratedTypeKeyword getKeyword() const {
3725    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3726  }
3727
3728  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3729  /// into an elaborated type keyword.
3730  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3731
3732  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3733  /// into a tag type kind.  It is an error to provide a type specifier
3734  /// which *isn't* a tag kind here.
3735  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3736
3737  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3738  /// elaborated type keyword.
3739  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3740
3741  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3742  // a TagTypeKind. It is an error to provide an elaborated type keyword
3743  /// which *isn't* a tag kind here.
3744  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3745
3746  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3747
3748  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3749
3750  static const char *getTagTypeKindName(TagTypeKind Kind) {
3751    return getKeywordName(getKeywordForTagTypeKind(Kind));
3752  }
3753
3754  class CannotCastToThisType {};
3755  static CannotCastToThisType classof(const Type *);
3756};
3757
3758/// \brief Represents a type that was referred to using an elaborated type
3759/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3760/// or both.
3761///
3762/// This type is used to keep track of a type name as written in the
3763/// source code, including tag keywords and any nested-name-specifiers.
3764/// The type itself is always "sugar", used to express what was written
3765/// in the source code but containing no additional semantic information.
3766class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3767
3768  /// \brief The nested name specifier containing the qualifier.
3769  NestedNameSpecifier *NNS;
3770
3771  /// \brief The type that this qualified name refers to.
3772  QualType NamedType;
3773
3774  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3775                 QualType NamedType, QualType CanonType)
3776    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3777                      NamedType->isDependentType(),
3778                      NamedType->isInstantiationDependentType(),
3779                      NamedType->isVariablyModifiedType(),
3780                      NamedType->containsUnexpandedParameterPack()),
3781      NNS(NNS), NamedType(NamedType) {
3782    assert(!(Keyword == ETK_None && NNS == 0) &&
3783           "ElaboratedType cannot have elaborated type keyword "
3784           "and name qualifier both null.");
3785  }
3786
3787  friend class ASTContext;  // ASTContext creates these
3788
3789public:
3790  ~ElaboratedType();
3791
3792  /// \brief Retrieve the qualification on this type.
3793  NestedNameSpecifier *getQualifier() const { return NNS; }
3794
3795  /// \brief Retrieve the type named by the qualified-id.
3796  QualType getNamedType() const { return NamedType; }
3797
3798  /// \brief Remove a single level of sugar.
3799  QualType desugar() const { return getNamedType(); }
3800
3801  /// \brief Returns whether this type directly provides sugar.
3802  bool isSugared() const { return true; }
3803
3804  void Profile(llvm::FoldingSetNodeID &ID) {
3805    Profile(ID, getKeyword(), NNS, NamedType);
3806  }
3807
3808  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3809                      NestedNameSpecifier *NNS, QualType NamedType) {
3810    ID.AddInteger(Keyword);
3811    ID.AddPointer(NNS);
3812    NamedType.Profile(ID);
3813  }
3814
3815  static bool classof(const Type *T) {
3816    return T->getTypeClass() == Elaborated;
3817  }
3818  static bool classof(const ElaboratedType *T) { return true; }
3819};
3820
3821/// \brief Represents a qualified type name for which the type name is
3822/// dependent.
3823///
3824/// DependentNameType represents a class of dependent types that involve a
3825/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3826/// name of a type. The DependentNameType may start with a "typename" (for a
3827/// typename-specifier), "class", "struct", "union", or "enum" (for a
3828/// dependent elaborated-type-specifier), or nothing (in contexts where we
3829/// know that we must be referring to a type, e.g., in a base class specifier).
3830class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3831
3832  /// \brief The nested name specifier containing the qualifier.
3833  NestedNameSpecifier *NNS;
3834
3835  /// \brief The type that this typename specifier refers to.
3836  const IdentifierInfo *Name;
3837
3838  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3839                    const IdentifierInfo *Name, QualType CanonType)
3840    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3841                      /*InstantiationDependent=*/true,
3842                      /*VariablyModified=*/false,
3843                      NNS->containsUnexpandedParameterPack()),
3844      NNS(NNS), Name(Name) {
3845    assert(NNS->isDependent() &&
3846           "DependentNameType requires a dependent nested-name-specifier");
3847  }
3848
3849  friend class ASTContext;  // ASTContext creates these
3850
3851public:
3852  /// \brief Retrieve the qualification on this type.
3853  NestedNameSpecifier *getQualifier() const { return NNS; }
3854
3855  /// \brief Retrieve the type named by the typename specifier as an
3856  /// identifier.
3857  ///
3858  /// This routine will return a non-NULL identifier pointer when the
3859  /// form of the original typename was terminated by an identifier,
3860  /// e.g., "typename T::type".
3861  const IdentifierInfo *getIdentifier() const {
3862    return Name;
3863  }
3864
3865  bool isSugared() const { return false; }
3866  QualType desugar() const { return QualType(this, 0); }
3867
3868  void Profile(llvm::FoldingSetNodeID &ID) {
3869    Profile(ID, getKeyword(), NNS, Name);
3870  }
3871
3872  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3873                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
3874    ID.AddInteger(Keyword);
3875    ID.AddPointer(NNS);
3876    ID.AddPointer(Name);
3877  }
3878
3879  static bool classof(const Type *T) {
3880    return T->getTypeClass() == DependentName;
3881  }
3882  static bool classof(const DependentNameType *T) { return true; }
3883};
3884
3885/// DependentTemplateSpecializationType - Represents a template
3886/// specialization type whose template cannot be resolved, e.g.
3887///   A<T>::template B<T>
3888class DependentTemplateSpecializationType :
3889  public TypeWithKeyword, public llvm::FoldingSetNode {
3890
3891  /// \brief The nested name specifier containing the qualifier.
3892  NestedNameSpecifier *NNS;
3893
3894  /// \brief The identifier of the template.
3895  const IdentifierInfo *Name;
3896
3897  /// \brief - The number of template arguments named in this class
3898  /// template specialization.
3899  unsigned NumArgs;
3900
3901  const TemplateArgument *getArgBuffer() const {
3902    return reinterpret_cast<const TemplateArgument*>(this+1);
3903  }
3904  TemplateArgument *getArgBuffer() {
3905    return reinterpret_cast<TemplateArgument*>(this+1);
3906  }
3907
3908  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
3909                                      NestedNameSpecifier *NNS,
3910                                      const IdentifierInfo *Name,
3911                                      unsigned NumArgs,
3912                                      const TemplateArgument *Args,
3913                                      QualType Canon);
3914
3915  friend class ASTContext;  // ASTContext creates these
3916
3917public:
3918  NestedNameSpecifier *getQualifier() const { return NNS; }
3919  const IdentifierInfo *getIdentifier() const { return Name; }
3920
3921  /// \brief Retrieve the template arguments.
3922  const TemplateArgument *getArgs() const {
3923    return getArgBuffer();
3924  }
3925
3926  /// \brief Retrieve the number of template arguments.
3927  unsigned getNumArgs() const { return NumArgs; }
3928
3929  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3930
3931  typedef const TemplateArgument * iterator;
3932  iterator begin() const { return getArgs(); }
3933  iterator end() const; // inline in TemplateBase.h
3934
3935  bool isSugared() const { return false; }
3936  QualType desugar() const { return QualType(this, 0); }
3937
3938  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
3939    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
3940  }
3941
3942  static void Profile(llvm::FoldingSetNodeID &ID,
3943                      const ASTContext &Context,
3944                      ElaboratedTypeKeyword Keyword,
3945                      NestedNameSpecifier *Qualifier,
3946                      const IdentifierInfo *Name,
3947                      unsigned NumArgs,
3948                      const TemplateArgument *Args);
3949
3950  static bool classof(const Type *T) {
3951    return T->getTypeClass() == DependentTemplateSpecialization;
3952  }
3953  static bool classof(const DependentTemplateSpecializationType *T) {
3954    return true;
3955  }
3956};
3957
3958/// \brief Represents a pack expansion of types.
3959///
3960/// Pack expansions are part of C++0x variadic templates. A pack
3961/// expansion contains a pattern, which itself contains one or more
3962/// "unexpanded" parameter packs. When instantiated, a pack expansion
3963/// produces a series of types, each instantiated from the pattern of
3964/// the expansion, where the Ith instantiation of the pattern uses the
3965/// Ith arguments bound to each of the unexpanded parameter packs. The
3966/// pack expansion is considered to "expand" these unexpanded
3967/// parameter packs.
3968///
3969/// \code
3970/// template<typename ...Types> struct tuple;
3971///
3972/// template<typename ...Types>
3973/// struct tuple_of_references {
3974///   typedef tuple<Types&...> type;
3975/// };
3976/// \endcode
3977///
3978/// Here, the pack expansion \c Types&... is represented via a
3979/// PackExpansionType whose pattern is Types&.
3980class PackExpansionType : public Type, public llvm::FoldingSetNode {
3981  /// \brief The pattern of the pack expansion.
3982  QualType Pattern;
3983
3984  /// \brief The number of expansions that this pack expansion will
3985  /// generate when substituted (+1), or indicates that
3986  ///
3987  /// This field will only have a non-zero value when some of the parameter
3988  /// packs that occur within the pattern have been substituted but others have
3989  /// not.
3990  unsigned NumExpansions;
3991
3992  PackExpansionType(QualType Pattern, QualType Canon,
3993                    llvm::Optional<unsigned> NumExpansions)
3994    : Type(PackExpansion, Canon, /*Dependent=*/true,
3995           /*InstantiationDependent=*/true,
3996           /*VariableModified=*/Pattern->isVariablyModifiedType(),
3997           /*ContainsUnexpandedParameterPack=*/false),
3998      Pattern(Pattern),
3999      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
4000
4001  friend class ASTContext;  // ASTContext creates these
4002
4003public:
4004  /// \brief Retrieve the pattern of this pack expansion, which is the
4005  /// type that will be repeatedly instantiated when instantiating the
4006  /// pack expansion itself.
4007  QualType getPattern() const { return Pattern; }
4008
4009  /// \brief Retrieve the number of expansions that this pack expansion will
4010  /// generate, if known.
4011  llvm::Optional<unsigned> getNumExpansions() const {
4012    if (NumExpansions)
4013      return NumExpansions - 1;
4014
4015    return llvm::Optional<unsigned>();
4016  }
4017
4018  bool isSugared() const { return false; }
4019  QualType desugar() const { return QualType(this, 0); }
4020
4021  void Profile(llvm::FoldingSetNodeID &ID) {
4022    Profile(ID, getPattern(), getNumExpansions());
4023  }
4024
4025  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
4026                      llvm::Optional<unsigned> NumExpansions) {
4027    ID.AddPointer(Pattern.getAsOpaquePtr());
4028    ID.AddBoolean(NumExpansions);
4029    if (NumExpansions)
4030      ID.AddInteger(*NumExpansions);
4031  }
4032
4033  static bool classof(const Type *T) {
4034    return T->getTypeClass() == PackExpansion;
4035  }
4036  static bool classof(const PackExpansionType *T) {
4037    return true;
4038  }
4039};
4040
4041/// ObjCObjectType - Represents a class type in Objective C.
4042/// Every Objective C type is a combination of a base type and a
4043/// list of protocols.
4044///
4045/// Given the following declarations:
4046///   @class C;
4047///   @protocol P;
4048///
4049/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4050/// with base C and no protocols.
4051///
4052/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
4053///
4054/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
4055/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4056/// and no protocols.
4057///
4058/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
4059/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4060/// this should get its own sugar class to better represent the source.
4061class ObjCObjectType : public Type {
4062  // ObjCObjectType.NumProtocols - the number of protocols stored
4063  // after the ObjCObjectPointerType node.
4064  //
4065  // These protocols are those written directly on the type.  If
4066  // protocol qualifiers ever become additive, the iterators will need
4067  // to get kindof complicated.
4068  //
4069  // In the canonical object type, these are sorted alphabetically
4070  // and uniqued.
4071
4072  /// Either a BuiltinType or an InterfaceType or sugar for either.
4073  QualType BaseType;
4074
4075  ObjCProtocolDecl * const *getProtocolStorage() const {
4076    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4077  }
4078
4079  ObjCProtocolDecl **getProtocolStorage();
4080
4081protected:
4082  ObjCObjectType(QualType Canonical, QualType Base,
4083                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
4084
4085  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4086  ObjCObjectType(enum Nonce_ObjCInterface)
4087        : Type(ObjCInterface, QualType(), false, false, false, false),
4088      BaseType(QualType(this_(), 0)) {
4089    ObjCObjectTypeBits.NumProtocols = 0;
4090  }
4091
4092public:
4093  /// getBaseType - Gets the base type of this object type.  This is
4094  /// always (possibly sugar for) one of:
4095  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4096  ///    user, which is a typedef for an ObjCPointerType)
4097  ///  - the 'Class' builtin type (same caveat)
4098  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4099  QualType getBaseType() const { return BaseType; }
4100
4101  bool isObjCId() const {
4102    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4103  }
4104  bool isObjCClass() const {
4105    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4106  }
4107  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4108  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4109  bool isObjCUnqualifiedIdOrClass() const {
4110    if (!qual_empty()) return false;
4111    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4112      return T->getKind() == BuiltinType::ObjCId ||
4113             T->getKind() == BuiltinType::ObjCClass;
4114    return false;
4115  }
4116  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4117  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4118
4119  /// Gets the interface declaration for this object type, if the base type
4120  /// really is an interface.
4121  ObjCInterfaceDecl *getInterface() const;
4122
4123  typedef ObjCProtocolDecl * const *qual_iterator;
4124
4125  qual_iterator qual_begin() const { return getProtocolStorage(); }
4126  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4127
4128  bool qual_empty() const { return getNumProtocols() == 0; }
4129
4130  /// getNumProtocols - Return the number of qualifying protocols in this
4131  /// interface type, or 0 if there are none.
4132  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4133
4134  /// \brief Fetch a protocol by index.
4135  ObjCProtocolDecl *getProtocol(unsigned I) const {
4136    assert(I < getNumProtocols() && "Out-of-range protocol access");
4137    return qual_begin()[I];
4138  }
4139
4140  bool isSugared() const { return false; }
4141  QualType desugar() const { return QualType(this, 0); }
4142
4143  static bool classof(const Type *T) {
4144    return T->getTypeClass() == ObjCObject ||
4145           T->getTypeClass() == ObjCInterface;
4146  }
4147  static bool classof(const ObjCObjectType *) { return true; }
4148};
4149
4150/// ObjCObjectTypeImpl - A class providing a concrete implementation
4151/// of ObjCObjectType, so as to not increase the footprint of
4152/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4153/// system should not reference this type.
4154class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4155  friend class ASTContext;
4156
4157  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4158  // will need to be modified.
4159
4160  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4161                     ObjCProtocolDecl * const *Protocols,
4162                     unsigned NumProtocols)
4163    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
4164
4165public:
4166  void Profile(llvm::FoldingSetNodeID &ID);
4167  static void Profile(llvm::FoldingSetNodeID &ID,
4168                      QualType Base,
4169                      ObjCProtocolDecl *const *protocols,
4170                      unsigned NumProtocols);
4171};
4172
4173inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4174  return reinterpret_cast<ObjCProtocolDecl**>(
4175            static_cast<ObjCObjectTypeImpl*>(this) + 1);
4176}
4177
4178/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
4179/// object oriented design.  They basically correspond to C++ classes.  There
4180/// are two kinds of interface types, normal interfaces like "NSString" and
4181/// qualified interfaces, which are qualified with a protocol list like
4182/// "NSString<NSCopyable, NSAmazing>".
4183///
4184/// ObjCInterfaceType guarantees the following properties when considered
4185/// as a subtype of its superclass, ObjCObjectType:
4186///   - There are no protocol qualifiers.  To reinforce this, code which
4187///     tries to invoke the protocol methods via an ObjCInterfaceType will
4188///     fail to compile.
4189///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4190///     T->getBaseType() == QualType(T, 0).
4191class ObjCInterfaceType : public ObjCObjectType {
4192  ObjCInterfaceDecl *Decl;
4193
4194  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4195    : ObjCObjectType(Nonce_ObjCInterface),
4196      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4197  friend class ASTContext;  // ASTContext creates these.
4198
4199public:
4200  /// getDecl - Get the declaration of this interface.
4201  ObjCInterfaceDecl *getDecl() const { return Decl; }
4202
4203  bool isSugared() const { return false; }
4204  QualType desugar() const { return QualType(this, 0); }
4205
4206  static bool classof(const Type *T) {
4207    return T->getTypeClass() == ObjCInterface;
4208  }
4209  static bool classof(const ObjCInterfaceType *) { return true; }
4210
4211  // Nonsense to "hide" certain members of ObjCObjectType within this
4212  // class.  People asking for protocols on an ObjCInterfaceType are
4213  // not going to get what they want: ObjCInterfaceTypes are
4214  // guaranteed to have no protocols.
4215  enum {
4216    qual_iterator,
4217    qual_begin,
4218    qual_end,
4219    getNumProtocols,
4220    getProtocol
4221  };
4222};
4223
4224inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4225  if (const ObjCInterfaceType *T =
4226        getBaseType()->getAs<ObjCInterfaceType>())
4227    return T->getDecl();
4228  return 0;
4229}
4230
4231/// ObjCObjectPointerType - Used to represent a pointer to an
4232/// Objective C object.  These are constructed from pointer
4233/// declarators when the pointee type is an ObjCObjectType (or sugar
4234/// for one).  In addition, the 'id' and 'Class' types are typedefs
4235/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
4236/// are translated into these.
4237///
4238/// Pointers to pointers to Objective C objects are still PointerTypes;
4239/// only the first level of pointer gets it own type implementation.
4240class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4241  QualType PointeeType;
4242
4243  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4244    : Type(ObjCObjectPointer, Canonical, false, false, false, false),
4245      PointeeType(Pointee) {}
4246  friend class ASTContext;  // ASTContext creates these.
4247
4248public:
4249  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
4250  /// The result will always be an ObjCObjectType or sugar thereof.
4251  QualType getPointeeType() const { return PointeeType; }
4252
4253  /// getObjCObjectType - Gets the type pointed to by this ObjC
4254  /// pointer.  This method always returns non-null.
4255  ///
4256  /// This method is equivalent to getPointeeType() except that
4257  /// it discards any typedefs (or other sugar) between this
4258  /// type and the "outermost" object type.  So for:
4259  ///   @class A; @protocol P; @protocol Q;
4260  ///   typedef A<P> AP;
4261  ///   typedef A A1;
4262  ///   typedef A1<P> A1P;
4263  ///   typedef A1P<Q> A1PQ;
4264  /// For 'A*', getObjectType() will return 'A'.
4265  /// For 'A<P>*', getObjectType() will return 'A<P>'.
4266  /// For 'AP*', getObjectType() will return 'A<P>'.
4267  /// For 'A1*', getObjectType() will return 'A'.
4268  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
4269  /// For 'A1P*', getObjectType() will return 'A1<P>'.
4270  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
4271  ///   adding protocols to a protocol-qualified base discards the
4272  ///   old qualifiers (for now).  But if it didn't, getObjectType()
4273  ///   would return 'A1P<Q>' (and we'd have to make iterating over
4274  ///   qualifiers more complicated).
4275  const ObjCObjectType *getObjectType() const {
4276    return PointeeType->castAs<ObjCObjectType>();
4277  }
4278
4279  /// getInterfaceType - If this pointer points to an Objective C
4280  /// @interface type, gets the type for that interface.  Any protocol
4281  /// qualifiers on the interface are ignored.
4282  ///
4283  /// \return null if the base type for this pointer is 'id' or 'Class'
4284  const ObjCInterfaceType *getInterfaceType() const {
4285    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
4286  }
4287
4288  /// getInterfaceDecl - If this pointer points to an Objective @interface
4289  /// type, gets the declaration for that interface.
4290  ///
4291  /// \return null if the base type for this pointer is 'id' or 'Class'
4292  ObjCInterfaceDecl *getInterfaceDecl() const {
4293    return getObjectType()->getInterface();
4294  }
4295
4296  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
4297  /// its object type is the primitive 'id' type with no protocols.
4298  bool isObjCIdType() const {
4299    return getObjectType()->isObjCUnqualifiedId();
4300  }
4301
4302  /// isObjCClassType - True if this is equivalent to the 'Class' type,
4303  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
4304  bool isObjCClassType() const {
4305    return getObjectType()->isObjCUnqualifiedClass();
4306  }
4307
4308  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
4309  /// non-empty set of protocols.
4310  bool isObjCQualifiedIdType() const {
4311    return getObjectType()->isObjCQualifiedId();
4312  }
4313
4314  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
4315  /// some non-empty set of protocols.
4316  bool isObjCQualifiedClassType() const {
4317    return getObjectType()->isObjCQualifiedClass();
4318  }
4319
4320  /// An iterator over the qualifiers on the object type.  Provided
4321  /// for convenience.  This will always iterate over the full set of
4322  /// protocols on a type, not just those provided directly.
4323  typedef ObjCObjectType::qual_iterator qual_iterator;
4324
4325  qual_iterator qual_begin() const {
4326    return getObjectType()->qual_begin();
4327  }
4328  qual_iterator qual_end() const {
4329    return getObjectType()->qual_end();
4330  }
4331  bool qual_empty() const { return getObjectType()->qual_empty(); }
4332
4333  /// getNumProtocols - Return the number of qualifying protocols on
4334  /// the object type.
4335  unsigned getNumProtocols() const {
4336    return getObjectType()->getNumProtocols();
4337  }
4338
4339  /// \brief Retrieve a qualifying protocol by index on the object
4340  /// type.
4341  ObjCProtocolDecl *getProtocol(unsigned I) const {
4342    return getObjectType()->getProtocol(I);
4343  }
4344
4345  bool isSugared() const { return false; }
4346  QualType desugar() const { return QualType(this, 0); }
4347
4348  void Profile(llvm::FoldingSetNodeID &ID) {
4349    Profile(ID, getPointeeType());
4350  }
4351  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4352    ID.AddPointer(T.getAsOpaquePtr());
4353  }
4354  static bool classof(const Type *T) {
4355    return T->getTypeClass() == ObjCObjectPointer;
4356  }
4357  static bool classof(const ObjCObjectPointerType *) { return true; }
4358};
4359
4360class AtomicType : public Type, public llvm::FoldingSetNode {
4361  QualType ValueType;
4362
4363  AtomicType(QualType ValTy, QualType Canonical)
4364    : Type(Atomic, Canonical, ValTy->isDependentType(),
4365           ValTy->isInstantiationDependentType(),
4366           ValTy->isVariablyModifiedType(),
4367           ValTy->containsUnexpandedParameterPack()),
4368      ValueType(ValTy) {}
4369  friend class ASTContext;  // ASTContext creates these.
4370
4371  public:
4372  /// getValueType - Gets the type contained by this atomic type, i.e.
4373  /// the type returned by performing an atomic load of this atomic type.
4374  QualType getValueType() const { return ValueType; }
4375
4376  bool isSugared() const { return false; }
4377  QualType desugar() const { return QualType(this, 0); }
4378
4379  void Profile(llvm::FoldingSetNodeID &ID) {
4380    Profile(ID, getValueType());
4381  }
4382  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4383    ID.AddPointer(T.getAsOpaquePtr());
4384  }
4385  static bool classof(const Type *T) {
4386    return T->getTypeClass() == Atomic;
4387  }
4388  static bool classof(const AtomicType *) { return true; }
4389};
4390
4391/// A qualifier set is used to build a set of qualifiers.
4392class QualifierCollector : public Qualifiers {
4393public:
4394  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4395
4396  /// Collect any qualifiers on the given type and return an
4397  /// unqualified type.  The qualifiers are assumed to be consistent
4398  /// with those already in the type.
4399  const Type *strip(QualType type) {
4400    addFastQualifiers(type.getLocalFastQualifiers());
4401    if (!type.hasLocalNonFastQualifiers())
4402      return type.getTypePtrUnsafe();
4403
4404    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4405    addConsistentQualifiers(extQuals->getQualifiers());
4406    return extQuals->getBaseType();
4407  }
4408
4409  /// Apply the collected qualifiers to the given type.
4410  QualType apply(const ASTContext &Context, QualType QT) const;
4411
4412  /// Apply the collected qualifiers to the given type.
4413  QualType apply(const ASTContext &Context, const Type* T) const;
4414};
4415
4416
4417// Inline function definitions.
4418
4419inline const Type *QualType::getTypePtr() const {
4420  return getCommonPtr()->BaseType;
4421}
4422
4423inline const Type *QualType::getTypePtrOrNull() const {
4424  return (isNull() ? 0 : getCommonPtr()->BaseType);
4425}
4426
4427inline SplitQualType QualType::split() const {
4428  if (!hasLocalNonFastQualifiers())
4429    return SplitQualType(getTypePtrUnsafe(),
4430                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4431
4432  const ExtQuals *eq = getExtQualsUnsafe();
4433  Qualifiers qs = eq->getQualifiers();
4434  qs.addFastQualifiers(getLocalFastQualifiers());
4435  return SplitQualType(eq->getBaseType(), qs);
4436}
4437
4438inline Qualifiers QualType::getLocalQualifiers() const {
4439  Qualifiers Quals;
4440  if (hasLocalNonFastQualifiers())
4441    Quals = getExtQualsUnsafe()->getQualifiers();
4442  Quals.addFastQualifiers(getLocalFastQualifiers());
4443  return Quals;
4444}
4445
4446inline Qualifiers QualType::getQualifiers() const {
4447  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4448  quals.addFastQualifiers(getLocalFastQualifiers());
4449  return quals;
4450}
4451
4452inline unsigned QualType::getCVRQualifiers() const {
4453  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4454  cvr |= getLocalCVRQualifiers();
4455  return cvr;
4456}
4457
4458inline QualType QualType::getCanonicalType() const {
4459  QualType canon = getCommonPtr()->CanonicalType;
4460  return canon.withFastQualifiers(getLocalFastQualifiers());
4461}
4462
4463inline bool QualType::isCanonical() const {
4464  return getTypePtr()->isCanonicalUnqualified();
4465}
4466
4467inline bool QualType::isCanonicalAsParam() const {
4468  if (!isCanonical()) return false;
4469  if (hasLocalQualifiers()) return false;
4470
4471  const Type *T = getTypePtr();
4472  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4473    return false;
4474
4475  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4476}
4477
4478inline bool QualType::isConstQualified() const {
4479  return isLocalConstQualified() ||
4480         getCommonPtr()->CanonicalType.isLocalConstQualified();
4481}
4482
4483inline bool QualType::isRestrictQualified() const {
4484  return isLocalRestrictQualified() ||
4485         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4486}
4487
4488
4489inline bool QualType::isVolatileQualified() const {
4490  return isLocalVolatileQualified() ||
4491         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4492}
4493
4494inline bool QualType::hasQualifiers() const {
4495  return hasLocalQualifiers() ||
4496         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4497}
4498
4499inline QualType QualType::getUnqualifiedType() const {
4500  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4501    return QualType(getTypePtr(), 0);
4502
4503  return QualType(getSplitUnqualifiedTypeImpl(*this).first, 0);
4504}
4505
4506inline SplitQualType QualType::getSplitUnqualifiedType() const {
4507  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4508    return split();
4509
4510  return getSplitUnqualifiedTypeImpl(*this);
4511}
4512
4513inline void QualType::removeLocalConst() {
4514  removeLocalFastQualifiers(Qualifiers::Const);
4515}
4516
4517inline void QualType::removeLocalRestrict() {
4518  removeLocalFastQualifiers(Qualifiers::Restrict);
4519}
4520
4521inline void QualType::removeLocalVolatile() {
4522  removeLocalFastQualifiers(Qualifiers::Volatile);
4523}
4524
4525inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4526  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4527  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4528
4529  // Fast path: we don't need to touch the slow qualifiers.
4530  removeLocalFastQualifiers(Mask);
4531}
4532
4533/// getAddressSpace - Return the address space of this type.
4534inline unsigned QualType::getAddressSpace() const {
4535  return getQualifiers().getAddressSpace();
4536}
4537
4538/// getObjCGCAttr - Return the gc attribute of this type.
4539inline Qualifiers::GC QualType::getObjCGCAttr() const {
4540  return getQualifiers().getObjCGCAttr();
4541}
4542
4543inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4544  if (const PointerType *PT = t.getAs<PointerType>()) {
4545    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4546      return FT->getExtInfo();
4547  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4548    return FT->getExtInfo();
4549
4550  return FunctionType::ExtInfo();
4551}
4552
4553inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4554  return getFunctionExtInfo(*t);
4555}
4556
4557/// isMoreQualifiedThan - Determine whether this type is more
4558/// qualified than the Other type. For example, "const volatile int"
4559/// is more qualified than "const int", "volatile int", and
4560/// "int". However, it is not more qualified than "const volatile
4561/// int".
4562inline bool QualType::isMoreQualifiedThan(QualType other) const {
4563  Qualifiers myQuals = getQualifiers();
4564  Qualifiers otherQuals = other.getQualifiers();
4565  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4566}
4567
4568/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4569/// as qualified as the Other type. For example, "const volatile
4570/// int" is at least as qualified as "const int", "volatile int",
4571/// "int", and "const volatile int".
4572inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4573  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4574}
4575
4576/// getNonReferenceType - If Type is a reference type (e.g., const
4577/// int&), returns the type that the reference refers to ("const
4578/// int"). Otherwise, returns the type itself. This routine is used
4579/// throughout Sema to implement C++ 5p6:
4580///
4581///   If an expression initially has the type "reference to T" (8.3.2,
4582///   8.5.3), the type is adjusted to "T" prior to any further
4583///   analysis, the expression designates the object or function
4584///   denoted by the reference, and the expression is an lvalue.
4585inline QualType QualType::getNonReferenceType() const {
4586  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4587    return RefType->getPointeeType();
4588  else
4589    return *this;
4590}
4591
4592inline bool QualType::isCForbiddenLValueType() const {
4593  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
4594          getTypePtr()->isFunctionType());
4595}
4596
4597/// \brief Tests whether the type is categorized as a fundamental type.
4598///
4599/// \returns True for types specified in C++0x [basic.fundamental].
4600inline bool Type::isFundamentalType() const {
4601  return isVoidType() ||
4602         // FIXME: It's really annoying that we don't have an
4603         // 'isArithmeticType()' which agrees with the standard definition.
4604         (isArithmeticType() && !isEnumeralType());
4605}
4606
4607/// \brief Tests whether the type is categorized as a compound type.
4608///
4609/// \returns True for types specified in C++0x [basic.compound].
4610inline bool Type::isCompoundType() const {
4611  // C++0x [basic.compound]p1:
4612  //   Compound types can be constructed in the following ways:
4613  //    -- arrays of objects of a given type [...];
4614  return isArrayType() ||
4615  //    -- functions, which have parameters of given types [...];
4616         isFunctionType() ||
4617  //    -- pointers to void or objects or functions [...];
4618         isPointerType() ||
4619  //    -- references to objects or functions of a given type. [...]
4620         isReferenceType() ||
4621  //    -- classes containing a sequence of objects of various types, [...];
4622         isRecordType() ||
4623  //    -- unions, which ar classes capable of containing objects of different types at different times;
4624         isUnionType() ||
4625  //    -- enumerations, which comprise a set of named constant values. [...];
4626         isEnumeralType() ||
4627  //    -- pointers to non-static class members, [...].
4628         isMemberPointerType();
4629}
4630
4631inline bool Type::isFunctionType() const {
4632  return isa<FunctionType>(CanonicalType);
4633}
4634inline bool Type::isPointerType() const {
4635  return isa<PointerType>(CanonicalType);
4636}
4637inline bool Type::isAnyPointerType() const {
4638  return isPointerType() || isObjCObjectPointerType();
4639}
4640inline bool Type::isBlockPointerType() const {
4641  return isa<BlockPointerType>(CanonicalType);
4642}
4643inline bool Type::isReferenceType() const {
4644  return isa<ReferenceType>(CanonicalType);
4645}
4646inline bool Type::isLValueReferenceType() const {
4647  return isa<LValueReferenceType>(CanonicalType);
4648}
4649inline bool Type::isRValueReferenceType() const {
4650  return isa<RValueReferenceType>(CanonicalType);
4651}
4652inline bool Type::isFunctionPointerType() const {
4653  if (const PointerType *T = getAs<PointerType>())
4654    return T->getPointeeType()->isFunctionType();
4655  else
4656    return false;
4657}
4658inline bool Type::isMemberPointerType() const {
4659  return isa<MemberPointerType>(CanonicalType);
4660}
4661inline bool Type::isMemberFunctionPointerType() const {
4662  if (const MemberPointerType* T = getAs<MemberPointerType>())
4663    return T->isMemberFunctionPointer();
4664  else
4665    return false;
4666}
4667inline bool Type::isMemberDataPointerType() const {
4668  if (const MemberPointerType* T = getAs<MemberPointerType>())
4669    return T->isMemberDataPointer();
4670  else
4671    return false;
4672}
4673inline bool Type::isArrayType() const {
4674  return isa<ArrayType>(CanonicalType);
4675}
4676inline bool Type::isConstantArrayType() const {
4677  return isa<ConstantArrayType>(CanonicalType);
4678}
4679inline bool Type::isIncompleteArrayType() const {
4680  return isa<IncompleteArrayType>(CanonicalType);
4681}
4682inline bool Type::isVariableArrayType() const {
4683  return isa<VariableArrayType>(CanonicalType);
4684}
4685inline bool Type::isDependentSizedArrayType() const {
4686  return isa<DependentSizedArrayType>(CanonicalType);
4687}
4688inline bool Type::isBuiltinType() const {
4689  return isa<BuiltinType>(CanonicalType);
4690}
4691inline bool Type::isRecordType() const {
4692  return isa<RecordType>(CanonicalType);
4693}
4694inline bool Type::isEnumeralType() const {
4695  return isa<EnumType>(CanonicalType);
4696}
4697inline bool Type::isAnyComplexType() const {
4698  return isa<ComplexType>(CanonicalType);
4699}
4700inline bool Type::isVectorType() const {
4701  return isa<VectorType>(CanonicalType);
4702}
4703inline bool Type::isExtVectorType() const {
4704  return isa<ExtVectorType>(CanonicalType);
4705}
4706inline bool Type::isObjCObjectPointerType() const {
4707  return isa<ObjCObjectPointerType>(CanonicalType);
4708}
4709inline bool Type::isObjCObjectType() const {
4710  return isa<ObjCObjectType>(CanonicalType);
4711}
4712inline bool Type::isObjCObjectOrInterfaceType() const {
4713  return isa<ObjCInterfaceType>(CanonicalType) ||
4714    isa<ObjCObjectType>(CanonicalType);
4715}
4716inline bool Type::isAtomicType() const {
4717  return isa<AtomicType>(CanonicalType);
4718}
4719
4720inline bool Type::isObjCQualifiedIdType() const {
4721  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4722    return OPT->isObjCQualifiedIdType();
4723  return false;
4724}
4725inline bool Type::isObjCQualifiedClassType() const {
4726  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4727    return OPT->isObjCQualifiedClassType();
4728  return false;
4729}
4730inline bool Type::isObjCIdType() const {
4731  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4732    return OPT->isObjCIdType();
4733  return false;
4734}
4735inline bool Type::isObjCClassType() const {
4736  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4737    return OPT->isObjCClassType();
4738  return false;
4739}
4740inline bool Type::isObjCSelType() const {
4741  if (const PointerType *OPT = getAs<PointerType>())
4742    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4743  return false;
4744}
4745inline bool Type::isObjCBuiltinType() const {
4746  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4747}
4748inline bool Type::isTemplateTypeParmType() const {
4749  return isa<TemplateTypeParmType>(CanonicalType);
4750}
4751
4752inline bool Type::isSpecificBuiltinType(unsigned K) const {
4753  if (const BuiltinType *BT = getAs<BuiltinType>())
4754    if (BT->getKind() == (BuiltinType::Kind) K)
4755      return true;
4756  return false;
4757}
4758
4759inline bool Type::isPlaceholderType() const {
4760  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4761    return BT->isPlaceholderType();
4762  return false;
4763}
4764
4765inline const BuiltinType *Type::getAsPlaceholderType() const {
4766  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4767    if (BT->isPlaceholderType())
4768      return BT;
4769  return 0;
4770}
4771
4772inline bool Type::isSpecificPlaceholderType(unsigned K) const {
4773  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4774    return (BT->getKind() == (BuiltinType::Kind) K);
4775  return false;
4776}
4777
4778/// \brief Determines whether this is a type for which one can define
4779/// an overloaded operator.
4780inline bool Type::isOverloadableType() const {
4781  return isDependentType() || isRecordType() || isEnumeralType();
4782}
4783
4784/// \brief Determines whether this type can decay to a pointer type.
4785inline bool Type::canDecayToPointerType() const {
4786  return isFunctionType() || isArrayType();
4787}
4788
4789inline bool Type::hasPointerRepresentation() const {
4790  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
4791          isObjCObjectPointerType() || isNullPtrType());
4792}
4793
4794inline bool Type::hasObjCPointerRepresentation() const {
4795  return isObjCObjectPointerType();
4796}
4797
4798inline const Type *Type::getBaseElementTypeUnsafe() const {
4799  const Type *type = this;
4800  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
4801    type = arrayType->getElementType().getTypePtr();
4802  return type;
4803}
4804
4805/// Insertion operator for diagnostics.  This allows sending QualType's into a
4806/// diagnostic with <<.
4807inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
4808                                           QualType T) {
4809  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4810                  DiagnosticsEngine::ak_qualtype);
4811  return DB;
4812}
4813
4814/// Insertion operator for partial diagnostics.  This allows sending QualType's
4815/// into a diagnostic with <<.
4816inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
4817                                           QualType T) {
4818  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4819                  DiagnosticsEngine::ak_qualtype);
4820  return PD;
4821}
4822
4823// Helper class template that is used by Type::getAs to ensure that one does
4824// not try to look through a qualified type to get to an array type.
4825template<typename T,
4826         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
4827                             llvm::is_base_of<ArrayType, T>::value)>
4828struct ArrayType_cannot_be_used_with_getAs { };
4829
4830template<typename T>
4831struct ArrayType_cannot_be_used_with_getAs<T, true>;
4832
4833/// Member-template getAs<specific type>'.
4834template <typename T> const T *Type::getAs() const {
4835  ArrayType_cannot_be_used_with_getAs<T> at;
4836  (void)at;
4837
4838  // If this is directly a T type, return it.
4839  if (const T *Ty = dyn_cast<T>(this))
4840    return Ty;
4841
4842  // If the canonical form of this type isn't the right kind, reject it.
4843  if (!isa<T>(CanonicalType))
4844    return 0;
4845
4846  // If this is a typedef for the type, strip the typedef off without
4847  // losing all typedef information.
4848  return cast<T>(getUnqualifiedDesugaredType());
4849}
4850
4851inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
4852  // If this is directly an array type, return it.
4853  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
4854    return arr;
4855
4856  // If the canonical form of this type isn't the right kind, reject it.
4857  if (!isa<ArrayType>(CanonicalType))
4858    return 0;
4859
4860  // If this is a typedef for the type, strip the typedef off without
4861  // losing all typedef information.
4862  return cast<ArrayType>(getUnqualifiedDesugaredType());
4863}
4864
4865template <typename T> const T *Type::castAs() const {
4866  ArrayType_cannot_be_used_with_getAs<T> at;
4867  (void) at;
4868
4869  assert(isa<T>(CanonicalType));
4870  if (const T *ty = dyn_cast<T>(this)) return ty;
4871  return cast<T>(getUnqualifiedDesugaredType());
4872}
4873
4874inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
4875  assert(isa<ArrayType>(CanonicalType));
4876  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
4877  return cast<ArrayType>(getUnqualifiedDesugaredType());
4878}
4879
4880}  // end namespace clang
4881
4882#endif
4883