Type.h revision 745da3a5bb4ea35f93f50301e7fbbb7d78d3b6bb
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/type_traits.h"
25#include "llvm/ADT/APSInt.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/ADT/PointerIntPair.h"
28#include "llvm/ADT/PointerUnion.h"
29
30using llvm::isa;
31using llvm::cast;
32using llvm::cast_or_null;
33using llvm::dyn_cast;
34using llvm::dyn_cast_or_null;
35namespace clang {
36  enum {
37    TypeAlignmentInBits = 3,
38    TypeAlignment = 1 << TypeAlignmentInBits
39  };
40  class Type;
41  class ExtQuals;
42  class QualType;
43}
44
45namespace llvm {
46  template <typename T>
47  class PointerLikeTypeTraits;
48  template<>
49  class PointerLikeTypeTraits< ::clang::Type*> {
50  public:
51    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
52    static inline ::clang::Type *getFromVoidPointer(void *P) {
53      return static_cast< ::clang::Type*>(P);
54    }
55    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
56  };
57  template<>
58  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
59  public:
60    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
61    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
62      return static_cast< ::clang::ExtQuals*>(P);
63    }
64    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
65  };
66
67  template <>
68  struct isPodLike<clang::QualType> { static const bool value = true; };
69}
70
71namespace clang {
72  class ASTContext;
73  class TypedefDecl;
74  class TemplateDecl;
75  class TemplateTypeParmDecl;
76  class NonTypeTemplateParmDecl;
77  class TemplateTemplateParmDecl;
78  class TagDecl;
79  class RecordDecl;
80  class CXXRecordDecl;
81  class EnumDecl;
82  class FieldDecl;
83  class ObjCInterfaceDecl;
84  class ObjCProtocolDecl;
85  class ObjCMethodDecl;
86  class UnresolvedUsingTypenameDecl;
87  class Expr;
88  class Stmt;
89  class SourceLocation;
90  class StmtIteratorBase;
91  class TemplateArgument;
92  class TemplateArgumentLoc;
93  class TemplateArgumentListInfo;
94  class Type;
95  class ElaboratedType;
96  struct PrintingPolicy;
97
98  template <typename> class CanQual;
99  typedef CanQual<Type> CanQualType;
100
101  // Provide forward declarations for all of the *Type classes
102#define TYPE(Class, Base) class Class##Type;
103#include "clang/AST/TypeNodes.def"
104
105/// Qualifiers - The collection of all-type qualifiers we support.
106/// Clang supports five independent qualifiers:
107/// * C99: const, volatile, and restrict
108/// * Embedded C (TR18037): address spaces
109/// * Objective C: the GC attributes (none, weak, or strong)
110class Qualifiers {
111public:
112  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
113    Const    = 0x1,
114    Restrict = 0x2,
115    Volatile = 0x4,
116    CVRMask = Const | Volatile | Restrict
117  };
118
119  enum GC {
120    GCNone = 0,
121    Weak,
122    Strong
123  };
124
125  enum {
126    /// The maximum supported address space number.
127    /// 24 bits should be enough for anyone.
128    MaxAddressSpace = 0xffffffu,
129
130    /// The width of the "fast" qualifier mask.
131    FastWidth = 2,
132
133    /// The fast qualifier mask.
134    FastMask = (1 << FastWidth) - 1
135  };
136
137  Qualifiers() : Mask(0) {}
138
139  static Qualifiers fromFastMask(unsigned Mask) {
140    Qualifiers Qs;
141    Qs.addFastQualifiers(Mask);
142    return Qs;
143  }
144
145  static Qualifiers fromCVRMask(unsigned CVR) {
146    Qualifiers Qs;
147    Qs.addCVRQualifiers(CVR);
148    return Qs;
149  }
150
151  // Deserialize qualifiers from an opaque representation.
152  static Qualifiers fromOpaqueValue(unsigned opaque) {
153    Qualifiers Qs;
154    Qs.Mask = opaque;
155    return Qs;
156  }
157
158  // Serialize these qualifiers into an opaque representation.
159  unsigned getAsOpaqueValue() const {
160    return Mask;
161  }
162
163  bool hasConst() const { return Mask & Const; }
164  void setConst(bool flag) {
165    Mask = (Mask & ~Const) | (flag ? Const : 0);
166  }
167  void removeConst() { Mask &= ~Const; }
168  void addConst() { Mask |= Const; }
169
170  bool hasVolatile() const { return Mask & Volatile; }
171  void setVolatile(bool flag) {
172    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
173  }
174  void removeVolatile() { Mask &= ~Volatile; }
175  void addVolatile() { Mask |= Volatile; }
176
177  bool hasRestrict() const { return Mask & Restrict; }
178  void setRestrict(bool flag) {
179    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
180  }
181  void removeRestrict() { Mask &= ~Restrict; }
182  void addRestrict() { Mask |= Restrict; }
183
184  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
185  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
186  void setCVRQualifiers(unsigned mask) {
187    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
188    Mask = (Mask & ~CVRMask) | mask;
189  }
190  void removeCVRQualifiers(unsigned mask) {
191    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
192    Mask &= ~mask;
193  }
194  void removeCVRQualifiers() {
195    removeCVRQualifiers(CVRMask);
196  }
197  void addCVRQualifiers(unsigned mask) {
198    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
199    Mask |= mask;
200  }
201
202  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
203  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
204  void setObjCGCAttr(GC type) {
205    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
206  }
207  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
208  void addObjCGCAttr(GC type) {
209    assert(type);
210    setObjCGCAttr(type);
211  }
212
213  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
214  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
215  void setAddressSpace(unsigned space) {
216    assert(space <= MaxAddressSpace);
217    Mask = (Mask & ~AddressSpaceMask)
218         | (((uint32_t) space) << AddressSpaceShift);
219  }
220  void removeAddressSpace() { setAddressSpace(0); }
221  void addAddressSpace(unsigned space) {
222    assert(space);
223    setAddressSpace(space);
224  }
225
226  // Fast qualifiers are those that can be allocated directly
227  // on a QualType object.
228  bool hasFastQualifiers() const { return getFastQualifiers(); }
229  unsigned getFastQualifiers() const { return Mask & FastMask; }
230  void setFastQualifiers(unsigned mask) {
231    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
232    Mask = (Mask & ~FastMask) | mask;
233  }
234  void removeFastQualifiers(unsigned mask) {
235    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
236    Mask &= ~mask;
237  }
238  void removeFastQualifiers() {
239    removeFastQualifiers(FastMask);
240  }
241  void addFastQualifiers(unsigned mask) {
242    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
243    Mask |= mask;
244  }
245
246  /// hasNonFastQualifiers - Return true if the set contains any
247  /// qualifiers which require an ExtQuals node to be allocated.
248  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
249  Qualifiers getNonFastQualifiers() const {
250    Qualifiers Quals = *this;
251    Quals.setFastQualifiers(0);
252    return Quals;
253  }
254
255  /// hasQualifiers - Return true if the set contains any qualifiers.
256  bool hasQualifiers() const { return Mask; }
257  bool empty() const { return !Mask; }
258
259  /// \brief Add the qualifiers from the given set to this set.
260  void addQualifiers(Qualifiers Q) {
261    // If the other set doesn't have any non-boolean qualifiers, just
262    // bit-or it in.
263    if (!(Q.Mask & ~CVRMask))
264      Mask |= Q.Mask;
265    else {
266      Mask |= (Q.Mask & CVRMask);
267      if (Q.hasAddressSpace())
268        addAddressSpace(Q.getAddressSpace());
269      if (Q.hasObjCGCAttr())
270        addObjCGCAttr(Q.getObjCGCAttr());
271    }
272  }
273
274  bool isSupersetOf(Qualifiers Other) const;
275
276  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
277  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
278
279  operator bool() const { return hasQualifiers(); }
280
281  Qualifiers &operator+=(Qualifiers R) {
282    addQualifiers(R);
283    return *this;
284  }
285
286  // Union two qualifier sets.  If an enumerated qualifier appears
287  // in both sets, use the one from the right.
288  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
289    L += R;
290    return L;
291  }
292
293  Qualifiers &operator-=(Qualifiers R) {
294    Mask = Mask & ~(R.Mask);
295    return *this;
296  }
297
298  /// \brief Compute the difference between two qualifier sets.
299  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
300    L -= R;
301    return L;
302  }
303
304  std::string getAsString() const;
305  std::string getAsString(const PrintingPolicy &Policy) const {
306    std::string Buffer;
307    getAsStringInternal(Buffer, Policy);
308    return Buffer;
309  }
310  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
311
312  void Profile(llvm::FoldingSetNodeID &ID) const {
313    ID.AddInteger(Mask);
314  }
315
316private:
317
318  // bits:     |0 1 2|3 .. 4|5  ..  31|
319  //           |C R V|GCAttr|AddrSpace|
320  uint32_t Mask;
321
322  static const uint32_t GCAttrMask = 0x18;
323  static const uint32_t GCAttrShift = 3;
324  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
325  static const uint32_t AddressSpaceShift = 5;
326};
327
328
329/// ExtQuals - We can encode up to three bits in the low bits of a
330/// type pointer, but there are many more type qualifiers that we want
331/// to be able to apply to an arbitrary type.  Therefore we have this
332/// struct, intended to be heap-allocated and used by QualType to
333/// store qualifiers.
334///
335/// The current design tags the 'const' and 'restrict' qualifiers in
336/// two low bits on the QualType pointer; a third bit records whether
337/// the pointer is an ExtQuals node.  'const' was chosen because it is
338/// orders of magnitude more common than the other two qualifiers, in
339/// both library and user code.  It's relatively rare to see
340/// 'restrict' in user code, but many standard C headers are saturated
341/// with 'restrict' declarations, so that representing them efficiently
342/// is a critical goal of this representation.
343class ExtQuals : public llvm::FoldingSetNode {
344  // NOTE: changing the fast qualifiers should be straightforward as
345  // long as you don't make 'const' non-fast.
346  // 1. Qualifiers:
347  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
348  //       Fast qualifiers must occupy the low-order bits.
349  //    b) Update Qualifiers::FastWidth and FastMask.
350  // 2. QualType:
351  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
352  //    b) Update remove{Volatile,Restrict}, defined near the end of
353  //       this header.
354  // 3. ASTContext:
355  //    a) Update get{Volatile,Restrict}Type.
356
357  /// Context - the context to which this set belongs.  We save this
358  /// here so that QualifierCollector can use it to reapply extended
359  /// qualifiers to an arbitrary type without requiring a context to
360  /// be pushed through every single API dealing with qualifiers.
361  ASTContext& Context;
362
363  /// BaseType - the underlying type that this qualifies
364  const Type *BaseType;
365
366  /// Quals - the immutable set of qualifiers applied by this
367  /// node;  always contains extended qualifiers.
368  Qualifiers Quals;
369
370public:
371  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
372    : Context(Context), BaseType(Base), Quals(Quals)
373  {
374    assert(Quals.hasNonFastQualifiers()
375           && "ExtQuals created with no fast qualifiers");
376    assert(!Quals.hasFastQualifiers()
377           && "ExtQuals created with fast qualifiers");
378  }
379
380  Qualifiers getQualifiers() const { return Quals; }
381
382  bool hasVolatile() const { return Quals.hasVolatile(); }
383
384  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
385  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
386
387  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
388  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
389
390  const Type *getBaseType() const { return BaseType; }
391
392  ASTContext &getContext() const { return Context; }
393
394public:
395  void Profile(llvm::FoldingSetNodeID &ID) const {
396    Profile(ID, getBaseType(), Quals);
397  }
398  static void Profile(llvm::FoldingSetNodeID &ID,
399                      const Type *BaseType,
400                      Qualifiers Quals) {
401    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
402    ID.AddPointer(BaseType);
403    Quals.Profile(ID);
404  }
405};
406
407/// CallingConv - Specifies the calling convention that a function uses.
408enum CallingConv {
409  CC_Default,
410  CC_C,           // __attribute__((cdecl))
411  CC_X86StdCall,  // __attribute__((stdcall))
412  CC_X86FastCall, // __attribute__((fastcall))
413  CC_X86ThisCall, // __attribute__((thiscall))
414  CC_X86Pascal    // __attribute__((pascal))
415};
416
417
418/// QualType - For efficiency, we don't store CV-qualified types as nodes on
419/// their own: instead each reference to a type stores the qualifiers.  This
420/// greatly reduces the number of nodes we need to allocate for types (for
421/// example we only need one for 'int', 'const int', 'volatile int',
422/// 'const volatile int', etc).
423///
424/// As an added efficiency bonus, instead of making this a pair, we
425/// just store the two bits we care about in the low bits of the
426/// pointer.  To handle the packing/unpacking, we make QualType be a
427/// simple wrapper class that acts like a smart pointer.  A third bit
428/// indicates whether there are extended qualifiers present, in which
429/// case the pointer points to a special structure.
430class QualType {
431  // Thankfully, these are efficiently composable.
432  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
433                       Qualifiers::FastWidth> Value;
434
435  const ExtQuals *getExtQualsUnsafe() const {
436    return Value.getPointer().get<const ExtQuals*>();
437  }
438
439  const Type *getTypePtrUnsafe() const {
440    return Value.getPointer().get<const Type*>();
441  }
442
443  QualType getUnqualifiedTypeSlow() const;
444
445  friend class QualifierCollector;
446public:
447  QualType() {}
448
449  QualType(const Type *Ptr, unsigned Quals)
450    : Value(Ptr, Quals) {}
451  QualType(const ExtQuals *Ptr, unsigned Quals)
452    : Value(Ptr, Quals) {}
453
454  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
455  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
456
457  /// Retrieves a pointer to the underlying (unqualified) type.
458  /// This should really return a const Type, but it's not worth
459  /// changing all the users right now.
460  Type *getTypePtr() const {
461    if (hasLocalNonFastQualifiers())
462      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
463    return const_cast<Type*>(getTypePtrUnsafe());
464  }
465
466  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
467  static QualType getFromOpaquePtr(void *Ptr) {
468    QualType T;
469    T.Value.setFromOpaqueValue(Ptr);
470    return T;
471  }
472
473  Type &operator*() const {
474    return *getTypePtr();
475  }
476
477  Type *operator->() const {
478    return getTypePtr();
479  }
480
481  bool isCanonical() const;
482  bool isCanonicalAsParam() const;
483
484  /// isNull - Return true if this QualType doesn't point to a type yet.
485  bool isNull() const {
486    return Value.getPointer().isNull();
487  }
488
489  /// \brief Determine whether this particular QualType instance has the
490  /// "const" qualifier set, without looking through typedefs that may have
491  /// added "const" at a different level.
492  bool isLocalConstQualified() const {
493    return (getLocalFastQualifiers() & Qualifiers::Const);
494  }
495
496  /// \brief Determine whether this type is const-qualified.
497  bool isConstQualified() const;
498
499  /// \brief Determine whether this particular QualType instance has the
500  /// "restrict" qualifier set, without looking through typedefs that may have
501  /// added "restrict" at a different level.
502  bool isLocalRestrictQualified() const {
503    return (getLocalFastQualifiers() & Qualifiers::Restrict);
504  }
505
506  /// \brief Determine whether this type is restrict-qualified.
507  bool isRestrictQualified() const;
508
509  /// \brief Determine whether this particular QualType instance has the
510  /// "volatile" qualifier set, without looking through typedefs that may have
511  /// added "volatile" at a different level.
512  bool isLocalVolatileQualified() const {
513    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
514  }
515
516  /// \brief Determine whether this type is volatile-qualified.
517  bool isVolatileQualified() const;
518
519  /// \brief Determine whether this particular QualType instance has any
520  /// qualifiers, without looking through any typedefs that might add
521  /// qualifiers at a different level.
522  bool hasLocalQualifiers() const {
523    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
524  }
525
526  /// \brief Determine whether this type has any qualifiers.
527  bool hasQualifiers() const;
528
529  /// \brief Determine whether this particular QualType instance has any
530  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
531  /// instance.
532  bool hasLocalNonFastQualifiers() const {
533    return Value.getPointer().is<const ExtQuals*>();
534  }
535
536  /// \brief Retrieve the set of qualifiers local to this particular QualType
537  /// instance, not including any qualifiers acquired through typedefs or
538  /// other sugar.
539  Qualifiers getLocalQualifiers() const {
540    Qualifiers Quals;
541    if (hasLocalNonFastQualifiers())
542      Quals = getExtQualsUnsafe()->getQualifiers();
543    Quals.addFastQualifiers(getLocalFastQualifiers());
544    return Quals;
545  }
546
547  /// \brief Retrieve the set of qualifiers applied to this type.
548  Qualifiers getQualifiers() const;
549
550  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
551  /// local to this particular QualType instance, not including any qualifiers
552  /// acquired through typedefs or other sugar.
553  unsigned getLocalCVRQualifiers() const {
554    unsigned CVR = getLocalFastQualifiers();
555    if (isLocalVolatileQualified())
556      CVR |= Qualifiers::Volatile;
557    return CVR;
558  }
559
560  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
561  /// applied to this type.
562  unsigned getCVRQualifiers() const;
563
564  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
565  /// applied to this type, looking through any number of unqualified array
566  /// types to their element types' qualifiers.
567  unsigned getCVRQualifiersThroughArrayTypes() const;
568
569  bool isConstant(ASTContext& Ctx) const {
570    return QualType::isConstant(*this, Ctx);
571  }
572
573  // Don't promise in the API that anything besides 'const' can be
574  // easily added.
575
576  /// addConst - add the specified type qualifier to this QualType.
577  void addConst() {
578    addFastQualifiers(Qualifiers::Const);
579  }
580  QualType withConst() const {
581    return withFastQualifiers(Qualifiers::Const);
582  }
583
584  void addFastQualifiers(unsigned TQs) {
585    assert(!(TQs & ~Qualifiers::FastMask)
586           && "non-fast qualifier bits set in mask!");
587    Value.setInt(Value.getInt() | TQs);
588  }
589
590  // FIXME: The remove* functions are semantically broken, because they might
591  // not remove a qualifier stored on a typedef. Most of the with* functions
592  // have the same problem.
593  void removeConst();
594  void removeVolatile();
595  void removeRestrict();
596  void removeCVRQualifiers(unsigned Mask);
597
598  void removeFastQualifiers() { Value.setInt(0); }
599  void removeFastQualifiers(unsigned Mask) {
600    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
601    Value.setInt(Value.getInt() & ~Mask);
602  }
603
604  // Creates a type with the given qualifiers in addition to any
605  // qualifiers already on this type.
606  QualType withFastQualifiers(unsigned TQs) const {
607    QualType T = *this;
608    T.addFastQualifiers(TQs);
609    return T;
610  }
611
612  // Creates a type with exactly the given fast qualifiers, removing
613  // any existing fast qualifiers.
614  QualType withExactFastQualifiers(unsigned TQs) const {
615    return withoutFastQualifiers().withFastQualifiers(TQs);
616  }
617
618  // Removes fast qualifiers, but leaves any extended qualifiers in place.
619  QualType withoutFastQualifiers() const {
620    QualType T = *this;
621    T.removeFastQualifiers();
622    return T;
623  }
624
625  /// \brief Return this type with all of the instance-specific qualifiers
626  /// removed, but without removing any qualifiers that may have been applied
627  /// through typedefs.
628  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
629
630  /// \brief Return the unqualified form of the given type, which might be
631  /// desugared to eliminate qualifiers introduced via typedefs.
632  QualType getUnqualifiedType() const {
633    QualType T = getLocalUnqualifiedType();
634    if (!T.hasQualifiers())
635      return T;
636
637    return getUnqualifiedTypeSlow();
638  }
639
640  bool isMoreQualifiedThan(QualType Other) const;
641  bool isAtLeastAsQualifiedAs(QualType Other) const;
642  QualType getNonReferenceType() const;
643
644  /// \brief Determine the type of a (typically non-lvalue) expression with the
645  /// specified result type.
646  ///
647  /// This routine should be used for expressions for which the return type is
648  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
649  /// an lvalue. It removes a top-level reference (since there are no
650  /// expressions of reference type) and deletes top-level cvr-qualifiers
651  /// from non-class types (in C++) or all types (in C).
652  QualType getNonLValueExprType(ASTContext &Context) const;
653
654  /// getDesugaredType - Return the specified type with any "sugar" removed from
655  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
656  /// the type is already concrete, it returns it unmodified.  This is similar
657  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
658  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
659  /// concrete.
660  ///
661  /// Qualifiers are left in place.
662  QualType getDesugaredType() const {
663    return QualType::getDesugaredType(*this);
664  }
665
666  /// operator==/!= - Indicate whether the specified types and qualifiers are
667  /// identical.
668  friend bool operator==(const QualType &LHS, const QualType &RHS) {
669    return LHS.Value == RHS.Value;
670  }
671  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
672    return LHS.Value != RHS.Value;
673  }
674  std::string getAsString() const;
675
676  std::string getAsString(const PrintingPolicy &Policy) const {
677    std::string S;
678    getAsStringInternal(S, Policy);
679    return S;
680  }
681  void getAsStringInternal(std::string &Str,
682                           const PrintingPolicy &Policy) const;
683
684  void dump(const char *s) const;
685  void dump() const;
686
687  void Profile(llvm::FoldingSetNodeID &ID) const {
688    ID.AddPointer(getAsOpaquePtr());
689  }
690
691  /// getAddressSpace - Return the address space of this type.
692  inline unsigned getAddressSpace() const;
693
694  /// GCAttrTypesAttr - Returns gc attribute of this type.
695  inline Qualifiers::GC getObjCGCAttr() const;
696
697  /// isObjCGCWeak true when Type is objc's weak.
698  bool isObjCGCWeak() const {
699    return getObjCGCAttr() == Qualifiers::Weak;
700  }
701
702  /// isObjCGCStrong true when Type is objc's strong.
703  bool isObjCGCStrong() const {
704    return getObjCGCAttr() == Qualifiers::Strong;
705  }
706
707private:
708  // These methods are implemented in a separate translation unit;
709  // "static"-ize them to avoid creating temporary QualTypes in the
710  // caller.
711  static bool isConstant(QualType T, ASTContext& Ctx);
712  static QualType getDesugaredType(QualType T);
713};
714
715} // end clang.
716
717namespace llvm {
718/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
719/// to a specific Type class.
720template<> struct simplify_type<const ::clang::QualType> {
721  typedef ::clang::Type* SimpleType;
722  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
723    return Val.getTypePtr();
724  }
725};
726template<> struct simplify_type< ::clang::QualType>
727  : public simplify_type<const ::clang::QualType> {};
728
729// Teach SmallPtrSet that QualType is "basically a pointer".
730template<>
731class PointerLikeTypeTraits<clang::QualType> {
732public:
733  static inline void *getAsVoidPointer(clang::QualType P) {
734    return P.getAsOpaquePtr();
735  }
736  static inline clang::QualType getFromVoidPointer(void *P) {
737    return clang::QualType::getFromOpaquePtr(P);
738  }
739  // Various qualifiers go in low bits.
740  enum { NumLowBitsAvailable = 0 };
741};
742
743} // end namespace llvm
744
745namespace clang {
746
747/// Type - This is the base class of the type hierarchy.  A central concept
748/// with types is that each type always has a canonical type.  A canonical type
749/// is the type with any typedef names stripped out of it or the types it
750/// references.  For example, consider:
751///
752///  typedef int  foo;
753///  typedef foo* bar;
754///    'int *'    'foo *'    'bar'
755///
756/// There will be a Type object created for 'int'.  Since int is canonical, its
757/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
758/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
759/// there is a PointerType that represents 'int*', which, like 'int', is
760/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
761/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
762/// is also 'int*'.
763///
764/// Non-canonical types are useful for emitting diagnostics, without losing
765/// information about typedefs being used.  Canonical types are useful for type
766/// comparisons (they allow by-pointer equality tests) and useful for reasoning
767/// about whether something has a particular form (e.g. is a function type),
768/// because they implicitly, recursively, strip all typedefs out of a type.
769///
770/// Types, once created, are immutable.
771///
772class Type {
773public:
774  enum TypeClass {
775#define TYPE(Class, Base) Class,
776#define LAST_TYPE(Class) TypeLast = Class,
777#define ABSTRACT_TYPE(Class, Base)
778#include "clang/AST/TypeNodes.def"
779    TagFirst = Record, TagLast = Enum
780  };
781
782private:
783  Type(const Type&);           // DO NOT IMPLEMENT.
784  void operator=(const Type&); // DO NOT IMPLEMENT.
785
786  QualType CanonicalType;
787
788  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
789  unsigned TC : 8;
790
791  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
792  /// Note that this should stay at the end of the ivars for Type so that
793  /// subclasses can pack their bitfields into the same word.
794  bool Dependent : 1;
795
796  /// \brief Whether the linkage of this type is already known.
797  mutable bool LinkageKnown : 1;
798
799  /// \brief Linkage of this type.
800  mutable unsigned CachedLinkage : 2;
801
802  /// \brief FromAST - Whether this type comes from an AST file.
803  mutable bool FromAST : 1;
804
805  /// \brief Set whether this type comes from an AST file.
806  void setFromAST(bool V = true) const {
807    FromAST = V;
808  }
809
810protected:
811  /// \brief Compute the linkage of this type.
812  virtual Linkage getLinkageImpl() const;
813
814  enum { BitsRemainingInType = 19 };
815
816  // silence VC++ warning C4355: 'this' : used in base member initializer list
817  Type *this_() { return this; }
818  Type(TypeClass tc, QualType Canonical, bool dependent)
819    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
820      TC(tc), Dependent(dependent), LinkageKnown(false),
821      CachedLinkage(NoLinkage), FromAST(false) {}
822  virtual ~Type();
823  friend class ASTContext;
824
825public:
826  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
827
828  /// \brief Whether this type comes from an AST file.
829  bool isFromAST() const { return FromAST; }
830
831  bool isCanonicalUnqualified() const {
832    return CanonicalType.getTypePtr() == this;
833  }
834
835  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
836  /// object types, function types, and incomplete types.
837
838  /// isIncompleteType - Return true if this is an incomplete type.
839  /// A type that can describe objects, but which lacks information needed to
840  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
841  /// routine will need to determine if the size is actually required.
842  bool isIncompleteType() const;
843
844  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
845  /// type, in other words, not a function type.
846  bool isIncompleteOrObjectType() const {
847    return !isFunctionType();
848  }
849
850  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
851  bool isPODType() const;
852
853  /// isLiteralType - Return true if this is a literal type
854  /// (C++0x [basic.types]p10)
855  bool isLiteralType() const;
856
857  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
858  /// types that have a non-constant expression. This does not include "[]".
859  bool isVariablyModifiedType() const;
860
861  /// Helper methods to distinguish type categories. All type predicates
862  /// operate on the canonical type, ignoring typedefs and qualifiers.
863
864  /// isBuiltinType - returns true if the type is a builtin type.
865  bool isBuiltinType() const;
866
867  /// isSpecificBuiltinType - Test for a particular builtin type.
868  bool isSpecificBuiltinType(unsigned K) const;
869
870  /// isIntegerType() does *not* include complex integers (a GCC extension).
871  /// isComplexIntegerType() can be used to test for complex integers.
872  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
873  bool isEnumeralType() const;
874  bool isBooleanType() const;
875  bool isCharType() const;
876  bool isWideCharType() const;
877  bool isAnyCharacterType() const;
878  bool isIntegralType(ASTContext &Ctx) const;
879
880  /// \brief Determine whether this type is an integral or enumeration type.
881  bool isIntegralOrEnumerationType() const;
882
883  /// Floating point categories.
884  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
885  /// isComplexType() does *not* include complex integers (a GCC extension).
886  /// isComplexIntegerType() can be used to test for complex integers.
887  bool isComplexType() const;      // C99 6.2.5p11 (complex)
888  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
889  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
890  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
891  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
892  bool isVoidType() const;         // C99 6.2.5p19
893  bool isDerivedType() const;      // C99 6.2.5p20
894  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
895  bool isAggregateType() const;
896
897  // Type Predicates: Check to see if this type is structurally the specified
898  // type, ignoring typedefs and qualifiers.
899  bool isFunctionType() const;
900  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
901  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
902  bool isPointerType() const;
903  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
904  bool isBlockPointerType() const;
905  bool isVoidPointerType() const;
906  bool isReferenceType() const;
907  bool isLValueReferenceType() const;
908  bool isRValueReferenceType() const;
909  bool isFunctionPointerType() const;
910  bool isMemberPointerType() const;
911  bool isMemberFunctionPointerType() const;
912  bool isMemberDataPointerType() const;
913  bool isArrayType() const;
914  bool isConstantArrayType() const;
915  bool isIncompleteArrayType() const;
916  bool isVariableArrayType() const;
917  bool isDependentSizedArrayType() const;
918  bool isRecordType() const;
919  bool isClassType() const;
920  bool isStructureType() const;
921  bool isStructureOrClassType() const;
922  bool isUnionType() const;
923  bool isComplexIntegerType() const;            // GCC _Complex integer type.
924  bool isVectorType() const;                    // GCC vector type.
925  bool isExtVectorType() const;                 // Extended vector type.
926  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
927  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
928  // for the common case.
929  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
930  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
931  bool isObjCQualifiedIdType() const;           // id<foo>
932  bool isObjCQualifiedClassType() const;        // Class<foo>
933  bool isObjCObjectOrInterfaceType() const;
934  bool isObjCIdType() const;                    // id
935  bool isObjCClassType() const;                 // Class
936  bool isObjCSelType() const;                 // Class
937  bool isObjCBuiltinType() const;               // 'id' or 'Class'
938  bool isTemplateTypeParmType() const;          // C++ template type parameter
939  bool isNullPtrType() const;                   // C++0x nullptr_t
940
941  /// isDependentType - Whether this type is a dependent type, meaning
942  /// that its definition somehow depends on a template parameter
943  /// (C++ [temp.dep.type]).
944  bool isDependentType() const { return Dependent; }
945  bool isOverloadableType() const;
946
947  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
948  bool isElaboratedTypeSpecifier() const;
949
950  /// hasPointerRepresentation - Whether this type is represented
951  /// natively as a pointer; this includes pointers, references, block
952  /// pointers, and Objective-C interface, qualified id, and qualified
953  /// interface types, as well as nullptr_t.
954  bool hasPointerRepresentation() const;
955
956  /// hasObjCPointerRepresentation - Whether this type can represent
957  /// an objective pointer type for the purpose of GC'ability
958  bool hasObjCPointerRepresentation() const;
959
960  /// \brief Determine whether this type has an integer representation
961  /// of some sort, e.g., it is an integer type or a vector.
962  bool hasIntegerRepresentation() const;
963
964  /// \brief Determine whether this type has an signed integer representation
965  /// of some sort, e.g., it is an signed integer type or a vector.
966  bool hasSignedIntegerRepresentation() const;
967
968  /// \brief Determine whether this type has an unsigned integer representation
969  /// of some sort, e.g., it is an unsigned integer type or a vector.
970  bool hasUnsignedIntegerRepresentation() const;
971
972  /// \brief Determine whether this type has a floating-point representation
973  /// of some sort, e.g., it is a floating-point type or a vector thereof.
974  bool hasFloatingRepresentation() const;
975
976  // Type Checking Functions: Check to see if this type is structurally the
977  // specified type, ignoring typedefs and qualifiers, and return a pointer to
978  // the best type we can.
979  const RecordType *getAsStructureType() const;
980  /// NOTE: getAs*ArrayType are methods on ASTContext.
981  const RecordType *getAsUnionType() const;
982  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
983  // The following is a convenience method that returns an ObjCObjectPointerType
984  // for object declared using an interface.
985  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
986  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
987  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
988  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
989
990  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
991  /// because the type is a RecordType or because it is the injected-class-name
992  /// type of a class template or class template partial specialization.
993  CXXRecordDecl *getAsCXXRecordDecl() const;
994
995  // Member-template getAs<specific type>'.  Look through sugar for
996  // an instance of <specific type>.   This scheme will eventually
997  // replace the specific getAsXXXX methods above.
998  //
999  // There are some specializations of this member template listed
1000  // immediately following this class.
1001  template <typename T> const T *getAs() const;
1002
1003  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1004  /// element type of the array, potentially with type qualifiers missing.
1005  /// This method should never be used when type qualifiers are meaningful.
1006  const Type *getArrayElementTypeNoTypeQual() const;
1007
1008  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1009  /// pointer, this returns the respective pointee.
1010  QualType getPointeeType() const;
1011
1012  /// getUnqualifiedDesugaredType() - Return the specified type with
1013  /// any "sugar" removed from the type, removing any typedefs,
1014  /// typeofs, etc., as well as any qualifiers.
1015  const Type *getUnqualifiedDesugaredType() const;
1016
1017  /// More type predicates useful for type checking/promotion
1018  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1019
1020  /// isSignedIntegerType - Return true if this is an integer type that is
1021  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1022  /// an enum decl which has a signed representation, or a vector of signed
1023  /// integer element type.
1024  bool isSignedIntegerType() const;
1025
1026  /// isUnsignedIntegerType - Return true if this is an integer type that is
1027  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1028  /// decl which has an unsigned representation, or a vector of unsigned integer
1029  /// element type.
1030  bool isUnsignedIntegerType() const;
1031
1032  /// isConstantSizeType - Return true if this is not a variable sized type,
1033  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1034  /// incomplete types.
1035  bool isConstantSizeType() const;
1036
1037  /// isSpecifierType - Returns true if this type can be represented by some
1038  /// set of type specifiers.
1039  bool isSpecifierType() const;
1040
1041  /// \brief Determine the linkage of this type.
1042  Linkage getLinkage() const;
1043
1044  /// \brief Note that the linkage is no longer known.
1045  void ClearLinkageCache();
1046
1047  const char *getTypeClassName() const;
1048
1049  QualType getCanonicalTypeInternal() const {
1050    return CanonicalType;
1051  }
1052  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1053  void dump() const;
1054  static bool classof(const Type *) { return true; }
1055
1056  friend class ASTReader;
1057  friend class ASTWriter;
1058};
1059
1060template <> inline const TypedefType *Type::getAs() const {
1061  return dyn_cast<TypedefType>(this);
1062}
1063
1064// We can do canonical leaf types faster, because we don't have to
1065// worry about preserving child type decoration.
1066#define TYPE(Class, Base)
1067#define LEAF_TYPE(Class) \
1068template <> inline const Class##Type *Type::getAs() const { \
1069  return dyn_cast<Class##Type>(CanonicalType); \
1070}
1071#include "clang/AST/TypeNodes.def"
1072
1073
1074/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1075/// types are always canonical and have a literal name field.
1076class BuiltinType : public Type {
1077public:
1078  enum Kind {
1079    Void,
1080
1081    Bool,     // This is bool and/or _Bool.
1082    Char_U,   // This is 'char' for targets where char is unsigned.
1083    UChar,    // This is explicitly qualified unsigned char.
1084    Char16,   // This is 'char16_t' for C++.
1085    Char32,   // This is 'char32_t' for C++.
1086    UShort,
1087    UInt,
1088    ULong,
1089    ULongLong,
1090    UInt128,  // __uint128_t
1091
1092    Char_S,   // This is 'char' for targets where char is signed.
1093    SChar,    // This is explicitly qualified signed char.
1094    WChar,    // This is 'wchar_t' for C++.
1095    Short,
1096    Int,
1097    Long,
1098    LongLong,
1099    Int128,   // __int128_t
1100
1101    Float, Double, LongDouble,
1102
1103    NullPtr,  // This is the type of C++0x 'nullptr'.
1104
1105    Overload,  // This represents the type of an overloaded function declaration.
1106    Dependent, // This represents the type of a type-dependent expression.
1107
1108    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1109                   // that has not been deduced yet.
1110
1111    /// The primitive Objective C 'id' type.  The type pointed to by the
1112    /// user-visible 'id' type.  Only ever shows up in an AST as the base
1113    /// type of an ObjCObjectType.
1114    ObjCId,
1115
1116    /// The primitive Objective C 'Class' type.  The type pointed to by the
1117    /// user-visible 'Class' type.  Only ever shows up in an AST as the
1118    /// base type of an ObjCObjectType.
1119    ObjCClass,
1120
1121    ObjCSel    // This represents the ObjC 'SEL' type.
1122  };
1123private:
1124  Kind TypeKind;
1125
1126protected:
1127  virtual Linkage getLinkageImpl() const;
1128
1129public:
1130  BuiltinType(Kind K)
1131    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
1132      TypeKind(K) {}
1133
1134  Kind getKind() const { return TypeKind; }
1135  const char *getName(const LangOptions &LO) const;
1136
1137  bool isSugared() const { return false; }
1138  QualType desugar() const { return QualType(this, 0); }
1139
1140  bool isInteger() const {
1141    return TypeKind >= Bool && TypeKind <= Int128;
1142  }
1143
1144  bool isSignedInteger() const {
1145    return TypeKind >= Char_S && TypeKind <= Int128;
1146  }
1147
1148  bool isUnsignedInteger() const {
1149    return TypeKind >= Bool && TypeKind <= UInt128;
1150  }
1151
1152  bool isFloatingPoint() const {
1153    return TypeKind >= Float && TypeKind <= LongDouble;
1154  }
1155
1156  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1157  static bool classof(const BuiltinType *) { return true; }
1158};
1159
1160/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1161/// types (_Complex float etc) as well as the GCC integer complex extensions.
1162///
1163class ComplexType : public Type, public llvm::FoldingSetNode {
1164  QualType ElementType;
1165  ComplexType(QualType Element, QualType CanonicalPtr) :
1166    Type(Complex, CanonicalPtr, Element->isDependentType()),
1167    ElementType(Element) {
1168  }
1169  friend class ASTContext;  // ASTContext creates these.
1170
1171protected:
1172  virtual Linkage getLinkageImpl() const;
1173
1174public:
1175  QualType getElementType() const { return ElementType; }
1176
1177  bool isSugared() const { return false; }
1178  QualType desugar() const { return QualType(this, 0); }
1179
1180  void Profile(llvm::FoldingSetNodeID &ID) {
1181    Profile(ID, getElementType());
1182  }
1183  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1184    ID.AddPointer(Element.getAsOpaquePtr());
1185  }
1186
1187  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1188  static bool classof(const ComplexType *) { return true; }
1189};
1190
1191/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1192///
1193class PointerType : public Type, public llvm::FoldingSetNode {
1194  QualType PointeeType;
1195
1196  PointerType(QualType Pointee, QualType CanonicalPtr) :
1197    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1198  }
1199  friend class ASTContext;  // ASTContext creates these.
1200
1201protected:
1202  virtual Linkage getLinkageImpl() const;
1203
1204public:
1205
1206  QualType getPointeeType() const { return PointeeType; }
1207
1208  bool isSugared() const { return false; }
1209  QualType desugar() const { return QualType(this, 0); }
1210
1211  void Profile(llvm::FoldingSetNodeID &ID) {
1212    Profile(ID, getPointeeType());
1213  }
1214  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1215    ID.AddPointer(Pointee.getAsOpaquePtr());
1216  }
1217
1218  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1219  static bool classof(const PointerType *) { return true; }
1220};
1221
1222/// BlockPointerType - pointer to a block type.
1223/// This type is to represent types syntactically represented as
1224/// "void (^)(int)", etc. Pointee is required to always be a function type.
1225///
1226class BlockPointerType : public Type, public llvm::FoldingSetNode {
1227  QualType PointeeType;  // Block is some kind of pointer type
1228  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1229    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1230    PointeeType(Pointee) {
1231  }
1232  friend class ASTContext;  // ASTContext creates these.
1233
1234protected:
1235  virtual Linkage getLinkageImpl() const;
1236
1237public:
1238
1239  // Get the pointee type. Pointee is required to always be a function type.
1240  QualType getPointeeType() const { return PointeeType; }
1241
1242  bool isSugared() const { return false; }
1243  QualType desugar() const { return QualType(this, 0); }
1244
1245  void Profile(llvm::FoldingSetNodeID &ID) {
1246      Profile(ID, getPointeeType());
1247  }
1248  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1249      ID.AddPointer(Pointee.getAsOpaquePtr());
1250  }
1251
1252  static bool classof(const Type *T) {
1253    return T->getTypeClass() == BlockPointer;
1254  }
1255  static bool classof(const BlockPointerType *) { return true; }
1256};
1257
1258/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1259///
1260class ReferenceType : public Type, public llvm::FoldingSetNode {
1261  QualType PointeeType;
1262
1263  /// True if the type was originally spelled with an lvalue sigil.
1264  /// This is never true of rvalue references but can also be false
1265  /// on lvalue references because of C++0x [dcl.typedef]p9,
1266  /// as follows:
1267  ///
1268  ///   typedef int &ref;    // lvalue, spelled lvalue
1269  ///   typedef int &&rvref; // rvalue
1270  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1271  ///   ref &&a;             // lvalue, inner ref
1272  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1273  ///   rvref &&a;           // rvalue, inner ref
1274  bool SpelledAsLValue;
1275
1276  /// True if the inner type is a reference type.  This only happens
1277  /// in non-canonical forms.
1278  bool InnerRef;
1279
1280protected:
1281  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1282                bool SpelledAsLValue) :
1283    Type(tc, CanonicalRef, Referencee->isDependentType()),
1284    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1285    InnerRef(Referencee->isReferenceType()) {
1286  }
1287
1288  virtual Linkage getLinkageImpl() const;
1289
1290public:
1291  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1292  bool isInnerRef() const { return InnerRef; }
1293
1294  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1295  QualType getPointeeType() const {
1296    // FIXME: this might strip inner qualifiers; okay?
1297    const ReferenceType *T = this;
1298    while (T->InnerRef)
1299      T = T->PointeeType->getAs<ReferenceType>();
1300    return T->PointeeType;
1301  }
1302
1303  void Profile(llvm::FoldingSetNodeID &ID) {
1304    Profile(ID, PointeeType, SpelledAsLValue);
1305  }
1306  static void Profile(llvm::FoldingSetNodeID &ID,
1307                      QualType Referencee,
1308                      bool SpelledAsLValue) {
1309    ID.AddPointer(Referencee.getAsOpaquePtr());
1310    ID.AddBoolean(SpelledAsLValue);
1311  }
1312
1313  static bool classof(const Type *T) {
1314    return T->getTypeClass() == LValueReference ||
1315           T->getTypeClass() == RValueReference;
1316  }
1317  static bool classof(const ReferenceType *) { return true; }
1318};
1319
1320/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1321///
1322class LValueReferenceType : public ReferenceType {
1323  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1324                      bool SpelledAsLValue) :
1325    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1326  {}
1327  friend class ASTContext; // ASTContext creates these
1328public:
1329  bool isSugared() const { return false; }
1330  QualType desugar() const { return QualType(this, 0); }
1331
1332  static bool classof(const Type *T) {
1333    return T->getTypeClass() == LValueReference;
1334  }
1335  static bool classof(const LValueReferenceType *) { return true; }
1336};
1337
1338/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1339///
1340class RValueReferenceType : public ReferenceType {
1341  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1342    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1343  }
1344  friend class ASTContext; // ASTContext creates these
1345public:
1346  bool isSugared() const { return false; }
1347  QualType desugar() const { return QualType(this, 0); }
1348
1349  static bool classof(const Type *T) {
1350    return T->getTypeClass() == RValueReference;
1351  }
1352  static bool classof(const RValueReferenceType *) { return true; }
1353};
1354
1355/// MemberPointerType - C++ 8.3.3 - Pointers to members
1356///
1357class MemberPointerType : public Type, public llvm::FoldingSetNode {
1358  QualType PointeeType;
1359  /// The class of which the pointee is a member. Must ultimately be a
1360  /// RecordType, but could be a typedef or a template parameter too.
1361  const Type *Class;
1362
1363  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1364    Type(MemberPointer, CanonicalPtr,
1365         Cls->isDependentType() || Pointee->isDependentType()),
1366    PointeeType(Pointee), Class(Cls) {
1367  }
1368  friend class ASTContext; // ASTContext creates these.
1369
1370protected:
1371  virtual Linkage getLinkageImpl() const;
1372
1373public:
1374  QualType getPointeeType() const { return PointeeType; }
1375
1376  /// Returns true if the member type (i.e. the pointee type) is a
1377  /// function type rather than a data-member type.
1378  bool isMemberFunctionPointer() const {
1379    return PointeeType->isFunctionProtoType();
1380  }
1381
1382  /// Returns true if the member type (i.e. the pointee type) is a
1383  /// data type rather than a function type.
1384  bool isMemberDataPointer() const {
1385    return !PointeeType->isFunctionProtoType();
1386  }
1387
1388  const Type *getClass() const { return Class; }
1389
1390  bool isSugared() const { return false; }
1391  QualType desugar() const { return QualType(this, 0); }
1392
1393  void Profile(llvm::FoldingSetNodeID &ID) {
1394    Profile(ID, getPointeeType(), getClass());
1395  }
1396  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1397                      const Type *Class) {
1398    ID.AddPointer(Pointee.getAsOpaquePtr());
1399    ID.AddPointer(Class);
1400  }
1401
1402  static bool classof(const Type *T) {
1403    return T->getTypeClass() == MemberPointer;
1404  }
1405  static bool classof(const MemberPointerType *) { return true; }
1406};
1407
1408/// ArrayType - C99 6.7.5.2 - Array Declarators.
1409///
1410class ArrayType : public Type, public llvm::FoldingSetNode {
1411public:
1412  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1413  /// an array with a static size (e.g. int X[static 4]), or an array
1414  /// with a star size (e.g. int X[*]).
1415  /// 'static' is only allowed on function parameters.
1416  enum ArraySizeModifier {
1417    Normal, Static, Star
1418  };
1419private:
1420  /// ElementType - The element type of the array.
1421  QualType ElementType;
1422
1423  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1424  /// NOTE: These fields are packed into the bitfields space in the Type class.
1425  unsigned SizeModifier : 2;
1426
1427  /// IndexTypeQuals - Capture qualifiers in declarations like:
1428  /// 'int X[static restrict 4]'. For function parameters only.
1429  unsigned IndexTypeQuals : 3;
1430
1431protected:
1432  // C++ [temp.dep.type]p1:
1433  //   A type is dependent if it is...
1434  //     - an array type constructed from any dependent type or whose
1435  //       size is specified by a constant expression that is
1436  //       value-dependent,
1437  ArrayType(TypeClass tc, QualType et, QualType can,
1438            ArraySizeModifier sm, unsigned tq)
1439    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1440      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1441
1442  friend class ASTContext;  // ASTContext creates these.
1443
1444  virtual Linkage getLinkageImpl() const;
1445
1446public:
1447  QualType getElementType() const { return ElementType; }
1448  ArraySizeModifier getSizeModifier() const {
1449    return ArraySizeModifier(SizeModifier);
1450  }
1451  Qualifiers getIndexTypeQualifiers() const {
1452    return Qualifiers::fromCVRMask(IndexTypeQuals);
1453  }
1454  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1455
1456  static bool classof(const Type *T) {
1457    return T->getTypeClass() == ConstantArray ||
1458           T->getTypeClass() == VariableArray ||
1459           T->getTypeClass() == IncompleteArray ||
1460           T->getTypeClass() == DependentSizedArray;
1461  }
1462  static bool classof(const ArrayType *) { return true; }
1463};
1464
1465/// ConstantArrayType - This class represents the canonical version of
1466/// C arrays with a specified constant size.  For example, the canonical
1467/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1468/// type is 'int' and the size is 404.
1469class ConstantArrayType : public ArrayType {
1470  llvm::APInt Size; // Allows us to unique the type.
1471
1472  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1473                    ArraySizeModifier sm, unsigned tq)
1474    : ArrayType(ConstantArray, et, can, sm, tq),
1475      Size(size) {}
1476protected:
1477  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1478                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1479    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1480  friend class ASTContext;  // ASTContext creates these.
1481public:
1482  const llvm::APInt &getSize() const { return Size; }
1483  bool isSugared() const { return false; }
1484  QualType desugar() const { return QualType(this, 0); }
1485
1486
1487  /// \brief Determine the number of bits required to address a member of
1488  // an array with the given element type and number of elements.
1489  static unsigned getNumAddressingBits(ASTContext &Context,
1490                                       QualType ElementType,
1491                                       const llvm::APInt &NumElements);
1492
1493  /// \brief Determine the maximum number of active bits that an array's size
1494  /// can require, which limits the maximum size of the array.
1495  static unsigned getMaxSizeBits(ASTContext &Context);
1496
1497  void Profile(llvm::FoldingSetNodeID &ID) {
1498    Profile(ID, getElementType(), getSize(),
1499            getSizeModifier(), getIndexTypeCVRQualifiers());
1500  }
1501  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1502                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1503                      unsigned TypeQuals) {
1504    ID.AddPointer(ET.getAsOpaquePtr());
1505    ID.AddInteger(ArraySize.getZExtValue());
1506    ID.AddInteger(SizeMod);
1507    ID.AddInteger(TypeQuals);
1508  }
1509  static bool classof(const Type *T) {
1510    return T->getTypeClass() == ConstantArray;
1511  }
1512  static bool classof(const ConstantArrayType *) { return true; }
1513};
1514
1515/// IncompleteArrayType - This class represents C arrays with an unspecified
1516/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1517/// type is 'int' and the size is unspecified.
1518class IncompleteArrayType : public ArrayType {
1519
1520  IncompleteArrayType(QualType et, QualType can,
1521                      ArraySizeModifier sm, unsigned tq)
1522    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1523  friend class ASTContext;  // ASTContext creates these.
1524public:
1525  bool isSugared() const { return false; }
1526  QualType desugar() const { return QualType(this, 0); }
1527
1528  static bool classof(const Type *T) {
1529    return T->getTypeClass() == IncompleteArray;
1530  }
1531  static bool classof(const IncompleteArrayType *) { return true; }
1532
1533  friend class StmtIteratorBase;
1534
1535  void Profile(llvm::FoldingSetNodeID &ID) {
1536    Profile(ID, getElementType(), getSizeModifier(),
1537            getIndexTypeCVRQualifiers());
1538  }
1539
1540  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1541                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1542    ID.AddPointer(ET.getAsOpaquePtr());
1543    ID.AddInteger(SizeMod);
1544    ID.AddInteger(TypeQuals);
1545  }
1546};
1547
1548/// VariableArrayType - This class represents C arrays with a specified size
1549/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1550/// Since the size expression is an arbitrary expression, we store it as such.
1551///
1552/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1553/// should not be: two lexically equivalent variable array types could mean
1554/// different things, for example, these variables do not have the same type
1555/// dynamically:
1556///
1557/// void foo(int x) {
1558///   int Y[x];
1559///   ++x;
1560///   int Z[x];
1561/// }
1562///
1563class VariableArrayType : public ArrayType {
1564  /// SizeExpr - An assignment expression. VLA's are only permitted within
1565  /// a function block.
1566  Stmt *SizeExpr;
1567  /// Brackets - The left and right array brackets.
1568  SourceRange Brackets;
1569
1570  VariableArrayType(QualType et, QualType can, Expr *e,
1571                    ArraySizeModifier sm, unsigned tq,
1572                    SourceRange brackets)
1573    : ArrayType(VariableArray, et, can, sm, tq),
1574      SizeExpr((Stmt*) e), Brackets(brackets) {}
1575  friend class ASTContext;  // ASTContext creates these.
1576
1577public:
1578  Expr *getSizeExpr() const {
1579    // We use C-style casts instead of cast<> here because we do not wish
1580    // to have a dependency of Type.h on Stmt.h/Expr.h.
1581    return (Expr*) SizeExpr;
1582  }
1583  SourceRange getBracketsRange() const { return Brackets; }
1584  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1585  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1586
1587  bool isSugared() const { return false; }
1588  QualType desugar() const { return QualType(this, 0); }
1589
1590  static bool classof(const Type *T) {
1591    return T->getTypeClass() == VariableArray;
1592  }
1593  static bool classof(const VariableArrayType *) { return true; }
1594
1595  friend class StmtIteratorBase;
1596
1597  void Profile(llvm::FoldingSetNodeID &ID) {
1598    assert(0 && "Cannnot unique VariableArrayTypes.");
1599  }
1600};
1601
1602/// DependentSizedArrayType - This type represents an array type in
1603/// C++ whose size is a value-dependent expression. For example:
1604///
1605/// \code
1606/// template<typename T, int Size>
1607/// class array {
1608///   T data[Size];
1609/// };
1610/// \endcode
1611///
1612/// For these types, we won't actually know what the array bound is
1613/// until template instantiation occurs, at which point this will
1614/// become either a ConstantArrayType or a VariableArrayType.
1615class DependentSizedArrayType : public ArrayType {
1616  ASTContext &Context;
1617
1618  /// \brief An assignment expression that will instantiate to the
1619  /// size of the array.
1620  ///
1621  /// The expression itself might be NULL, in which case the array
1622  /// type will have its size deduced from an initializer.
1623  Stmt *SizeExpr;
1624
1625  /// Brackets - The left and right array brackets.
1626  SourceRange Brackets;
1627
1628  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1629                          Expr *e, ArraySizeModifier sm, unsigned tq,
1630                          SourceRange brackets)
1631    : ArrayType(DependentSizedArray, et, can, sm, tq),
1632      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1633  friend class ASTContext;  // ASTContext creates these.
1634
1635public:
1636  Expr *getSizeExpr() const {
1637    // We use C-style casts instead of cast<> here because we do not wish
1638    // to have a dependency of Type.h on Stmt.h/Expr.h.
1639    return (Expr*) SizeExpr;
1640  }
1641  SourceRange getBracketsRange() const { return Brackets; }
1642  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1643  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1644
1645  bool isSugared() const { return false; }
1646  QualType desugar() const { return QualType(this, 0); }
1647
1648  static bool classof(const Type *T) {
1649    return T->getTypeClass() == DependentSizedArray;
1650  }
1651  static bool classof(const DependentSizedArrayType *) { return true; }
1652
1653  friend class StmtIteratorBase;
1654
1655
1656  void Profile(llvm::FoldingSetNodeID &ID) {
1657    Profile(ID, Context, getElementType(),
1658            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1659  }
1660
1661  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1662                      QualType ET, ArraySizeModifier SizeMod,
1663                      unsigned TypeQuals, Expr *E);
1664};
1665
1666/// DependentSizedExtVectorType - This type represent an extended vector type
1667/// where either the type or size is dependent. For example:
1668/// @code
1669/// template<typename T, int Size>
1670/// class vector {
1671///   typedef T __attribute__((ext_vector_type(Size))) type;
1672/// }
1673/// @endcode
1674class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1675  ASTContext &Context;
1676  Expr *SizeExpr;
1677  /// ElementType - The element type of the array.
1678  QualType ElementType;
1679  SourceLocation loc;
1680
1681  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1682                              QualType can, Expr *SizeExpr, SourceLocation loc)
1683    : Type (DependentSizedExtVector, can, true),
1684      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1685      loc(loc) {}
1686  friend class ASTContext;
1687
1688public:
1689  Expr *getSizeExpr() const { return SizeExpr; }
1690  QualType getElementType() const { return ElementType; }
1691  SourceLocation getAttributeLoc() const { return loc; }
1692
1693  bool isSugared() const { return false; }
1694  QualType desugar() const { return QualType(this, 0); }
1695
1696  static bool classof(const Type *T) {
1697    return T->getTypeClass() == DependentSizedExtVector;
1698  }
1699  static bool classof(const DependentSizedExtVectorType *) { return true; }
1700
1701  void Profile(llvm::FoldingSetNodeID &ID) {
1702    Profile(ID, Context, getElementType(), getSizeExpr());
1703  }
1704
1705  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1706                      QualType ElementType, Expr *SizeExpr);
1707};
1708
1709
1710/// VectorType - GCC generic vector type. This type is created using
1711/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1712/// bytes; or from an Altivec __vector or vector declaration.
1713/// Since the constructor takes the number of vector elements, the
1714/// client is responsible for converting the size into the number of elements.
1715class VectorType : public Type, public llvm::FoldingSetNode {
1716public:
1717  enum AltiVecSpecific {
1718    NotAltiVec,  // is not AltiVec vector
1719    AltiVec,     // is AltiVec vector
1720    Pixel,       // is AltiVec 'vector Pixel'
1721    Bool         // is AltiVec 'vector bool ...'
1722  };
1723protected:
1724  /// ElementType - The element type of the vector.
1725  QualType ElementType;
1726
1727  /// NumElements - The number of elements in the vector.
1728  unsigned NumElements;
1729
1730  AltiVecSpecific AltiVecSpec;
1731
1732  VectorType(QualType vecType, unsigned nElements, QualType canonType,
1733      AltiVecSpecific altiVecSpec) :
1734    Type(Vector, canonType, vecType->isDependentType()),
1735    ElementType(vecType), NumElements(nElements), AltiVecSpec(altiVecSpec) {}
1736  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1737             QualType canonType, AltiVecSpecific altiVecSpec)
1738    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1739      NumElements(nElements), AltiVecSpec(altiVecSpec) {}
1740  friend class ASTContext;  // ASTContext creates these.
1741
1742  virtual Linkage getLinkageImpl() const;
1743
1744public:
1745
1746  QualType getElementType() const { return ElementType; }
1747  unsigned getNumElements() const { return NumElements; }
1748
1749  bool isSugared() const { return false; }
1750  QualType desugar() const { return QualType(this, 0); }
1751
1752  AltiVecSpecific getAltiVecSpecific() const { return AltiVecSpec; }
1753
1754  void Profile(llvm::FoldingSetNodeID &ID) {
1755    Profile(ID, getElementType(), getNumElements(), getTypeClass(), AltiVecSpec);
1756  }
1757  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1758                      unsigned NumElements, TypeClass TypeClass,
1759                      unsigned AltiVecSpec) {
1760    ID.AddPointer(ElementType.getAsOpaquePtr());
1761    ID.AddInteger(NumElements);
1762    ID.AddInteger(TypeClass);
1763    ID.AddInteger(AltiVecSpec);
1764  }
1765
1766  static bool classof(const Type *T) {
1767    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1768  }
1769  static bool classof(const VectorType *) { return true; }
1770};
1771
1772/// ExtVectorType - Extended vector type. This type is created using
1773/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1774/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1775/// class enables syntactic extensions, like Vector Components for accessing
1776/// points, colors, and textures (modeled after OpenGL Shading Language).
1777class ExtVectorType : public VectorType {
1778  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1779    VectorType(ExtVector, vecType, nElements, canonType, NotAltiVec) {}
1780  friend class ASTContext;  // ASTContext creates these.
1781public:
1782  static int getPointAccessorIdx(char c) {
1783    switch (c) {
1784    default: return -1;
1785    case 'x': return 0;
1786    case 'y': return 1;
1787    case 'z': return 2;
1788    case 'w': return 3;
1789    }
1790  }
1791  static int getNumericAccessorIdx(char c) {
1792    switch (c) {
1793      default: return -1;
1794      case '0': return 0;
1795      case '1': return 1;
1796      case '2': return 2;
1797      case '3': return 3;
1798      case '4': return 4;
1799      case '5': return 5;
1800      case '6': return 6;
1801      case '7': return 7;
1802      case '8': return 8;
1803      case '9': return 9;
1804      case 'A':
1805      case 'a': return 10;
1806      case 'B':
1807      case 'b': return 11;
1808      case 'C':
1809      case 'c': return 12;
1810      case 'D':
1811      case 'd': return 13;
1812      case 'E':
1813      case 'e': return 14;
1814      case 'F':
1815      case 'f': return 15;
1816    }
1817  }
1818
1819  static int getAccessorIdx(char c) {
1820    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1821    return getNumericAccessorIdx(c);
1822  }
1823
1824  bool isAccessorWithinNumElements(char c) const {
1825    if (int idx = getAccessorIdx(c)+1)
1826      return unsigned(idx-1) < NumElements;
1827    return false;
1828  }
1829  bool isSugared() const { return false; }
1830  QualType desugar() const { return QualType(this, 0); }
1831
1832  static bool classof(const Type *T) {
1833    return T->getTypeClass() == ExtVector;
1834  }
1835  static bool classof(const ExtVectorType *) { return true; }
1836};
1837
1838/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1839/// class of FunctionNoProtoType and FunctionProtoType.
1840///
1841class FunctionType : public Type {
1842  virtual void ANCHOR(); // Key function for FunctionType.
1843
1844  /// SubClassData - This field is owned by the subclass, put here to pack
1845  /// tightly with the ivars in Type.
1846  bool SubClassData : 1;
1847
1848  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1849  /// other bitfields.
1850  /// The qualifiers are part of FunctionProtoType because...
1851  ///
1852  /// C++ 8.3.5p4: The return type, the parameter type list and the
1853  /// cv-qualifier-seq, [...], are part of the function type.
1854  ///
1855  unsigned TypeQuals : 3;
1856
1857  /// NoReturn - Indicates if the function type is attribute noreturn.
1858  unsigned NoReturn : 1;
1859
1860  /// RegParm - How many arguments to pass inreg.
1861  unsigned RegParm : 3;
1862
1863  /// CallConv - The calling convention used by the function.
1864  unsigned CallConv : 3;
1865
1866  // The type returned by the function.
1867  QualType ResultType;
1868
1869 public:
1870  // This class is used for passing arround the information needed to
1871  // construct a call. It is not actually used for storage, just for
1872  // factoring together common arguments.
1873  // If you add a field (say Foo), other than the obvious places (both, constructors,
1874  // compile failures), what you need to update is
1875  // * Operetor==
1876  // * getFoo
1877  // * withFoo
1878  // * functionType. Add Foo, getFoo.
1879  // * ASTContext::getFooType
1880  // * ASTContext::mergeFunctionTypes
1881  // * FunctionNoProtoType::Profile
1882  // * FunctionProtoType::Profile
1883  // * TypePrinter::PrintFunctionProto
1884  // * AST read and write
1885  // * Codegen
1886
1887  class ExtInfo {
1888   public:
1889    // Constructor with no defaults. Use this when you know that you
1890    // have all the elements (when reading an AST file for example).
1891    ExtInfo(bool noReturn, unsigned regParm, CallingConv cc) :
1892        NoReturn(noReturn), RegParm(regParm), CC(cc) {}
1893
1894    // Constructor with all defaults. Use when for example creating a
1895    // function know to use defaults.
1896    ExtInfo() : NoReturn(false), RegParm(0), CC(CC_Default) {}
1897
1898    bool getNoReturn() const { return NoReturn; }
1899    unsigned getRegParm() const { return RegParm; }
1900    CallingConv getCC() const { return CC; }
1901
1902    bool operator==(const ExtInfo &Other) const {
1903      return getNoReturn() == Other.getNoReturn() &&
1904          getRegParm() == Other.getRegParm() &&
1905          getCC() == Other.getCC();
1906    }
1907    bool operator!=(const ExtInfo &Other) const {
1908      return !(*this == Other);
1909    }
1910
1911    // Note that we don't have setters. That is by design, use
1912    // the following with methods instead of mutating these objects.
1913
1914    ExtInfo withNoReturn(bool noReturn) const {
1915      return ExtInfo(noReturn, getRegParm(), getCC());
1916    }
1917
1918    ExtInfo withRegParm(unsigned RegParm) const {
1919      return ExtInfo(getNoReturn(), RegParm, getCC());
1920    }
1921
1922    ExtInfo withCallingConv(CallingConv cc) const {
1923      return ExtInfo(getNoReturn(), getRegParm(), cc);
1924    }
1925
1926   private:
1927    // True if we have __attribute__((noreturn))
1928    bool NoReturn;
1929    // The value passed to __attribute__((regparm(x)))
1930    unsigned RegParm;
1931    // The calling convention as specified via
1932    // __attribute__((cdecl|stdcall|fastcall|thiscall|pascal))
1933    CallingConv CC;
1934  };
1935
1936protected:
1937  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1938               unsigned typeQuals, QualType Canonical, bool Dependent,
1939               const ExtInfo &Info)
1940    : Type(tc, Canonical, Dependent),
1941      SubClassData(SubclassInfo), TypeQuals(typeQuals),
1942      NoReturn(Info.getNoReturn()),
1943      RegParm(Info.getRegParm()), CallConv(Info.getCC()), ResultType(res) {}
1944  bool getSubClassData() const { return SubClassData; }
1945  unsigned getTypeQuals() const { return TypeQuals; }
1946public:
1947
1948  QualType getResultType() const { return ResultType; }
1949
1950  unsigned getRegParmType() const { return RegParm; }
1951  bool getNoReturnAttr() const { return NoReturn; }
1952  CallingConv getCallConv() const { return (CallingConv)CallConv; }
1953  ExtInfo getExtInfo() const {
1954    return ExtInfo(NoReturn, RegParm, (CallingConv)CallConv);
1955  }
1956
1957  /// \brief Determine the type of an expression that calls a function of
1958  /// this type.
1959  QualType getCallResultType(ASTContext &Context) const {
1960    return getResultType().getNonLValueExprType(Context);
1961  }
1962
1963  static llvm::StringRef getNameForCallConv(CallingConv CC);
1964
1965  static bool classof(const Type *T) {
1966    return T->getTypeClass() == FunctionNoProto ||
1967           T->getTypeClass() == FunctionProto;
1968  }
1969  static bool classof(const FunctionType *) { return true; }
1970};
1971
1972/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1973/// no information available about its arguments.
1974class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1975  FunctionNoProtoType(QualType Result, QualType Canonical,
1976                      const ExtInfo &Info)
1977    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1978                   /*Dependent=*/false, Info) {}
1979  friend class ASTContext;  // ASTContext creates these.
1980
1981protected:
1982  virtual Linkage getLinkageImpl() const;
1983
1984public:
1985  // No additional state past what FunctionType provides.
1986
1987  bool isSugared() const { return false; }
1988  QualType desugar() const { return QualType(this, 0); }
1989
1990  void Profile(llvm::FoldingSetNodeID &ID) {
1991    Profile(ID, getResultType(), getExtInfo());
1992  }
1993  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1994                      const ExtInfo &Info) {
1995    ID.AddInteger(Info.getCC());
1996    ID.AddInteger(Info.getRegParm());
1997    ID.AddInteger(Info.getNoReturn());
1998    ID.AddPointer(ResultType.getAsOpaquePtr());
1999  }
2000
2001  static bool classof(const Type *T) {
2002    return T->getTypeClass() == FunctionNoProto;
2003  }
2004  static bool classof(const FunctionNoProtoType *) { return true; }
2005};
2006
2007/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2008/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2009/// arguments, not as having a single void argument. Such a type can have an
2010/// exception specification, but this specification is not part of the canonical
2011/// type.
2012class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2013  /// hasAnyDependentType - Determine whether there are any dependent
2014  /// types within the arguments passed in.
2015  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
2016    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2017      if (ArgArray[Idx]->isDependentType())
2018    return true;
2019
2020    return false;
2021  }
2022
2023  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
2024                    bool isVariadic, unsigned typeQuals, bool hasExs,
2025                    bool hasAnyExs, const QualType *ExArray,
2026                    unsigned numExs, QualType Canonical,
2027                    const ExtInfo &Info)
2028    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
2029                   (Result->isDependentType() ||
2030                    hasAnyDependentType(ArgArray, numArgs)),
2031                   Info),
2032      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
2033      AnyExceptionSpec(hasAnyExs) {
2034    // Fill in the trailing argument array.
2035    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
2036    for (unsigned i = 0; i != numArgs; ++i)
2037      ArgInfo[i] = ArgArray[i];
2038    // Fill in the exception array.
2039    QualType *Ex = ArgInfo + numArgs;
2040    for (unsigned i = 0; i != numExs; ++i)
2041      Ex[i] = ExArray[i];
2042  }
2043
2044  /// NumArgs - The number of arguments this function has, not counting '...'.
2045  unsigned NumArgs : 20;
2046
2047  /// NumExceptions - The number of types in the exception spec, if any.
2048  unsigned NumExceptions : 10;
2049
2050  /// HasExceptionSpec - Whether this function has an exception spec at all.
2051  bool HasExceptionSpec : 1;
2052
2053  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
2054  bool AnyExceptionSpec : 1;
2055
2056  /// ArgInfo - There is an variable size array after the class in memory that
2057  /// holds the argument types.
2058
2059  /// Exceptions - There is another variable size array after ArgInfo that
2060  /// holds the exception types.
2061
2062  friend class ASTContext;  // ASTContext creates these.
2063
2064protected:
2065  virtual Linkage getLinkageImpl() const;
2066
2067public:
2068  unsigned getNumArgs() const { return NumArgs; }
2069  QualType getArgType(unsigned i) const {
2070    assert(i < NumArgs && "Invalid argument number!");
2071    return arg_type_begin()[i];
2072  }
2073
2074  bool hasExceptionSpec() const { return HasExceptionSpec; }
2075  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
2076  unsigned getNumExceptions() const { return NumExceptions; }
2077  QualType getExceptionType(unsigned i) const {
2078    assert(i < NumExceptions && "Invalid exception number!");
2079    return exception_begin()[i];
2080  }
2081  bool hasEmptyExceptionSpec() const {
2082    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
2083      getNumExceptions() == 0;
2084  }
2085
2086  bool isVariadic() const { return getSubClassData(); }
2087  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2088
2089  typedef const QualType *arg_type_iterator;
2090  arg_type_iterator arg_type_begin() const {
2091    return reinterpret_cast<const QualType *>(this+1);
2092  }
2093  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2094
2095  typedef const QualType *exception_iterator;
2096  exception_iterator exception_begin() const {
2097    // exceptions begin where arguments end
2098    return arg_type_end();
2099  }
2100  exception_iterator exception_end() const {
2101    return exception_begin() + NumExceptions;
2102  }
2103
2104  bool isSugared() const { return false; }
2105  QualType desugar() const { return QualType(this, 0); }
2106
2107  static bool classof(const Type *T) {
2108    return T->getTypeClass() == FunctionProto;
2109  }
2110  static bool classof(const FunctionProtoType *) { return true; }
2111
2112  void Profile(llvm::FoldingSetNodeID &ID);
2113  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2114                      arg_type_iterator ArgTys, unsigned NumArgs,
2115                      bool isVariadic, unsigned TypeQuals,
2116                      bool hasExceptionSpec, bool anyExceptionSpec,
2117                      unsigned NumExceptions, exception_iterator Exs,
2118                      const ExtInfo &ExtInfo);
2119};
2120
2121
2122/// \brief Represents the dependent type named by a dependently-scoped
2123/// typename using declaration, e.g.
2124///   using typename Base<T>::foo;
2125/// Template instantiation turns these into the underlying type.
2126class UnresolvedUsingType : public Type {
2127  UnresolvedUsingTypenameDecl *Decl;
2128
2129  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2130    : Type(UnresolvedUsing, QualType(), true),
2131      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2132  friend class ASTContext; // ASTContext creates these.
2133public:
2134
2135  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2136
2137  bool isSugared() const { return false; }
2138  QualType desugar() const { return QualType(this, 0); }
2139
2140  static bool classof(const Type *T) {
2141    return T->getTypeClass() == UnresolvedUsing;
2142  }
2143  static bool classof(const UnresolvedUsingType *) { return true; }
2144
2145  void Profile(llvm::FoldingSetNodeID &ID) {
2146    return Profile(ID, Decl);
2147  }
2148  static void Profile(llvm::FoldingSetNodeID &ID,
2149                      UnresolvedUsingTypenameDecl *D) {
2150    ID.AddPointer(D);
2151  }
2152};
2153
2154
2155class TypedefType : public Type {
2156  TypedefDecl *Decl;
2157protected:
2158  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
2159    : Type(tc, can, can->isDependentType()),
2160      Decl(const_cast<TypedefDecl*>(D)) {
2161    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2162  }
2163  friend class ASTContext;  // ASTContext creates these.
2164public:
2165
2166  TypedefDecl *getDecl() const { return Decl; }
2167
2168  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
2169  /// potentially looking through *all* consecutive typedefs.  This returns the
2170  /// sum of the type qualifiers, so if you have:
2171  ///   typedef const int A;
2172  ///   typedef volatile A B;
2173  /// looking through the typedefs for B will give you "const volatile A".
2174  QualType LookThroughTypedefs() const;
2175
2176  bool isSugared() const { return true; }
2177  QualType desugar() const;
2178
2179  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2180  static bool classof(const TypedefType *) { return true; }
2181};
2182
2183/// TypeOfExprType (GCC extension).
2184class TypeOfExprType : public Type {
2185  Expr *TOExpr;
2186
2187protected:
2188  TypeOfExprType(Expr *E, QualType can = QualType());
2189  friend class ASTContext;  // ASTContext creates these.
2190public:
2191  Expr *getUnderlyingExpr() const { return TOExpr; }
2192
2193  /// \brief Remove a single level of sugar.
2194  QualType desugar() const;
2195
2196  /// \brief Returns whether this type directly provides sugar.
2197  bool isSugared() const { return true; }
2198
2199  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2200  static bool classof(const TypeOfExprType *) { return true; }
2201};
2202
2203/// \brief Internal representation of canonical, dependent
2204/// typeof(expr) types.
2205///
2206/// This class is used internally by the ASTContext to manage
2207/// canonical, dependent types, only. Clients will only see instances
2208/// of this class via TypeOfExprType nodes.
2209class DependentTypeOfExprType
2210  : public TypeOfExprType, public llvm::FoldingSetNode {
2211  ASTContext &Context;
2212
2213public:
2214  DependentTypeOfExprType(ASTContext &Context, Expr *E)
2215    : TypeOfExprType(E), Context(Context) { }
2216
2217  bool isSugared() const { return false; }
2218  QualType desugar() const { return QualType(this, 0); }
2219
2220  void Profile(llvm::FoldingSetNodeID &ID) {
2221    Profile(ID, Context, getUnderlyingExpr());
2222  }
2223
2224  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2225                      Expr *E);
2226};
2227
2228/// TypeOfType (GCC extension).
2229class TypeOfType : public Type {
2230  QualType TOType;
2231  TypeOfType(QualType T, QualType can)
2232    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
2233    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2234  }
2235  friend class ASTContext;  // ASTContext creates these.
2236public:
2237  QualType getUnderlyingType() const { return TOType; }
2238
2239  /// \brief Remove a single level of sugar.
2240  QualType desugar() const { return getUnderlyingType(); }
2241
2242  /// \brief Returns whether this type directly provides sugar.
2243  bool isSugared() const { return true; }
2244
2245  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2246  static bool classof(const TypeOfType *) { return true; }
2247};
2248
2249/// DecltypeType (C++0x)
2250class DecltypeType : public Type {
2251  Expr *E;
2252
2253  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2254  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2255  // from it.
2256  QualType UnderlyingType;
2257
2258protected:
2259  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2260  friend class ASTContext;  // ASTContext creates these.
2261public:
2262  Expr *getUnderlyingExpr() const { return E; }
2263  QualType getUnderlyingType() const { return UnderlyingType; }
2264
2265  /// \brief Remove a single level of sugar.
2266  QualType desugar() const { return getUnderlyingType(); }
2267
2268  /// \brief Returns whether this type directly provides sugar.
2269  bool isSugared() const { return !isDependentType(); }
2270
2271  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2272  static bool classof(const DecltypeType *) { return true; }
2273};
2274
2275/// \brief Internal representation of canonical, dependent
2276/// decltype(expr) types.
2277///
2278/// This class is used internally by the ASTContext to manage
2279/// canonical, dependent types, only. Clients will only see instances
2280/// of this class via DecltypeType nodes.
2281class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2282  ASTContext &Context;
2283
2284public:
2285  DependentDecltypeType(ASTContext &Context, Expr *E);
2286
2287  bool isSugared() const { return false; }
2288  QualType desugar() const { return QualType(this, 0); }
2289
2290  void Profile(llvm::FoldingSetNodeID &ID) {
2291    Profile(ID, Context, getUnderlyingExpr());
2292  }
2293
2294  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2295                      Expr *E);
2296};
2297
2298class TagType : public Type {
2299  /// Stores the TagDecl associated with this type. The decl may point to any
2300  /// TagDecl that declares the entity.
2301  TagDecl * decl;
2302
2303protected:
2304  TagType(TypeClass TC, const TagDecl *D, QualType can);
2305
2306  virtual Linkage getLinkageImpl() const;
2307
2308public:
2309  TagDecl *getDecl() const;
2310
2311  /// @brief Determines whether this type is in the process of being
2312  /// defined.
2313  bool isBeingDefined() const;
2314
2315  static bool classof(const Type *T) {
2316    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2317  }
2318  static bool classof(const TagType *) { return true; }
2319  static bool classof(const RecordType *) { return true; }
2320  static bool classof(const EnumType *) { return true; }
2321};
2322
2323/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2324/// to detect TagType objects of structs/unions/classes.
2325class RecordType : public TagType {
2326protected:
2327  explicit RecordType(const RecordDecl *D)
2328    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2329  explicit RecordType(TypeClass TC, RecordDecl *D)
2330    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2331  friend class ASTContext;   // ASTContext creates these.
2332public:
2333
2334  RecordDecl *getDecl() const {
2335    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2336  }
2337
2338  // FIXME: This predicate is a helper to QualType/Type. It needs to
2339  // recursively check all fields for const-ness. If any field is declared
2340  // const, it needs to return false.
2341  bool hasConstFields() const { return false; }
2342
2343  // FIXME: RecordType needs to check when it is created that all fields are in
2344  // the same address space, and return that.
2345  unsigned getAddressSpace() const { return 0; }
2346
2347  bool isSugared() const { return false; }
2348  QualType desugar() const { return QualType(this, 0); }
2349
2350  static bool classof(const TagType *T);
2351  static bool classof(const Type *T) {
2352    return isa<TagType>(T) && classof(cast<TagType>(T));
2353  }
2354  static bool classof(const RecordType *) { return true; }
2355};
2356
2357/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2358/// to detect TagType objects of enums.
2359class EnumType : public TagType {
2360  explicit EnumType(const EnumDecl *D)
2361    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2362  friend class ASTContext;   // ASTContext creates these.
2363public:
2364
2365  EnumDecl *getDecl() const {
2366    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2367  }
2368
2369  bool isSugared() const { return false; }
2370  QualType desugar() const { return QualType(this, 0); }
2371
2372  static bool classof(const TagType *T);
2373  static bool classof(const Type *T) {
2374    return isa<TagType>(T) && classof(cast<TagType>(T));
2375  }
2376  static bool classof(const EnumType *) { return true; }
2377};
2378
2379class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2380  unsigned Depth : 15;
2381  unsigned Index : 16;
2382  unsigned ParameterPack : 1;
2383  IdentifierInfo *Name;
2384
2385  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2386                       QualType Canon)
2387    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2388      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2389
2390  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2391    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2392      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2393
2394  friend class ASTContext;  // ASTContext creates these
2395
2396public:
2397  unsigned getDepth() const { return Depth; }
2398  unsigned getIndex() const { return Index; }
2399  bool isParameterPack() const { return ParameterPack; }
2400  IdentifierInfo *getName() const { return Name; }
2401
2402  bool isSugared() const { return false; }
2403  QualType desugar() const { return QualType(this, 0); }
2404
2405  void Profile(llvm::FoldingSetNodeID &ID) {
2406    Profile(ID, Depth, Index, ParameterPack, Name);
2407  }
2408
2409  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2410                      unsigned Index, bool ParameterPack,
2411                      IdentifierInfo *Name) {
2412    ID.AddInteger(Depth);
2413    ID.AddInteger(Index);
2414    ID.AddBoolean(ParameterPack);
2415    ID.AddPointer(Name);
2416  }
2417
2418  static bool classof(const Type *T) {
2419    return T->getTypeClass() == TemplateTypeParm;
2420  }
2421  static bool classof(const TemplateTypeParmType *T) { return true; }
2422};
2423
2424/// \brief Represents the result of substituting a type for a template
2425/// type parameter.
2426///
2427/// Within an instantiated template, all template type parameters have
2428/// been replaced with these.  They are used solely to record that a
2429/// type was originally written as a template type parameter;
2430/// therefore they are never canonical.
2431class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2432  // The original type parameter.
2433  const TemplateTypeParmType *Replaced;
2434
2435  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2436    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2437      Replaced(Param) { }
2438
2439  friend class ASTContext;
2440
2441public:
2442  IdentifierInfo *getName() const { return Replaced->getName(); }
2443
2444  /// Gets the template parameter that was substituted for.
2445  const TemplateTypeParmType *getReplacedParameter() const {
2446    return Replaced;
2447  }
2448
2449  /// Gets the type that was substituted for the template
2450  /// parameter.
2451  QualType getReplacementType() const {
2452    return getCanonicalTypeInternal();
2453  }
2454
2455  bool isSugared() const { return true; }
2456  QualType desugar() const { return getReplacementType(); }
2457
2458  void Profile(llvm::FoldingSetNodeID &ID) {
2459    Profile(ID, getReplacedParameter(), getReplacementType());
2460  }
2461  static void Profile(llvm::FoldingSetNodeID &ID,
2462                      const TemplateTypeParmType *Replaced,
2463                      QualType Replacement) {
2464    ID.AddPointer(Replaced);
2465    ID.AddPointer(Replacement.getAsOpaquePtr());
2466  }
2467
2468  static bool classof(const Type *T) {
2469    return T->getTypeClass() == SubstTemplateTypeParm;
2470  }
2471  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2472};
2473
2474/// \brief Represents the type of a template specialization as written
2475/// in the source code.
2476///
2477/// Template specialization types represent the syntactic form of a
2478/// template-id that refers to a type, e.g., @c vector<int>. Some
2479/// template specialization types are syntactic sugar, whose canonical
2480/// type will point to some other type node that represents the
2481/// instantiation or class template specialization. For example, a
2482/// class template specialization type of @c vector<int> will refer to
2483/// a tag type for the instantiation
2484/// @c std::vector<int, std::allocator<int>>.
2485///
2486/// Other template specialization types, for which the template name
2487/// is dependent, may be canonical types. These types are always
2488/// dependent.
2489class TemplateSpecializationType
2490  : public Type, public llvm::FoldingSetNode {
2491  /// \brief The name of the template being specialized.
2492  TemplateName Template;
2493
2494  /// \brief - The number of template arguments named in this class
2495  /// template specialization.
2496  unsigned NumArgs;
2497
2498  TemplateSpecializationType(TemplateName T,
2499                             const TemplateArgument *Args,
2500                             unsigned NumArgs, QualType Canon);
2501
2502  friend class ASTContext;  // ASTContext creates these
2503
2504public:
2505  /// \brief Determine whether any of the given template arguments are
2506  /// dependent.
2507  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2508                                            unsigned NumArgs);
2509
2510  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2511                                            unsigned NumArgs);
2512
2513  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2514
2515  /// \brief Print a template argument list, including the '<' and '>'
2516  /// enclosing the template arguments.
2517  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2518                                               unsigned NumArgs,
2519                                               const PrintingPolicy &Policy);
2520
2521  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2522                                               unsigned NumArgs,
2523                                               const PrintingPolicy &Policy);
2524
2525  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2526                                               const PrintingPolicy &Policy);
2527
2528  /// True if this template specialization type matches a current
2529  /// instantiation in the context in which it is found.
2530  bool isCurrentInstantiation() const {
2531    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
2532  }
2533
2534  typedef const TemplateArgument * iterator;
2535
2536  iterator begin() const { return getArgs(); }
2537  iterator end() const; // defined inline in TemplateBase.h
2538
2539  /// \brief Retrieve the name of the template that we are specializing.
2540  TemplateName getTemplateName() const { return Template; }
2541
2542  /// \brief Retrieve the template arguments.
2543  const TemplateArgument *getArgs() const {
2544    return reinterpret_cast<const TemplateArgument *>(this + 1);
2545  }
2546
2547  /// \brief Retrieve the number of template arguments.
2548  unsigned getNumArgs() const { return NumArgs; }
2549
2550  /// \brief Retrieve a specific template argument as a type.
2551  /// \precondition @c isArgType(Arg)
2552  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
2553
2554  bool isSugared() const {
2555    return !isDependentType() || isCurrentInstantiation();
2556  }
2557  QualType desugar() const { return getCanonicalTypeInternal(); }
2558
2559  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Ctx) {
2560    Profile(ID, Template, getArgs(), NumArgs, Ctx);
2561  }
2562
2563  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2564                      const TemplateArgument *Args,
2565                      unsigned NumArgs,
2566                      ASTContext &Context);
2567
2568  static bool classof(const Type *T) {
2569    return T->getTypeClass() == TemplateSpecialization;
2570  }
2571  static bool classof(const TemplateSpecializationType *T) { return true; }
2572};
2573
2574/// \brief The injected class name of a C++ class template or class
2575/// template partial specialization.  Used to record that a type was
2576/// spelled with a bare identifier rather than as a template-id; the
2577/// equivalent for non-templated classes is just RecordType.
2578///
2579/// Injected class name types are always dependent.  Template
2580/// instantiation turns these into RecordTypes.
2581///
2582/// Injected class name types are always canonical.  This works
2583/// because it is impossible to compare an injected class name type
2584/// with the corresponding non-injected template type, for the same
2585/// reason that it is impossible to directly compare template
2586/// parameters from different dependent contexts: injected class name
2587/// types can only occur within the scope of a particular templated
2588/// declaration, and within that scope every template specialization
2589/// will canonicalize to the injected class name (when appropriate
2590/// according to the rules of the language).
2591class InjectedClassNameType : public Type {
2592  CXXRecordDecl *Decl;
2593
2594  /// The template specialization which this type represents.
2595  /// For example, in
2596  ///   template <class T> class A { ... };
2597  /// this is A<T>, whereas in
2598  ///   template <class X, class Y> class A<B<X,Y> > { ... };
2599  /// this is A<B<X,Y> >.
2600  ///
2601  /// It is always unqualified, always a template specialization type,
2602  /// and always dependent.
2603  QualType InjectedType;
2604
2605  friend class ASTContext; // ASTContext creates these.
2606  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
2607                          // currently suitable for AST reading, too much
2608                          // interdependencies.
2609  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
2610    : Type(InjectedClassName, QualType(), true),
2611      Decl(D), InjectedType(TST) {
2612    assert(isa<TemplateSpecializationType>(TST));
2613    assert(!TST.hasQualifiers());
2614    assert(TST->isDependentType());
2615  }
2616
2617public:
2618  QualType getInjectedSpecializationType() const { return InjectedType; }
2619  const TemplateSpecializationType *getInjectedTST() const {
2620    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
2621  }
2622
2623  CXXRecordDecl *getDecl() const;
2624
2625  bool isSugared() const { return false; }
2626  QualType desugar() const { return QualType(this, 0); }
2627
2628  static bool classof(const Type *T) {
2629    return T->getTypeClass() == InjectedClassName;
2630  }
2631  static bool classof(const InjectedClassNameType *T) { return true; }
2632};
2633
2634/// \brief The kind of a tag type.
2635enum TagTypeKind {
2636  /// \brief The "struct" keyword.
2637  TTK_Struct,
2638  /// \brief The "union" keyword.
2639  TTK_Union,
2640  /// \brief The "class" keyword.
2641  TTK_Class,
2642  /// \brief The "enum" keyword.
2643  TTK_Enum
2644};
2645
2646/// \brief The elaboration keyword that precedes a qualified type name or
2647/// introduces an elaborated-type-specifier.
2648enum ElaboratedTypeKeyword {
2649  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
2650  ETK_Struct,
2651  /// \brief The "union" keyword introduces the elaborated-type-specifier.
2652  ETK_Union,
2653  /// \brief The "class" keyword introduces the elaborated-type-specifier.
2654  ETK_Class,
2655  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
2656  ETK_Enum,
2657  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
2658  /// \c typename T::type.
2659  ETK_Typename,
2660  /// \brief No keyword precedes the qualified type name.
2661  ETK_None
2662};
2663
2664/// A helper class for Type nodes having an ElaboratedTypeKeyword.
2665/// The keyword in stored in the free bits of the base class.
2666/// Also provides a few static helpers for converting and printing
2667/// elaborated type keyword and tag type kind enumerations.
2668class TypeWithKeyword : public Type {
2669  /// Keyword - Encodes an ElaboratedTypeKeyword enumeration constant.
2670  unsigned Keyword : 3;
2671
2672protected:
2673  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
2674                  QualType Canonical, bool dependent)
2675    : Type(tc, Canonical, dependent), Keyword(Keyword) {}
2676
2677public:
2678  virtual ~TypeWithKeyword(); // pin vtable to Type.cpp
2679
2680  ElaboratedTypeKeyword getKeyword() const {
2681    return static_cast<ElaboratedTypeKeyword>(Keyword);
2682  }
2683
2684  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
2685  /// into an elaborated type keyword.
2686  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
2687
2688  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
2689  /// into a tag type kind.  It is an error to provide a type specifier
2690  /// which *isn't* a tag kind here.
2691  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
2692
2693  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
2694  /// elaborated type keyword.
2695  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
2696
2697  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
2698  // a TagTypeKind. It is an error to provide an elaborated type keyword
2699  /// which *isn't* a tag kind here.
2700  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
2701
2702  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
2703
2704  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
2705
2706  static const char *getTagTypeKindName(TagTypeKind Kind) {
2707    return getKeywordName(getKeywordForTagTypeKind(Kind));
2708  }
2709
2710  class CannotCastToThisType {};
2711  static CannotCastToThisType classof(const Type *);
2712};
2713
2714/// \brief Represents a type that was referred to using an elaborated type
2715/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
2716/// or both.
2717///
2718/// This type is used to keep track of a type name as written in the
2719/// source code, including tag keywords and any nested-name-specifiers.
2720/// The type itself is always "sugar", used to express what was written
2721/// in the source code but containing no additional semantic information.
2722class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
2723
2724  /// \brief The nested name specifier containing the qualifier.
2725  NestedNameSpecifier *NNS;
2726
2727  /// \brief The type that this qualified name refers to.
2728  QualType NamedType;
2729
2730  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2731                 QualType NamedType, QualType CanonType)
2732    : TypeWithKeyword(Keyword, Elaborated, CanonType,
2733                      NamedType->isDependentType()),
2734      NNS(NNS), NamedType(NamedType) {
2735    assert(!(Keyword == ETK_None && NNS == 0) &&
2736           "ElaboratedType cannot have elaborated type keyword "
2737           "and name qualifier both null.");
2738  }
2739
2740  friend class ASTContext;  // ASTContext creates these
2741
2742public:
2743  ~ElaboratedType();
2744
2745  /// \brief Retrieve the qualification on this type.
2746  NestedNameSpecifier *getQualifier() const { return NNS; }
2747
2748  /// \brief Retrieve the type named by the qualified-id.
2749  QualType getNamedType() const { return NamedType; }
2750
2751  /// \brief Remove a single level of sugar.
2752  QualType desugar() const { return getNamedType(); }
2753
2754  /// \brief Returns whether this type directly provides sugar.
2755  bool isSugared() const { return true; }
2756
2757  void Profile(llvm::FoldingSetNodeID &ID) {
2758    Profile(ID, getKeyword(), NNS, NamedType);
2759  }
2760
2761  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2762                      NestedNameSpecifier *NNS, QualType NamedType) {
2763    ID.AddInteger(Keyword);
2764    ID.AddPointer(NNS);
2765    NamedType.Profile(ID);
2766  }
2767
2768  static bool classof(const Type *T) {
2769    return T->getTypeClass() == Elaborated;
2770  }
2771  static bool classof(const ElaboratedType *T) { return true; }
2772};
2773
2774/// \brief Represents a qualified type name for which the type name is
2775/// dependent.
2776///
2777/// DependentNameType represents a class of dependent types that involve a
2778/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
2779/// name of a type. The DependentNameType may start with a "typename" (for a
2780/// typename-specifier), "class", "struct", "union", or "enum" (for a
2781/// dependent elaborated-type-specifier), or nothing (in contexts where we
2782/// know that we must be referring to a type, e.g., in a base class specifier).
2783class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
2784
2785  /// \brief The nested name specifier containing the qualifier.
2786  NestedNameSpecifier *NNS;
2787
2788  /// \brief The type that this typename specifier refers to.
2789  const IdentifierInfo *Name;
2790
2791  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2792                    const IdentifierInfo *Name, QualType CanonType)
2793    : TypeWithKeyword(Keyword, DependentName, CanonType, true),
2794      NNS(NNS), Name(Name) {
2795    assert(NNS->isDependent() &&
2796           "DependentNameType requires a dependent nested-name-specifier");
2797  }
2798
2799  friend class ASTContext;  // ASTContext creates these
2800
2801public:
2802  virtual ~DependentNameType();
2803
2804  /// \brief Retrieve the qualification on this type.
2805  NestedNameSpecifier *getQualifier() const { return NNS; }
2806
2807  /// \brief Retrieve the type named by the typename specifier as an
2808  /// identifier.
2809  ///
2810  /// This routine will return a non-NULL identifier pointer when the
2811  /// form of the original typename was terminated by an identifier,
2812  /// e.g., "typename T::type".
2813  const IdentifierInfo *getIdentifier() const {
2814    return Name;
2815  }
2816
2817  bool isSugared() const { return false; }
2818  QualType desugar() const { return QualType(this, 0); }
2819
2820  void Profile(llvm::FoldingSetNodeID &ID) {
2821    Profile(ID, getKeyword(), NNS, Name);
2822  }
2823
2824  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2825                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
2826    ID.AddInteger(Keyword);
2827    ID.AddPointer(NNS);
2828    ID.AddPointer(Name);
2829  }
2830
2831  static bool classof(const Type *T) {
2832    return T->getTypeClass() == DependentName;
2833  }
2834  static bool classof(const DependentNameType *T) { return true; }
2835};
2836
2837/// DependentTemplateSpecializationType - Represents a template
2838/// specialization type whose template cannot be resolved, e.g.
2839///   A<T>::template B<T>
2840class DependentTemplateSpecializationType :
2841  public TypeWithKeyword, public llvm::FoldingSetNode {
2842
2843  /// \brief The nested name specifier containing the qualifier.
2844  NestedNameSpecifier *NNS;
2845
2846  /// \brief The identifier of the template.
2847  const IdentifierInfo *Name;
2848
2849  /// \brief - The number of template arguments named in this class
2850  /// template specialization.
2851  unsigned NumArgs;
2852
2853  const TemplateArgument *getArgBuffer() const {
2854    return reinterpret_cast<const TemplateArgument*>(this+1);
2855  }
2856  TemplateArgument *getArgBuffer() {
2857    return reinterpret_cast<TemplateArgument*>(this+1);
2858  }
2859
2860  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
2861                                      NestedNameSpecifier *NNS,
2862                                      const IdentifierInfo *Name,
2863                                      unsigned NumArgs,
2864                                      const TemplateArgument *Args,
2865                                      QualType Canon);
2866
2867  friend class ASTContext;  // ASTContext creates these
2868
2869public:
2870  virtual ~DependentTemplateSpecializationType();
2871
2872  NestedNameSpecifier *getQualifier() const { return NNS; }
2873  const IdentifierInfo *getIdentifier() const { return Name; }
2874
2875  /// \brief Retrieve the template arguments.
2876  const TemplateArgument *getArgs() const {
2877    return getArgBuffer();
2878  }
2879
2880  /// \brief Retrieve the number of template arguments.
2881  unsigned getNumArgs() const { return NumArgs; }
2882
2883  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
2884
2885  typedef const TemplateArgument * iterator;
2886  iterator begin() const { return getArgs(); }
2887  iterator end() const; // inline in TemplateBase.h
2888
2889  bool isSugared() const { return false; }
2890  QualType desugar() const { return QualType(this, 0); }
2891
2892  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context) {
2893    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
2894  }
2895
2896  static void Profile(llvm::FoldingSetNodeID &ID,
2897                      ASTContext &Context,
2898                      ElaboratedTypeKeyword Keyword,
2899                      NestedNameSpecifier *Qualifier,
2900                      const IdentifierInfo *Name,
2901                      unsigned NumArgs,
2902                      const TemplateArgument *Args);
2903
2904  static bool classof(const Type *T) {
2905    return T->getTypeClass() == DependentTemplateSpecialization;
2906  }
2907  static bool classof(const DependentTemplateSpecializationType *T) {
2908    return true;
2909  }
2910};
2911
2912/// ObjCObjectType - Represents a class type in Objective C.
2913/// Every Objective C type is a combination of a base type and a
2914/// list of protocols.
2915///
2916/// Given the following declarations:
2917///   @class C;
2918///   @protocol P;
2919///
2920/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
2921/// with base C and no protocols.
2922///
2923/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
2924///
2925/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
2926/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
2927/// and no protocols.
2928///
2929/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
2930/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
2931/// this should get its own sugar class to better represent the source.
2932class ObjCObjectType : public Type {
2933  // Pad the bit count up so that NumProtocols is 2-byte aligned
2934  unsigned : BitsRemainingInType - 16;
2935
2936  /// \brief The number of protocols stored after the
2937  /// ObjCObjectPointerType node.
2938  ///
2939  /// These protocols are those written directly on the type.  If
2940  /// protocol qualifiers ever become additive, the iterators will
2941  /// get kindof complicated.
2942  ///
2943  /// In the canonical object type, these are sorted alphabetically
2944  /// and uniqued.
2945  unsigned NumProtocols : 16;
2946
2947  /// Either a BuiltinType or an InterfaceType or sugar for either.
2948  QualType BaseType;
2949
2950  ObjCProtocolDecl * const *getProtocolStorage() const {
2951    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
2952  }
2953
2954  ObjCProtocolDecl **getProtocolStorage();
2955
2956protected:
2957  ObjCObjectType(QualType Canonical, QualType Base,
2958                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
2959
2960  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
2961  ObjCObjectType(enum Nonce_ObjCInterface)
2962    : Type(ObjCInterface, QualType(), false),
2963      NumProtocols(0),
2964      BaseType(QualType(this_(), 0)) {}
2965
2966protected:
2967  Linkage getLinkageImpl() const; // key function
2968
2969public:
2970  /// getBaseType - Gets the base type of this object type.  This is
2971  /// always (possibly sugar for) one of:
2972  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
2973  ///    user, which is a typedef for an ObjCPointerType)
2974  ///  - the 'Class' builtin type (same caveat)
2975  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
2976  QualType getBaseType() const { return BaseType; }
2977
2978  bool isObjCId() const {
2979    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
2980  }
2981  bool isObjCClass() const {
2982    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
2983  }
2984  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
2985  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
2986  bool isObjCUnqualifiedIdOrClass() const {
2987    if (!qual_empty()) return false;
2988    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
2989      return T->getKind() == BuiltinType::ObjCId ||
2990             T->getKind() == BuiltinType::ObjCClass;
2991    return false;
2992  }
2993  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
2994  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
2995
2996  /// Gets the interface declaration for this object type, if the base type
2997  /// really is an interface.
2998  ObjCInterfaceDecl *getInterface() const;
2999
3000  typedef ObjCProtocolDecl * const *qual_iterator;
3001
3002  qual_iterator qual_begin() const { return getProtocolStorage(); }
3003  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
3004
3005  bool qual_empty() const { return getNumProtocols() == 0; }
3006
3007  /// getNumProtocols - Return the number of qualifying protocols in this
3008  /// interface type, or 0 if there are none.
3009  unsigned getNumProtocols() const { return NumProtocols; }
3010
3011  /// \brief Fetch a protocol by index.
3012  ObjCProtocolDecl *getProtocol(unsigned I) const {
3013    assert(I < getNumProtocols() && "Out-of-range protocol access");
3014    return qual_begin()[I];
3015  }
3016
3017  bool isSugared() const { return false; }
3018  QualType desugar() const { return QualType(this, 0); }
3019
3020  static bool classof(const Type *T) {
3021    return T->getTypeClass() == ObjCObject ||
3022           T->getTypeClass() == ObjCInterface;
3023  }
3024  static bool classof(const ObjCObjectType *) { return true; }
3025};
3026
3027/// ObjCObjectTypeImpl - A class providing a concrete implementation
3028/// of ObjCObjectType, so as to not increase the footprint of
3029/// ObjCInterfaceType.  Code outside of ASTContext and the core type
3030/// system should not reference this type.
3031class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
3032  friend class ASTContext;
3033
3034  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
3035  // will need to be modified.
3036
3037  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
3038                     ObjCProtocolDecl * const *Protocols,
3039                     unsigned NumProtocols)
3040    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
3041
3042public:
3043  void Profile(llvm::FoldingSetNodeID &ID);
3044  static void Profile(llvm::FoldingSetNodeID &ID,
3045                      QualType Base,
3046                      ObjCProtocolDecl *const *protocols,
3047                      unsigned NumProtocols);
3048};
3049
3050inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
3051  return reinterpret_cast<ObjCProtocolDecl**>(
3052            static_cast<ObjCObjectTypeImpl*>(this) + 1);
3053}
3054
3055/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
3056/// object oriented design.  They basically correspond to C++ classes.  There
3057/// are two kinds of interface types, normal interfaces like "NSString" and
3058/// qualified interfaces, which are qualified with a protocol list like
3059/// "NSString<NSCopyable, NSAmazing>".
3060///
3061/// ObjCInterfaceType guarantees the following properties when considered
3062/// as a subtype of its superclass, ObjCObjectType:
3063///   - There are no protocol qualifiers.  To reinforce this, code which
3064///     tries to invoke the protocol methods via an ObjCInterfaceType will
3065///     fail to compile.
3066///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
3067///     T->getBaseType() == QualType(T, 0).
3068class ObjCInterfaceType : public ObjCObjectType {
3069  ObjCInterfaceDecl *Decl;
3070
3071  ObjCInterfaceType(const ObjCInterfaceDecl *D)
3072    : ObjCObjectType(Nonce_ObjCInterface),
3073      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
3074  friend class ASTContext;  // ASTContext creates these.
3075public:
3076  /// getDecl - Get the declaration of this interface.
3077  ObjCInterfaceDecl *getDecl() const { return Decl; }
3078
3079  bool isSugared() const { return false; }
3080  QualType desugar() const { return QualType(this, 0); }
3081
3082  static bool classof(const Type *T) {
3083    return T->getTypeClass() == ObjCInterface;
3084  }
3085  static bool classof(const ObjCInterfaceType *) { return true; }
3086
3087  // Nonsense to "hide" certain members of ObjCObjectType within this
3088  // class.  People asking for protocols on an ObjCInterfaceType are
3089  // not going to get what they want: ObjCInterfaceTypes are
3090  // guaranteed to have no protocols.
3091  enum {
3092    qual_iterator,
3093    qual_begin,
3094    qual_end,
3095    getNumProtocols,
3096    getProtocol
3097  };
3098};
3099
3100inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
3101  if (const ObjCInterfaceType *T =
3102        getBaseType()->getAs<ObjCInterfaceType>())
3103    return T->getDecl();
3104  return 0;
3105}
3106
3107/// ObjCObjectPointerType - Used to represent a pointer to an
3108/// Objective C object.  These are constructed from pointer
3109/// declarators when the pointee type is an ObjCObjectType (or sugar
3110/// for one).  In addition, the 'id' and 'Class' types are typedefs
3111/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
3112/// are translated into these.
3113///
3114/// Pointers to pointers to Objective C objects are still PointerTypes;
3115/// only the first level of pointer gets it own type implementation.
3116class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
3117  QualType PointeeType;
3118
3119  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
3120    : Type(ObjCObjectPointer, Canonical, false),
3121      PointeeType(Pointee) {}
3122  friend class ASTContext;  // ASTContext creates these.
3123
3124protected:
3125  virtual Linkage getLinkageImpl() const;
3126
3127public:
3128  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
3129  /// The result will always be an ObjCObjectType or sugar thereof.
3130  QualType getPointeeType() const { return PointeeType; }
3131
3132  /// getObjCObjectType - Gets the type pointed to by this ObjC
3133  /// pointer.  This method always returns non-null.
3134  ///
3135  /// This method is equivalent to getPointeeType() except that
3136  /// it discards any typedefs (or other sugar) between this
3137  /// type and the "outermost" object type.  So for:
3138  ///   @class A; @protocol P; @protocol Q;
3139  ///   typedef A<P> AP;
3140  ///   typedef A A1;
3141  ///   typedef A1<P> A1P;
3142  ///   typedef A1P<Q> A1PQ;
3143  /// For 'A*', getObjectType() will return 'A'.
3144  /// For 'A<P>*', getObjectType() will return 'A<P>'.
3145  /// For 'AP*', getObjectType() will return 'A<P>'.
3146  /// For 'A1*', getObjectType() will return 'A'.
3147  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
3148  /// For 'A1P*', getObjectType() will return 'A1<P>'.
3149  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
3150  ///   adding protocols to a protocol-qualified base discards the
3151  ///   old qualifiers (for now).  But if it didn't, getObjectType()
3152  ///   would return 'A1P<Q>' (and we'd have to make iterating over
3153  ///   qualifiers more complicated).
3154  const ObjCObjectType *getObjectType() const {
3155    return PointeeType->getAs<ObjCObjectType>();
3156  }
3157
3158  /// getInterfaceType - If this pointer points to an Objective C
3159  /// @interface type, gets the type for that interface.  Any protocol
3160  /// qualifiers on the interface are ignored.
3161  ///
3162  /// \return null if the base type for this pointer is 'id' or 'Class'
3163  const ObjCInterfaceType *getInterfaceType() const {
3164    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
3165  }
3166
3167  /// getInterfaceDecl - If this pointer points to an Objective @interface
3168  /// type, gets the declaration for that interface.
3169  ///
3170  /// \return null if the base type for this pointer is 'id' or 'Class'
3171  ObjCInterfaceDecl *getInterfaceDecl() const {
3172    return getObjectType()->getInterface();
3173  }
3174
3175  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
3176  /// its object type is the primitive 'id' type with no protocols.
3177  bool isObjCIdType() const {
3178    return getObjectType()->isObjCUnqualifiedId();
3179  }
3180
3181  /// isObjCClassType - True if this is equivalent to the 'Class' type,
3182  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
3183  bool isObjCClassType() const {
3184    return getObjectType()->isObjCUnqualifiedClass();
3185  }
3186
3187  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
3188  /// non-empty set of protocols.
3189  bool isObjCQualifiedIdType() const {
3190    return getObjectType()->isObjCQualifiedId();
3191  }
3192
3193  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
3194  /// some non-empty set of protocols.
3195  bool isObjCQualifiedClassType() const {
3196    return getObjectType()->isObjCQualifiedClass();
3197  }
3198
3199  /// An iterator over the qualifiers on the object type.  Provided
3200  /// for convenience.  This will always iterate over the full set of
3201  /// protocols on a type, not just those provided directly.
3202  typedef ObjCObjectType::qual_iterator qual_iterator;
3203
3204  qual_iterator qual_begin() const {
3205    return getObjectType()->qual_begin();
3206  }
3207  qual_iterator qual_end() const {
3208    return getObjectType()->qual_end();
3209  }
3210  bool qual_empty() const { return getObjectType()->qual_empty(); }
3211
3212  /// getNumProtocols - Return the number of qualifying protocols on
3213  /// the object type.
3214  unsigned getNumProtocols() const {
3215    return getObjectType()->getNumProtocols();
3216  }
3217
3218  /// \brief Retrieve a qualifying protocol by index on the object
3219  /// type.
3220  ObjCProtocolDecl *getProtocol(unsigned I) const {
3221    return getObjectType()->getProtocol(I);
3222  }
3223
3224  bool isSugared() const { return false; }
3225  QualType desugar() const { return QualType(this, 0); }
3226
3227  void Profile(llvm::FoldingSetNodeID &ID) {
3228    Profile(ID, getPointeeType());
3229  }
3230  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
3231    ID.AddPointer(T.getAsOpaquePtr());
3232  }
3233  static bool classof(const Type *T) {
3234    return T->getTypeClass() == ObjCObjectPointer;
3235  }
3236  static bool classof(const ObjCObjectPointerType *) { return true; }
3237};
3238
3239/// A qualifier set is used to build a set of qualifiers.
3240class QualifierCollector : public Qualifiers {
3241  ASTContext *Context;
3242
3243public:
3244  QualifierCollector(Qualifiers Qs = Qualifiers())
3245    : Qualifiers(Qs), Context(0) {}
3246  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
3247    : Qualifiers(Qs), Context(&Context) {}
3248
3249  void setContext(ASTContext &C) { Context = &C; }
3250
3251  /// Collect any qualifiers on the given type and return an
3252  /// unqualified type.
3253  const Type *strip(QualType QT) {
3254    addFastQualifiers(QT.getLocalFastQualifiers());
3255    if (QT.hasLocalNonFastQualifiers()) {
3256      const ExtQuals *EQ = QT.getExtQualsUnsafe();
3257      Context = &EQ->getContext();
3258      addQualifiers(EQ->getQualifiers());
3259      return EQ->getBaseType();
3260    }
3261    return QT.getTypePtrUnsafe();
3262  }
3263
3264  /// Apply the collected qualifiers to the given type.
3265  QualType apply(QualType QT) const;
3266
3267  /// Apply the collected qualifiers to the given type.
3268  QualType apply(const Type* T) const;
3269
3270};
3271
3272
3273// Inline function definitions.
3274
3275inline bool QualType::isCanonical() const {
3276  const Type *T = getTypePtr();
3277  if (hasLocalQualifiers())
3278    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
3279  return T->isCanonicalUnqualified();
3280}
3281
3282inline bool QualType::isCanonicalAsParam() const {
3283  if (hasLocalQualifiers()) return false;
3284
3285  const Type *T = getTypePtr();
3286  if ((*this)->isPointerType()) {
3287    QualType BaseType = (*this)->getAs<PointerType>()->getPointeeType();
3288    if (isa<VariableArrayType>(BaseType)) {
3289      ArrayType *AT = dyn_cast<ArrayType>(BaseType);
3290      VariableArrayType *VAT = cast<VariableArrayType>(AT);
3291      if (VAT->getSizeExpr())
3292        T = BaseType.getTypePtr();
3293    }
3294  }
3295  return T->isCanonicalUnqualified() &&
3296           !isa<FunctionType>(T) && !isa<ArrayType>(T);
3297}
3298
3299inline bool QualType::isConstQualified() const {
3300  return isLocalConstQualified() ||
3301              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
3302}
3303
3304inline bool QualType::isRestrictQualified() const {
3305  return isLocalRestrictQualified() ||
3306            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
3307}
3308
3309
3310inline bool QualType::isVolatileQualified() const {
3311  return isLocalVolatileQualified() ||
3312  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
3313}
3314
3315inline bool QualType::hasQualifiers() const {
3316  return hasLocalQualifiers() ||
3317                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
3318}
3319
3320inline Qualifiers QualType::getQualifiers() const {
3321  Qualifiers Quals = getLocalQualifiers();
3322  Quals.addQualifiers(
3323                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
3324  return Quals;
3325}
3326
3327inline unsigned QualType::getCVRQualifiers() const {
3328  return getLocalCVRQualifiers() |
3329              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
3330}
3331
3332/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
3333/// type, returns them. Otherwise, if this is an array type, recurses
3334/// on the element type until some qualifiers have been found or a non-array
3335/// type reached.
3336inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
3337  if (unsigned Quals = getCVRQualifiers())
3338    return Quals;
3339  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3340  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3341    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
3342  return 0;
3343}
3344
3345inline void QualType::removeConst() {
3346  removeFastQualifiers(Qualifiers::Const);
3347}
3348
3349inline void QualType::removeRestrict() {
3350  removeFastQualifiers(Qualifiers::Restrict);
3351}
3352
3353inline void QualType::removeVolatile() {
3354  QualifierCollector Qc;
3355  const Type *Ty = Qc.strip(*this);
3356  if (Qc.hasVolatile()) {
3357    Qc.removeVolatile();
3358    *this = Qc.apply(Ty);
3359  }
3360}
3361
3362inline void QualType::removeCVRQualifiers(unsigned Mask) {
3363  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
3364
3365  // Fast path: we don't need to touch the slow qualifiers.
3366  if (!(Mask & ~Qualifiers::FastMask)) {
3367    removeFastQualifiers(Mask);
3368    return;
3369  }
3370
3371  QualifierCollector Qc;
3372  const Type *Ty = Qc.strip(*this);
3373  Qc.removeCVRQualifiers(Mask);
3374  *this = Qc.apply(Ty);
3375}
3376
3377/// getAddressSpace - Return the address space of this type.
3378inline unsigned QualType::getAddressSpace() const {
3379  if (hasLocalNonFastQualifiers()) {
3380    const ExtQuals *EQ = getExtQualsUnsafe();
3381    if (EQ->hasAddressSpace())
3382      return EQ->getAddressSpace();
3383  }
3384
3385  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3386  if (CT.hasLocalNonFastQualifiers()) {
3387    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3388    if (EQ->hasAddressSpace())
3389      return EQ->getAddressSpace();
3390  }
3391
3392  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3393    return AT->getElementType().getAddressSpace();
3394  if (const RecordType *RT = dyn_cast<RecordType>(CT))
3395    return RT->getAddressSpace();
3396  return 0;
3397}
3398
3399/// getObjCGCAttr - Return the gc attribute of this type.
3400inline Qualifiers::GC QualType::getObjCGCAttr() const {
3401  if (hasLocalNonFastQualifiers()) {
3402    const ExtQuals *EQ = getExtQualsUnsafe();
3403    if (EQ->hasObjCGCAttr())
3404      return EQ->getObjCGCAttr();
3405  }
3406
3407  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3408  if (CT.hasLocalNonFastQualifiers()) {
3409    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3410    if (EQ->hasObjCGCAttr())
3411      return EQ->getObjCGCAttr();
3412  }
3413
3414  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3415      return AT->getElementType().getObjCGCAttr();
3416  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
3417    return PT->getPointeeType().getObjCGCAttr();
3418  // We most look at all pointer types, not just pointer to interface types.
3419  if (const PointerType *PT = CT->getAs<PointerType>())
3420    return PT->getPointeeType().getObjCGCAttr();
3421  return Qualifiers::GCNone;
3422}
3423
3424inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
3425  if (const PointerType *PT = t.getAs<PointerType>()) {
3426    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
3427      return FT->getExtInfo();
3428  } else if (const FunctionType *FT = t.getAs<FunctionType>())
3429    return FT->getExtInfo();
3430
3431  return FunctionType::ExtInfo();
3432}
3433
3434inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
3435  return getFunctionExtInfo(*t);
3436}
3437
3438/// \brief Determine whether this set of qualifiers is a superset of the given
3439/// set of qualifiers.
3440inline bool Qualifiers::isSupersetOf(Qualifiers Other) const {
3441  return Mask != Other.Mask && (Mask | Other.Mask) == Mask;
3442}
3443
3444/// isMoreQualifiedThan - Determine whether this type is more
3445/// qualified than the Other type. For example, "const volatile int"
3446/// is more qualified than "const int", "volatile int", and
3447/// "int". However, it is not more qualified than "const volatile
3448/// int".
3449inline bool QualType::isMoreQualifiedThan(QualType Other) const {
3450  // FIXME: work on arbitrary qualifiers
3451  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3452  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3453  if (getAddressSpace() != Other.getAddressSpace())
3454    return false;
3455  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
3456}
3457
3458/// isAtLeastAsQualifiedAs - Determine whether this type is at last
3459/// as qualified as the Other type. For example, "const volatile
3460/// int" is at least as qualified as "const int", "volatile int",
3461/// "int", and "const volatile int".
3462inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
3463  // FIXME: work on arbitrary qualifiers
3464  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3465  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3466  if (getAddressSpace() != Other.getAddressSpace())
3467    return false;
3468  return (MyQuals | OtherQuals) == MyQuals;
3469}
3470
3471/// getNonReferenceType - If Type is a reference type (e.g., const
3472/// int&), returns the type that the reference refers to ("const
3473/// int"). Otherwise, returns the type itself. This routine is used
3474/// throughout Sema to implement C++ 5p6:
3475///
3476///   If an expression initially has the type "reference to T" (8.3.2,
3477///   8.5.3), the type is adjusted to "T" prior to any further
3478///   analysis, the expression designates the object or function
3479///   denoted by the reference, and the expression is an lvalue.
3480inline QualType QualType::getNonReferenceType() const {
3481  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
3482    return RefType->getPointeeType();
3483  else
3484    return *this;
3485}
3486
3487inline bool Type::isFunctionType() const {
3488  return isa<FunctionType>(CanonicalType);
3489}
3490inline bool Type::isPointerType() const {
3491  return isa<PointerType>(CanonicalType);
3492}
3493inline bool Type::isAnyPointerType() const {
3494  return isPointerType() || isObjCObjectPointerType();
3495}
3496inline bool Type::isBlockPointerType() const {
3497  return isa<BlockPointerType>(CanonicalType);
3498}
3499inline bool Type::isReferenceType() const {
3500  return isa<ReferenceType>(CanonicalType);
3501}
3502inline bool Type::isLValueReferenceType() const {
3503  return isa<LValueReferenceType>(CanonicalType);
3504}
3505inline bool Type::isRValueReferenceType() const {
3506  return isa<RValueReferenceType>(CanonicalType);
3507}
3508inline bool Type::isFunctionPointerType() const {
3509  if (const PointerType* T = getAs<PointerType>())
3510    return T->getPointeeType()->isFunctionType();
3511  else
3512    return false;
3513}
3514inline bool Type::isMemberPointerType() const {
3515  return isa<MemberPointerType>(CanonicalType);
3516}
3517inline bool Type::isMemberFunctionPointerType() const {
3518  if (const MemberPointerType* T = getAs<MemberPointerType>())
3519    return T->isMemberFunctionPointer();
3520  else
3521    return false;
3522}
3523inline bool Type::isMemberDataPointerType() const {
3524  if (const MemberPointerType* T = getAs<MemberPointerType>())
3525    return T->isMemberDataPointer();
3526  else
3527    return false;
3528}
3529inline bool Type::isArrayType() const {
3530  return isa<ArrayType>(CanonicalType);
3531}
3532inline bool Type::isConstantArrayType() const {
3533  return isa<ConstantArrayType>(CanonicalType);
3534}
3535inline bool Type::isIncompleteArrayType() const {
3536  return isa<IncompleteArrayType>(CanonicalType);
3537}
3538inline bool Type::isVariableArrayType() const {
3539  return isa<VariableArrayType>(CanonicalType);
3540}
3541inline bool Type::isDependentSizedArrayType() const {
3542  return isa<DependentSizedArrayType>(CanonicalType);
3543}
3544inline bool Type::isRecordType() const {
3545  return isa<RecordType>(CanonicalType);
3546}
3547inline bool Type::isAnyComplexType() const {
3548  return isa<ComplexType>(CanonicalType);
3549}
3550inline bool Type::isVectorType() const {
3551  return isa<VectorType>(CanonicalType);
3552}
3553inline bool Type::isExtVectorType() const {
3554  return isa<ExtVectorType>(CanonicalType);
3555}
3556inline bool Type::isObjCObjectPointerType() const {
3557  return isa<ObjCObjectPointerType>(CanonicalType);
3558}
3559inline bool Type::isObjCObjectType() const {
3560  return isa<ObjCObjectType>(CanonicalType);
3561}
3562inline bool Type::isObjCObjectOrInterfaceType() const {
3563  return isa<ObjCInterfaceType>(CanonicalType) ||
3564    isa<ObjCObjectType>(CanonicalType);
3565}
3566
3567inline bool Type::isObjCQualifiedIdType() const {
3568  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3569    return OPT->isObjCQualifiedIdType();
3570  return false;
3571}
3572inline bool Type::isObjCQualifiedClassType() const {
3573  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3574    return OPT->isObjCQualifiedClassType();
3575  return false;
3576}
3577inline bool Type::isObjCIdType() const {
3578  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3579    return OPT->isObjCIdType();
3580  return false;
3581}
3582inline bool Type::isObjCClassType() const {
3583  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3584    return OPT->isObjCClassType();
3585  return false;
3586}
3587inline bool Type::isObjCSelType() const {
3588  if (const PointerType *OPT = getAs<PointerType>())
3589    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3590  return false;
3591}
3592inline bool Type::isObjCBuiltinType() const {
3593  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3594}
3595inline bool Type::isTemplateTypeParmType() const {
3596  return isa<TemplateTypeParmType>(CanonicalType);
3597}
3598
3599inline bool Type::isBuiltinType() const {
3600  return getAs<BuiltinType>();
3601}
3602
3603inline bool Type::isSpecificBuiltinType(unsigned K) const {
3604  if (const BuiltinType *BT = getAs<BuiltinType>())
3605    if (BT->getKind() == (BuiltinType::Kind) K)
3606      return true;
3607  return false;
3608}
3609
3610/// \brief Determines whether this is a type for which one can define
3611/// an overloaded operator.
3612inline bool Type::isOverloadableType() const {
3613  return isDependentType() || isRecordType() || isEnumeralType();
3614}
3615
3616inline bool Type::hasPointerRepresentation() const {
3617  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3618          isObjCObjectPointerType() || isNullPtrType());
3619}
3620
3621inline bool Type::hasObjCPointerRepresentation() const {
3622  return isObjCObjectPointerType();
3623}
3624
3625/// Insertion operator for diagnostics.  This allows sending QualType's into a
3626/// diagnostic with <<.
3627inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3628                                           QualType T) {
3629  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3630                  Diagnostic::ak_qualtype);
3631  return DB;
3632}
3633
3634/// Insertion operator for partial diagnostics.  This allows sending QualType's
3635/// into a diagnostic with <<.
3636inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
3637                                           QualType T) {
3638  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3639                  Diagnostic::ak_qualtype);
3640  return PD;
3641}
3642
3643// Helper class template that is used by Type::getAs to ensure that one does
3644// not try to look through a qualified type to get to an array type.
3645template<typename T,
3646         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3647                             llvm::is_base_of<ArrayType, T>::value)>
3648struct ArrayType_cannot_be_used_with_getAs { };
3649
3650template<typename T>
3651struct ArrayType_cannot_be_used_with_getAs<T, true>;
3652
3653/// Member-template getAs<specific type>'.
3654template <typename T> const T *Type::getAs() const {
3655  ArrayType_cannot_be_used_with_getAs<T> at;
3656  (void)at;
3657
3658  // If this is directly a T type, return it.
3659  if (const T *Ty = dyn_cast<T>(this))
3660    return Ty;
3661
3662  // If the canonical form of this type isn't the right kind, reject it.
3663  if (!isa<T>(CanonicalType))
3664    return 0;
3665
3666  // If this is a typedef for the type, strip the typedef off without
3667  // losing all typedef information.
3668  return cast<T>(getUnqualifiedDesugaredType());
3669}
3670
3671}  // end namespace clang
3672
3673#endif
3674