Type.h revision 723df245307a530da5433dfb43accf187dc3e243
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Basic/Visibility.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/TemplateName.h"
24#include "llvm/Support/Casting.h"
25#include "llvm/Support/type_traits.h"
26#include "llvm/ADT/APSInt.h"
27#include "llvm/ADT/FoldingSet.h"
28#include "llvm/ADT/PointerIntPair.h"
29#include "llvm/ADT/PointerUnion.h"
30
31using llvm::isa;
32using llvm::cast;
33using llvm::cast_or_null;
34using llvm::dyn_cast;
35using llvm::dyn_cast_or_null;
36namespace clang {
37  enum {
38    TypeAlignmentInBits = 4,
39    TypeAlignment = 1 << TypeAlignmentInBits
40  };
41  class Type;
42  class ExtQuals;
43  class QualType;
44}
45
46namespace llvm {
47  template <typename T>
48  class PointerLikeTypeTraits;
49  template<>
50  class PointerLikeTypeTraits< ::clang::Type*> {
51  public:
52    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
53    static inline ::clang::Type *getFromVoidPointer(void *P) {
54      return static_cast< ::clang::Type*>(P);
55    }
56    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
57  };
58  template<>
59  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
60  public:
61    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
62    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
63      return static_cast< ::clang::ExtQuals*>(P);
64    }
65    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
66  };
67
68  template <>
69  struct isPodLike<clang::QualType> { static const bool value = true; };
70}
71
72namespace clang {
73  class ASTContext;
74  class TypedefDecl;
75  class TemplateDecl;
76  class TemplateTypeParmDecl;
77  class NonTypeTemplateParmDecl;
78  class TemplateTemplateParmDecl;
79  class TagDecl;
80  class RecordDecl;
81  class CXXRecordDecl;
82  class EnumDecl;
83  class FieldDecl;
84  class ObjCInterfaceDecl;
85  class ObjCProtocolDecl;
86  class ObjCMethodDecl;
87  class UnresolvedUsingTypenameDecl;
88  class Expr;
89  class Stmt;
90  class SourceLocation;
91  class StmtIteratorBase;
92  class TemplateArgument;
93  class TemplateArgumentLoc;
94  class TemplateArgumentListInfo;
95  class Type;
96  class ElaboratedType;
97  struct PrintingPolicy;
98
99  template <typename> class CanQual;
100  typedef CanQual<Type> CanQualType;
101
102  // Provide forward declarations for all of the *Type classes
103#define TYPE(Class, Base) class Class##Type;
104#include "clang/AST/TypeNodes.def"
105
106/// Qualifiers - The collection of all-type qualifiers we support.
107/// Clang supports five independent qualifiers:
108/// * C99: const, volatile, and restrict
109/// * Embedded C (TR18037): address spaces
110/// * Objective C: the GC attributes (none, weak, or strong)
111class Qualifiers {
112public:
113  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
114    Const    = 0x1,
115    Restrict = 0x2,
116    Volatile = 0x4,
117    CVRMask = Const | Volatile | Restrict
118  };
119
120  enum GC {
121    GCNone = 0,
122    Weak,
123    Strong
124  };
125
126  enum {
127    /// The maximum supported address space number.
128    /// 24 bits should be enough for anyone.
129    MaxAddressSpace = 0xffffffu,
130
131    /// The width of the "fast" qualifier mask.
132    FastWidth = 3,
133
134    /// The fast qualifier mask.
135    FastMask = (1 << FastWidth) - 1
136  };
137
138  Qualifiers() : Mask(0) {}
139
140  static Qualifiers fromFastMask(unsigned Mask) {
141    Qualifiers Qs;
142    Qs.addFastQualifiers(Mask);
143    return Qs;
144  }
145
146  static Qualifiers fromCVRMask(unsigned CVR) {
147    Qualifiers Qs;
148    Qs.addCVRQualifiers(CVR);
149    return Qs;
150  }
151
152  // Deserialize qualifiers from an opaque representation.
153  static Qualifiers fromOpaqueValue(unsigned opaque) {
154    Qualifiers Qs;
155    Qs.Mask = opaque;
156    return Qs;
157  }
158
159  // Serialize these qualifiers into an opaque representation.
160  unsigned getAsOpaqueValue() const {
161    return Mask;
162  }
163
164  bool hasConst() const { return Mask & Const; }
165  void setConst(bool flag) {
166    Mask = (Mask & ~Const) | (flag ? Const : 0);
167  }
168  void removeConst() { Mask &= ~Const; }
169  void addConst() { Mask |= Const; }
170
171  bool hasVolatile() const { return Mask & Volatile; }
172  void setVolatile(bool flag) {
173    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
174  }
175  void removeVolatile() { Mask &= ~Volatile; }
176  void addVolatile() { Mask |= Volatile; }
177
178  bool hasRestrict() const { return Mask & Restrict; }
179  void setRestrict(bool flag) {
180    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
181  }
182  void removeRestrict() { Mask &= ~Restrict; }
183  void addRestrict() { Mask |= Restrict; }
184
185  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
186  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
187  void setCVRQualifiers(unsigned mask) {
188    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
189    Mask = (Mask & ~CVRMask) | mask;
190  }
191  void removeCVRQualifiers(unsigned mask) {
192    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
193    Mask &= ~mask;
194  }
195  void removeCVRQualifiers() {
196    removeCVRQualifiers(CVRMask);
197  }
198  void addCVRQualifiers(unsigned mask) {
199    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
200    Mask |= mask;
201  }
202
203  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
204  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
205  void setObjCGCAttr(GC type) {
206    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
207  }
208  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
209  void addObjCGCAttr(GC type) {
210    assert(type);
211    setObjCGCAttr(type);
212  }
213
214  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
215  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
216  void setAddressSpace(unsigned space) {
217    assert(space <= MaxAddressSpace);
218    Mask = (Mask & ~AddressSpaceMask)
219         | (((uint32_t) space) << AddressSpaceShift);
220  }
221  void removeAddressSpace() { setAddressSpace(0); }
222  void addAddressSpace(unsigned space) {
223    assert(space);
224    setAddressSpace(space);
225  }
226
227  // Fast qualifiers are those that can be allocated directly
228  // on a QualType object.
229  bool hasFastQualifiers() const { return getFastQualifiers(); }
230  unsigned getFastQualifiers() const { return Mask & FastMask; }
231  void setFastQualifiers(unsigned mask) {
232    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
233    Mask = (Mask & ~FastMask) | mask;
234  }
235  void removeFastQualifiers(unsigned mask) {
236    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
237    Mask &= ~mask;
238  }
239  void removeFastQualifiers() {
240    removeFastQualifiers(FastMask);
241  }
242  void addFastQualifiers(unsigned mask) {
243    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
244    Mask |= mask;
245  }
246
247  /// hasNonFastQualifiers - Return true if the set contains any
248  /// qualifiers which require an ExtQuals node to be allocated.
249  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
250  Qualifiers getNonFastQualifiers() const {
251    Qualifiers Quals = *this;
252    Quals.setFastQualifiers(0);
253    return Quals;
254  }
255
256  /// hasQualifiers - Return true if the set contains any qualifiers.
257  bool hasQualifiers() const { return Mask; }
258  bool empty() const { return !Mask; }
259
260  /// \brief Add the qualifiers from the given set to this set.
261  void addQualifiers(Qualifiers Q) {
262    // If the other set doesn't have any non-boolean qualifiers, just
263    // bit-or it in.
264    if (!(Q.Mask & ~CVRMask))
265      Mask |= Q.Mask;
266    else {
267      Mask |= (Q.Mask & CVRMask);
268      if (Q.hasAddressSpace())
269        addAddressSpace(Q.getAddressSpace());
270      if (Q.hasObjCGCAttr())
271        addObjCGCAttr(Q.getObjCGCAttr());
272    }
273  }
274
275  bool isSupersetOf(Qualifiers Other) const;
276
277  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
278  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
279
280  operator bool() const { return hasQualifiers(); }
281
282  Qualifiers &operator+=(Qualifiers R) {
283    addQualifiers(R);
284    return *this;
285  }
286
287  // Union two qualifier sets.  If an enumerated qualifier appears
288  // in both sets, use the one from the right.
289  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
290    L += R;
291    return L;
292  }
293
294  Qualifiers &operator-=(Qualifiers R) {
295    Mask = Mask & ~(R.Mask);
296    return *this;
297  }
298
299  /// \brief Compute the difference between two qualifier sets.
300  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
301    L -= R;
302    return L;
303  }
304
305  std::string getAsString() const;
306  std::string getAsString(const PrintingPolicy &Policy) const {
307    std::string Buffer;
308    getAsStringInternal(Buffer, Policy);
309    return Buffer;
310  }
311  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
312
313  void Profile(llvm::FoldingSetNodeID &ID) const {
314    ID.AddInteger(Mask);
315  }
316
317private:
318
319  // bits:     |0 1 2|3 .. 4|5  ..  31|
320  //           |C R V|GCAttr|AddrSpace|
321  uint32_t Mask;
322
323  static const uint32_t GCAttrMask = 0x18;
324  static const uint32_t GCAttrShift = 3;
325  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
326  static const uint32_t AddressSpaceShift = 5;
327};
328
329/// \brief Base class that is common to both the \c ExtQuals and \c Type
330/// classes, which allows \c QualType to access the common fields between the
331/// two.
332///
333class ExtQualsTypeCommonBase {
334protected:
335  ExtQualsTypeCommonBase(const Type *BaseType) : BaseType(BaseType) { }
336
337  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
338  /// a self-referential pointer (for \c Type).
339  ///
340  /// This pointer allows an efficient mapping from a QualType to its
341  /// underlying type pointer.
342  const Type *BaseType;
343
344  friend class QualType;
345};
346
347/// ExtQuals - We can encode up to four bits in the low bits of a
348/// type pointer, but there are many more type qualifiers that we want
349/// to be able to apply to an arbitrary type.  Therefore we have this
350/// struct, intended to be heap-allocated and used by QualType to
351/// store qualifiers.
352///
353/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
354/// in three low bits on the QualType pointer; a fourth bit records whether
355/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
356/// Objective-C GC attributes) are much more rare.
357class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
358  // NOTE: changing the fast qualifiers should be straightforward as
359  // long as you don't make 'const' non-fast.
360  // 1. Qualifiers:
361  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
362  //       Fast qualifiers must occupy the low-order bits.
363  //    b) Update Qualifiers::FastWidth and FastMask.
364  // 2. QualType:
365  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
366  //    b) Update remove{Volatile,Restrict}, defined near the end of
367  //       this header.
368  // 3. ASTContext:
369  //    a) Update get{Volatile,Restrict}Type.
370
371  /// Quals - the immutable set of qualifiers applied by this
372  /// node;  always contains extended qualifiers.
373  Qualifiers Quals;
374
375public:
376  ExtQuals(const Type *Base, Qualifiers Quals)
377    : ExtQualsTypeCommonBase(Base), Quals(Quals)
378  {
379    assert(Quals.hasNonFastQualifiers()
380           && "ExtQuals created with no fast qualifiers");
381    assert(!Quals.hasFastQualifiers()
382           && "ExtQuals created with fast qualifiers");
383  }
384
385  Qualifiers getQualifiers() const { return Quals; }
386
387  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
388  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
389
390  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
391  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
392
393  const Type *getBaseType() const { return BaseType; }
394
395public:
396  void Profile(llvm::FoldingSetNodeID &ID) const {
397    Profile(ID, getBaseType(), Quals);
398  }
399  static void Profile(llvm::FoldingSetNodeID &ID,
400                      const Type *BaseType,
401                      Qualifiers Quals) {
402    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
403    ID.AddPointer(BaseType);
404    Quals.Profile(ID);
405  }
406};
407
408/// CallingConv - Specifies the calling convention that a function uses.
409enum CallingConv {
410  CC_Default,
411  CC_C,           // __attribute__((cdecl))
412  CC_X86StdCall,  // __attribute__((stdcall))
413  CC_X86FastCall, // __attribute__((fastcall))
414  CC_X86ThisCall, // __attribute__((thiscall))
415  CC_X86Pascal    // __attribute__((pascal))
416};
417
418typedef std::pair<const Type*, Qualifiers> SplitQualType;
419
420/// QualType - For efficiency, we don't store CV-qualified types as nodes on
421/// their own: instead each reference to a type stores the qualifiers.  This
422/// greatly reduces the number of nodes we need to allocate for types (for
423/// example we only need one for 'int', 'const int', 'volatile int',
424/// 'const volatile int', etc).
425///
426/// As an added efficiency bonus, instead of making this a pair, we
427/// just store the two bits we care about in the low bits of the
428/// pointer.  To handle the packing/unpacking, we make QualType be a
429/// simple wrapper class that acts like a smart pointer.  A third bit
430/// indicates whether there are extended qualifiers present, in which
431/// case the pointer points to a special structure.
432class QualType {
433  // Thankfully, these are efficiently composable.
434  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
435                       Qualifiers::FastWidth> Value;
436
437  const ExtQuals *getExtQualsUnsafe() const {
438    return Value.getPointer().get<const ExtQuals*>();
439  }
440
441  const Type *getTypePtrUnsafe() const {
442    return Value.getPointer().get<const Type*>();
443  }
444
445  QualType getUnqualifiedTypeSlow() const;
446
447  friend class QualifierCollector;
448public:
449  QualType() {}
450
451  QualType(const Type *Ptr, unsigned Quals)
452    : Value(Ptr, Quals) {}
453  QualType(const ExtQuals *Ptr, unsigned Quals)
454    : Value(Ptr, Quals) {}
455
456  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
457  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
458
459  /// Retrieves a pointer to the underlying (unqualified) type.
460  /// This should really return a const Type, but it's not worth
461  /// changing all the users right now.
462  ///
463  /// This function requires that the type not be NULL. If the type might be
464  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
465  Type *getTypePtr() const {
466    assert(!isNull() && "Cannot retrieve a NULL type pointer");
467    uintptr_t CommonPtrVal
468      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
469    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
470    ExtQualsTypeCommonBase *CommonPtr
471      = reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
472    return const_cast<Type *>(CommonPtr->BaseType);
473  }
474
475  Type *getTypePtrOrNull() const {
476    uintptr_t TypePtrPtrVal
477      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
478    TypePtrPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
479    Type **TypePtrPtr = reinterpret_cast<Type**>(TypePtrPtrVal);
480    return TypePtrPtr? *TypePtrPtr : 0;
481  }
482
483  /// Divides a QualType into its unqualified type and a set of local
484  /// qualifiers.
485  SplitQualType split() const {
486    if (!hasLocalNonFastQualifiers())
487      return SplitQualType(getTypePtrUnsafe(),
488                           Qualifiers::fromFastMask(getLocalFastQualifiers()));
489
490    const ExtQuals *eq = getExtQualsUnsafe();
491    Qualifiers qs = eq->getQualifiers();
492    qs.addFastQualifiers(getLocalFastQualifiers());
493    return SplitQualType(eq->getBaseType(), qs);
494  }
495
496  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
497  static QualType getFromOpaquePtr(void *Ptr) {
498    QualType T;
499    T.Value.setFromOpaqueValue(Ptr);
500    return T;
501  }
502
503  Type &operator*() const {
504    return *getTypePtr();
505  }
506
507  Type *operator->() const {
508    return getTypePtr();
509  }
510
511  bool isCanonical() const;
512  bool isCanonicalAsParam() const;
513
514  /// isNull - Return true if this QualType doesn't point to a type yet.
515  bool isNull() const {
516    return Value.getPointer().isNull();
517  }
518
519  /// \brief Determine whether this particular QualType instance has the
520  /// "const" qualifier set, without looking through typedefs that may have
521  /// added "const" at a different level.
522  bool isLocalConstQualified() const {
523    return (getLocalFastQualifiers() & Qualifiers::Const);
524  }
525
526  /// \brief Determine whether this type is const-qualified.
527  bool isConstQualified() const;
528
529  /// \brief Determine whether this particular QualType instance has the
530  /// "restrict" qualifier set, without looking through typedefs that may have
531  /// added "restrict" at a different level.
532  bool isLocalRestrictQualified() const {
533    return (getLocalFastQualifiers() & Qualifiers::Restrict);
534  }
535
536  /// \brief Determine whether this type is restrict-qualified.
537  bool isRestrictQualified() const;
538
539  /// \brief Determine whether this particular QualType instance has the
540  /// "volatile" qualifier set, without looking through typedefs that may have
541  /// added "volatile" at a different level.
542  bool isLocalVolatileQualified() const {
543    return (getLocalFastQualifiers() & Qualifiers::Volatile);
544  }
545
546  /// \brief Determine whether this type is volatile-qualified.
547  bool isVolatileQualified() const;
548
549  /// \brief Determine whether this particular QualType instance has any
550  /// qualifiers, without looking through any typedefs that might add
551  /// qualifiers at a different level.
552  bool hasLocalQualifiers() const {
553    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
554  }
555
556  /// \brief Determine whether this type has any qualifiers.
557  bool hasQualifiers() const;
558
559  /// \brief Determine whether this particular QualType instance has any
560  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
561  /// instance.
562  bool hasLocalNonFastQualifiers() const {
563    return Value.getPointer().is<const ExtQuals*>();
564  }
565
566  /// \brief Retrieve the set of qualifiers local to this particular QualType
567  /// instance, not including any qualifiers acquired through typedefs or
568  /// other sugar.
569  Qualifiers getLocalQualifiers() const {
570    Qualifiers Quals;
571    if (hasLocalNonFastQualifiers())
572      Quals = getExtQualsUnsafe()->getQualifiers();
573    Quals.addFastQualifiers(getLocalFastQualifiers());
574    return Quals;
575  }
576
577  /// \brief Retrieve the set of qualifiers applied to this type.
578  Qualifiers getQualifiers() const;
579
580  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
581  /// local to this particular QualType instance, not including any qualifiers
582  /// acquired through typedefs or other sugar.
583  unsigned getLocalCVRQualifiers() const {
584    return getLocalFastQualifiers();
585  }
586
587  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
588  /// applied to this type.
589  unsigned getCVRQualifiers() const;
590
591  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
592  /// applied to this type, looking through any number of unqualified array
593  /// types to their element types' qualifiers.
594  unsigned getCVRQualifiersThroughArrayTypes() const;
595
596  bool isConstant(ASTContext& Ctx) const {
597    return QualType::isConstant(*this, Ctx);
598  }
599
600  // Don't promise in the API that anything besides 'const' can be
601  // easily added.
602
603  /// addConst - add the specified type qualifier to this QualType.
604  void addConst() {
605    addFastQualifiers(Qualifiers::Const);
606  }
607  QualType withConst() const {
608    return withFastQualifiers(Qualifiers::Const);
609  }
610
611  void addFastQualifiers(unsigned TQs) {
612    assert(!(TQs & ~Qualifiers::FastMask)
613           && "non-fast qualifier bits set in mask!");
614    Value.setInt(Value.getInt() | TQs);
615  }
616
617  void removeLocalConst();
618  void removeLocalVolatile();
619  void removeLocalRestrict();
620  void removeLocalCVRQualifiers(unsigned Mask);
621
622  void removeLocalFastQualifiers() { Value.setInt(0); }
623  void removeLocalFastQualifiers(unsigned Mask) {
624    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
625    Value.setInt(Value.getInt() & ~Mask);
626  }
627
628  // Creates a type with the given qualifiers in addition to any
629  // qualifiers already on this type.
630  QualType withFastQualifiers(unsigned TQs) const {
631    QualType T = *this;
632    T.addFastQualifiers(TQs);
633    return T;
634  }
635
636  // Creates a type with exactly the given fast qualifiers, removing
637  // any existing fast qualifiers.
638  QualType withExactLocalFastQualifiers(unsigned TQs) const {
639    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
640  }
641
642  // Removes fast qualifiers, but leaves any extended qualifiers in place.
643  QualType withoutLocalFastQualifiers() const {
644    QualType T = *this;
645    T.removeLocalFastQualifiers();
646    return T;
647  }
648
649  /// \brief Return this type with all of the instance-specific qualifiers
650  /// removed, but without removing any qualifiers that may have been applied
651  /// through typedefs.
652  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
653
654  /// \brief Return the unqualified form of the given type, which might be
655  /// desugared to eliminate qualifiers introduced via typedefs.
656  QualType getUnqualifiedType() const {
657    QualType T = getLocalUnqualifiedType();
658    if (!T.hasQualifiers())
659      return T;
660
661    return getUnqualifiedTypeSlow();
662  }
663
664  bool isMoreQualifiedThan(QualType Other) const;
665  bool isAtLeastAsQualifiedAs(QualType Other) const;
666  QualType getNonReferenceType() const;
667
668  /// \brief Determine the type of a (typically non-lvalue) expression with the
669  /// specified result type.
670  ///
671  /// This routine should be used for expressions for which the return type is
672  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
673  /// an lvalue. It removes a top-level reference (since there are no
674  /// expressions of reference type) and deletes top-level cvr-qualifiers
675  /// from non-class types (in C++) or all types (in C).
676  QualType getNonLValueExprType(ASTContext &Context) const;
677
678  /// getDesugaredType - Return the specified type with any "sugar" removed from
679  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
680  /// the type is already concrete, it returns it unmodified.  This is similar
681  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
682  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
683  /// concrete.
684  ///
685  /// Qualifiers are left in place.
686  QualType getDesugaredType(ASTContext &Context) const {
687    return getDesugaredType(*this, Context);
688  }
689
690  SplitQualType getSplitDesugaredType() const {
691    return getSplitDesugaredType(*this);
692  }
693
694  /// IgnoreParens - Returns the specified type after dropping any
695  /// outer-level parentheses.
696  QualType IgnoreParens() const {
697    if (isa<ParenType>(*this))
698      return QualType::IgnoreParens(*this);
699    return *this;
700  }
701
702  /// operator==/!= - Indicate whether the specified types and qualifiers are
703  /// identical.
704  friend bool operator==(const QualType &LHS, const QualType &RHS) {
705    return LHS.Value == RHS.Value;
706  }
707  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
708    return LHS.Value != RHS.Value;
709  }
710  std::string getAsString() const {
711    return getAsString(split());
712  }
713  static std::string getAsString(SplitQualType split) {
714    return getAsString(split.first, split.second);
715  }
716  static std::string getAsString(const Type *ty, Qualifiers qs);
717
718  std::string getAsString(const PrintingPolicy &Policy) const {
719    std::string S;
720    getAsStringInternal(S, Policy);
721    return S;
722  }
723  void getAsStringInternal(std::string &Str,
724                           const PrintingPolicy &Policy) const {
725    return getAsStringInternal(split(), Str, Policy);
726  }
727  static void getAsStringInternal(SplitQualType split, std::string &out,
728                                  const PrintingPolicy &policy) {
729    return getAsStringInternal(split.first, split.second, out, policy);
730  }
731  static void getAsStringInternal(const Type *ty, Qualifiers qs,
732                                  std::string &out,
733                                  const PrintingPolicy &policy);
734
735  void dump(const char *s) const;
736  void dump() const;
737
738  void Profile(llvm::FoldingSetNodeID &ID) const {
739    ID.AddPointer(getAsOpaquePtr());
740  }
741
742  /// getAddressSpace - Return the address space of this type.
743  inline unsigned getAddressSpace() const;
744
745  /// GCAttrTypesAttr - Returns gc attribute of this type.
746  inline Qualifiers::GC getObjCGCAttr() const;
747
748  /// isObjCGCWeak true when Type is objc's weak.
749  bool isObjCGCWeak() const {
750    return getObjCGCAttr() == Qualifiers::Weak;
751  }
752
753  /// isObjCGCStrong true when Type is objc's strong.
754  bool isObjCGCStrong() const {
755    return getObjCGCAttr() == Qualifiers::Strong;
756  }
757
758private:
759  // These methods are implemented in a separate translation unit;
760  // "static"-ize them to avoid creating temporary QualTypes in the
761  // caller.
762  static bool isConstant(QualType T, ASTContext& Ctx);
763  static QualType getDesugaredType(QualType T, ASTContext &Context);
764  static SplitQualType getSplitDesugaredType(QualType T);
765  static QualType IgnoreParens(QualType T);
766};
767
768} // end clang.
769
770namespace llvm {
771/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
772/// to a specific Type class.
773template<> struct simplify_type<const ::clang::QualType> {
774  typedef ::clang::Type* SimpleType;
775  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
776    return Val.getTypePtr();
777  }
778};
779template<> struct simplify_type< ::clang::QualType>
780  : public simplify_type<const ::clang::QualType> {};
781
782// Teach SmallPtrSet that QualType is "basically a pointer".
783template<>
784class PointerLikeTypeTraits<clang::QualType> {
785public:
786  static inline void *getAsVoidPointer(clang::QualType P) {
787    return P.getAsOpaquePtr();
788  }
789  static inline clang::QualType getFromVoidPointer(void *P) {
790    return clang::QualType::getFromOpaquePtr(P);
791  }
792  // Various qualifiers go in low bits.
793  enum { NumLowBitsAvailable = 0 };
794};
795
796} // end namespace llvm
797
798namespace clang {
799
800/// Type - This is the base class of the type hierarchy.  A central concept
801/// with types is that each type always has a canonical type.  A canonical type
802/// is the type with any typedef names stripped out of it or the types it
803/// references.  For example, consider:
804///
805///  typedef int  foo;
806///  typedef foo* bar;
807///    'int *'    'foo *'    'bar'
808///
809/// There will be a Type object created for 'int'.  Since int is canonical, its
810/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
811/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
812/// there is a PointerType that represents 'int*', which, like 'int', is
813/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
814/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
815/// is also 'int*'.
816///
817/// Non-canonical types are useful for emitting diagnostics, without losing
818/// information about typedefs being used.  Canonical types are useful for type
819/// comparisons (they allow by-pointer equality tests) and useful for reasoning
820/// about whether something has a particular form (e.g. is a function type),
821/// because they implicitly, recursively, strip all typedefs out of a type.
822///
823/// Types, once created, are immutable.
824///
825class Type : public ExtQualsTypeCommonBase {
826public:
827  enum TypeClass {
828#define TYPE(Class, Base) Class,
829#define LAST_TYPE(Class) TypeLast = Class,
830#define ABSTRACT_TYPE(Class, Base)
831#include "clang/AST/TypeNodes.def"
832    TagFirst = Record, TagLast = Enum
833  };
834
835private:
836  Type(const Type&);           // DO NOT IMPLEMENT.
837  void operator=(const Type&); // DO NOT IMPLEMENT.
838
839  QualType CanonicalType;
840
841  /// Bitfields required by the Type class.
842  class TypeBitfields {
843    friend class Type;
844    template <class T> friend class TypePropertyCache;
845
846    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
847    unsigned TC : 8;
848
849    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
850    /// Note that this should stay at the end of the ivars for Type so that
851    /// subclasses can pack their bitfields into the same word.
852    unsigned Dependent : 1;
853
854    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
855    unsigned VariablyModified : 1;
856
857    /// \brief Whether this type contains an unexpanded parameter pack
858    /// (for C++0x variadic templates).
859    unsigned ContainsUnexpandedParameterPack : 1;
860
861    /// \brief Nonzero if the cache (i.e. the bitfields here starting
862    /// with 'Cache') is valid.  If so, then this is a
863    /// LangOptions::VisibilityMode+1.
864    mutable unsigned CacheValidAndVisibility : 2;
865
866    /// \brief Linkage of this type.
867    mutable unsigned CachedLinkage : 2;
868
869    /// \brief Whether this type involves and local or unnamed types.
870    mutable unsigned CachedLocalOrUnnamed : 1;
871
872    /// \brief FromAST - Whether this type comes from an AST file.
873    mutable unsigned FromAST : 1;
874
875    bool isCacheValid() const {
876      return (CacheValidAndVisibility != 0);
877    }
878    Visibility getVisibility() const {
879      assert(isCacheValid() && "getting linkage from invalid cache");
880      return static_cast<Visibility>(CacheValidAndVisibility-1);
881    }
882    Linkage getLinkage() const {
883      assert(isCacheValid() && "getting linkage from invalid cache");
884      return static_cast<Linkage>(CachedLinkage);
885    }
886    bool hasLocalOrUnnamedType() const {
887      assert(isCacheValid() && "getting linkage from invalid cache");
888      return CachedLocalOrUnnamed;
889    }
890  };
891  enum { NumTypeBits = 17 };
892
893protected:
894  // These classes allow subclasses to somewhat cleanly pack bitfields
895  // into Type.
896
897  class ArrayTypeBitfields {
898    friend class ArrayType;
899
900    unsigned : NumTypeBits;
901
902    /// IndexTypeQuals - CVR qualifiers from declarations like
903    /// 'int X[static restrict 4]'. For function parameters only.
904    unsigned IndexTypeQuals : 3;
905
906    /// SizeModifier - storage class qualifiers from declarations like
907    /// 'int X[static restrict 4]'. For function parameters only.
908    /// Actually an ArrayType::ArraySizeModifier.
909    unsigned SizeModifier : 3;
910  };
911
912  class BuiltinTypeBitfields {
913    friend class BuiltinType;
914
915    unsigned : NumTypeBits;
916
917    /// The kind (BuiltinType::Kind) of builtin type this is.
918    unsigned Kind : 8;
919  };
920
921  class FunctionTypeBitfields {
922    friend class FunctionType;
923
924    unsigned : NumTypeBits;
925
926    /// Extra information which affects how the function is called, like
927    /// regparm and the calling convention.
928    unsigned ExtInfo : 8;
929
930    /// Whether the function is variadic.  Only used by FunctionProtoType.
931    unsigned Variadic : 1;
932
933    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
934    /// other bitfields.
935    /// The qualifiers are part of FunctionProtoType because...
936    ///
937    /// C++ 8.3.5p4: The return type, the parameter type list and the
938    /// cv-qualifier-seq, [...], are part of the function type.
939    unsigned TypeQuals : 3;
940  };
941
942  class ObjCObjectTypeBitfields {
943    friend class ObjCObjectType;
944
945    unsigned : NumTypeBits;
946
947    /// NumProtocols - The number of protocols stored directly on this
948    /// object type.
949    unsigned NumProtocols : 32 - NumTypeBits;
950  };
951
952  class ReferenceTypeBitfields {
953    friend class ReferenceType;
954
955    unsigned : NumTypeBits;
956
957    /// True if the type was originally spelled with an lvalue sigil.
958    /// This is never true of rvalue references but can also be false
959    /// on lvalue references because of C++0x [dcl.typedef]p9,
960    /// as follows:
961    ///
962    ///   typedef int &ref;    // lvalue, spelled lvalue
963    ///   typedef int &&rvref; // rvalue
964    ///   ref &a;              // lvalue, inner ref, spelled lvalue
965    ///   ref &&a;             // lvalue, inner ref
966    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
967    ///   rvref &&a;           // rvalue, inner ref
968    unsigned SpelledAsLValue : 1;
969
970    /// True if the inner type is a reference type.  This only happens
971    /// in non-canonical forms.
972    unsigned InnerRef : 1;
973  };
974
975  class TypeWithKeywordBitfields {
976    friend class TypeWithKeyword;
977
978    unsigned : NumTypeBits;
979
980    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
981    unsigned Keyword : 8;
982  };
983
984  class VectorTypeBitfields {
985    friend class VectorType;
986
987    unsigned : NumTypeBits;
988
989    /// VecKind - The kind of vector, either a generic vector type or some
990    /// target-specific vector type such as for AltiVec or Neon.
991    unsigned VecKind : 3;
992
993    /// NumElements - The number of elements in the vector.
994    unsigned NumElements : 29 - NumTypeBits;
995  };
996
997  union {
998    TypeBitfields TypeBits;
999    ArrayTypeBitfields ArrayTypeBits;
1000    BuiltinTypeBitfields BuiltinTypeBits;
1001    FunctionTypeBitfields FunctionTypeBits;
1002    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1003    ReferenceTypeBitfields ReferenceTypeBits;
1004    TypeWithKeywordBitfields TypeWithKeywordBits;
1005    VectorTypeBitfields VectorTypeBits;
1006  };
1007
1008private:
1009  /// \brief Set whether this type comes from an AST file.
1010  void setFromAST(bool V = true) const {
1011    TypeBits.FromAST = V;
1012  }
1013
1014  template <class T> friend class TypePropertyCache;
1015
1016protected:
1017  // silence VC++ warning C4355: 'this' : used in base member initializer list
1018  Type *this_() { return this; }
1019  Type(TypeClass tc, QualType Canonical, bool Dependent, bool VariablyModified,
1020       bool ContainsUnexpandedParameterPack)
1021    : ExtQualsTypeCommonBase(this),
1022      CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical) {
1023    TypeBits.TC = tc;
1024    TypeBits.Dependent = Dependent;
1025    TypeBits.VariablyModified = VariablyModified;
1026    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1027    TypeBits.CacheValidAndVisibility = 0;
1028    TypeBits.CachedLocalOrUnnamed = false;
1029    TypeBits.CachedLinkage = NoLinkage;
1030    TypeBits.FromAST = false;
1031  }
1032  friend class ASTContext;
1033
1034  void setDependent(bool D = true) { TypeBits.Dependent = D; }
1035  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1036  void setContainsUnexpandedParameterPack(bool PP = true) {
1037    TypeBits.ContainsUnexpandedParameterPack = PP;
1038  }
1039
1040public:
1041  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1042
1043  /// \brief Whether this type comes from an AST file.
1044  bool isFromAST() const { return TypeBits.FromAST; }
1045
1046  /// \brief Whether this type is or contains an unexpanded parameter
1047  /// pack, used to support C++0x variadic templates.
1048  ///
1049  /// A type that contains a parameter pack shall be expanded by the
1050  /// ellipsis operator at some point. For example, the typedef in the
1051  /// following example contains an unexpanded parameter pack 'T':
1052  ///
1053  /// \code
1054  /// template<typename ...T>
1055  /// struct X {
1056  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1057  /// };
1058  /// \endcode
1059  ///
1060  /// Note that this routine does not specify which
1061  bool containsUnexpandedParameterPack() const {
1062    return TypeBits.ContainsUnexpandedParameterPack;
1063  }
1064
1065  bool isCanonicalUnqualified() const {
1066    return CanonicalType.getTypePtr() == this;
1067  }
1068
1069  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1070  /// object types, function types, and incomplete types.
1071
1072  /// isIncompleteType - Return true if this is an incomplete type.
1073  /// A type that can describe objects, but which lacks information needed to
1074  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1075  /// routine will need to determine if the size is actually required.
1076  bool isIncompleteType() const;
1077
1078  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1079  /// type, in other words, not a function type.
1080  bool isIncompleteOrObjectType() const {
1081    return !isFunctionType();
1082  }
1083
1084  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
1085  bool isPODType() const;
1086
1087  /// isLiteralType - Return true if this is a literal type
1088  /// (C++0x [basic.types]p10)
1089  bool isLiteralType() const;
1090
1091  /// Helper methods to distinguish type categories. All type predicates
1092  /// operate on the canonical type, ignoring typedefs and qualifiers.
1093
1094  /// isBuiltinType - returns true if the type is a builtin type.
1095  bool isBuiltinType() const;
1096
1097  /// isSpecificBuiltinType - Test for a particular builtin type.
1098  bool isSpecificBuiltinType(unsigned K) const;
1099
1100  /// isPlaceholderType - Test for a type which does not represent an
1101  /// actual type-system type but is instead used as a placeholder for
1102  /// various convenient purposes within Clang.  All such types are
1103  /// BuiltinTypes.
1104  bool isPlaceholderType() const;
1105
1106  /// isIntegerType() does *not* include complex integers (a GCC extension).
1107  /// isComplexIntegerType() can be used to test for complex integers.
1108  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1109  bool isEnumeralType() const;
1110  bool isBooleanType() const;
1111  bool isCharType() const;
1112  bool isWideCharType() const;
1113  bool isAnyCharacterType() const;
1114  bool isIntegralType(ASTContext &Ctx) const;
1115
1116  /// \brief Determine whether this type is an integral or enumeration type.
1117  bool isIntegralOrEnumerationType() const;
1118  /// \brief Determine whether this type is an integral or unscoped enumeration
1119  /// type.
1120  bool isIntegralOrUnscopedEnumerationType() const;
1121
1122  /// Floating point categories.
1123  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1124  /// isComplexType() does *not* include complex integers (a GCC extension).
1125  /// isComplexIntegerType() can be used to test for complex integers.
1126  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1127  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1128  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1129  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1130  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1131  bool isVoidType() const;         // C99 6.2.5p19
1132  bool isDerivedType() const;      // C99 6.2.5p20
1133  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1134  bool isAggregateType() const;
1135
1136  // Type Predicates: Check to see if this type is structurally the specified
1137  // type, ignoring typedefs and qualifiers.
1138  bool isFunctionType() const;
1139  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1140  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1141  bool isPointerType() const;
1142  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1143  bool isBlockPointerType() const;
1144  bool isVoidPointerType() const;
1145  bool isReferenceType() const;
1146  bool isLValueReferenceType() const;
1147  bool isRValueReferenceType() const;
1148  bool isFunctionPointerType() const;
1149  bool isMemberPointerType() const;
1150  bool isMemberFunctionPointerType() const;
1151  bool isMemberDataPointerType() const;
1152  bool isArrayType() const;
1153  bool isConstantArrayType() const;
1154  bool isIncompleteArrayType() const;
1155  bool isVariableArrayType() const;
1156  bool isDependentSizedArrayType() const;
1157  bool isRecordType() const;
1158  bool isClassType() const;
1159  bool isStructureType() const;
1160  bool isStructureOrClassType() const;
1161  bool isUnionType() const;
1162  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1163  bool isVectorType() const;                    // GCC vector type.
1164  bool isExtVectorType() const;                 // Extended vector type.
1165  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
1166  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1167  // for the common case.
1168  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1169  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1170  bool isObjCQualifiedIdType() const;           // id<foo>
1171  bool isObjCQualifiedClassType() const;        // Class<foo>
1172  bool isObjCObjectOrInterfaceType() const;
1173  bool isObjCIdType() const;                    // id
1174  bool isObjCClassType() const;                 // Class
1175  bool isObjCSelType() const;                 // Class
1176  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1177  bool isTemplateTypeParmType() const;          // C++ template type parameter
1178  bool isNullPtrType() const;                   // C++0x nullptr_t
1179
1180  enum ScalarTypeKind {
1181    STK_Pointer,
1182    STK_MemberPointer,
1183    STK_Bool,
1184    STK_Integral,
1185    STK_Floating,
1186    STK_IntegralComplex,
1187    STK_FloatingComplex
1188  };
1189  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1190  ScalarTypeKind getScalarTypeKind() const;
1191
1192  /// isDependentType - Whether this type is a dependent type, meaning
1193  /// that its definition somehow depends on a template parameter
1194  /// (C++ [temp.dep.type]).
1195  bool isDependentType() const { return TypeBits.Dependent; }
1196
1197  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1198  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1199
1200  /// \brief Whether this type is or contains a local or unnamed type.
1201  bool hasUnnamedOrLocalType() const;
1202
1203  bool isOverloadableType() const;
1204
1205  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1206  bool isElaboratedTypeSpecifier() const;
1207
1208  /// hasPointerRepresentation - Whether this type is represented
1209  /// natively as a pointer; this includes pointers, references, block
1210  /// pointers, and Objective-C interface, qualified id, and qualified
1211  /// interface types, as well as nullptr_t.
1212  bool hasPointerRepresentation() const;
1213
1214  /// hasObjCPointerRepresentation - Whether this type can represent
1215  /// an objective pointer type for the purpose of GC'ability
1216  bool hasObjCPointerRepresentation() const;
1217
1218  /// \brief Determine whether this type has an integer representation
1219  /// of some sort, e.g., it is an integer type or a vector.
1220  bool hasIntegerRepresentation() const;
1221
1222  /// \brief Determine whether this type has an signed integer representation
1223  /// of some sort, e.g., it is an signed integer type or a vector.
1224  bool hasSignedIntegerRepresentation() const;
1225
1226  /// \brief Determine whether this type has an unsigned integer representation
1227  /// of some sort, e.g., it is an unsigned integer type or a vector.
1228  bool hasUnsignedIntegerRepresentation() const;
1229
1230  /// \brief Determine whether this type has a floating-point representation
1231  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1232  bool hasFloatingRepresentation() const;
1233
1234  // Type Checking Functions: Check to see if this type is structurally the
1235  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1236  // the best type we can.
1237  const RecordType *getAsStructureType() const;
1238  /// NOTE: getAs*ArrayType are methods on ASTContext.
1239  const RecordType *getAsUnionType() const;
1240  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1241  // The following is a convenience method that returns an ObjCObjectPointerType
1242  // for object declared using an interface.
1243  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1244  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1245  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1246  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
1247
1248  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1249  /// because the type is a RecordType or because it is the injected-class-name
1250  /// type of a class template or class template partial specialization.
1251  CXXRecordDecl *getAsCXXRecordDecl() const;
1252
1253  // Member-template getAs<specific type>'.  Look through sugar for
1254  // an instance of <specific type>.   This scheme will eventually
1255  // replace the specific getAsXXXX methods above.
1256  //
1257  // There are some specializations of this member template listed
1258  // immediately following this class.
1259  template <typename T> const T *getAs() const;
1260
1261  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1262  /// element type of the array, potentially with type qualifiers missing.
1263  /// This method should never be used when type qualifiers are meaningful.
1264  const Type *getArrayElementTypeNoTypeQual() const;
1265
1266  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1267  /// pointer, this returns the respective pointee.
1268  QualType getPointeeType() const;
1269
1270  /// getUnqualifiedDesugaredType() - Return the specified type with
1271  /// any "sugar" removed from the type, removing any typedefs,
1272  /// typeofs, etc., as well as any qualifiers.
1273  const Type *getUnqualifiedDesugaredType() const;
1274
1275  /// More type predicates useful for type checking/promotion
1276  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1277
1278  /// isSignedIntegerType - Return true if this is an integer type that is
1279  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1280  /// an enum decl which has a signed representation, or a vector of signed
1281  /// integer element type.
1282  bool isSignedIntegerType() const;
1283
1284  /// isUnsignedIntegerType - Return true if this is an integer type that is
1285  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1286  /// decl which has an unsigned representation, or a vector of unsigned integer
1287  /// element type.
1288  bool isUnsignedIntegerType() const;
1289
1290  /// isConstantSizeType - Return true if this is not a variable sized type,
1291  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1292  /// incomplete types.
1293  bool isConstantSizeType() const;
1294
1295  /// isSpecifierType - Returns true if this type can be represented by some
1296  /// set of type specifiers.
1297  bool isSpecifierType() const;
1298
1299  /// \brief Determine the linkage of this type.
1300  Linkage getLinkage() const;
1301
1302  /// \brief Determine the visibility of this type.
1303  Visibility getVisibility() const;
1304
1305  /// \brief Determine the linkage and visibility of this type.
1306  std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
1307
1308  /// \brief Note that the linkage is no longer known.
1309  void ClearLinkageCache();
1310
1311  const char *getTypeClassName() const;
1312
1313  QualType getCanonicalTypeInternal() const {
1314    return CanonicalType;
1315  }
1316  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1317  void dump() const;
1318  static bool classof(const Type *) { return true; }
1319
1320  friend class ASTReader;
1321  friend class ASTWriter;
1322};
1323
1324template <> inline const TypedefType *Type::getAs() const {
1325  return dyn_cast<TypedefType>(this);
1326}
1327
1328// We can do canonical leaf types faster, because we don't have to
1329// worry about preserving child type decoration.
1330#define TYPE(Class, Base)
1331#define LEAF_TYPE(Class) \
1332template <> inline const Class##Type *Type::getAs() const { \
1333  return dyn_cast<Class##Type>(CanonicalType); \
1334}
1335#include "clang/AST/TypeNodes.def"
1336
1337
1338/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1339/// types are always canonical and have a literal name field.
1340class BuiltinType : public Type {
1341public:
1342  enum Kind {
1343    Void,
1344
1345    Bool,     // This is bool and/or _Bool.
1346    Char_U,   // This is 'char' for targets where char is unsigned.
1347    UChar,    // This is explicitly qualified unsigned char.
1348    Char16,   // This is 'char16_t' for C++.
1349    Char32,   // This is 'char32_t' for C++.
1350    UShort,
1351    UInt,
1352    ULong,
1353    ULongLong,
1354    UInt128,  // __uint128_t
1355
1356    Char_S,   // This is 'char' for targets where char is signed.
1357    SChar,    // This is explicitly qualified signed char.
1358    WChar,    // This is 'wchar_t' for C++.
1359    Short,
1360    Int,
1361    Long,
1362    LongLong,
1363    Int128,   // __int128_t
1364
1365    Float, Double, LongDouble,
1366
1367    NullPtr,  // This is the type of C++0x 'nullptr'.
1368
1369    /// This represents the type of an expression whose type is
1370    /// totally unknown, e.g. 'T::foo'.  It is permitted for this to
1371    /// appear in situations where the structure of the type is
1372    /// theoretically deducible.
1373    Dependent,
1374
1375    Overload,  // This represents the type of an overloaded function declaration.
1376
1377    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1378                   // that has not been deduced yet.
1379
1380    /// The primitive Objective C 'id' type.  The type pointed to by the
1381    /// user-visible 'id' type.  Only ever shows up in an AST as the base
1382    /// type of an ObjCObjectType.
1383    ObjCId,
1384
1385    /// The primitive Objective C 'Class' type.  The type pointed to by the
1386    /// user-visible 'Class' type.  Only ever shows up in an AST as the
1387    /// base type of an ObjCObjectType.
1388    ObjCClass,
1389
1390    ObjCSel    // This represents the ObjC 'SEL' type.
1391  };
1392
1393public:
1394  BuiltinType(Kind K)
1395    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1396           /*VariablyModified=*/false,
1397           /*Unexpanded paramter pack=*/false) {
1398    BuiltinTypeBits.Kind = K;
1399  }
1400
1401  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1402  const char *getName(const LangOptions &LO) const;
1403
1404  bool isSugared() const { return false; }
1405  QualType desugar() const { return QualType(this, 0); }
1406
1407  bool isInteger() const {
1408    return getKind() >= Bool && getKind() <= Int128;
1409  }
1410
1411  bool isSignedInteger() const {
1412    return getKind() >= Char_S && getKind() <= Int128;
1413  }
1414
1415  bool isUnsignedInteger() const {
1416    return getKind() >= Bool && getKind() <= UInt128;
1417  }
1418
1419  bool isFloatingPoint() const {
1420    return getKind() >= Float && getKind() <= LongDouble;
1421  }
1422
1423  /// Determines whether this type is a "forbidden" placeholder type,
1424  /// i.e. a type which cannot appear in arbitrary positions in a
1425  /// fully-formed expression.
1426  bool isPlaceholderType() const {
1427    return getKind() == Overload ||
1428           getKind() == UndeducedAuto;
1429  }
1430
1431  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1432  static bool classof(const BuiltinType *) { return true; }
1433};
1434
1435/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1436/// types (_Complex float etc) as well as the GCC integer complex extensions.
1437///
1438class ComplexType : public Type, public llvm::FoldingSetNode {
1439  QualType ElementType;
1440  ComplexType(QualType Element, QualType CanonicalPtr) :
1441    Type(Complex, CanonicalPtr, Element->isDependentType(),
1442         Element->isVariablyModifiedType(),
1443         Element->containsUnexpandedParameterPack()),
1444    ElementType(Element) {
1445  }
1446  friend class ASTContext;  // ASTContext creates these.
1447
1448public:
1449  QualType getElementType() const { return ElementType; }
1450
1451  bool isSugared() const { return false; }
1452  QualType desugar() const { return QualType(this, 0); }
1453
1454  void Profile(llvm::FoldingSetNodeID &ID) {
1455    Profile(ID, getElementType());
1456  }
1457  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1458    ID.AddPointer(Element.getAsOpaquePtr());
1459  }
1460
1461  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1462  static bool classof(const ComplexType *) { return true; }
1463};
1464
1465/// ParenType - Sugar for parentheses used when specifying types.
1466///
1467class ParenType : public Type, public llvm::FoldingSetNode {
1468  QualType Inner;
1469
1470  ParenType(QualType InnerType, QualType CanonType) :
1471    Type(Paren, CanonType, InnerType->isDependentType(),
1472         InnerType->isVariablyModifiedType(),
1473         InnerType->containsUnexpandedParameterPack()),
1474    Inner(InnerType) {
1475  }
1476  friend class ASTContext;  // ASTContext creates these.
1477
1478public:
1479
1480  QualType getInnerType() const { return Inner; }
1481
1482  bool isSugared() const { return true; }
1483  QualType desugar() const { return getInnerType(); }
1484
1485  void Profile(llvm::FoldingSetNodeID &ID) {
1486    Profile(ID, getInnerType());
1487  }
1488  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1489    Inner.Profile(ID);
1490  }
1491
1492  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1493  static bool classof(const ParenType *) { return true; }
1494};
1495
1496/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1497///
1498class PointerType : public Type, public llvm::FoldingSetNode {
1499  QualType PointeeType;
1500
1501  PointerType(QualType Pointee, QualType CanonicalPtr) :
1502    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1503         Pointee->isVariablyModifiedType(),
1504         Pointee->containsUnexpandedParameterPack()),
1505    PointeeType(Pointee) {
1506  }
1507  friend class ASTContext;  // ASTContext creates these.
1508
1509public:
1510
1511  QualType getPointeeType() const { return PointeeType; }
1512
1513  bool isSugared() const { return false; }
1514  QualType desugar() const { return QualType(this, 0); }
1515
1516  void Profile(llvm::FoldingSetNodeID &ID) {
1517    Profile(ID, getPointeeType());
1518  }
1519  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1520    ID.AddPointer(Pointee.getAsOpaquePtr());
1521  }
1522
1523  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1524  static bool classof(const PointerType *) { return true; }
1525};
1526
1527/// BlockPointerType - pointer to a block type.
1528/// This type is to represent types syntactically represented as
1529/// "void (^)(int)", etc. Pointee is required to always be a function type.
1530///
1531class BlockPointerType : public Type, public llvm::FoldingSetNode {
1532  QualType PointeeType;  // Block is some kind of pointer type
1533  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1534    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1535         Pointee->isVariablyModifiedType(),
1536         Pointee->containsUnexpandedParameterPack()),
1537    PointeeType(Pointee) {
1538  }
1539  friend class ASTContext;  // ASTContext creates these.
1540
1541public:
1542
1543  // Get the pointee type. Pointee is required to always be a function type.
1544  QualType getPointeeType() const { return PointeeType; }
1545
1546  bool isSugared() const { return false; }
1547  QualType desugar() const { return QualType(this, 0); }
1548
1549  void Profile(llvm::FoldingSetNodeID &ID) {
1550      Profile(ID, getPointeeType());
1551  }
1552  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1553      ID.AddPointer(Pointee.getAsOpaquePtr());
1554  }
1555
1556  static bool classof(const Type *T) {
1557    return T->getTypeClass() == BlockPointer;
1558  }
1559  static bool classof(const BlockPointerType *) { return true; }
1560};
1561
1562/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1563///
1564class ReferenceType : public Type, public llvm::FoldingSetNode {
1565  QualType PointeeType;
1566
1567protected:
1568  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1569                bool SpelledAsLValue) :
1570    Type(tc, CanonicalRef, Referencee->isDependentType(),
1571         Referencee->isVariablyModifiedType(),
1572         Referencee->containsUnexpandedParameterPack()),
1573    PointeeType(Referencee)
1574  {
1575    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
1576    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
1577  }
1578
1579public:
1580  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
1581  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
1582
1583  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1584  QualType getPointeeType() const {
1585    // FIXME: this might strip inner qualifiers; okay?
1586    const ReferenceType *T = this;
1587    while (T->isInnerRef())
1588      T = T->PointeeType->getAs<ReferenceType>();
1589    return T->PointeeType;
1590  }
1591
1592  void Profile(llvm::FoldingSetNodeID &ID) {
1593    Profile(ID, PointeeType, isSpelledAsLValue());
1594  }
1595  static void Profile(llvm::FoldingSetNodeID &ID,
1596                      QualType Referencee,
1597                      bool SpelledAsLValue) {
1598    ID.AddPointer(Referencee.getAsOpaquePtr());
1599    ID.AddBoolean(SpelledAsLValue);
1600  }
1601
1602  static bool classof(const Type *T) {
1603    return T->getTypeClass() == LValueReference ||
1604           T->getTypeClass() == RValueReference;
1605  }
1606  static bool classof(const ReferenceType *) { return true; }
1607};
1608
1609/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1610///
1611class LValueReferenceType : public ReferenceType {
1612  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1613                      bool SpelledAsLValue) :
1614    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1615  {}
1616  friend class ASTContext; // ASTContext creates these
1617public:
1618  bool isSugared() const { return false; }
1619  QualType desugar() const { return QualType(this, 0); }
1620
1621  static bool classof(const Type *T) {
1622    return T->getTypeClass() == LValueReference;
1623  }
1624  static bool classof(const LValueReferenceType *) { return true; }
1625};
1626
1627/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1628///
1629class RValueReferenceType : public ReferenceType {
1630  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1631    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1632  }
1633  friend class ASTContext; // ASTContext creates these
1634public:
1635  bool isSugared() const { return false; }
1636  QualType desugar() const { return QualType(this, 0); }
1637
1638  static bool classof(const Type *T) {
1639    return T->getTypeClass() == RValueReference;
1640  }
1641  static bool classof(const RValueReferenceType *) { return true; }
1642};
1643
1644/// MemberPointerType - C++ 8.3.3 - Pointers to members
1645///
1646class MemberPointerType : public Type, public llvm::FoldingSetNode {
1647  QualType PointeeType;
1648  /// The class of which the pointee is a member. Must ultimately be a
1649  /// RecordType, but could be a typedef or a template parameter too.
1650  const Type *Class;
1651
1652  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1653    Type(MemberPointer, CanonicalPtr,
1654         Cls->isDependentType() || Pointee->isDependentType(),
1655         Pointee->isVariablyModifiedType(),
1656         (Cls->containsUnexpandedParameterPack() ||
1657          Pointee->containsUnexpandedParameterPack())),
1658    PointeeType(Pointee), Class(Cls) {
1659  }
1660  friend class ASTContext; // ASTContext creates these.
1661
1662public:
1663  QualType getPointeeType() const { return PointeeType; }
1664
1665  /// Returns true if the member type (i.e. the pointee type) is a
1666  /// function type rather than a data-member type.
1667  bool isMemberFunctionPointer() const {
1668    return PointeeType->isFunctionProtoType();
1669  }
1670
1671  /// Returns true if the member type (i.e. the pointee type) is a
1672  /// data type rather than a function type.
1673  bool isMemberDataPointer() const {
1674    return !PointeeType->isFunctionProtoType();
1675  }
1676
1677  const Type *getClass() const { return Class; }
1678
1679  bool isSugared() const { return false; }
1680  QualType desugar() const { return QualType(this, 0); }
1681
1682  void Profile(llvm::FoldingSetNodeID &ID) {
1683    Profile(ID, getPointeeType(), getClass());
1684  }
1685  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1686                      const Type *Class) {
1687    ID.AddPointer(Pointee.getAsOpaquePtr());
1688    ID.AddPointer(Class);
1689  }
1690
1691  static bool classof(const Type *T) {
1692    return T->getTypeClass() == MemberPointer;
1693  }
1694  static bool classof(const MemberPointerType *) { return true; }
1695};
1696
1697/// ArrayType - C99 6.7.5.2 - Array Declarators.
1698///
1699class ArrayType : public Type, public llvm::FoldingSetNode {
1700public:
1701  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1702  /// an array with a static size (e.g. int X[static 4]), or an array
1703  /// with a star size (e.g. int X[*]).
1704  /// 'static' is only allowed on function parameters.
1705  enum ArraySizeModifier {
1706    Normal, Static, Star
1707  };
1708private:
1709  /// ElementType - The element type of the array.
1710  QualType ElementType;
1711
1712protected:
1713  // C++ [temp.dep.type]p1:
1714  //   A type is dependent if it is...
1715  //     - an array type constructed from any dependent type or whose
1716  //       size is specified by a constant expression that is
1717  //       value-dependent,
1718  ArrayType(TypeClass tc, QualType et, QualType can,
1719            ArraySizeModifier sm, unsigned tq,
1720            bool ContainsUnexpandedParameterPack)
1721    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
1722           (tc == VariableArray || et->isVariablyModifiedType()),
1723           ContainsUnexpandedParameterPack),
1724      ElementType(et) {
1725    ArrayTypeBits.IndexTypeQuals = tq;
1726    ArrayTypeBits.SizeModifier = sm;
1727  }
1728
1729  friend class ASTContext;  // ASTContext creates these.
1730
1731public:
1732  QualType getElementType() const { return ElementType; }
1733  ArraySizeModifier getSizeModifier() const {
1734    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
1735  }
1736  Qualifiers getIndexTypeQualifiers() const {
1737    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
1738  }
1739  unsigned getIndexTypeCVRQualifiers() const {
1740    return ArrayTypeBits.IndexTypeQuals;
1741  }
1742
1743  static bool classof(const Type *T) {
1744    return T->getTypeClass() == ConstantArray ||
1745           T->getTypeClass() == VariableArray ||
1746           T->getTypeClass() == IncompleteArray ||
1747           T->getTypeClass() == DependentSizedArray;
1748  }
1749  static bool classof(const ArrayType *) { return true; }
1750};
1751
1752/// ConstantArrayType - This class represents the canonical version of
1753/// C arrays with a specified constant size.  For example, the canonical
1754/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1755/// type is 'int' and the size is 404.
1756class ConstantArrayType : public ArrayType {
1757  llvm::APInt Size; // Allows us to unique the type.
1758
1759  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1760                    ArraySizeModifier sm, unsigned tq)
1761    : ArrayType(ConstantArray, et, can, sm, tq,
1762                et->containsUnexpandedParameterPack()),
1763      Size(size) {}
1764protected:
1765  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1766                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1767    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
1768      Size(size) {}
1769  friend class ASTContext;  // ASTContext creates these.
1770public:
1771  const llvm::APInt &getSize() const { return Size; }
1772  bool isSugared() const { return false; }
1773  QualType desugar() const { return QualType(this, 0); }
1774
1775
1776  /// \brief Determine the number of bits required to address a member of
1777  // an array with the given element type and number of elements.
1778  static unsigned getNumAddressingBits(ASTContext &Context,
1779                                       QualType ElementType,
1780                                       const llvm::APInt &NumElements);
1781
1782  /// \brief Determine the maximum number of active bits that an array's size
1783  /// can require, which limits the maximum size of the array.
1784  static unsigned getMaxSizeBits(ASTContext &Context);
1785
1786  void Profile(llvm::FoldingSetNodeID &ID) {
1787    Profile(ID, getElementType(), getSize(),
1788            getSizeModifier(), getIndexTypeCVRQualifiers());
1789  }
1790  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1791                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1792                      unsigned TypeQuals) {
1793    ID.AddPointer(ET.getAsOpaquePtr());
1794    ID.AddInteger(ArraySize.getZExtValue());
1795    ID.AddInteger(SizeMod);
1796    ID.AddInteger(TypeQuals);
1797  }
1798  static bool classof(const Type *T) {
1799    return T->getTypeClass() == ConstantArray;
1800  }
1801  static bool classof(const ConstantArrayType *) { return true; }
1802};
1803
1804/// IncompleteArrayType - This class represents C arrays with an unspecified
1805/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1806/// type is 'int' and the size is unspecified.
1807class IncompleteArrayType : public ArrayType {
1808
1809  IncompleteArrayType(QualType et, QualType can,
1810                      ArraySizeModifier sm, unsigned tq)
1811    : ArrayType(IncompleteArray, et, can, sm, tq,
1812                et->containsUnexpandedParameterPack()) {}
1813  friend class ASTContext;  // ASTContext creates these.
1814public:
1815  bool isSugared() const { return false; }
1816  QualType desugar() const { return QualType(this, 0); }
1817
1818  static bool classof(const Type *T) {
1819    return T->getTypeClass() == IncompleteArray;
1820  }
1821  static bool classof(const IncompleteArrayType *) { return true; }
1822
1823  friend class StmtIteratorBase;
1824
1825  void Profile(llvm::FoldingSetNodeID &ID) {
1826    Profile(ID, getElementType(), getSizeModifier(),
1827            getIndexTypeCVRQualifiers());
1828  }
1829
1830  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1831                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1832    ID.AddPointer(ET.getAsOpaquePtr());
1833    ID.AddInteger(SizeMod);
1834    ID.AddInteger(TypeQuals);
1835  }
1836};
1837
1838/// VariableArrayType - This class represents C arrays with a specified size
1839/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1840/// Since the size expression is an arbitrary expression, we store it as such.
1841///
1842/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1843/// should not be: two lexically equivalent variable array types could mean
1844/// different things, for example, these variables do not have the same type
1845/// dynamically:
1846///
1847/// void foo(int x) {
1848///   int Y[x];
1849///   ++x;
1850///   int Z[x];
1851/// }
1852///
1853class VariableArrayType : public ArrayType {
1854  /// SizeExpr - An assignment expression. VLA's are only permitted within
1855  /// a function block.
1856  Stmt *SizeExpr;
1857  /// Brackets - The left and right array brackets.
1858  SourceRange Brackets;
1859
1860  VariableArrayType(QualType et, QualType can, Expr *e,
1861                    ArraySizeModifier sm, unsigned tq,
1862                    SourceRange brackets)
1863    : ArrayType(VariableArray, et, can, sm, tq,
1864                et->containsUnexpandedParameterPack()),
1865      SizeExpr((Stmt*) e), Brackets(brackets) {}
1866  friend class ASTContext;  // ASTContext creates these.
1867
1868public:
1869  Expr *getSizeExpr() const {
1870    // We use C-style casts instead of cast<> here because we do not wish
1871    // to have a dependency of Type.h on Stmt.h/Expr.h.
1872    return (Expr*) SizeExpr;
1873  }
1874  SourceRange getBracketsRange() const { return Brackets; }
1875  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1876  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1877
1878  bool isSugared() const { return false; }
1879  QualType desugar() const { return QualType(this, 0); }
1880
1881  static bool classof(const Type *T) {
1882    return T->getTypeClass() == VariableArray;
1883  }
1884  static bool classof(const VariableArrayType *) { return true; }
1885
1886  friend class StmtIteratorBase;
1887
1888  void Profile(llvm::FoldingSetNodeID &ID) {
1889    assert(0 && "Cannnot unique VariableArrayTypes.");
1890  }
1891};
1892
1893/// DependentSizedArrayType - This type represents an array type in
1894/// C++ whose size is a value-dependent expression. For example:
1895///
1896/// \code
1897/// template<typename T, int Size>
1898/// class array {
1899///   T data[Size];
1900/// };
1901/// \endcode
1902///
1903/// For these types, we won't actually know what the array bound is
1904/// until template instantiation occurs, at which point this will
1905/// become either a ConstantArrayType or a VariableArrayType.
1906class DependentSizedArrayType : public ArrayType {
1907  ASTContext &Context;
1908
1909  /// \brief An assignment expression that will instantiate to the
1910  /// size of the array.
1911  ///
1912  /// The expression itself might be NULL, in which case the array
1913  /// type will have its size deduced from an initializer.
1914  Stmt *SizeExpr;
1915
1916  /// Brackets - The left and right array brackets.
1917  SourceRange Brackets;
1918
1919  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1920                          Expr *e, ArraySizeModifier sm, unsigned tq,
1921                          SourceRange brackets);
1922
1923  friend class ASTContext;  // ASTContext creates these.
1924
1925public:
1926  Expr *getSizeExpr() const {
1927    // We use C-style casts instead of cast<> here because we do not wish
1928    // to have a dependency of Type.h on Stmt.h/Expr.h.
1929    return (Expr*) SizeExpr;
1930  }
1931  SourceRange getBracketsRange() const { return Brackets; }
1932  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1933  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1934
1935  bool isSugared() const { return false; }
1936  QualType desugar() const { return QualType(this, 0); }
1937
1938  static bool classof(const Type *T) {
1939    return T->getTypeClass() == DependentSizedArray;
1940  }
1941  static bool classof(const DependentSizedArrayType *) { return true; }
1942
1943  friend class StmtIteratorBase;
1944
1945
1946  void Profile(llvm::FoldingSetNodeID &ID) {
1947    Profile(ID, Context, getElementType(),
1948            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1949  }
1950
1951  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1952                      QualType ET, ArraySizeModifier SizeMod,
1953                      unsigned TypeQuals, Expr *E);
1954};
1955
1956/// DependentSizedExtVectorType - This type represent an extended vector type
1957/// where either the type or size is dependent. For example:
1958/// @code
1959/// template<typename T, int Size>
1960/// class vector {
1961///   typedef T __attribute__((ext_vector_type(Size))) type;
1962/// }
1963/// @endcode
1964class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1965  ASTContext &Context;
1966  Expr *SizeExpr;
1967  /// ElementType - The element type of the array.
1968  QualType ElementType;
1969  SourceLocation loc;
1970
1971  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1972                              QualType can, Expr *SizeExpr, SourceLocation loc);
1973
1974  friend class ASTContext;
1975
1976public:
1977  Expr *getSizeExpr() const { return SizeExpr; }
1978  QualType getElementType() const { return ElementType; }
1979  SourceLocation getAttributeLoc() const { return loc; }
1980
1981  bool isSugared() const { return false; }
1982  QualType desugar() const { return QualType(this, 0); }
1983
1984  static bool classof(const Type *T) {
1985    return T->getTypeClass() == DependentSizedExtVector;
1986  }
1987  static bool classof(const DependentSizedExtVectorType *) { return true; }
1988
1989  void Profile(llvm::FoldingSetNodeID &ID) {
1990    Profile(ID, Context, getElementType(), getSizeExpr());
1991  }
1992
1993  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1994                      QualType ElementType, Expr *SizeExpr);
1995};
1996
1997
1998/// VectorType - GCC generic vector type. This type is created using
1999/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2000/// bytes; or from an Altivec __vector or vector declaration.
2001/// Since the constructor takes the number of vector elements, the
2002/// client is responsible for converting the size into the number of elements.
2003class VectorType : public Type, public llvm::FoldingSetNode {
2004public:
2005  enum VectorKind {
2006    GenericVector,  // not a target-specific vector type
2007    AltiVecVector,  // is AltiVec vector
2008    AltiVecPixel,   // is AltiVec 'vector Pixel'
2009    AltiVecBool,    // is AltiVec 'vector bool ...'
2010    NeonVector,     // is ARM Neon vector
2011    NeonPolyVector  // is ARM Neon polynomial vector
2012  };
2013protected:
2014  /// ElementType - The element type of the vector.
2015  QualType ElementType;
2016
2017  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2018             VectorKind vecKind);
2019
2020  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2021             QualType canonType, VectorKind vecKind);
2022
2023  friend class ASTContext;  // ASTContext creates these.
2024
2025public:
2026
2027  QualType getElementType() const { return ElementType; }
2028  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2029
2030  bool isSugared() const { return false; }
2031  QualType desugar() const { return QualType(this, 0); }
2032
2033  VectorKind getVectorKind() const {
2034    return VectorKind(VectorTypeBits.VecKind);
2035  }
2036
2037  void Profile(llvm::FoldingSetNodeID &ID) {
2038    Profile(ID, getElementType(), getNumElements(),
2039            getTypeClass(), getVectorKind());
2040  }
2041  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2042                      unsigned NumElements, TypeClass TypeClass,
2043                      VectorKind VecKind) {
2044    ID.AddPointer(ElementType.getAsOpaquePtr());
2045    ID.AddInteger(NumElements);
2046    ID.AddInteger(TypeClass);
2047    ID.AddInteger(VecKind);
2048  }
2049
2050  static bool classof(const Type *T) {
2051    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2052  }
2053  static bool classof(const VectorType *) { return true; }
2054};
2055
2056/// ExtVectorType - Extended vector type. This type is created using
2057/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2058/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2059/// class enables syntactic extensions, like Vector Components for accessing
2060/// points, colors, and textures (modeled after OpenGL Shading Language).
2061class ExtVectorType : public VectorType {
2062  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2063    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2064  friend class ASTContext;  // ASTContext creates these.
2065public:
2066  static int getPointAccessorIdx(char c) {
2067    switch (c) {
2068    default: return -1;
2069    case 'x': return 0;
2070    case 'y': return 1;
2071    case 'z': return 2;
2072    case 'w': return 3;
2073    }
2074  }
2075  static int getNumericAccessorIdx(char c) {
2076    switch (c) {
2077      default: return -1;
2078      case '0': return 0;
2079      case '1': return 1;
2080      case '2': return 2;
2081      case '3': return 3;
2082      case '4': return 4;
2083      case '5': return 5;
2084      case '6': return 6;
2085      case '7': return 7;
2086      case '8': return 8;
2087      case '9': return 9;
2088      case 'A':
2089      case 'a': return 10;
2090      case 'B':
2091      case 'b': return 11;
2092      case 'C':
2093      case 'c': return 12;
2094      case 'D':
2095      case 'd': return 13;
2096      case 'E':
2097      case 'e': return 14;
2098      case 'F':
2099      case 'f': return 15;
2100    }
2101  }
2102
2103  static int getAccessorIdx(char c) {
2104    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2105    return getNumericAccessorIdx(c);
2106  }
2107
2108  bool isAccessorWithinNumElements(char c) const {
2109    if (int idx = getAccessorIdx(c)+1)
2110      return unsigned(idx-1) < getNumElements();
2111    return false;
2112  }
2113  bool isSugared() const { return false; }
2114  QualType desugar() const { return QualType(this, 0); }
2115
2116  static bool classof(const Type *T) {
2117    return T->getTypeClass() == ExtVector;
2118  }
2119  static bool classof(const ExtVectorType *) { return true; }
2120};
2121
2122/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2123/// class of FunctionNoProtoType and FunctionProtoType.
2124///
2125class FunctionType : public Type {
2126  // The type returned by the function.
2127  QualType ResultType;
2128
2129 public:
2130  /// ExtInfo - A class which abstracts out some details necessary for
2131  /// making a call.
2132  ///
2133  /// It is not actually used directly for storing this information in
2134  /// a FunctionType, although FunctionType does currently use the
2135  /// same bit-pattern.
2136  ///
2137  // If you add a field (say Foo), other than the obvious places (both,
2138  // constructors, compile failures), what you need to update is
2139  // * Operator==
2140  // * getFoo
2141  // * withFoo
2142  // * functionType. Add Foo, getFoo.
2143  // * ASTContext::getFooType
2144  // * ASTContext::mergeFunctionTypes
2145  // * FunctionNoProtoType::Profile
2146  // * FunctionProtoType::Profile
2147  // * TypePrinter::PrintFunctionProto
2148  // * AST read and write
2149  // * Codegen
2150  class ExtInfo {
2151    // Feel free to rearrange or add bits, but if you go over 8,
2152    // you'll need to adjust both the Bits field below and
2153    // Type::FunctionTypeBitfields.
2154
2155    //   |  CC  |noreturn|regparm
2156    //   |0 .. 2|   3    |4 ..  6
2157    enum { CallConvMask = 0x7 };
2158    enum { NoReturnMask = 0x8 };
2159    enum { RegParmMask = ~(CallConvMask | NoReturnMask),
2160           RegParmOffset = 4 };
2161
2162    unsigned char Bits;
2163
2164    ExtInfo(unsigned Bits) : Bits(static_cast<unsigned char>(Bits)) {}
2165
2166    friend class FunctionType;
2167
2168   public:
2169    // Constructor with no defaults. Use this when you know that you
2170    // have all the elements (when reading an AST file for example).
2171    ExtInfo(bool noReturn, unsigned regParm, CallingConv cc) {
2172      Bits = ((unsigned) cc) |
2173             (noReturn ? NoReturnMask : 0) |
2174             (regParm << RegParmOffset);
2175    }
2176
2177    // Constructor with all defaults. Use when for example creating a
2178    // function know to use defaults.
2179    ExtInfo() : Bits(0) {}
2180
2181    bool getNoReturn() const { return Bits & NoReturnMask; }
2182    unsigned getRegParm() const { return Bits >> RegParmOffset; }
2183    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2184
2185    bool operator==(ExtInfo Other) const {
2186      return Bits == Other.Bits;
2187    }
2188    bool operator!=(ExtInfo Other) const {
2189      return Bits != Other.Bits;
2190    }
2191
2192    // Note that we don't have setters. That is by design, use
2193    // the following with methods instead of mutating these objects.
2194
2195    ExtInfo withNoReturn(bool noReturn) const {
2196      if (noReturn)
2197        return ExtInfo(Bits | NoReturnMask);
2198      else
2199        return ExtInfo(Bits & ~NoReturnMask);
2200    }
2201
2202    ExtInfo withRegParm(unsigned RegParm) const {
2203      return ExtInfo((Bits & ~RegParmMask) | (RegParm << RegParmOffset));
2204    }
2205
2206    ExtInfo withCallingConv(CallingConv cc) const {
2207      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2208    }
2209
2210    void Profile(llvm::FoldingSetNodeID &ID) const {
2211      ID.AddInteger(Bits);
2212    }
2213  };
2214
2215protected:
2216  FunctionType(TypeClass tc, QualType res, bool variadic,
2217               unsigned typeQuals, QualType Canonical, bool Dependent,
2218               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2219               ExtInfo Info)
2220    : Type(tc, Canonical, Dependent, VariablyModified,
2221           ContainsUnexpandedParameterPack),
2222      ResultType(res) {
2223    FunctionTypeBits.ExtInfo = Info.Bits;
2224    FunctionTypeBits.Variadic = variadic;
2225    FunctionTypeBits.TypeQuals = typeQuals;
2226  }
2227  bool isVariadic() const { return FunctionTypeBits.Variadic; }
2228  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2229public:
2230
2231  QualType getResultType() const { return ResultType; }
2232
2233  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2234  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2235  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2236  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2237
2238  /// \brief Determine the type of an expression that calls a function of
2239  /// this type.
2240  QualType getCallResultType(ASTContext &Context) const {
2241    return getResultType().getNonLValueExprType(Context);
2242  }
2243
2244  static llvm::StringRef getNameForCallConv(CallingConv CC);
2245
2246  static bool classof(const Type *T) {
2247    return T->getTypeClass() == FunctionNoProto ||
2248           T->getTypeClass() == FunctionProto;
2249  }
2250  static bool classof(const FunctionType *) { return true; }
2251};
2252
2253/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2254/// no information available about its arguments.
2255class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2256  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2257    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
2258                   /*Dependent=*/false, Result->isVariablyModifiedType(),
2259                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2260
2261  friend class ASTContext;  // ASTContext creates these.
2262
2263public:
2264  // No additional state past what FunctionType provides.
2265
2266  bool isSugared() const { return false; }
2267  QualType desugar() const { return QualType(this, 0); }
2268
2269  void Profile(llvm::FoldingSetNodeID &ID) {
2270    Profile(ID, getResultType(), getExtInfo());
2271  }
2272  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2273                      ExtInfo Info) {
2274    Info.Profile(ID);
2275    ID.AddPointer(ResultType.getAsOpaquePtr());
2276  }
2277
2278  static bool classof(const Type *T) {
2279    return T->getTypeClass() == FunctionNoProto;
2280  }
2281  static bool classof(const FunctionNoProtoType *) { return true; }
2282};
2283
2284/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2285/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2286/// arguments, not as having a single void argument. Such a type can have an
2287/// exception specification, but this specification is not part of the canonical
2288/// type.
2289class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2290public:
2291  /// ExtProtoInfo - Extra information about a function prototype.
2292  struct ExtProtoInfo {
2293    ExtProtoInfo() :
2294      Variadic(false), HasExceptionSpec(false), HasAnyExceptionSpec(false),
2295      TypeQuals(0), NumExceptions(0), Exceptions(0) {}
2296
2297    FunctionType::ExtInfo ExtInfo;
2298    bool Variadic;
2299    bool HasExceptionSpec;
2300    bool HasAnyExceptionSpec;
2301    unsigned char TypeQuals;
2302    unsigned NumExceptions;
2303    const QualType *Exceptions;
2304  };
2305
2306private:
2307  /// \brief Determine whether there are any argument types that
2308  /// contain an unexpanded parameter pack.
2309  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2310                                                 unsigned numArgs) {
2311    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2312      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2313        return true;
2314
2315    return false;
2316  }
2317
2318  FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
2319                    QualType canonical, const ExtProtoInfo &epi);
2320
2321  /// NumArgs - The number of arguments this function has, not counting '...'.
2322  unsigned NumArgs : 20;
2323
2324  /// NumExceptions - The number of types in the exception spec, if any.
2325  unsigned NumExceptions : 10;
2326
2327  /// HasExceptionSpec - Whether this function has an exception spec at all.
2328  unsigned HasExceptionSpec : 1;
2329
2330  /// HasAnyExceptionSpec - Whether this function has a throw(...) spec.
2331  unsigned HasAnyExceptionSpec : 1;
2332
2333  /// ArgInfo - There is an variable size array after the class in memory that
2334  /// holds the argument types.
2335
2336  /// Exceptions - There is another variable size array after ArgInfo that
2337  /// holds the exception types.
2338
2339  friend class ASTContext;  // ASTContext creates these.
2340
2341public:
2342  unsigned getNumArgs() const { return NumArgs; }
2343  QualType getArgType(unsigned i) const {
2344    assert(i < NumArgs && "Invalid argument number!");
2345    return arg_type_begin()[i];
2346  }
2347
2348  ExtProtoInfo getExtProtoInfo() const {
2349    ExtProtoInfo EPI;
2350    EPI.ExtInfo = getExtInfo();
2351    EPI.Variadic = isVariadic();
2352    EPI.HasExceptionSpec = hasExceptionSpec();
2353    EPI.HasAnyExceptionSpec = hasAnyExceptionSpec();
2354    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2355    EPI.NumExceptions = NumExceptions;
2356    EPI.Exceptions = exception_begin();
2357    return EPI;
2358  }
2359
2360  bool hasExceptionSpec() const { return HasExceptionSpec; }
2361  bool hasAnyExceptionSpec() const { return HasAnyExceptionSpec; }
2362  unsigned getNumExceptions() const { return NumExceptions; }
2363  QualType getExceptionType(unsigned i) const {
2364    assert(i < NumExceptions && "Invalid exception number!");
2365    return exception_begin()[i];
2366  }
2367  bool hasEmptyExceptionSpec() const {
2368    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
2369      getNumExceptions() == 0;
2370  }
2371
2372  using FunctionType::isVariadic;
2373  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2374
2375  typedef const QualType *arg_type_iterator;
2376  arg_type_iterator arg_type_begin() const {
2377    return reinterpret_cast<const QualType *>(this+1);
2378  }
2379  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2380
2381  typedef const QualType *exception_iterator;
2382  exception_iterator exception_begin() const {
2383    // exceptions begin where arguments end
2384    return arg_type_end();
2385  }
2386  exception_iterator exception_end() const {
2387    return exception_begin() + NumExceptions;
2388  }
2389
2390  bool isSugared() const { return false; }
2391  QualType desugar() const { return QualType(this, 0); }
2392
2393  static bool classof(const Type *T) {
2394    return T->getTypeClass() == FunctionProto;
2395  }
2396  static bool classof(const FunctionProtoType *) { return true; }
2397
2398  void Profile(llvm::FoldingSetNodeID &ID);
2399  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2400                      arg_type_iterator ArgTys, unsigned NumArgs,
2401                      const ExtProtoInfo &EPI);
2402};
2403
2404
2405/// \brief Represents the dependent type named by a dependently-scoped
2406/// typename using declaration, e.g.
2407///   using typename Base<T>::foo;
2408/// Template instantiation turns these into the underlying type.
2409class UnresolvedUsingType : public Type {
2410  UnresolvedUsingTypenameDecl *Decl;
2411
2412  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2413    : Type(UnresolvedUsing, QualType(), true, false,
2414           /*ContainsUnexpandedParameterPack=*/false),
2415      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2416  friend class ASTContext; // ASTContext creates these.
2417public:
2418
2419  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2420
2421  bool isSugared() const { return false; }
2422  QualType desugar() const { return QualType(this, 0); }
2423
2424  static bool classof(const Type *T) {
2425    return T->getTypeClass() == UnresolvedUsing;
2426  }
2427  static bool classof(const UnresolvedUsingType *) { return true; }
2428
2429  void Profile(llvm::FoldingSetNodeID &ID) {
2430    return Profile(ID, Decl);
2431  }
2432  static void Profile(llvm::FoldingSetNodeID &ID,
2433                      UnresolvedUsingTypenameDecl *D) {
2434    ID.AddPointer(D);
2435  }
2436};
2437
2438
2439class TypedefType : public Type {
2440  TypedefDecl *Decl;
2441protected:
2442  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
2443    : Type(tc, can, can->isDependentType(), can->isVariablyModifiedType(),
2444           /*ContainsUnexpandedParameterPack=*/false),
2445      Decl(const_cast<TypedefDecl*>(D)) {
2446    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2447  }
2448  friend class ASTContext;  // ASTContext creates these.
2449public:
2450
2451  TypedefDecl *getDecl() const { return Decl; }
2452
2453  bool isSugared() const { return true; }
2454  QualType desugar() const;
2455
2456  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2457  static bool classof(const TypedefType *) { return true; }
2458};
2459
2460/// TypeOfExprType (GCC extension).
2461class TypeOfExprType : public Type {
2462  Expr *TOExpr;
2463
2464protected:
2465  TypeOfExprType(Expr *E, QualType can = QualType());
2466  friend class ASTContext;  // ASTContext creates these.
2467public:
2468  Expr *getUnderlyingExpr() const { return TOExpr; }
2469
2470  /// \brief Remove a single level of sugar.
2471  QualType desugar() const;
2472
2473  /// \brief Returns whether this type directly provides sugar.
2474  bool isSugared() const { return true; }
2475
2476  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2477  static bool classof(const TypeOfExprType *) { return true; }
2478};
2479
2480/// \brief Internal representation of canonical, dependent
2481/// typeof(expr) types.
2482///
2483/// This class is used internally by the ASTContext to manage
2484/// canonical, dependent types, only. Clients will only see instances
2485/// of this class via TypeOfExprType nodes.
2486class DependentTypeOfExprType
2487  : public TypeOfExprType, public llvm::FoldingSetNode {
2488  ASTContext &Context;
2489
2490public:
2491  DependentTypeOfExprType(ASTContext &Context, Expr *E)
2492    : TypeOfExprType(E), Context(Context) { }
2493
2494  bool isSugared() const { return false; }
2495  QualType desugar() const { return QualType(this, 0); }
2496
2497  void Profile(llvm::FoldingSetNodeID &ID) {
2498    Profile(ID, Context, getUnderlyingExpr());
2499  }
2500
2501  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2502                      Expr *E);
2503};
2504
2505/// TypeOfType (GCC extension).
2506class TypeOfType : public Type {
2507  QualType TOType;
2508  TypeOfType(QualType T, QualType can)
2509    : Type(TypeOf, can, T->isDependentType(), T->isVariablyModifiedType(),
2510           T->containsUnexpandedParameterPack()),
2511      TOType(T) {
2512    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2513  }
2514  friend class ASTContext;  // ASTContext creates these.
2515public:
2516  QualType getUnderlyingType() const { return TOType; }
2517
2518  /// \brief Remove a single level of sugar.
2519  QualType desugar() const { return getUnderlyingType(); }
2520
2521  /// \brief Returns whether this type directly provides sugar.
2522  bool isSugared() const { return true; }
2523
2524  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2525  static bool classof(const TypeOfType *) { return true; }
2526};
2527
2528/// DecltypeType (C++0x)
2529class DecltypeType : public Type {
2530  Expr *E;
2531
2532  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2533  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2534  // from it.
2535  QualType UnderlyingType;
2536
2537protected:
2538  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2539  friend class ASTContext;  // ASTContext creates these.
2540public:
2541  Expr *getUnderlyingExpr() const { return E; }
2542  QualType getUnderlyingType() const { return UnderlyingType; }
2543
2544  /// \brief Remove a single level of sugar.
2545  QualType desugar() const { return getUnderlyingType(); }
2546
2547  /// \brief Returns whether this type directly provides sugar.
2548  bool isSugared() const { return !isDependentType(); }
2549
2550  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2551  static bool classof(const DecltypeType *) { return true; }
2552};
2553
2554/// \brief Internal representation of canonical, dependent
2555/// decltype(expr) types.
2556///
2557/// This class is used internally by the ASTContext to manage
2558/// canonical, dependent types, only. Clients will only see instances
2559/// of this class via DecltypeType nodes.
2560class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2561  ASTContext &Context;
2562
2563public:
2564  DependentDecltypeType(ASTContext &Context, Expr *E);
2565
2566  bool isSugared() const { return false; }
2567  QualType desugar() const { return QualType(this, 0); }
2568
2569  void Profile(llvm::FoldingSetNodeID &ID) {
2570    Profile(ID, Context, getUnderlyingExpr());
2571  }
2572
2573  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2574                      Expr *E);
2575};
2576
2577class TagType : public Type {
2578  /// Stores the TagDecl associated with this type. The decl may point to any
2579  /// TagDecl that declares the entity.
2580  TagDecl * decl;
2581
2582protected:
2583  TagType(TypeClass TC, const TagDecl *D, QualType can);
2584
2585public:
2586  TagDecl *getDecl() const;
2587
2588  /// @brief Determines whether this type is in the process of being
2589  /// defined.
2590  bool isBeingDefined() const;
2591
2592  static bool classof(const Type *T) {
2593    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2594  }
2595  static bool classof(const TagType *) { return true; }
2596  static bool classof(const RecordType *) { return true; }
2597  static bool classof(const EnumType *) { return true; }
2598};
2599
2600/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2601/// to detect TagType objects of structs/unions/classes.
2602class RecordType : public TagType {
2603protected:
2604  explicit RecordType(const RecordDecl *D)
2605    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2606  explicit RecordType(TypeClass TC, RecordDecl *D)
2607    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2608  friend class ASTContext;   // ASTContext creates these.
2609public:
2610
2611  RecordDecl *getDecl() const {
2612    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2613  }
2614
2615  // FIXME: This predicate is a helper to QualType/Type. It needs to
2616  // recursively check all fields for const-ness. If any field is declared
2617  // const, it needs to return false.
2618  bool hasConstFields() const { return false; }
2619
2620  // FIXME: RecordType needs to check when it is created that all fields are in
2621  // the same address space, and return that.
2622  unsigned getAddressSpace() const { return 0; }
2623
2624  bool isSugared() const { return false; }
2625  QualType desugar() const { return QualType(this, 0); }
2626
2627  static bool classof(const TagType *T);
2628  static bool classof(const Type *T) {
2629    return isa<TagType>(T) && classof(cast<TagType>(T));
2630  }
2631  static bool classof(const RecordType *) { return true; }
2632};
2633
2634/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2635/// to detect TagType objects of enums.
2636class EnumType : public TagType {
2637  explicit EnumType(const EnumDecl *D)
2638    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2639  friend class ASTContext;   // ASTContext creates these.
2640public:
2641
2642  EnumDecl *getDecl() const {
2643    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2644  }
2645
2646  bool isSugared() const { return false; }
2647  QualType desugar() const { return QualType(this, 0); }
2648
2649  static bool classof(const TagType *T);
2650  static bool classof(const Type *T) {
2651    return isa<TagType>(T) && classof(cast<TagType>(T));
2652  }
2653  static bool classof(const EnumType *) { return true; }
2654};
2655
2656class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2657  unsigned Depth : 15;
2658  unsigned ParameterPack : 1;
2659  unsigned Index : 16;
2660  IdentifierInfo *Name;
2661
2662  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2663                       QualType Canon)
2664    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
2665           /*VariablyModified=*/false, PP),
2666      Depth(D), ParameterPack(PP), Index(I), Name(N) { }
2667
2668  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2669    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true,
2670           /*VariablyModified=*/false, PP),
2671      Depth(D), ParameterPack(PP), Index(I), Name(0) { }
2672
2673  friend class ASTContext;  // ASTContext creates these
2674
2675public:
2676  unsigned getDepth() const { return Depth; }
2677  unsigned getIndex() const { return Index; }
2678  bool isParameterPack() const { return ParameterPack; }
2679  IdentifierInfo *getName() const { return Name; }
2680
2681  bool isSugared() const { return false; }
2682  QualType desugar() const { return QualType(this, 0); }
2683
2684  void Profile(llvm::FoldingSetNodeID &ID) {
2685    Profile(ID, Depth, Index, ParameterPack, Name);
2686  }
2687
2688  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2689                      unsigned Index, bool ParameterPack,
2690                      IdentifierInfo *Name) {
2691    ID.AddInteger(Depth);
2692    ID.AddInteger(Index);
2693    ID.AddBoolean(ParameterPack);
2694    ID.AddPointer(Name);
2695  }
2696
2697  static bool classof(const Type *T) {
2698    return T->getTypeClass() == TemplateTypeParm;
2699  }
2700  static bool classof(const TemplateTypeParmType *T) { return true; }
2701};
2702
2703/// \brief Represents the result of substituting a type for a template
2704/// type parameter.
2705///
2706/// Within an instantiated template, all template type parameters have
2707/// been replaced with these.  They are used solely to record that a
2708/// type was originally written as a template type parameter;
2709/// therefore they are never canonical.
2710class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2711  // The original type parameter.
2712  const TemplateTypeParmType *Replaced;
2713
2714  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2715    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
2716           Canon->isVariablyModifiedType(),
2717           Canon->containsUnexpandedParameterPack()),
2718      Replaced(Param) { }
2719
2720  friend class ASTContext;
2721
2722public:
2723  IdentifierInfo *getName() const { return Replaced->getName(); }
2724
2725  /// Gets the template parameter that was substituted for.
2726  const TemplateTypeParmType *getReplacedParameter() const {
2727    return Replaced;
2728  }
2729
2730  /// Gets the type that was substituted for the template
2731  /// parameter.
2732  QualType getReplacementType() const {
2733    return getCanonicalTypeInternal();
2734  }
2735
2736  bool isSugared() const { return true; }
2737  QualType desugar() const { return getReplacementType(); }
2738
2739  void Profile(llvm::FoldingSetNodeID &ID) {
2740    Profile(ID, getReplacedParameter(), getReplacementType());
2741  }
2742  static void Profile(llvm::FoldingSetNodeID &ID,
2743                      const TemplateTypeParmType *Replaced,
2744                      QualType Replacement) {
2745    ID.AddPointer(Replaced);
2746    ID.AddPointer(Replacement.getAsOpaquePtr());
2747  }
2748
2749  static bool classof(const Type *T) {
2750    return T->getTypeClass() == SubstTemplateTypeParm;
2751  }
2752  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2753};
2754
2755/// \brief Represents the type of a template specialization as written
2756/// in the source code.
2757///
2758/// Template specialization types represent the syntactic form of a
2759/// template-id that refers to a type, e.g., @c vector<int>. Some
2760/// template specialization types are syntactic sugar, whose canonical
2761/// type will point to some other type node that represents the
2762/// instantiation or class template specialization. For example, a
2763/// class template specialization type of @c vector<int> will refer to
2764/// a tag type for the instantiation
2765/// @c std::vector<int, std::allocator<int>>.
2766///
2767/// Other template specialization types, for which the template name
2768/// is dependent, may be canonical types. These types are always
2769/// dependent.
2770class TemplateSpecializationType
2771  : public Type, public llvm::FoldingSetNode {
2772  /// \brief The name of the template being specialized.
2773  TemplateName Template;
2774
2775  /// \brief - The number of template arguments named in this class
2776  /// template specialization.
2777  unsigned NumArgs;
2778
2779  TemplateSpecializationType(TemplateName T,
2780                             const TemplateArgument *Args,
2781                             unsigned NumArgs, QualType Canon);
2782
2783  friend class ASTContext;  // ASTContext creates these
2784
2785public:
2786  /// \brief Determine whether any of the given template arguments are
2787  /// dependent.
2788  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2789                                            unsigned NumArgs);
2790
2791  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2792                                            unsigned NumArgs);
2793
2794  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2795
2796  /// \brief Print a template argument list, including the '<' and '>'
2797  /// enclosing the template arguments.
2798  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2799                                               unsigned NumArgs,
2800                                               const PrintingPolicy &Policy);
2801
2802  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2803                                               unsigned NumArgs,
2804                                               const PrintingPolicy &Policy);
2805
2806  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2807                                               const PrintingPolicy &Policy);
2808
2809  /// True if this template specialization type matches a current
2810  /// instantiation in the context in which it is found.
2811  bool isCurrentInstantiation() const {
2812    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
2813  }
2814
2815  typedef const TemplateArgument * iterator;
2816
2817  iterator begin() const { return getArgs(); }
2818  iterator end() const; // defined inline in TemplateBase.h
2819
2820  /// \brief Retrieve the name of the template that we are specializing.
2821  TemplateName getTemplateName() const { return Template; }
2822
2823  /// \brief Retrieve the template arguments.
2824  const TemplateArgument *getArgs() const {
2825    return reinterpret_cast<const TemplateArgument *>(this + 1);
2826  }
2827
2828  /// \brief Retrieve the number of template arguments.
2829  unsigned getNumArgs() const { return NumArgs; }
2830
2831  /// \brief Retrieve a specific template argument as a type.
2832  /// \precondition @c isArgType(Arg)
2833  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
2834
2835  bool isSugared() const {
2836    return !isDependentType() || isCurrentInstantiation();
2837  }
2838  QualType desugar() const { return getCanonicalTypeInternal(); }
2839
2840  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Ctx) {
2841    Profile(ID, Template, getArgs(), NumArgs, Ctx);
2842  }
2843
2844  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2845                      const TemplateArgument *Args,
2846                      unsigned NumArgs,
2847                      ASTContext &Context);
2848
2849  static bool classof(const Type *T) {
2850    return T->getTypeClass() == TemplateSpecialization;
2851  }
2852  static bool classof(const TemplateSpecializationType *T) { return true; }
2853};
2854
2855/// \brief The injected class name of a C++ class template or class
2856/// template partial specialization.  Used to record that a type was
2857/// spelled with a bare identifier rather than as a template-id; the
2858/// equivalent for non-templated classes is just RecordType.
2859///
2860/// Injected class name types are always dependent.  Template
2861/// instantiation turns these into RecordTypes.
2862///
2863/// Injected class name types are always canonical.  This works
2864/// because it is impossible to compare an injected class name type
2865/// with the corresponding non-injected template type, for the same
2866/// reason that it is impossible to directly compare template
2867/// parameters from different dependent contexts: injected class name
2868/// types can only occur within the scope of a particular templated
2869/// declaration, and within that scope every template specialization
2870/// will canonicalize to the injected class name (when appropriate
2871/// according to the rules of the language).
2872class InjectedClassNameType : public Type {
2873  CXXRecordDecl *Decl;
2874
2875  /// The template specialization which this type represents.
2876  /// For example, in
2877  ///   template <class T> class A { ... };
2878  /// this is A<T>, whereas in
2879  ///   template <class X, class Y> class A<B<X,Y> > { ... };
2880  /// this is A<B<X,Y> >.
2881  ///
2882  /// It is always unqualified, always a template specialization type,
2883  /// and always dependent.
2884  QualType InjectedType;
2885
2886  friend class ASTContext; // ASTContext creates these.
2887  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
2888                          // currently suitable for AST reading, too much
2889                          // interdependencies.
2890  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
2891    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
2892           /*VariablyModified=*/false,
2893           /*ContainsUnexpandedParameterPack=*/false),
2894      Decl(D), InjectedType(TST) {
2895    assert(isa<TemplateSpecializationType>(TST));
2896    assert(!TST.hasQualifiers());
2897    assert(TST->isDependentType());
2898  }
2899
2900public:
2901  QualType getInjectedSpecializationType() const { return InjectedType; }
2902  const TemplateSpecializationType *getInjectedTST() const {
2903    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
2904  }
2905
2906  CXXRecordDecl *getDecl() const;
2907
2908  bool isSugared() const { return false; }
2909  QualType desugar() const { return QualType(this, 0); }
2910
2911  static bool classof(const Type *T) {
2912    return T->getTypeClass() == InjectedClassName;
2913  }
2914  static bool classof(const InjectedClassNameType *T) { return true; }
2915};
2916
2917/// \brief The kind of a tag type.
2918enum TagTypeKind {
2919  /// \brief The "struct" keyword.
2920  TTK_Struct,
2921  /// \brief The "union" keyword.
2922  TTK_Union,
2923  /// \brief The "class" keyword.
2924  TTK_Class,
2925  /// \brief The "enum" keyword.
2926  TTK_Enum
2927};
2928
2929/// \brief The elaboration keyword that precedes a qualified type name or
2930/// introduces an elaborated-type-specifier.
2931enum ElaboratedTypeKeyword {
2932  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
2933  ETK_Struct,
2934  /// \brief The "union" keyword introduces the elaborated-type-specifier.
2935  ETK_Union,
2936  /// \brief The "class" keyword introduces the elaborated-type-specifier.
2937  ETK_Class,
2938  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
2939  ETK_Enum,
2940  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
2941  /// \c typename T::type.
2942  ETK_Typename,
2943  /// \brief No keyword precedes the qualified type name.
2944  ETK_None
2945};
2946
2947/// A helper class for Type nodes having an ElaboratedTypeKeyword.
2948/// The keyword in stored in the free bits of the base class.
2949/// Also provides a few static helpers for converting and printing
2950/// elaborated type keyword and tag type kind enumerations.
2951class TypeWithKeyword : public Type {
2952protected:
2953  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
2954                  QualType Canonical, bool Dependent, bool VariablyModified,
2955                  bool ContainsUnexpandedParameterPack)
2956  : Type(tc, Canonical, Dependent, VariablyModified,
2957         ContainsUnexpandedParameterPack) {
2958    TypeWithKeywordBits.Keyword = Keyword;
2959  }
2960
2961public:
2962  ElaboratedTypeKeyword getKeyword() const {
2963    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
2964  }
2965
2966  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
2967  /// into an elaborated type keyword.
2968  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
2969
2970  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
2971  /// into a tag type kind.  It is an error to provide a type specifier
2972  /// which *isn't* a tag kind here.
2973  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
2974
2975  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
2976  /// elaborated type keyword.
2977  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
2978
2979  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
2980  // a TagTypeKind. It is an error to provide an elaborated type keyword
2981  /// which *isn't* a tag kind here.
2982  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
2983
2984  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
2985
2986  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
2987
2988  static const char *getTagTypeKindName(TagTypeKind Kind) {
2989    return getKeywordName(getKeywordForTagTypeKind(Kind));
2990  }
2991
2992  class CannotCastToThisType {};
2993  static CannotCastToThisType classof(const Type *);
2994};
2995
2996/// \brief Represents a type that was referred to using an elaborated type
2997/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
2998/// or both.
2999///
3000/// This type is used to keep track of a type name as written in the
3001/// source code, including tag keywords and any nested-name-specifiers.
3002/// The type itself is always "sugar", used to express what was written
3003/// in the source code but containing no additional semantic information.
3004class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3005
3006  /// \brief The nested name specifier containing the qualifier.
3007  NestedNameSpecifier *NNS;
3008
3009  /// \brief The type that this qualified name refers to.
3010  QualType NamedType;
3011
3012  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3013                 QualType NamedType, QualType CanonType)
3014    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3015                      NamedType->isDependentType(),
3016                      NamedType->isVariablyModifiedType(),
3017                      NamedType->containsUnexpandedParameterPack()),
3018      NNS(NNS), NamedType(NamedType) {
3019    assert(!(Keyword == ETK_None && NNS == 0) &&
3020           "ElaboratedType cannot have elaborated type keyword "
3021           "and name qualifier both null.");
3022  }
3023
3024  friend class ASTContext;  // ASTContext creates these
3025
3026public:
3027  ~ElaboratedType();
3028
3029  /// \brief Retrieve the qualification on this type.
3030  NestedNameSpecifier *getQualifier() const { return NNS; }
3031
3032  /// \brief Retrieve the type named by the qualified-id.
3033  QualType getNamedType() const { return NamedType; }
3034
3035  /// \brief Remove a single level of sugar.
3036  QualType desugar() const { return getNamedType(); }
3037
3038  /// \brief Returns whether this type directly provides sugar.
3039  bool isSugared() const { return true; }
3040
3041  void Profile(llvm::FoldingSetNodeID &ID) {
3042    Profile(ID, getKeyword(), NNS, NamedType);
3043  }
3044
3045  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3046                      NestedNameSpecifier *NNS, QualType NamedType) {
3047    ID.AddInteger(Keyword);
3048    ID.AddPointer(NNS);
3049    NamedType.Profile(ID);
3050  }
3051
3052  static bool classof(const Type *T) {
3053    return T->getTypeClass() == Elaborated;
3054  }
3055  static bool classof(const ElaboratedType *T) { return true; }
3056};
3057
3058/// \brief Represents a qualified type name for which the type name is
3059/// dependent.
3060///
3061/// DependentNameType represents a class of dependent types that involve a
3062/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3063/// name of a type. The DependentNameType may start with a "typename" (for a
3064/// typename-specifier), "class", "struct", "union", or "enum" (for a
3065/// dependent elaborated-type-specifier), or nothing (in contexts where we
3066/// know that we must be referring to a type, e.g., in a base class specifier).
3067class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3068
3069  /// \brief The nested name specifier containing the qualifier.
3070  NestedNameSpecifier *NNS;
3071
3072  /// \brief The type that this typename specifier refers to.
3073  const IdentifierInfo *Name;
3074
3075  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3076                    const IdentifierInfo *Name, QualType CanonType)
3077    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3078                      /*VariablyModified=*/false,
3079                      NNS->containsUnexpandedParameterPack()),
3080      NNS(NNS), Name(Name) {
3081    assert(NNS->isDependent() &&
3082           "DependentNameType requires a dependent nested-name-specifier");
3083  }
3084
3085  friend class ASTContext;  // ASTContext creates these
3086
3087public:
3088  /// \brief Retrieve the qualification on this type.
3089  NestedNameSpecifier *getQualifier() const { return NNS; }
3090
3091  /// \brief Retrieve the type named by the typename specifier as an
3092  /// identifier.
3093  ///
3094  /// This routine will return a non-NULL identifier pointer when the
3095  /// form of the original typename was terminated by an identifier,
3096  /// e.g., "typename T::type".
3097  const IdentifierInfo *getIdentifier() const {
3098    return Name;
3099  }
3100
3101  bool isSugared() const { return false; }
3102  QualType desugar() const { return QualType(this, 0); }
3103
3104  void Profile(llvm::FoldingSetNodeID &ID) {
3105    Profile(ID, getKeyword(), NNS, Name);
3106  }
3107
3108  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3109                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
3110    ID.AddInteger(Keyword);
3111    ID.AddPointer(NNS);
3112    ID.AddPointer(Name);
3113  }
3114
3115  static bool classof(const Type *T) {
3116    return T->getTypeClass() == DependentName;
3117  }
3118  static bool classof(const DependentNameType *T) { return true; }
3119};
3120
3121/// DependentTemplateSpecializationType - Represents a template
3122/// specialization type whose template cannot be resolved, e.g.
3123///   A<T>::template B<T>
3124class DependentTemplateSpecializationType :
3125  public TypeWithKeyword, public llvm::FoldingSetNode {
3126
3127  /// \brief The nested name specifier containing the qualifier.
3128  NestedNameSpecifier *NNS;
3129
3130  /// \brief The identifier of the template.
3131  const IdentifierInfo *Name;
3132
3133  /// \brief - The number of template arguments named in this class
3134  /// template specialization.
3135  unsigned NumArgs;
3136
3137  const TemplateArgument *getArgBuffer() const {
3138    return reinterpret_cast<const TemplateArgument*>(this+1);
3139  }
3140  TemplateArgument *getArgBuffer() {
3141    return reinterpret_cast<TemplateArgument*>(this+1);
3142  }
3143
3144  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
3145                                      NestedNameSpecifier *NNS,
3146                                      const IdentifierInfo *Name,
3147                                      unsigned NumArgs,
3148                                      const TemplateArgument *Args,
3149                                      QualType Canon);
3150
3151  friend class ASTContext;  // ASTContext creates these
3152
3153public:
3154  NestedNameSpecifier *getQualifier() const { return NNS; }
3155  const IdentifierInfo *getIdentifier() const { return Name; }
3156
3157  /// \brief Retrieve the template arguments.
3158  const TemplateArgument *getArgs() const {
3159    return getArgBuffer();
3160  }
3161
3162  /// \brief Retrieve the number of template arguments.
3163  unsigned getNumArgs() const { return NumArgs; }
3164
3165  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3166
3167  typedef const TemplateArgument * iterator;
3168  iterator begin() const { return getArgs(); }
3169  iterator end() const; // inline in TemplateBase.h
3170
3171  bool isSugared() const { return false; }
3172  QualType desugar() const { return QualType(this, 0); }
3173
3174  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context) {
3175    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
3176  }
3177
3178  static void Profile(llvm::FoldingSetNodeID &ID,
3179                      ASTContext &Context,
3180                      ElaboratedTypeKeyword Keyword,
3181                      NestedNameSpecifier *Qualifier,
3182                      const IdentifierInfo *Name,
3183                      unsigned NumArgs,
3184                      const TemplateArgument *Args);
3185
3186  static bool classof(const Type *T) {
3187    return T->getTypeClass() == DependentTemplateSpecialization;
3188  }
3189  static bool classof(const DependentTemplateSpecializationType *T) {
3190    return true;
3191  }
3192};
3193
3194/// ObjCObjectType - Represents a class type in Objective C.
3195/// Every Objective C type is a combination of a base type and a
3196/// list of protocols.
3197///
3198/// Given the following declarations:
3199///   @class C;
3200///   @protocol P;
3201///
3202/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
3203/// with base C and no protocols.
3204///
3205/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
3206///
3207/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
3208/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
3209/// and no protocols.
3210///
3211/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
3212/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
3213/// this should get its own sugar class to better represent the source.
3214class ObjCObjectType : public Type {
3215  // ObjCObjectType.NumProtocols - the number of protocols stored
3216  // after the ObjCObjectPointerType node.
3217  //
3218  // These protocols are those written directly on the type.  If
3219  // protocol qualifiers ever become additive, the iterators will need
3220  // to get kindof complicated.
3221  //
3222  // In the canonical object type, these are sorted alphabetically
3223  // and uniqued.
3224
3225  /// Either a BuiltinType or an InterfaceType or sugar for either.
3226  QualType BaseType;
3227
3228  ObjCProtocolDecl * const *getProtocolStorage() const {
3229    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
3230  }
3231
3232  ObjCProtocolDecl **getProtocolStorage();
3233
3234protected:
3235  ObjCObjectType(QualType Canonical, QualType Base,
3236                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
3237
3238  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
3239  ObjCObjectType(enum Nonce_ObjCInterface)
3240        : Type(ObjCInterface, QualType(), false, false, false),
3241      BaseType(QualType(this_(), 0)) {
3242    ObjCObjectTypeBits.NumProtocols = 0;
3243  }
3244
3245public:
3246  /// getBaseType - Gets the base type of this object type.  This is
3247  /// always (possibly sugar for) one of:
3248  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
3249  ///    user, which is a typedef for an ObjCPointerType)
3250  ///  - the 'Class' builtin type (same caveat)
3251  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
3252  QualType getBaseType() const { return BaseType; }
3253
3254  bool isObjCId() const {
3255    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
3256  }
3257  bool isObjCClass() const {
3258    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
3259  }
3260  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
3261  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
3262  bool isObjCUnqualifiedIdOrClass() const {
3263    if (!qual_empty()) return false;
3264    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
3265      return T->getKind() == BuiltinType::ObjCId ||
3266             T->getKind() == BuiltinType::ObjCClass;
3267    return false;
3268  }
3269  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
3270  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
3271
3272  /// Gets the interface declaration for this object type, if the base type
3273  /// really is an interface.
3274  ObjCInterfaceDecl *getInterface() const;
3275
3276  typedef ObjCProtocolDecl * const *qual_iterator;
3277
3278  qual_iterator qual_begin() const { return getProtocolStorage(); }
3279  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
3280
3281  bool qual_empty() const { return getNumProtocols() == 0; }
3282
3283  /// getNumProtocols - Return the number of qualifying protocols in this
3284  /// interface type, or 0 if there are none.
3285  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
3286
3287  /// \brief Fetch a protocol by index.
3288  ObjCProtocolDecl *getProtocol(unsigned I) const {
3289    assert(I < getNumProtocols() && "Out-of-range protocol access");
3290    return qual_begin()[I];
3291  }
3292
3293  bool isSugared() const { return false; }
3294  QualType desugar() const { return QualType(this, 0); }
3295
3296  static bool classof(const Type *T) {
3297    return T->getTypeClass() == ObjCObject ||
3298           T->getTypeClass() == ObjCInterface;
3299  }
3300  static bool classof(const ObjCObjectType *) { return true; }
3301};
3302
3303/// ObjCObjectTypeImpl - A class providing a concrete implementation
3304/// of ObjCObjectType, so as to not increase the footprint of
3305/// ObjCInterfaceType.  Code outside of ASTContext and the core type
3306/// system should not reference this type.
3307class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
3308  friend class ASTContext;
3309
3310  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
3311  // will need to be modified.
3312
3313  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
3314                     ObjCProtocolDecl * const *Protocols,
3315                     unsigned NumProtocols)
3316    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
3317
3318public:
3319  void Profile(llvm::FoldingSetNodeID &ID);
3320  static void Profile(llvm::FoldingSetNodeID &ID,
3321                      QualType Base,
3322                      ObjCProtocolDecl *const *protocols,
3323                      unsigned NumProtocols);
3324};
3325
3326inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
3327  return reinterpret_cast<ObjCProtocolDecl**>(
3328            static_cast<ObjCObjectTypeImpl*>(this) + 1);
3329}
3330
3331/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
3332/// object oriented design.  They basically correspond to C++ classes.  There
3333/// are two kinds of interface types, normal interfaces like "NSString" and
3334/// qualified interfaces, which are qualified with a protocol list like
3335/// "NSString<NSCopyable, NSAmazing>".
3336///
3337/// ObjCInterfaceType guarantees the following properties when considered
3338/// as a subtype of its superclass, ObjCObjectType:
3339///   - There are no protocol qualifiers.  To reinforce this, code which
3340///     tries to invoke the protocol methods via an ObjCInterfaceType will
3341///     fail to compile.
3342///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
3343///     T->getBaseType() == QualType(T, 0).
3344class ObjCInterfaceType : public ObjCObjectType {
3345  ObjCInterfaceDecl *Decl;
3346
3347  ObjCInterfaceType(const ObjCInterfaceDecl *D)
3348    : ObjCObjectType(Nonce_ObjCInterface),
3349      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
3350  friend class ASTContext;  // ASTContext creates these.
3351
3352public:
3353  /// getDecl - Get the declaration of this interface.
3354  ObjCInterfaceDecl *getDecl() const { return Decl; }
3355
3356  bool isSugared() const { return false; }
3357  QualType desugar() const { return QualType(this, 0); }
3358
3359  static bool classof(const Type *T) {
3360    return T->getTypeClass() == ObjCInterface;
3361  }
3362  static bool classof(const ObjCInterfaceType *) { return true; }
3363
3364  // Nonsense to "hide" certain members of ObjCObjectType within this
3365  // class.  People asking for protocols on an ObjCInterfaceType are
3366  // not going to get what they want: ObjCInterfaceTypes are
3367  // guaranteed to have no protocols.
3368  enum {
3369    qual_iterator,
3370    qual_begin,
3371    qual_end,
3372    getNumProtocols,
3373    getProtocol
3374  };
3375};
3376
3377inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
3378  if (const ObjCInterfaceType *T =
3379        getBaseType()->getAs<ObjCInterfaceType>())
3380    return T->getDecl();
3381  return 0;
3382}
3383
3384/// ObjCObjectPointerType - Used to represent a pointer to an
3385/// Objective C object.  These are constructed from pointer
3386/// declarators when the pointee type is an ObjCObjectType (or sugar
3387/// for one).  In addition, the 'id' and 'Class' types are typedefs
3388/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
3389/// are translated into these.
3390///
3391/// Pointers to pointers to Objective C objects are still PointerTypes;
3392/// only the first level of pointer gets it own type implementation.
3393class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
3394  QualType PointeeType;
3395
3396  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
3397    : Type(ObjCObjectPointer, Canonical, false, false, false),
3398      PointeeType(Pointee) {}
3399  friend class ASTContext;  // ASTContext creates these.
3400
3401public:
3402  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
3403  /// The result will always be an ObjCObjectType or sugar thereof.
3404  QualType getPointeeType() const { return PointeeType; }
3405
3406  /// getObjCObjectType - Gets the type pointed to by this ObjC
3407  /// pointer.  This method always returns non-null.
3408  ///
3409  /// This method is equivalent to getPointeeType() except that
3410  /// it discards any typedefs (or other sugar) between this
3411  /// type and the "outermost" object type.  So for:
3412  ///   @class A; @protocol P; @protocol Q;
3413  ///   typedef A<P> AP;
3414  ///   typedef A A1;
3415  ///   typedef A1<P> A1P;
3416  ///   typedef A1P<Q> A1PQ;
3417  /// For 'A*', getObjectType() will return 'A'.
3418  /// For 'A<P>*', getObjectType() will return 'A<P>'.
3419  /// For 'AP*', getObjectType() will return 'A<P>'.
3420  /// For 'A1*', getObjectType() will return 'A'.
3421  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
3422  /// For 'A1P*', getObjectType() will return 'A1<P>'.
3423  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
3424  ///   adding protocols to a protocol-qualified base discards the
3425  ///   old qualifiers (for now).  But if it didn't, getObjectType()
3426  ///   would return 'A1P<Q>' (and we'd have to make iterating over
3427  ///   qualifiers more complicated).
3428  const ObjCObjectType *getObjectType() const {
3429    return PointeeType->getAs<ObjCObjectType>();
3430  }
3431
3432  /// getInterfaceType - If this pointer points to an Objective C
3433  /// @interface type, gets the type for that interface.  Any protocol
3434  /// qualifiers on the interface are ignored.
3435  ///
3436  /// \return null if the base type for this pointer is 'id' or 'Class'
3437  const ObjCInterfaceType *getInterfaceType() const {
3438    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
3439  }
3440
3441  /// getInterfaceDecl - If this pointer points to an Objective @interface
3442  /// type, gets the declaration for that interface.
3443  ///
3444  /// \return null if the base type for this pointer is 'id' or 'Class'
3445  ObjCInterfaceDecl *getInterfaceDecl() const {
3446    return getObjectType()->getInterface();
3447  }
3448
3449  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
3450  /// its object type is the primitive 'id' type with no protocols.
3451  bool isObjCIdType() const {
3452    return getObjectType()->isObjCUnqualifiedId();
3453  }
3454
3455  /// isObjCClassType - True if this is equivalent to the 'Class' type,
3456  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
3457  bool isObjCClassType() const {
3458    return getObjectType()->isObjCUnqualifiedClass();
3459  }
3460
3461  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
3462  /// non-empty set of protocols.
3463  bool isObjCQualifiedIdType() const {
3464    return getObjectType()->isObjCQualifiedId();
3465  }
3466
3467  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
3468  /// some non-empty set of protocols.
3469  bool isObjCQualifiedClassType() const {
3470    return getObjectType()->isObjCQualifiedClass();
3471  }
3472
3473  /// An iterator over the qualifiers on the object type.  Provided
3474  /// for convenience.  This will always iterate over the full set of
3475  /// protocols on a type, not just those provided directly.
3476  typedef ObjCObjectType::qual_iterator qual_iterator;
3477
3478  qual_iterator qual_begin() const {
3479    return getObjectType()->qual_begin();
3480  }
3481  qual_iterator qual_end() const {
3482    return getObjectType()->qual_end();
3483  }
3484  bool qual_empty() const { return getObjectType()->qual_empty(); }
3485
3486  /// getNumProtocols - Return the number of qualifying protocols on
3487  /// the object type.
3488  unsigned getNumProtocols() const {
3489    return getObjectType()->getNumProtocols();
3490  }
3491
3492  /// \brief Retrieve a qualifying protocol by index on the object
3493  /// type.
3494  ObjCProtocolDecl *getProtocol(unsigned I) const {
3495    return getObjectType()->getProtocol(I);
3496  }
3497
3498  bool isSugared() const { return false; }
3499  QualType desugar() const { return QualType(this, 0); }
3500
3501  void Profile(llvm::FoldingSetNodeID &ID) {
3502    Profile(ID, getPointeeType());
3503  }
3504  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
3505    ID.AddPointer(T.getAsOpaquePtr());
3506  }
3507  static bool classof(const Type *T) {
3508    return T->getTypeClass() == ObjCObjectPointer;
3509  }
3510  static bool classof(const ObjCObjectPointerType *) { return true; }
3511};
3512
3513/// A qualifier set is used to build a set of qualifiers.
3514class QualifierCollector : public Qualifiers {
3515public:
3516  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
3517
3518  /// Collect any qualifiers on the given type and return an
3519  /// unqualified type.
3520  const Type *strip(QualType QT) {
3521    addFastQualifiers(QT.getLocalFastQualifiers());
3522    if (QT.hasLocalNonFastQualifiers()) {
3523      const ExtQuals *EQ = QT.getExtQualsUnsafe();
3524      addQualifiers(EQ->getQualifiers());
3525      return EQ->getBaseType();
3526    }
3527    return QT.getTypePtrUnsafe();
3528  }
3529
3530  /// Apply the collected qualifiers to the given type.
3531  QualType apply(ASTContext &Context, QualType QT) const;
3532
3533  /// Apply the collected qualifiers to the given type.
3534  QualType apply(ASTContext &Context, const Type* T) const;
3535};
3536
3537
3538// Inline function definitions.
3539
3540inline bool QualType::isCanonical() const {
3541  const Type *T = getTypePtr();
3542  if (hasLocalQualifiers())
3543    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
3544  return T->isCanonicalUnqualified();
3545}
3546
3547inline bool QualType::isCanonicalAsParam() const {
3548  if (hasLocalQualifiers()) return false;
3549
3550  const Type *T = getTypePtr();
3551  if ((*this)->isPointerType()) {
3552    QualType BaseType = (*this)->getAs<PointerType>()->getPointeeType();
3553    if (isa<VariableArrayType>(BaseType)) {
3554      ArrayType *AT = dyn_cast<ArrayType>(BaseType);
3555      VariableArrayType *VAT = cast<VariableArrayType>(AT);
3556      if (VAT->getSizeExpr())
3557        T = BaseType.getTypePtr();
3558    }
3559  }
3560  return T->isCanonicalUnqualified() &&
3561           !isa<FunctionType>(T) && !isa<ArrayType>(T);
3562}
3563
3564inline bool QualType::isConstQualified() const {
3565  return isLocalConstQualified() ||
3566              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
3567}
3568
3569inline bool QualType::isRestrictQualified() const {
3570  return isLocalRestrictQualified() ||
3571            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
3572}
3573
3574
3575inline bool QualType::isVolatileQualified() const {
3576  return isLocalVolatileQualified() ||
3577  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
3578}
3579
3580inline bool QualType::hasQualifiers() const {
3581  return hasLocalQualifiers() ||
3582                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
3583}
3584
3585inline Qualifiers QualType::getQualifiers() const {
3586  Qualifiers Quals = getLocalQualifiers();
3587  Quals.addQualifiers(
3588                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
3589  return Quals;
3590}
3591
3592inline unsigned QualType::getCVRQualifiers() const {
3593  return getLocalCVRQualifiers() |
3594              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
3595}
3596
3597/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
3598/// type, returns them. Otherwise, if this is an array type, recurses
3599/// on the element type until some qualifiers have been found or a non-array
3600/// type reached.
3601inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
3602  if (unsigned Quals = getCVRQualifiers())
3603    return Quals;
3604  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3605  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3606    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
3607  return 0;
3608}
3609
3610inline void QualType::removeLocalConst() {
3611  removeLocalFastQualifiers(Qualifiers::Const);
3612}
3613
3614inline void QualType::removeLocalRestrict() {
3615  removeLocalFastQualifiers(Qualifiers::Restrict);
3616}
3617
3618inline void QualType::removeLocalVolatile() {
3619  removeLocalFastQualifiers(Qualifiers::Volatile);
3620}
3621
3622inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
3623  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
3624  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
3625
3626  // Fast path: we don't need to touch the slow qualifiers.
3627  removeLocalFastQualifiers(Mask);
3628}
3629
3630/// getAddressSpace - Return the address space of this type.
3631inline unsigned QualType::getAddressSpace() const {
3632  if (hasLocalNonFastQualifiers()) {
3633    const ExtQuals *EQ = getExtQualsUnsafe();
3634    if (EQ->hasAddressSpace())
3635      return EQ->getAddressSpace();
3636  }
3637
3638  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3639  if (CT.hasLocalNonFastQualifiers()) {
3640    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3641    if (EQ->hasAddressSpace())
3642      return EQ->getAddressSpace();
3643  }
3644
3645  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3646    return AT->getElementType().getAddressSpace();
3647  if (const RecordType *RT = dyn_cast<RecordType>(CT))
3648    return RT->getAddressSpace();
3649  return 0;
3650}
3651
3652/// getObjCGCAttr - Return the gc attribute of this type.
3653inline Qualifiers::GC QualType::getObjCGCAttr() const {
3654  if (hasLocalNonFastQualifiers()) {
3655    const ExtQuals *EQ = getExtQualsUnsafe();
3656    if (EQ->hasObjCGCAttr())
3657      return EQ->getObjCGCAttr();
3658  }
3659
3660  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3661  if (CT.hasLocalNonFastQualifiers()) {
3662    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3663    if (EQ->hasObjCGCAttr())
3664      return EQ->getObjCGCAttr();
3665  }
3666
3667  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3668      return AT->getElementType().getObjCGCAttr();
3669  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
3670    return PT->getPointeeType().getObjCGCAttr();
3671  // We most look at all pointer types, not just pointer to interface types.
3672  if (const PointerType *PT = CT->getAs<PointerType>())
3673    return PT->getPointeeType().getObjCGCAttr();
3674  return Qualifiers::GCNone;
3675}
3676
3677inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
3678  if (const PointerType *PT = t.getAs<PointerType>()) {
3679    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
3680      return FT->getExtInfo();
3681  } else if (const FunctionType *FT = t.getAs<FunctionType>())
3682    return FT->getExtInfo();
3683
3684  return FunctionType::ExtInfo();
3685}
3686
3687inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
3688  return getFunctionExtInfo(*t);
3689}
3690
3691/// \brief Determine whether this set of qualifiers is a superset of the given
3692/// set of qualifiers.
3693inline bool Qualifiers::isSupersetOf(Qualifiers Other) const {
3694  return Mask != Other.Mask && (Mask | Other.Mask) == Mask;
3695}
3696
3697/// isMoreQualifiedThan - Determine whether this type is more
3698/// qualified than the Other type. For example, "const volatile int"
3699/// is more qualified than "const int", "volatile int", and
3700/// "int". However, it is not more qualified than "const volatile
3701/// int".
3702inline bool QualType::isMoreQualifiedThan(QualType Other) const {
3703  // FIXME: work on arbitrary qualifiers
3704  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3705  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3706  if (getAddressSpace() != Other.getAddressSpace())
3707    return false;
3708  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
3709}
3710
3711/// isAtLeastAsQualifiedAs - Determine whether this type is at last
3712/// as qualified as the Other type. For example, "const volatile
3713/// int" is at least as qualified as "const int", "volatile int",
3714/// "int", and "const volatile int".
3715inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
3716  // FIXME: work on arbitrary qualifiers
3717  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3718  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3719  if (getAddressSpace() != Other.getAddressSpace())
3720    return false;
3721  return (MyQuals | OtherQuals) == MyQuals;
3722}
3723
3724/// getNonReferenceType - If Type is a reference type (e.g., const
3725/// int&), returns the type that the reference refers to ("const
3726/// int"). Otherwise, returns the type itself. This routine is used
3727/// throughout Sema to implement C++ 5p6:
3728///
3729///   If an expression initially has the type "reference to T" (8.3.2,
3730///   8.5.3), the type is adjusted to "T" prior to any further
3731///   analysis, the expression designates the object or function
3732///   denoted by the reference, and the expression is an lvalue.
3733inline QualType QualType::getNonReferenceType() const {
3734  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
3735    return RefType->getPointeeType();
3736  else
3737    return *this;
3738}
3739
3740inline bool Type::isFunctionType() const {
3741  return isa<FunctionType>(CanonicalType);
3742}
3743inline bool Type::isPointerType() const {
3744  return isa<PointerType>(CanonicalType);
3745}
3746inline bool Type::isAnyPointerType() const {
3747  return isPointerType() || isObjCObjectPointerType();
3748}
3749inline bool Type::isBlockPointerType() const {
3750  return isa<BlockPointerType>(CanonicalType);
3751}
3752inline bool Type::isReferenceType() const {
3753  return isa<ReferenceType>(CanonicalType);
3754}
3755inline bool Type::isLValueReferenceType() const {
3756  return isa<LValueReferenceType>(CanonicalType);
3757}
3758inline bool Type::isRValueReferenceType() const {
3759  return isa<RValueReferenceType>(CanonicalType);
3760}
3761inline bool Type::isFunctionPointerType() const {
3762  if (const PointerType* T = getAs<PointerType>())
3763    return T->getPointeeType()->isFunctionType();
3764  else
3765    return false;
3766}
3767inline bool Type::isMemberPointerType() const {
3768  return isa<MemberPointerType>(CanonicalType);
3769}
3770inline bool Type::isMemberFunctionPointerType() const {
3771  if (const MemberPointerType* T = getAs<MemberPointerType>())
3772    return T->isMemberFunctionPointer();
3773  else
3774    return false;
3775}
3776inline bool Type::isMemberDataPointerType() const {
3777  if (const MemberPointerType* T = getAs<MemberPointerType>())
3778    return T->isMemberDataPointer();
3779  else
3780    return false;
3781}
3782inline bool Type::isArrayType() const {
3783  return isa<ArrayType>(CanonicalType);
3784}
3785inline bool Type::isConstantArrayType() const {
3786  return isa<ConstantArrayType>(CanonicalType);
3787}
3788inline bool Type::isIncompleteArrayType() const {
3789  return isa<IncompleteArrayType>(CanonicalType);
3790}
3791inline bool Type::isVariableArrayType() const {
3792  return isa<VariableArrayType>(CanonicalType);
3793}
3794inline bool Type::isDependentSizedArrayType() const {
3795  return isa<DependentSizedArrayType>(CanonicalType);
3796}
3797inline bool Type::isBuiltinType() const {
3798  return isa<BuiltinType>(CanonicalType);
3799}
3800inline bool Type::isRecordType() const {
3801  return isa<RecordType>(CanonicalType);
3802}
3803inline bool Type::isEnumeralType() const {
3804  return isa<EnumType>(CanonicalType);
3805}
3806inline bool Type::isAnyComplexType() const {
3807  return isa<ComplexType>(CanonicalType);
3808}
3809inline bool Type::isVectorType() const {
3810  return isa<VectorType>(CanonicalType);
3811}
3812inline bool Type::isExtVectorType() const {
3813  return isa<ExtVectorType>(CanonicalType);
3814}
3815inline bool Type::isObjCObjectPointerType() const {
3816  return isa<ObjCObjectPointerType>(CanonicalType);
3817}
3818inline bool Type::isObjCObjectType() const {
3819  return isa<ObjCObjectType>(CanonicalType);
3820}
3821inline bool Type::isObjCObjectOrInterfaceType() const {
3822  return isa<ObjCInterfaceType>(CanonicalType) ||
3823    isa<ObjCObjectType>(CanonicalType);
3824}
3825
3826inline bool Type::isObjCQualifiedIdType() const {
3827  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3828    return OPT->isObjCQualifiedIdType();
3829  return false;
3830}
3831inline bool Type::isObjCQualifiedClassType() const {
3832  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3833    return OPT->isObjCQualifiedClassType();
3834  return false;
3835}
3836inline bool Type::isObjCIdType() const {
3837  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3838    return OPT->isObjCIdType();
3839  return false;
3840}
3841inline bool Type::isObjCClassType() const {
3842  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3843    return OPT->isObjCClassType();
3844  return false;
3845}
3846inline bool Type::isObjCSelType() const {
3847  if (const PointerType *OPT = getAs<PointerType>())
3848    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3849  return false;
3850}
3851inline bool Type::isObjCBuiltinType() const {
3852  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3853}
3854inline bool Type::isTemplateTypeParmType() const {
3855  return isa<TemplateTypeParmType>(CanonicalType);
3856}
3857
3858inline bool Type::isSpecificBuiltinType(unsigned K) const {
3859  if (const BuiltinType *BT = getAs<BuiltinType>())
3860    if (BT->getKind() == (BuiltinType::Kind) K)
3861      return true;
3862  return false;
3863}
3864
3865inline bool Type::isPlaceholderType() const {
3866  if (const BuiltinType *BT = getAs<BuiltinType>())
3867    return BT->isPlaceholderType();
3868  return false;
3869}
3870
3871/// \brief Determines whether this is a type for which one can define
3872/// an overloaded operator.
3873inline bool Type::isOverloadableType() const {
3874  return isDependentType() || isRecordType() || isEnumeralType();
3875}
3876
3877inline bool Type::hasPointerRepresentation() const {
3878  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3879          isObjCObjectPointerType() || isNullPtrType());
3880}
3881
3882inline bool Type::hasObjCPointerRepresentation() const {
3883  return isObjCObjectPointerType();
3884}
3885
3886/// Insertion operator for diagnostics.  This allows sending QualType's into a
3887/// diagnostic with <<.
3888inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3889                                           QualType T) {
3890  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3891                  Diagnostic::ak_qualtype);
3892  return DB;
3893}
3894
3895/// Insertion operator for partial diagnostics.  This allows sending QualType's
3896/// into a diagnostic with <<.
3897inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
3898                                           QualType T) {
3899  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3900                  Diagnostic::ak_qualtype);
3901  return PD;
3902}
3903
3904// Helper class template that is used by Type::getAs to ensure that one does
3905// not try to look through a qualified type to get to an array type.
3906template<typename T,
3907         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3908                             llvm::is_base_of<ArrayType, T>::value)>
3909struct ArrayType_cannot_be_used_with_getAs { };
3910
3911template<typename T>
3912struct ArrayType_cannot_be_used_with_getAs<T, true>;
3913
3914/// Member-template getAs<specific type>'.
3915template <typename T> const T *Type::getAs() const {
3916  ArrayType_cannot_be_used_with_getAs<T> at;
3917  (void)at;
3918
3919  // If this is directly a T type, return it.
3920  if (const T *Ty = dyn_cast<T>(this))
3921    return Ty;
3922
3923  // If the canonical form of this type isn't the right kind, reject it.
3924  if (!isa<T>(CanonicalType))
3925    return 0;
3926
3927  // If this is a typedef for the type, strip the typedef off without
3928  // losing all typedef information.
3929  return cast<T>(getUnqualifiedDesugaredType());
3930}
3931
3932}  // end namespace clang
3933
3934#endif
3935