Type.h revision 82bfa19fe3be324b13fdbcda46304b52c500f0d4
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/ExceptionSpecificationType.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/Linkage.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Basic/Visibility.h"
23#include "clang/Basic/Specifiers.h"
24#include "clang/AST/NestedNameSpecifier.h"
25#include "clang/AST/TemplateName.h"
26#include "llvm/Support/type_traits.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/ADT/APSInt.h"
29#include "llvm/ADT/FoldingSet.h"
30#include "llvm/ADT/Optional.h"
31#include "llvm/ADT/PointerIntPair.h"
32#include "llvm/ADT/PointerUnion.h"
33#include "llvm/ADT/Twine.h"
34#include "clang/Basic/LLVM.h"
35
36namespace clang {
37  enum {
38    TypeAlignmentInBits = 4,
39    TypeAlignment = 1 << TypeAlignmentInBits
40  };
41  class Type;
42  class ExtQuals;
43  class QualType;
44}
45
46namespace llvm {
47  template <typename T>
48  class PointerLikeTypeTraits;
49  template<>
50  class PointerLikeTypeTraits< ::clang::Type*> {
51  public:
52    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
53    static inline ::clang::Type *getFromVoidPointer(void *P) {
54      return static_cast< ::clang::Type*>(P);
55    }
56    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
57  };
58  template<>
59  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
60  public:
61    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
62    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
63      return static_cast< ::clang::ExtQuals*>(P);
64    }
65    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
66  };
67
68  template <>
69  struct isPodLike<clang::QualType> { static const bool value = true; };
70}
71
72namespace clang {
73  class ASTContext;
74  class TypedefNameDecl;
75  class TemplateDecl;
76  class TemplateTypeParmDecl;
77  class NonTypeTemplateParmDecl;
78  class TemplateTemplateParmDecl;
79  class TagDecl;
80  class RecordDecl;
81  class CXXRecordDecl;
82  class EnumDecl;
83  class FieldDecl;
84  class FunctionDecl;
85  class ObjCInterfaceDecl;
86  class ObjCProtocolDecl;
87  class ObjCMethodDecl;
88  class UnresolvedUsingTypenameDecl;
89  class Expr;
90  class Stmt;
91  class SourceLocation;
92  class StmtIteratorBase;
93  class TemplateArgument;
94  class TemplateArgumentLoc;
95  class TemplateArgumentListInfo;
96  class ElaboratedType;
97  class ExtQuals;
98  class ExtQualsTypeCommonBase;
99  struct PrintingPolicy;
100
101  template <typename> class CanQual;
102  typedef CanQual<Type> CanQualType;
103
104  // Provide forward declarations for all of the *Type classes
105#define TYPE(Class, Base) class Class##Type;
106#include "clang/AST/TypeNodes.def"
107
108/// Qualifiers - The collection of all-type qualifiers we support.
109/// Clang supports five independent qualifiers:
110/// * C99: const, volatile, and restrict
111/// * Embedded C (TR18037): address spaces
112/// * Objective C: the GC attributes (none, weak, or strong)
113class Qualifiers {
114public:
115  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
116    Const    = 0x1,
117    Restrict = 0x2,
118    Volatile = 0x4,
119    CVRMask = Const | Volatile | Restrict
120  };
121
122  enum GC {
123    GCNone = 0,
124    Weak,
125    Strong
126  };
127
128  enum ObjCLifetime {
129    /// There is no lifetime qualification on this type.
130    OCL_None,
131
132    /// This object can be modified without requiring retains or
133    /// releases.
134    OCL_ExplicitNone,
135
136    /// Assigning into this object requires the old value to be
137    /// released and the new value to be retained.  The timing of the
138    /// release of the old value is inexact: it may be moved to
139    /// immediately after the last known point where the value is
140    /// live.
141    OCL_Strong,
142
143    /// Reading or writing from this object requires a barrier call.
144    OCL_Weak,
145
146    /// Assigning into this object requires a lifetime extension.
147    OCL_Autoreleasing
148  };
149
150  enum {
151    /// The maximum supported address space number.
152    /// 24 bits should be enough for anyone.
153    MaxAddressSpace = 0xffffffu,
154
155    /// The width of the "fast" qualifier mask.
156    FastWidth = 3,
157
158    /// The fast qualifier mask.
159    FastMask = (1 << FastWidth) - 1
160  };
161
162  Qualifiers() : Mask(0) {}
163
164  /// \brief Returns the common set of qualifiers while removing them from
165  /// the given sets.
166  static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
167    // If both are only CVR-qualified, bit operations are sufficient.
168    if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
169      Qualifiers Q;
170      Q.Mask = L.Mask & R.Mask;
171      L.Mask &= ~Q.Mask;
172      R.Mask &= ~Q.Mask;
173      return Q;
174    }
175
176    Qualifiers Q;
177    unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
178    Q.addCVRQualifiers(CommonCRV);
179    L.removeCVRQualifiers(CommonCRV);
180    R.removeCVRQualifiers(CommonCRV);
181
182    if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
183      Q.setObjCGCAttr(L.getObjCGCAttr());
184      L.removeObjCGCAttr();
185      R.removeObjCGCAttr();
186    }
187
188    if (L.getObjCLifetime() == R.getObjCLifetime()) {
189      Q.setObjCLifetime(L.getObjCLifetime());
190      L.removeObjCLifetime();
191      R.removeObjCLifetime();
192    }
193
194    if (L.getAddressSpace() == R.getAddressSpace()) {
195      Q.setAddressSpace(L.getAddressSpace());
196      L.removeAddressSpace();
197      R.removeAddressSpace();
198    }
199    return Q;
200  }
201
202  static Qualifiers fromFastMask(unsigned Mask) {
203    Qualifiers Qs;
204    Qs.addFastQualifiers(Mask);
205    return Qs;
206  }
207
208  static Qualifiers fromCVRMask(unsigned CVR) {
209    Qualifiers Qs;
210    Qs.addCVRQualifiers(CVR);
211    return Qs;
212  }
213
214  // Deserialize qualifiers from an opaque representation.
215  static Qualifiers fromOpaqueValue(unsigned opaque) {
216    Qualifiers Qs;
217    Qs.Mask = opaque;
218    return Qs;
219  }
220
221  // Serialize these qualifiers into an opaque representation.
222  unsigned getAsOpaqueValue() const {
223    return Mask;
224  }
225
226  bool hasConst() const { return Mask & Const; }
227  void setConst(bool flag) {
228    Mask = (Mask & ~Const) | (flag ? Const : 0);
229  }
230  void removeConst() { Mask &= ~Const; }
231  void addConst() { Mask |= Const; }
232
233  bool hasVolatile() const { return Mask & Volatile; }
234  void setVolatile(bool flag) {
235    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
236  }
237  void removeVolatile() { Mask &= ~Volatile; }
238  void addVolatile() { Mask |= Volatile; }
239
240  bool hasRestrict() const { return Mask & Restrict; }
241  void setRestrict(bool flag) {
242    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
243  }
244  void removeRestrict() { Mask &= ~Restrict; }
245  void addRestrict() { Mask |= Restrict; }
246
247  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
248  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
249  void setCVRQualifiers(unsigned mask) {
250    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
251    Mask = (Mask & ~CVRMask) | mask;
252  }
253  void removeCVRQualifiers(unsigned mask) {
254    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
255    Mask &= ~mask;
256  }
257  void removeCVRQualifiers() {
258    removeCVRQualifiers(CVRMask);
259  }
260  void addCVRQualifiers(unsigned mask) {
261    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
262    Mask |= mask;
263  }
264
265  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
266  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
267  void setObjCGCAttr(GC type) {
268    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
269  }
270  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
271  void addObjCGCAttr(GC type) {
272    assert(type);
273    setObjCGCAttr(type);
274  }
275  Qualifiers withoutObjCGCAttr() const {
276    Qualifiers qs = *this;
277    qs.removeObjCGCAttr();
278    return qs;
279  }
280  Qualifiers withoutObjCLifetime() const {
281    Qualifiers qs = *this;
282    qs.removeObjCLifetime();
283    return qs;
284  }
285
286  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
287  ObjCLifetime getObjCLifetime() const {
288    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
289  }
290  void setObjCLifetime(ObjCLifetime type) {
291    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
292  }
293  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
294  void addObjCLifetime(ObjCLifetime type) {
295    assert(type);
296    assert(!hasObjCLifetime());
297    Mask |= (type << LifetimeShift);
298  }
299
300  /// True if the lifetime is neither None or ExplicitNone.
301  bool hasNonTrivialObjCLifetime() const {
302    ObjCLifetime lifetime = getObjCLifetime();
303    return (lifetime > OCL_ExplicitNone);
304  }
305
306  /// True if the lifetime is either strong or weak.
307  bool hasStrongOrWeakObjCLifetime() const {
308    ObjCLifetime lifetime = getObjCLifetime();
309    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
310  }
311
312  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
313  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
314  void setAddressSpace(unsigned space) {
315    assert(space <= MaxAddressSpace);
316    Mask = (Mask & ~AddressSpaceMask)
317         | (((uint32_t) space) << AddressSpaceShift);
318  }
319  void removeAddressSpace() { setAddressSpace(0); }
320  void addAddressSpace(unsigned space) {
321    assert(space);
322    setAddressSpace(space);
323  }
324
325  // Fast qualifiers are those that can be allocated directly
326  // on a QualType object.
327  bool hasFastQualifiers() const { return getFastQualifiers(); }
328  unsigned getFastQualifiers() const { return Mask & FastMask; }
329  void setFastQualifiers(unsigned mask) {
330    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
331    Mask = (Mask & ~FastMask) | mask;
332  }
333  void removeFastQualifiers(unsigned mask) {
334    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
335    Mask &= ~mask;
336  }
337  void removeFastQualifiers() {
338    removeFastQualifiers(FastMask);
339  }
340  void addFastQualifiers(unsigned mask) {
341    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
342    Mask |= mask;
343  }
344
345  /// hasNonFastQualifiers - Return true if the set contains any
346  /// qualifiers which require an ExtQuals node to be allocated.
347  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
348  Qualifiers getNonFastQualifiers() const {
349    Qualifiers Quals = *this;
350    Quals.setFastQualifiers(0);
351    return Quals;
352  }
353
354  /// hasQualifiers - Return true if the set contains any qualifiers.
355  bool hasQualifiers() const { return Mask; }
356  bool empty() const { return !Mask; }
357
358  /// \brief Add the qualifiers from the given set to this set.
359  void addQualifiers(Qualifiers Q) {
360    // If the other set doesn't have any non-boolean qualifiers, just
361    // bit-or it in.
362    if (!(Q.Mask & ~CVRMask))
363      Mask |= Q.Mask;
364    else {
365      Mask |= (Q.Mask & CVRMask);
366      if (Q.hasAddressSpace())
367        addAddressSpace(Q.getAddressSpace());
368      if (Q.hasObjCGCAttr())
369        addObjCGCAttr(Q.getObjCGCAttr());
370      if (Q.hasObjCLifetime())
371        addObjCLifetime(Q.getObjCLifetime());
372    }
373  }
374
375  /// \brief Remove the qualifiers from the given set from this set.
376  void removeQualifiers(Qualifiers Q) {
377    // If the other set doesn't have any non-boolean qualifiers, just
378    // bit-and the inverse in.
379    if (!(Q.Mask & ~CVRMask))
380      Mask &= ~Q.Mask;
381    else {
382      Mask &= ~(Q.Mask & CVRMask);
383      if (getObjCGCAttr() == Q.getObjCGCAttr())
384        removeObjCGCAttr();
385      if (getObjCLifetime() == Q.getObjCLifetime())
386        removeObjCLifetime();
387      if (getAddressSpace() == Q.getAddressSpace())
388        removeAddressSpace();
389    }
390  }
391
392  /// \brief Add the qualifiers from the given set to this set, given that
393  /// they don't conflict.
394  void addConsistentQualifiers(Qualifiers qs) {
395    assert(getAddressSpace() == qs.getAddressSpace() ||
396           !hasAddressSpace() || !qs.hasAddressSpace());
397    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
398           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
399    assert(getObjCLifetime() == qs.getObjCLifetime() ||
400           !hasObjCLifetime() || !qs.hasObjCLifetime());
401    Mask |= qs.Mask;
402  }
403
404  /// \brief Determines if these qualifiers compatibly include another set.
405  /// Generally this answers the question of whether an object with the other
406  /// qualifiers can be safely used as an object with these qualifiers.
407  bool compatiblyIncludes(Qualifiers other) const {
408    return
409      // Address spaces must match exactly.
410      getAddressSpace() == other.getAddressSpace() &&
411      // ObjC GC qualifiers can match, be added, or be removed, but can't be
412      // changed.
413      (getObjCGCAttr() == other.getObjCGCAttr() ||
414       !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
415      // ObjC lifetime qualifiers must match exactly.
416      getObjCLifetime() == other.getObjCLifetime() &&
417      // CVR qualifiers may subset.
418      (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
419  }
420
421  /// \brief Determines if these qualifiers compatibly include another set of
422  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
423  ///
424  /// One set of Objective-C lifetime qualifiers compatibly includes the other
425  /// if the lifetime qualifiers match, or if both are non-__weak and the
426  /// including set also contains the 'const' qualifier.
427  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
428    if (getObjCLifetime() == other.getObjCLifetime())
429      return true;
430
431    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
432      return false;
433
434    return hasConst();
435  }
436
437  /// \brief Determine whether this set of qualifiers is a strict superset of
438  /// another set of qualifiers, not considering qualifier compatibility.
439  bool isStrictSupersetOf(Qualifiers Other) const;
440
441  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
442  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
443
444  operator bool() const { return hasQualifiers(); }
445
446  Qualifiers &operator+=(Qualifiers R) {
447    addQualifiers(R);
448    return *this;
449  }
450
451  // Union two qualifier sets.  If an enumerated qualifier appears
452  // in both sets, use the one from the right.
453  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
454    L += R;
455    return L;
456  }
457
458  Qualifiers &operator-=(Qualifiers R) {
459    removeQualifiers(R);
460    return *this;
461  }
462
463  /// \brief Compute the difference between two qualifier sets.
464  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
465    L -= R;
466    return L;
467  }
468
469  std::string getAsString() const;
470  std::string getAsString(const PrintingPolicy &Policy) const;
471
472  bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
473  void print(raw_ostream &OS, const PrintingPolicy &Policy,
474             bool appendSpaceIfNonEmpty = false) const;
475
476  void Profile(llvm::FoldingSetNodeID &ID) const {
477    ID.AddInteger(Mask);
478  }
479
480private:
481
482  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
483  //           |C R V|GCAttr|Lifetime|AddressSpace|
484  uint32_t Mask;
485
486  static const uint32_t GCAttrMask = 0x18;
487  static const uint32_t GCAttrShift = 3;
488  static const uint32_t LifetimeMask = 0xE0;
489  static const uint32_t LifetimeShift = 5;
490  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
491  static const uint32_t AddressSpaceShift = 8;
492};
493
494/// A std::pair-like structure for storing a qualified type split
495/// into its local qualifiers and its locally-unqualified type.
496struct SplitQualType {
497  /// The locally-unqualified type.
498  const Type *Ty;
499
500  /// The local qualifiers.
501  Qualifiers Quals;
502
503  SplitQualType() : Ty(0), Quals() {}
504  SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
505
506  SplitQualType getSingleStepDesugaredType() const; // end of this file
507
508  // Make llvm::tie work.
509  operator std::pair<const Type *,Qualifiers>() const {
510    return std::pair<const Type *,Qualifiers>(Ty, Quals);
511  }
512
513  friend bool operator==(SplitQualType a, SplitQualType b) {
514    return a.Ty == b.Ty && a.Quals == b.Quals;
515  }
516  friend bool operator!=(SplitQualType a, SplitQualType b) {
517    return a.Ty != b.Ty || a.Quals != b.Quals;
518  }
519};
520
521/// QualType - For efficiency, we don't store CV-qualified types as nodes on
522/// their own: instead each reference to a type stores the qualifiers.  This
523/// greatly reduces the number of nodes we need to allocate for types (for
524/// example we only need one for 'int', 'const int', 'volatile int',
525/// 'const volatile int', etc).
526///
527/// As an added efficiency bonus, instead of making this a pair, we
528/// just store the two bits we care about in the low bits of the
529/// pointer.  To handle the packing/unpacking, we make QualType be a
530/// simple wrapper class that acts like a smart pointer.  A third bit
531/// indicates whether there are extended qualifiers present, in which
532/// case the pointer points to a special structure.
533class QualType {
534  // Thankfully, these are efficiently composable.
535  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
536                       Qualifiers::FastWidth> Value;
537
538  const ExtQuals *getExtQualsUnsafe() const {
539    return Value.getPointer().get<const ExtQuals*>();
540  }
541
542  const Type *getTypePtrUnsafe() const {
543    return Value.getPointer().get<const Type*>();
544  }
545
546  const ExtQualsTypeCommonBase *getCommonPtr() const {
547    assert(!isNull() && "Cannot retrieve a NULL type pointer");
548    uintptr_t CommonPtrVal
549      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
550    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
551    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
552  }
553
554  friend class QualifierCollector;
555public:
556  QualType() {}
557
558  QualType(const Type *Ptr, unsigned Quals)
559    : Value(Ptr, Quals) {}
560  QualType(const ExtQuals *Ptr, unsigned Quals)
561    : Value(Ptr, Quals) {}
562
563  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
564  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
565
566  /// Retrieves a pointer to the underlying (unqualified) type.
567  ///
568  /// This function requires that the type not be NULL. If the type might be
569  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
570  const Type *getTypePtr() const;
571
572  const Type *getTypePtrOrNull() const;
573
574  /// Retrieves a pointer to the name of the base type.
575  const IdentifierInfo *getBaseTypeIdentifier() const;
576
577  /// Divides a QualType into its unqualified type and a set of local
578  /// qualifiers.
579  SplitQualType split() const;
580
581  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
582  static QualType getFromOpaquePtr(const void *Ptr) {
583    QualType T;
584    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
585    return T;
586  }
587
588  const Type &operator*() const {
589    return *getTypePtr();
590  }
591
592  const Type *operator->() const {
593    return getTypePtr();
594  }
595
596  bool isCanonical() const;
597  bool isCanonicalAsParam() const;
598
599  /// isNull - Return true if this QualType doesn't point to a type yet.
600  bool isNull() const {
601    return Value.getPointer().isNull();
602  }
603
604  /// \brief Determine whether this particular QualType instance has the
605  /// "const" qualifier set, without looking through typedefs that may have
606  /// added "const" at a different level.
607  bool isLocalConstQualified() const {
608    return (getLocalFastQualifiers() & Qualifiers::Const);
609  }
610
611  /// \brief Determine whether this type is const-qualified.
612  bool isConstQualified() const;
613
614  /// \brief Determine whether this particular QualType instance has the
615  /// "restrict" qualifier set, without looking through typedefs that may have
616  /// added "restrict" at a different level.
617  bool isLocalRestrictQualified() const {
618    return (getLocalFastQualifiers() & Qualifiers::Restrict);
619  }
620
621  /// \brief Determine whether this type is restrict-qualified.
622  bool isRestrictQualified() const;
623
624  /// \brief Determine whether this particular QualType instance has the
625  /// "volatile" qualifier set, without looking through typedefs that may have
626  /// added "volatile" at a different level.
627  bool isLocalVolatileQualified() const {
628    return (getLocalFastQualifiers() & Qualifiers::Volatile);
629  }
630
631  /// \brief Determine whether this type is volatile-qualified.
632  bool isVolatileQualified() const;
633
634  /// \brief Determine whether this particular QualType instance has any
635  /// qualifiers, without looking through any typedefs that might add
636  /// qualifiers at a different level.
637  bool hasLocalQualifiers() const {
638    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
639  }
640
641  /// \brief Determine whether this type has any qualifiers.
642  bool hasQualifiers() const;
643
644  /// \brief Determine whether this particular QualType instance has any
645  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
646  /// instance.
647  bool hasLocalNonFastQualifiers() const {
648    return Value.getPointer().is<const ExtQuals*>();
649  }
650
651  /// \brief Retrieve the set of qualifiers local to this particular QualType
652  /// instance, not including any qualifiers acquired through typedefs or
653  /// other sugar.
654  Qualifiers getLocalQualifiers() const;
655
656  /// \brief Retrieve the set of qualifiers applied to this type.
657  Qualifiers getQualifiers() const;
658
659  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
660  /// local to this particular QualType instance, not including any qualifiers
661  /// acquired through typedefs or other sugar.
662  unsigned getLocalCVRQualifiers() const {
663    return getLocalFastQualifiers();
664  }
665
666  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
667  /// applied to this type.
668  unsigned getCVRQualifiers() const;
669
670  bool isConstant(ASTContext& Ctx) const {
671    return QualType::isConstant(*this, Ctx);
672  }
673
674  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
675  bool isPODType(ASTContext &Context) const;
676
677  /// isCXX98PODType() - Return true if this is a POD type according to the
678  /// rules of the C++98 standard, regardless of the current compilation's
679  /// language.
680  bool isCXX98PODType(ASTContext &Context) const;
681
682  /// isCXX11PODType() - Return true if this is a POD type according to the
683  /// more relaxed rules of the C++11 standard, regardless of the current
684  /// compilation's language.
685  /// (C++0x [basic.types]p9)
686  bool isCXX11PODType(ASTContext &Context) const;
687
688  /// isTrivialType - Return true if this is a trivial type
689  /// (C++0x [basic.types]p9)
690  bool isTrivialType(ASTContext &Context) const;
691
692  /// isTriviallyCopyableType - Return true if this is a trivially
693  /// copyable type (C++0x [basic.types]p9)
694  bool isTriviallyCopyableType(ASTContext &Context) const;
695
696  // Don't promise in the API that anything besides 'const' can be
697  // easily added.
698
699  /// addConst - add the specified type qualifier to this QualType.
700  void addConst() {
701    addFastQualifiers(Qualifiers::Const);
702  }
703  QualType withConst() const {
704    return withFastQualifiers(Qualifiers::Const);
705  }
706
707  /// addVolatile - add the specified type qualifier to this QualType.
708  void addVolatile() {
709    addFastQualifiers(Qualifiers::Volatile);
710  }
711  QualType withVolatile() const {
712    return withFastQualifiers(Qualifiers::Volatile);
713  }
714
715  /// Add the restrict qualifier to this QualType.
716  void addRestrict() {
717    addFastQualifiers(Qualifiers::Restrict);
718  }
719  QualType withRestrict() const {
720    return withFastQualifiers(Qualifiers::Restrict);
721  }
722
723  QualType withCVRQualifiers(unsigned CVR) const {
724    return withFastQualifiers(CVR);
725  }
726
727  void addFastQualifiers(unsigned TQs) {
728    assert(!(TQs & ~Qualifiers::FastMask)
729           && "non-fast qualifier bits set in mask!");
730    Value.setInt(Value.getInt() | TQs);
731  }
732
733  void removeLocalConst();
734  void removeLocalVolatile();
735  void removeLocalRestrict();
736  void removeLocalCVRQualifiers(unsigned Mask);
737
738  void removeLocalFastQualifiers() { Value.setInt(0); }
739  void removeLocalFastQualifiers(unsigned Mask) {
740    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
741    Value.setInt(Value.getInt() & ~Mask);
742  }
743
744  // Creates a type with the given qualifiers in addition to any
745  // qualifiers already on this type.
746  QualType withFastQualifiers(unsigned TQs) const {
747    QualType T = *this;
748    T.addFastQualifiers(TQs);
749    return T;
750  }
751
752  // Creates a type with exactly the given fast qualifiers, removing
753  // any existing fast qualifiers.
754  QualType withExactLocalFastQualifiers(unsigned TQs) const {
755    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
756  }
757
758  // Removes fast qualifiers, but leaves any extended qualifiers in place.
759  QualType withoutLocalFastQualifiers() const {
760    QualType T = *this;
761    T.removeLocalFastQualifiers();
762    return T;
763  }
764
765  QualType getCanonicalType() const;
766
767  /// \brief Return this type with all of the instance-specific qualifiers
768  /// removed, but without removing any qualifiers that may have been applied
769  /// through typedefs.
770  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
771
772  /// \brief Retrieve the unqualified variant of the given type,
773  /// removing as little sugar as possible.
774  ///
775  /// This routine looks through various kinds of sugar to find the
776  /// least-desugared type that is unqualified. For example, given:
777  ///
778  /// \code
779  /// typedef int Integer;
780  /// typedef const Integer CInteger;
781  /// typedef CInteger DifferenceType;
782  /// \endcode
783  ///
784  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
785  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
786  ///
787  /// The resulting type might still be qualified if it's an array
788  /// type.  To strip qualifiers even from within an array type, use
789  /// ASTContext::getUnqualifiedArrayType.
790  inline QualType getUnqualifiedType() const;
791
792  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
793  /// given type, removing as little sugar as possible.
794  ///
795  /// Like getUnqualifiedType(), but also returns the set of
796  /// qualifiers that were built up.
797  ///
798  /// The resulting type might still be qualified if it's an array
799  /// type.  To strip qualifiers even from within an array type, use
800  /// ASTContext::getUnqualifiedArrayType.
801  inline SplitQualType getSplitUnqualifiedType() const;
802
803  /// \brief Determine whether this type is more qualified than the other
804  /// given type, requiring exact equality for non-CVR qualifiers.
805  bool isMoreQualifiedThan(QualType Other) const;
806
807  /// \brief Determine whether this type is at least as qualified as the other
808  /// given type, requiring exact equality for non-CVR qualifiers.
809  bool isAtLeastAsQualifiedAs(QualType Other) const;
810
811  QualType getNonReferenceType() const;
812
813  /// \brief Determine the type of a (typically non-lvalue) expression with the
814  /// specified result type.
815  ///
816  /// This routine should be used for expressions for which the return type is
817  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
818  /// an lvalue. It removes a top-level reference (since there are no
819  /// expressions of reference type) and deletes top-level cvr-qualifiers
820  /// from non-class types (in C++) or all types (in C).
821  QualType getNonLValueExprType(ASTContext &Context) const;
822
823  /// getDesugaredType - Return the specified type with any "sugar" removed from
824  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
825  /// the type is already concrete, it returns it unmodified.  This is similar
826  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
827  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
828  /// concrete.
829  ///
830  /// Qualifiers are left in place.
831  QualType getDesugaredType(const ASTContext &Context) const {
832    return getDesugaredType(*this, Context);
833  }
834
835  SplitQualType getSplitDesugaredType() const {
836    return getSplitDesugaredType(*this);
837  }
838
839  /// \brief Return the specified type with one level of "sugar" removed from
840  /// the type.
841  ///
842  /// This routine takes off the first typedef, typeof, etc. If the outer level
843  /// of the type is already concrete, it returns it unmodified.
844  QualType getSingleStepDesugaredType(const ASTContext &Context) const {
845    return getSingleStepDesugaredTypeImpl(*this, Context);
846  }
847
848  /// IgnoreParens - Returns the specified type after dropping any
849  /// outer-level parentheses.
850  QualType IgnoreParens() const {
851    if (isa<ParenType>(*this))
852      return QualType::IgnoreParens(*this);
853    return *this;
854  }
855
856  /// operator==/!= - Indicate whether the specified types and qualifiers are
857  /// identical.
858  friend bool operator==(const QualType &LHS, const QualType &RHS) {
859    return LHS.Value == RHS.Value;
860  }
861  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
862    return LHS.Value != RHS.Value;
863  }
864  std::string getAsString() const {
865    return getAsString(split());
866  }
867  static std::string getAsString(SplitQualType split) {
868    return getAsString(split.Ty, split.Quals);
869  }
870  static std::string getAsString(const Type *ty, Qualifiers qs);
871
872  std::string getAsString(const PrintingPolicy &Policy) const;
873
874  void print(raw_ostream &OS, const PrintingPolicy &Policy,
875             const Twine &PlaceHolder = Twine()) const {
876    print(split(), OS, Policy, PlaceHolder);
877  }
878  static void print(SplitQualType split, raw_ostream &OS,
879                    const PrintingPolicy &policy, const Twine &PlaceHolder) {
880    return print(split.Ty, split.Quals, OS, policy, PlaceHolder);
881  }
882  static void print(const Type *ty, Qualifiers qs,
883                    raw_ostream &OS, const PrintingPolicy &policy,
884                    const Twine &PlaceHolder);
885
886  void getAsStringInternal(std::string &Str,
887                           const PrintingPolicy &Policy) const {
888    return getAsStringInternal(split(), Str, Policy);
889  }
890  static void getAsStringInternal(SplitQualType split, std::string &out,
891                                  const PrintingPolicy &policy) {
892    return getAsStringInternal(split.Ty, split.Quals, out, policy);
893  }
894  static void getAsStringInternal(const Type *ty, Qualifiers qs,
895                                  std::string &out,
896                                  const PrintingPolicy &policy);
897
898  class StreamedQualTypeHelper {
899    const QualType &T;
900    const PrintingPolicy &Policy;
901    const Twine &PlaceHolder;
902  public:
903    StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
904                           const Twine &PlaceHolder)
905      : T(T), Policy(Policy), PlaceHolder(PlaceHolder) { }
906
907    friend raw_ostream &operator<<(raw_ostream &OS,
908                                   const StreamedQualTypeHelper &SQT) {
909      SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder);
910      return OS;
911    }
912  };
913
914  StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
915                                const Twine &PlaceHolder = Twine()) const {
916    return StreamedQualTypeHelper(*this, Policy, PlaceHolder);
917  }
918
919  void dump(const char *s) const;
920  void dump() const;
921
922  void Profile(llvm::FoldingSetNodeID &ID) const {
923    ID.AddPointer(getAsOpaquePtr());
924  }
925
926  /// getAddressSpace - Return the address space of this type.
927  inline unsigned getAddressSpace() const;
928
929  /// getObjCGCAttr - Returns gc attribute of this type.
930  inline Qualifiers::GC getObjCGCAttr() const;
931
932  /// isObjCGCWeak true when Type is objc's weak.
933  bool isObjCGCWeak() const {
934    return getObjCGCAttr() == Qualifiers::Weak;
935  }
936
937  /// isObjCGCStrong true when Type is objc's strong.
938  bool isObjCGCStrong() const {
939    return getObjCGCAttr() == Qualifiers::Strong;
940  }
941
942  /// getObjCLifetime - Returns lifetime attribute of this type.
943  Qualifiers::ObjCLifetime getObjCLifetime() const {
944    return getQualifiers().getObjCLifetime();
945  }
946
947  bool hasNonTrivialObjCLifetime() const {
948    return getQualifiers().hasNonTrivialObjCLifetime();
949  }
950
951  bool hasStrongOrWeakObjCLifetime() const {
952    return getQualifiers().hasStrongOrWeakObjCLifetime();
953  }
954
955  enum DestructionKind {
956    DK_none,
957    DK_cxx_destructor,
958    DK_objc_strong_lifetime,
959    DK_objc_weak_lifetime
960  };
961
962  /// isDestructedType - nonzero if objects of this type require
963  /// non-trivial work to clean up after.  Non-zero because it's
964  /// conceivable that qualifiers (objc_gc(weak)?) could make
965  /// something require destruction.
966  DestructionKind isDestructedType() const {
967    return isDestructedTypeImpl(*this);
968  }
969
970  /// \brief Determine whether expressions of the given type are forbidden
971  /// from being lvalues in C.
972  ///
973  /// The expression types that are forbidden to be lvalues are:
974  ///   - 'void', but not qualified void
975  ///   - function types
976  ///
977  /// The exact rule here is C99 6.3.2.1:
978  ///   An lvalue is an expression with an object type or an incomplete
979  ///   type other than void.
980  bool isCForbiddenLValueType() const;
981
982  /// \brief Determine whether this type has trivial copy/move-assignment
983  ///        semantics.
984  bool hasTrivialAssignment(ASTContext &Context, bool Copying) const;
985
986private:
987  // These methods are implemented in a separate translation unit;
988  // "static"-ize them to avoid creating temporary QualTypes in the
989  // caller.
990  static bool isConstant(QualType T, ASTContext& Ctx);
991  static QualType getDesugaredType(QualType T, const ASTContext &Context);
992  static SplitQualType getSplitDesugaredType(QualType T);
993  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
994  static QualType getSingleStepDesugaredTypeImpl(QualType type,
995                                                 const ASTContext &C);
996  static QualType IgnoreParens(QualType T);
997  static DestructionKind isDestructedTypeImpl(QualType type);
998};
999
1000} // end clang.
1001
1002namespace llvm {
1003/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1004/// to a specific Type class.
1005template<> struct simplify_type<const ::clang::QualType> {
1006  typedef const ::clang::Type *SimpleType;
1007  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
1008    return Val.getTypePtr();
1009  }
1010};
1011template<> struct simplify_type< ::clang::QualType>
1012  : public simplify_type<const ::clang::QualType> {};
1013
1014// Teach SmallPtrSet that QualType is "basically a pointer".
1015template<>
1016class PointerLikeTypeTraits<clang::QualType> {
1017public:
1018  static inline void *getAsVoidPointer(clang::QualType P) {
1019    return P.getAsOpaquePtr();
1020  }
1021  static inline clang::QualType getFromVoidPointer(void *P) {
1022    return clang::QualType::getFromOpaquePtr(P);
1023  }
1024  // Various qualifiers go in low bits.
1025  enum { NumLowBitsAvailable = 0 };
1026};
1027
1028} // end namespace llvm
1029
1030namespace clang {
1031
1032/// \brief Base class that is common to both the \c ExtQuals and \c Type
1033/// classes, which allows \c QualType to access the common fields between the
1034/// two.
1035///
1036class ExtQualsTypeCommonBase {
1037  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1038    : BaseType(baseType), CanonicalType(canon) {}
1039
1040  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
1041  /// a self-referential pointer (for \c Type).
1042  ///
1043  /// This pointer allows an efficient mapping from a QualType to its
1044  /// underlying type pointer.
1045  const Type *const BaseType;
1046
1047  /// \brief The canonical type of this type.  A QualType.
1048  QualType CanonicalType;
1049
1050  friend class QualType;
1051  friend class Type;
1052  friend class ExtQuals;
1053};
1054
1055/// ExtQuals - We can encode up to four bits in the low bits of a
1056/// type pointer, but there are many more type qualifiers that we want
1057/// to be able to apply to an arbitrary type.  Therefore we have this
1058/// struct, intended to be heap-allocated and used by QualType to
1059/// store qualifiers.
1060///
1061/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1062/// in three low bits on the QualType pointer; a fourth bit records whether
1063/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1064/// Objective-C GC attributes) are much more rare.
1065class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1066  // NOTE: changing the fast qualifiers should be straightforward as
1067  // long as you don't make 'const' non-fast.
1068  // 1. Qualifiers:
1069  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1070  //       Fast qualifiers must occupy the low-order bits.
1071  //    b) Update Qualifiers::FastWidth and FastMask.
1072  // 2. QualType:
1073  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
1074  //    b) Update remove{Volatile,Restrict}, defined near the end of
1075  //       this header.
1076  // 3. ASTContext:
1077  //    a) Update get{Volatile,Restrict}Type.
1078
1079  /// Quals - the immutable set of qualifiers applied by this
1080  /// node;  always contains extended qualifiers.
1081  Qualifiers Quals;
1082
1083  ExtQuals *this_() { return this; }
1084
1085public:
1086  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1087    : ExtQualsTypeCommonBase(baseType,
1088                             canon.isNull() ? QualType(this_(), 0) : canon),
1089      Quals(quals)
1090  {
1091    assert(Quals.hasNonFastQualifiers()
1092           && "ExtQuals created with no fast qualifiers");
1093    assert(!Quals.hasFastQualifiers()
1094           && "ExtQuals created with fast qualifiers");
1095  }
1096
1097  Qualifiers getQualifiers() const { return Quals; }
1098
1099  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1100  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1101
1102  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1103  Qualifiers::ObjCLifetime getObjCLifetime() const {
1104    return Quals.getObjCLifetime();
1105  }
1106
1107  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1108  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
1109
1110  const Type *getBaseType() const { return BaseType; }
1111
1112public:
1113  void Profile(llvm::FoldingSetNodeID &ID) const {
1114    Profile(ID, getBaseType(), Quals);
1115  }
1116  static void Profile(llvm::FoldingSetNodeID &ID,
1117                      const Type *BaseType,
1118                      Qualifiers Quals) {
1119    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1120    ID.AddPointer(BaseType);
1121    Quals.Profile(ID);
1122  }
1123};
1124
1125/// \brief The kind of C++0x ref-qualifier associated with a function type,
1126/// which determines whether a member function's "this" object can be an
1127/// lvalue, rvalue, or neither.
1128enum RefQualifierKind {
1129  /// \brief No ref-qualifier was provided.
1130  RQ_None = 0,
1131  /// \brief An lvalue ref-qualifier was provided (\c &).
1132  RQ_LValue,
1133  /// \brief An rvalue ref-qualifier was provided (\c &&).
1134  RQ_RValue
1135};
1136
1137/// Type - This is the base class of the type hierarchy.  A central concept
1138/// with types is that each type always has a canonical type.  A canonical type
1139/// is the type with any typedef names stripped out of it or the types it
1140/// references.  For example, consider:
1141///
1142///  typedef int  foo;
1143///  typedef foo* bar;
1144///    'int *'    'foo *'    'bar'
1145///
1146/// There will be a Type object created for 'int'.  Since int is canonical, its
1147/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
1148/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1149/// there is a PointerType that represents 'int*', which, like 'int', is
1150/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1151/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1152/// is also 'int*'.
1153///
1154/// Non-canonical types are useful for emitting diagnostics, without losing
1155/// information about typedefs being used.  Canonical types are useful for type
1156/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1157/// about whether something has a particular form (e.g. is a function type),
1158/// because they implicitly, recursively, strip all typedefs out of a type.
1159///
1160/// Types, once created, are immutable.
1161///
1162class Type : public ExtQualsTypeCommonBase {
1163public:
1164  enum TypeClass {
1165#define TYPE(Class, Base) Class,
1166#define LAST_TYPE(Class) TypeLast = Class,
1167#define ABSTRACT_TYPE(Class, Base)
1168#include "clang/AST/TypeNodes.def"
1169    TagFirst = Record, TagLast = Enum
1170  };
1171
1172private:
1173  Type(const Type &) LLVM_DELETED_FUNCTION;
1174  void operator=(const Type &) LLVM_DELETED_FUNCTION;
1175
1176  /// Bitfields required by the Type class.
1177  class TypeBitfields {
1178    friend class Type;
1179    template <class T> friend class TypePropertyCache;
1180
1181    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1182    unsigned TC : 8;
1183
1184    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
1185    unsigned Dependent : 1;
1186
1187    /// \brief Whether this type somehow involves a template parameter, even
1188    /// if the resolution of the type does not depend on a template parameter.
1189    unsigned InstantiationDependent : 1;
1190
1191    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1192    unsigned VariablyModified : 1;
1193
1194    /// \brief Whether this type contains an unexpanded parameter pack
1195    /// (for C++0x variadic templates).
1196    unsigned ContainsUnexpandedParameterPack : 1;
1197
1198    /// \brief Nonzero if the cache (i.e. the bitfields here starting
1199    /// with 'Cache') is valid.  If so, then this is a
1200    /// LangOptions::VisibilityMode+1.
1201    mutable unsigned CacheValidAndVisibility : 2;
1202
1203    /// \brief True if the visibility was set explicitly in the source code.
1204    mutable unsigned CachedExplicitVisibility : 1;
1205
1206    /// \brief Linkage of this type.
1207    mutable unsigned CachedLinkage : 2;
1208
1209    /// \brief Whether this type involves and local or unnamed types.
1210    mutable unsigned CachedLocalOrUnnamed : 1;
1211
1212    /// \brief FromAST - Whether this type comes from an AST file.
1213    mutable unsigned FromAST : 1;
1214
1215    bool isCacheValid() const {
1216      return (CacheValidAndVisibility != 0);
1217    }
1218    Visibility getVisibility() const {
1219      assert(isCacheValid() && "getting linkage from invalid cache");
1220      return static_cast<Visibility>(CacheValidAndVisibility-1);
1221    }
1222    bool isVisibilityExplicit() const {
1223      assert(isCacheValid() && "getting linkage from invalid cache");
1224      return CachedExplicitVisibility;
1225    }
1226    Linkage getLinkage() const {
1227      assert(isCacheValid() && "getting linkage from invalid cache");
1228      return static_cast<Linkage>(CachedLinkage);
1229    }
1230    bool hasLocalOrUnnamedType() const {
1231      assert(isCacheValid() && "getting linkage from invalid cache");
1232      return CachedLocalOrUnnamed;
1233    }
1234  };
1235  enum { NumTypeBits = 19 };
1236
1237protected:
1238  // These classes allow subclasses to somewhat cleanly pack bitfields
1239  // into Type.
1240
1241  class ArrayTypeBitfields {
1242    friend class ArrayType;
1243
1244    unsigned : NumTypeBits;
1245
1246    /// IndexTypeQuals - CVR qualifiers from declarations like
1247    /// 'int X[static restrict 4]'. For function parameters only.
1248    unsigned IndexTypeQuals : 3;
1249
1250    /// SizeModifier - storage class qualifiers from declarations like
1251    /// 'int X[static restrict 4]'. For function parameters only.
1252    /// Actually an ArrayType::ArraySizeModifier.
1253    unsigned SizeModifier : 3;
1254  };
1255
1256  class BuiltinTypeBitfields {
1257    friend class BuiltinType;
1258
1259    unsigned : NumTypeBits;
1260
1261    /// The kind (BuiltinType::Kind) of builtin type this is.
1262    unsigned Kind : 8;
1263  };
1264
1265  class FunctionTypeBitfields {
1266    friend class FunctionType;
1267
1268    unsigned : NumTypeBits;
1269
1270    /// Extra information which affects how the function is called, like
1271    /// regparm and the calling convention.
1272    unsigned ExtInfo : 8;
1273
1274    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1275    /// other bitfields.
1276    /// The qualifiers are part of FunctionProtoType because...
1277    ///
1278    /// C++ 8.3.5p4: The return type, the parameter type list and the
1279    /// cv-qualifier-seq, [...], are part of the function type.
1280    unsigned TypeQuals : 3;
1281
1282    /// \brief The ref-qualifier associated with a \c FunctionProtoType.
1283    ///
1284    /// This is a value of type \c RefQualifierKind.
1285    unsigned RefQualifier : 2;
1286  };
1287
1288  class ObjCObjectTypeBitfields {
1289    friend class ObjCObjectType;
1290
1291    unsigned : NumTypeBits;
1292
1293    /// NumProtocols - The number of protocols stored directly on this
1294    /// object type.
1295    unsigned NumProtocols : 32 - NumTypeBits;
1296  };
1297
1298  class ReferenceTypeBitfields {
1299    friend class ReferenceType;
1300
1301    unsigned : NumTypeBits;
1302
1303    /// True if the type was originally spelled with an lvalue sigil.
1304    /// This is never true of rvalue references but can also be false
1305    /// on lvalue references because of C++0x [dcl.typedef]p9,
1306    /// as follows:
1307    ///
1308    ///   typedef int &ref;    // lvalue, spelled lvalue
1309    ///   typedef int &&rvref; // rvalue
1310    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1311    ///   ref &&a;             // lvalue, inner ref
1312    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1313    ///   rvref &&a;           // rvalue, inner ref
1314    unsigned SpelledAsLValue : 1;
1315
1316    /// True if the inner type is a reference type.  This only happens
1317    /// in non-canonical forms.
1318    unsigned InnerRef : 1;
1319  };
1320
1321  class TypeWithKeywordBitfields {
1322    friend class TypeWithKeyword;
1323
1324    unsigned : NumTypeBits;
1325
1326    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1327    unsigned Keyword : 8;
1328  };
1329
1330  class VectorTypeBitfields {
1331    friend class VectorType;
1332
1333    unsigned : NumTypeBits;
1334
1335    /// VecKind - The kind of vector, either a generic vector type or some
1336    /// target-specific vector type such as for AltiVec or Neon.
1337    unsigned VecKind : 3;
1338
1339    /// NumElements - The number of elements in the vector.
1340    unsigned NumElements : 29 - NumTypeBits;
1341  };
1342
1343  class AttributedTypeBitfields {
1344    friend class AttributedType;
1345
1346    unsigned : NumTypeBits;
1347
1348    /// AttrKind - an AttributedType::Kind
1349    unsigned AttrKind : 32 - NumTypeBits;
1350  };
1351
1352  union {
1353    TypeBitfields TypeBits;
1354    ArrayTypeBitfields ArrayTypeBits;
1355    AttributedTypeBitfields AttributedTypeBits;
1356    BuiltinTypeBitfields BuiltinTypeBits;
1357    FunctionTypeBitfields FunctionTypeBits;
1358    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1359    ReferenceTypeBitfields ReferenceTypeBits;
1360    TypeWithKeywordBitfields TypeWithKeywordBits;
1361    VectorTypeBitfields VectorTypeBits;
1362  };
1363
1364private:
1365  /// \brief Set whether this type comes from an AST file.
1366  void setFromAST(bool V = true) const {
1367    TypeBits.FromAST = V;
1368  }
1369
1370  template <class T> friend class TypePropertyCache;
1371
1372protected:
1373  // silence VC++ warning C4355: 'this' : used in base member initializer list
1374  Type *this_() { return this; }
1375  Type(TypeClass tc, QualType canon, bool Dependent,
1376       bool InstantiationDependent, bool VariablyModified,
1377       bool ContainsUnexpandedParameterPack)
1378    : ExtQualsTypeCommonBase(this,
1379                             canon.isNull() ? QualType(this_(), 0) : canon) {
1380    TypeBits.TC = tc;
1381    TypeBits.Dependent = Dependent;
1382    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1383    TypeBits.VariablyModified = VariablyModified;
1384    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1385    TypeBits.CacheValidAndVisibility = 0;
1386    TypeBits.CachedExplicitVisibility = false;
1387    TypeBits.CachedLocalOrUnnamed = false;
1388    TypeBits.CachedLinkage = NoLinkage;
1389    TypeBits.FromAST = false;
1390  }
1391  friend class ASTContext;
1392
1393  void setDependent(bool D = true) {
1394    TypeBits.Dependent = D;
1395    if (D)
1396      TypeBits.InstantiationDependent = true;
1397  }
1398  void setInstantiationDependent(bool D = true) {
1399    TypeBits.InstantiationDependent = D; }
1400  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1401  }
1402  void setContainsUnexpandedParameterPack(bool PP = true) {
1403    TypeBits.ContainsUnexpandedParameterPack = PP;
1404  }
1405
1406public:
1407  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1408
1409  /// \brief Whether this type comes from an AST file.
1410  bool isFromAST() const { return TypeBits.FromAST; }
1411
1412  /// \brief Whether this type is or contains an unexpanded parameter
1413  /// pack, used to support C++0x variadic templates.
1414  ///
1415  /// A type that contains a parameter pack shall be expanded by the
1416  /// ellipsis operator at some point. For example, the typedef in the
1417  /// following example contains an unexpanded parameter pack 'T':
1418  ///
1419  /// \code
1420  /// template<typename ...T>
1421  /// struct X {
1422  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1423  /// };
1424  /// \endcode
1425  ///
1426  /// Note that this routine does not specify which
1427  bool containsUnexpandedParameterPack() const {
1428    return TypeBits.ContainsUnexpandedParameterPack;
1429  }
1430
1431  /// Determines if this type would be canonical if it had no further
1432  /// qualification.
1433  bool isCanonicalUnqualified() const {
1434    return CanonicalType == QualType(this, 0);
1435  }
1436
1437  /// Pull a single level of sugar off of this locally-unqualified type.
1438  /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1439  /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1440  QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1441
1442  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1443  /// object types, function types, and incomplete types.
1444
1445  /// isIncompleteType - Return true if this is an incomplete type.
1446  /// A type that can describe objects, but which lacks information needed to
1447  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1448  /// routine will need to determine if the size is actually required.
1449  ///
1450  /// \brief Def If non-NULL, and the type refers to some kind of declaration
1451  /// that can be completed (such as a C struct, C++ class, or Objective-C
1452  /// class), will be set to the declaration.
1453  bool isIncompleteType(NamedDecl **Def = 0) const;
1454
1455  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1456  /// type, in other words, not a function type.
1457  bool isIncompleteOrObjectType() const {
1458    return !isFunctionType();
1459  }
1460
1461  /// \brief Determine whether this type is an object type.
1462  bool isObjectType() const {
1463    // C++ [basic.types]p8:
1464    //   An object type is a (possibly cv-qualified) type that is not a
1465    //   function type, not a reference type, and not a void type.
1466    return !isReferenceType() && !isFunctionType() && !isVoidType();
1467  }
1468
1469  /// isLiteralType - Return true if this is a literal type
1470  /// (C++0x [basic.types]p10)
1471  bool isLiteralType() const;
1472
1473  /// \brief Test if this type is a standard-layout type.
1474  /// (C++0x [basic.type]p9)
1475  bool isStandardLayoutType() const;
1476
1477  /// Helper methods to distinguish type categories. All type predicates
1478  /// operate on the canonical type, ignoring typedefs and qualifiers.
1479
1480  /// isBuiltinType - returns true if the type is a builtin type.
1481  bool isBuiltinType() const;
1482
1483  /// isSpecificBuiltinType - Test for a particular builtin type.
1484  bool isSpecificBuiltinType(unsigned K) const;
1485
1486  /// isPlaceholderType - Test for a type which does not represent an
1487  /// actual type-system type but is instead used as a placeholder for
1488  /// various convenient purposes within Clang.  All such types are
1489  /// BuiltinTypes.
1490  bool isPlaceholderType() const;
1491  const BuiltinType *getAsPlaceholderType() const;
1492
1493  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1494  bool isSpecificPlaceholderType(unsigned K) const;
1495
1496  /// isNonOverloadPlaceholderType - Test for a placeholder type
1497  /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
1498  bool isNonOverloadPlaceholderType() const;
1499
1500  /// isIntegerType() does *not* include complex integers (a GCC extension).
1501  /// isComplexIntegerType() can be used to test for complex integers.
1502  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1503  bool isEnumeralType() const;
1504  bool isBooleanType() const;
1505  bool isCharType() const;
1506  bool isWideCharType() const;
1507  bool isChar16Type() const;
1508  bool isChar32Type() const;
1509  bool isAnyCharacterType() const;
1510  bool isIntegralType(ASTContext &Ctx) const;
1511
1512  /// \brief Determine whether this type is an integral or enumeration type.
1513  bool isIntegralOrEnumerationType() const;
1514  /// \brief Determine whether this type is an integral or unscoped enumeration
1515  /// type.
1516  bool isIntegralOrUnscopedEnumerationType() const;
1517
1518  /// Floating point categories.
1519  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1520  /// isComplexType() does *not* include complex integers (a GCC extension).
1521  /// isComplexIntegerType() can be used to test for complex integers.
1522  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1523  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1524  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1525  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1526  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1527  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1528  bool isVoidType() const;         // C99 6.2.5p19
1529  bool isDerivedType() const;      // C99 6.2.5p20
1530  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1531  bool isAggregateType() const;
1532  bool isFundamentalType() const;
1533  bool isCompoundType() const;
1534
1535  // Type Predicates: Check to see if this type is structurally the specified
1536  // type, ignoring typedefs and qualifiers.
1537  bool isFunctionType() const;
1538  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1539  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1540  bool isPointerType() const;
1541  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1542  bool isBlockPointerType() const;
1543  bool isVoidPointerType() const;
1544  bool isReferenceType() const;
1545  bool isLValueReferenceType() const;
1546  bool isRValueReferenceType() const;
1547  bool isFunctionPointerType() const;
1548  bool isMemberPointerType() const;
1549  bool isMemberFunctionPointerType() const;
1550  bool isMemberDataPointerType() const;
1551  bool isArrayType() const;
1552  bool isConstantArrayType() const;
1553  bool isIncompleteArrayType() const;
1554  bool isVariableArrayType() const;
1555  bool isDependentSizedArrayType() const;
1556  bool isRecordType() const;
1557  bool isClassType() const;
1558  bool isStructureType() const;
1559  bool isInterfaceType() const;
1560  bool isStructureOrClassType() const;
1561  bool isUnionType() const;
1562  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1563  bool isVectorType() const;                    // GCC vector type.
1564  bool isExtVectorType() const;                 // Extended vector type.
1565  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1566  bool isObjCRetainableType() const;            // ObjC object or block pointer
1567  bool isObjCLifetimeType() const;              // (array of)* retainable type
1568  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1569  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1570  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1571  // for the common case.
1572  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1573  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1574  bool isObjCQualifiedIdType() const;           // id<foo>
1575  bool isObjCQualifiedClassType() const;        // Class<foo>
1576  bool isObjCObjectOrInterfaceType() const;
1577  bool isObjCIdType() const;                    // id
1578  bool isObjCClassType() const;                 // Class
1579  bool isObjCSelType() const;                 // Class
1580  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1581  bool isObjCARCBridgableType() const;
1582  bool isCARCBridgableType() const;
1583  bool isTemplateTypeParmType() const;          // C++ template type parameter
1584  bool isNullPtrType() const;                   // C++0x nullptr_t
1585  bool isAtomicType() const;                    // C11 _Atomic()
1586
1587  /// Determines if this type, which must satisfy
1588  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1589  /// than implicitly __strong.
1590  bool isObjCARCImplicitlyUnretainedType() const;
1591
1592  /// Return the implicit lifetime for this type, which must not be dependent.
1593  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1594
1595  enum ScalarTypeKind {
1596    STK_CPointer,
1597    STK_BlockPointer,
1598    STK_ObjCObjectPointer,
1599    STK_MemberPointer,
1600    STK_Bool,
1601    STK_Integral,
1602    STK_Floating,
1603    STK_IntegralComplex,
1604    STK_FloatingComplex
1605  };
1606  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1607  ScalarTypeKind getScalarTypeKind() const;
1608
1609  /// isDependentType - Whether this type is a dependent type, meaning
1610  /// that its definition somehow depends on a template parameter
1611  /// (C++ [temp.dep.type]).
1612  bool isDependentType() const { return TypeBits.Dependent; }
1613
1614  /// \brief Determine whether this type is an instantiation-dependent type,
1615  /// meaning that the type involves a template parameter (even if the
1616  /// definition does not actually depend on the type substituted for that
1617  /// template parameter).
1618  bool isInstantiationDependentType() const {
1619    return TypeBits.InstantiationDependent;
1620  }
1621
1622  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1623  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1624
1625  /// \brief Whether this type involves a variable-length array type
1626  /// with a definite size.
1627  bool hasSizedVLAType() const;
1628
1629  /// \brief Whether this type is or contains a local or unnamed type.
1630  bool hasUnnamedOrLocalType() const;
1631
1632  bool isOverloadableType() const;
1633
1634  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1635  bool isElaboratedTypeSpecifier() const;
1636
1637  bool canDecayToPointerType() const;
1638
1639  /// hasPointerRepresentation - Whether this type is represented
1640  /// natively as a pointer; this includes pointers, references, block
1641  /// pointers, and Objective-C interface, qualified id, and qualified
1642  /// interface types, as well as nullptr_t.
1643  bool hasPointerRepresentation() const;
1644
1645  /// hasObjCPointerRepresentation - Whether this type can represent
1646  /// an objective pointer type for the purpose of GC'ability
1647  bool hasObjCPointerRepresentation() const;
1648
1649  /// \brief Determine whether this type has an integer representation
1650  /// of some sort, e.g., it is an integer type or a vector.
1651  bool hasIntegerRepresentation() const;
1652
1653  /// \brief Determine whether this type has an signed integer representation
1654  /// of some sort, e.g., it is an signed integer type or a vector.
1655  bool hasSignedIntegerRepresentation() const;
1656
1657  /// \brief Determine whether this type has an unsigned integer representation
1658  /// of some sort, e.g., it is an unsigned integer type or a vector.
1659  bool hasUnsignedIntegerRepresentation() const;
1660
1661  /// \brief Determine whether this type has a floating-point representation
1662  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1663  bool hasFloatingRepresentation() const;
1664
1665  // Type Checking Functions: Check to see if this type is structurally the
1666  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1667  // the best type we can.
1668  const RecordType *getAsStructureType() const;
1669  /// NOTE: getAs*ArrayType are methods on ASTContext.
1670  const RecordType *getAsUnionType() const;
1671  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1672  // The following is a convenience method that returns an ObjCObjectPointerType
1673  // for object declared using an interface.
1674  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1675  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1676  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1677  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1678  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
1679
1680  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1681  /// because the type is a RecordType or because it is the injected-class-name
1682  /// type of a class template or class template partial specialization.
1683  CXXRecordDecl *getAsCXXRecordDecl() const;
1684
1685  /// \brief Get the AutoType whose type will be deduced for a variable with
1686  /// an initializer of this type. This looks through declarators like pointer
1687  /// types, but not through decltype or typedefs.
1688  AutoType *getContainedAutoType() const;
1689
1690  /// Member-template getAs<specific type>'.  Look through sugar for
1691  /// an instance of \<specific type>.   This scheme will eventually
1692  /// replace the specific getAsXXXX methods above.
1693  ///
1694  /// There are some specializations of this member template listed
1695  /// immediately following this class.
1696  template <typename T> const T *getAs() const;
1697
1698  /// A variant of getAs<> for array types which silently discards
1699  /// qualifiers from the outermost type.
1700  const ArrayType *getAsArrayTypeUnsafe() const;
1701
1702  /// Member-template castAs<specific type>.  Look through sugar for
1703  /// the underlying instance of \<specific type>.
1704  ///
1705  /// This method has the same relationship to getAs<T> as cast<T> has
1706  /// to dyn_cast<T>; which is to say, the underlying type *must*
1707  /// have the intended type, and this method will never return null.
1708  template <typename T> const T *castAs() const;
1709
1710  /// A variant of castAs<> for array type which silently discards
1711  /// qualifiers from the outermost type.
1712  const ArrayType *castAsArrayTypeUnsafe() const;
1713
1714  /// getBaseElementTypeUnsafe - Get the base element type of this
1715  /// type, potentially discarding type qualifiers.  This method
1716  /// should never be used when type qualifiers are meaningful.
1717  const Type *getBaseElementTypeUnsafe() const;
1718
1719  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1720  /// element type of the array, potentially with type qualifiers missing.
1721  /// This method should never be used when type qualifiers are meaningful.
1722  const Type *getArrayElementTypeNoTypeQual() const;
1723
1724  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1725  /// pointer, this returns the respective pointee.
1726  QualType getPointeeType() const;
1727
1728  /// getUnqualifiedDesugaredType() - Return the specified type with
1729  /// any "sugar" removed from the type, removing any typedefs,
1730  /// typeofs, etc., as well as any qualifiers.
1731  const Type *getUnqualifiedDesugaredType() const;
1732
1733  /// More type predicates useful for type checking/promotion
1734  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1735
1736  /// isSignedIntegerType - Return true if this is an integer type that is
1737  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1738  /// or an enum decl which has a signed representation.
1739  bool isSignedIntegerType() const;
1740
1741  /// isUnsignedIntegerType - Return true if this is an integer type that is
1742  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1743  /// or an enum decl which has an unsigned representation.
1744  bool isUnsignedIntegerType() const;
1745
1746  /// Determines whether this is an integer type that is signed or an
1747  /// enumeration types whose underlying type is a signed integer type.
1748  bool isSignedIntegerOrEnumerationType() const;
1749
1750  /// Determines whether this is an integer type that is unsigned or an
1751  /// enumeration types whose underlying type is a unsigned integer type.
1752  bool isUnsignedIntegerOrEnumerationType() const;
1753
1754  /// isConstantSizeType - Return true if this is not a variable sized type,
1755  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1756  /// incomplete types.
1757  bool isConstantSizeType() const;
1758
1759  /// isSpecifierType - Returns true if this type can be represented by some
1760  /// set of type specifiers.
1761  bool isSpecifierType() const;
1762
1763  /// \brief Determine the linkage of this type.
1764  Linkage getLinkage() const;
1765
1766  /// \brief Determine the visibility of this type.
1767  Visibility getVisibility() const;
1768
1769  /// \brief Return true if the visibility was explicitly set is the code.
1770  bool isVisibilityExplicit() const;
1771
1772  /// \brief Determine the linkage and visibility of this type.
1773  std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
1774
1775  /// \brief Note that the linkage is no longer known.
1776  void ClearLinkageCache();
1777
1778  const char *getTypeClassName() const;
1779
1780  QualType getCanonicalTypeInternal() const {
1781    return CanonicalType;
1782  }
1783  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1784  LLVM_ATTRIBUTE_USED void dump() const;
1785
1786  static bool classof(const Type *) { return true; }
1787
1788  friend class ASTReader;
1789  friend class ASTWriter;
1790};
1791
1792/// \brief This will check for a TypedefType by removing any existing sugar
1793/// until it reaches a TypedefType or a non-sugared type.
1794template <> const TypedefType *Type::getAs() const;
1795
1796/// \brief This will check for a TemplateSpecializationType by removing any
1797/// existing sugar until it reaches a TemplateSpecializationType or a
1798/// non-sugared type.
1799template <> const TemplateSpecializationType *Type::getAs() const;
1800
1801// We can do canonical leaf types faster, because we don't have to
1802// worry about preserving child type decoration.
1803#define TYPE(Class, Base)
1804#define LEAF_TYPE(Class) \
1805template <> inline const Class##Type *Type::getAs() const { \
1806  return dyn_cast<Class##Type>(CanonicalType); \
1807} \
1808template <> inline const Class##Type *Type::castAs() const { \
1809  return cast<Class##Type>(CanonicalType); \
1810}
1811#include "clang/AST/TypeNodes.def"
1812
1813
1814/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1815/// types are always canonical and have a literal name field.
1816class BuiltinType : public Type {
1817public:
1818  enum Kind {
1819#define BUILTIN_TYPE(Id, SingletonId) Id,
1820#define LAST_BUILTIN_TYPE(Id) LastKind = Id
1821#include "clang/AST/BuiltinTypes.def"
1822  };
1823
1824public:
1825  BuiltinType(Kind K)
1826    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1827           /*InstantiationDependent=*/(K == Dependent),
1828           /*VariablyModified=*/false,
1829           /*Unexpanded paramter pack=*/false) {
1830    BuiltinTypeBits.Kind = K;
1831  }
1832
1833  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1834  StringRef getName(const PrintingPolicy &Policy) const;
1835  const char *getNameAsCString(const PrintingPolicy &Policy) const {
1836    // The StringRef is null-terminated.
1837    StringRef str = getName(Policy);
1838    assert(!str.empty() && str.data()[str.size()] == '\0');
1839    return str.data();
1840  }
1841
1842  bool isSugared() const { return false; }
1843  QualType desugar() const { return QualType(this, 0); }
1844
1845  bool isInteger() const {
1846    return getKind() >= Bool && getKind() <= Int128;
1847  }
1848
1849  bool isSignedInteger() const {
1850    return getKind() >= Char_S && getKind() <= Int128;
1851  }
1852
1853  bool isUnsignedInteger() const {
1854    return getKind() >= Bool && getKind() <= UInt128;
1855  }
1856
1857  bool isFloatingPoint() const {
1858    return getKind() >= Half && getKind() <= LongDouble;
1859  }
1860
1861  /// Determines whether the given kind corresponds to a placeholder type.
1862  static bool isPlaceholderTypeKind(Kind K) {
1863    return K >= Overload;
1864  }
1865
1866  /// Determines whether this type is a placeholder type, i.e. a type
1867  /// which cannot appear in arbitrary positions in a fully-formed
1868  /// expression.
1869  bool isPlaceholderType() const {
1870    return isPlaceholderTypeKind(getKind());
1871  }
1872
1873  /// Determines whether this type is a placeholder type other than
1874  /// Overload.  Most placeholder types require only syntactic
1875  /// information about their context in order to be resolved (e.g.
1876  /// whether it is a call expression), which means they can (and
1877  /// should) be resolved in an earlier "phase" of analysis.
1878  /// Overload expressions sometimes pick up further information
1879  /// from their context, like whether the context expects a
1880  /// specific function-pointer type, and so frequently need
1881  /// special treatment.
1882  bool isNonOverloadPlaceholderType() const {
1883    return getKind() > Overload;
1884  }
1885
1886  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1887  static bool classof(const BuiltinType *) { return true; }
1888};
1889
1890/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1891/// types (_Complex float etc) as well as the GCC integer complex extensions.
1892///
1893class ComplexType : public Type, public llvm::FoldingSetNode {
1894  QualType ElementType;
1895  ComplexType(QualType Element, QualType CanonicalPtr) :
1896    Type(Complex, CanonicalPtr, Element->isDependentType(),
1897         Element->isInstantiationDependentType(),
1898         Element->isVariablyModifiedType(),
1899         Element->containsUnexpandedParameterPack()),
1900    ElementType(Element) {
1901  }
1902  friend class ASTContext;  // ASTContext creates these.
1903
1904public:
1905  QualType getElementType() const { return ElementType; }
1906
1907  bool isSugared() const { return false; }
1908  QualType desugar() const { return QualType(this, 0); }
1909
1910  void Profile(llvm::FoldingSetNodeID &ID) {
1911    Profile(ID, getElementType());
1912  }
1913  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1914    ID.AddPointer(Element.getAsOpaquePtr());
1915  }
1916
1917  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1918  static bool classof(const ComplexType *) { return true; }
1919};
1920
1921/// ParenType - Sugar for parentheses used when specifying types.
1922///
1923class ParenType : public Type, public llvm::FoldingSetNode {
1924  QualType Inner;
1925
1926  ParenType(QualType InnerType, QualType CanonType) :
1927    Type(Paren, CanonType, InnerType->isDependentType(),
1928         InnerType->isInstantiationDependentType(),
1929         InnerType->isVariablyModifiedType(),
1930         InnerType->containsUnexpandedParameterPack()),
1931    Inner(InnerType) {
1932  }
1933  friend class ASTContext;  // ASTContext creates these.
1934
1935public:
1936
1937  QualType getInnerType() const { return Inner; }
1938
1939  bool isSugared() const { return true; }
1940  QualType desugar() const { return getInnerType(); }
1941
1942  void Profile(llvm::FoldingSetNodeID &ID) {
1943    Profile(ID, getInnerType());
1944  }
1945  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1946    Inner.Profile(ID);
1947  }
1948
1949  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1950  static bool classof(const ParenType *) { return true; }
1951};
1952
1953/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1954///
1955class PointerType : public Type, public llvm::FoldingSetNode {
1956  QualType PointeeType;
1957
1958  PointerType(QualType Pointee, QualType CanonicalPtr) :
1959    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1960         Pointee->isInstantiationDependentType(),
1961         Pointee->isVariablyModifiedType(),
1962         Pointee->containsUnexpandedParameterPack()),
1963    PointeeType(Pointee) {
1964  }
1965  friend class ASTContext;  // ASTContext creates these.
1966
1967public:
1968
1969  QualType getPointeeType() const { return PointeeType; }
1970
1971  bool isSugared() const { return false; }
1972  QualType desugar() const { return QualType(this, 0); }
1973
1974  void Profile(llvm::FoldingSetNodeID &ID) {
1975    Profile(ID, getPointeeType());
1976  }
1977  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1978    ID.AddPointer(Pointee.getAsOpaquePtr());
1979  }
1980
1981  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1982  static bool classof(const PointerType *) { return true; }
1983};
1984
1985/// BlockPointerType - pointer to a block type.
1986/// This type is to represent types syntactically represented as
1987/// "void (^)(int)", etc. Pointee is required to always be a function type.
1988///
1989class BlockPointerType : public Type, public llvm::FoldingSetNode {
1990  QualType PointeeType;  // Block is some kind of pointer type
1991  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1992    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1993         Pointee->isInstantiationDependentType(),
1994         Pointee->isVariablyModifiedType(),
1995         Pointee->containsUnexpandedParameterPack()),
1996    PointeeType(Pointee) {
1997  }
1998  friend class ASTContext;  // ASTContext creates these.
1999
2000public:
2001
2002  // Get the pointee type. Pointee is required to always be a function type.
2003  QualType getPointeeType() const { return PointeeType; }
2004
2005  bool isSugared() const { return false; }
2006  QualType desugar() const { return QualType(this, 0); }
2007
2008  void Profile(llvm::FoldingSetNodeID &ID) {
2009      Profile(ID, getPointeeType());
2010  }
2011  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2012      ID.AddPointer(Pointee.getAsOpaquePtr());
2013  }
2014
2015  static bool classof(const Type *T) {
2016    return T->getTypeClass() == BlockPointer;
2017  }
2018  static bool classof(const BlockPointerType *) { return true; }
2019};
2020
2021/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
2022///
2023class ReferenceType : public Type, public llvm::FoldingSetNode {
2024  QualType PointeeType;
2025
2026protected:
2027  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2028                bool SpelledAsLValue) :
2029    Type(tc, CanonicalRef, Referencee->isDependentType(),
2030         Referencee->isInstantiationDependentType(),
2031         Referencee->isVariablyModifiedType(),
2032         Referencee->containsUnexpandedParameterPack()),
2033    PointeeType(Referencee)
2034  {
2035    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2036    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2037  }
2038
2039public:
2040  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2041  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2042
2043  QualType getPointeeTypeAsWritten() const { return PointeeType; }
2044  QualType getPointeeType() const {
2045    // FIXME: this might strip inner qualifiers; okay?
2046    const ReferenceType *T = this;
2047    while (T->isInnerRef())
2048      T = T->PointeeType->castAs<ReferenceType>();
2049    return T->PointeeType;
2050  }
2051
2052  void Profile(llvm::FoldingSetNodeID &ID) {
2053    Profile(ID, PointeeType, isSpelledAsLValue());
2054  }
2055  static void Profile(llvm::FoldingSetNodeID &ID,
2056                      QualType Referencee,
2057                      bool SpelledAsLValue) {
2058    ID.AddPointer(Referencee.getAsOpaquePtr());
2059    ID.AddBoolean(SpelledAsLValue);
2060  }
2061
2062  static bool classof(const Type *T) {
2063    return T->getTypeClass() == LValueReference ||
2064           T->getTypeClass() == RValueReference;
2065  }
2066  static bool classof(const ReferenceType *) { return true; }
2067};
2068
2069/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
2070///
2071class LValueReferenceType : public ReferenceType {
2072  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2073                      bool SpelledAsLValue) :
2074    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
2075  {}
2076  friend class ASTContext; // ASTContext creates these
2077public:
2078  bool isSugared() const { return false; }
2079  QualType desugar() const { return QualType(this, 0); }
2080
2081  static bool classof(const Type *T) {
2082    return T->getTypeClass() == LValueReference;
2083  }
2084  static bool classof(const LValueReferenceType *) { return true; }
2085};
2086
2087/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
2088///
2089class RValueReferenceType : public ReferenceType {
2090  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
2091    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
2092  }
2093  friend class ASTContext; // ASTContext creates these
2094public:
2095  bool isSugared() const { return false; }
2096  QualType desugar() const { return QualType(this, 0); }
2097
2098  static bool classof(const Type *T) {
2099    return T->getTypeClass() == RValueReference;
2100  }
2101  static bool classof(const RValueReferenceType *) { return true; }
2102};
2103
2104/// MemberPointerType - C++ 8.3.3 - Pointers to members
2105///
2106class MemberPointerType : public Type, public llvm::FoldingSetNode {
2107  QualType PointeeType;
2108  /// The class of which the pointee is a member. Must ultimately be a
2109  /// RecordType, but could be a typedef or a template parameter too.
2110  const Type *Class;
2111
2112  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
2113    Type(MemberPointer, CanonicalPtr,
2114         Cls->isDependentType() || Pointee->isDependentType(),
2115         (Cls->isInstantiationDependentType() ||
2116          Pointee->isInstantiationDependentType()),
2117         Pointee->isVariablyModifiedType(),
2118         (Cls->containsUnexpandedParameterPack() ||
2119          Pointee->containsUnexpandedParameterPack())),
2120    PointeeType(Pointee), Class(Cls) {
2121  }
2122  friend class ASTContext; // ASTContext creates these.
2123
2124public:
2125  QualType getPointeeType() const { return PointeeType; }
2126
2127  /// Returns true if the member type (i.e. the pointee type) is a
2128  /// function type rather than a data-member type.
2129  bool isMemberFunctionPointer() const {
2130    return PointeeType->isFunctionProtoType();
2131  }
2132
2133  /// Returns true if the member type (i.e. the pointee type) is a
2134  /// data type rather than a function type.
2135  bool isMemberDataPointer() const {
2136    return !PointeeType->isFunctionProtoType();
2137  }
2138
2139  const Type *getClass() const { return Class; }
2140
2141  bool isSugared() const { return false; }
2142  QualType desugar() const { return QualType(this, 0); }
2143
2144  void Profile(llvm::FoldingSetNodeID &ID) {
2145    Profile(ID, getPointeeType(), getClass());
2146  }
2147  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2148                      const Type *Class) {
2149    ID.AddPointer(Pointee.getAsOpaquePtr());
2150    ID.AddPointer(Class);
2151  }
2152
2153  static bool classof(const Type *T) {
2154    return T->getTypeClass() == MemberPointer;
2155  }
2156  static bool classof(const MemberPointerType *) { return true; }
2157};
2158
2159/// ArrayType - C99 6.7.5.2 - Array Declarators.
2160///
2161class ArrayType : public Type, public llvm::FoldingSetNode {
2162public:
2163  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
2164  /// an array with a static size (e.g. int X[static 4]), or an array
2165  /// with a star size (e.g. int X[*]).
2166  /// 'static' is only allowed on function parameters.
2167  enum ArraySizeModifier {
2168    Normal, Static, Star
2169  };
2170private:
2171  /// ElementType - The element type of the array.
2172  QualType ElementType;
2173
2174protected:
2175  // C++ [temp.dep.type]p1:
2176  //   A type is dependent if it is...
2177  //     - an array type constructed from any dependent type or whose
2178  //       size is specified by a constant expression that is
2179  //       value-dependent,
2180  ArrayType(TypeClass tc, QualType et, QualType can,
2181            ArraySizeModifier sm, unsigned tq,
2182            bool ContainsUnexpandedParameterPack)
2183    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2184           et->isInstantiationDependentType() || tc == DependentSizedArray,
2185           (tc == VariableArray || et->isVariablyModifiedType()),
2186           ContainsUnexpandedParameterPack),
2187      ElementType(et) {
2188    ArrayTypeBits.IndexTypeQuals = tq;
2189    ArrayTypeBits.SizeModifier = sm;
2190  }
2191
2192  friend class ASTContext;  // ASTContext creates these.
2193
2194public:
2195  QualType getElementType() const { return ElementType; }
2196  ArraySizeModifier getSizeModifier() const {
2197    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2198  }
2199  Qualifiers getIndexTypeQualifiers() const {
2200    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2201  }
2202  unsigned getIndexTypeCVRQualifiers() const {
2203    return ArrayTypeBits.IndexTypeQuals;
2204  }
2205
2206  static bool classof(const Type *T) {
2207    return T->getTypeClass() == ConstantArray ||
2208           T->getTypeClass() == VariableArray ||
2209           T->getTypeClass() == IncompleteArray ||
2210           T->getTypeClass() == DependentSizedArray;
2211  }
2212  static bool classof(const ArrayType *) { return true; }
2213};
2214
2215/// ConstantArrayType - This class represents the canonical version of
2216/// C arrays with a specified constant size.  For example, the canonical
2217/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
2218/// type is 'int' and the size is 404.
2219class ConstantArrayType : public ArrayType {
2220  llvm::APInt Size; // Allows us to unique the type.
2221
2222  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2223                    ArraySizeModifier sm, unsigned tq)
2224    : ArrayType(ConstantArray, et, can, sm, tq,
2225                et->containsUnexpandedParameterPack()),
2226      Size(size) {}
2227protected:
2228  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2229                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2230    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2231      Size(size) {}
2232  friend class ASTContext;  // ASTContext creates these.
2233public:
2234  const llvm::APInt &getSize() const { return Size; }
2235  bool isSugared() const { return false; }
2236  QualType desugar() const { return QualType(this, 0); }
2237
2238
2239  /// \brief Determine the number of bits required to address a member of
2240  // an array with the given element type and number of elements.
2241  static unsigned getNumAddressingBits(ASTContext &Context,
2242                                       QualType ElementType,
2243                                       const llvm::APInt &NumElements);
2244
2245  /// \brief Determine the maximum number of active bits that an array's size
2246  /// can require, which limits the maximum size of the array.
2247  static unsigned getMaxSizeBits(ASTContext &Context);
2248
2249  void Profile(llvm::FoldingSetNodeID &ID) {
2250    Profile(ID, getElementType(), getSize(),
2251            getSizeModifier(), getIndexTypeCVRQualifiers());
2252  }
2253  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2254                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2255                      unsigned TypeQuals) {
2256    ID.AddPointer(ET.getAsOpaquePtr());
2257    ID.AddInteger(ArraySize.getZExtValue());
2258    ID.AddInteger(SizeMod);
2259    ID.AddInteger(TypeQuals);
2260  }
2261  static bool classof(const Type *T) {
2262    return T->getTypeClass() == ConstantArray;
2263  }
2264  static bool classof(const ConstantArrayType *) { return true; }
2265};
2266
2267/// IncompleteArrayType - This class represents C arrays with an unspecified
2268/// size.  For example 'int A[]' has an IncompleteArrayType where the element
2269/// type is 'int' and the size is unspecified.
2270class IncompleteArrayType : public ArrayType {
2271
2272  IncompleteArrayType(QualType et, QualType can,
2273                      ArraySizeModifier sm, unsigned tq)
2274    : ArrayType(IncompleteArray, et, can, sm, tq,
2275                et->containsUnexpandedParameterPack()) {}
2276  friend class ASTContext;  // ASTContext creates these.
2277public:
2278  bool isSugared() const { return false; }
2279  QualType desugar() const { return QualType(this, 0); }
2280
2281  static bool classof(const Type *T) {
2282    return T->getTypeClass() == IncompleteArray;
2283  }
2284  static bool classof(const IncompleteArrayType *) { return true; }
2285
2286  friend class StmtIteratorBase;
2287
2288  void Profile(llvm::FoldingSetNodeID &ID) {
2289    Profile(ID, getElementType(), getSizeModifier(),
2290            getIndexTypeCVRQualifiers());
2291  }
2292
2293  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2294                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2295    ID.AddPointer(ET.getAsOpaquePtr());
2296    ID.AddInteger(SizeMod);
2297    ID.AddInteger(TypeQuals);
2298  }
2299};
2300
2301/// VariableArrayType - This class represents C arrays with a specified size
2302/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
2303/// Since the size expression is an arbitrary expression, we store it as such.
2304///
2305/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2306/// should not be: two lexically equivalent variable array types could mean
2307/// different things, for example, these variables do not have the same type
2308/// dynamically:
2309///
2310/// void foo(int x) {
2311///   int Y[x];
2312///   ++x;
2313///   int Z[x];
2314/// }
2315///
2316class VariableArrayType : public ArrayType {
2317  /// SizeExpr - An assignment expression. VLA's are only permitted within
2318  /// a function block.
2319  Stmt *SizeExpr;
2320  /// Brackets - The left and right array brackets.
2321  SourceRange Brackets;
2322
2323  VariableArrayType(QualType et, QualType can, Expr *e,
2324                    ArraySizeModifier sm, unsigned tq,
2325                    SourceRange brackets)
2326    : ArrayType(VariableArray, et, can, sm, tq,
2327                et->containsUnexpandedParameterPack()),
2328      SizeExpr((Stmt*) e), Brackets(brackets) {}
2329  friend class ASTContext;  // ASTContext creates these.
2330
2331public:
2332  Expr *getSizeExpr() const {
2333    // We use C-style casts instead of cast<> here because we do not wish
2334    // to have a dependency of Type.h on Stmt.h/Expr.h.
2335    return (Expr*) SizeExpr;
2336  }
2337  SourceRange getBracketsRange() const { return Brackets; }
2338  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2339  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2340
2341  bool isSugared() const { return false; }
2342  QualType desugar() const { return QualType(this, 0); }
2343
2344  static bool classof(const Type *T) {
2345    return T->getTypeClass() == VariableArray;
2346  }
2347  static bool classof(const VariableArrayType *) { return true; }
2348
2349  friend class StmtIteratorBase;
2350
2351  void Profile(llvm::FoldingSetNodeID &ID) {
2352    llvm_unreachable("Cannot unique VariableArrayTypes.");
2353  }
2354};
2355
2356/// DependentSizedArrayType - This type represents an array type in
2357/// C++ whose size is a value-dependent expression. For example:
2358///
2359/// \code
2360/// template<typename T, int Size>
2361/// class array {
2362///   T data[Size];
2363/// };
2364/// \endcode
2365///
2366/// For these types, we won't actually know what the array bound is
2367/// until template instantiation occurs, at which point this will
2368/// become either a ConstantArrayType or a VariableArrayType.
2369class DependentSizedArrayType : public ArrayType {
2370  const ASTContext &Context;
2371
2372  /// \brief An assignment expression that will instantiate to the
2373  /// size of the array.
2374  ///
2375  /// The expression itself might be NULL, in which case the array
2376  /// type will have its size deduced from an initializer.
2377  Stmt *SizeExpr;
2378
2379  /// Brackets - The left and right array brackets.
2380  SourceRange Brackets;
2381
2382  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2383                          Expr *e, ArraySizeModifier sm, unsigned tq,
2384                          SourceRange brackets);
2385
2386  friend class ASTContext;  // ASTContext creates these.
2387
2388public:
2389  Expr *getSizeExpr() const {
2390    // We use C-style casts instead of cast<> here because we do not wish
2391    // to have a dependency of Type.h on Stmt.h/Expr.h.
2392    return (Expr*) SizeExpr;
2393  }
2394  SourceRange getBracketsRange() const { return Brackets; }
2395  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2396  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2397
2398  bool isSugared() const { return false; }
2399  QualType desugar() const { return QualType(this, 0); }
2400
2401  static bool classof(const Type *T) {
2402    return T->getTypeClass() == DependentSizedArray;
2403  }
2404  static bool classof(const DependentSizedArrayType *) { return true; }
2405
2406  friend class StmtIteratorBase;
2407
2408
2409  void Profile(llvm::FoldingSetNodeID &ID) {
2410    Profile(ID, Context, getElementType(),
2411            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2412  }
2413
2414  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2415                      QualType ET, ArraySizeModifier SizeMod,
2416                      unsigned TypeQuals, Expr *E);
2417};
2418
2419/// DependentSizedExtVectorType - This type represent an extended vector type
2420/// where either the type or size is dependent. For example:
2421/// @code
2422/// template<typename T, int Size>
2423/// class vector {
2424///   typedef T __attribute__((ext_vector_type(Size))) type;
2425/// }
2426/// @endcode
2427class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2428  const ASTContext &Context;
2429  Expr *SizeExpr;
2430  /// ElementType - The element type of the array.
2431  QualType ElementType;
2432  SourceLocation loc;
2433
2434  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2435                              QualType can, Expr *SizeExpr, SourceLocation loc);
2436
2437  friend class ASTContext;
2438
2439public:
2440  Expr *getSizeExpr() const { return SizeExpr; }
2441  QualType getElementType() const { return ElementType; }
2442  SourceLocation getAttributeLoc() const { return loc; }
2443
2444  bool isSugared() const { return false; }
2445  QualType desugar() const { return QualType(this, 0); }
2446
2447  static bool classof(const Type *T) {
2448    return T->getTypeClass() == DependentSizedExtVector;
2449  }
2450  static bool classof(const DependentSizedExtVectorType *) { return true; }
2451
2452  void Profile(llvm::FoldingSetNodeID &ID) {
2453    Profile(ID, Context, getElementType(), getSizeExpr());
2454  }
2455
2456  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2457                      QualType ElementType, Expr *SizeExpr);
2458};
2459
2460
2461/// VectorType - GCC generic vector type. This type is created using
2462/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2463/// bytes; or from an Altivec __vector or vector declaration.
2464/// Since the constructor takes the number of vector elements, the
2465/// client is responsible for converting the size into the number of elements.
2466class VectorType : public Type, public llvm::FoldingSetNode {
2467public:
2468  enum VectorKind {
2469    GenericVector,  // not a target-specific vector type
2470    AltiVecVector,  // is AltiVec vector
2471    AltiVecPixel,   // is AltiVec 'vector Pixel'
2472    AltiVecBool,    // is AltiVec 'vector bool ...'
2473    NeonVector,     // is ARM Neon vector
2474    NeonPolyVector  // is ARM Neon polynomial vector
2475  };
2476protected:
2477  /// ElementType - The element type of the vector.
2478  QualType ElementType;
2479
2480  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2481             VectorKind vecKind);
2482
2483  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2484             QualType canonType, VectorKind vecKind);
2485
2486  friend class ASTContext;  // ASTContext creates these.
2487
2488public:
2489
2490  QualType getElementType() const { return ElementType; }
2491  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2492
2493  bool isSugared() const { return false; }
2494  QualType desugar() const { return QualType(this, 0); }
2495
2496  VectorKind getVectorKind() const {
2497    return VectorKind(VectorTypeBits.VecKind);
2498  }
2499
2500  void Profile(llvm::FoldingSetNodeID &ID) {
2501    Profile(ID, getElementType(), getNumElements(),
2502            getTypeClass(), getVectorKind());
2503  }
2504  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2505                      unsigned NumElements, TypeClass TypeClass,
2506                      VectorKind VecKind) {
2507    ID.AddPointer(ElementType.getAsOpaquePtr());
2508    ID.AddInteger(NumElements);
2509    ID.AddInteger(TypeClass);
2510    ID.AddInteger(VecKind);
2511  }
2512
2513  static bool classof(const Type *T) {
2514    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2515  }
2516  static bool classof(const VectorType *) { return true; }
2517};
2518
2519/// ExtVectorType - Extended vector type. This type is created using
2520/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2521/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2522/// class enables syntactic extensions, like Vector Components for accessing
2523/// points, colors, and textures (modeled after OpenGL Shading Language).
2524class ExtVectorType : public VectorType {
2525  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2526    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2527  friend class ASTContext;  // ASTContext creates these.
2528public:
2529  static int getPointAccessorIdx(char c) {
2530    switch (c) {
2531    default: return -1;
2532    case 'x': return 0;
2533    case 'y': return 1;
2534    case 'z': return 2;
2535    case 'w': return 3;
2536    }
2537  }
2538  static int getNumericAccessorIdx(char c) {
2539    switch (c) {
2540      default: return -1;
2541      case '0': return 0;
2542      case '1': return 1;
2543      case '2': return 2;
2544      case '3': return 3;
2545      case '4': return 4;
2546      case '5': return 5;
2547      case '6': return 6;
2548      case '7': return 7;
2549      case '8': return 8;
2550      case '9': return 9;
2551      case 'A':
2552      case 'a': return 10;
2553      case 'B':
2554      case 'b': return 11;
2555      case 'C':
2556      case 'c': return 12;
2557      case 'D':
2558      case 'd': return 13;
2559      case 'E':
2560      case 'e': return 14;
2561      case 'F':
2562      case 'f': return 15;
2563    }
2564  }
2565
2566  static int getAccessorIdx(char c) {
2567    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2568    return getNumericAccessorIdx(c);
2569  }
2570
2571  bool isAccessorWithinNumElements(char c) const {
2572    if (int idx = getAccessorIdx(c)+1)
2573      return unsigned(idx-1) < getNumElements();
2574    return false;
2575  }
2576  bool isSugared() const { return false; }
2577  QualType desugar() const { return QualType(this, 0); }
2578
2579  static bool classof(const Type *T) {
2580    return T->getTypeClass() == ExtVector;
2581  }
2582  static bool classof(const ExtVectorType *) { return true; }
2583};
2584
2585/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2586/// class of FunctionNoProtoType and FunctionProtoType.
2587///
2588class FunctionType : public Type {
2589  // The type returned by the function.
2590  QualType ResultType;
2591
2592 public:
2593  /// ExtInfo - A class which abstracts out some details necessary for
2594  /// making a call.
2595  ///
2596  /// It is not actually used directly for storing this information in
2597  /// a FunctionType, although FunctionType does currently use the
2598  /// same bit-pattern.
2599  ///
2600  // If you add a field (say Foo), other than the obvious places (both,
2601  // constructors, compile failures), what you need to update is
2602  // * Operator==
2603  // * getFoo
2604  // * withFoo
2605  // * functionType. Add Foo, getFoo.
2606  // * ASTContext::getFooType
2607  // * ASTContext::mergeFunctionTypes
2608  // * FunctionNoProtoType::Profile
2609  // * FunctionProtoType::Profile
2610  // * TypePrinter::PrintFunctionProto
2611  // * AST read and write
2612  // * Codegen
2613  class ExtInfo {
2614    // Feel free to rearrange or add bits, but if you go over 8,
2615    // you'll need to adjust both the Bits field below and
2616    // Type::FunctionTypeBitfields.
2617
2618    //   |  CC  |noreturn|produces|regparm|
2619    //   |0 .. 2|   3    |    4   | 5 .. 7|
2620    //
2621    // regparm is either 0 (no regparm attribute) or the regparm value+1.
2622    enum { CallConvMask = 0x7 };
2623    enum { NoReturnMask = 0x8 };
2624    enum { ProducesResultMask = 0x10 };
2625    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2626           RegParmOffset = 5 }; // Assumed to be the last field
2627
2628    uint16_t Bits;
2629
2630    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2631
2632    friend class FunctionType;
2633
2634   public:
2635    // Constructor with no defaults. Use this when you know that you
2636    // have all the elements (when reading an AST file for example).
2637    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2638            bool producesResult) {
2639      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2640      Bits = ((unsigned) cc) |
2641             (noReturn ? NoReturnMask : 0) |
2642             (producesResult ? ProducesResultMask : 0) |
2643             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2644    }
2645
2646    // Constructor with all defaults. Use when for example creating a
2647    // function know to use defaults.
2648    ExtInfo() : Bits(0) {}
2649
2650    bool getNoReturn() const { return Bits & NoReturnMask; }
2651    bool getProducesResult() const { return Bits & ProducesResultMask; }
2652    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2653    unsigned getRegParm() const {
2654      unsigned RegParm = Bits >> RegParmOffset;
2655      if (RegParm > 0)
2656        --RegParm;
2657      return RegParm;
2658    }
2659    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2660
2661    bool operator==(ExtInfo Other) const {
2662      return Bits == Other.Bits;
2663    }
2664    bool operator!=(ExtInfo Other) const {
2665      return Bits != Other.Bits;
2666    }
2667
2668    // Note that we don't have setters. That is by design, use
2669    // the following with methods instead of mutating these objects.
2670
2671    ExtInfo withNoReturn(bool noReturn) const {
2672      if (noReturn)
2673        return ExtInfo(Bits | NoReturnMask);
2674      else
2675        return ExtInfo(Bits & ~NoReturnMask);
2676    }
2677
2678    ExtInfo withProducesResult(bool producesResult) const {
2679      if (producesResult)
2680        return ExtInfo(Bits | ProducesResultMask);
2681      else
2682        return ExtInfo(Bits & ~ProducesResultMask);
2683    }
2684
2685    ExtInfo withRegParm(unsigned RegParm) const {
2686      assert(RegParm < 7 && "Invalid regparm value");
2687      return ExtInfo((Bits & ~RegParmMask) |
2688                     ((RegParm + 1) << RegParmOffset));
2689    }
2690
2691    ExtInfo withCallingConv(CallingConv cc) const {
2692      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2693    }
2694
2695    void Profile(llvm::FoldingSetNodeID &ID) const {
2696      ID.AddInteger(Bits);
2697    }
2698  };
2699
2700protected:
2701  FunctionType(TypeClass tc, QualType res,
2702               unsigned typeQuals, RefQualifierKind RefQualifier,
2703               QualType Canonical, bool Dependent,
2704               bool InstantiationDependent,
2705               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2706               ExtInfo Info)
2707    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
2708           ContainsUnexpandedParameterPack),
2709      ResultType(res) {
2710    FunctionTypeBits.ExtInfo = Info.Bits;
2711    FunctionTypeBits.TypeQuals = typeQuals;
2712    FunctionTypeBits.RefQualifier = static_cast<unsigned>(RefQualifier);
2713  }
2714  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2715
2716  RefQualifierKind getRefQualifier() const {
2717    return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
2718  }
2719
2720public:
2721
2722  QualType getResultType() const { return ResultType; }
2723
2724  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2725  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2726  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2727  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2728  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2729  bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
2730  bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
2731  bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
2732
2733  /// \brief Determine the type of an expression that calls a function of
2734  /// this type.
2735  QualType getCallResultType(ASTContext &Context) const {
2736    return getResultType().getNonLValueExprType(Context);
2737  }
2738
2739  static StringRef getNameForCallConv(CallingConv CC);
2740
2741  static bool classof(const Type *T) {
2742    return T->getTypeClass() == FunctionNoProto ||
2743           T->getTypeClass() == FunctionProto;
2744  }
2745  static bool classof(const FunctionType *) { return true; }
2746};
2747
2748/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2749/// no information available about its arguments.
2750class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2751  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2752    : FunctionType(FunctionNoProto, Result, 0, RQ_None, Canonical,
2753                   /*Dependent=*/false, /*InstantiationDependent=*/false,
2754                   Result->isVariablyModifiedType(),
2755                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2756
2757  friend class ASTContext;  // ASTContext creates these.
2758
2759public:
2760  // No additional state past what FunctionType provides.
2761
2762  bool isSugared() const { return false; }
2763  QualType desugar() const { return QualType(this, 0); }
2764
2765  void Profile(llvm::FoldingSetNodeID &ID) {
2766    Profile(ID, getResultType(), getExtInfo());
2767  }
2768  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2769                      ExtInfo Info) {
2770    Info.Profile(ID);
2771    ID.AddPointer(ResultType.getAsOpaquePtr());
2772  }
2773
2774  static bool classof(const Type *T) {
2775    return T->getTypeClass() == FunctionNoProto;
2776  }
2777  static bool classof(const FunctionNoProtoType *) { return true; }
2778};
2779
2780/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2781/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2782/// arguments, not as having a single void argument. Such a type can have an
2783/// exception specification, but this specification is not part of the canonical
2784/// type.
2785class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2786public:
2787  /// ExtProtoInfo - Extra information about a function prototype.
2788  struct ExtProtoInfo {
2789    ExtProtoInfo() :
2790      Variadic(false), HasTrailingReturn(false), TypeQuals(0),
2791      ExceptionSpecType(EST_None), RefQualifier(RQ_None),
2792      NumExceptions(0), Exceptions(0), NoexceptExpr(0),
2793      ExceptionSpecDecl(0), ExceptionSpecTemplate(0),
2794      ConsumedArguments(0) {}
2795
2796    FunctionType::ExtInfo ExtInfo;
2797    bool Variadic : 1;
2798    bool HasTrailingReturn : 1;
2799    unsigned char TypeQuals;
2800    ExceptionSpecificationType ExceptionSpecType;
2801    RefQualifierKind RefQualifier;
2802    unsigned NumExceptions;
2803    const QualType *Exceptions;
2804    Expr *NoexceptExpr;
2805    FunctionDecl *ExceptionSpecDecl;
2806    FunctionDecl *ExceptionSpecTemplate;
2807    const bool *ConsumedArguments;
2808  };
2809
2810private:
2811  /// \brief Determine whether there are any argument types that
2812  /// contain an unexpanded parameter pack.
2813  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2814                                                 unsigned numArgs) {
2815    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2816      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2817        return true;
2818
2819    return false;
2820  }
2821
2822  FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
2823                    QualType canonical, const ExtProtoInfo &epi);
2824
2825  /// NumArgs - The number of arguments this function has, not counting '...'.
2826  unsigned NumArgs : 17;
2827
2828  /// NumExceptions - The number of types in the exception spec, if any.
2829  unsigned NumExceptions : 9;
2830
2831  /// ExceptionSpecType - The type of exception specification this function has.
2832  unsigned ExceptionSpecType : 3;
2833
2834  /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
2835  unsigned HasAnyConsumedArgs : 1;
2836
2837  /// Variadic - Whether the function is variadic.
2838  unsigned Variadic : 1;
2839
2840  /// HasTrailingReturn - Whether this function has a trailing return type.
2841  unsigned HasTrailingReturn : 1;
2842
2843  // ArgInfo - There is an variable size array after the class in memory that
2844  // holds the argument types.
2845
2846  // Exceptions - There is another variable size array after ArgInfo that
2847  // holds the exception types.
2848
2849  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2850  // to the expression in the noexcept() specifier.
2851
2852  // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
2853  // be a pair of FunctionDecl* pointing to the function which should be used to
2854  // instantiate this function type's exception specification, and the function
2855  // from which it should be instantiated.
2856
2857  // ConsumedArgs - A variable size array, following Exceptions
2858  // and of length NumArgs, holding flags indicating which arguments
2859  // are consumed.  This only appears if HasAnyConsumedArgs is true.
2860
2861  friend class ASTContext;  // ASTContext creates these.
2862
2863  const bool *getConsumedArgsBuffer() const {
2864    assert(hasAnyConsumedArgs());
2865
2866    // Find the end of the exceptions.
2867    Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
2868    if (getExceptionSpecType() != EST_ComputedNoexcept)
2869      eh_end += NumExceptions;
2870    else
2871      eh_end += 1; // NoexceptExpr
2872
2873    return reinterpret_cast<const bool*>(eh_end);
2874  }
2875
2876public:
2877  unsigned getNumArgs() const { return NumArgs; }
2878  QualType getArgType(unsigned i) const {
2879    assert(i < NumArgs && "Invalid argument number!");
2880    return arg_type_begin()[i];
2881  }
2882
2883  ExtProtoInfo getExtProtoInfo() const {
2884    ExtProtoInfo EPI;
2885    EPI.ExtInfo = getExtInfo();
2886    EPI.Variadic = isVariadic();
2887    EPI.HasTrailingReturn = hasTrailingReturn();
2888    EPI.ExceptionSpecType = getExceptionSpecType();
2889    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2890    EPI.RefQualifier = getRefQualifier();
2891    if (EPI.ExceptionSpecType == EST_Dynamic) {
2892      EPI.NumExceptions = NumExceptions;
2893      EPI.Exceptions = exception_begin();
2894    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2895      EPI.NoexceptExpr = getNoexceptExpr();
2896    } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2897      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2898      EPI.ExceptionSpecTemplate = getExceptionSpecTemplate();
2899    } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2900      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2901    }
2902    if (hasAnyConsumedArgs())
2903      EPI.ConsumedArguments = getConsumedArgsBuffer();
2904    return EPI;
2905  }
2906
2907  /// \brief Get the kind of exception specification on this function.
2908  ExceptionSpecificationType getExceptionSpecType() const {
2909    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2910  }
2911  /// \brief Return whether this function has any kind of exception spec.
2912  bool hasExceptionSpec() const {
2913    return getExceptionSpecType() != EST_None;
2914  }
2915  /// \brief Return whether this function has a dynamic (throw) exception spec.
2916  bool hasDynamicExceptionSpec() const {
2917    return isDynamicExceptionSpec(getExceptionSpecType());
2918  }
2919  /// \brief Return whether this function has a noexcept exception spec.
2920  bool hasNoexceptExceptionSpec() const {
2921    return isNoexceptExceptionSpec(getExceptionSpecType());
2922  }
2923  /// \brief Result type of getNoexceptSpec().
2924  enum NoexceptResult {
2925    NR_NoNoexcept,  ///< There is no noexcept specifier.
2926    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2927    NR_Dependent,   ///< The noexcept specifier is dependent.
2928    NR_Throw,       ///< The noexcept specifier evaluates to false.
2929    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2930  };
2931  /// \brief Get the meaning of the noexcept spec on this function, if any.
2932  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2933  unsigned getNumExceptions() const { return NumExceptions; }
2934  QualType getExceptionType(unsigned i) const {
2935    assert(i < NumExceptions && "Invalid exception number!");
2936    return exception_begin()[i];
2937  }
2938  Expr *getNoexceptExpr() const {
2939    if (getExceptionSpecType() != EST_ComputedNoexcept)
2940      return 0;
2941    // NoexceptExpr sits where the arguments end.
2942    return *reinterpret_cast<Expr *const *>(arg_type_end());
2943  }
2944  /// \brief If this function type has an exception specification which hasn't
2945  /// been determined yet (either because it has not been evaluated or because
2946  /// it has not been instantiated), this is the function whose exception
2947  /// specification is represented by this type.
2948  FunctionDecl *getExceptionSpecDecl() const {
2949    if (getExceptionSpecType() != EST_Uninstantiated &&
2950        getExceptionSpecType() != EST_Unevaluated)
2951      return 0;
2952    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[0];
2953  }
2954  /// \brief If this function type has an uninstantiated exception
2955  /// specification, this is the function whose exception specification
2956  /// should be instantiated to find the exception specification for
2957  /// this type.
2958  FunctionDecl *getExceptionSpecTemplate() const {
2959    if (getExceptionSpecType() != EST_Uninstantiated)
2960      return 0;
2961    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[1];
2962  }
2963  bool isNothrow(ASTContext &Ctx) const {
2964    ExceptionSpecificationType EST = getExceptionSpecType();
2965    assert(EST != EST_Unevaluated && EST != EST_Uninstantiated);
2966    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2967      return true;
2968    if (EST != EST_ComputedNoexcept)
2969      return false;
2970    return getNoexceptSpec(Ctx) == NR_Nothrow;
2971  }
2972
2973  bool isVariadic() const { return Variadic; }
2974
2975  /// \brief Determines whether this function prototype contains a
2976  /// parameter pack at the end.
2977  ///
2978  /// A function template whose last parameter is a parameter pack can be
2979  /// called with an arbitrary number of arguments, much like a variadic
2980  /// function.
2981  bool isTemplateVariadic() const;
2982
2983  bool hasTrailingReturn() const { return HasTrailingReturn; }
2984
2985  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2986
2987
2988  /// \brief Retrieve the ref-qualifier associated with this function type.
2989  RefQualifierKind getRefQualifier() const {
2990    return FunctionType::getRefQualifier();
2991  }
2992
2993  typedef const QualType *arg_type_iterator;
2994  arg_type_iterator arg_type_begin() const {
2995    return reinterpret_cast<const QualType *>(this+1);
2996  }
2997  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2998
2999  typedef const QualType *exception_iterator;
3000  exception_iterator exception_begin() const {
3001    // exceptions begin where arguments end
3002    return arg_type_end();
3003  }
3004  exception_iterator exception_end() const {
3005    if (getExceptionSpecType() != EST_Dynamic)
3006      return exception_begin();
3007    return exception_begin() + NumExceptions;
3008  }
3009
3010  bool hasAnyConsumedArgs() const {
3011    return HasAnyConsumedArgs;
3012  }
3013  bool isArgConsumed(unsigned I) const {
3014    assert(I < getNumArgs() && "argument index out of range!");
3015    if (hasAnyConsumedArgs())
3016      return getConsumedArgsBuffer()[I];
3017    return false;
3018  }
3019
3020  bool isSugared() const { return false; }
3021  QualType desugar() const { return QualType(this, 0); }
3022
3023  // FIXME: Remove the string version.
3024  void printExceptionSpecification(std::string &S,
3025                                   const PrintingPolicy &Policy) const;
3026  void printExceptionSpecification(raw_ostream &OS,
3027                                   const PrintingPolicy &Policy) const;
3028
3029  static bool classof(const Type *T) {
3030    return T->getTypeClass() == FunctionProto;
3031  }
3032  static bool classof(const FunctionProtoType *) { return true; }
3033
3034  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
3035  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3036                      arg_type_iterator ArgTys, unsigned NumArgs,
3037                      const ExtProtoInfo &EPI, const ASTContext &Context);
3038};
3039
3040
3041/// \brief Represents the dependent type named by a dependently-scoped
3042/// typename using declaration, e.g.
3043///   using typename Base<T>::foo;
3044/// Template instantiation turns these into the underlying type.
3045class UnresolvedUsingType : public Type {
3046  UnresolvedUsingTypenameDecl *Decl;
3047
3048  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
3049    : Type(UnresolvedUsing, QualType(), true, true, false,
3050           /*ContainsUnexpandedParameterPack=*/false),
3051      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
3052  friend class ASTContext; // ASTContext creates these.
3053public:
3054
3055  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
3056
3057  bool isSugared() const { return false; }
3058  QualType desugar() const { return QualType(this, 0); }
3059
3060  static bool classof(const Type *T) {
3061    return T->getTypeClass() == UnresolvedUsing;
3062  }
3063  static bool classof(const UnresolvedUsingType *) { return true; }
3064
3065  void Profile(llvm::FoldingSetNodeID &ID) {
3066    return Profile(ID, Decl);
3067  }
3068  static void Profile(llvm::FoldingSetNodeID &ID,
3069                      UnresolvedUsingTypenameDecl *D) {
3070    ID.AddPointer(D);
3071  }
3072};
3073
3074
3075class TypedefType : public Type {
3076  TypedefNameDecl *Decl;
3077protected:
3078  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
3079    : Type(tc, can, can->isDependentType(),
3080           can->isInstantiationDependentType(),
3081           can->isVariablyModifiedType(),
3082           /*ContainsUnexpandedParameterPack=*/false),
3083      Decl(const_cast<TypedefNameDecl*>(D)) {
3084    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3085  }
3086  friend class ASTContext;  // ASTContext creates these.
3087public:
3088
3089  TypedefNameDecl *getDecl() const { return Decl; }
3090
3091  bool isSugared() const { return true; }
3092  QualType desugar() const;
3093
3094  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
3095  static bool classof(const TypedefType *) { return true; }
3096};
3097
3098/// TypeOfExprType (GCC extension).
3099class TypeOfExprType : public Type {
3100  Expr *TOExpr;
3101
3102protected:
3103  TypeOfExprType(Expr *E, QualType can = QualType());
3104  friend class ASTContext;  // ASTContext creates these.
3105public:
3106  Expr *getUnderlyingExpr() const { return TOExpr; }
3107
3108  /// \brief Remove a single level of sugar.
3109  QualType desugar() const;
3110
3111  /// \brief Returns whether this type directly provides sugar.
3112  bool isSugared() const;
3113
3114  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
3115  static bool classof(const TypeOfExprType *) { return true; }
3116};
3117
3118/// \brief Internal representation of canonical, dependent
3119/// typeof(expr) types.
3120///
3121/// This class is used internally by the ASTContext to manage
3122/// canonical, dependent types, only. Clients will only see instances
3123/// of this class via TypeOfExprType nodes.
3124class DependentTypeOfExprType
3125  : public TypeOfExprType, public llvm::FoldingSetNode {
3126  const ASTContext &Context;
3127
3128public:
3129  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
3130    : TypeOfExprType(E), Context(Context) { }
3131
3132  void Profile(llvm::FoldingSetNodeID &ID) {
3133    Profile(ID, Context, getUnderlyingExpr());
3134  }
3135
3136  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3137                      Expr *E);
3138};
3139
3140/// TypeOfType (GCC extension).
3141class TypeOfType : public Type {
3142  QualType TOType;
3143  TypeOfType(QualType T, QualType can)
3144    : Type(TypeOf, can, T->isDependentType(),
3145           T->isInstantiationDependentType(),
3146           T->isVariablyModifiedType(),
3147           T->containsUnexpandedParameterPack()),
3148      TOType(T) {
3149    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3150  }
3151  friend class ASTContext;  // ASTContext creates these.
3152public:
3153  QualType getUnderlyingType() const { return TOType; }
3154
3155  /// \brief Remove a single level of sugar.
3156  QualType desugar() const { return getUnderlyingType(); }
3157
3158  /// \brief Returns whether this type directly provides sugar.
3159  bool isSugared() const { return true; }
3160
3161  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
3162  static bool classof(const TypeOfType *) { return true; }
3163};
3164
3165/// DecltypeType (C++0x)
3166class DecltypeType : public Type {
3167  Expr *E;
3168  QualType UnderlyingType;
3169
3170protected:
3171  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3172  friend class ASTContext;  // ASTContext creates these.
3173public:
3174  Expr *getUnderlyingExpr() const { return E; }
3175  QualType getUnderlyingType() const { return UnderlyingType; }
3176
3177  /// \brief Remove a single level of sugar.
3178  QualType desugar() const;
3179
3180  /// \brief Returns whether this type directly provides sugar.
3181  bool isSugared() const;
3182
3183  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3184  static bool classof(const DecltypeType *) { return true; }
3185};
3186
3187/// \brief Internal representation of canonical, dependent
3188/// decltype(expr) types.
3189///
3190/// This class is used internally by the ASTContext to manage
3191/// canonical, dependent types, only. Clients will only see instances
3192/// of this class via DecltypeType nodes.
3193class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3194  const ASTContext &Context;
3195
3196public:
3197  DependentDecltypeType(const ASTContext &Context, Expr *E);
3198
3199  void Profile(llvm::FoldingSetNodeID &ID) {
3200    Profile(ID, Context, getUnderlyingExpr());
3201  }
3202
3203  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3204                      Expr *E);
3205};
3206
3207/// \brief A unary type transform, which is a type constructed from another
3208class UnaryTransformType : public Type {
3209public:
3210  enum UTTKind {
3211    EnumUnderlyingType
3212  };
3213
3214private:
3215  /// The untransformed type.
3216  QualType BaseType;
3217  /// The transformed type if not dependent, otherwise the same as BaseType.
3218  QualType UnderlyingType;
3219
3220  UTTKind UKind;
3221protected:
3222  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3223                     QualType CanonicalTy);
3224  friend class ASTContext;
3225public:
3226  bool isSugared() const { return !isDependentType(); }
3227  QualType desugar() const { return UnderlyingType; }
3228
3229  QualType getUnderlyingType() const { return UnderlyingType; }
3230  QualType getBaseType() const { return BaseType; }
3231
3232  UTTKind getUTTKind() const { return UKind; }
3233
3234  static bool classof(const Type *T) {
3235    return T->getTypeClass() == UnaryTransform;
3236  }
3237  static bool classof(const UnaryTransformType *) { return true; }
3238};
3239
3240class TagType : public Type {
3241  /// Stores the TagDecl associated with this type. The decl may point to any
3242  /// TagDecl that declares the entity.
3243  TagDecl * decl;
3244
3245  friend class ASTReader;
3246
3247protected:
3248  TagType(TypeClass TC, const TagDecl *D, QualType can);
3249
3250public:
3251  TagDecl *getDecl() const;
3252
3253  /// @brief Determines whether this type is in the process of being
3254  /// defined.
3255  bool isBeingDefined() const;
3256
3257  static bool classof(const Type *T) {
3258    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3259  }
3260  static bool classof(const TagType *) { return true; }
3261};
3262
3263/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
3264/// to detect TagType objects of structs/unions/classes.
3265class RecordType : public TagType {
3266protected:
3267  explicit RecordType(const RecordDecl *D)
3268    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3269  explicit RecordType(TypeClass TC, RecordDecl *D)
3270    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3271  friend class ASTContext;   // ASTContext creates these.
3272public:
3273
3274  RecordDecl *getDecl() const {
3275    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3276  }
3277
3278  // FIXME: This predicate is a helper to QualType/Type. It needs to
3279  // recursively check all fields for const-ness. If any field is declared
3280  // const, it needs to return false.
3281  bool hasConstFields() const { return false; }
3282
3283  bool isSugared() const { return false; }
3284  QualType desugar() const { return QualType(this, 0); }
3285
3286  static bool classof(const Type *T) { return T->getTypeClass() == Record; }
3287  static bool classof(const RecordType *) { return true; }
3288};
3289
3290/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
3291/// to detect TagType objects of enums.
3292class EnumType : public TagType {
3293  explicit EnumType(const EnumDecl *D)
3294    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3295  friend class ASTContext;   // ASTContext creates these.
3296public:
3297
3298  EnumDecl *getDecl() const {
3299    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3300  }
3301
3302  bool isSugared() const { return false; }
3303  QualType desugar() const { return QualType(this, 0); }
3304
3305  static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
3306  static bool classof(const EnumType *) { return true; }
3307};
3308
3309/// AttributedType - An attributed type is a type to which a type
3310/// attribute has been applied.  The "modified type" is the
3311/// fully-sugared type to which the attributed type was applied;
3312/// generally it is not canonically equivalent to the attributed type.
3313/// The "equivalent type" is the minimally-desugared type which the
3314/// type is canonically equivalent to.
3315///
3316/// For example, in the following attributed type:
3317///     int32_t __attribute__((vector_size(16)))
3318///   - the modified type is the TypedefType for int32_t
3319///   - the equivalent type is VectorType(16, int32_t)
3320///   - the canonical type is VectorType(16, int)
3321class AttributedType : public Type, public llvm::FoldingSetNode {
3322public:
3323  // It is really silly to have yet another attribute-kind enum, but
3324  // clang::attr::Kind doesn't currently cover the pure type attrs.
3325  enum Kind {
3326    // Expression operand.
3327    attr_address_space,
3328    attr_regparm,
3329    attr_vector_size,
3330    attr_neon_vector_type,
3331    attr_neon_polyvector_type,
3332
3333    FirstExprOperandKind = attr_address_space,
3334    LastExprOperandKind = attr_neon_polyvector_type,
3335
3336    // Enumerated operand (string or keyword).
3337    attr_objc_gc,
3338    attr_objc_ownership,
3339    attr_pcs,
3340
3341    FirstEnumOperandKind = attr_objc_gc,
3342    LastEnumOperandKind = attr_pcs,
3343
3344    // No operand.
3345    attr_noreturn,
3346    attr_cdecl,
3347    attr_fastcall,
3348    attr_stdcall,
3349    attr_thiscall,
3350    attr_pascal
3351  };
3352
3353private:
3354  QualType ModifiedType;
3355  QualType EquivalentType;
3356
3357  friend class ASTContext; // creates these
3358
3359  AttributedType(QualType canon, Kind attrKind,
3360                 QualType modified, QualType equivalent)
3361    : Type(Attributed, canon, canon->isDependentType(),
3362           canon->isInstantiationDependentType(),
3363           canon->isVariablyModifiedType(),
3364           canon->containsUnexpandedParameterPack()),
3365      ModifiedType(modified), EquivalentType(equivalent) {
3366    AttributedTypeBits.AttrKind = attrKind;
3367  }
3368
3369public:
3370  Kind getAttrKind() const {
3371    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3372  }
3373
3374  QualType getModifiedType() const { return ModifiedType; }
3375  QualType getEquivalentType() const { return EquivalentType; }
3376
3377  bool isSugared() const { return true; }
3378  QualType desugar() const { return getEquivalentType(); }
3379
3380  void Profile(llvm::FoldingSetNodeID &ID) {
3381    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3382  }
3383
3384  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3385                      QualType modified, QualType equivalent) {
3386    ID.AddInteger(attrKind);
3387    ID.AddPointer(modified.getAsOpaquePtr());
3388    ID.AddPointer(equivalent.getAsOpaquePtr());
3389  }
3390
3391  static bool classof(const Type *T) {
3392    return T->getTypeClass() == Attributed;
3393  }
3394  static bool classof(const AttributedType *T) { return true; }
3395};
3396
3397class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3398  // Helper data collector for canonical types.
3399  struct CanonicalTTPTInfo {
3400    unsigned Depth : 15;
3401    unsigned ParameterPack : 1;
3402    unsigned Index : 16;
3403  };
3404
3405  union {
3406    // Info for the canonical type.
3407    CanonicalTTPTInfo CanTTPTInfo;
3408    // Info for the non-canonical type.
3409    TemplateTypeParmDecl *TTPDecl;
3410  };
3411
3412  /// Build a non-canonical type.
3413  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3414    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3415           /*InstantiationDependent=*/true,
3416           /*VariablyModified=*/false,
3417           Canon->containsUnexpandedParameterPack()),
3418      TTPDecl(TTPDecl) { }
3419
3420  /// Build the canonical type.
3421  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3422    : Type(TemplateTypeParm, QualType(this, 0),
3423           /*Dependent=*/true,
3424           /*InstantiationDependent=*/true,
3425           /*VariablyModified=*/false, PP) {
3426    CanTTPTInfo.Depth = D;
3427    CanTTPTInfo.Index = I;
3428    CanTTPTInfo.ParameterPack = PP;
3429  }
3430
3431  friend class ASTContext;  // ASTContext creates these
3432
3433  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3434    QualType Can = getCanonicalTypeInternal();
3435    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3436  }
3437
3438public:
3439  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3440  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3441  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3442
3443  TemplateTypeParmDecl *getDecl() const {
3444    return isCanonicalUnqualified() ? 0 : TTPDecl;
3445  }
3446
3447  IdentifierInfo *getIdentifier() const;
3448
3449  bool isSugared() const { return false; }
3450  QualType desugar() const { return QualType(this, 0); }
3451
3452  void Profile(llvm::FoldingSetNodeID &ID) {
3453    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3454  }
3455
3456  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3457                      unsigned Index, bool ParameterPack,
3458                      TemplateTypeParmDecl *TTPDecl) {
3459    ID.AddInteger(Depth);
3460    ID.AddInteger(Index);
3461    ID.AddBoolean(ParameterPack);
3462    ID.AddPointer(TTPDecl);
3463  }
3464
3465  static bool classof(const Type *T) {
3466    return T->getTypeClass() == TemplateTypeParm;
3467  }
3468  static bool classof(const TemplateTypeParmType *T) { return true; }
3469};
3470
3471/// \brief Represents the result of substituting a type for a template
3472/// type parameter.
3473///
3474/// Within an instantiated template, all template type parameters have
3475/// been replaced with these.  They are used solely to record that a
3476/// type was originally written as a template type parameter;
3477/// therefore they are never canonical.
3478class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3479  // The original type parameter.
3480  const TemplateTypeParmType *Replaced;
3481
3482  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3483    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3484           Canon->isInstantiationDependentType(),
3485           Canon->isVariablyModifiedType(),
3486           Canon->containsUnexpandedParameterPack()),
3487      Replaced(Param) { }
3488
3489  friend class ASTContext;
3490
3491public:
3492  /// Gets the template parameter that was substituted for.
3493  const TemplateTypeParmType *getReplacedParameter() const {
3494    return Replaced;
3495  }
3496
3497  /// Gets the type that was substituted for the template
3498  /// parameter.
3499  QualType getReplacementType() const {
3500    return getCanonicalTypeInternal();
3501  }
3502
3503  bool isSugared() const { return true; }
3504  QualType desugar() const { return getReplacementType(); }
3505
3506  void Profile(llvm::FoldingSetNodeID &ID) {
3507    Profile(ID, getReplacedParameter(), getReplacementType());
3508  }
3509  static void Profile(llvm::FoldingSetNodeID &ID,
3510                      const TemplateTypeParmType *Replaced,
3511                      QualType Replacement) {
3512    ID.AddPointer(Replaced);
3513    ID.AddPointer(Replacement.getAsOpaquePtr());
3514  }
3515
3516  static bool classof(const Type *T) {
3517    return T->getTypeClass() == SubstTemplateTypeParm;
3518  }
3519  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
3520};
3521
3522/// \brief Represents the result of substituting a set of types for a template
3523/// type parameter pack.
3524///
3525/// When a pack expansion in the source code contains multiple parameter packs
3526/// and those parameter packs correspond to different levels of template
3527/// parameter lists, this type node is used to represent a template type
3528/// parameter pack from an outer level, which has already had its argument pack
3529/// substituted but that still lives within a pack expansion that itself
3530/// could not be instantiated. When actually performing a substitution into
3531/// that pack expansion (e.g., when all template parameters have corresponding
3532/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3533/// at the current pack substitution index.
3534class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3535  /// \brief The original type parameter.
3536  const TemplateTypeParmType *Replaced;
3537
3538  /// \brief A pointer to the set of template arguments that this
3539  /// parameter pack is instantiated with.
3540  const TemplateArgument *Arguments;
3541
3542  /// \brief The number of template arguments in \c Arguments.
3543  unsigned NumArguments;
3544
3545  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3546                                QualType Canon,
3547                                const TemplateArgument &ArgPack);
3548
3549  friend class ASTContext;
3550
3551public:
3552  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
3553
3554  /// Gets the template parameter that was substituted for.
3555  const TemplateTypeParmType *getReplacedParameter() const {
3556    return Replaced;
3557  }
3558
3559  bool isSugared() const { return false; }
3560  QualType desugar() const { return QualType(this, 0); }
3561
3562  TemplateArgument getArgumentPack() const;
3563
3564  void Profile(llvm::FoldingSetNodeID &ID);
3565  static void Profile(llvm::FoldingSetNodeID &ID,
3566                      const TemplateTypeParmType *Replaced,
3567                      const TemplateArgument &ArgPack);
3568
3569  static bool classof(const Type *T) {
3570    return T->getTypeClass() == SubstTemplateTypeParmPack;
3571  }
3572  static bool classof(const SubstTemplateTypeParmPackType *T) { return true; }
3573};
3574
3575/// \brief Represents a C++0x auto type.
3576///
3577/// These types are usually a placeholder for a deduced type. However, within
3578/// templates and before the initializer is attached, there is no deduced type
3579/// and an auto type is type-dependent and canonical.
3580class AutoType : public Type, public llvm::FoldingSetNode {
3581  AutoType(QualType DeducedType)
3582    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3583           /*Dependent=*/DeducedType.isNull(),
3584           /*InstantiationDependent=*/DeducedType.isNull(),
3585           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3586    assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
3587           "deduced a dependent type for auto");
3588  }
3589
3590  friend class ASTContext;  // ASTContext creates these
3591
3592public:
3593  bool isSugared() const { return isDeduced(); }
3594  QualType desugar() const { return getCanonicalTypeInternal(); }
3595
3596  QualType getDeducedType() const {
3597    return isDeduced() ? getCanonicalTypeInternal() : QualType();
3598  }
3599  bool isDeduced() const {
3600    return !isDependentType();
3601  }
3602
3603  void Profile(llvm::FoldingSetNodeID &ID) {
3604    Profile(ID, getDeducedType());
3605  }
3606
3607  static void Profile(llvm::FoldingSetNodeID &ID,
3608                      QualType Deduced) {
3609    ID.AddPointer(Deduced.getAsOpaquePtr());
3610  }
3611
3612  static bool classof(const Type *T) {
3613    return T->getTypeClass() == Auto;
3614  }
3615  static bool classof(const AutoType *T) { return true; }
3616};
3617
3618/// \brief Represents a type template specialization; the template
3619/// must be a class template, a type alias template, or a template
3620/// template parameter.  A template which cannot be resolved to one of
3621/// these, e.g. because it is written with a dependent scope
3622/// specifier, is instead represented as a
3623/// @c DependentTemplateSpecializationType.
3624///
3625/// A non-dependent template specialization type is always "sugar",
3626/// typically for a @c RecordType.  For example, a class template
3627/// specialization type of @c vector<int> will refer to a tag type for
3628/// the instantiation @c std::vector<int, std::allocator<int>>
3629///
3630/// Template specializations are dependent if either the template or
3631/// any of the template arguments are dependent, in which case the
3632/// type may also be canonical.
3633///
3634/// Instances of this type are allocated with a trailing array of
3635/// TemplateArguments, followed by a QualType representing the
3636/// non-canonical aliased type when the template is a type alias
3637/// template.
3638class TemplateSpecializationType
3639  : public Type, public llvm::FoldingSetNode {
3640  /// \brief The name of the template being specialized.  This is
3641  /// either a TemplateName::Template (in which case it is a
3642  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
3643  /// TypeAliasTemplateDecl*), a
3644  /// TemplateName::SubstTemplateTemplateParmPack, or a
3645  /// TemplateName::SubstTemplateTemplateParm (in which case the
3646  /// replacement must, recursively, be one of these).
3647  TemplateName Template;
3648
3649  /// \brief - The number of template arguments named in this class
3650  /// template specialization.
3651  unsigned NumArgs : 31;
3652
3653  /// \brief Whether this template specialization type is a substituted
3654  /// type alias.
3655  bool TypeAlias : 1;
3656
3657  TemplateSpecializationType(TemplateName T,
3658                             const TemplateArgument *Args,
3659                             unsigned NumArgs, QualType Canon,
3660                             QualType Aliased);
3661
3662  friend class ASTContext;  // ASTContext creates these
3663
3664public:
3665  /// \brief Determine whether any of the given template arguments are
3666  /// dependent.
3667  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3668                                            unsigned NumArgs,
3669                                            bool &InstantiationDependent);
3670
3671  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3672                                            unsigned NumArgs,
3673                                            bool &InstantiationDependent);
3674
3675  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
3676                                            bool &InstantiationDependent);
3677
3678  /// \brief Print a template argument list, including the '<' and '>'
3679  /// enclosing the template arguments.
3680  // FIXME: remove the string ones.
3681  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
3682                                               unsigned NumArgs,
3683                                               const PrintingPolicy &Policy,
3684                                               bool SkipBrackets = false);
3685
3686  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
3687                                               unsigned NumArgs,
3688                                               const PrintingPolicy &Policy);
3689
3690  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
3691                                               const PrintingPolicy &Policy);
3692
3693  /// \brief Print a template argument list, including the '<' and '>'
3694  /// enclosing the template arguments.
3695  static void PrintTemplateArgumentList(raw_ostream &OS,
3696                                        const TemplateArgument *Args,
3697                                        unsigned NumArgs,
3698                                        const PrintingPolicy &Policy,
3699                                        bool SkipBrackets = false);
3700
3701  static void PrintTemplateArgumentList(raw_ostream &OS,
3702                                        const TemplateArgumentLoc *Args,
3703                                        unsigned NumArgs,
3704                                        const PrintingPolicy &Policy);
3705
3706  static void PrintTemplateArgumentList(raw_ostream &OS,
3707                                        const TemplateArgumentListInfo &,
3708                                        const PrintingPolicy &Policy);
3709
3710  /// True if this template specialization type matches a current
3711  /// instantiation in the context in which it is found.
3712  bool isCurrentInstantiation() const {
3713    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3714  }
3715
3716  /// \brief Determine if this template specialization type is for a type alias
3717  /// template that has been substituted.
3718  ///
3719  /// Nearly every template specialization type whose template is an alias
3720  /// template will be substituted. However, this is not the case when
3721  /// the specialization contains a pack expansion but the template alias
3722  /// does not have a corresponding parameter pack, e.g.,
3723  ///
3724  /// \code
3725  /// template<typename T, typename U, typename V> struct S;
3726  /// template<typename T, typename U> using A = S<T, int, U>;
3727  /// template<typename... Ts> struct X {
3728  ///   typedef A<Ts...> type; // not a type alias
3729  /// };
3730  /// \endcode
3731  bool isTypeAlias() const { return TypeAlias; }
3732
3733  /// Get the aliased type, if this is a specialization of a type alias
3734  /// template.
3735  QualType getAliasedType() const {
3736    assert(isTypeAlias() && "not a type alias template specialization");
3737    return *reinterpret_cast<const QualType*>(end());
3738  }
3739
3740  typedef const TemplateArgument * iterator;
3741
3742  iterator begin() const { return getArgs(); }
3743  iterator end() const; // defined inline in TemplateBase.h
3744
3745  /// \brief Retrieve the name of the template that we are specializing.
3746  TemplateName getTemplateName() const { return Template; }
3747
3748  /// \brief Retrieve the template arguments.
3749  const TemplateArgument *getArgs() const {
3750    return reinterpret_cast<const TemplateArgument *>(this + 1);
3751  }
3752
3753  /// \brief Retrieve the number of template arguments.
3754  unsigned getNumArgs() const { return NumArgs; }
3755
3756  /// \brief Retrieve a specific template argument as a type.
3757  /// \pre @c isArgType(Arg)
3758  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3759
3760  bool isSugared() const {
3761    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
3762  }
3763  QualType desugar() const { return getCanonicalTypeInternal(); }
3764
3765  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3766    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3767    if (isTypeAlias())
3768      getAliasedType().Profile(ID);
3769  }
3770
3771  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3772                      const TemplateArgument *Args,
3773                      unsigned NumArgs,
3774                      const ASTContext &Context);
3775
3776  static bool classof(const Type *T) {
3777    return T->getTypeClass() == TemplateSpecialization;
3778  }
3779  static bool classof(const TemplateSpecializationType *T) { return true; }
3780};
3781
3782/// \brief The injected class name of a C++ class template or class
3783/// template partial specialization.  Used to record that a type was
3784/// spelled with a bare identifier rather than as a template-id; the
3785/// equivalent for non-templated classes is just RecordType.
3786///
3787/// Injected class name types are always dependent.  Template
3788/// instantiation turns these into RecordTypes.
3789///
3790/// Injected class name types are always canonical.  This works
3791/// because it is impossible to compare an injected class name type
3792/// with the corresponding non-injected template type, for the same
3793/// reason that it is impossible to directly compare template
3794/// parameters from different dependent contexts: injected class name
3795/// types can only occur within the scope of a particular templated
3796/// declaration, and within that scope every template specialization
3797/// will canonicalize to the injected class name (when appropriate
3798/// according to the rules of the language).
3799class InjectedClassNameType : public Type {
3800  CXXRecordDecl *Decl;
3801
3802  /// The template specialization which this type represents.
3803  /// For example, in
3804  ///   template <class T> class A { ... };
3805  /// this is A<T>, whereas in
3806  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3807  /// this is A<B<X,Y> >.
3808  ///
3809  /// It is always unqualified, always a template specialization type,
3810  /// and always dependent.
3811  QualType InjectedType;
3812
3813  friend class ASTContext; // ASTContext creates these.
3814  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3815                          // currently suitable for AST reading, too much
3816                          // interdependencies.
3817  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3818    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3819           /*InstantiationDependent=*/true,
3820           /*VariablyModified=*/false,
3821           /*ContainsUnexpandedParameterPack=*/false),
3822      Decl(D), InjectedType(TST) {
3823    assert(isa<TemplateSpecializationType>(TST));
3824    assert(!TST.hasQualifiers());
3825    assert(TST->isDependentType());
3826  }
3827
3828public:
3829  QualType getInjectedSpecializationType() const { return InjectedType; }
3830  const TemplateSpecializationType *getInjectedTST() const {
3831    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3832  }
3833
3834  CXXRecordDecl *getDecl() const;
3835
3836  bool isSugared() const { return false; }
3837  QualType desugar() const { return QualType(this, 0); }
3838
3839  static bool classof(const Type *T) {
3840    return T->getTypeClass() == InjectedClassName;
3841  }
3842  static bool classof(const InjectedClassNameType *T) { return true; }
3843};
3844
3845/// \brief The kind of a tag type.
3846enum TagTypeKind {
3847  /// \brief The "struct" keyword.
3848  TTK_Struct,
3849  /// \brief The "__interface" keyword.
3850  TTK_Interface,
3851  /// \brief The "union" keyword.
3852  TTK_Union,
3853  /// \brief The "class" keyword.
3854  TTK_Class,
3855  /// \brief The "enum" keyword.
3856  TTK_Enum
3857};
3858
3859/// \brief The elaboration keyword that precedes a qualified type name or
3860/// introduces an elaborated-type-specifier.
3861enum ElaboratedTypeKeyword {
3862  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3863  ETK_Struct,
3864  /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
3865  ETK_Interface,
3866  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3867  ETK_Union,
3868  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3869  ETK_Class,
3870  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3871  ETK_Enum,
3872  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3873  /// \c typename T::type.
3874  ETK_Typename,
3875  /// \brief No keyword precedes the qualified type name.
3876  ETK_None
3877};
3878
3879/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3880/// The keyword in stored in the free bits of the base class.
3881/// Also provides a few static helpers for converting and printing
3882/// elaborated type keyword and tag type kind enumerations.
3883class TypeWithKeyword : public Type {
3884protected:
3885  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3886                  QualType Canonical, bool Dependent,
3887                  bool InstantiationDependent, bool VariablyModified,
3888                  bool ContainsUnexpandedParameterPack)
3889  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3890         ContainsUnexpandedParameterPack) {
3891    TypeWithKeywordBits.Keyword = Keyword;
3892  }
3893
3894public:
3895  ElaboratedTypeKeyword getKeyword() const {
3896    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3897  }
3898
3899  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3900  /// into an elaborated type keyword.
3901  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3902
3903  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3904  /// into a tag type kind.  It is an error to provide a type specifier
3905  /// which *isn't* a tag kind here.
3906  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3907
3908  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3909  /// elaborated type keyword.
3910  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3911
3912  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3913  // a TagTypeKind. It is an error to provide an elaborated type keyword
3914  /// which *isn't* a tag kind here.
3915  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3916
3917  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3918
3919  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3920
3921  static const char *getTagTypeKindName(TagTypeKind Kind) {
3922    return getKeywordName(getKeywordForTagTypeKind(Kind));
3923  }
3924
3925  class CannotCastToThisType {};
3926  static CannotCastToThisType classof(const Type *);
3927};
3928
3929/// \brief Represents a type that was referred to using an elaborated type
3930/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3931/// or both.
3932///
3933/// This type is used to keep track of a type name as written in the
3934/// source code, including tag keywords and any nested-name-specifiers.
3935/// The type itself is always "sugar", used to express what was written
3936/// in the source code but containing no additional semantic information.
3937class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3938
3939  /// \brief The nested name specifier containing the qualifier.
3940  NestedNameSpecifier *NNS;
3941
3942  /// \brief The type that this qualified name refers to.
3943  QualType NamedType;
3944
3945  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3946                 QualType NamedType, QualType CanonType)
3947    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3948                      NamedType->isDependentType(),
3949                      NamedType->isInstantiationDependentType(),
3950                      NamedType->isVariablyModifiedType(),
3951                      NamedType->containsUnexpandedParameterPack()),
3952      NNS(NNS), NamedType(NamedType) {
3953    assert(!(Keyword == ETK_None && NNS == 0) &&
3954           "ElaboratedType cannot have elaborated type keyword "
3955           "and name qualifier both null.");
3956  }
3957
3958  friend class ASTContext;  // ASTContext creates these
3959
3960public:
3961  ~ElaboratedType();
3962
3963  /// \brief Retrieve the qualification on this type.
3964  NestedNameSpecifier *getQualifier() const { return NNS; }
3965
3966  /// \brief Retrieve the type named by the qualified-id.
3967  QualType getNamedType() const { return NamedType; }
3968
3969  /// \brief Remove a single level of sugar.
3970  QualType desugar() const { return getNamedType(); }
3971
3972  /// \brief Returns whether this type directly provides sugar.
3973  bool isSugared() const { return true; }
3974
3975  void Profile(llvm::FoldingSetNodeID &ID) {
3976    Profile(ID, getKeyword(), NNS, NamedType);
3977  }
3978
3979  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3980                      NestedNameSpecifier *NNS, QualType NamedType) {
3981    ID.AddInteger(Keyword);
3982    ID.AddPointer(NNS);
3983    NamedType.Profile(ID);
3984  }
3985
3986  static bool classof(const Type *T) {
3987    return T->getTypeClass() == Elaborated;
3988  }
3989  static bool classof(const ElaboratedType *T) { return true; }
3990};
3991
3992/// \brief Represents a qualified type name for which the type name is
3993/// dependent.
3994///
3995/// DependentNameType represents a class of dependent types that involve a
3996/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3997/// name of a type. The DependentNameType may start with a "typename" (for a
3998/// typename-specifier), "class", "struct", "union", or "enum" (for a
3999/// dependent elaborated-type-specifier), or nothing (in contexts where we
4000/// know that we must be referring to a type, e.g., in a base class specifier).
4001class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
4002
4003  /// \brief The nested name specifier containing the qualifier.
4004  NestedNameSpecifier *NNS;
4005
4006  /// \brief The type that this typename specifier refers to.
4007  const IdentifierInfo *Name;
4008
4009  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
4010                    const IdentifierInfo *Name, QualType CanonType)
4011    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
4012                      /*InstantiationDependent=*/true,
4013                      /*VariablyModified=*/false,
4014                      NNS->containsUnexpandedParameterPack()),
4015      NNS(NNS), Name(Name) {
4016    assert(NNS->isDependent() &&
4017           "DependentNameType requires a dependent nested-name-specifier");
4018  }
4019
4020  friend class ASTContext;  // ASTContext creates these
4021
4022public:
4023  /// \brief Retrieve the qualification on this type.
4024  NestedNameSpecifier *getQualifier() const { return NNS; }
4025
4026  /// \brief Retrieve the type named by the typename specifier as an
4027  /// identifier.
4028  ///
4029  /// This routine will return a non-NULL identifier pointer when the
4030  /// form of the original typename was terminated by an identifier,
4031  /// e.g., "typename T::type".
4032  const IdentifierInfo *getIdentifier() const {
4033    return Name;
4034  }
4035
4036  bool isSugared() const { return false; }
4037  QualType desugar() const { return QualType(this, 0); }
4038
4039  void Profile(llvm::FoldingSetNodeID &ID) {
4040    Profile(ID, getKeyword(), NNS, Name);
4041  }
4042
4043  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
4044                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
4045    ID.AddInteger(Keyword);
4046    ID.AddPointer(NNS);
4047    ID.AddPointer(Name);
4048  }
4049
4050  static bool classof(const Type *T) {
4051    return T->getTypeClass() == DependentName;
4052  }
4053  static bool classof(const DependentNameType *T) { return true; }
4054};
4055
4056/// DependentTemplateSpecializationType - Represents a template
4057/// specialization type whose template cannot be resolved, e.g.
4058///   A<T>::template B<T>
4059class DependentTemplateSpecializationType :
4060  public TypeWithKeyword, public llvm::FoldingSetNode {
4061
4062  /// \brief The nested name specifier containing the qualifier.
4063  NestedNameSpecifier *NNS;
4064
4065  /// \brief The identifier of the template.
4066  const IdentifierInfo *Name;
4067
4068  /// \brief - The number of template arguments named in this class
4069  /// template specialization.
4070  unsigned NumArgs;
4071
4072  const TemplateArgument *getArgBuffer() const {
4073    return reinterpret_cast<const TemplateArgument*>(this+1);
4074  }
4075  TemplateArgument *getArgBuffer() {
4076    return reinterpret_cast<TemplateArgument*>(this+1);
4077  }
4078
4079  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
4080                                      NestedNameSpecifier *NNS,
4081                                      const IdentifierInfo *Name,
4082                                      unsigned NumArgs,
4083                                      const TemplateArgument *Args,
4084                                      QualType Canon);
4085
4086  friend class ASTContext;  // ASTContext creates these
4087
4088public:
4089  NestedNameSpecifier *getQualifier() const { return NNS; }
4090  const IdentifierInfo *getIdentifier() const { return Name; }
4091
4092  /// \brief Retrieve the template arguments.
4093  const TemplateArgument *getArgs() const {
4094    return getArgBuffer();
4095  }
4096
4097  /// \brief Retrieve the number of template arguments.
4098  unsigned getNumArgs() const { return NumArgs; }
4099
4100  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4101
4102  typedef const TemplateArgument * iterator;
4103  iterator begin() const { return getArgs(); }
4104  iterator end() const; // inline in TemplateBase.h
4105
4106  bool isSugared() const { return false; }
4107  QualType desugar() const { return QualType(this, 0); }
4108
4109  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
4110    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
4111  }
4112
4113  static void Profile(llvm::FoldingSetNodeID &ID,
4114                      const ASTContext &Context,
4115                      ElaboratedTypeKeyword Keyword,
4116                      NestedNameSpecifier *Qualifier,
4117                      const IdentifierInfo *Name,
4118                      unsigned NumArgs,
4119                      const TemplateArgument *Args);
4120
4121  static bool classof(const Type *T) {
4122    return T->getTypeClass() == DependentTemplateSpecialization;
4123  }
4124  static bool classof(const DependentTemplateSpecializationType *T) {
4125    return true;
4126  }
4127};
4128
4129/// \brief Represents a pack expansion of types.
4130///
4131/// Pack expansions are part of C++0x variadic templates. A pack
4132/// expansion contains a pattern, which itself contains one or more
4133/// "unexpanded" parameter packs. When instantiated, a pack expansion
4134/// produces a series of types, each instantiated from the pattern of
4135/// the expansion, where the Ith instantiation of the pattern uses the
4136/// Ith arguments bound to each of the unexpanded parameter packs. The
4137/// pack expansion is considered to "expand" these unexpanded
4138/// parameter packs.
4139///
4140/// \code
4141/// template<typename ...Types> struct tuple;
4142///
4143/// template<typename ...Types>
4144/// struct tuple_of_references {
4145///   typedef tuple<Types&...> type;
4146/// };
4147/// \endcode
4148///
4149/// Here, the pack expansion \c Types&... is represented via a
4150/// PackExpansionType whose pattern is Types&.
4151class PackExpansionType : public Type, public llvm::FoldingSetNode {
4152  /// \brief The pattern of the pack expansion.
4153  QualType Pattern;
4154
4155  /// \brief The number of expansions that this pack expansion will
4156  /// generate when substituted (+1), or indicates that
4157  ///
4158  /// This field will only have a non-zero value when some of the parameter
4159  /// packs that occur within the pattern have been substituted but others have
4160  /// not.
4161  unsigned NumExpansions;
4162
4163  PackExpansionType(QualType Pattern, QualType Canon,
4164                    llvm::Optional<unsigned> NumExpansions)
4165    : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
4166           /*InstantiationDependent=*/true,
4167           /*VariableModified=*/Pattern->isVariablyModifiedType(),
4168           /*ContainsUnexpandedParameterPack=*/false),
4169      Pattern(Pattern),
4170      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
4171
4172  friend class ASTContext;  // ASTContext creates these
4173
4174public:
4175  /// \brief Retrieve the pattern of this pack expansion, which is the
4176  /// type that will be repeatedly instantiated when instantiating the
4177  /// pack expansion itself.
4178  QualType getPattern() const { return Pattern; }
4179
4180  /// \brief Retrieve the number of expansions that this pack expansion will
4181  /// generate, if known.
4182  llvm::Optional<unsigned> getNumExpansions() const {
4183    if (NumExpansions)
4184      return NumExpansions - 1;
4185
4186    return llvm::Optional<unsigned>();
4187  }
4188
4189  bool isSugared() const { return false; }
4190  QualType desugar() const { return QualType(this, 0); }
4191
4192  void Profile(llvm::FoldingSetNodeID &ID) {
4193    Profile(ID, getPattern(), getNumExpansions());
4194  }
4195
4196  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
4197                      llvm::Optional<unsigned> NumExpansions) {
4198    ID.AddPointer(Pattern.getAsOpaquePtr());
4199    ID.AddBoolean(NumExpansions);
4200    if (NumExpansions)
4201      ID.AddInteger(*NumExpansions);
4202  }
4203
4204  static bool classof(const Type *T) {
4205    return T->getTypeClass() == PackExpansion;
4206  }
4207  static bool classof(const PackExpansionType *T) {
4208    return true;
4209  }
4210};
4211
4212/// ObjCObjectType - Represents a class type in Objective C.
4213/// Every Objective C type is a combination of a base type and a
4214/// list of protocols.
4215///
4216/// Given the following declarations:
4217/// \code
4218///   \@class C;
4219///   \@protocol P;
4220/// \endcode
4221///
4222/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4223/// with base C and no protocols.
4224///
4225/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
4226///
4227/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
4228/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4229/// and no protocols.
4230///
4231/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
4232/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4233/// this should get its own sugar class to better represent the source.
4234class ObjCObjectType : public Type {
4235  // ObjCObjectType.NumProtocols - the number of protocols stored
4236  // after the ObjCObjectPointerType node.
4237  //
4238  // These protocols are those written directly on the type.  If
4239  // protocol qualifiers ever become additive, the iterators will need
4240  // to get kindof complicated.
4241  //
4242  // In the canonical object type, these are sorted alphabetically
4243  // and uniqued.
4244
4245  /// Either a BuiltinType or an InterfaceType or sugar for either.
4246  QualType BaseType;
4247
4248  ObjCProtocolDecl * const *getProtocolStorage() const {
4249    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4250  }
4251
4252  ObjCProtocolDecl **getProtocolStorage();
4253
4254protected:
4255  ObjCObjectType(QualType Canonical, QualType Base,
4256                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
4257
4258  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4259  ObjCObjectType(enum Nonce_ObjCInterface)
4260        : Type(ObjCInterface, QualType(), false, false, false, false),
4261      BaseType(QualType(this_(), 0)) {
4262    ObjCObjectTypeBits.NumProtocols = 0;
4263  }
4264
4265public:
4266  /// getBaseType - Gets the base type of this object type.  This is
4267  /// always (possibly sugar for) one of:
4268  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4269  ///    user, which is a typedef for an ObjCPointerType)
4270  ///  - the 'Class' builtin type (same caveat)
4271  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4272  QualType getBaseType() const { return BaseType; }
4273
4274  bool isObjCId() const {
4275    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4276  }
4277  bool isObjCClass() const {
4278    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4279  }
4280  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4281  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4282  bool isObjCUnqualifiedIdOrClass() const {
4283    if (!qual_empty()) return false;
4284    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4285      return T->getKind() == BuiltinType::ObjCId ||
4286             T->getKind() == BuiltinType::ObjCClass;
4287    return false;
4288  }
4289  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4290  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4291
4292  /// Gets the interface declaration for this object type, if the base type
4293  /// really is an interface.
4294  ObjCInterfaceDecl *getInterface() const;
4295
4296  typedef ObjCProtocolDecl * const *qual_iterator;
4297
4298  qual_iterator qual_begin() const { return getProtocolStorage(); }
4299  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4300
4301  bool qual_empty() const { return getNumProtocols() == 0; }
4302
4303  /// getNumProtocols - Return the number of qualifying protocols in this
4304  /// interface type, or 0 if there are none.
4305  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4306
4307  /// \brief Fetch a protocol by index.
4308  ObjCProtocolDecl *getProtocol(unsigned I) const {
4309    assert(I < getNumProtocols() && "Out-of-range protocol access");
4310    return qual_begin()[I];
4311  }
4312
4313  bool isSugared() const { return false; }
4314  QualType desugar() const { return QualType(this, 0); }
4315
4316  static bool classof(const Type *T) {
4317    return T->getTypeClass() == ObjCObject ||
4318           T->getTypeClass() == ObjCInterface;
4319  }
4320  static bool classof(const ObjCObjectType *) { return true; }
4321};
4322
4323/// ObjCObjectTypeImpl - A class providing a concrete implementation
4324/// of ObjCObjectType, so as to not increase the footprint of
4325/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4326/// system should not reference this type.
4327class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4328  friend class ASTContext;
4329
4330  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4331  // will need to be modified.
4332
4333  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4334                     ObjCProtocolDecl * const *Protocols,
4335                     unsigned NumProtocols)
4336    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
4337
4338public:
4339  void Profile(llvm::FoldingSetNodeID &ID);
4340  static void Profile(llvm::FoldingSetNodeID &ID,
4341                      QualType Base,
4342                      ObjCProtocolDecl *const *protocols,
4343                      unsigned NumProtocols);
4344};
4345
4346inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4347  return reinterpret_cast<ObjCProtocolDecl**>(
4348            static_cast<ObjCObjectTypeImpl*>(this) + 1);
4349}
4350
4351/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
4352/// object oriented design.  They basically correspond to C++ classes.  There
4353/// are two kinds of interface types, normal interfaces like "NSString" and
4354/// qualified interfaces, which are qualified with a protocol list like
4355/// "NSString<NSCopyable, NSAmazing>".
4356///
4357/// ObjCInterfaceType guarantees the following properties when considered
4358/// as a subtype of its superclass, ObjCObjectType:
4359///   - There are no protocol qualifiers.  To reinforce this, code which
4360///     tries to invoke the protocol methods via an ObjCInterfaceType will
4361///     fail to compile.
4362///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4363///     T->getBaseType() == QualType(T, 0).
4364class ObjCInterfaceType : public ObjCObjectType {
4365  mutable ObjCInterfaceDecl *Decl;
4366
4367  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4368    : ObjCObjectType(Nonce_ObjCInterface),
4369      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4370  friend class ASTContext;  // ASTContext creates these.
4371  friend class ASTReader;
4372  friend class ObjCInterfaceDecl;
4373
4374public:
4375  /// getDecl - Get the declaration of this interface.
4376  ObjCInterfaceDecl *getDecl() const { return Decl; }
4377
4378  bool isSugared() const { return false; }
4379  QualType desugar() const { return QualType(this, 0); }
4380
4381  static bool classof(const Type *T) {
4382    return T->getTypeClass() == ObjCInterface;
4383  }
4384  static bool classof(const ObjCInterfaceType *) { return true; }
4385
4386  // Nonsense to "hide" certain members of ObjCObjectType within this
4387  // class.  People asking for protocols on an ObjCInterfaceType are
4388  // not going to get what they want: ObjCInterfaceTypes are
4389  // guaranteed to have no protocols.
4390  enum {
4391    qual_iterator,
4392    qual_begin,
4393    qual_end,
4394    getNumProtocols,
4395    getProtocol
4396  };
4397};
4398
4399inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4400  if (const ObjCInterfaceType *T =
4401        getBaseType()->getAs<ObjCInterfaceType>())
4402    return T->getDecl();
4403  return 0;
4404}
4405
4406/// ObjCObjectPointerType - Used to represent a pointer to an
4407/// Objective C object.  These are constructed from pointer
4408/// declarators when the pointee type is an ObjCObjectType (or sugar
4409/// for one).  In addition, the 'id' and 'Class' types are typedefs
4410/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
4411/// are translated into these.
4412///
4413/// Pointers to pointers to Objective C objects are still PointerTypes;
4414/// only the first level of pointer gets it own type implementation.
4415class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4416  QualType PointeeType;
4417
4418  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4419    : Type(ObjCObjectPointer, Canonical, false, false, false, false),
4420      PointeeType(Pointee) {}
4421  friend class ASTContext;  // ASTContext creates these.
4422
4423public:
4424  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
4425  /// The result will always be an ObjCObjectType or sugar thereof.
4426  QualType getPointeeType() const { return PointeeType; }
4427
4428  /// getObjCObjectType - Gets the type pointed to by this ObjC
4429  /// pointer.  This method always returns non-null.
4430  ///
4431  /// This method is equivalent to getPointeeType() except that
4432  /// it discards any typedefs (or other sugar) between this
4433  /// type and the "outermost" object type.  So for:
4434  /// \code
4435  ///   \@class A; \@protocol P; \@protocol Q;
4436  ///   typedef A<P> AP;
4437  ///   typedef A A1;
4438  ///   typedef A1<P> A1P;
4439  ///   typedef A1P<Q> A1PQ;
4440  /// \endcode
4441  /// For 'A*', getObjectType() will return 'A'.
4442  /// For 'A<P>*', getObjectType() will return 'A<P>'.
4443  /// For 'AP*', getObjectType() will return 'A<P>'.
4444  /// For 'A1*', getObjectType() will return 'A'.
4445  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
4446  /// For 'A1P*', getObjectType() will return 'A1<P>'.
4447  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
4448  ///   adding protocols to a protocol-qualified base discards the
4449  ///   old qualifiers (for now).  But if it didn't, getObjectType()
4450  ///   would return 'A1P<Q>' (and we'd have to make iterating over
4451  ///   qualifiers more complicated).
4452  const ObjCObjectType *getObjectType() const {
4453    return PointeeType->castAs<ObjCObjectType>();
4454  }
4455
4456  /// getInterfaceType - If this pointer points to an Objective C
4457  /// \@interface type, gets the type for that interface.  Any protocol
4458  /// qualifiers on the interface are ignored.
4459  ///
4460  /// \return null if the base type for this pointer is 'id' or 'Class'
4461  const ObjCInterfaceType *getInterfaceType() const {
4462    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
4463  }
4464
4465  /// getInterfaceDecl - If this pointer points to an Objective \@interface
4466  /// type, gets the declaration for that interface.
4467  ///
4468  /// \return null if the base type for this pointer is 'id' or 'Class'
4469  ObjCInterfaceDecl *getInterfaceDecl() const {
4470    return getObjectType()->getInterface();
4471  }
4472
4473  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
4474  /// its object type is the primitive 'id' type with no protocols.
4475  bool isObjCIdType() const {
4476    return getObjectType()->isObjCUnqualifiedId();
4477  }
4478
4479  /// isObjCClassType - True if this is equivalent to the 'Class' type,
4480  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
4481  bool isObjCClassType() const {
4482    return getObjectType()->isObjCUnqualifiedClass();
4483  }
4484
4485  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
4486  /// non-empty set of protocols.
4487  bool isObjCQualifiedIdType() const {
4488    return getObjectType()->isObjCQualifiedId();
4489  }
4490
4491  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
4492  /// some non-empty set of protocols.
4493  bool isObjCQualifiedClassType() const {
4494    return getObjectType()->isObjCQualifiedClass();
4495  }
4496
4497  /// An iterator over the qualifiers on the object type.  Provided
4498  /// for convenience.  This will always iterate over the full set of
4499  /// protocols on a type, not just those provided directly.
4500  typedef ObjCObjectType::qual_iterator qual_iterator;
4501
4502  qual_iterator qual_begin() const {
4503    return getObjectType()->qual_begin();
4504  }
4505  qual_iterator qual_end() const {
4506    return getObjectType()->qual_end();
4507  }
4508  bool qual_empty() const { return getObjectType()->qual_empty(); }
4509
4510  /// getNumProtocols - Return the number of qualifying protocols on
4511  /// the object type.
4512  unsigned getNumProtocols() const {
4513    return getObjectType()->getNumProtocols();
4514  }
4515
4516  /// \brief Retrieve a qualifying protocol by index on the object
4517  /// type.
4518  ObjCProtocolDecl *getProtocol(unsigned I) const {
4519    return getObjectType()->getProtocol(I);
4520  }
4521
4522  bool isSugared() const { return false; }
4523  QualType desugar() const { return QualType(this, 0); }
4524
4525  void Profile(llvm::FoldingSetNodeID &ID) {
4526    Profile(ID, getPointeeType());
4527  }
4528  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4529    ID.AddPointer(T.getAsOpaquePtr());
4530  }
4531  static bool classof(const Type *T) {
4532    return T->getTypeClass() == ObjCObjectPointer;
4533  }
4534  static bool classof(const ObjCObjectPointerType *) { return true; }
4535};
4536
4537class AtomicType : public Type, public llvm::FoldingSetNode {
4538  QualType ValueType;
4539
4540  AtomicType(QualType ValTy, QualType Canonical)
4541    : Type(Atomic, Canonical, ValTy->isDependentType(),
4542           ValTy->isInstantiationDependentType(),
4543           ValTy->isVariablyModifiedType(),
4544           ValTy->containsUnexpandedParameterPack()),
4545      ValueType(ValTy) {}
4546  friend class ASTContext;  // ASTContext creates these.
4547
4548  public:
4549  /// getValueType - Gets the type contained by this atomic type, i.e.
4550  /// the type returned by performing an atomic load of this atomic type.
4551  QualType getValueType() const { return ValueType; }
4552
4553  bool isSugared() const { return false; }
4554  QualType desugar() const { return QualType(this, 0); }
4555
4556  void Profile(llvm::FoldingSetNodeID &ID) {
4557    Profile(ID, getValueType());
4558  }
4559  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4560    ID.AddPointer(T.getAsOpaquePtr());
4561  }
4562  static bool classof(const Type *T) {
4563    return T->getTypeClass() == Atomic;
4564  }
4565  static bool classof(const AtomicType *) { return true; }
4566};
4567
4568/// A qualifier set is used to build a set of qualifiers.
4569class QualifierCollector : public Qualifiers {
4570public:
4571  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4572
4573  /// Collect any qualifiers on the given type and return an
4574  /// unqualified type.  The qualifiers are assumed to be consistent
4575  /// with those already in the type.
4576  const Type *strip(QualType type) {
4577    addFastQualifiers(type.getLocalFastQualifiers());
4578    if (!type.hasLocalNonFastQualifiers())
4579      return type.getTypePtrUnsafe();
4580
4581    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4582    addConsistentQualifiers(extQuals->getQualifiers());
4583    return extQuals->getBaseType();
4584  }
4585
4586  /// Apply the collected qualifiers to the given type.
4587  QualType apply(const ASTContext &Context, QualType QT) const;
4588
4589  /// Apply the collected qualifiers to the given type.
4590  QualType apply(const ASTContext &Context, const Type* T) const;
4591};
4592
4593
4594// Inline function definitions.
4595
4596inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
4597  SplitQualType desugar =
4598    Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
4599  desugar.Quals.addConsistentQualifiers(Quals);
4600  return desugar;
4601}
4602
4603inline const Type *QualType::getTypePtr() const {
4604  return getCommonPtr()->BaseType;
4605}
4606
4607inline const Type *QualType::getTypePtrOrNull() const {
4608  return (isNull() ? 0 : getCommonPtr()->BaseType);
4609}
4610
4611inline SplitQualType QualType::split() const {
4612  if (!hasLocalNonFastQualifiers())
4613    return SplitQualType(getTypePtrUnsafe(),
4614                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4615
4616  const ExtQuals *eq = getExtQualsUnsafe();
4617  Qualifiers qs = eq->getQualifiers();
4618  qs.addFastQualifiers(getLocalFastQualifiers());
4619  return SplitQualType(eq->getBaseType(), qs);
4620}
4621
4622inline Qualifiers QualType::getLocalQualifiers() const {
4623  Qualifiers Quals;
4624  if (hasLocalNonFastQualifiers())
4625    Quals = getExtQualsUnsafe()->getQualifiers();
4626  Quals.addFastQualifiers(getLocalFastQualifiers());
4627  return Quals;
4628}
4629
4630inline Qualifiers QualType::getQualifiers() const {
4631  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4632  quals.addFastQualifiers(getLocalFastQualifiers());
4633  return quals;
4634}
4635
4636inline unsigned QualType::getCVRQualifiers() const {
4637  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4638  cvr |= getLocalCVRQualifiers();
4639  return cvr;
4640}
4641
4642inline QualType QualType::getCanonicalType() const {
4643  QualType canon = getCommonPtr()->CanonicalType;
4644  return canon.withFastQualifiers(getLocalFastQualifiers());
4645}
4646
4647inline bool QualType::isCanonical() const {
4648  return getTypePtr()->isCanonicalUnqualified();
4649}
4650
4651inline bool QualType::isCanonicalAsParam() const {
4652  if (!isCanonical()) return false;
4653  if (hasLocalQualifiers()) return false;
4654
4655  const Type *T = getTypePtr();
4656  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4657    return false;
4658
4659  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4660}
4661
4662inline bool QualType::isConstQualified() const {
4663  return isLocalConstQualified() ||
4664         getCommonPtr()->CanonicalType.isLocalConstQualified();
4665}
4666
4667inline bool QualType::isRestrictQualified() const {
4668  return isLocalRestrictQualified() ||
4669         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4670}
4671
4672
4673inline bool QualType::isVolatileQualified() const {
4674  return isLocalVolatileQualified() ||
4675         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4676}
4677
4678inline bool QualType::hasQualifiers() const {
4679  return hasLocalQualifiers() ||
4680         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4681}
4682
4683inline QualType QualType::getUnqualifiedType() const {
4684  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4685    return QualType(getTypePtr(), 0);
4686
4687  return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
4688}
4689
4690inline SplitQualType QualType::getSplitUnqualifiedType() const {
4691  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4692    return split();
4693
4694  return getSplitUnqualifiedTypeImpl(*this);
4695}
4696
4697inline void QualType::removeLocalConst() {
4698  removeLocalFastQualifiers(Qualifiers::Const);
4699}
4700
4701inline void QualType::removeLocalRestrict() {
4702  removeLocalFastQualifiers(Qualifiers::Restrict);
4703}
4704
4705inline void QualType::removeLocalVolatile() {
4706  removeLocalFastQualifiers(Qualifiers::Volatile);
4707}
4708
4709inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4710  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4711  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4712
4713  // Fast path: we don't need to touch the slow qualifiers.
4714  removeLocalFastQualifiers(Mask);
4715}
4716
4717/// getAddressSpace - Return the address space of this type.
4718inline unsigned QualType::getAddressSpace() const {
4719  return getQualifiers().getAddressSpace();
4720}
4721
4722/// getObjCGCAttr - Return the gc attribute of this type.
4723inline Qualifiers::GC QualType::getObjCGCAttr() const {
4724  return getQualifiers().getObjCGCAttr();
4725}
4726
4727inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4728  if (const PointerType *PT = t.getAs<PointerType>()) {
4729    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4730      return FT->getExtInfo();
4731  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4732    return FT->getExtInfo();
4733
4734  return FunctionType::ExtInfo();
4735}
4736
4737inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4738  return getFunctionExtInfo(*t);
4739}
4740
4741/// isMoreQualifiedThan - Determine whether this type is more
4742/// qualified than the Other type. For example, "const volatile int"
4743/// is more qualified than "const int", "volatile int", and
4744/// "int". However, it is not more qualified than "const volatile
4745/// int".
4746inline bool QualType::isMoreQualifiedThan(QualType other) const {
4747  Qualifiers myQuals = getQualifiers();
4748  Qualifiers otherQuals = other.getQualifiers();
4749  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4750}
4751
4752/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4753/// as qualified as the Other type. For example, "const volatile
4754/// int" is at least as qualified as "const int", "volatile int",
4755/// "int", and "const volatile int".
4756inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4757  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4758}
4759
4760/// getNonReferenceType - If Type is a reference type (e.g., const
4761/// int&), returns the type that the reference refers to ("const
4762/// int"). Otherwise, returns the type itself. This routine is used
4763/// throughout Sema to implement C++ 5p6:
4764///
4765///   If an expression initially has the type "reference to T" (8.3.2,
4766///   8.5.3), the type is adjusted to "T" prior to any further
4767///   analysis, the expression designates the object or function
4768///   denoted by the reference, and the expression is an lvalue.
4769inline QualType QualType::getNonReferenceType() const {
4770  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4771    return RefType->getPointeeType();
4772  else
4773    return *this;
4774}
4775
4776inline bool QualType::isCForbiddenLValueType() const {
4777  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
4778          getTypePtr()->isFunctionType());
4779}
4780
4781/// \brief Tests whether the type is categorized as a fundamental type.
4782///
4783/// \returns True for types specified in C++0x [basic.fundamental].
4784inline bool Type::isFundamentalType() const {
4785  return isVoidType() ||
4786         // FIXME: It's really annoying that we don't have an
4787         // 'isArithmeticType()' which agrees with the standard definition.
4788         (isArithmeticType() && !isEnumeralType());
4789}
4790
4791/// \brief Tests whether the type is categorized as a compound type.
4792///
4793/// \returns True for types specified in C++0x [basic.compound].
4794inline bool Type::isCompoundType() const {
4795  // C++0x [basic.compound]p1:
4796  //   Compound types can be constructed in the following ways:
4797  //    -- arrays of objects of a given type [...];
4798  return isArrayType() ||
4799  //    -- functions, which have parameters of given types [...];
4800         isFunctionType() ||
4801  //    -- pointers to void or objects or functions [...];
4802         isPointerType() ||
4803  //    -- references to objects or functions of a given type. [...]
4804         isReferenceType() ||
4805  //    -- classes containing a sequence of objects of various types, [...];
4806         isRecordType() ||
4807  //    -- unions, which are classes capable of containing objects of different
4808  //               types at different times;
4809         isUnionType() ||
4810  //    -- enumerations, which comprise a set of named constant values. [...];
4811         isEnumeralType() ||
4812  //    -- pointers to non-static class members, [...].
4813         isMemberPointerType();
4814}
4815
4816inline bool Type::isFunctionType() const {
4817  return isa<FunctionType>(CanonicalType);
4818}
4819inline bool Type::isPointerType() const {
4820  return isa<PointerType>(CanonicalType);
4821}
4822inline bool Type::isAnyPointerType() const {
4823  return isPointerType() || isObjCObjectPointerType();
4824}
4825inline bool Type::isBlockPointerType() const {
4826  return isa<BlockPointerType>(CanonicalType);
4827}
4828inline bool Type::isReferenceType() const {
4829  return isa<ReferenceType>(CanonicalType);
4830}
4831inline bool Type::isLValueReferenceType() const {
4832  return isa<LValueReferenceType>(CanonicalType);
4833}
4834inline bool Type::isRValueReferenceType() const {
4835  return isa<RValueReferenceType>(CanonicalType);
4836}
4837inline bool Type::isFunctionPointerType() const {
4838  if (const PointerType *T = getAs<PointerType>())
4839    return T->getPointeeType()->isFunctionType();
4840  else
4841    return false;
4842}
4843inline bool Type::isMemberPointerType() const {
4844  return isa<MemberPointerType>(CanonicalType);
4845}
4846inline bool Type::isMemberFunctionPointerType() const {
4847  if (const MemberPointerType* T = getAs<MemberPointerType>())
4848    return T->isMemberFunctionPointer();
4849  else
4850    return false;
4851}
4852inline bool Type::isMemberDataPointerType() const {
4853  if (const MemberPointerType* T = getAs<MemberPointerType>())
4854    return T->isMemberDataPointer();
4855  else
4856    return false;
4857}
4858inline bool Type::isArrayType() const {
4859  return isa<ArrayType>(CanonicalType);
4860}
4861inline bool Type::isConstantArrayType() const {
4862  return isa<ConstantArrayType>(CanonicalType);
4863}
4864inline bool Type::isIncompleteArrayType() const {
4865  return isa<IncompleteArrayType>(CanonicalType);
4866}
4867inline bool Type::isVariableArrayType() const {
4868  return isa<VariableArrayType>(CanonicalType);
4869}
4870inline bool Type::isDependentSizedArrayType() const {
4871  return isa<DependentSizedArrayType>(CanonicalType);
4872}
4873inline bool Type::isBuiltinType() const {
4874  return isa<BuiltinType>(CanonicalType);
4875}
4876inline bool Type::isRecordType() const {
4877  return isa<RecordType>(CanonicalType);
4878}
4879inline bool Type::isEnumeralType() const {
4880  return isa<EnumType>(CanonicalType);
4881}
4882inline bool Type::isAnyComplexType() const {
4883  return isa<ComplexType>(CanonicalType);
4884}
4885inline bool Type::isVectorType() const {
4886  return isa<VectorType>(CanonicalType);
4887}
4888inline bool Type::isExtVectorType() const {
4889  return isa<ExtVectorType>(CanonicalType);
4890}
4891inline bool Type::isObjCObjectPointerType() const {
4892  return isa<ObjCObjectPointerType>(CanonicalType);
4893}
4894inline bool Type::isObjCObjectType() const {
4895  return isa<ObjCObjectType>(CanonicalType);
4896}
4897inline bool Type::isObjCObjectOrInterfaceType() const {
4898  return isa<ObjCInterfaceType>(CanonicalType) ||
4899    isa<ObjCObjectType>(CanonicalType);
4900}
4901inline bool Type::isAtomicType() const {
4902  return isa<AtomicType>(CanonicalType);
4903}
4904
4905inline bool Type::isObjCQualifiedIdType() const {
4906  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4907    return OPT->isObjCQualifiedIdType();
4908  return false;
4909}
4910inline bool Type::isObjCQualifiedClassType() const {
4911  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4912    return OPT->isObjCQualifiedClassType();
4913  return false;
4914}
4915inline bool Type::isObjCIdType() const {
4916  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4917    return OPT->isObjCIdType();
4918  return false;
4919}
4920inline bool Type::isObjCClassType() const {
4921  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4922    return OPT->isObjCClassType();
4923  return false;
4924}
4925inline bool Type::isObjCSelType() const {
4926  if (const PointerType *OPT = getAs<PointerType>())
4927    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4928  return false;
4929}
4930inline bool Type::isObjCBuiltinType() const {
4931  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4932}
4933inline bool Type::isTemplateTypeParmType() const {
4934  return isa<TemplateTypeParmType>(CanonicalType);
4935}
4936
4937inline bool Type::isSpecificBuiltinType(unsigned K) const {
4938  if (const BuiltinType *BT = getAs<BuiltinType>())
4939    if (BT->getKind() == (BuiltinType::Kind) K)
4940      return true;
4941  return false;
4942}
4943
4944inline bool Type::isPlaceholderType() const {
4945  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4946    return BT->isPlaceholderType();
4947  return false;
4948}
4949
4950inline const BuiltinType *Type::getAsPlaceholderType() const {
4951  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4952    if (BT->isPlaceholderType())
4953      return BT;
4954  return 0;
4955}
4956
4957inline bool Type::isSpecificPlaceholderType(unsigned K) const {
4958  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
4959  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4960    return (BT->getKind() == (BuiltinType::Kind) K);
4961  return false;
4962}
4963
4964inline bool Type::isNonOverloadPlaceholderType() const {
4965  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4966    return BT->isNonOverloadPlaceholderType();
4967  return false;
4968}
4969
4970inline bool Type::isVoidType() const {
4971  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4972    return BT->getKind() == BuiltinType::Void;
4973  return false;
4974}
4975
4976inline bool Type::isHalfType() const {
4977  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4978    return BT->getKind() == BuiltinType::Half;
4979  // FIXME: Should we allow complex __fp16? Probably not.
4980  return false;
4981}
4982
4983inline bool Type::isNullPtrType() const {
4984  if (const BuiltinType *BT = getAs<BuiltinType>())
4985    return BT->getKind() == BuiltinType::NullPtr;
4986  return false;
4987}
4988
4989extern bool IsEnumDeclComplete(EnumDecl *);
4990extern bool IsEnumDeclScoped(EnumDecl *);
4991
4992inline bool Type::isIntegerType() const {
4993  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4994    return BT->getKind() >= BuiltinType::Bool &&
4995           BT->getKind() <= BuiltinType::Int128;
4996  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
4997    // Incomplete enum types are not treated as integer types.
4998    // FIXME: In C++, enum types are never integer types.
4999    return IsEnumDeclComplete(ET->getDecl()) &&
5000      !IsEnumDeclScoped(ET->getDecl());
5001  }
5002  return false;
5003}
5004
5005inline bool Type::isScalarType() const {
5006  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5007    return BT->getKind() > BuiltinType::Void &&
5008           BT->getKind() <= BuiltinType::NullPtr;
5009  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5010    // Enums are scalar types, but only if they are defined.  Incomplete enums
5011    // are not treated as scalar types.
5012    return IsEnumDeclComplete(ET->getDecl());
5013  return isa<PointerType>(CanonicalType) ||
5014         isa<BlockPointerType>(CanonicalType) ||
5015         isa<MemberPointerType>(CanonicalType) ||
5016         isa<ComplexType>(CanonicalType) ||
5017         isa<ObjCObjectPointerType>(CanonicalType);
5018}
5019
5020inline bool Type::isIntegralOrEnumerationType() const {
5021  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5022    return BT->getKind() >= BuiltinType::Bool &&
5023           BT->getKind() <= BuiltinType::Int128;
5024
5025  // Check for a complete enum type; incomplete enum types are not properly an
5026  // enumeration type in the sense required here.
5027  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5028    return IsEnumDeclComplete(ET->getDecl());
5029
5030  return false;
5031}
5032
5033inline bool Type::isBooleanType() const {
5034  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5035    return BT->getKind() == BuiltinType::Bool;
5036  return false;
5037}
5038
5039/// \brief Determines whether this is a type for which one can define
5040/// an overloaded operator.
5041inline bool Type::isOverloadableType() const {
5042  return isDependentType() || isRecordType() || isEnumeralType();
5043}
5044
5045/// \brief Determines whether this type can decay to a pointer type.
5046inline bool Type::canDecayToPointerType() const {
5047  return isFunctionType() || isArrayType();
5048}
5049
5050inline bool Type::hasPointerRepresentation() const {
5051  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
5052          isObjCObjectPointerType() || isNullPtrType());
5053}
5054
5055inline bool Type::hasObjCPointerRepresentation() const {
5056  return isObjCObjectPointerType();
5057}
5058
5059inline const Type *Type::getBaseElementTypeUnsafe() const {
5060  const Type *type = this;
5061  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
5062    type = arrayType->getElementType().getTypePtr();
5063  return type;
5064}
5065
5066/// Insertion operator for diagnostics.  This allows sending QualType's into a
5067/// diagnostic with <<.
5068inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
5069                                           QualType T) {
5070  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5071                  DiagnosticsEngine::ak_qualtype);
5072  return DB;
5073}
5074
5075/// Insertion operator for partial diagnostics.  This allows sending QualType's
5076/// into a diagnostic with <<.
5077inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
5078                                           QualType T) {
5079  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5080                  DiagnosticsEngine::ak_qualtype);
5081  return PD;
5082}
5083
5084// Helper class template that is used by Type::getAs to ensure that one does
5085// not try to look through a qualified type to get to an array type.
5086template<typename T,
5087         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
5088                             llvm::is_base_of<ArrayType, T>::value)>
5089struct ArrayType_cannot_be_used_with_getAs { };
5090
5091template<typename T>
5092struct ArrayType_cannot_be_used_with_getAs<T, true>;
5093
5094// Member-template getAs<specific type>'.
5095template <typename T> const T *Type::getAs() const {
5096  ArrayType_cannot_be_used_with_getAs<T> at;
5097  (void)at;
5098
5099  // If this is directly a T type, return it.
5100  if (const T *Ty = dyn_cast<T>(this))
5101    return Ty;
5102
5103  // If the canonical form of this type isn't the right kind, reject it.
5104  if (!isa<T>(CanonicalType))
5105    return 0;
5106
5107  // If this is a typedef for the type, strip the typedef off without
5108  // losing all typedef information.
5109  return cast<T>(getUnqualifiedDesugaredType());
5110}
5111
5112inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
5113  // If this is directly an array type, return it.
5114  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
5115    return arr;
5116
5117  // If the canonical form of this type isn't the right kind, reject it.
5118  if (!isa<ArrayType>(CanonicalType))
5119    return 0;
5120
5121  // If this is a typedef for the type, strip the typedef off without
5122  // losing all typedef information.
5123  return cast<ArrayType>(getUnqualifiedDesugaredType());
5124}
5125
5126template <typename T> const T *Type::castAs() const {
5127  ArrayType_cannot_be_used_with_getAs<T> at;
5128  (void) at;
5129
5130  assert(isa<T>(CanonicalType));
5131  if (const T *ty = dyn_cast<T>(this)) return ty;
5132  return cast<T>(getUnqualifiedDesugaredType());
5133}
5134
5135inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
5136  assert(isa<ArrayType>(CanonicalType));
5137  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
5138  return cast<ArrayType>(getUnqualifiedDesugaredType());
5139}
5140
5141}  // end namespace clang
5142
5143#endif
5144