Type.h revision 6ae2325ec3b27aae178267de58fe35acf2027b91
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/type_traits.h"
25#include "llvm/ADT/APSInt.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/ADT/PointerIntPair.h"
28#include "llvm/ADT/PointerUnion.h"
29
30using llvm::isa;
31using llvm::cast;
32using llvm::cast_or_null;
33using llvm::dyn_cast;
34using llvm::dyn_cast_or_null;
35namespace clang {
36  enum {
37    TypeAlignmentInBits = 3,
38    TypeAlignment = 1 << TypeAlignmentInBits
39  };
40  class Type;
41  class ExtQuals;
42  class QualType;
43}
44
45namespace llvm {
46  template <typename T>
47  class PointerLikeTypeTraits;
48  template<>
49  class PointerLikeTypeTraits< ::clang::Type*> {
50  public:
51    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
52    static inline ::clang::Type *getFromVoidPointer(void *P) {
53      return static_cast< ::clang::Type*>(P);
54    }
55    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
56  };
57  template<>
58  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
59  public:
60    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
61    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
62      return static_cast< ::clang::ExtQuals*>(P);
63    }
64    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
65  };
66
67  template <>
68  struct isPodLike<clang::QualType> { static const bool value = true; };
69}
70
71namespace clang {
72  class ASTContext;
73  class TypedefDecl;
74  class TemplateDecl;
75  class TemplateTypeParmDecl;
76  class NonTypeTemplateParmDecl;
77  class TemplateTemplateParmDecl;
78  class TagDecl;
79  class RecordDecl;
80  class CXXRecordDecl;
81  class EnumDecl;
82  class FieldDecl;
83  class ObjCInterfaceDecl;
84  class ObjCProtocolDecl;
85  class ObjCMethodDecl;
86  class UnresolvedUsingTypenameDecl;
87  class Expr;
88  class Stmt;
89  class SourceLocation;
90  class StmtIteratorBase;
91  class TemplateArgument;
92  class TemplateArgumentLoc;
93  class TemplateArgumentListInfo;
94  class Type;
95  class ElaboratedType;
96  struct PrintingPolicy;
97
98  template <typename> class CanQual;
99  typedef CanQual<Type> CanQualType;
100
101  // Provide forward declarations for all of the *Type classes
102#define TYPE(Class, Base) class Class##Type;
103#include "clang/AST/TypeNodes.def"
104
105/// Qualifiers - The collection of all-type qualifiers we support.
106/// Clang supports five independent qualifiers:
107/// * C99: const, volatile, and restrict
108/// * Embedded C (TR18037): address spaces
109/// * Objective C: the GC attributes (none, weak, or strong)
110class Qualifiers {
111public:
112  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
113    Const    = 0x1,
114    Restrict = 0x2,
115    Volatile = 0x4,
116    CVRMask = Const | Volatile | Restrict
117  };
118
119  enum GC {
120    GCNone = 0,
121    Weak,
122    Strong
123  };
124
125  enum {
126    /// The maximum supported address space number.
127    /// 24 bits should be enough for anyone.
128    MaxAddressSpace = 0xffffffu,
129
130    /// The width of the "fast" qualifier mask.
131    FastWidth = 2,
132
133    /// The fast qualifier mask.
134    FastMask = (1 << FastWidth) - 1
135  };
136
137  Qualifiers() : Mask(0) {}
138
139  static Qualifiers fromFastMask(unsigned Mask) {
140    Qualifiers Qs;
141    Qs.addFastQualifiers(Mask);
142    return Qs;
143  }
144
145  static Qualifiers fromCVRMask(unsigned CVR) {
146    Qualifiers Qs;
147    Qs.addCVRQualifiers(CVR);
148    return Qs;
149  }
150
151  // Deserialize qualifiers from an opaque representation.
152  static Qualifiers fromOpaqueValue(unsigned opaque) {
153    Qualifiers Qs;
154    Qs.Mask = opaque;
155    return Qs;
156  }
157
158  // Serialize these qualifiers into an opaque representation.
159  unsigned getAsOpaqueValue() const {
160    return Mask;
161  }
162
163  bool hasConst() const { return Mask & Const; }
164  void setConst(bool flag) {
165    Mask = (Mask & ~Const) | (flag ? Const : 0);
166  }
167  void removeConst() { Mask &= ~Const; }
168  void addConst() { Mask |= Const; }
169
170  bool hasVolatile() const { return Mask & Volatile; }
171  void setVolatile(bool flag) {
172    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
173  }
174  void removeVolatile() { Mask &= ~Volatile; }
175  void addVolatile() { Mask |= Volatile; }
176
177  bool hasRestrict() const { return Mask & Restrict; }
178  void setRestrict(bool flag) {
179    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
180  }
181  void removeRestrict() { Mask &= ~Restrict; }
182  void addRestrict() { Mask |= Restrict; }
183
184  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
185  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
186  void setCVRQualifiers(unsigned mask) {
187    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
188    Mask = (Mask & ~CVRMask) | mask;
189  }
190  void removeCVRQualifiers(unsigned mask) {
191    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
192    Mask &= ~mask;
193  }
194  void removeCVRQualifiers() {
195    removeCVRQualifiers(CVRMask);
196  }
197  void addCVRQualifiers(unsigned mask) {
198    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
199    Mask |= mask;
200  }
201
202  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
203  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
204  void setObjCGCAttr(GC type) {
205    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
206  }
207  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
208  void addObjCGCAttr(GC type) {
209    assert(type);
210    setObjCGCAttr(type);
211  }
212
213  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
214  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
215  void setAddressSpace(unsigned space) {
216    assert(space <= MaxAddressSpace);
217    Mask = (Mask & ~AddressSpaceMask)
218         | (((uint32_t) space) << AddressSpaceShift);
219  }
220  void removeAddressSpace() { setAddressSpace(0); }
221  void addAddressSpace(unsigned space) {
222    assert(space);
223    setAddressSpace(space);
224  }
225
226  // Fast qualifiers are those that can be allocated directly
227  // on a QualType object.
228  bool hasFastQualifiers() const { return getFastQualifiers(); }
229  unsigned getFastQualifiers() const { return Mask & FastMask; }
230  void setFastQualifiers(unsigned mask) {
231    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
232    Mask = (Mask & ~FastMask) | mask;
233  }
234  void removeFastQualifiers(unsigned mask) {
235    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
236    Mask &= ~mask;
237  }
238  void removeFastQualifiers() {
239    removeFastQualifiers(FastMask);
240  }
241  void addFastQualifiers(unsigned mask) {
242    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
243    Mask |= mask;
244  }
245
246  /// hasNonFastQualifiers - Return true if the set contains any
247  /// qualifiers which require an ExtQuals node to be allocated.
248  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
249  Qualifiers getNonFastQualifiers() const {
250    Qualifiers Quals = *this;
251    Quals.setFastQualifiers(0);
252    return Quals;
253  }
254
255  /// hasQualifiers - Return true if the set contains any qualifiers.
256  bool hasQualifiers() const { return Mask; }
257  bool empty() const { return !Mask; }
258
259  /// \brief Add the qualifiers from the given set to this set.
260  void addQualifiers(Qualifiers Q) {
261    // If the other set doesn't have any non-boolean qualifiers, just
262    // bit-or it in.
263    if (!(Q.Mask & ~CVRMask))
264      Mask |= Q.Mask;
265    else {
266      Mask |= (Q.Mask & CVRMask);
267      if (Q.hasAddressSpace())
268        addAddressSpace(Q.getAddressSpace());
269      if (Q.hasObjCGCAttr())
270        addObjCGCAttr(Q.getObjCGCAttr());
271    }
272  }
273
274  bool isSupersetOf(Qualifiers Other) const;
275
276  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
277  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
278
279  operator bool() const { return hasQualifiers(); }
280
281  Qualifiers &operator+=(Qualifiers R) {
282    addQualifiers(R);
283    return *this;
284  }
285
286  // Union two qualifier sets.  If an enumerated qualifier appears
287  // in both sets, use the one from the right.
288  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
289    L += R;
290    return L;
291  }
292
293  std::string getAsString() const;
294  std::string getAsString(const PrintingPolicy &Policy) const {
295    std::string Buffer;
296    getAsStringInternal(Buffer, Policy);
297    return Buffer;
298  }
299  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
300
301  void Profile(llvm::FoldingSetNodeID &ID) const {
302    ID.AddInteger(Mask);
303  }
304
305private:
306
307  // bits:     |0 1 2|3 .. 4|5  ..  31|
308  //           |C R V|GCAttr|AddrSpace|
309  uint32_t Mask;
310
311  static const uint32_t GCAttrMask = 0x18;
312  static const uint32_t GCAttrShift = 3;
313  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
314  static const uint32_t AddressSpaceShift = 5;
315};
316
317
318/// ExtQuals - We can encode up to three bits in the low bits of a
319/// type pointer, but there are many more type qualifiers that we want
320/// to be able to apply to an arbitrary type.  Therefore we have this
321/// struct, intended to be heap-allocated and used by QualType to
322/// store qualifiers.
323///
324/// The current design tags the 'const' and 'restrict' qualifiers in
325/// two low bits on the QualType pointer; a third bit records whether
326/// the pointer is an ExtQuals node.  'const' was chosen because it is
327/// orders of magnitude more common than the other two qualifiers, in
328/// both library and user code.  It's relatively rare to see
329/// 'restrict' in user code, but many standard C headers are saturated
330/// with 'restrict' declarations, so that representing them efficiently
331/// is a critical goal of this representation.
332class ExtQuals : public llvm::FoldingSetNode {
333  // NOTE: changing the fast qualifiers should be straightforward as
334  // long as you don't make 'const' non-fast.
335  // 1. Qualifiers:
336  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
337  //       Fast qualifiers must occupy the low-order bits.
338  //    b) Update Qualifiers::FastWidth and FastMask.
339  // 2. QualType:
340  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
341  //    b) Update remove{Volatile,Restrict}, defined near the end of
342  //       this header.
343  // 3. ASTContext:
344  //    a) Update get{Volatile,Restrict}Type.
345
346  /// Context - the context to which this set belongs.  We save this
347  /// here so that QualifierCollector can use it to reapply extended
348  /// qualifiers to an arbitrary type without requiring a context to
349  /// be pushed through every single API dealing with qualifiers.
350  ASTContext& Context;
351
352  /// BaseType - the underlying type that this qualifies
353  const Type *BaseType;
354
355  /// Quals - the immutable set of qualifiers applied by this
356  /// node;  always contains extended qualifiers.
357  Qualifiers Quals;
358
359public:
360  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
361    : Context(Context), BaseType(Base), Quals(Quals)
362  {
363    assert(Quals.hasNonFastQualifiers()
364           && "ExtQuals created with no fast qualifiers");
365    assert(!Quals.hasFastQualifiers()
366           && "ExtQuals created with fast qualifiers");
367  }
368
369  Qualifiers getQualifiers() const { return Quals; }
370
371  bool hasVolatile() const { return Quals.hasVolatile(); }
372
373  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
374  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
375
376  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
377  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
378
379  const Type *getBaseType() const { return BaseType; }
380
381  ASTContext &getContext() const { return Context; }
382
383public:
384  void Profile(llvm::FoldingSetNodeID &ID) const {
385    Profile(ID, getBaseType(), Quals);
386  }
387  static void Profile(llvm::FoldingSetNodeID &ID,
388                      const Type *BaseType,
389                      Qualifiers Quals) {
390    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
391    ID.AddPointer(BaseType);
392    Quals.Profile(ID);
393  }
394};
395
396/// CallingConv - Specifies the calling convention that a function uses.
397enum CallingConv {
398  CC_Default,
399  CC_C,           // __attribute__((cdecl))
400  CC_X86StdCall,  // __attribute__((stdcall))
401  CC_X86FastCall, // __attribute__((fastcall))
402  CC_X86ThisCall  // __attribute__((thiscall))
403};
404
405
406/// QualType - For efficiency, we don't store CV-qualified types as nodes on
407/// their own: instead each reference to a type stores the qualifiers.  This
408/// greatly reduces the number of nodes we need to allocate for types (for
409/// example we only need one for 'int', 'const int', 'volatile int',
410/// 'const volatile int', etc).
411///
412/// As an added efficiency bonus, instead of making this a pair, we
413/// just store the two bits we care about in the low bits of the
414/// pointer.  To handle the packing/unpacking, we make QualType be a
415/// simple wrapper class that acts like a smart pointer.  A third bit
416/// indicates whether there are extended qualifiers present, in which
417/// case the pointer points to a special structure.
418class QualType {
419  // Thankfully, these are efficiently composable.
420  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
421                       Qualifiers::FastWidth> Value;
422
423  const ExtQuals *getExtQualsUnsafe() const {
424    return Value.getPointer().get<const ExtQuals*>();
425  }
426
427  const Type *getTypePtrUnsafe() const {
428    return Value.getPointer().get<const Type*>();
429  }
430
431  QualType getUnqualifiedTypeSlow() const;
432
433  friend class QualifierCollector;
434public:
435  QualType() {}
436
437  QualType(const Type *Ptr, unsigned Quals)
438    : Value(Ptr, Quals) {}
439  QualType(const ExtQuals *Ptr, unsigned Quals)
440    : Value(Ptr, Quals) {}
441
442  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
443  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
444
445  /// Retrieves a pointer to the underlying (unqualified) type.
446  /// This should really return a const Type, but it's not worth
447  /// changing all the users right now.
448  Type *getTypePtr() const {
449    if (hasLocalNonFastQualifiers())
450      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
451    return const_cast<Type*>(getTypePtrUnsafe());
452  }
453
454  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
455  static QualType getFromOpaquePtr(void *Ptr) {
456    QualType T;
457    T.Value.setFromOpaqueValue(Ptr);
458    return T;
459  }
460
461  Type &operator*() const {
462    return *getTypePtr();
463  }
464
465  Type *operator->() const {
466    return getTypePtr();
467  }
468
469  bool isCanonical() const;
470  bool isCanonicalAsParam() const;
471
472  /// isNull - Return true if this QualType doesn't point to a type yet.
473  bool isNull() const {
474    return Value.getPointer().isNull();
475  }
476
477  /// \brief Determine whether this particular QualType instance has the
478  /// "const" qualifier set, without looking through typedefs that may have
479  /// added "const" at a different level.
480  bool isLocalConstQualified() const {
481    return (getLocalFastQualifiers() & Qualifiers::Const);
482  }
483
484  /// \brief Determine whether this type is const-qualified.
485  bool isConstQualified() const;
486
487  /// \brief Determine whether this particular QualType instance has the
488  /// "restrict" qualifier set, without looking through typedefs that may have
489  /// added "restrict" at a different level.
490  bool isLocalRestrictQualified() const {
491    return (getLocalFastQualifiers() & Qualifiers::Restrict);
492  }
493
494  /// \brief Determine whether this type is restrict-qualified.
495  bool isRestrictQualified() const;
496
497  /// \brief Determine whether this particular QualType instance has the
498  /// "volatile" qualifier set, without looking through typedefs that may have
499  /// added "volatile" at a different level.
500  bool isLocalVolatileQualified() const {
501    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
502  }
503
504  /// \brief Determine whether this type is volatile-qualified.
505  bool isVolatileQualified() const;
506
507  /// \brief Determine whether this particular QualType instance has any
508  /// qualifiers, without looking through any typedefs that might add
509  /// qualifiers at a different level.
510  bool hasLocalQualifiers() const {
511    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
512  }
513
514  /// \brief Determine whether this type has any qualifiers.
515  bool hasQualifiers() const;
516
517  /// \brief Determine whether this particular QualType instance has any
518  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
519  /// instance.
520  bool hasLocalNonFastQualifiers() const {
521    return Value.getPointer().is<const ExtQuals*>();
522  }
523
524  /// \brief Retrieve the set of qualifiers local to this particular QualType
525  /// instance, not including any qualifiers acquired through typedefs or
526  /// other sugar.
527  Qualifiers getLocalQualifiers() const {
528    Qualifiers Quals;
529    if (hasLocalNonFastQualifiers())
530      Quals = getExtQualsUnsafe()->getQualifiers();
531    Quals.addFastQualifiers(getLocalFastQualifiers());
532    return Quals;
533  }
534
535  /// \brief Retrieve the set of qualifiers applied to this type.
536  Qualifiers getQualifiers() const;
537
538  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
539  /// local to this particular QualType instance, not including any qualifiers
540  /// acquired through typedefs or other sugar.
541  unsigned getLocalCVRQualifiers() const {
542    unsigned CVR = getLocalFastQualifiers();
543    if (isLocalVolatileQualified())
544      CVR |= Qualifiers::Volatile;
545    return CVR;
546  }
547
548  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
549  /// applied to this type.
550  unsigned getCVRQualifiers() const;
551
552  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
553  /// applied to this type, looking through any number of unqualified array
554  /// types to their element types' qualifiers.
555  unsigned getCVRQualifiersThroughArrayTypes() const;
556
557  bool isConstant(ASTContext& Ctx) const {
558    return QualType::isConstant(*this, Ctx);
559  }
560
561  // Don't promise in the API that anything besides 'const' can be
562  // easily added.
563
564  /// addConst - add the specified type qualifier to this QualType.
565  void addConst() {
566    addFastQualifiers(Qualifiers::Const);
567  }
568  QualType withConst() const {
569    return withFastQualifiers(Qualifiers::Const);
570  }
571
572  void addFastQualifiers(unsigned TQs) {
573    assert(!(TQs & ~Qualifiers::FastMask)
574           && "non-fast qualifier bits set in mask!");
575    Value.setInt(Value.getInt() | TQs);
576  }
577
578  // FIXME: The remove* functions are semantically broken, because they might
579  // not remove a qualifier stored on a typedef. Most of the with* functions
580  // have the same problem.
581  void removeConst();
582  void removeVolatile();
583  void removeRestrict();
584  void removeCVRQualifiers(unsigned Mask);
585
586  void removeFastQualifiers() { Value.setInt(0); }
587  void removeFastQualifiers(unsigned Mask) {
588    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
589    Value.setInt(Value.getInt() & ~Mask);
590  }
591
592  // Creates a type with the given qualifiers in addition to any
593  // qualifiers already on this type.
594  QualType withFastQualifiers(unsigned TQs) const {
595    QualType T = *this;
596    T.addFastQualifiers(TQs);
597    return T;
598  }
599
600  // Creates a type with exactly the given fast qualifiers, removing
601  // any existing fast qualifiers.
602  QualType withExactFastQualifiers(unsigned TQs) const {
603    return withoutFastQualifiers().withFastQualifiers(TQs);
604  }
605
606  // Removes fast qualifiers, but leaves any extended qualifiers in place.
607  QualType withoutFastQualifiers() const {
608    QualType T = *this;
609    T.removeFastQualifiers();
610    return T;
611  }
612
613  /// \brief Return this type with all of the instance-specific qualifiers
614  /// removed, but without removing any qualifiers that may have been applied
615  /// through typedefs.
616  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
617
618  /// \brief Return the unqualified form of the given type, which might be
619  /// desugared to eliminate qualifiers introduced via typedefs.
620  QualType getUnqualifiedType() const {
621    QualType T = getLocalUnqualifiedType();
622    if (!T.hasQualifiers())
623      return T;
624
625    return getUnqualifiedTypeSlow();
626  }
627
628  bool isMoreQualifiedThan(QualType Other) const;
629  bool isAtLeastAsQualifiedAs(QualType Other) const;
630  QualType getNonReferenceType() const;
631
632  /// \brief Determine the type of a (typically non-lvalue) expression with the
633  /// specified result type.
634  ///
635  /// This routine should be used for expressions for which the return type is
636  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
637  /// an lvalue. It removes a top-level reference (since there are no
638  /// expressions of reference type) and deletes top-level cvr-qualifiers
639  /// from non-class types (in C++) or all types (in C).
640  QualType getNonLValueExprType(ASTContext &Context) const;
641
642  /// getDesugaredType - Return the specified type with any "sugar" removed from
643  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
644  /// the type is already concrete, it returns it unmodified.  This is similar
645  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
646  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
647  /// concrete.
648  ///
649  /// Qualifiers are left in place.
650  QualType getDesugaredType() const {
651    return QualType::getDesugaredType(*this);
652  }
653
654  /// operator==/!= - Indicate whether the specified types and qualifiers are
655  /// identical.
656  friend bool operator==(const QualType &LHS, const QualType &RHS) {
657    return LHS.Value == RHS.Value;
658  }
659  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
660    return LHS.Value != RHS.Value;
661  }
662  std::string getAsString() const;
663
664  std::string getAsString(const PrintingPolicy &Policy) const {
665    std::string S;
666    getAsStringInternal(S, Policy);
667    return S;
668  }
669  void getAsStringInternal(std::string &Str,
670                           const PrintingPolicy &Policy) const;
671
672  void dump(const char *s) const;
673  void dump() const;
674
675  void Profile(llvm::FoldingSetNodeID &ID) const {
676    ID.AddPointer(getAsOpaquePtr());
677  }
678
679  /// getAddressSpace - Return the address space of this type.
680  inline unsigned getAddressSpace() const;
681
682  /// GCAttrTypesAttr - Returns gc attribute of this type.
683  inline Qualifiers::GC getObjCGCAttr() const;
684
685  /// isObjCGCWeak true when Type is objc's weak.
686  bool isObjCGCWeak() const {
687    return getObjCGCAttr() == Qualifiers::Weak;
688  }
689
690  /// isObjCGCStrong true when Type is objc's strong.
691  bool isObjCGCStrong() const {
692    return getObjCGCAttr() == Qualifiers::Strong;
693  }
694
695private:
696  // These methods are implemented in a separate translation unit;
697  // "static"-ize them to avoid creating temporary QualTypes in the
698  // caller.
699  static bool isConstant(QualType T, ASTContext& Ctx);
700  static QualType getDesugaredType(QualType T);
701};
702
703} // end clang.
704
705namespace llvm {
706/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
707/// to a specific Type class.
708template<> struct simplify_type<const ::clang::QualType> {
709  typedef ::clang::Type* SimpleType;
710  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
711    return Val.getTypePtr();
712  }
713};
714template<> struct simplify_type< ::clang::QualType>
715  : public simplify_type<const ::clang::QualType> {};
716
717// Teach SmallPtrSet that QualType is "basically a pointer".
718template<>
719class PointerLikeTypeTraits<clang::QualType> {
720public:
721  static inline void *getAsVoidPointer(clang::QualType P) {
722    return P.getAsOpaquePtr();
723  }
724  static inline clang::QualType getFromVoidPointer(void *P) {
725    return clang::QualType::getFromOpaquePtr(P);
726  }
727  // Various qualifiers go in low bits.
728  enum { NumLowBitsAvailable = 0 };
729};
730
731} // end namespace llvm
732
733namespace clang {
734
735/// Type - This is the base class of the type hierarchy.  A central concept
736/// with types is that each type always has a canonical type.  A canonical type
737/// is the type with any typedef names stripped out of it or the types it
738/// references.  For example, consider:
739///
740///  typedef int  foo;
741///  typedef foo* bar;
742///    'int *'    'foo *'    'bar'
743///
744/// There will be a Type object created for 'int'.  Since int is canonical, its
745/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
746/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
747/// there is a PointerType that represents 'int*', which, like 'int', is
748/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
749/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
750/// is also 'int*'.
751///
752/// Non-canonical types are useful for emitting diagnostics, without losing
753/// information about typedefs being used.  Canonical types are useful for type
754/// comparisons (they allow by-pointer equality tests) and useful for reasoning
755/// about whether something has a particular form (e.g. is a function type),
756/// because they implicitly, recursively, strip all typedefs out of a type.
757///
758/// Types, once created, are immutable.
759///
760class Type {
761public:
762  enum TypeClass {
763#define TYPE(Class, Base) Class,
764#define LAST_TYPE(Class) TypeLast = Class,
765#define ABSTRACT_TYPE(Class, Base)
766#include "clang/AST/TypeNodes.def"
767    TagFirst = Record, TagLast = Enum
768  };
769
770private:
771  Type(const Type&);           // DO NOT IMPLEMENT.
772  void operator=(const Type&); // DO NOT IMPLEMENT.
773
774  QualType CanonicalType;
775
776  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
777  unsigned TC : 8;
778
779  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
780  /// Note that this should stay at the end of the ivars for Type so that
781  /// subclasses can pack their bitfields into the same word.
782  bool Dependent : 1;
783
784  /// \brief Whether the linkage of this type is already known.
785  mutable bool LinkageKnown : 1;
786
787  /// \brief Linkage of this type.
788  mutable unsigned CachedLinkage : 2;
789
790  /// \brief FromAST - Whether this type comes from an AST file.
791  mutable bool FromAST : 1;
792
793  /// \brief Set whether this type comes from an AST file.
794  void setFromAST(bool V = true) const {
795    FromAST = V;
796  }
797
798protected:
799  /// \brief Compute the linkage of this type.
800  virtual Linkage getLinkageImpl() const;
801
802  enum { BitsRemainingInType = 19 };
803
804  // silence VC++ warning C4355: 'this' : used in base member initializer list
805  Type *this_() { return this; }
806  Type(TypeClass tc, QualType Canonical, bool dependent)
807    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
808      TC(tc), Dependent(dependent), LinkageKnown(false),
809      CachedLinkage(NoLinkage), FromAST(false) {}
810  virtual ~Type();
811  friend class ASTContext;
812
813public:
814  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
815
816  /// \brief Whether this type comes from an AST file.
817  bool isFromAST() const { return FromAST; }
818
819  bool isCanonicalUnqualified() const {
820    return CanonicalType.getTypePtr() == this;
821  }
822
823  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
824  /// object types, function types, and incomplete types.
825
826  /// isIncompleteType - Return true if this is an incomplete type.
827  /// A type that can describe objects, but which lacks information needed to
828  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
829  /// routine will need to determine if the size is actually required.
830  bool isIncompleteType() const;
831
832  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
833  /// type, in other words, not a function type.
834  bool isIncompleteOrObjectType() const {
835    return !isFunctionType();
836  }
837
838  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
839  bool isPODType() const;
840
841  /// isLiteralType - Return true if this is a literal type
842  /// (C++0x [basic.types]p10)
843  bool isLiteralType() const;
844
845  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
846  /// types that have a non-constant expression. This does not include "[]".
847  bool isVariablyModifiedType() const;
848
849  /// Helper methods to distinguish type categories. All type predicates
850  /// operate on the canonical type, ignoring typedefs and qualifiers.
851
852  /// isBuiltinType - returns true if the type is a builtin type.
853  bool isBuiltinType() const;
854
855  /// isSpecificBuiltinType - Test for a particular builtin type.
856  bool isSpecificBuiltinType(unsigned K) const;
857
858  /// isIntegerType() does *not* include complex integers (a GCC extension).
859  /// isComplexIntegerType() can be used to test for complex integers.
860  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
861  bool isEnumeralType() const;
862  bool isBooleanType() const;
863  bool isCharType() const;
864  bool isWideCharType() const;
865  bool isAnyCharacterType() const;
866  bool isIntegralType(ASTContext &Ctx) const;
867
868  /// \brief Determine whether this type is an integral or enumeration type.
869  bool isIntegralOrEnumerationType() const;
870
871  /// Floating point categories.
872  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
873  /// isComplexType() does *not* include complex integers (a GCC extension).
874  /// isComplexIntegerType() can be used to test for complex integers.
875  bool isComplexType() const;      // C99 6.2.5p11 (complex)
876  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
877  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
878  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
879  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
880  bool isVoidType() const;         // C99 6.2.5p19
881  bool isDerivedType() const;      // C99 6.2.5p20
882  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
883  bool isAggregateType() const;
884
885  // Type Predicates: Check to see if this type is structurally the specified
886  // type, ignoring typedefs and qualifiers.
887  bool isFunctionType() const;
888  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
889  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
890  bool isPointerType() const;
891  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
892  bool isBlockPointerType() const;
893  bool isVoidPointerType() const;
894  bool isReferenceType() const;
895  bool isLValueReferenceType() const;
896  bool isRValueReferenceType() const;
897  bool isFunctionPointerType() const;
898  bool isMemberPointerType() const;
899  bool isMemberFunctionPointerType() const;
900  bool isMemberDataPointerType() const;
901  bool isArrayType() const;
902  bool isConstantArrayType() const;
903  bool isIncompleteArrayType() const;
904  bool isVariableArrayType() const;
905  bool isDependentSizedArrayType() const;
906  bool isRecordType() const;
907  bool isClassType() const;
908  bool isStructureType() const;
909  bool isStructureOrClassType() const;
910  bool isUnionType() const;
911  bool isComplexIntegerType() const;            // GCC _Complex integer type.
912  bool isVectorType() const;                    // GCC vector type.
913  bool isExtVectorType() const;                 // Extended vector type.
914  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
915  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
916  // for the common case.
917  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
918  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
919  bool isObjCQualifiedIdType() const;           // id<foo>
920  bool isObjCQualifiedClassType() const;        // Class<foo>
921  bool isObjCObjectOrInterfaceType() const;
922  bool isObjCIdType() const;                    // id
923  bool isObjCClassType() const;                 // Class
924  bool isObjCSelType() const;                 // Class
925  bool isObjCBuiltinType() const;               // 'id' or 'Class'
926  bool isTemplateTypeParmType() const;          // C++ template type parameter
927  bool isNullPtrType() const;                   // C++0x nullptr_t
928
929  /// isDependentType - Whether this type is a dependent type, meaning
930  /// that its definition somehow depends on a template parameter
931  /// (C++ [temp.dep.type]).
932  bool isDependentType() const { return Dependent; }
933  bool isOverloadableType() const;
934
935  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
936  bool isElaboratedTypeSpecifier() const;
937
938  /// hasPointerRepresentation - Whether this type is represented
939  /// natively as a pointer; this includes pointers, references, block
940  /// pointers, and Objective-C interface, qualified id, and qualified
941  /// interface types, as well as nullptr_t.
942  bool hasPointerRepresentation() const;
943
944  /// hasObjCPointerRepresentation - Whether this type can represent
945  /// an objective pointer type for the purpose of GC'ability
946  bool hasObjCPointerRepresentation() const;
947
948  /// \brief Determine whether this type has an integer representation
949  /// of some sort, e.g., it is an integer type or a vector.
950  bool hasIntegerRepresentation() const;
951
952  /// \brief Determine whether this type has an signed integer representation
953  /// of some sort, e.g., it is an signed integer type or a vector.
954  bool hasSignedIntegerRepresentation() const;
955
956  /// \brief Determine whether this type has an unsigned integer representation
957  /// of some sort, e.g., it is an unsigned integer type or a vector.
958  bool hasUnsignedIntegerRepresentation() const;
959
960  /// \brief Determine whether this type has a floating-point representation
961  /// of some sort, e.g., it is a floating-point type or a vector thereof.
962  bool hasFloatingRepresentation() const;
963
964  // Type Checking Functions: Check to see if this type is structurally the
965  // specified type, ignoring typedefs and qualifiers, and return a pointer to
966  // the best type we can.
967  const RecordType *getAsStructureType() const;
968  /// NOTE: getAs*ArrayType are methods on ASTContext.
969  const RecordType *getAsUnionType() const;
970  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
971  // The following is a convenience method that returns an ObjCObjectPointerType
972  // for object declared using an interface.
973  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
974  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
975  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
976  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
977
978  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
979  /// because the type is a RecordType or because it is the injected-class-name
980  /// type of a class template or class template partial specialization.
981  CXXRecordDecl *getAsCXXRecordDecl() const;
982
983  // Member-template getAs<specific type>'.  Look through sugar for
984  // an instance of <specific type>.   This scheme will eventually
985  // replace the specific getAsXXXX methods above.
986  //
987  // There are some specializations of this member template listed
988  // immediately following this class.
989  template <typename T> const T *getAs() const;
990
991  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
992  /// element type of the array, potentially with type qualifiers missing.
993  /// This method should never be used when type qualifiers are meaningful.
994  const Type *getArrayElementTypeNoTypeQual() const;
995
996  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
997  /// pointer, this returns the respective pointee.
998  QualType getPointeeType() const;
999
1000  /// getUnqualifiedDesugaredType() - Return the specified type with
1001  /// any "sugar" removed from the type, removing any typedefs,
1002  /// typeofs, etc., as well as any qualifiers.
1003  const Type *getUnqualifiedDesugaredType() const;
1004
1005  /// More type predicates useful for type checking/promotion
1006  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1007
1008  /// isSignedIntegerType - Return true if this is an integer type that is
1009  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1010  /// an enum decl which has a signed representation, or a vector of signed
1011  /// integer element type.
1012  bool isSignedIntegerType() const;
1013
1014  /// isUnsignedIntegerType - Return true if this is an integer type that is
1015  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1016  /// decl which has an unsigned representation, or a vector of unsigned integer
1017  /// element type.
1018  bool isUnsignedIntegerType() const;
1019
1020  /// isConstantSizeType - Return true if this is not a variable sized type,
1021  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1022  /// incomplete types.
1023  bool isConstantSizeType() const;
1024
1025  /// isSpecifierType - Returns true if this type can be represented by some
1026  /// set of type specifiers.
1027  bool isSpecifierType() const;
1028
1029  /// \brief Determine the linkage of this type.
1030  Linkage getLinkage() const;
1031
1032  /// \brief Note that the linkage is no longer known.
1033  void ClearLinkageCache();
1034
1035  const char *getTypeClassName() const;
1036
1037  QualType getCanonicalTypeInternal() const {
1038    return CanonicalType;
1039  }
1040  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1041  void dump() const;
1042  static bool classof(const Type *) { return true; }
1043
1044  friend class ASTReader;
1045  friend class ASTWriter;
1046};
1047
1048template <> inline const TypedefType *Type::getAs() const {
1049  return dyn_cast<TypedefType>(this);
1050}
1051
1052// We can do canonical leaf types faster, because we don't have to
1053// worry about preserving child type decoration.
1054#define TYPE(Class, Base)
1055#define LEAF_TYPE(Class) \
1056template <> inline const Class##Type *Type::getAs() const { \
1057  return dyn_cast<Class##Type>(CanonicalType); \
1058}
1059#include "clang/AST/TypeNodes.def"
1060
1061
1062/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1063/// types are always canonical and have a literal name field.
1064class BuiltinType : public Type {
1065public:
1066  enum Kind {
1067    Void,
1068
1069    Bool,     // This is bool and/or _Bool.
1070    Char_U,   // This is 'char' for targets where char is unsigned.
1071    UChar,    // This is explicitly qualified unsigned char.
1072    Char16,   // This is 'char16_t' for C++.
1073    Char32,   // This is 'char32_t' for C++.
1074    UShort,
1075    UInt,
1076    ULong,
1077    ULongLong,
1078    UInt128,  // __uint128_t
1079
1080    Char_S,   // This is 'char' for targets where char is signed.
1081    SChar,    // This is explicitly qualified signed char.
1082    WChar,    // This is 'wchar_t' for C++.
1083    Short,
1084    Int,
1085    Long,
1086    LongLong,
1087    Int128,   // __int128_t
1088
1089    Float, Double, LongDouble,
1090
1091    NullPtr,  // This is the type of C++0x 'nullptr'.
1092
1093    Overload,  // This represents the type of an overloaded function declaration.
1094    Dependent, // This represents the type of a type-dependent expression.
1095
1096    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1097                   // that has not been deduced yet.
1098
1099    /// The primitive Objective C 'id' type.  The type pointed to by the
1100    /// user-visible 'id' type.  Only ever shows up in an AST as the base
1101    /// type of an ObjCObjectType.
1102    ObjCId,
1103
1104    /// The primitive Objective C 'Class' type.  The type pointed to by the
1105    /// user-visible 'Class' type.  Only ever shows up in an AST as the
1106    /// base type of an ObjCObjectType.
1107    ObjCClass,
1108
1109    ObjCSel    // This represents the ObjC 'SEL' type.
1110  };
1111private:
1112  Kind TypeKind;
1113
1114protected:
1115  virtual Linkage getLinkageImpl() const;
1116
1117public:
1118  BuiltinType(Kind K)
1119    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
1120      TypeKind(K) {}
1121
1122  Kind getKind() const { return TypeKind; }
1123  const char *getName(const LangOptions &LO) const;
1124
1125  bool isSugared() const { return false; }
1126  QualType desugar() const { return QualType(this, 0); }
1127
1128  bool isInteger() const {
1129    return TypeKind >= Bool && TypeKind <= Int128;
1130  }
1131
1132  bool isSignedInteger() const {
1133    return TypeKind >= Char_S && TypeKind <= Int128;
1134  }
1135
1136  bool isUnsignedInteger() const {
1137    return TypeKind >= Bool && TypeKind <= UInt128;
1138  }
1139
1140  bool isFloatingPoint() const {
1141    return TypeKind >= Float && TypeKind <= LongDouble;
1142  }
1143
1144  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1145  static bool classof(const BuiltinType *) { return true; }
1146};
1147
1148/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1149/// types (_Complex float etc) as well as the GCC integer complex extensions.
1150///
1151class ComplexType : public Type, public llvm::FoldingSetNode {
1152  QualType ElementType;
1153  ComplexType(QualType Element, QualType CanonicalPtr) :
1154    Type(Complex, CanonicalPtr, Element->isDependentType()),
1155    ElementType(Element) {
1156  }
1157  friend class ASTContext;  // ASTContext creates these.
1158
1159protected:
1160  virtual Linkage getLinkageImpl() const;
1161
1162public:
1163  QualType getElementType() const { return ElementType; }
1164
1165  bool isSugared() const { return false; }
1166  QualType desugar() const { return QualType(this, 0); }
1167
1168  void Profile(llvm::FoldingSetNodeID &ID) {
1169    Profile(ID, getElementType());
1170  }
1171  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1172    ID.AddPointer(Element.getAsOpaquePtr());
1173  }
1174
1175  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1176  static bool classof(const ComplexType *) { return true; }
1177};
1178
1179/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1180///
1181class PointerType : public Type, public llvm::FoldingSetNode {
1182  QualType PointeeType;
1183
1184  PointerType(QualType Pointee, QualType CanonicalPtr) :
1185    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1186  }
1187  friend class ASTContext;  // ASTContext creates these.
1188
1189protected:
1190  virtual Linkage getLinkageImpl() const;
1191
1192public:
1193
1194  QualType getPointeeType() const { return PointeeType; }
1195
1196  bool isSugared() const { return false; }
1197  QualType desugar() const { return QualType(this, 0); }
1198
1199  void Profile(llvm::FoldingSetNodeID &ID) {
1200    Profile(ID, getPointeeType());
1201  }
1202  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1203    ID.AddPointer(Pointee.getAsOpaquePtr());
1204  }
1205
1206  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1207  static bool classof(const PointerType *) { return true; }
1208};
1209
1210/// BlockPointerType - pointer to a block type.
1211/// This type is to represent types syntactically represented as
1212/// "void (^)(int)", etc. Pointee is required to always be a function type.
1213///
1214class BlockPointerType : public Type, public llvm::FoldingSetNode {
1215  QualType PointeeType;  // Block is some kind of pointer type
1216  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1217    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1218    PointeeType(Pointee) {
1219  }
1220  friend class ASTContext;  // ASTContext creates these.
1221
1222protected:
1223  virtual Linkage getLinkageImpl() const;
1224
1225public:
1226
1227  // Get the pointee type. Pointee is required to always be a function type.
1228  QualType getPointeeType() const { return PointeeType; }
1229
1230  bool isSugared() const { return false; }
1231  QualType desugar() const { return QualType(this, 0); }
1232
1233  void Profile(llvm::FoldingSetNodeID &ID) {
1234      Profile(ID, getPointeeType());
1235  }
1236  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1237      ID.AddPointer(Pointee.getAsOpaquePtr());
1238  }
1239
1240  static bool classof(const Type *T) {
1241    return T->getTypeClass() == BlockPointer;
1242  }
1243  static bool classof(const BlockPointerType *) { return true; }
1244};
1245
1246/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1247///
1248class ReferenceType : public Type, public llvm::FoldingSetNode {
1249  QualType PointeeType;
1250
1251  /// True if the type was originally spelled with an lvalue sigil.
1252  /// This is never true of rvalue references but can also be false
1253  /// on lvalue references because of C++0x [dcl.typedef]p9,
1254  /// as follows:
1255  ///
1256  ///   typedef int &ref;    // lvalue, spelled lvalue
1257  ///   typedef int &&rvref; // rvalue
1258  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1259  ///   ref &&a;             // lvalue, inner ref
1260  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1261  ///   rvref &&a;           // rvalue, inner ref
1262  bool SpelledAsLValue;
1263
1264  /// True if the inner type is a reference type.  This only happens
1265  /// in non-canonical forms.
1266  bool InnerRef;
1267
1268protected:
1269  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1270                bool SpelledAsLValue) :
1271    Type(tc, CanonicalRef, Referencee->isDependentType()),
1272    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1273    InnerRef(Referencee->isReferenceType()) {
1274  }
1275
1276  virtual Linkage getLinkageImpl() const;
1277
1278public:
1279  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1280  bool isInnerRef() const { return InnerRef; }
1281
1282  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1283  QualType getPointeeType() const {
1284    // FIXME: this might strip inner qualifiers; okay?
1285    const ReferenceType *T = this;
1286    while (T->InnerRef)
1287      T = T->PointeeType->getAs<ReferenceType>();
1288    return T->PointeeType;
1289  }
1290
1291  void Profile(llvm::FoldingSetNodeID &ID) {
1292    Profile(ID, PointeeType, SpelledAsLValue);
1293  }
1294  static void Profile(llvm::FoldingSetNodeID &ID,
1295                      QualType Referencee,
1296                      bool SpelledAsLValue) {
1297    ID.AddPointer(Referencee.getAsOpaquePtr());
1298    ID.AddBoolean(SpelledAsLValue);
1299  }
1300
1301  static bool classof(const Type *T) {
1302    return T->getTypeClass() == LValueReference ||
1303           T->getTypeClass() == RValueReference;
1304  }
1305  static bool classof(const ReferenceType *) { return true; }
1306};
1307
1308/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1309///
1310class LValueReferenceType : public ReferenceType {
1311  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1312                      bool SpelledAsLValue) :
1313    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1314  {}
1315  friend class ASTContext; // ASTContext creates these
1316public:
1317  bool isSugared() const { return false; }
1318  QualType desugar() const { return QualType(this, 0); }
1319
1320  static bool classof(const Type *T) {
1321    return T->getTypeClass() == LValueReference;
1322  }
1323  static bool classof(const LValueReferenceType *) { return true; }
1324};
1325
1326/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1327///
1328class RValueReferenceType : public ReferenceType {
1329  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1330    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1331  }
1332  friend class ASTContext; // ASTContext creates these
1333public:
1334  bool isSugared() const { return false; }
1335  QualType desugar() const { return QualType(this, 0); }
1336
1337  static bool classof(const Type *T) {
1338    return T->getTypeClass() == RValueReference;
1339  }
1340  static bool classof(const RValueReferenceType *) { return true; }
1341};
1342
1343/// MemberPointerType - C++ 8.3.3 - Pointers to members
1344///
1345class MemberPointerType : public Type, public llvm::FoldingSetNode {
1346  QualType PointeeType;
1347  /// The class of which the pointee is a member. Must ultimately be a
1348  /// RecordType, but could be a typedef or a template parameter too.
1349  const Type *Class;
1350
1351  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1352    Type(MemberPointer, CanonicalPtr,
1353         Cls->isDependentType() || Pointee->isDependentType()),
1354    PointeeType(Pointee), Class(Cls) {
1355  }
1356  friend class ASTContext; // ASTContext creates these.
1357
1358protected:
1359  virtual Linkage getLinkageImpl() const;
1360
1361public:
1362  QualType getPointeeType() const { return PointeeType; }
1363
1364  /// Returns true if the member type (i.e. the pointee type) is a
1365  /// function type rather than a data-member type.
1366  bool isMemberFunctionPointer() const {
1367    return PointeeType->isFunctionProtoType();
1368  }
1369
1370  /// Returns true if the member type (i.e. the pointee type) is a
1371  /// data type rather than a function type.
1372  bool isMemberDataPointer() const {
1373    return !PointeeType->isFunctionProtoType();
1374  }
1375
1376  const Type *getClass() const { return Class; }
1377
1378  bool isSugared() const { return false; }
1379  QualType desugar() const { return QualType(this, 0); }
1380
1381  void Profile(llvm::FoldingSetNodeID &ID) {
1382    Profile(ID, getPointeeType(), getClass());
1383  }
1384  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1385                      const Type *Class) {
1386    ID.AddPointer(Pointee.getAsOpaquePtr());
1387    ID.AddPointer(Class);
1388  }
1389
1390  static bool classof(const Type *T) {
1391    return T->getTypeClass() == MemberPointer;
1392  }
1393  static bool classof(const MemberPointerType *) { return true; }
1394};
1395
1396/// ArrayType - C99 6.7.5.2 - Array Declarators.
1397///
1398class ArrayType : public Type, public llvm::FoldingSetNode {
1399public:
1400  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1401  /// an array with a static size (e.g. int X[static 4]), or an array
1402  /// with a star size (e.g. int X[*]).
1403  /// 'static' is only allowed on function parameters.
1404  enum ArraySizeModifier {
1405    Normal, Static, Star
1406  };
1407private:
1408  /// ElementType - The element type of the array.
1409  QualType ElementType;
1410
1411  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1412  /// NOTE: These fields are packed into the bitfields space in the Type class.
1413  unsigned SizeModifier : 2;
1414
1415  /// IndexTypeQuals - Capture qualifiers in declarations like:
1416  /// 'int X[static restrict 4]'. For function parameters only.
1417  unsigned IndexTypeQuals : 3;
1418
1419protected:
1420  // C++ [temp.dep.type]p1:
1421  //   A type is dependent if it is...
1422  //     - an array type constructed from any dependent type or whose
1423  //       size is specified by a constant expression that is
1424  //       value-dependent,
1425  ArrayType(TypeClass tc, QualType et, QualType can,
1426            ArraySizeModifier sm, unsigned tq)
1427    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1428      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1429
1430  friend class ASTContext;  // ASTContext creates these.
1431
1432  virtual Linkage getLinkageImpl() const;
1433
1434public:
1435  QualType getElementType() const { return ElementType; }
1436  ArraySizeModifier getSizeModifier() const {
1437    return ArraySizeModifier(SizeModifier);
1438  }
1439  Qualifiers getIndexTypeQualifiers() const {
1440    return Qualifiers::fromCVRMask(IndexTypeQuals);
1441  }
1442  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1443
1444  static bool classof(const Type *T) {
1445    return T->getTypeClass() == ConstantArray ||
1446           T->getTypeClass() == VariableArray ||
1447           T->getTypeClass() == IncompleteArray ||
1448           T->getTypeClass() == DependentSizedArray;
1449  }
1450  static bool classof(const ArrayType *) { return true; }
1451};
1452
1453/// ConstantArrayType - This class represents the canonical version of
1454/// C arrays with a specified constant size.  For example, the canonical
1455/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1456/// type is 'int' and the size is 404.
1457class ConstantArrayType : public ArrayType {
1458  llvm::APInt Size; // Allows us to unique the type.
1459
1460  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1461                    ArraySizeModifier sm, unsigned tq)
1462    : ArrayType(ConstantArray, et, can, sm, tq),
1463      Size(size) {}
1464protected:
1465  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1466                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1467    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1468  friend class ASTContext;  // ASTContext creates these.
1469public:
1470  const llvm::APInt &getSize() const { return Size; }
1471  bool isSugared() const { return false; }
1472  QualType desugar() const { return QualType(this, 0); }
1473
1474
1475  /// \brief Determine the number of bits required to address a member of
1476  // an array with the given element type and number of elements.
1477  static unsigned getNumAddressingBits(ASTContext &Context,
1478                                       QualType ElementType,
1479                                       const llvm::APInt &NumElements);
1480
1481  /// \brief Determine the maximum number of active bits that an array's size
1482  /// can require, which limits the maximum size of the array.
1483  static unsigned getMaxSizeBits(ASTContext &Context);
1484
1485  void Profile(llvm::FoldingSetNodeID &ID) {
1486    Profile(ID, getElementType(), getSize(),
1487            getSizeModifier(), getIndexTypeCVRQualifiers());
1488  }
1489  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1490                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1491                      unsigned TypeQuals) {
1492    ID.AddPointer(ET.getAsOpaquePtr());
1493    ID.AddInteger(ArraySize.getZExtValue());
1494    ID.AddInteger(SizeMod);
1495    ID.AddInteger(TypeQuals);
1496  }
1497  static bool classof(const Type *T) {
1498    return T->getTypeClass() == ConstantArray;
1499  }
1500  static bool classof(const ConstantArrayType *) { return true; }
1501};
1502
1503/// IncompleteArrayType - This class represents C arrays with an unspecified
1504/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1505/// type is 'int' and the size is unspecified.
1506class IncompleteArrayType : public ArrayType {
1507
1508  IncompleteArrayType(QualType et, QualType can,
1509                      ArraySizeModifier sm, unsigned tq)
1510    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1511  friend class ASTContext;  // ASTContext creates these.
1512public:
1513  bool isSugared() const { return false; }
1514  QualType desugar() const { return QualType(this, 0); }
1515
1516  static bool classof(const Type *T) {
1517    return T->getTypeClass() == IncompleteArray;
1518  }
1519  static bool classof(const IncompleteArrayType *) { return true; }
1520
1521  friend class StmtIteratorBase;
1522
1523  void Profile(llvm::FoldingSetNodeID &ID) {
1524    Profile(ID, getElementType(), getSizeModifier(),
1525            getIndexTypeCVRQualifiers());
1526  }
1527
1528  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1529                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1530    ID.AddPointer(ET.getAsOpaquePtr());
1531    ID.AddInteger(SizeMod);
1532    ID.AddInteger(TypeQuals);
1533  }
1534};
1535
1536/// VariableArrayType - This class represents C arrays with a specified size
1537/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1538/// Since the size expression is an arbitrary expression, we store it as such.
1539///
1540/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1541/// should not be: two lexically equivalent variable array types could mean
1542/// different things, for example, these variables do not have the same type
1543/// dynamically:
1544///
1545/// void foo(int x) {
1546///   int Y[x];
1547///   ++x;
1548///   int Z[x];
1549/// }
1550///
1551class VariableArrayType : public ArrayType {
1552  /// SizeExpr - An assignment expression. VLA's are only permitted within
1553  /// a function block.
1554  Stmt *SizeExpr;
1555  /// Brackets - The left and right array brackets.
1556  SourceRange Brackets;
1557
1558  VariableArrayType(QualType et, QualType can, Expr *e,
1559                    ArraySizeModifier sm, unsigned tq,
1560                    SourceRange brackets)
1561    : ArrayType(VariableArray, et, can, sm, tq),
1562      SizeExpr((Stmt*) e), Brackets(brackets) {}
1563  friend class ASTContext;  // ASTContext creates these.
1564
1565public:
1566  Expr *getSizeExpr() const {
1567    // We use C-style casts instead of cast<> here because we do not wish
1568    // to have a dependency of Type.h on Stmt.h/Expr.h.
1569    return (Expr*) SizeExpr;
1570  }
1571  SourceRange getBracketsRange() const { return Brackets; }
1572  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1573  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1574
1575  bool isSugared() const { return false; }
1576  QualType desugar() const { return QualType(this, 0); }
1577
1578  static bool classof(const Type *T) {
1579    return T->getTypeClass() == VariableArray;
1580  }
1581  static bool classof(const VariableArrayType *) { return true; }
1582
1583  friend class StmtIteratorBase;
1584
1585  void Profile(llvm::FoldingSetNodeID &ID) {
1586    assert(0 && "Cannnot unique VariableArrayTypes.");
1587  }
1588};
1589
1590/// DependentSizedArrayType - This type represents an array type in
1591/// C++ whose size is a value-dependent expression. For example:
1592///
1593/// \code
1594/// template<typename T, int Size>
1595/// class array {
1596///   T data[Size];
1597/// };
1598/// \endcode
1599///
1600/// For these types, we won't actually know what the array bound is
1601/// until template instantiation occurs, at which point this will
1602/// become either a ConstantArrayType or a VariableArrayType.
1603class DependentSizedArrayType : public ArrayType {
1604  ASTContext &Context;
1605
1606  /// \brief An assignment expression that will instantiate to the
1607  /// size of the array.
1608  ///
1609  /// The expression itself might be NULL, in which case the array
1610  /// type will have its size deduced from an initializer.
1611  Stmt *SizeExpr;
1612
1613  /// Brackets - The left and right array brackets.
1614  SourceRange Brackets;
1615
1616  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1617                          Expr *e, ArraySizeModifier sm, unsigned tq,
1618                          SourceRange brackets)
1619    : ArrayType(DependentSizedArray, et, can, sm, tq),
1620      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1621  friend class ASTContext;  // ASTContext creates these.
1622
1623public:
1624  Expr *getSizeExpr() const {
1625    // We use C-style casts instead of cast<> here because we do not wish
1626    // to have a dependency of Type.h on Stmt.h/Expr.h.
1627    return (Expr*) SizeExpr;
1628  }
1629  SourceRange getBracketsRange() const { return Brackets; }
1630  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1631  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1632
1633  bool isSugared() const { return false; }
1634  QualType desugar() const { return QualType(this, 0); }
1635
1636  static bool classof(const Type *T) {
1637    return T->getTypeClass() == DependentSizedArray;
1638  }
1639  static bool classof(const DependentSizedArrayType *) { return true; }
1640
1641  friend class StmtIteratorBase;
1642
1643
1644  void Profile(llvm::FoldingSetNodeID &ID) {
1645    Profile(ID, Context, getElementType(),
1646            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1647  }
1648
1649  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1650                      QualType ET, ArraySizeModifier SizeMod,
1651                      unsigned TypeQuals, Expr *E);
1652};
1653
1654/// DependentSizedExtVectorType - This type represent an extended vector type
1655/// where either the type or size is dependent. For example:
1656/// @code
1657/// template<typename T, int Size>
1658/// class vector {
1659///   typedef T __attribute__((ext_vector_type(Size))) type;
1660/// }
1661/// @endcode
1662class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1663  ASTContext &Context;
1664  Expr *SizeExpr;
1665  /// ElementType - The element type of the array.
1666  QualType ElementType;
1667  SourceLocation loc;
1668
1669  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1670                              QualType can, Expr *SizeExpr, SourceLocation loc)
1671    : Type (DependentSizedExtVector, can, true),
1672      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1673      loc(loc) {}
1674  friend class ASTContext;
1675
1676public:
1677  Expr *getSizeExpr() const { return SizeExpr; }
1678  QualType getElementType() const { return ElementType; }
1679  SourceLocation getAttributeLoc() const { return loc; }
1680
1681  bool isSugared() const { return false; }
1682  QualType desugar() const { return QualType(this, 0); }
1683
1684  static bool classof(const Type *T) {
1685    return T->getTypeClass() == DependentSizedExtVector;
1686  }
1687  static bool classof(const DependentSizedExtVectorType *) { return true; }
1688
1689  void Profile(llvm::FoldingSetNodeID &ID) {
1690    Profile(ID, Context, getElementType(), getSizeExpr());
1691  }
1692
1693  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1694                      QualType ElementType, Expr *SizeExpr);
1695};
1696
1697
1698/// VectorType - GCC generic vector type. This type is created using
1699/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1700/// bytes; or from an Altivec __vector or vector declaration.
1701/// Since the constructor takes the number of vector elements, the
1702/// client is responsible for converting the size into the number of elements.
1703class VectorType : public Type, public llvm::FoldingSetNode {
1704public:
1705  enum AltiVecSpecific {
1706    NotAltiVec,  // is not AltiVec vector
1707    AltiVec,     // is AltiVec vector
1708    Pixel,       // is AltiVec 'vector Pixel'
1709    Bool         // is AltiVec 'vector bool ...'
1710  };
1711protected:
1712  /// ElementType - The element type of the vector.
1713  QualType ElementType;
1714
1715  /// NumElements - The number of elements in the vector.
1716  unsigned NumElements;
1717
1718  AltiVecSpecific AltiVecSpec;
1719
1720  VectorType(QualType vecType, unsigned nElements, QualType canonType,
1721      AltiVecSpecific altiVecSpec) :
1722    Type(Vector, canonType, vecType->isDependentType()),
1723    ElementType(vecType), NumElements(nElements), AltiVecSpec(altiVecSpec) {}
1724  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1725             QualType canonType, AltiVecSpecific altiVecSpec)
1726    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1727      NumElements(nElements), AltiVecSpec(altiVecSpec) {}
1728  friend class ASTContext;  // ASTContext creates these.
1729
1730  virtual Linkage getLinkageImpl() const;
1731
1732public:
1733
1734  QualType getElementType() const { return ElementType; }
1735  unsigned getNumElements() const { return NumElements; }
1736
1737  bool isSugared() const { return false; }
1738  QualType desugar() const { return QualType(this, 0); }
1739
1740  AltiVecSpecific getAltiVecSpecific() const { return AltiVecSpec; }
1741
1742  void Profile(llvm::FoldingSetNodeID &ID) {
1743    Profile(ID, getElementType(), getNumElements(), getTypeClass(), AltiVecSpec);
1744  }
1745  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1746                      unsigned NumElements, TypeClass TypeClass,
1747                      unsigned AltiVecSpec) {
1748    ID.AddPointer(ElementType.getAsOpaquePtr());
1749    ID.AddInteger(NumElements);
1750    ID.AddInteger(TypeClass);
1751    ID.AddInteger(AltiVecSpec);
1752  }
1753
1754  static bool classof(const Type *T) {
1755    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1756  }
1757  static bool classof(const VectorType *) { return true; }
1758};
1759
1760/// ExtVectorType - Extended vector type. This type is created using
1761/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1762/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1763/// class enables syntactic extensions, like Vector Components for accessing
1764/// points, colors, and textures (modeled after OpenGL Shading Language).
1765class ExtVectorType : public VectorType {
1766  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1767    VectorType(ExtVector, vecType, nElements, canonType, NotAltiVec) {}
1768  friend class ASTContext;  // ASTContext creates these.
1769public:
1770  static int getPointAccessorIdx(char c) {
1771    switch (c) {
1772    default: return -1;
1773    case 'x': return 0;
1774    case 'y': return 1;
1775    case 'z': return 2;
1776    case 'w': return 3;
1777    }
1778  }
1779  static int getNumericAccessorIdx(char c) {
1780    switch (c) {
1781      default: return -1;
1782      case '0': return 0;
1783      case '1': return 1;
1784      case '2': return 2;
1785      case '3': return 3;
1786      case '4': return 4;
1787      case '5': return 5;
1788      case '6': return 6;
1789      case '7': return 7;
1790      case '8': return 8;
1791      case '9': return 9;
1792      case 'A':
1793      case 'a': return 10;
1794      case 'B':
1795      case 'b': return 11;
1796      case 'C':
1797      case 'c': return 12;
1798      case 'D':
1799      case 'd': return 13;
1800      case 'E':
1801      case 'e': return 14;
1802      case 'F':
1803      case 'f': return 15;
1804    }
1805  }
1806
1807  static int getAccessorIdx(char c) {
1808    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1809    return getNumericAccessorIdx(c);
1810  }
1811
1812  bool isAccessorWithinNumElements(char c) const {
1813    if (int idx = getAccessorIdx(c)+1)
1814      return unsigned(idx-1) < NumElements;
1815    return false;
1816  }
1817  bool isSugared() const { return false; }
1818  QualType desugar() const { return QualType(this, 0); }
1819
1820  static bool classof(const Type *T) {
1821    return T->getTypeClass() == ExtVector;
1822  }
1823  static bool classof(const ExtVectorType *) { return true; }
1824};
1825
1826/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1827/// class of FunctionNoProtoType and FunctionProtoType.
1828///
1829class FunctionType : public Type {
1830  virtual void ANCHOR(); // Key function for FunctionType.
1831
1832  /// SubClassData - This field is owned by the subclass, put here to pack
1833  /// tightly with the ivars in Type.
1834  bool SubClassData : 1;
1835
1836  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1837  /// other bitfields.
1838  /// The qualifiers are part of FunctionProtoType because...
1839  ///
1840  /// C++ 8.3.5p4: The return type, the parameter type list and the
1841  /// cv-qualifier-seq, [...], are part of the function type.
1842  ///
1843  unsigned TypeQuals : 3;
1844
1845  /// NoReturn - Indicates if the function type is attribute noreturn.
1846  unsigned NoReturn : 1;
1847
1848  /// RegParm - How many arguments to pass inreg.
1849  unsigned RegParm : 3;
1850
1851  /// CallConv - The calling convention used by the function.
1852  unsigned CallConv : 3;
1853
1854  // The type returned by the function.
1855  QualType ResultType;
1856
1857 public:
1858  // This class is used for passing arround the information needed to
1859  // construct a call. It is not actually used for storage, just for
1860  // factoring together common arguments.
1861  // If you add a field (say Foo), other than the obvious places (both, constructors,
1862  // compile failures), what you need to update is
1863  // * Operetor==
1864  // * getFoo
1865  // * withFoo
1866  // * functionType. Add Foo, getFoo.
1867  // * ASTContext::getFooType
1868  // * ASTContext::mergeFunctionTypes
1869  // * FunctionNoProtoType::Profile
1870  // * FunctionProtoType::Profile
1871  // * TypePrinter::PrintFunctionProto
1872  // * AST read and write
1873  // * Codegen
1874
1875  class ExtInfo {
1876   public:
1877    // Constructor with no defaults. Use this when you know that you
1878    // have all the elements (when reading an AST file for example).
1879    ExtInfo(bool noReturn, unsigned regParm, CallingConv cc) :
1880        NoReturn(noReturn), RegParm(regParm), CC(cc) {}
1881
1882    // Constructor with all defaults. Use when for example creating a
1883    // function know to use defaults.
1884    ExtInfo() : NoReturn(false), RegParm(0), CC(CC_Default) {}
1885
1886    bool getNoReturn() const { return NoReturn; }
1887    unsigned getRegParm() const { return RegParm; }
1888    CallingConv getCC() const { return CC; }
1889
1890    bool operator==(const ExtInfo &Other) const {
1891      return getNoReturn() == Other.getNoReturn() &&
1892          getRegParm() == Other.getRegParm() &&
1893          getCC() == Other.getCC();
1894    }
1895    bool operator!=(const ExtInfo &Other) const {
1896      return !(*this == Other);
1897    }
1898
1899    // Note that we don't have setters. That is by design, use
1900    // the following with methods instead of mutating these objects.
1901
1902    ExtInfo withNoReturn(bool noReturn) const {
1903      return ExtInfo(noReturn, getRegParm(), getCC());
1904    }
1905
1906    ExtInfo withRegParm(unsigned RegParm) const {
1907      return ExtInfo(getNoReturn(), RegParm, getCC());
1908    }
1909
1910    ExtInfo withCallingConv(CallingConv cc) const {
1911      return ExtInfo(getNoReturn(), getRegParm(), cc);
1912    }
1913
1914   private:
1915    // True if we have __attribute__((noreturn))
1916    bool NoReturn;
1917    // The value passed to __attribute__((regparm(x)))
1918    unsigned RegParm;
1919    // The calling convention as specified via
1920    // __attribute__((cdecl|stdcall|fastcall|thiscall))
1921    CallingConv CC;
1922  };
1923
1924protected:
1925  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1926               unsigned typeQuals, QualType Canonical, bool Dependent,
1927               const ExtInfo &Info)
1928    : Type(tc, Canonical, Dependent),
1929      SubClassData(SubclassInfo), TypeQuals(typeQuals),
1930      NoReturn(Info.getNoReturn()),
1931      RegParm(Info.getRegParm()), CallConv(Info.getCC()), ResultType(res) {}
1932  bool getSubClassData() const { return SubClassData; }
1933  unsigned getTypeQuals() const { return TypeQuals; }
1934public:
1935
1936  QualType getResultType() const { return ResultType; }
1937
1938  unsigned getRegParmType() const { return RegParm; }
1939  bool getNoReturnAttr() const { return NoReturn; }
1940  CallingConv getCallConv() const { return (CallingConv)CallConv; }
1941  ExtInfo getExtInfo() const {
1942    return ExtInfo(NoReturn, RegParm, (CallingConv)CallConv);
1943  }
1944
1945  /// \brief Determine the type of an expression that calls a function of
1946  /// this type.
1947  QualType getCallResultType(ASTContext &Context) const {
1948    return getResultType().getNonLValueExprType(Context);
1949  }
1950
1951  static llvm::StringRef getNameForCallConv(CallingConv CC);
1952
1953  static bool classof(const Type *T) {
1954    return T->getTypeClass() == FunctionNoProto ||
1955           T->getTypeClass() == FunctionProto;
1956  }
1957  static bool classof(const FunctionType *) { return true; }
1958};
1959
1960/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1961/// no information available about its arguments.
1962class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1963  FunctionNoProtoType(QualType Result, QualType Canonical,
1964                      const ExtInfo &Info)
1965    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1966                   /*Dependent=*/false, Info) {}
1967  friend class ASTContext;  // ASTContext creates these.
1968
1969protected:
1970  virtual Linkage getLinkageImpl() const;
1971
1972public:
1973  // No additional state past what FunctionType provides.
1974
1975  bool isSugared() const { return false; }
1976  QualType desugar() const { return QualType(this, 0); }
1977
1978  void Profile(llvm::FoldingSetNodeID &ID) {
1979    Profile(ID, getResultType(), getExtInfo());
1980  }
1981  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1982                      const ExtInfo &Info) {
1983    ID.AddInteger(Info.getCC());
1984    ID.AddInteger(Info.getRegParm());
1985    ID.AddInteger(Info.getNoReturn());
1986    ID.AddPointer(ResultType.getAsOpaquePtr());
1987  }
1988
1989  static bool classof(const Type *T) {
1990    return T->getTypeClass() == FunctionNoProto;
1991  }
1992  static bool classof(const FunctionNoProtoType *) { return true; }
1993};
1994
1995/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1996/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1997/// arguments, not as having a single void argument. Such a type can have an
1998/// exception specification, but this specification is not part of the canonical
1999/// type.
2000class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2001  /// hasAnyDependentType - Determine whether there are any dependent
2002  /// types within the arguments passed in.
2003  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
2004    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2005      if (ArgArray[Idx]->isDependentType())
2006    return true;
2007
2008    return false;
2009  }
2010
2011  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
2012                    bool isVariadic, unsigned typeQuals, bool hasExs,
2013                    bool hasAnyExs, const QualType *ExArray,
2014                    unsigned numExs, QualType Canonical,
2015                    const ExtInfo &Info)
2016    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
2017                   (Result->isDependentType() ||
2018                    hasAnyDependentType(ArgArray, numArgs)),
2019                   Info),
2020      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
2021      AnyExceptionSpec(hasAnyExs) {
2022    // Fill in the trailing argument array.
2023    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
2024    for (unsigned i = 0; i != numArgs; ++i)
2025      ArgInfo[i] = ArgArray[i];
2026    // Fill in the exception array.
2027    QualType *Ex = ArgInfo + numArgs;
2028    for (unsigned i = 0; i != numExs; ++i)
2029      Ex[i] = ExArray[i];
2030  }
2031
2032  /// NumArgs - The number of arguments this function has, not counting '...'.
2033  unsigned NumArgs : 20;
2034
2035  /// NumExceptions - The number of types in the exception spec, if any.
2036  unsigned NumExceptions : 10;
2037
2038  /// HasExceptionSpec - Whether this function has an exception spec at all.
2039  bool HasExceptionSpec : 1;
2040
2041  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
2042  bool AnyExceptionSpec : 1;
2043
2044  /// ArgInfo - There is an variable size array after the class in memory that
2045  /// holds the argument types.
2046
2047  /// Exceptions - There is another variable size array after ArgInfo that
2048  /// holds the exception types.
2049
2050  friend class ASTContext;  // ASTContext creates these.
2051
2052protected:
2053  virtual Linkage getLinkageImpl() const;
2054
2055public:
2056  unsigned getNumArgs() const { return NumArgs; }
2057  QualType getArgType(unsigned i) const {
2058    assert(i < NumArgs && "Invalid argument number!");
2059    return arg_type_begin()[i];
2060  }
2061
2062  bool hasExceptionSpec() const { return HasExceptionSpec; }
2063  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
2064  unsigned getNumExceptions() const { return NumExceptions; }
2065  QualType getExceptionType(unsigned i) const {
2066    assert(i < NumExceptions && "Invalid exception number!");
2067    return exception_begin()[i];
2068  }
2069  bool hasEmptyExceptionSpec() const {
2070    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
2071      getNumExceptions() == 0;
2072  }
2073
2074  bool isVariadic() const { return getSubClassData(); }
2075  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2076
2077  typedef const QualType *arg_type_iterator;
2078  arg_type_iterator arg_type_begin() const {
2079    return reinterpret_cast<const QualType *>(this+1);
2080  }
2081  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2082
2083  typedef const QualType *exception_iterator;
2084  exception_iterator exception_begin() const {
2085    // exceptions begin where arguments end
2086    return arg_type_end();
2087  }
2088  exception_iterator exception_end() const {
2089    return exception_begin() + NumExceptions;
2090  }
2091
2092  bool isSugared() const { return false; }
2093  QualType desugar() const { return QualType(this, 0); }
2094
2095  static bool classof(const Type *T) {
2096    return T->getTypeClass() == FunctionProto;
2097  }
2098  static bool classof(const FunctionProtoType *) { return true; }
2099
2100  void Profile(llvm::FoldingSetNodeID &ID);
2101  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2102                      arg_type_iterator ArgTys, unsigned NumArgs,
2103                      bool isVariadic, unsigned TypeQuals,
2104                      bool hasExceptionSpec, bool anyExceptionSpec,
2105                      unsigned NumExceptions, exception_iterator Exs,
2106                      const ExtInfo &ExtInfo);
2107};
2108
2109
2110/// \brief Represents the dependent type named by a dependently-scoped
2111/// typename using declaration, e.g.
2112///   using typename Base<T>::foo;
2113/// Template instantiation turns these into the underlying type.
2114class UnresolvedUsingType : public Type {
2115  UnresolvedUsingTypenameDecl *Decl;
2116
2117  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2118    : Type(UnresolvedUsing, QualType(), true),
2119      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2120  friend class ASTContext; // ASTContext creates these.
2121public:
2122
2123  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2124
2125  bool isSugared() const { return false; }
2126  QualType desugar() const { return QualType(this, 0); }
2127
2128  static bool classof(const Type *T) {
2129    return T->getTypeClass() == UnresolvedUsing;
2130  }
2131  static bool classof(const UnresolvedUsingType *) { return true; }
2132
2133  void Profile(llvm::FoldingSetNodeID &ID) {
2134    return Profile(ID, Decl);
2135  }
2136  static void Profile(llvm::FoldingSetNodeID &ID,
2137                      UnresolvedUsingTypenameDecl *D) {
2138    ID.AddPointer(D);
2139  }
2140};
2141
2142
2143class TypedefType : public Type {
2144  TypedefDecl *Decl;
2145protected:
2146  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
2147    : Type(tc, can, can->isDependentType()),
2148      Decl(const_cast<TypedefDecl*>(D)) {
2149    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2150  }
2151  friend class ASTContext;  // ASTContext creates these.
2152public:
2153
2154  TypedefDecl *getDecl() const { return Decl; }
2155
2156  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
2157  /// potentially looking through *all* consecutive typedefs.  This returns the
2158  /// sum of the type qualifiers, so if you have:
2159  ///   typedef const int A;
2160  ///   typedef volatile A B;
2161  /// looking through the typedefs for B will give you "const volatile A".
2162  QualType LookThroughTypedefs() const;
2163
2164  bool isSugared() const { return true; }
2165  QualType desugar() const;
2166
2167  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2168  static bool classof(const TypedefType *) { return true; }
2169};
2170
2171/// TypeOfExprType (GCC extension).
2172class TypeOfExprType : public Type {
2173  Expr *TOExpr;
2174
2175protected:
2176  TypeOfExprType(Expr *E, QualType can = QualType());
2177  friend class ASTContext;  // ASTContext creates these.
2178public:
2179  Expr *getUnderlyingExpr() const { return TOExpr; }
2180
2181  /// \brief Remove a single level of sugar.
2182  QualType desugar() const;
2183
2184  /// \brief Returns whether this type directly provides sugar.
2185  bool isSugared() const { return true; }
2186
2187  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2188  static bool classof(const TypeOfExprType *) { return true; }
2189};
2190
2191/// \brief Internal representation of canonical, dependent
2192/// typeof(expr) types.
2193///
2194/// This class is used internally by the ASTContext to manage
2195/// canonical, dependent types, only. Clients will only see instances
2196/// of this class via TypeOfExprType nodes.
2197class DependentTypeOfExprType
2198  : public TypeOfExprType, public llvm::FoldingSetNode {
2199  ASTContext &Context;
2200
2201public:
2202  DependentTypeOfExprType(ASTContext &Context, Expr *E)
2203    : TypeOfExprType(E), Context(Context) { }
2204
2205  bool isSugared() const { return false; }
2206  QualType desugar() const { return QualType(this, 0); }
2207
2208  void Profile(llvm::FoldingSetNodeID &ID) {
2209    Profile(ID, Context, getUnderlyingExpr());
2210  }
2211
2212  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2213                      Expr *E);
2214};
2215
2216/// TypeOfType (GCC extension).
2217class TypeOfType : public Type {
2218  QualType TOType;
2219  TypeOfType(QualType T, QualType can)
2220    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
2221    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2222  }
2223  friend class ASTContext;  // ASTContext creates these.
2224public:
2225  QualType getUnderlyingType() const { return TOType; }
2226
2227  /// \brief Remove a single level of sugar.
2228  QualType desugar() const { return getUnderlyingType(); }
2229
2230  /// \brief Returns whether this type directly provides sugar.
2231  bool isSugared() const { return true; }
2232
2233  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2234  static bool classof(const TypeOfType *) { return true; }
2235};
2236
2237/// DecltypeType (C++0x)
2238class DecltypeType : public Type {
2239  Expr *E;
2240
2241  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2242  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2243  // from it.
2244  QualType UnderlyingType;
2245
2246protected:
2247  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2248  friend class ASTContext;  // ASTContext creates these.
2249public:
2250  Expr *getUnderlyingExpr() const { return E; }
2251  QualType getUnderlyingType() const { return UnderlyingType; }
2252
2253  /// \brief Remove a single level of sugar.
2254  QualType desugar() const { return getUnderlyingType(); }
2255
2256  /// \brief Returns whether this type directly provides sugar.
2257  bool isSugared() const { return !isDependentType(); }
2258
2259  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2260  static bool classof(const DecltypeType *) { return true; }
2261};
2262
2263/// \brief Internal representation of canonical, dependent
2264/// decltype(expr) types.
2265///
2266/// This class is used internally by the ASTContext to manage
2267/// canonical, dependent types, only. Clients will only see instances
2268/// of this class via DecltypeType nodes.
2269class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2270  ASTContext &Context;
2271
2272public:
2273  DependentDecltypeType(ASTContext &Context, Expr *E);
2274
2275  bool isSugared() const { return false; }
2276  QualType desugar() const { return QualType(this, 0); }
2277
2278  void Profile(llvm::FoldingSetNodeID &ID) {
2279    Profile(ID, Context, getUnderlyingExpr());
2280  }
2281
2282  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2283                      Expr *E);
2284};
2285
2286class TagType : public Type {
2287  /// Stores the TagDecl associated with this type. The decl may point to any
2288  /// TagDecl that declares the entity.
2289  TagDecl * decl;
2290
2291protected:
2292  TagType(TypeClass TC, const TagDecl *D, QualType can);
2293
2294  virtual Linkage getLinkageImpl() const;
2295
2296public:
2297  TagDecl *getDecl() const;
2298
2299  /// @brief Determines whether this type is in the process of being
2300  /// defined.
2301  bool isBeingDefined() const;
2302
2303  static bool classof(const Type *T) {
2304    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2305  }
2306  static bool classof(const TagType *) { return true; }
2307  static bool classof(const RecordType *) { return true; }
2308  static bool classof(const EnumType *) { return true; }
2309};
2310
2311/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2312/// to detect TagType objects of structs/unions/classes.
2313class RecordType : public TagType {
2314protected:
2315  explicit RecordType(const RecordDecl *D)
2316    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2317  explicit RecordType(TypeClass TC, RecordDecl *D)
2318    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2319  friend class ASTContext;   // ASTContext creates these.
2320public:
2321
2322  RecordDecl *getDecl() const {
2323    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2324  }
2325
2326  // FIXME: This predicate is a helper to QualType/Type. It needs to
2327  // recursively check all fields for const-ness. If any field is declared
2328  // const, it needs to return false.
2329  bool hasConstFields() const { return false; }
2330
2331  // FIXME: RecordType needs to check when it is created that all fields are in
2332  // the same address space, and return that.
2333  unsigned getAddressSpace() const { return 0; }
2334
2335  bool isSugared() const { return false; }
2336  QualType desugar() const { return QualType(this, 0); }
2337
2338  static bool classof(const TagType *T);
2339  static bool classof(const Type *T) {
2340    return isa<TagType>(T) && classof(cast<TagType>(T));
2341  }
2342  static bool classof(const RecordType *) { return true; }
2343};
2344
2345/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2346/// to detect TagType objects of enums.
2347class EnumType : public TagType {
2348  explicit EnumType(const EnumDecl *D)
2349    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2350  friend class ASTContext;   // ASTContext creates these.
2351public:
2352
2353  EnumDecl *getDecl() const {
2354    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2355  }
2356
2357  bool isSugared() const { return false; }
2358  QualType desugar() const { return QualType(this, 0); }
2359
2360  static bool classof(const TagType *T);
2361  static bool classof(const Type *T) {
2362    return isa<TagType>(T) && classof(cast<TagType>(T));
2363  }
2364  static bool classof(const EnumType *) { return true; }
2365};
2366
2367class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2368  unsigned Depth : 15;
2369  unsigned Index : 16;
2370  unsigned ParameterPack : 1;
2371  IdentifierInfo *Name;
2372
2373  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2374                       QualType Canon)
2375    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2376      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2377
2378  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2379    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2380      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2381
2382  friend class ASTContext;  // ASTContext creates these
2383
2384public:
2385  unsigned getDepth() const { return Depth; }
2386  unsigned getIndex() const { return Index; }
2387  bool isParameterPack() const { return ParameterPack; }
2388  IdentifierInfo *getName() const { return Name; }
2389
2390  bool isSugared() const { return false; }
2391  QualType desugar() const { return QualType(this, 0); }
2392
2393  void Profile(llvm::FoldingSetNodeID &ID) {
2394    Profile(ID, Depth, Index, ParameterPack, Name);
2395  }
2396
2397  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2398                      unsigned Index, bool ParameterPack,
2399                      IdentifierInfo *Name) {
2400    ID.AddInteger(Depth);
2401    ID.AddInteger(Index);
2402    ID.AddBoolean(ParameterPack);
2403    ID.AddPointer(Name);
2404  }
2405
2406  static bool classof(const Type *T) {
2407    return T->getTypeClass() == TemplateTypeParm;
2408  }
2409  static bool classof(const TemplateTypeParmType *T) { return true; }
2410};
2411
2412/// \brief Represents the result of substituting a type for a template
2413/// type parameter.
2414///
2415/// Within an instantiated template, all template type parameters have
2416/// been replaced with these.  They are used solely to record that a
2417/// type was originally written as a template type parameter;
2418/// therefore they are never canonical.
2419class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2420  // The original type parameter.
2421  const TemplateTypeParmType *Replaced;
2422
2423  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2424    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2425      Replaced(Param) { }
2426
2427  friend class ASTContext;
2428
2429public:
2430  IdentifierInfo *getName() const { return Replaced->getName(); }
2431
2432  /// Gets the template parameter that was substituted for.
2433  const TemplateTypeParmType *getReplacedParameter() const {
2434    return Replaced;
2435  }
2436
2437  /// Gets the type that was substituted for the template
2438  /// parameter.
2439  QualType getReplacementType() const {
2440    return getCanonicalTypeInternal();
2441  }
2442
2443  bool isSugared() const { return true; }
2444  QualType desugar() const { return getReplacementType(); }
2445
2446  void Profile(llvm::FoldingSetNodeID &ID) {
2447    Profile(ID, getReplacedParameter(), getReplacementType());
2448  }
2449  static void Profile(llvm::FoldingSetNodeID &ID,
2450                      const TemplateTypeParmType *Replaced,
2451                      QualType Replacement) {
2452    ID.AddPointer(Replaced);
2453    ID.AddPointer(Replacement.getAsOpaquePtr());
2454  }
2455
2456  static bool classof(const Type *T) {
2457    return T->getTypeClass() == SubstTemplateTypeParm;
2458  }
2459  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2460};
2461
2462/// \brief Represents the type of a template specialization as written
2463/// in the source code.
2464///
2465/// Template specialization types represent the syntactic form of a
2466/// template-id that refers to a type, e.g., @c vector<int>. Some
2467/// template specialization types are syntactic sugar, whose canonical
2468/// type will point to some other type node that represents the
2469/// instantiation or class template specialization. For example, a
2470/// class template specialization type of @c vector<int> will refer to
2471/// a tag type for the instantiation
2472/// @c std::vector<int, std::allocator<int>>.
2473///
2474/// Other template specialization types, for which the template name
2475/// is dependent, may be canonical types. These types are always
2476/// dependent.
2477class TemplateSpecializationType
2478  : public Type, public llvm::FoldingSetNode {
2479  /// \brief The name of the template being specialized.
2480  TemplateName Template;
2481
2482  /// \brief - The number of template arguments named in this class
2483  /// template specialization.
2484  unsigned NumArgs;
2485
2486  TemplateSpecializationType(TemplateName T,
2487                             const TemplateArgument *Args,
2488                             unsigned NumArgs, QualType Canon);
2489
2490  friend class ASTContext;  // ASTContext creates these
2491
2492public:
2493  /// \brief Determine whether any of the given template arguments are
2494  /// dependent.
2495  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2496                                            unsigned NumArgs);
2497
2498  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2499                                            unsigned NumArgs);
2500
2501  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2502
2503  /// \brief Print a template argument list, including the '<' and '>'
2504  /// enclosing the template arguments.
2505  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2506                                               unsigned NumArgs,
2507                                               const PrintingPolicy &Policy);
2508
2509  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2510                                               unsigned NumArgs,
2511                                               const PrintingPolicy &Policy);
2512
2513  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2514                                               const PrintingPolicy &Policy);
2515
2516  /// True if this template specialization type matches a current
2517  /// instantiation in the context in which it is found.
2518  bool isCurrentInstantiation() const {
2519    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
2520  }
2521
2522  typedef const TemplateArgument * iterator;
2523
2524  iterator begin() const { return getArgs(); }
2525  iterator end() const; // defined inline in TemplateBase.h
2526
2527  /// \brief Retrieve the name of the template that we are specializing.
2528  TemplateName getTemplateName() const { return Template; }
2529
2530  /// \brief Retrieve the template arguments.
2531  const TemplateArgument *getArgs() const {
2532    return reinterpret_cast<const TemplateArgument *>(this + 1);
2533  }
2534
2535  /// \brief Retrieve the number of template arguments.
2536  unsigned getNumArgs() const { return NumArgs; }
2537
2538  /// \brief Retrieve a specific template argument as a type.
2539  /// \precondition @c isArgType(Arg)
2540  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
2541
2542  bool isSugared() const {
2543    return !isDependentType() || isCurrentInstantiation();
2544  }
2545  QualType desugar() const { return getCanonicalTypeInternal(); }
2546
2547  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Ctx) {
2548    Profile(ID, Template, getArgs(), NumArgs, Ctx);
2549  }
2550
2551  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2552                      const TemplateArgument *Args,
2553                      unsigned NumArgs,
2554                      ASTContext &Context);
2555
2556  static bool classof(const Type *T) {
2557    return T->getTypeClass() == TemplateSpecialization;
2558  }
2559  static bool classof(const TemplateSpecializationType *T) { return true; }
2560};
2561
2562/// \brief The injected class name of a C++ class template or class
2563/// template partial specialization.  Used to record that a type was
2564/// spelled with a bare identifier rather than as a template-id; the
2565/// equivalent for non-templated classes is just RecordType.
2566///
2567/// Injected class name types are always dependent.  Template
2568/// instantiation turns these into RecordTypes.
2569///
2570/// Injected class name types are always canonical.  This works
2571/// because it is impossible to compare an injected class name type
2572/// with the corresponding non-injected template type, for the same
2573/// reason that it is impossible to directly compare template
2574/// parameters from different dependent contexts: injected class name
2575/// types can only occur within the scope of a particular templated
2576/// declaration, and within that scope every template specialization
2577/// will canonicalize to the injected class name (when appropriate
2578/// according to the rules of the language).
2579class InjectedClassNameType : public Type {
2580  CXXRecordDecl *Decl;
2581
2582  /// The template specialization which this type represents.
2583  /// For example, in
2584  ///   template <class T> class A { ... };
2585  /// this is A<T>, whereas in
2586  ///   template <class X, class Y> class A<B<X,Y> > { ... };
2587  /// this is A<B<X,Y> >.
2588  ///
2589  /// It is always unqualified, always a template specialization type,
2590  /// and always dependent.
2591  QualType InjectedType;
2592
2593  friend class ASTContext; // ASTContext creates these.
2594  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
2595                          // currently suitable for AST reading, too much
2596                          // interdependencies.
2597  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
2598    : Type(InjectedClassName, QualType(), true),
2599      Decl(D), InjectedType(TST) {
2600    assert(isa<TemplateSpecializationType>(TST));
2601    assert(!TST.hasQualifiers());
2602    assert(TST->isDependentType());
2603  }
2604
2605public:
2606  QualType getInjectedSpecializationType() const { return InjectedType; }
2607  const TemplateSpecializationType *getInjectedTST() const {
2608    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
2609  }
2610
2611  CXXRecordDecl *getDecl() const;
2612
2613  bool isSugared() const { return false; }
2614  QualType desugar() const { return QualType(this, 0); }
2615
2616  static bool classof(const Type *T) {
2617    return T->getTypeClass() == InjectedClassName;
2618  }
2619  static bool classof(const InjectedClassNameType *T) { return true; }
2620};
2621
2622/// \brief The kind of a tag type.
2623enum TagTypeKind {
2624  /// \brief The "struct" keyword.
2625  TTK_Struct,
2626  /// \brief The "union" keyword.
2627  TTK_Union,
2628  /// \brief The "class" keyword.
2629  TTK_Class,
2630  /// \brief The "enum" keyword.
2631  TTK_Enum
2632};
2633
2634/// \brief The elaboration keyword that precedes a qualified type name or
2635/// introduces an elaborated-type-specifier.
2636enum ElaboratedTypeKeyword {
2637  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
2638  ETK_Struct,
2639  /// \brief The "union" keyword introduces the elaborated-type-specifier.
2640  ETK_Union,
2641  /// \brief The "class" keyword introduces the elaborated-type-specifier.
2642  ETK_Class,
2643  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
2644  ETK_Enum,
2645  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
2646  /// \c typename T::type.
2647  ETK_Typename,
2648  /// \brief No keyword precedes the qualified type name.
2649  ETK_None
2650};
2651
2652/// A helper class for Type nodes having an ElaboratedTypeKeyword.
2653/// The keyword in stored in the free bits of the base class.
2654/// Also provides a few static helpers for converting and printing
2655/// elaborated type keyword and tag type kind enumerations.
2656class TypeWithKeyword : public Type {
2657  /// Keyword - Encodes an ElaboratedTypeKeyword enumeration constant.
2658  unsigned Keyword : 3;
2659
2660protected:
2661  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
2662                  QualType Canonical, bool dependent)
2663    : Type(tc, Canonical, dependent), Keyword(Keyword) {}
2664
2665public:
2666  virtual ~TypeWithKeyword(); // pin vtable to Type.cpp
2667
2668  ElaboratedTypeKeyword getKeyword() const {
2669    return static_cast<ElaboratedTypeKeyword>(Keyword);
2670  }
2671
2672  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
2673  /// into an elaborated type keyword.
2674  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
2675
2676  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
2677  /// into a tag type kind.  It is an error to provide a type specifier
2678  /// which *isn't* a tag kind here.
2679  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
2680
2681  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
2682  /// elaborated type keyword.
2683  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
2684
2685  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
2686  // a TagTypeKind. It is an error to provide an elaborated type keyword
2687  /// which *isn't* a tag kind here.
2688  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
2689
2690  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
2691
2692  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
2693
2694  static const char *getTagTypeKindName(TagTypeKind Kind) {
2695    return getKeywordName(getKeywordForTagTypeKind(Kind));
2696  }
2697
2698  class CannotCastToThisType {};
2699  static CannotCastToThisType classof(const Type *);
2700};
2701
2702/// \brief Represents a type that was referred to using an elaborated type
2703/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
2704/// or both.
2705///
2706/// This type is used to keep track of a type name as written in the
2707/// source code, including tag keywords and any nested-name-specifiers.
2708/// The type itself is always "sugar", used to express what was written
2709/// in the source code but containing no additional semantic information.
2710class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
2711
2712  /// \brief The nested name specifier containing the qualifier.
2713  NestedNameSpecifier *NNS;
2714
2715  /// \brief The type that this qualified name refers to.
2716  QualType NamedType;
2717
2718  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2719                 QualType NamedType, QualType CanonType)
2720    : TypeWithKeyword(Keyword, Elaborated, CanonType,
2721                      NamedType->isDependentType()),
2722      NNS(NNS), NamedType(NamedType) {
2723    assert(!(Keyword == ETK_None && NNS == 0) &&
2724           "ElaboratedType cannot have elaborated type keyword "
2725           "and name qualifier both null.");
2726  }
2727
2728  friend class ASTContext;  // ASTContext creates these
2729
2730public:
2731  ~ElaboratedType();
2732
2733  /// \brief Retrieve the qualification on this type.
2734  NestedNameSpecifier *getQualifier() const { return NNS; }
2735
2736  /// \brief Retrieve the type named by the qualified-id.
2737  QualType getNamedType() const { return NamedType; }
2738
2739  /// \brief Remove a single level of sugar.
2740  QualType desugar() const { return getNamedType(); }
2741
2742  /// \brief Returns whether this type directly provides sugar.
2743  bool isSugared() const { return true; }
2744
2745  void Profile(llvm::FoldingSetNodeID &ID) {
2746    Profile(ID, getKeyword(), NNS, NamedType);
2747  }
2748
2749  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2750                      NestedNameSpecifier *NNS, QualType NamedType) {
2751    ID.AddInteger(Keyword);
2752    ID.AddPointer(NNS);
2753    NamedType.Profile(ID);
2754  }
2755
2756  static bool classof(const Type *T) {
2757    return T->getTypeClass() == Elaborated;
2758  }
2759  static bool classof(const ElaboratedType *T) { return true; }
2760};
2761
2762/// \brief Represents a qualified type name for which the type name is
2763/// dependent.
2764///
2765/// DependentNameType represents a class of dependent types that involve a
2766/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
2767/// name of a type. The DependentNameType may start with a "typename" (for a
2768/// typename-specifier), "class", "struct", "union", or "enum" (for a
2769/// dependent elaborated-type-specifier), or nothing (in contexts where we
2770/// know that we must be referring to a type, e.g., in a base class specifier).
2771class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
2772
2773  /// \brief The nested name specifier containing the qualifier.
2774  NestedNameSpecifier *NNS;
2775
2776  /// \brief The type that this typename specifier refers to.
2777  const IdentifierInfo *Name;
2778
2779  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2780                    const IdentifierInfo *Name, QualType CanonType)
2781    : TypeWithKeyword(Keyword, DependentName, CanonType, true),
2782      NNS(NNS), Name(Name) {
2783    assert(NNS->isDependent() &&
2784           "DependentNameType requires a dependent nested-name-specifier");
2785  }
2786
2787  friend class ASTContext;  // ASTContext creates these
2788
2789public:
2790  virtual ~DependentNameType();
2791
2792  /// \brief Retrieve the qualification on this type.
2793  NestedNameSpecifier *getQualifier() const { return NNS; }
2794
2795  /// \brief Retrieve the type named by the typename specifier as an
2796  /// identifier.
2797  ///
2798  /// This routine will return a non-NULL identifier pointer when the
2799  /// form of the original typename was terminated by an identifier,
2800  /// e.g., "typename T::type".
2801  const IdentifierInfo *getIdentifier() const {
2802    return Name;
2803  }
2804
2805  bool isSugared() const { return false; }
2806  QualType desugar() const { return QualType(this, 0); }
2807
2808  void Profile(llvm::FoldingSetNodeID &ID) {
2809    Profile(ID, getKeyword(), NNS, Name);
2810  }
2811
2812  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2813                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
2814    ID.AddInteger(Keyword);
2815    ID.AddPointer(NNS);
2816    ID.AddPointer(Name);
2817  }
2818
2819  static bool classof(const Type *T) {
2820    return T->getTypeClass() == DependentName;
2821  }
2822  static bool classof(const DependentNameType *T) { return true; }
2823};
2824
2825/// DependentTemplateSpecializationType - Represents a template
2826/// specialization type whose template cannot be resolved, e.g.
2827///   A<T>::template B<T>
2828class DependentTemplateSpecializationType :
2829  public TypeWithKeyword, public llvm::FoldingSetNode {
2830
2831  /// \brief The nested name specifier containing the qualifier.
2832  NestedNameSpecifier *NNS;
2833
2834  /// \brief The identifier of the template.
2835  const IdentifierInfo *Name;
2836
2837  /// \brief - The number of template arguments named in this class
2838  /// template specialization.
2839  unsigned NumArgs;
2840
2841  const TemplateArgument *getArgBuffer() const {
2842    return reinterpret_cast<const TemplateArgument*>(this+1);
2843  }
2844  TemplateArgument *getArgBuffer() {
2845    return reinterpret_cast<TemplateArgument*>(this+1);
2846  }
2847
2848  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
2849                                      NestedNameSpecifier *NNS,
2850                                      const IdentifierInfo *Name,
2851                                      unsigned NumArgs,
2852                                      const TemplateArgument *Args,
2853                                      QualType Canon);
2854
2855  friend class ASTContext;  // ASTContext creates these
2856
2857public:
2858  virtual ~DependentTemplateSpecializationType();
2859
2860  NestedNameSpecifier *getQualifier() const { return NNS; }
2861  const IdentifierInfo *getIdentifier() const { return Name; }
2862
2863  /// \brief Retrieve the template arguments.
2864  const TemplateArgument *getArgs() const {
2865    return getArgBuffer();
2866  }
2867
2868  /// \brief Retrieve the number of template arguments.
2869  unsigned getNumArgs() const { return NumArgs; }
2870
2871  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
2872
2873  typedef const TemplateArgument * iterator;
2874  iterator begin() const { return getArgs(); }
2875  iterator end() const; // inline in TemplateBase.h
2876
2877  bool isSugared() const { return false; }
2878  QualType desugar() const { return QualType(this, 0); }
2879
2880  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context) {
2881    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
2882  }
2883
2884  static void Profile(llvm::FoldingSetNodeID &ID,
2885                      ASTContext &Context,
2886                      ElaboratedTypeKeyword Keyword,
2887                      NestedNameSpecifier *Qualifier,
2888                      const IdentifierInfo *Name,
2889                      unsigned NumArgs,
2890                      const TemplateArgument *Args);
2891
2892  static bool classof(const Type *T) {
2893    return T->getTypeClass() == DependentTemplateSpecialization;
2894  }
2895  static bool classof(const DependentTemplateSpecializationType *T) {
2896    return true;
2897  }
2898};
2899
2900/// ObjCObjectType - Represents a class type in Objective C.
2901/// Every Objective C type is a combination of a base type and a
2902/// list of protocols.
2903///
2904/// Given the following declarations:
2905///   @class C;
2906///   @protocol P;
2907///
2908/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
2909/// with base C and no protocols.
2910///
2911/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
2912///
2913/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
2914/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
2915/// and no protocols.
2916///
2917/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
2918/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
2919/// this should get its own sugar class to better represent the source.
2920class ObjCObjectType : public Type {
2921  // Pad the bit count up so that NumProtocols is 2-byte aligned
2922  unsigned : BitsRemainingInType - 16;
2923
2924  /// \brief The number of protocols stored after the
2925  /// ObjCObjectPointerType node.
2926  ///
2927  /// These protocols are those written directly on the type.  If
2928  /// protocol qualifiers ever become additive, the iterators will
2929  /// get kindof complicated.
2930  ///
2931  /// In the canonical object type, these are sorted alphabetically
2932  /// and uniqued.
2933  unsigned NumProtocols : 16;
2934
2935  /// Either a BuiltinType or an InterfaceType or sugar for either.
2936  QualType BaseType;
2937
2938  ObjCProtocolDecl * const *getProtocolStorage() const {
2939    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
2940  }
2941
2942  ObjCProtocolDecl **getProtocolStorage();
2943
2944protected:
2945  ObjCObjectType(QualType Canonical, QualType Base,
2946                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
2947
2948  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
2949  ObjCObjectType(enum Nonce_ObjCInterface)
2950    : Type(ObjCInterface, QualType(), false),
2951      NumProtocols(0),
2952      BaseType(QualType(this_(), 0)) {}
2953
2954protected:
2955  Linkage getLinkageImpl() const; // key function
2956
2957public:
2958  /// getBaseType - Gets the base type of this object type.  This is
2959  /// always (possibly sugar for) one of:
2960  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
2961  ///    user, which is a typedef for an ObjCPointerType)
2962  ///  - the 'Class' builtin type (same caveat)
2963  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
2964  QualType getBaseType() const { return BaseType; }
2965
2966  bool isObjCId() const {
2967    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
2968  }
2969  bool isObjCClass() const {
2970    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
2971  }
2972  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
2973  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
2974  bool isObjCUnqualifiedIdOrClass() const {
2975    if (!qual_empty()) return false;
2976    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
2977      return T->getKind() == BuiltinType::ObjCId ||
2978             T->getKind() == BuiltinType::ObjCClass;
2979    return false;
2980  }
2981  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
2982  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
2983
2984  /// Gets the interface declaration for this object type, if the base type
2985  /// really is an interface.
2986  ObjCInterfaceDecl *getInterface() const;
2987
2988  typedef ObjCProtocolDecl * const *qual_iterator;
2989
2990  qual_iterator qual_begin() const { return getProtocolStorage(); }
2991  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
2992
2993  bool qual_empty() const { return getNumProtocols() == 0; }
2994
2995  /// getNumProtocols - Return the number of qualifying protocols in this
2996  /// interface type, or 0 if there are none.
2997  unsigned getNumProtocols() const { return NumProtocols; }
2998
2999  /// \brief Fetch a protocol by index.
3000  ObjCProtocolDecl *getProtocol(unsigned I) const {
3001    assert(I < getNumProtocols() && "Out-of-range protocol access");
3002    return qual_begin()[I];
3003  }
3004
3005  bool isSugared() const { return false; }
3006  QualType desugar() const { return QualType(this, 0); }
3007
3008  static bool classof(const Type *T) {
3009    return T->getTypeClass() == ObjCObject ||
3010           T->getTypeClass() == ObjCInterface;
3011  }
3012  static bool classof(const ObjCObjectType *) { return true; }
3013};
3014
3015/// ObjCObjectTypeImpl - A class providing a concrete implementation
3016/// of ObjCObjectType, so as to not increase the footprint of
3017/// ObjCInterfaceType.  Code outside of ASTContext and the core type
3018/// system should not reference this type.
3019class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
3020  friend class ASTContext;
3021
3022  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
3023  // will need to be modified.
3024
3025  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
3026                     ObjCProtocolDecl * const *Protocols,
3027                     unsigned NumProtocols)
3028    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
3029
3030public:
3031  void Profile(llvm::FoldingSetNodeID &ID);
3032  static void Profile(llvm::FoldingSetNodeID &ID,
3033                      QualType Base,
3034                      ObjCProtocolDecl *const *protocols,
3035                      unsigned NumProtocols);
3036};
3037
3038inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
3039  return reinterpret_cast<ObjCProtocolDecl**>(
3040            static_cast<ObjCObjectTypeImpl*>(this) + 1);
3041}
3042
3043/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
3044/// object oriented design.  They basically correspond to C++ classes.  There
3045/// are two kinds of interface types, normal interfaces like "NSString" and
3046/// qualified interfaces, which are qualified with a protocol list like
3047/// "NSString<NSCopyable, NSAmazing>".
3048///
3049/// ObjCInterfaceType guarantees the following properties when considered
3050/// as a subtype of its superclass, ObjCObjectType:
3051///   - There are no protocol qualifiers.  To reinforce this, code which
3052///     tries to invoke the protocol methods via an ObjCInterfaceType will
3053///     fail to compile.
3054///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
3055///     T->getBaseType() == QualType(T, 0).
3056class ObjCInterfaceType : public ObjCObjectType {
3057  ObjCInterfaceDecl *Decl;
3058
3059  ObjCInterfaceType(const ObjCInterfaceDecl *D)
3060    : ObjCObjectType(Nonce_ObjCInterface),
3061      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
3062  friend class ASTContext;  // ASTContext creates these.
3063public:
3064  /// getDecl - Get the declaration of this interface.
3065  ObjCInterfaceDecl *getDecl() const { return Decl; }
3066
3067  bool isSugared() const { return false; }
3068  QualType desugar() const { return QualType(this, 0); }
3069
3070  static bool classof(const Type *T) {
3071    return T->getTypeClass() == ObjCInterface;
3072  }
3073  static bool classof(const ObjCInterfaceType *) { return true; }
3074
3075  // Nonsense to "hide" certain members of ObjCObjectType within this
3076  // class.  People asking for protocols on an ObjCInterfaceType are
3077  // not going to get what they want: ObjCInterfaceTypes are
3078  // guaranteed to have no protocols.
3079  enum {
3080    qual_iterator,
3081    qual_begin,
3082    qual_end,
3083    getNumProtocols,
3084    getProtocol
3085  };
3086};
3087
3088inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
3089  if (const ObjCInterfaceType *T =
3090        getBaseType()->getAs<ObjCInterfaceType>())
3091    return T->getDecl();
3092  return 0;
3093}
3094
3095/// ObjCObjectPointerType - Used to represent a pointer to an
3096/// Objective C object.  These are constructed from pointer
3097/// declarators when the pointee type is an ObjCObjectType (or sugar
3098/// for one).  In addition, the 'id' and 'Class' types are typedefs
3099/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
3100/// are translated into these.
3101///
3102/// Pointers to pointers to Objective C objects are still PointerTypes;
3103/// only the first level of pointer gets it own type implementation.
3104class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
3105  QualType PointeeType;
3106
3107  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
3108    : Type(ObjCObjectPointer, Canonical, false),
3109      PointeeType(Pointee) {}
3110  friend class ASTContext;  // ASTContext creates these.
3111
3112protected:
3113  virtual Linkage getLinkageImpl() const;
3114
3115public:
3116  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
3117  /// The result will always be an ObjCObjectType or sugar thereof.
3118  QualType getPointeeType() const { return PointeeType; }
3119
3120  /// getObjCObjectType - Gets the type pointed to by this ObjC
3121  /// pointer.  This method always returns non-null.
3122  ///
3123  /// This method is equivalent to getPointeeType() except that
3124  /// it discards any typedefs (or other sugar) between this
3125  /// type and the "outermost" object type.  So for:
3126  ///   @class A; @protocol P; @protocol Q;
3127  ///   typedef A<P> AP;
3128  ///   typedef A A1;
3129  ///   typedef A1<P> A1P;
3130  ///   typedef A1P<Q> A1PQ;
3131  /// For 'A*', getObjectType() will return 'A'.
3132  /// For 'A<P>*', getObjectType() will return 'A<P>'.
3133  /// For 'AP*', getObjectType() will return 'A<P>'.
3134  /// For 'A1*', getObjectType() will return 'A'.
3135  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
3136  /// For 'A1P*', getObjectType() will return 'A1<P>'.
3137  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
3138  ///   adding protocols to a protocol-qualified base discards the
3139  ///   old qualifiers (for now).  But if it didn't, getObjectType()
3140  ///   would return 'A1P<Q>' (and we'd have to make iterating over
3141  ///   qualifiers more complicated).
3142  const ObjCObjectType *getObjectType() const {
3143    return PointeeType->getAs<ObjCObjectType>();
3144  }
3145
3146  /// getInterfaceType - If this pointer points to an Objective C
3147  /// @interface type, gets the type for that interface.  Any protocol
3148  /// qualifiers on the interface are ignored.
3149  ///
3150  /// \return null if the base type for this pointer is 'id' or 'Class'
3151  const ObjCInterfaceType *getInterfaceType() const {
3152    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
3153  }
3154
3155  /// getInterfaceDecl - If this pointer points to an Objective @interface
3156  /// type, gets the declaration for that interface.
3157  ///
3158  /// \return null if the base type for this pointer is 'id' or 'Class'
3159  ObjCInterfaceDecl *getInterfaceDecl() const {
3160    return getObjectType()->getInterface();
3161  }
3162
3163  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
3164  /// its object type is the primitive 'id' type with no protocols.
3165  bool isObjCIdType() const {
3166    return getObjectType()->isObjCUnqualifiedId();
3167  }
3168
3169  /// isObjCClassType - True if this is equivalent to the 'Class' type,
3170  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
3171  bool isObjCClassType() const {
3172    return getObjectType()->isObjCUnqualifiedClass();
3173  }
3174
3175  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
3176  /// non-empty set of protocols.
3177  bool isObjCQualifiedIdType() const {
3178    return getObjectType()->isObjCQualifiedId();
3179  }
3180
3181  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
3182  /// some non-empty set of protocols.
3183  bool isObjCQualifiedClassType() const {
3184    return getObjectType()->isObjCQualifiedClass();
3185  }
3186
3187  /// An iterator over the qualifiers on the object type.  Provided
3188  /// for convenience.  This will always iterate over the full set of
3189  /// protocols on a type, not just those provided directly.
3190  typedef ObjCObjectType::qual_iterator qual_iterator;
3191
3192  qual_iterator qual_begin() const {
3193    return getObjectType()->qual_begin();
3194  }
3195  qual_iterator qual_end() const {
3196    return getObjectType()->qual_end();
3197  }
3198  bool qual_empty() const { return getObjectType()->qual_empty(); }
3199
3200  /// getNumProtocols - Return the number of qualifying protocols on
3201  /// the object type.
3202  unsigned getNumProtocols() const {
3203    return getObjectType()->getNumProtocols();
3204  }
3205
3206  /// \brief Retrieve a qualifying protocol by index on the object
3207  /// type.
3208  ObjCProtocolDecl *getProtocol(unsigned I) const {
3209    return getObjectType()->getProtocol(I);
3210  }
3211
3212  bool isSugared() const { return false; }
3213  QualType desugar() const { return QualType(this, 0); }
3214
3215  void Profile(llvm::FoldingSetNodeID &ID) {
3216    Profile(ID, getPointeeType());
3217  }
3218  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
3219    ID.AddPointer(T.getAsOpaquePtr());
3220  }
3221  static bool classof(const Type *T) {
3222    return T->getTypeClass() == ObjCObjectPointer;
3223  }
3224  static bool classof(const ObjCObjectPointerType *) { return true; }
3225};
3226
3227/// A qualifier set is used to build a set of qualifiers.
3228class QualifierCollector : public Qualifiers {
3229  ASTContext *Context;
3230
3231public:
3232  QualifierCollector(Qualifiers Qs = Qualifiers())
3233    : Qualifiers(Qs), Context(0) {}
3234  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
3235    : Qualifiers(Qs), Context(&Context) {}
3236
3237  void setContext(ASTContext &C) { Context = &C; }
3238
3239  /// Collect any qualifiers on the given type and return an
3240  /// unqualified type.
3241  const Type *strip(QualType QT) {
3242    addFastQualifiers(QT.getLocalFastQualifiers());
3243    if (QT.hasLocalNonFastQualifiers()) {
3244      const ExtQuals *EQ = QT.getExtQualsUnsafe();
3245      Context = &EQ->getContext();
3246      addQualifiers(EQ->getQualifiers());
3247      return EQ->getBaseType();
3248    }
3249    return QT.getTypePtrUnsafe();
3250  }
3251
3252  /// Apply the collected qualifiers to the given type.
3253  QualType apply(QualType QT) const;
3254
3255  /// Apply the collected qualifiers to the given type.
3256  QualType apply(const Type* T) const;
3257
3258};
3259
3260
3261// Inline function definitions.
3262
3263inline bool QualType::isCanonical() const {
3264  const Type *T = getTypePtr();
3265  if (hasLocalQualifiers())
3266    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
3267  return T->isCanonicalUnqualified();
3268}
3269
3270inline bool QualType::isCanonicalAsParam() const {
3271  if (hasLocalQualifiers()) return false;
3272  const Type *T = getTypePtr();
3273  return T->isCanonicalUnqualified() &&
3274           !isa<FunctionType>(T) && !isa<ArrayType>(T);
3275}
3276
3277inline bool QualType::isConstQualified() const {
3278  return isLocalConstQualified() ||
3279              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
3280}
3281
3282inline bool QualType::isRestrictQualified() const {
3283  return isLocalRestrictQualified() ||
3284            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
3285}
3286
3287
3288inline bool QualType::isVolatileQualified() const {
3289  return isLocalVolatileQualified() ||
3290  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
3291}
3292
3293inline bool QualType::hasQualifiers() const {
3294  return hasLocalQualifiers() ||
3295                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
3296}
3297
3298inline Qualifiers QualType::getQualifiers() const {
3299  Qualifiers Quals = getLocalQualifiers();
3300  Quals.addQualifiers(
3301                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
3302  return Quals;
3303}
3304
3305inline unsigned QualType::getCVRQualifiers() const {
3306  return getLocalCVRQualifiers() |
3307              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
3308}
3309
3310/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
3311/// type, returns them. Otherwise, if this is an array type, recurses
3312/// on the element type until some qualifiers have been found or a non-array
3313/// type reached.
3314inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
3315  if (unsigned Quals = getCVRQualifiers())
3316    return Quals;
3317  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3318  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3319    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
3320  return 0;
3321}
3322
3323inline void QualType::removeConst() {
3324  removeFastQualifiers(Qualifiers::Const);
3325}
3326
3327inline void QualType::removeRestrict() {
3328  removeFastQualifiers(Qualifiers::Restrict);
3329}
3330
3331inline void QualType::removeVolatile() {
3332  QualifierCollector Qc;
3333  const Type *Ty = Qc.strip(*this);
3334  if (Qc.hasVolatile()) {
3335    Qc.removeVolatile();
3336    *this = Qc.apply(Ty);
3337  }
3338}
3339
3340inline void QualType::removeCVRQualifiers(unsigned Mask) {
3341  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
3342
3343  // Fast path: we don't need to touch the slow qualifiers.
3344  if (!(Mask & ~Qualifiers::FastMask)) {
3345    removeFastQualifiers(Mask);
3346    return;
3347  }
3348
3349  QualifierCollector Qc;
3350  const Type *Ty = Qc.strip(*this);
3351  Qc.removeCVRQualifiers(Mask);
3352  *this = Qc.apply(Ty);
3353}
3354
3355/// getAddressSpace - Return the address space of this type.
3356inline unsigned QualType::getAddressSpace() const {
3357  if (hasLocalNonFastQualifiers()) {
3358    const ExtQuals *EQ = getExtQualsUnsafe();
3359    if (EQ->hasAddressSpace())
3360      return EQ->getAddressSpace();
3361  }
3362
3363  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3364  if (CT.hasLocalNonFastQualifiers()) {
3365    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3366    if (EQ->hasAddressSpace())
3367      return EQ->getAddressSpace();
3368  }
3369
3370  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3371    return AT->getElementType().getAddressSpace();
3372  if (const RecordType *RT = dyn_cast<RecordType>(CT))
3373    return RT->getAddressSpace();
3374  return 0;
3375}
3376
3377/// getObjCGCAttr - Return the gc attribute of this type.
3378inline Qualifiers::GC QualType::getObjCGCAttr() const {
3379  if (hasLocalNonFastQualifiers()) {
3380    const ExtQuals *EQ = getExtQualsUnsafe();
3381    if (EQ->hasObjCGCAttr())
3382      return EQ->getObjCGCAttr();
3383  }
3384
3385  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3386  if (CT.hasLocalNonFastQualifiers()) {
3387    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3388    if (EQ->hasObjCGCAttr())
3389      return EQ->getObjCGCAttr();
3390  }
3391
3392  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3393      return AT->getElementType().getObjCGCAttr();
3394  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
3395    return PT->getPointeeType().getObjCGCAttr();
3396  // We most look at all pointer types, not just pointer to interface types.
3397  if (const PointerType *PT = CT->getAs<PointerType>())
3398    return PT->getPointeeType().getObjCGCAttr();
3399  return Qualifiers::GCNone;
3400}
3401
3402inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
3403  if (const PointerType *PT = t.getAs<PointerType>()) {
3404    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
3405      return FT->getExtInfo();
3406  } else if (const FunctionType *FT = t.getAs<FunctionType>())
3407    return FT->getExtInfo();
3408
3409  return FunctionType::ExtInfo();
3410}
3411
3412inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
3413  return getFunctionExtInfo(*t);
3414}
3415
3416/// \brief Determine whether this set of qualifiers is a superset of the given
3417/// set of qualifiers.
3418inline bool Qualifiers::isSupersetOf(Qualifiers Other) const {
3419  return Mask != Other.Mask && (Mask | Other.Mask) == Mask;
3420}
3421
3422/// isMoreQualifiedThan - Determine whether this type is more
3423/// qualified than the Other type. For example, "const volatile int"
3424/// is more qualified than "const int", "volatile int", and
3425/// "int". However, it is not more qualified than "const volatile
3426/// int".
3427inline bool QualType::isMoreQualifiedThan(QualType Other) const {
3428  // FIXME: work on arbitrary qualifiers
3429  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3430  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3431  if (getAddressSpace() != Other.getAddressSpace())
3432    return false;
3433  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
3434}
3435
3436/// isAtLeastAsQualifiedAs - Determine whether this type is at last
3437/// as qualified as the Other type. For example, "const volatile
3438/// int" is at least as qualified as "const int", "volatile int",
3439/// "int", and "const volatile int".
3440inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
3441  // FIXME: work on arbitrary qualifiers
3442  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3443  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3444  if (getAddressSpace() != Other.getAddressSpace())
3445    return false;
3446  return (MyQuals | OtherQuals) == MyQuals;
3447}
3448
3449/// getNonReferenceType - If Type is a reference type (e.g., const
3450/// int&), returns the type that the reference refers to ("const
3451/// int"). Otherwise, returns the type itself. This routine is used
3452/// throughout Sema to implement C++ 5p6:
3453///
3454///   If an expression initially has the type "reference to T" (8.3.2,
3455///   8.5.3), the type is adjusted to "T" prior to any further
3456///   analysis, the expression designates the object or function
3457///   denoted by the reference, and the expression is an lvalue.
3458inline QualType QualType::getNonReferenceType() const {
3459  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
3460    return RefType->getPointeeType();
3461  else
3462    return *this;
3463}
3464
3465inline bool Type::isFunctionType() const {
3466  return isa<FunctionType>(CanonicalType);
3467}
3468inline bool Type::isPointerType() const {
3469  return isa<PointerType>(CanonicalType);
3470}
3471inline bool Type::isAnyPointerType() const {
3472  return isPointerType() || isObjCObjectPointerType();
3473}
3474inline bool Type::isBlockPointerType() const {
3475  return isa<BlockPointerType>(CanonicalType);
3476}
3477inline bool Type::isReferenceType() const {
3478  return isa<ReferenceType>(CanonicalType);
3479}
3480inline bool Type::isLValueReferenceType() const {
3481  return isa<LValueReferenceType>(CanonicalType);
3482}
3483inline bool Type::isRValueReferenceType() const {
3484  return isa<RValueReferenceType>(CanonicalType);
3485}
3486inline bool Type::isFunctionPointerType() const {
3487  if (const PointerType* T = getAs<PointerType>())
3488    return T->getPointeeType()->isFunctionType();
3489  else
3490    return false;
3491}
3492inline bool Type::isMemberPointerType() const {
3493  return isa<MemberPointerType>(CanonicalType);
3494}
3495inline bool Type::isMemberFunctionPointerType() const {
3496  if (const MemberPointerType* T = getAs<MemberPointerType>())
3497    return T->isMemberFunctionPointer();
3498  else
3499    return false;
3500}
3501inline bool Type::isMemberDataPointerType() const {
3502  if (const MemberPointerType* T = getAs<MemberPointerType>())
3503    return T->isMemberDataPointer();
3504  else
3505    return false;
3506}
3507inline bool Type::isArrayType() const {
3508  return isa<ArrayType>(CanonicalType);
3509}
3510inline bool Type::isConstantArrayType() const {
3511  return isa<ConstantArrayType>(CanonicalType);
3512}
3513inline bool Type::isIncompleteArrayType() const {
3514  return isa<IncompleteArrayType>(CanonicalType);
3515}
3516inline bool Type::isVariableArrayType() const {
3517  return isa<VariableArrayType>(CanonicalType);
3518}
3519inline bool Type::isDependentSizedArrayType() const {
3520  return isa<DependentSizedArrayType>(CanonicalType);
3521}
3522inline bool Type::isRecordType() const {
3523  return isa<RecordType>(CanonicalType);
3524}
3525inline bool Type::isAnyComplexType() const {
3526  return isa<ComplexType>(CanonicalType);
3527}
3528inline bool Type::isVectorType() const {
3529  return isa<VectorType>(CanonicalType);
3530}
3531inline bool Type::isExtVectorType() const {
3532  return isa<ExtVectorType>(CanonicalType);
3533}
3534inline bool Type::isObjCObjectPointerType() const {
3535  return isa<ObjCObjectPointerType>(CanonicalType);
3536}
3537inline bool Type::isObjCObjectType() const {
3538  return isa<ObjCObjectType>(CanonicalType);
3539}
3540inline bool Type::isObjCObjectOrInterfaceType() const {
3541  return isa<ObjCInterfaceType>(CanonicalType) ||
3542    isa<ObjCObjectType>(CanonicalType);
3543}
3544
3545inline bool Type::isObjCQualifiedIdType() const {
3546  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3547    return OPT->isObjCQualifiedIdType();
3548  return false;
3549}
3550inline bool Type::isObjCQualifiedClassType() const {
3551  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3552    return OPT->isObjCQualifiedClassType();
3553  return false;
3554}
3555inline bool Type::isObjCIdType() const {
3556  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3557    return OPT->isObjCIdType();
3558  return false;
3559}
3560inline bool Type::isObjCClassType() const {
3561  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3562    return OPT->isObjCClassType();
3563  return false;
3564}
3565inline bool Type::isObjCSelType() const {
3566  if (const PointerType *OPT = getAs<PointerType>())
3567    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3568  return false;
3569}
3570inline bool Type::isObjCBuiltinType() const {
3571  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3572}
3573inline bool Type::isTemplateTypeParmType() const {
3574  return isa<TemplateTypeParmType>(CanonicalType);
3575}
3576
3577inline bool Type::isBuiltinType() const {
3578  return getAs<BuiltinType>();
3579}
3580
3581inline bool Type::isSpecificBuiltinType(unsigned K) const {
3582  if (const BuiltinType *BT = getAs<BuiltinType>())
3583    if (BT->getKind() == (BuiltinType::Kind) K)
3584      return true;
3585  return false;
3586}
3587
3588/// \brief Determines whether this is a type for which one can define
3589/// an overloaded operator.
3590inline bool Type::isOverloadableType() const {
3591  return isDependentType() || isRecordType() || isEnumeralType();
3592}
3593
3594inline bool Type::hasPointerRepresentation() const {
3595  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3596          isObjCObjectPointerType() || isNullPtrType());
3597}
3598
3599inline bool Type::hasObjCPointerRepresentation() const {
3600  return isObjCObjectPointerType();
3601}
3602
3603/// Insertion operator for diagnostics.  This allows sending QualType's into a
3604/// diagnostic with <<.
3605inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3606                                           QualType T) {
3607  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3608                  Diagnostic::ak_qualtype);
3609  return DB;
3610}
3611
3612/// Insertion operator for partial diagnostics.  This allows sending QualType's
3613/// into a diagnostic with <<.
3614inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
3615                                           QualType T) {
3616  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3617                  Diagnostic::ak_qualtype);
3618  return PD;
3619}
3620
3621// Helper class template that is used by Type::getAs to ensure that one does
3622// not try to look through a qualified type to get to an array type.
3623template<typename T,
3624         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3625                             llvm::is_base_of<ArrayType, T>::value)>
3626struct ArrayType_cannot_be_used_with_getAs { };
3627
3628template<typename T>
3629struct ArrayType_cannot_be_used_with_getAs<T, true>;
3630
3631/// Member-template getAs<specific type>'.
3632template <typename T> const T *Type::getAs() const {
3633  ArrayType_cannot_be_used_with_getAs<T> at;
3634  (void)at;
3635
3636  // If this is directly a T type, return it.
3637  if (const T *Ty = dyn_cast<T>(this))
3638    return Ty;
3639
3640  // If the canonical form of this type isn't the right kind, reject it.
3641  if (!isa<T>(CanonicalType))
3642    return 0;
3643
3644  // If this is a typedef for the type, strip the typedef off without
3645  // losing all typedef information.
3646  return cast<T>(getUnqualifiedDesugaredType());
3647}
3648
3649}  // end namespace clang
3650
3651#endif
3652