Type.h revision 8fceb57f6980c67bb8f12e29d75736cf057951e8
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/AST/TemplateName.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/ADT/APSInt.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/PointerUnion.h"
26
27using llvm::isa;
28using llvm::cast;
29using llvm::cast_or_null;
30using llvm::dyn_cast;
31using llvm::dyn_cast_or_null;
32namespace clang { class Type; }
33
34namespace llvm {
35  template <typename T>
36  class PointerLikeTypeTraits;
37  template<>
38  class PointerLikeTypeTraits< ::clang::Type*> {
39  public:
40    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
41    static inline ::clang::Type *getFromVoidPointer(void *P) {
42      return static_cast< ::clang::Type*>(P);
43    }
44    enum { NumLowBitsAvailable = 3 };
45  };
46}
47
48namespace clang {
49  class ASTContext;
50  class TypedefDecl;
51  class TemplateDecl;
52  class TemplateTypeParmDecl;
53  class NonTypeTemplateParmDecl;
54  class TemplateTemplateParmDecl;
55  class TagDecl;
56  class RecordDecl;
57  class CXXRecordDecl;
58  class EnumDecl;
59  class FieldDecl;
60  class ObjCInterfaceDecl;
61  class ObjCProtocolDecl;
62  class ObjCMethodDecl;
63  class Expr;
64  class Stmt;
65  class SourceLocation;
66  class StmtIteratorBase;
67  class TemplateArgument;
68  class QualifiedNameType;
69  struct PrintingPolicy;
70
71  // Provide forward declarations for all of the *Type classes
72#define TYPE(Class, Base) class Class##Type;
73#include "clang/AST/TypeNodes.def"
74
75/// QualType - For efficiency, we don't store CVR-qualified types as nodes on
76/// their own: instead each reference to a type stores the qualifiers.  This
77/// greatly reduces the number of nodes we need to allocate for types (for
78/// example we only need one for 'int', 'const int', 'volatile int',
79/// 'const volatile int', etc).
80///
81/// As an added efficiency bonus, instead of making this a pair, we just store
82/// the three bits we care about in the low bits of the pointer.  To handle the
83/// packing/unpacking, we make QualType be a simple wrapper class that acts like
84/// a smart pointer.
85class QualType {
86  llvm::PointerIntPair<Type*, 3> Value;
87public:
88  enum TQ {   // NOTE: These flags must be kept in sync with DeclSpec::TQ.
89    Const    = 0x1,
90    Restrict = 0x2,
91    Volatile = 0x4,
92    CVRFlags = Const|Restrict|Volatile
93  };
94
95  enum GCAttrTypes {
96    GCNone = 0,
97    Weak,
98    Strong
99  };
100
101  QualType() {}
102
103  QualType(const Type *Ptr, unsigned Quals)
104    : Value(const_cast<Type*>(Ptr), Quals) {}
105
106  unsigned getCVRQualifiers() const { return Value.getInt(); }
107  void setCVRQualifiers(unsigned Quals) { Value.setInt(Quals); }
108  Type *getTypePtr() const { return Value.getPointer(); }
109
110  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
111  static QualType getFromOpaquePtr(void *Ptr) {
112    QualType T;
113    T.Value.setFromOpaqueValue(Ptr);
114    return T;
115  }
116
117  Type &operator*() const {
118    return *getTypePtr();
119  }
120
121  Type *operator->() const {
122    return getTypePtr();
123  }
124
125  /// isNull - Return true if this QualType doesn't point to a type yet.
126  bool isNull() const {
127    return getTypePtr() == 0;
128  }
129
130  bool isConstQualified() const {
131    return (getCVRQualifiers() & Const) ? true : false;
132  }
133  bool isVolatileQualified() const {
134    return (getCVRQualifiers() & Volatile) ? true : false;
135  }
136  bool isRestrictQualified() const {
137    return (getCVRQualifiers() & Restrict) ? true : false;
138  }
139
140  bool isConstant(ASTContext& Ctx) const;
141
142  /// addConst/addVolatile/addRestrict - add the specified type qual to this
143  /// QualType.
144  void addConst()    { Value.setInt(Value.getInt() | Const); }
145  void addVolatile() { Value.setInt(Value.getInt() | Volatile); }
146  void addRestrict() { Value.setInt(Value.getInt() | Restrict); }
147
148  void removeConst()    { Value.setInt(Value.getInt() & ~Const); }
149  void removeVolatile() { Value.setInt(Value.getInt() & ~Volatile); }
150  void removeRestrict() { Value.setInt(Value.getInt() & ~Restrict); }
151
152  QualType getQualifiedType(unsigned TQs) const {
153    return QualType(getTypePtr(), TQs);
154  }
155  QualType getWithAdditionalQualifiers(unsigned TQs) const {
156    return QualType(getTypePtr(), TQs|getCVRQualifiers());
157  }
158
159  QualType withConst() const { return getWithAdditionalQualifiers(Const); }
160  QualType withVolatile() const { return getWithAdditionalQualifiers(Volatile);}
161  QualType withRestrict() const { return getWithAdditionalQualifiers(Restrict);}
162
163  QualType getUnqualifiedType() const;
164  bool isMoreQualifiedThan(QualType Other) const;
165  bool isAtLeastAsQualifiedAs(QualType Other) const;
166  QualType getNonReferenceType() const;
167
168  /// getDesugaredType - Return the specified type with any "sugar" removed from
169  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
170  /// the type is already concrete, it returns it unmodified.  This is similar
171  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
172  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
173  /// concrete.
174  QualType getDesugaredType(bool ForDisplay = false) const;
175
176  /// operator==/!= - Indicate whether the specified types and qualifiers are
177  /// identical.
178  bool operator==(const QualType &RHS) const {
179    return Value == RHS.Value;
180  }
181  bool operator!=(const QualType &RHS) const {
182    return Value != RHS.Value;
183  }
184  std::string getAsString() const;
185
186  std::string getAsString(const PrintingPolicy &Policy) const {
187    std::string S;
188    getAsStringInternal(S, Policy);
189    return S;
190  }
191  void getAsStringInternal(std::string &Str,
192                           const PrintingPolicy &Policy) const;
193
194  void dump(const char *s) const;
195  void dump() const;
196
197  void Profile(llvm::FoldingSetNodeID &ID) const {
198    ID.AddPointer(getAsOpaquePtr());
199  }
200
201public:
202
203  /// getAddressSpace - Return the address space of this type.
204  inline unsigned getAddressSpace() const;
205
206  /// GCAttrTypesAttr - Returns gc attribute of this type.
207  inline QualType::GCAttrTypes getObjCGCAttr() const;
208
209  /// isObjCGCWeak true when Type is objc's weak.
210  bool isObjCGCWeak() const {
211    return getObjCGCAttr() == Weak;
212  }
213
214  /// isObjCGCStrong true when Type is objc's strong.
215  bool isObjCGCStrong() const {
216    return getObjCGCAttr() == Strong;
217  }
218};
219
220} // end clang.
221
222namespace llvm {
223/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
224/// to a specific Type class.
225template<> struct simplify_type<const ::clang::QualType> {
226  typedef ::clang::Type* SimpleType;
227  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
228    return Val.getTypePtr();
229  }
230};
231template<> struct simplify_type< ::clang::QualType>
232  : public simplify_type<const ::clang::QualType> {};
233
234// Teach SmallPtrSet that QualType is "basically a pointer".
235template<>
236class PointerLikeTypeTraits<clang::QualType> {
237public:
238  static inline void *getAsVoidPointer(clang::QualType P) {
239    return P.getAsOpaquePtr();
240  }
241  static inline clang::QualType getFromVoidPointer(void *P) {
242    return clang::QualType::getFromOpaquePtr(P);
243  }
244  // CVR qualifiers go in low bits.
245  enum { NumLowBitsAvailable = 0 };
246};
247} // end namespace llvm
248
249namespace clang {
250
251/// Type - This is the base class of the type hierarchy.  A central concept
252/// with types is that each type always has a canonical type.  A canonical type
253/// is the type with any typedef names stripped out of it or the types it
254/// references.  For example, consider:
255///
256///  typedef int  foo;
257///  typedef foo* bar;
258///    'int *'    'foo *'    'bar'
259///
260/// There will be a Type object created for 'int'.  Since int is canonical, its
261/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
262/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
263/// there is a PointerType that represents 'int*', which, like 'int', is
264/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
265/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
266/// is also 'int*'.
267///
268/// Non-canonical types are useful for emitting diagnostics, without losing
269/// information about typedefs being used.  Canonical types are useful for type
270/// comparisons (they allow by-pointer equality tests) and useful for reasoning
271/// about whether something has a particular form (e.g. is a function type),
272/// because they implicitly, recursively, strip all typedefs out of a type.
273///
274/// Types, once created, are immutable.
275///
276class Type {
277public:
278  enum TypeClass {
279#define TYPE(Class, Base) Class,
280#define ABSTRACT_TYPE(Class, Base)
281#include "clang/AST/TypeNodes.def"
282    TagFirst = Record, TagLast = Enum
283  };
284
285private:
286  QualType CanonicalType;
287
288  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
289  bool Dependent : 1;
290
291  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
292  /// Note that this should stay at the end of the ivars for Type so that
293  /// subclasses can pack their bitfields into the same word.
294  unsigned TC : 6;
295
296  Type(const Type&);           // DO NOT IMPLEMENT.
297  void operator=(const Type&); // DO NOT IMPLEMENT.
298protected:
299  // silence VC++ warning C4355: 'this' : used in base member initializer list
300  Type *this_() { return this; }
301  Type(TypeClass tc, QualType Canonical, bool dependent)
302    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
303      Dependent(dependent), TC(tc) {}
304  virtual ~Type() {}
305  virtual void Destroy(ASTContext& C);
306  friend class ASTContext;
307
308public:
309  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
310
311  bool isCanonical() const { return CanonicalType.getTypePtr() == this; }
312
313  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
314  /// object types, function types, and incomplete types.
315
316  /// \brief Determines whether the type describes an object in memory.
317  ///
318  /// Note that this definition of object type corresponds to the C++
319  /// definition of object type, which includes incomplete types, as
320  /// opposed to the C definition (which does not include incomplete
321  /// types).
322  bool isObjectType() const;
323
324  /// isIncompleteType - Return true if this is an incomplete type.
325  /// A type that can describe objects, but which lacks information needed to
326  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
327  /// routine will need to determine if the size is actually required.
328  bool isIncompleteType() const;
329
330  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
331  /// type, in other words, not a function type.
332  bool isIncompleteOrObjectType() const {
333    return !isFunctionType();
334  }
335
336  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
337  bool isPODType() const;
338
339  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
340  /// types that have a non-constant expression. This does not include "[]".
341  bool isVariablyModifiedType() const;
342
343  /// Helper methods to distinguish type categories. All type predicates
344  /// operate on the canonical type, ignoring typedefs and qualifiers.
345
346  /// isSpecificBuiltinType - Test for a particular builtin type.
347  bool isSpecificBuiltinType(unsigned K) const;
348
349  /// isIntegerType() does *not* include complex integers (a GCC extension).
350  /// isComplexIntegerType() can be used to test for complex integers.
351  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
352  bool isEnumeralType() const;
353  bool isBooleanType() const;
354  bool isCharType() const;
355  bool isWideCharType() const;
356  bool isIntegralType() const;
357
358  /// Floating point categories.
359  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
360  /// isComplexType() does *not* include complex integers (a GCC extension).
361  /// isComplexIntegerType() can be used to test for complex integers.
362  bool isComplexType() const;      // C99 6.2.5p11 (complex)
363  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
364  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
365  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
366  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
367  bool isVoidType() const;         // C99 6.2.5p19
368  bool isDerivedType() const;      // C99 6.2.5p20
369  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
370  bool isAggregateType() const;
371
372  // Type Predicates: Check to see if this type is structurally the specified
373  // type, ignoring typedefs and qualifiers.
374  bool isFunctionType() const;
375  bool isFunctionNoProtoType() const { return getAsFunctionNoProtoType() != 0; }
376  bool isFunctionProtoType() const { return getAsFunctionProtoType() != 0; }
377  bool isPointerType() const;
378  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
379  bool isBlockPointerType() const;
380  bool isVoidPointerType() const;
381  bool isReferenceType() const;
382  bool isLValueReferenceType() const;
383  bool isRValueReferenceType() const;
384  bool isFunctionPointerType() const;
385  bool isMemberPointerType() const;
386  bool isMemberFunctionPointerType() const;
387  bool isArrayType() const;
388  bool isConstantArrayType() const;
389  bool isIncompleteArrayType() const;
390  bool isVariableArrayType() const;
391  bool isDependentSizedArrayType() const;
392  bool isRecordType() const;
393  bool isClassType() const;
394  bool isStructureType() const;
395  bool isUnionType() const;
396  bool isComplexIntegerType() const;            // GCC _Complex integer type.
397  bool isVectorType() const;                    // GCC vector type.
398  bool isExtVectorType() const;                 // Extended vector type.
399  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
400  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
401  // for the common case.
402  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
403  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
404  bool isObjCQualifiedIdType() const;           // id<foo>
405  bool isObjCQualifiedClassType() const;        // Class<foo>
406  bool isObjCIdType() const;                    // id
407  bool isObjCClassType() const;                 // Class
408  bool isObjCBuiltinType() const;               // 'id' or 'Class'
409  bool isTemplateTypeParmType() const;          // C++ template type parameter
410  bool isNullPtrType() const;                   // C++0x nullptr_t
411
412  /// isDependentType - Whether this type is a dependent type, meaning
413  /// that its definition somehow depends on a template parameter
414  /// (C++ [temp.dep.type]).
415  bool isDependentType() const { return Dependent; }
416  bool isOverloadableType() const;
417
418  /// hasPointerRepresentation - Whether this type is represented
419  /// natively as a pointer; this includes pointers, references, block
420  /// pointers, and Objective-C interface, qualified id, and qualified
421  /// interface types, as well as nullptr_t.
422  bool hasPointerRepresentation() const;
423
424  /// hasObjCPointerRepresentation - Whether this type can represent
425  /// an objective pointer type for the purpose of GC'ability
426  bool hasObjCPointerRepresentation() const;
427
428  // Type Checking Functions: Check to see if this type is structurally the
429  // specified type, ignoring typedefs and qualifiers, and return a pointer to
430  // the best type we can.
431  const BuiltinType *getAsBuiltinType() const;
432  const FunctionType *getAsFunctionType() const;
433  const FunctionNoProtoType *getAsFunctionNoProtoType() const;
434  const FunctionProtoType *getAsFunctionProtoType() const;
435  const PointerType *getAsPointerType() const;
436  const BlockPointerType *getAsBlockPointerType() const;
437  const ReferenceType *getAsReferenceType() const;
438  const LValueReferenceType *getAsLValueReferenceType() const;
439  const RValueReferenceType *getAsRValueReferenceType() const;
440  const MemberPointerType *getAsMemberPointerType() const;
441  const TagType *getAsTagType() const;
442  const RecordType *getAsRecordType() const;
443  const RecordType *getAsStructureType() const;
444  /// NOTE: getAs*ArrayType are methods on ASTContext.
445  const TypedefType *getAsTypedefType() const;
446  const RecordType *getAsUnionType() const;
447  const EnumType *getAsEnumType() const;
448  const VectorType *getAsVectorType() const; // GCC vector type.
449  const ComplexType *getAsComplexType() const;
450  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
451  const ExtVectorType *getAsExtVectorType() const; // Extended vector type.
452  const ObjCObjectPointerType *getAsObjCObjectPointerType() const;
453  // The following is a convenience method that returns an ObjCObjectPointerType
454  // for object declared using an interface.
455  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
456  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
457  const ObjCInterfaceType *getAsObjCInterfaceType() const;
458  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
459  const TemplateTypeParmType *getAsTemplateTypeParmType() const;
460
461  // Member-template getAs<specific type>'.  This scheme will eventually
462  // replace the specific getAsXXXX methods above.
463  template <typename T> const T *getAs() const;
464
465  const TemplateSpecializationType *
466    getAsTemplateSpecializationType() const;
467
468  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
469  /// interface, return the interface type, otherwise return null.
470  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
471
472  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
473  /// element type of the array, potentially with type qualifiers missing.
474  /// This method should never be used when type qualifiers are meaningful.
475  const Type *getArrayElementTypeNoTypeQual() const;
476
477  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
478  /// pointer, this returns the respective pointee.
479  QualType getPointeeType() const;
480
481  /// getDesugaredType - Return the specified type with any "sugar" removed from
482  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
483  /// the type is already concrete, it returns it unmodified.  This is similar
484  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
485  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
486  /// concrete.
487  QualType getDesugaredType(bool ForDisplay = false) const;
488
489  /// More type predicates useful for type checking/promotion
490  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
491
492  /// isSignedIntegerType - Return true if this is an integer type that is
493  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
494  /// an enum decl which has a signed representation, or a vector of signed
495  /// integer element type.
496  bool isSignedIntegerType() const;
497
498  /// isUnsignedIntegerType - Return true if this is an integer type that is
499  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
500  /// decl which has an unsigned representation, or a vector of unsigned integer
501  /// element type.
502  bool isUnsignedIntegerType() const;
503
504  /// isConstantSizeType - Return true if this is not a variable sized type,
505  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
506  /// incomplete types.
507  bool isConstantSizeType() const;
508
509  /// isSpecifierType - Returns true if this type can be represented by some
510  /// set of type specifiers.
511  bool isSpecifierType() const;
512
513  QualType getCanonicalTypeInternal() const { return CanonicalType; }
514  void dump() const;
515  virtual void getAsStringInternal(std::string &InnerString,
516                                   const PrintingPolicy &Policy) const = 0;
517  static bool classof(const Type *) { return true; }
518};
519
520/// ExtQualType - TR18037 (C embedded extensions) 6.2.5p26
521/// This supports all kinds of type attributes; including,
522/// address space qualified types, objective-c's __weak and
523/// __strong attributes.
524///
525class ExtQualType : public Type, public llvm::FoldingSetNode {
526  /// BaseType - This is the underlying type that this qualifies.  All CVR
527  /// qualifiers are stored on the QualType that references this type, so we
528  /// can't have any here.
529  Type *BaseType;
530
531  /// Address Space ID - The address space ID this type is qualified with.
532  unsigned AddressSpace;
533  /// GC __weak/__strong attributes
534  QualType::GCAttrTypes GCAttrType;
535
536  ExtQualType(Type *Base, QualType CanonicalPtr, unsigned AddrSpace,
537              QualType::GCAttrTypes gcAttr) :
538      Type(ExtQual, CanonicalPtr, Base->isDependentType()), BaseType(Base),
539      AddressSpace(AddrSpace), GCAttrType(gcAttr) {
540    assert(!isa<ExtQualType>(BaseType) &&
541           "Cannot have ExtQualType of ExtQualType");
542  }
543  friend class ASTContext;  // ASTContext creates these.
544public:
545  Type *getBaseType() const { return BaseType; }
546  QualType::GCAttrTypes getObjCGCAttr() const { return GCAttrType; }
547  unsigned getAddressSpace() const { return AddressSpace; }
548
549  virtual void getAsStringInternal(std::string &InnerString,
550                                   const PrintingPolicy &Policy) const;
551
552  void Profile(llvm::FoldingSetNodeID &ID) {
553    Profile(ID, getBaseType(), AddressSpace, GCAttrType);
554  }
555  static void Profile(llvm::FoldingSetNodeID &ID, Type *Base,
556                      unsigned AddrSpace, QualType::GCAttrTypes gcAttr) {
557    ID.AddPointer(Base);
558    ID.AddInteger(AddrSpace);
559    ID.AddInteger(gcAttr);
560  }
561
562  static bool classof(const Type *T) { return T->getTypeClass() == ExtQual; }
563  static bool classof(const ExtQualType *) { return true; }
564};
565
566
567/// QualifierSet - This class is used to collect qualifiers.
568class QualifierSet {
569public:
570  QualifierSet() :
571    CVRMask(0), AddressSpace(0), GCAttrType(QualType::GCNone) {
572  }
573
574  void removeConst() { removeCVR(QualType::Const); }
575  void removeVolatile() { removeCVR(QualType::Volatile); }
576  void removeRestrict() { removeCVR(QualType::Restrict); }
577  void removeCVR(unsigned mask) { CVRMask &= ~mask; }
578  void removeAddressSpace() { AddressSpace = 0; }
579  void removeGCAttrType() { GCAttrType = QualType::GCNone; }
580
581  void addConst() { addCVR(QualType::Const); }
582  void addVolatile() { addCVR(QualType::Volatile); }
583  void addRestrict() { addCVR(QualType::Restrict); }
584  void addCVR(unsigned mask) { CVRMask |= mask; }
585  void addAddressSpace(unsigned space) {
586    assert(space);
587    AddressSpace = space;
588  }
589  void addGCAttrType(QualType::GCAttrTypes type) {
590    assert(type);
591    GCAttrType = type;
592  }
593
594  bool empty() {
595    return !CVRMask && !AddressSpace && !GCAttrType;
596  }
597
598  /// Collect any qualifiers on the given type and return an
599  /// unqualified type.
600  const Type *strip(QualType QT) {
601    CVRMask |= QT.getCVRQualifiers();
602    return strip(QT.getTypePtr());
603  }
604
605  /// Collect any qualifiers on the given type and return an
606  /// unqualified type.
607  const Type *strip(const Type* T);
608
609  /// Apply the collected qualifiers to the given type.
610  QualType apply(QualType QT, ASTContext& C);
611
612  /// Apply the collected qualifiers to the given type.
613  QualType apply(const Type* T, ASTContext& C) {
614    return apply(QualType(T, 0), C);
615  }
616
617private:
618  unsigned CVRMask;
619  unsigned AddressSpace;
620  QualType::GCAttrTypes GCAttrType;
621};
622
623
624/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
625/// types are always canonical and have a literal name field.
626class BuiltinType : public Type {
627public:
628  enum Kind {
629    Void,
630
631    Bool,     // This is bool and/or _Bool.
632    Char_U,   // This is 'char' for targets where char is unsigned.
633    UChar,    // This is explicitly qualified unsigned char.
634    Char16,   // This is 'char16_t' for C++.
635    Char32,   // This is 'char32_t' for C++.
636    UShort,
637    UInt,
638    ULong,
639    ULongLong,
640    UInt128,  // __uint128_t
641
642    Char_S,   // This is 'char' for targets where char is signed.
643    SChar,    // This is explicitly qualified signed char.
644    WChar,    // This is 'wchar_t' for C++.
645    Short,
646    Int,
647    Long,
648    LongLong,
649    Int128,   // __int128_t
650
651    Float, Double, LongDouble,
652
653    NullPtr,  // This is the type of C++0x 'nullptr'.
654
655    Overload,  // This represents the type of an overloaded function declaration.
656    Dependent, // This represents the type of a type-dependent expression.
657
658    UndeducedAuto, // In C++0x, this represents the type of an auto variable
659                   // that has not been deduced yet.
660    ObjCId,    // This represents the ObjC 'id' type.
661    ObjCClass  // This represents the ObjC 'Class' type.
662  };
663private:
664  Kind TypeKind;
665public:
666  BuiltinType(Kind K)
667    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
668      TypeKind(K) {}
669
670  Kind getKind() const { return TypeKind; }
671  const char *getName(const LangOptions &LO) const;
672
673  virtual void getAsStringInternal(std::string &InnerString,
674                                   const PrintingPolicy &Policy) const;
675
676  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
677  static bool classof(const BuiltinType *) { return true; }
678};
679
680/// FixedWidthIntType - Used for arbitrary width types that we either don't
681/// want to or can't map to named integer types.  These always have a lower
682/// integer rank than builtin types of the same width.
683class FixedWidthIntType : public Type {
684private:
685  unsigned Width;
686  bool Signed;
687public:
688  FixedWidthIntType(unsigned W, bool S) : Type(FixedWidthInt, QualType(), false),
689                                          Width(W), Signed(S) {}
690
691  unsigned getWidth() const { return Width; }
692  bool isSigned() const { return Signed; }
693  const char *getName() const;
694
695  virtual void getAsStringInternal(std::string &InnerString,
696                                   const PrintingPolicy &Policy) const;
697
698  static bool classof(const Type *T) { return T->getTypeClass() == FixedWidthInt; }
699  static bool classof(const FixedWidthIntType *) { return true; }
700};
701
702/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
703/// types (_Complex float etc) as well as the GCC integer complex extensions.
704///
705class ComplexType : public Type, public llvm::FoldingSetNode {
706  QualType ElementType;
707  ComplexType(QualType Element, QualType CanonicalPtr) :
708    Type(Complex, CanonicalPtr, Element->isDependentType()),
709    ElementType(Element) {
710  }
711  friend class ASTContext;  // ASTContext creates these.
712public:
713  QualType getElementType() const { return ElementType; }
714
715  virtual void getAsStringInternal(std::string &InnerString,
716                                   const PrintingPolicy &Policy) const;
717
718  void Profile(llvm::FoldingSetNodeID &ID) {
719    Profile(ID, getElementType());
720  }
721  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
722    ID.AddPointer(Element.getAsOpaquePtr());
723  }
724
725  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
726  static bool classof(const ComplexType *) { return true; }
727};
728
729/// PointerType - C99 6.7.5.1 - Pointer Declarators.
730///
731class PointerType : public Type, public llvm::FoldingSetNode {
732  QualType PointeeType;
733
734  PointerType(QualType Pointee, QualType CanonicalPtr) :
735    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
736  }
737  friend class ASTContext;  // ASTContext creates these.
738public:
739
740  virtual void getAsStringInternal(std::string &InnerString,
741                                   const PrintingPolicy &Policy) const;
742
743  QualType getPointeeType() const { return PointeeType; }
744
745  void Profile(llvm::FoldingSetNodeID &ID) {
746    Profile(ID, getPointeeType());
747  }
748  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
749    ID.AddPointer(Pointee.getAsOpaquePtr());
750  }
751
752  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
753  static bool classof(const PointerType *) { return true; }
754};
755
756/// BlockPointerType - pointer to a block type.
757/// This type is to represent types syntactically represented as
758/// "void (^)(int)", etc. Pointee is required to always be a function type.
759///
760class BlockPointerType : public Type, public llvm::FoldingSetNode {
761  QualType PointeeType;  // Block is some kind of pointer type
762  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
763    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
764    PointeeType(Pointee) {
765  }
766  friend class ASTContext;  // ASTContext creates these.
767public:
768
769  // Get the pointee type. Pointee is required to always be a function type.
770  QualType getPointeeType() const { return PointeeType; }
771
772  virtual void getAsStringInternal(std::string &InnerString,
773                                   const PrintingPolicy &Policy) const;
774
775  void Profile(llvm::FoldingSetNodeID &ID) {
776      Profile(ID, getPointeeType());
777  }
778  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
779      ID.AddPointer(Pointee.getAsOpaquePtr());
780  }
781
782  static bool classof(const Type *T) {
783    return T->getTypeClass() == BlockPointer;
784  }
785  static bool classof(const BlockPointerType *) { return true; }
786};
787
788/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
789///
790class ReferenceType : public Type, public llvm::FoldingSetNode {
791  QualType PointeeType;
792
793protected:
794  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef) :
795    Type(tc, CanonicalRef, Referencee->isDependentType()),
796    PointeeType(Referencee) {
797  }
798public:
799  QualType getPointeeType() const { return PointeeType; }
800
801  void Profile(llvm::FoldingSetNodeID &ID) {
802    Profile(ID, getPointeeType());
803  }
804  static void Profile(llvm::FoldingSetNodeID &ID, QualType Referencee) {
805    ID.AddPointer(Referencee.getAsOpaquePtr());
806  }
807
808  static bool classof(const Type *T) {
809    return T->getTypeClass() == LValueReference ||
810           T->getTypeClass() == RValueReference;
811  }
812  static bool classof(const ReferenceType *) { return true; }
813};
814
815/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
816///
817class LValueReferenceType : public ReferenceType {
818  LValueReferenceType(QualType Referencee, QualType CanonicalRef) :
819    ReferenceType(LValueReference, Referencee, CanonicalRef) {
820  }
821  friend class ASTContext; // ASTContext creates these
822public:
823  virtual void getAsStringInternal(std::string &InnerString,
824                                   const PrintingPolicy &Policy) const;
825
826  static bool classof(const Type *T) {
827    return T->getTypeClass() == LValueReference;
828  }
829  static bool classof(const LValueReferenceType *) { return true; }
830};
831
832/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
833///
834class RValueReferenceType : public ReferenceType {
835  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
836    ReferenceType(RValueReference, Referencee, CanonicalRef) {
837  }
838  friend class ASTContext; // ASTContext creates these
839public:
840  virtual void getAsStringInternal(std::string &InnerString,
841                                   const PrintingPolicy &Policy) const;
842
843  static bool classof(const Type *T) {
844    return T->getTypeClass() == RValueReference;
845  }
846  static bool classof(const RValueReferenceType *) { return true; }
847};
848
849/// MemberPointerType - C++ 8.3.3 - Pointers to members
850///
851class MemberPointerType : public Type, public llvm::FoldingSetNode {
852  QualType PointeeType;
853  /// The class of which the pointee is a member. Must ultimately be a
854  /// RecordType, but could be a typedef or a template parameter too.
855  const Type *Class;
856
857  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
858    Type(MemberPointer, CanonicalPtr,
859         Cls->isDependentType() || Pointee->isDependentType()),
860    PointeeType(Pointee), Class(Cls) {
861  }
862  friend class ASTContext; // ASTContext creates these.
863public:
864
865  QualType getPointeeType() const { return PointeeType; }
866
867  const Type *getClass() const { return Class; }
868
869  virtual void getAsStringInternal(std::string &InnerString,
870                                   const PrintingPolicy &Policy) const;
871
872  void Profile(llvm::FoldingSetNodeID &ID) {
873    Profile(ID, getPointeeType(), getClass());
874  }
875  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
876                      const Type *Class) {
877    ID.AddPointer(Pointee.getAsOpaquePtr());
878    ID.AddPointer(Class);
879  }
880
881  static bool classof(const Type *T) {
882    return T->getTypeClass() == MemberPointer;
883  }
884  static bool classof(const MemberPointerType *) { return true; }
885};
886
887/// ArrayType - C99 6.7.5.2 - Array Declarators.
888///
889class ArrayType : public Type, public llvm::FoldingSetNode {
890public:
891  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
892  /// an array with a static size (e.g. int X[static 4]), or an array
893  /// with a star size (e.g. int X[*]).
894  /// 'static' is only allowed on function parameters.
895  enum ArraySizeModifier {
896    Normal, Static, Star
897  };
898private:
899  /// ElementType - The element type of the array.
900  QualType ElementType;
901
902  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
903  /// NOTE: These fields are packed into the bitfields space in the Type class.
904  unsigned SizeModifier : 2;
905
906  /// IndexTypeQuals - Capture qualifiers in declarations like:
907  /// 'int X[static restrict 4]'. For function parameters only.
908  unsigned IndexTypeQuals : 3;
909
910protected:
911  // C++ [temp.dep.type]p1:
912  //   A type is dependent if it is...
913  //     - an array type constructed from any dependent type or whose
914  //       size is specified by a constant expression that is
915  //       value-dependent,
916  ArrayType(TypeClass tc, QualType et, QualType can,
917            ArraySizeModifier sm, unsigned tq)
918    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
919      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
920
921  friend class ASTContext;  // ASTContext creates these.
922public:
923  QualType getElementType() const { return ElementType; }
924  ArraySizeModifier getSizeModifier() const {
925    return ArraySizeModifier(SizeModifier);
926  }
927  unsigned getIndexTypeQualifier() const { return IndexTypeQuals; }
928
929  static bool classof(const Type *T) {
930    return T->getTypeClass() == ConstantArray ||
931           T->getTypeClass() == ConstantArrayWithExpr ||
932           T->getTypeClass() == ConstantArrayWithoutExpr ||
933           T->getTypeClass() == VariableArray ||
934           T->getTypeClass() == IncompleteArray ||
935           T->getTypeClass() == DependentSizedArray;
936  }
937  static bool classof(const ArrayType *) { return true; }
938};
939
940/// ConstantArrayType - This class represents the canonical version of
941/// C arrays with a specified constant size.  For example, the canonical
942/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
943/// type is 'int' and the size is 404.
944class ConstantArrayType : public ArrayType {
945  llvm::APInt Size; // Allows us to unique the type.
946
947  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
948                    ArraySizeModifier sm, unsigned tq)
949    : ArrayType(ConstantArray, et, can, sm, tq),
950      Size(size) {}
951protected:
952  ConstantArrayType(TypeClass tc, QualType et, QualType can,
953                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
954    : ArrayType(tc, et, can, sm, tq), Size(size) {}
955  friend class ASTContext;  // ASTContext creates these.
956public:
957  const llvm::APInt &getSize() const { return Size; }
958  virtual void getAsStringInternal(std::string &InnerString,
959                                   const PrintingPolicy &Policy) const;
960
961  void Profile(llvm::FoldingSetNodeID &ID) {
962    Profile(ID, getElementType(), getSize(),
963            getSizeModifier(), getIndexTypeQualifier());
964  }
965  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
966                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
967                      unsigned TypeQuals) {
968    ID.AddPointer(ET.getAsOpaquePtr());
969    ID.AddInteger(ArraySize.getZExtValue());
970    ID.AddInteger(SizeMod);
971    ID.AddInteger(TypeQuals);
972  }
973  static bool classof(const Type *T) {
974    return T->getTypeClass() == ConstantArray ||
975           T->getTypeClass() == ConstantArrayWithExpr ||
976           T->getTypeClass() == ConstantArrayWithoutExpr;
977  }
978  static bool classof(const ConstantArrayType *) { return true; }
979};
980
981/// ConstantArrayWithExprType - This class represents C arrays with a
982/// constant size specified by means of an integer constant expression.
983/// For example 'int A[sizeof(int)]' has ConstantArrayWithExprType where
984/// the element type is 'int' and the size expression is 'sizeof(int)'.
985/// These types are non-canonical.
986class ConstantArrayWithExprType : public ConstantArrayType {
987  /// SizeExpr - The ICE occurring in the concrete syntax.
988  Expr *SizeExpr;
989  /// Brackets - The left and right array brackets.
990  SourceRange Brackets;
991
992  ConstantArrayWithExprType(QualType et, QualType can,
993                            const llvm::APInt &size, Expr *e,
994                            ArraySizeModifier sm, unsigned tq,
995                            SourceRange brackets)
996    : ConstantArrayType(ConstantArrayWithExpr, et, can, size, sm, tq),
997      SizeExpr(e), Brackets(brackets) {}
998  friend class ASTContext;  // ASTContext creates these.
999  virtual void Destroy(ASTContext& C);
1000
1001public:
1002  Expr *getSizeExpr() const { return SizeExpr; }
1003  SourceRange getBracketsRange() const { return Brackets; }
1004  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1005  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1006
1007  virtual void getAsStringInternal(std::string &InnerString,
1008                                   const PrintingPolicy &Policy) const;
1009
1010  static bool classof(const Type *T) {
1011    return T->getTypeClass() == ConstantArrayWithExpr;
1012  }
1013  static bool classof(const ConstantArrayWithExprType *) { return true; }
1014
1015  void Profile(llvm::FoldingSetNodeID &ID) {
1016    assert(0 && "Cannot unique ConstantArrayWithExprTypes.");
1017  }
1018};
1019
1020/// ConstantArrayWithoutExprType - This class represents C arrays with a
1021/// constant size that was not specified by an integer constant expression,
1022/// but inferred by static semantics.
1023/// For example 'int A[] = { 0, 1, 2 }' has ConstantArrayWithoutExprType.
1024/// These types are non-canonical: the corresponding canonical type,
1025/// having the size specified in an APInt object, is a ConstantArrayType.
1026class ConstantArrayWithoutExprType : public ConstantArrayType {
1027
1028  ConstantArrayWithoutExprType(QualType et, QualType can,
1029                               const llvm::APInt &size,
1030                               ArraySizeModifier sm, unsigned tq)
1031    : ConstantArrayType(ConstantArrayWithoutExpr, et, can, size, sm, tq) {}
1032  friend class ASTContext;  // ASTContext creates these.
1033
1034public:
1035  virtual void getAsStringInternal(std::string &InnerString,
1036                                   const PrintingPolicy &Policy) const;
1037
1038  static bool classof(const Type *T) {
1039    return T->getTypeClass() == ConstantArrayWithoutExpr;
1040  }
1041  static bool classof(const ConstantArrayWithoutExprType *) { return true; }
1042
1043  void Profile(llvm::FoldingSetNodeID &ID) {
1044    assert(0 && "Cannot unique ConstantArrayWithoutExprTypes.");
1045  }
1046};
1047
1048/// IncompleteArrayType - This class represents C arrays with an unspecified
1049/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1050/// type is 'int' and the size is unspecified.
1051class IncompleteArrayType : public ArrayType {
1052
1053  IncompleteArrayType(QualType et, QualType can,
1054                      ArraySizeModifier sm, unsigned tq)
1055    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1056  friend class ASTContext;  // ASTContext creates these.
1057public:
1058  virtual void getAsStringInternal(std::string &InnerString,
1059                                   const PrintingPolicy &Policy) const;
1060
1061  static bool classof(const Type *T) {
1062    return T->getTypeClass() == IncompleteArray;
1063  }
1064  static bool classof(const IncompleteArrayType *) { return true; }
1065
1066  friend class StmtIteratorBase;
1067
1068  void Profile(llvm::FoldingSetNodeID &ID) {
1069    Profile(ID, getElementType(), getSizeModifier(), getIndexTypeQualifier());
1070  }
1071
1072  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1073                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1074    ID.AddPointer(ET.getAsOpaquePtr());
1075    ID.AddInteger(SizeMod);
1076    ID.AddInteger(TypeQuals);
1077  }
1078};
1079
1080/// VariableArrayType - This class represents C arrays with a specified size
1081/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1082/// Since the size expression is an arbitrary expression, we store it as such.
1083///
1084/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1085/// should not be: two lexically equivalent variable array types could mean
1086/// different things, for example, these variables do not have the same type
1087/// dynamically:
1088///
1089/// void foo(int x) {
1090///   int Y[x];
1091///   ++x;
1092///   int Z[x];
1093/// }
1094///
1095class VariableArrayType : public ArrayType {
1096  /// SizeExpr - An assignment expression. VLA's are only permitted within
1097  /// a function block.
1098  Stmt *SizeExpr;
1099  /// Brackets - The left and right array brackets.
1100  SourceRange Brackets;
1101
1102  VariableArrayType(QualType et, QualType can, Expr *e,
1103                    ArraySizeModifier sm, unsigned tq,
1104                    SourceRange brackets)
1105    : ArrayType(VariableArray, et, can, sm, tq),
1106      SizeExpr((Stmt*) e), Brackets(brackets) {}
1107  friend class ASTContext;  // ASTContext creates these.
1108  virtual void Destroy(ASTContext& C);
1109
1110public:
1111  Expr *getSizeExpr() const {
1112    // We use C-style casts instead of cast<> here because we do not wish
1113    // to have a dependency of Type.h on Stmt.h/Expr.h.
1114    return (Expr*) SizeExpr;
1115  }
1116  SourceRange getBracketsRange() const { return Brackets; }
1117  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1118  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1119
1120  virtual void getAsStringInternal(std::string &InnerString,
1121                                   const PrintingPolicy &Policy) const;
1122
1123  static bool classof(const Type *T) {
1124    return T->getTypeClass() == VariableArray;
1125  }
1126  static bool classof(const VariableArrayType *) { return true; }
1127
1128  friend class StmtIteratorBase;
1129
1130  void Profile(llvm::FoldingSetNodeID &ID) {
1131    assert(0 && "Cannnot unique VariableArrayTypes.");
1132  }
1133};
1134
1135/// DependentSizedArrayType - This type represents an array type in
1136/// C++ whose size is a value-dependent expression. For example:
1137/// @code
1138/// template<typename T, int Size>
1139/// class array {
1140///   T data[Size];
1141/// };
1142/// @endcode
1143/// For these types, we won't actually know what the array bound is
1144/// until template instantiation occurs, at which point this will
1145/// become either a ConstantArrayType or a VariableArrayType.
1146class DependentSizedArrayType : public ArrayType {
1147  /// SizeExpr - An assignment expression that will instantiate to the
1148  /// size of the array.
1149  Stmt *SizeExpr;
1150  /// Brackets - The left and right array brackets.
1151  SourceRange Brackets;
1152
1153  DependentSizedArrayType(QualType et, QualType can, Expr *e,
1154			  ArraySizeModifier sm, unsigned tq,
1155                          SourceRange brackets)
1156    : ArrayType(DependentSizedArray, et, can, sm, tq),
1157      SizeExpr((Stmt*) e), Brackets(brackets) {}
1158  friend class ASTContext;  // ASTContext creates these.
1159  virtual void Destroy(ASTContext& C);
1160
1161public:
1162  Expr *getSizeExpr() const {
1163    // We use C-style casts instead of cast<> here because we do not wish
1164    // to have a dependency of Type.h on Stmt.h/Expr.h.
1165    return (Expr*) SizeExpr;
1166  }
1167  SourceRange getBracketsRange() const { return Brackets; }
1168  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1169  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1170
1171  virtual void getAsStringInternal(std::string &InnerString,
1172                                   const PrintingPolicy &Policy) const;
1173
1174  static bool classof(const Type *T) {
1175    return T->getTypeClass() == DependentSizedArray;
1176  }
1177  static bool classof(const DependentSizedArrayType *) { return true; }
1178
1179  friend class StmtIteratorBase;
1180
1181  void Profile(llvm::FoldingSetNodeID &ID) {
1182    assert(0 && "Cannnot unique DependentSizedArrayTypes.");
1183  }
1184};
1185
1186/// DependentSizedExtVectorType - This type represent an extended vector type
1187/// where either the type or size is dependent. For example:
1188/// @code
1189/// template<typename T, int Size>
1190/// class vector {
1191///   typedef T __attribute__((ext_vector_type(Size))) type;
1192/// }
1193/// @endcode
1194class DependentSizedExtVectorType : public Type {
1195  Expr *SizeExpr;
1196  /// ElementType - The element type of the array.
1197  QualType ElementType;
1198  SourceLocation loc;
1199
1200  DependentSizedExtVectorType(QualType ElementType, QualType can,
1201                              Expr *SizeExpr, SourceLocation loc)
1202    : Type (DependentSizedExtVector, can, true),
1203    SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {}
1204  friend class ASTContext;
1205  virtual void Destroy(ASTContext& C);
1206
1207public:
1208  const Expr *getSizeExpr() const { return SizeExpr; }
1209  QualType getElementType() const { return ElementType; }
1210  SourceLocation getAttributeLoc() const { return loc; }
1211
1212  virtual void getAsStringInternal(std::string &InnerString,
1213                                   const PrintingPolicy &Policy) const;
1214
1215  static bool classof(const Type *T) {
1216    return T->getTypeClass() == DependentSizedExtVector;
1217  }
1218  static bool classof(const DependentSizedExtVectorType *) { return true; }
1219};
1220
1221
1222/// VectorType - GCC generic vector type. This type is created using
1223/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1224/// bytes. Since the constructor takes the number of vector elements, the
1225/// client is responsible for converting the size into the number of elements.
1226class VectorType : public Type, public llvm::FoldingSetNode {
1227protected:
1228  /// ElementType - The element type of the vector.
1229  QualType ElementType;
1230
1231  /// NumElements - The number of elements in the vector.
1232  unsigned NumElements;
1233
1234  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1235    Type(Vector, canonType, vecType->isDependentType()),
1236    ElementType(vecType), NumElements(nElements) {}
1237  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1238             QualType canonType)
1239    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1240      NumElements(nElements) {}
1241  friend class ASTContext;  // ASTContext creates these.
1242public:
1243
1244  QualType getElementType() const { return ElementType; }
1245  unsigned getNumElements() const { return NumElements; }
1246
1247  virtual void getAsStringInternal(std::string &InnerString,
1248                                   const PrintingPolicy &Policy) const;
1249
1250  void Profile(llvm::FoldingSetNodeID &ID) {
1251    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1252  }
1253  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1254                      unsigned NumElements, TypeClass TypeClass) {
1255    ID.AddPointer(ElementType.getAsOpaquePtr());
1256    ID.AddInteger(NumElements);
1257    ID.AddInteger(TypeClass);
1258  }
1259  static bool classof(const Type *T) {
1260    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1261  }
1262  static bool classof(const VectorType *) { return true; }
1263};
1264
1265/// ExtVectorType - Extended vector type. This type is created using
1266/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1267/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1268/// class enables syntactic extensions, like Vector Components for accessing
1269/// points, colors, and textures (modeled after OpenGL Shading Language).
1270class ExtVectorType : public VectorType {
1271  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1272    VectorType(ExtVector, vecType, nElements, canonType) {}
1273  friend class ASTContext;  // ASTContext creates these.
1274public:
1275  static int getPointAccessorIdx(char c) {
1276    switch (c) {
1277    default: return -1;
1278    case 'x': return 0;
1279    case 'y': return 1;
1280    case 'z': return 2;
1281    case 'w': return 3;
1282    }
1283  }
1284  static int getNumericAccessorIdx(char c) {
1285    switch (c) {
1286      default: return -1;
1287      case '0': return 0;
1288      case '1': return 1;
1289      case '2': return 2;
1290      case '3': return 3;
1291      case '4': return 4;
1292      case '5': return 5;
1293      case '6': return 6;
1294      case '7': return 7;
1295      case '8': return 8;
1296      case '9': return 9;
1297      case 'A':
1298      case 'a': return 10;
1299      case 'B':
1300      case 'b': return 11;
1301      case 'C':
1302      case 'c': return 12;
1303      case 'D':
1304      case 'd': return 13;
1305      case 'E':
1306      case 'e': return 14;
1307      case 'F':
1308      case 'f': return 15;
1309    }
1310  }
1311
1312  static int getAccessorIdx(char c) {
1313    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1314    return getNumericAccessorIdx(c);
1315  }
1316
1317  bool isAccessorWithinNumElements(char c) const {
1318    if (int idx = getAccessorIdx(c)+1)
1319      return unsigned(idx-1) < NumElements;
1320    return false;
1321  }
1322  virtual void getAsStringInternal(std::string &InnerString,
1323                                   const PrintingPolicy &Policy) const;
1324
1325  static bool classof(const Type *T) {
1326    return T->getTypeClass() == ExtVector;
1327  }
1328  static bool classof(const ExtVectorType *) { return true; }
1329};
1330
1331/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1332/// class of FunctionNoProtoType and FunctionProtoType.
1333///
1334class FunctionType : public Type {
1335  /// SubClassData - This field is owned by the subclass, put here to pack
1336  /// tightly with the ivars in Type.
1337  bool SubClassData : 1;
1338
1339  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1340  /// other bitfields.
1341  /// The qualifiers are part of FunctionProtoType because...
1342  ///
1343  /// C++ 8.3.5p4: The return type, the parameter type list and the
1344  /// cv-qualifier-seq, [...], are part of the function type.
1345  ///
1346  unsigned TypeQuals : 3;
1347
1348  // The type returned by the function.
1349  QualType ResultType;
1350protected:
1351  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1352               unsigned typeQuals, QualType Canonical, bool Dependent)
1353    : Type(tc, Canonical, Dependent),
1354      SubClassData(SubclassInfo), TypeQuals(typeQuals), ResultType(res) {}
1355  bool getSubClassData() const { return SubClassData; }
1356  unsigned getTypeQuals() const { return TypeQuals; }
1357public:
1358
1359  QualType getResultType() const { return ResultType; }
1360
1361
1362  static bool classof(const Type *T) {
1363    return T->getTypeClass() == FunctionNoProto ||
1364           T->getTypeClass() == FunctionProto;
1365  }
1366  static bool classof(const FunctionType *) { return true; }
1367};
1368
1369/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1370/// no information available about its arguments.
1371class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1372  FunctionNoProtoType(QualType Result, QualType Canonical)
1373    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1374                   /*Dependent=*/false) {}
1375  friend class ASTContext;  // ASTContext creates these.
1376public:
1377  // No additional state past what FunctionType provides.
1378
1379  virtual void getAsStringInternal(std::string &InnerString,
1380                                   const PrintingPolicy &Policy) const;
1381
1382  void Profile(llvm::FoldingSetNodeID &ID) {
1383    Profile(ID, getResultType());
1384  }
1385  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType) {
1386    ID.AddPointer(ResultType.getAsOpaquePtr());
1387  }
1388
1389  static bool classof(const Type *T) {
1390    return T->getTypeClass() == FunctionNoProto;
1391  }
1392  static bool classof(const FunctionNoProtoType *) { return true; }
1393};
1394
1395/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1396/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1397/// arguments, not as having a single void argument. Such a type can have an
1398/// exception specification, but this specification is not part of the canonical
1399/// type.
1400class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1401  /// hasAnyDependentType - Determine whether there are any dependent
1402  /// types within the arguments passed in.
1403  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1404    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1405      if (ArgArray[Idx]->isDependentType())
1406    return true;
1407
1408    return false;
1409  }
1410
1411  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1412                    bool isVariadic, unsigned typeQuals, bool hasExs,
1413                    bool hasAnyExs, const QualType *ExArray,
1414                    unsigned numExs, QualType Canonical)
1415    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1416                   (Result->isDependentType() ||
1417                    hasAnyDependentType(ArgArray, numArgs))),
1418      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1419      AnyExceptionSpec(hasAnyExs) {
1420    // Fill in the trailing argument array.
1421    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1422    for (unsigned i = 0; i != numArgs; ++i)
1423      ArgInfo[i] = ArgArray[i];
1424    // Fill in the exception array.
1425    QualType *Ex = ArgInfo + numArgs;
1426    for (unsigned i = 0; i != numExs; ++i)
1427      Ex[i] = ExArray[i];
1428  }
1429
1430  /// NumArgs - The number of arguments this function has, not counting '...'.
1431  unsigned NumArgs : 20;
1432
1433  /// NumExceptions - The number of types in the exception spec, if any.
1434  unsigned NumExceptions : 10;
1435
1436  /// HasExceptionSpec - Whether this function has an exception spec at all.
1437  bool HasExceptionSpec : 1;
1438
1439  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1440  bool AnyExceptionSpec : 1;
1441
1442  /// ArgInfo - There is an variable size array after the class in memory that
1443  /// holds the argument types.
1444
1445  /// Exceptions - There is another variable size array after ArgInfo that
1446  /// holds the exception types.
1447
1448  friend class ASTContext;  // ASTContext creates these.
1449
1450public:
1451  unsigned getNumArgs() const { return NumArgs; }
1452  QualType getArgType(unsigned i) const {
1453    assert(i < NumArgs && "Invalid argument number!");
1454    return arg_type_begin()[i];
1455  }
1456
1457  bool hasExceptionSpec() const { return HasExceptionSpec; }
1458  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1459  unsigned getNumExceptions() const { return NumExceptions; }
1460  QualType getExceptionType(unsigned i) const {
1461    assert(i < NumExceptions && "Invalid exception number!");
1462    return exception_begin()[i];
1463  }
1464  bool hasEmptyExceptionSpec() const {
1465    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1466      getNumExceptions() == 0;
1467  }
1468
1469  bool isVariadic() const { return getSubClassData(); }
1470  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1471
1472  typedef const QualType *arg_type_iterator;
1473  arg_type_iterator arg_type_begin() const {
1474    return reinterpret_cast<const QualType *>(this+1);
1475  }
1476  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1477
1478  typedef const QualType *exception_iterator;
1479  exception_iterator exception_begin() const {
1480    // exceptions begin where arguments end
1481    return arg_type_end();
1482  }
1483  exception_iterator exception_end() const {
1484    return exception_begin() + NumExceptions;
1485  }
1486
1487  virtual void getAsStringInternal(std::string &InnerString,
1488                                   const PrintingPolicy &Policy) const;
1489
1490  static bool classof(const Type *T) {
1491    return T->getTypeClass() == FunctionProto;
1492  }
1493  static bool classof(const FunctionProtoType *) { return true; }
1494
1495  void Profile(llvm::FoldingSetNodeID &ID);
1496  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1497                      arg_type_iterator ArgTys, unsigned NumArgs,
1498                      bool isVariadic, unsigned TypeQuals,
1499                      bool hasExceptionSpec, bool anyExceptionSpec,
1500                      unsigned NumExceptions, exception_iterator Exs);
1501};
1502
1503
1504class TypedefType : public Type {
1505  TypedefDecl *Decl;
1506protected:
1507  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1508    : Type(tc, can, can->isDependentType()), Decl(D) {
1509    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1510  }
1511  friend class ASTContext;  // ASTContext creates these.
1512public:
1513
1514  TypedefDecl *getDecl() const { return Decl; }
1515
1516  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1517  /// potentially looking through *all* consecutive typedefs.  This returns the
1518  /// sum of the type qualifiers, so if you have:
1519  ///   typedef const int A;
1520  ///   typedef volatile A B;
1521  /// looking through the typedefs for B will give you "const volatile A".
1522  QualType LookThroughTypedefs() const;
1523
1524  virtual void getAsStringInternal(std::string &InnerString,
1525                                   const PrintingPolicy &Policy) const;
1526
1527  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1528  static bool classof(const TypedefType *) { return true; }
1529};
1530
1531/// TypeOfExprType (GCC extension).
1532class TypeOfExprType : public Type {
1533  Expr *TOExpr;
1534  TypeOfExprType(Expr *E, QualType can = QualType());
1535  friend class ASTContext;  // ASTContext creates these.
1536public:
1537  Expr *getUnderlyingExpr() const { return TOExpr; }
1538
1539  virtual void getAsStringInternal(std::string &InnerString,
1540                                   const PrintingPolicy &Policy) const;
1541
1542  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1543  static bool classof(const TypeOfExprType *) { return true; }
1544};
1545
1546/// TypeOfType (GCC extension).
1547class TypeOfType : public Type {
1548  QualType TOType;
1549  TypeOfType(QualType T, QualType can)
1550    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
1551    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1552  }
1553  friend class ASTContext;  // ASTContext creates these.
1554public:
1555  QualType getUnderlyingType() const { return TOType; }
1556
1557  virtual void getAsStringInternal(std::string &InnerString,
1558                                   const PrintingPolicy &Policy) const;
1559
1560  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
1561  static bool classof(const TypeOfType *) { return true; }
1562};
1563
1564/// DecltypeType (C++0x)
1565class DecltypeType : public Type {
1566  Expr *E;
1567
1568  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
1569  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
1570  // from it.
1571  QualType UnderlyingType;
1572
1573  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
1574  friend class ASTContext;  // ASTContext creates these.
1575public:
1576  Expr *getUnderlyingExpr() const { return E; }
1577  QualType getUnderlyingType() const { return UnderlyingType; }
1578
1579  virtual void getAsStringInternal(std::string &InnerString,
1580                                   const PrintingPolicy &Policy) const;
1581
1582  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
1583  static bool classof(const DecltypeType *) { return true; }
1584};
1585
1586class TagType : public Type {
1587  /// Stores the TagDecl associated with this type. The decl will
1588  /// point to the TagDecl that actually defines the entity (or is a
1589  /// definition in progress), if there is such a definition. The
1590  /// single-bit value will be non-zero when this tag is in the
1591  /// process of being defined.
1592  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
1593  friend class ASTContext;
1594  friend class TagDecl;
1595
1596protected:
1597  TagType(TypeClass TC, TagDecl *D, QualType can);
1598
1599public:
1600  TagDecl *getDecl() const { return decl.getPointer(); }
1601
1602  /// @brief Determines whether this type is in the process of being
1603  /// defined.
1604  bool isBeingDefined() const { return decl.getInt(); }
1605  void setBeingDefined(bool Def) { decl.setInt(Def? 1 : 0); }
1606
1607  virtual void getAsStringInternal(std::string &InnerString,
1608                                   const PrintingPolicy &Policy) const;
1609
1610  static bool classof(const Type *T) {
1611    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
1612  }
1613  static bool classof(const TagType *) { return true; }
1614  static bool classof(const RecordType *) { return true; }
1615  static bool classof(const EnumType *) { return true; }
1616};
1617
1618/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
1619/// to detect TagType objects of structs/unions/classes.
1620class RecordType : public TagType {
1621protected:
1622  explicit RecordType(RecordDecl *D)
1623    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
1624  explicit RecordType(TypeClass TC, RecordDecl *D)
1625    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
1626  friend class ASTContext;   // ASTContext creates these.
1627public:
1628
1629  RecordDecl *getDecl() const {
1630    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
1631  }
1632
1633  // FIXME: This predicate is a helper to QualType/Type. It needs to
1634  // recursively check all fields for const-ness. If any field is declared
1635  // const, it needs to return false.
1636  bool hasConstFields() const { return false; }
1637
1638  // FIXME: RecordType needs to check when it is created that all fields are in
1639  // the same address space, and return that.
1640  unsigned getAddressSpace() const { return 0; }
1641
1642  static bool classof(const TagType *T);
1643  static bool classof(const Type *T) {
1644    return isa<TagType>(T) && classof(cast<TagType>(T));
1645  }
1646  static bool classof(const RecordType *) { return true; }
1647};
1648
1649/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
1650/// to detect TagType objects of enums.
1651class EnumType : public TagType {
1652  explicit EnumType(EnumDecl *D)
1653    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
1654  friend class ASTContext;   // ASTContext creates these.
1655public:
1656
1657  EnumDecl *getDecl() const {
1658    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
1659  }
1660
1661  static bool classof(const TagType *T);
1662  static bool classof(const Type *T) {
1663    return isa<TagType>(T) && classof(cast<TagType>(T));
1664  }
1665  static bool classof(const EnumType *) { return true; }
1666};
1667
1668class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
1669  unsigned Depth : 15;
1670  unsigned Index : 16;
1671  unsigned ParameterPack : 1;
1672  IdentifierInfo *Name;
1673
1674  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
1675                       QualType Canon)
1676    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
1677      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
1678
1679  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
1680    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
1681      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
1682
1683  friend class ASTContext;  // ASTContext creates these
1684
1685public:
1686  unsigned getDepth() const { return Depth; }
1687  unsigned getIndex() const { return Index; }
1688  bool isParameterPack() const { return ParameterPack; }
1689  IdentifierInfo *getName() const { return Name; }
1690
1691  virtual void getAsStringInternal(std::string &InnerString,
1692                                   const PrintingPolicy &Policy) const;
1693
1694  void Profile(llvm::FoldingSetNodeID &ID) {
1695    Profile(ID, Depth, Index, ParameterPack, Name);
1696  }
1697
1698  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
1699                      unsigned Index, bool ParameterPack,
1700                      IdentifierInfo *Name) {
1701    ID.AddInteger(Depth);
1702    ID.AddInteger(Index);
1703    ID.AddBoolean(ParameterPack);
1704    ID.AddPointer(Name);
1705  }
1706
1707  static bool classof(const Type *T) {
1708    return T->getTypeClass() == TemplateTypeParm;
1709  }
1710  static bool classof(const TemplateTypeParmType *T) { return true; }
1711};
1712
1713/// \brief Represents the type of a template specialization as written
1714/// in the source code.
1715///
1716/// Template specialization types represent the syntactic form of a
1717/// template-id that refers to a type, e.g., @c vector<int>. Some
1718/// template specialization types are syntactic sugar, whose canonical
1719/// type will point to some other type node that represents the
1720/// instantiation or class template specialization. For example, a
1721/// class template specialization type of @c vector<int> will refer to
1722/// a tag type for the instantiation
1723/// @c std::vector<int, std::allocator<int>>.
1724///
1725/// Other template specialization types, for which the template name
1726/// is dependent, may be canonical types. These types are always
1727/// dependent.
1728class TemplateSpecializationType
1729  : public Type, public llvm::FoldingSetNode {
1730
1731  /// \brief The name of the template being specialized.
1732  TemplateName Template;
1733
1734  /// \brief - The number of template arguments named in this class
1735  /// template specialization.
1736  unsigned NumArgs;
1737
1738  TemplateSpecializationType(TemplateName T,
1739                             const TemplateArgument *Args,
1740                             unsigned NumArgs, QualType Canon);
1741
1742  virtual void Destroy(ASTContext& C);
1743
1744  friend class ASTContext;  // ASTContext creates these
1745
1746public:
1747  /// \brief Determine whether any of the given template arguments are
1748  /// dependent.
1749  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
1750                                            unsigned NumArgs);
1751
1752  /// \brief Print a template argument list, including the '<' and '>'
1753  /// enclosing the template arguments.
1754  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
1755                                               unsigned NumArgs,
1756                                               const PrintingPolicy &Policy);
1757
1758  typedef const TemplateArgument * iterator;
1759
1760  iterator begin() const { return getArgs(); }
1761  iterator end() const;
1762
1763  /// \brief Retrieve the name of the template that we are specializing.
1764  TemplateName getTemplateName() const { return Template; }
1765
1766  /// \brief Retrieve the template arguments.
1767  const TemplateArgument *getArgs() const {
1768    return reinterpret_cast<const TemplateArgument *>(this + 1);
1769  }
1770
1771  /// \brief Retrieve the number of template arguments.
1772  unsigned getNumArgs() const { return NumArgs; }
1773
1774  /// \brief Retrieve a specific template argument as a type.
1775  /// \precondition @c isArgType(Arg)
1776  const TemplateArgument &getArg(unsigned Idx) const;
1777
1778  virtual void getAsStringInternal(std::string &InnerString,
1779                                   const PrintingPolicy &Policy) const;
1780
1781  void Profile(llvm::FoldingSetNodeID &ID) {
1782    Profile(ID, Template, getArgs(), NumArgs);
1783  }
1784
1785  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
1786                      const TemplateArgument *Args, unsigned NumArgs);
1787
1788  static bool classof(const Type *T) {
1789    return T->getTypeClass() == TemplateSpecialization;
1790  }
1791  static bool classof(const TemplateSpecializationType *T) { return true; }
1792};
1793
1794/// \brief Represents a type that was referred to via a qualified
1795/// name, e.g., N::M::type.
1796///
1797/// This type is used to keep track of a type name as written in the
1798/// source code, including any nested-name-specifiers. The type itself
1799/// is always "sugar", used to express what was written in the source
1800/// code but containing no additional semantic information.
1801class QualifiedNameType : public Type, public llvm::FoldingSetNode {
1802  /// \brief The nested name specifier containing the qualifier.
1803  NestedNameSpecifier *NNS;
1804
1805  /// \brief The type that this qualified name refers to.
1806  QualType NamedType;
1807
1808  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
1809                    QualType CanonType)
1810    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
1811      NNS(NNS), NamedType(NamedType) { }
1812
1813  friend class ASTContext;  // ASTContext creates these
1814
1815public:
1816  /// \brief Retrieve the qualification on this type.
1817  NestedNameSpecifier *getQualifier() const { return NNS; }
1818
1819  /// \brief Retrieve the type named by the qualified-id.
1820  QualType getNamedType() const { return NamedType; }
1821
1822  virtual void getAsStringInternal(std::string &InnerString,
1823                                   const PrintingPolicy &Policy) const;
1824
1825  void Profile(llvm::FoldingSetNodeID &ID) {
1826    Profile(ID, NNS, NamedType);
1827  }
1828
1829  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1830                      QualType NamedType) {
1831    ID.AddPointer(NNS);
1832    NamedType.Profile(ID);
1833  }
1834
1835  static bool classof(const Type *T) {
1836    return T->getTypeClass() == QualifiedName;
1837  }
1838  static bool classof(const QualifiedNameType *T) { return true; }
1839};
1840
1841/// \brief Represents a 'typename' specifier that names a type within
1842/// a dependent type, e.g., "typename T::type".
1843///
1844/// TypenameType has a very similar structure to QualifiedNameType,
1845/// which also involves a nested-name-specifier following by a type,
1846/// and (FIXME!) both can even be prefixed by the 'typename'
1847/// keyword. However, the two types serve very different roles:
1848/// QualifiedNameType is a non-semantic type that serves only as sugar
1849/// to show how a particular type was written in the source
1850/// code. TypenameType, on the other hand, only occurs when the
1851/// nested-name-specifier is dependent, such that we cannot resolve
1852/// the actual type until after instantiation.
1853class TypenameType : public Type, public llvm::FoldingSetNode {
1854  /// \brief The nested name specifier containing the qualifier.
1855  NestedNameSpecifier *NNS;
1856
1857  typedef llvm::PointerUnion<const IdentifierInfo *,
1858                             const TemplateSpecializationType *> NameType;
1859
1860  /// \brief The type that this typename specifier refers to.
1861  NameType Name;
1862
1863  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1864               QualType CanonType)
1865    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
1866    assert(NNS->isDependent() &&
1867           "TypenameType requires a dependent nested-name-specifier");
1868  }
1869
1870  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
1871               QualType CanonType)
1872    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
1873    assert(NNS->isDependent() &&
1874           "TypenameType requires a dependent nested-name-specifier");
1875  }
1876
1877  friend class ASTContext;  // ASTContext creates these
1878
1879public:
1880  /// \brief Retrieve the qualification on this type.
1881  NestedNameSpecifier *getQualifier() const { return NNS; }
1882
1883  /// \brief Retrieve the type named by the typename specifier as an
1884  /// identifier.
1885  ///
1886  /// This routine will return a non-NULL identifier pointer when the
1887  /// form of the original typename was terminated by an identifier,
1888  /// e.g., "typename T::type".
1889  const IdentifierInfo *getIdentifier() const {
1890    return Name.dyn_cast<const IdentifierInfo *>();
1891  }
1892
1893  /// \brief Retrieve the type named by the typename specifier as a
1894  /// type specialization.
1895  const TemplateSpecializationType *getTemplateId() const {
1896    return Name.dyn_cast<const TemplateSpecializationType *>();
1897  }
1898
1899  virtual void getAsStringInternal(std::string &InnerString,
1900                                   const PrintingPolicy &Policy) const;
1901
1902  void Profile(llvm::FoldingSetNodeID &ID) {
1903    Profile(ID, NNS, Name);
1904  }
1905
1906  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1907                      NameType Name) {
1908    ID.AddPointer(NNS);
1909    ID.AddPointer(Name.getOpaqueValue());
1910  }
1911
1912  static bool classof(const Type *T) {
1913    return T->getTypeClass() == Typename;
1914  }
1915  static bool classof(const TypenameType *T) { return true; }
1916};
1917
1918/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
1919/// object oriented design.  They basically correspond to C++ classes.  There
1920/// are two kinds of interface types, normal interfaces like "NSString" and
1921/// qualified interfaces, which are qualified with a protocol list like
1922/// "NSString<NSCopyable, NSAmazing>".
1923class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
1924  ObjCInterfaceDecl *Decl;
1925
1926  // List of protocols for this protocol conforming object type
1927  // List is sorted on protocol name. No protocol is enterred more than once.
1928  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;
1929
1930  ObjCInterfaceType(ObjCInterfaceDecl *D,
1931                    ObjCProtocolDecl **Protos, unsigned NumP) :
1932    Type(ObjCInterface, QualType(), /*Dependent=*/false),
1933    Decl(D), Protocols(Protos, Protos+NumP) { }
1934  friend class ASTContext;  // ASTContext creates these.
1935public:
1936  ObjCInterfaceDecl *getDecl() const { return Decl; }
1937
1938  /// getNumProtocols - Return the number of qualifying protocols in this
1939  /// interface type, or 0 if there are none.
1940  unsigned getNumProtocols() const { return Protocols.size(); }
1941
1942  /// qual_iterator and friends: this provides access to the (potentially empty)
1943  /// list of protocols qualifying this interface.
1944  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
1945  qual_iterator qual_begin() const { return Protocols.begin(); }
1946  qual_iterator qual_end() const   { return Protocols.end(); }
1947  bool qual_empty() const { return Protocols.size() == 0; }
1948
1949  virtual void getAsStringInternal(std::string &InnerString,
1950                                   const PrintingPolicy &Policy) const;
1951
1952  void Profile(llvm::FoldingSetNodeID &ID);
1953  static void Profile(llvm::FoldingSetNodeID &ID,
1954                      const ObjCInterfaceDecl *Decl,
1955                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
1956
1957  static bool classof(const Type *T) {
1958    return T->getTypeClass() == ObjCInterface;
1959  }
1960  static bool classof(const ObjCInterfaceType *) { return true; }
1961};
1962
1963/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
1964/// and 'Interface <p> *'.
1965///
1966/// Duplicate protocols are removed and protocol list is canonicalized to be in
1967/// alphabetical order.
1968class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
1969  QualType PointeeType; // A builtin or interface type.
1970
1971  // List of protocols for this protocol conforming object type
1972  // List is sorted on protocol name. No protocol is entered more than once.
1973  llvm::SmallVector<ObjCProtocolDecl*, 8> Protocols;
1974
1975  ObjCObjectPointerType(QualType T, ObjCProtocolDecl **Protos, unsigned NumP) :
1976    Type(ObjCObjectPointer, QualType(), /*Dependent=*/false),
1977    PointeeType(T), Protocols(Protos, Protos+NumP) { }
1978  friend class ASTContext;  // ASTContext creates these.
1979
1980public:
1981  // Get the pointee type. Pointee will either be:
1982  // - a built-in type (for 'id' and 'Class').
1983  // - an interface type (for user-defined types).
1984  // - a TypedefType whose canonical type is an interface (as in 'T' below).
1985  //   For example: typedef NSObject T; T *var;
1986  QualType getPointeeType() const { return PointeeType; }
1987
1988  const ObjCInterfaceType *getInterfaceType() const {
1989    return PointeeType->getAsObjCInterfaceType();
1990  }
1991  /// getInterfaceDecl - returns an interface decl for user-defined types.
1992  ObjCInterfaceDecl *getInterfaceDecl() const {
1993    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
1994  }
1995  /// isObjCIdType - true for "id".
1996  bool isObjCIdType() const {
1997    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
1998           !Protocols.size();
1999  }
2000  /// isObjCClassType - true for "Class".
2001  bool isObjCClassType() const {
2002    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2003           !Protocols.size();
2004  }
2005  /// isObjCQualifiedIdType - true for "id <p>".
2006  bool isObjCQualifiedIdType() const {
2007    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2008           Protocols.size();
2009  }
2010  /// isObjCQualifiedClassType - true for "Class <p>".
2011  bool isObjCQualifiedClassType() const {
2012    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2013           Protocols.size();
2014  }
2015  /// qual_iterator and friends: this provides access to the (potentially empty)
2016  /// list of protocols qualifying this interface.
2017  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
2018
2019  qual_iterator qual_begin() const { return Protocols.begin(); }
2020  qual_iterator qual_end() const   { return Protocols.end(); }
2021  bool qual_empty() const { return Protocols.size() == 0; }
2022
2023  /// getNumProtocols - Return the number of qualifying protocols in this
2024  /// interface type, or 0 if there are none.
2025  unsigned getNumProtocols() const { return Protocols.size(); }
2026
2027  void Profile(llvm::FoldingSetNodeID &ID);
2028  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2029                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2030  virtual void getAsStringInternal(std::string &InnerString,
2031                                   const PrintingPolicy &Policy) const;
2032  static bool classof(const Type *T) {
2033    return T->getTypeClass() == ObjCObjectPointer;
2034  }
2035  static bool classof(const ObjCObjectPointerType *) { return true; }
2036};
2037
2038// Inline function definitions.
2039
2040/// getUnqualifiedType - Return the type without any qualifiers.
2041inline QualType QualType::getUnqualifiedType() const {
2042  Type *TP = getTypePtr();
2043  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(TP))
2044    TP = EXTQT->getBaseType();
2045  return QualType(TP, 0);
2046}
2047
2048/// getAddressSpace - Return the address space of this type.
2049inline unsigned QualType::getAddressSpace() const {
2050  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2051  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2052    return AT->getElementType().getAddressSpace();
2053  if (const RecordType *RT = dyn_cast<RecordType>(CT))
2054    return RT->getAddressSpace();
2055  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
2056    return EXTQT->getAddressSpace();
2057  return 0;
2058}
2059
2060/// getObjCGCAttr - Return the gc attribute of this type.
2061inline QualType::GCAttrTypes QualType::getObjCGCAttr() const {
2062  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2063  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2064      return AT->getElementType().getObjCGCAttr();
2065  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
2066    return EXTQT->getObjCGCAttr();
2067  if (const ObjCObjectPointerType *PT = CT->getAsObjCObjectPointerType())
2068    return PT->getPointeeType().getObjCGCAttr();
2069  return GCNone;
2070}
2071
2072/// isMoreQualifiedThan - Determine whether this type is more
2073/// qualified than the Other type. For example, "const volatile int"
2074/// is more qualified than "const int", "volatile int", and
2075/// "int". However, it is not more qualified than "const volatile
2076/// int".
2077inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2078  unsigned MyQuals = this->getCVRQualifiers();
2079  unsigned OtherQuals = Other.getCVRQualifiers();
2080  if (getAddressSpace() != Other.getAddressSpace())
2081    return false;
2082  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2083}
2084
2085/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2086/// as qualified as the Other type. For example, "const volatile
2087/// int" is at least as qualified as "const int", "volatile int",
2088/// "int", and "const volatile int".
2089inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2090  unsigned MyQuals = this->getCVRQualifiers();
2091  unsigned OtherQuals = Other.getCVRQualifiers();
2092  if (getAddressSpace() != Other.getAddressSpace())
2093    return false;
2094  return (MyQuals | OtherQuals) == MyQuals;
2095}
2096
2097/// getNonReferenceType - If Type is a reference type (e.g., const
2098/// int&), returns the type that the reference refers to ("const
2099/// int"). Otherwise, returns the type itself. This routine is used
2100/// throughout Sema to implement C++ 5p6:
2101///
2102///   If an expression initially has the type "reference to T" (8.3.2,
2103///   8.5.3), the type is adjusted to "T" prior to any further
2104///   analysis, the expression designates the object or function
2105///   denoted by the reference, and the expression is an lvalue.
2106inline QualType QualType::getNonReferenceType() const {
2107  if (const ReferenceType *RefType = (*this)->getAsReferenceType())
2108    return RefType->getPointeeType();
2109  else
2110    return *this;
2111}
2112
2113inline const TypedefType* Type::getAsTypedefType() const {
2114  return dyn_cast<TypedefType>(this);
2115}
2116inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
2117  if (const PointerType *PT = getAsPointerType())
2118    return PT->getPointeeType()->getAsObjCInterfaceType();
2119  return 0;
2120}
2121
2122// NOTE: All of these methods use "getUnqualifiedType" to strip off address
2123// space qualifiers if present.
2124inline bool Type::isFunctionType() const {
2125  return isa<FunctionType>(CanonicalType.getUnqualifiedType());
2126}
2127inline bool Type::isPointerType() const {
2128  return isa<PointerType>(CanonicalType.getUnqualifiedType());
2129}
2130inline bool Type::isAnyPointerType() const {
2131  return isPointerType() || isObjCObjectPointerType();
2132}
2133inline bool Type::isBlockPointerType() const {
2134  return isa<BlockPointerType>(CanonicalType.getUnqualifiedType());
2135}
2136inline bool Type::isReferenceType() const {
2137  return isa<ReferenceType>(CanonicalType.getUnqualifiedType());
2138}
2139inline bool Type::isLValueReferenceType() const {
2140  return isa<LValueReferenceType>(CanonicalType.getUnqualifiedType());
2141}
2142inline bool Type::isRValueReferenceType() const {
2143  return isa<RValueReferenceType>(CanonicalType.getUnqualifiedType());
2144}
2145inline bool Type::isFunctionPointerType() const {
2146  if (const PointerType* T = getAsPointerType())
2147    return T->getPointeeType()->isFunctionType();
2148  else
2149    return false;
2150}
2151inline bool Type::isMemberPointerType() const {
2152  return isa<MemberPointerType>(CanonicalType.getUnqualifiedType());
2153}
2154inline bool Type::isMemberFunctionPointerType() const {
2155  if (const MemberPointerType* T = getAsMemberPointerType())
2156    return T->getPointeeType()->isFunctionType();
2157  else
2158    return false;
2159}
2160inline bool Type::isArrayType() const {
2161  return isa<ArrayType>(CanonicalType.getUnqualifiedType());
2162}
2163inline bool Type::isConstantArrayType() const {
2164  return isa<ConstantArrayType>(CanonicalType.getUnqualifiedType());
2165}
2166inline bool Type::isIncompleteArrayType() const {
2167  return isa<IncompleteArrayType>(CanonicalType.getUnqualifiedType());
2168}
2169inline bool Type::isVariableArrayType() const {
2170  return isa<VariableArrayType>(CanonicalType.getUnqualifiedType());
2171}
2172inline bool Type::isDependentSizedArrayType() const {
2173  return isa<DependentSizedArrayType>(CanonicalType.getUnqualifiedType());
2174}
2175inline bool Type::isRecordType() const {
2176  return isa<RecordType>(CanonicalType.getUnqualifiedType());
2177}
2178inline bool Type::isAnyComplexType() const {
2179  return isa<ComplexType>(CanonicalType.getUnqualifiedType());
2180}
2181inline bool Type::isVectorType() const {
2182  return isa<VectorType>(CanonicalType.getUnqualifiedType());
2183}
2184inline bool Type::isExtVectorType() const {
2185  return isa<ExtVectorType>(CanonicalType.getUnqualifiedType());
2186}
2187inline bool Type::isObjCObjectPointerType() const {
2188  return isa<ObjCObjectPointerType>(CanonicalType.getUnqualifiedType());
2189}
2190inline bool Type::isObjCInterfaceType() const {
2191  return isa<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
2192}
2193inline bool Type::isObjCQualifiedIdType() const {
2194  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2195    return OPT->isObjCQualifiedIdType();
2196  return false;
2197}
2198inline bool Type::isObjCQualifiedClassType() const {
2199  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2200    return OPT->isObjCQualifiedClassType();
2201  return false;
2202}
2203inline bool Type::isObjCIdType() const {
2204  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2205    return OPT->isObjCIdType();
2206  return false;
2207}
2208inline bool Type::isObjCClassType() const {
2209  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2210    return OPT->isObjCClassType();
2211  return false;
2212}
2213inline bool Type::isObjCBuiltinType() const {
2214  return isObjCIdType() || isObjCClassType();
2215}
2216inline bool Type::isTemplateTypeParmType() const {
2217  return isa<TemplateTypeParmType>(CanonicalType.getUnqualifiedType());
2218}
2219
2220inline bool Type::isSpecificBuiltinType(unsigned K) const {
2221  if (const BuiltinType *BT = getAsBuiltinType())
2222    if (BT->getKind() == (BuiltinType::Kind) K)
2223      return true;
2224  return false;
2225}
2226
2227/// \brief Determines whether this is a type for which one can define
2228/// an overloaded operator.
2229inline bool Type::isOverloadableType() const {
2230  return isDependentType() || isRecordType() || isEnumeralType();
2231}
2232
2233inline bool Type::hasPointerRepresentation() const {
2234  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
2235          isObjCInterfaceType() || isObjCObjectPointerType() ||
2236          isObjCQualifiedInterfaceType() || isNullPtrType());
2237}
2238
2239inline bool Type::hasObjCPointerRepresentation() const {
2240  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
2241          isObjCQualifiedInterfaceType());
2242}
2243
2244/// Insertion operator for diagnostics.  This allows sending QualType's into a
2245/// diagnostic with <<.
2246inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2247                                           QualType T) {
2248  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
2249                  Diagnostic::ak_qualtype);
2250  return DB;
2251}
2252
2253/// Member-template getAs<specific type>'.
2254template <typename T> const T *Type::getAs() const {
2255  // If this is directly a T type, return it.
2256  if (const T *Ty = dyn_cast<T>(this))
2257    return Ty;
2258
2259  // If the canonical form of this type isn't the right kind, reject it.
2260  if (!isa<T>(CanonicalType)) {
2261    // Look through type qualifiers
2262    if (isa<T>(CanonicalType.getUnqualifiedType()))
2263      return CanonicalType.getUnqualifiedType()->getAs<T>();
2264    return 0;
2265  }
2266
2267  // If this is a typedef for a pointer type, strip the typedef off without
2268  // losing all typedef information.
2269  return cast<T>(getDesugaredType());
2270}
2271
2272}  // end namespace clang
2273
2274#endif
2275