Type.h revision 92011d0a1bc6a77480c398f27b673be62744af4d
12a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
22a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//
32a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//                     The LLVM Compiler Infrastructure
42a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//
52a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)// This file is distributed under the University of Illinois Open Source
62a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)// License. See LICENSE.TXT for details.
72a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//
82a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//===----------------------------------------------------------------------===//
92a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//
10868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)//  This file defines the Type interface and subclasses.
11f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)//
12c5cede9ae108bb15f6b7a8aea21c7e1fefa2834cBen Murdoch//===----------------------------------------------------------------------===//
137dbb3d5cf0c15f500944d211057644d6a2f37371Ben Murdoch
142a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#ifndef LLVM_CLANG_AST_TYPE_H
152a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#define LLVM_CLANG_AST_TYPE_H
162a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
172a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "clang/AST/NestedNameSpecifier.h"
182a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "clang/AST/TemplateName.h"
192a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "clang/Basic/Diagnostic.h"
202a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "clang/Basic/ExceptionSpecificationType.h"
212a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "clang/Basic/IdentifierTable.h"
222a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "clang/Basic/LLVM.h"
232a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "clang/Basic/Linkage.h"
242a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "clang/Basic/PartialDiagnostic.h"
252a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "clang/Basic/Specifiers.h"
262a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "clang/Basic/Visibility.h"
272a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/ADT/APSInt.h"
282a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/ADT/FoldingSet.h"
292a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/ADT/Optional.h"
302a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/ADT/PointerIntPair.h"
312a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/ADT/PointerUnion.h"
322a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/ADT/Twine.h"
332a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/Support/ErrorHandling.h"
342a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/Support/type_traits.h"
352a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
362a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)namespace clang {
37a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  enum {
382a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    TypeAlignmentInBits = 4,
392a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    TypeAlignment = 1 << TypeAlignmentInBits
402a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  };
412a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  class Type;
422a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  class ExtQuals;
432a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  class QualType;
442a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
452a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
462a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)namespace llvm {
472a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  template <typename T>
482a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  class PointerLikeTypeTraits;
492a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  template<>
502a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  class PointerLikeTypeTraits< ::clang::Type*> {
512a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  public:
522a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
532a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    static inline ::clang::Type *getFromVoidPointer(void *P) {
542a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)      return static_cast< ::clang::Type*>(P);
552a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    }
562a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
572a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  };
582a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  template<>
592a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
602a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  public:
612a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
622a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
632a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)      return static_cast< ::clang::ExtQuals*>(P);
642a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    }
652a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
662a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  };
672a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
682a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  template <>
692a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  struct isPodLike<clang::QualType> { static const bool value = true; };
702a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
712a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
722a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)namespace clang {
73  class ASTContext;
74  class TypedefNameDecl;
75  class TemplateDecl;
76  class TemplateTypeParmDecl;
77  class NonTypeTemplateParmDecl;
78  class TemplateTemplateParmDecl;
79  class TagDecl;
80  class RecordDecl;
81  class CXXRecordDecl;
82  class EnumDecl;
83  class FieldDecl;
84  class FunctionDecl;
85  class ObjCInterfaceDecl;
86  class ObjCProtocolDecl;
87  class ObjCMethodDecl;
88  class UnresolvedUsingTypenameDecl;
89  class Expr;
90  class Stmt;
91  class SourceLocation;
92  class StmtIteratorBase;
93  class TemplateArgument;
94  class TemplateArgumentLoc;
95  class TemplateArgumentListInfo;
96  class ElaboratedType;
97  class ExtQuals;
98  class ExtQualsTypeCommonBase;
99  struct PrintingPolicy;
100
101  template <typename> class CanQual;
102  typedef CanQual<Type> CanQualType;
103
104  // Provide forward declarations for all of the *Type classes
105#define TYPE(Class, Base) class Class##Type;
106#include "clang/AST/TypeNodes.def"
107
108/// Qualifiers - The collection of all-type qualifiers we support.
109/// Clang supports five independent qualifiers:
110/// * C99: const, volatile, and restrict
111/// * Embedded C (TR18037): address spaces
112/// * Objective C: the GC attributes (none, weak, or strong)
113class Qualifiers {
114public:
115  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
116    Const    = 0x1,
117    Restrict = 0x2,
118    Volatile = 0x4,
119    CVRMask = Const | Volatile | Restrict
120  };
121
122  enum GC {
123    GCNone = 0,
124    Weak,
125    Strong
126  };
127
128  enum ObjCLifetime {
129    /// There is no lifetime qualification on this type.
130    OCL_None,
131
132    /// This object can be modified without requiring retains or
133    /// releases.
134    OCL_ExplicitNone,
135
136    /// Assigning into this object requires the old value to be
137    /// released and the new value to be retained.  The timing of the
138    /// release of the old value is inexact: it may be moved to
139    /// immediately after the last known point where the value is
140    /// live.
141    OCL_Strong,
142
143    /// Reading or writing from this object requires a barrier call.
144    OCL_Weak,
145
146    /// Assigning into this object requires a lifetime extension.
147    OCL_Autoreleasing
148  };
149
150  enum {
151    /// The maximum supported address space number.
152    /// 24 bits should be enough for anyone.
153    MaxAddressSpace = 0xffffffu,
154
155    /// The width of the "fast" qualifier mask.
156    FastWidth = 3,
157
158    /// The fast qualifier mask.
159    FastMask = (1 << FastWidth) - 1
160  };
161
162  Qualifiers() : Mask(0) {}
163
164  /// \brief Returns the common set of qualifiers while removing them from
165  /// the given sets.
166  static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
167    // If both are only CVR-qualified, bit operations are sufficient.
168    if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
169      Qualifiers Q;
170      Q.Mask = L.Mask & R.Mask;
171      L.Mask &= ~Q.Mask;
172      R.Mask &= ~Q.Mask;
173      return Q;
174    }
175
176    Qualifiers Q;
177    unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
178    Q.addCVRQualifiers(CommonCRV);
179    L.removeCVRQualifiers(CommonCRV);
180    R.removeCVRQualifiers(CommonCRV);
181
182    if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
183      Q.setObjCGCAttr(L.getObjCGCAttr());
184      L.removeObjCGCAttr();
185      R.removeObjCGCAttr();
186    }
187
188    if (L.getObjCLifetime() == R.getObjCLifetime()) {
189      Q.setObjCLifetime(L.getObjCLifetime());
190      L.removeObjCLifetime();
191      R.removeObjCLifetime();
192    }
193
194    if (L.getAddressSpace() == R.getAddressSpace()) {
195      Q.setAddressSpace(L.getAddressSpace());
196      L.removeAddressSpace();
197      R.removeAddressSpace();
198    }
199    return Q;
200  }
201
202  static Qualifiers fromFastMask(unsigned Mask) {
203    Qualifiers Qs;
204    Qs.addFastQualifiers(Mask);
205    return Qs;
206  }
207
208  static Qualifiers fromCVRMask(unsigned CVR) {
209    Qualifiers Qs;
210    Qs.addCVRQualifiers(CVR);
211    return Qs;
212  }
213
214  // Deserialize qualifiers from an opaque representation.
215  static Qualifiers fromOpaqueValue(unsigned opaque) {
216    Qualifiers Qs;
217    Qs.Mask = opaque;
218    return Qs;
219  }
220
221  // Serialize these qualifiers into an opaque representation.
222  unsigned getAsOpaqueValue() const {
223    return Mask;
224  }
225
226  bool hasConst() const { return Mask & Const; }
227  void setConst(bool flag) {
228    Mask = (Mask & ~Const) | (flag ? Const : 0);
229  }
230  void removeConst() { Mask &= ~Const; }
231  void addConst() { Mask |= Const; }
232
233  bool hasVolatile() const { return Mask & Volatile; }
234  void setVolatile(bool flag) {
235    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
236  }
237  void removeVolatile() { Mask &= ~Volatile; }
238  void addVolatile() { Mask |= Volatile; }
239
240  bool hasRestrict() const { return Mask & Restrict; }
241  void setRestrict(bool flag) {
242    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
243  }
244  void removeRestrict() { Mask &= ~Restrict; }
245  void addRestrict() { Mask |= Restrict; }
246
247  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
248  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
249  void setCVRQualifiers(unsigned mask) {
250    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
251    Mask = (Mask & ~CVRMask) | mask;
252  }
253  void removeCVRQualifiers(unsigned mask) {
254    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
255    Mask &= ~mask;
256  }
257  void removeCVRQualifiers() {
258    removeCVRQualifiers(CVRMask);
259  }
260  void addCVRQualifiers(unsigned mask) {
261    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
262    Mask |= mask;
263  }
264
265  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
266  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
267  void setObjCGCAttr(GC type) {
268    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
269  }
270  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
271  void addObjCGCAttr(GC type) {
272    assert(type);
273    setObjCGCAttr(type);
274  }
275  Qualifiers withoutObjCGCAttr() const {
276    Qualifiers qs = *this;
277    qs.removeObjCGCAttr();
278    return qs;
279  }
280  Qualifiers withoutObjCLifetime() const {
281    Qualifiers qs = *this;
282    qs.removeObjCLifetime();
283    return qs;
284  }
285
286  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
287  ObjCLifetime getObjCLifetime() const {
288    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
289  }
290  void setObjCLifetime(ObjCLifetime type) {
291    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
292  }
293  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
294  void addObjCLifetime(ObjCLifetime type) {
295    assert(type);
296    assert(!hasObjCLifetime());
297    Mask |= (type << LifetimeShift);
298  }
299
300  /// True if the lifetime is neither None or ExplicitNone.
301  bool hasNonTrivialObjCLifetime() const {
302    ObjCLifetime lifetime = getObjCLifetime();
303    return (lifetime > OCL_ExplicitNone);
304  }
305
306  /// True if the lifetime is either strong or weak.
307  bool hasStrongOrWeakObjCLifetime() const {
308    ObjCLifetime lifetime = getObjCLifetime();
309    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
310  }
311
312  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
313  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
314  void setAddressSpace(unsigned space) {
315    assert(space <= MaxAddressSpace);
316    Mask = (Mask & ~AddressSpaceMask)
317         | (((uint32_t) space) << AddressSpaceShift);
318  }
319  void removeAddressSpace() { setAddressSpace(0); }
320  void addAddressSpace(unsigned space) {
321    assert(space);
322    setAddressSpace(space);
323  }
324
325  // Fast qualifiers are those that can be allocated directly
326  // on a QualType object.
327  bool hasFastQualifiers() const { return getFastQualifiers(); }
328  unsigned getFastQualifiers() const { return Mask & FastMask; }
329  void setFastQualifiers(unsigned mask) {
330    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
331    Mask = (Mask & ~FastMask) | mask;
332  }
333  void removeFastQualifiers(unsigned mask) {
334    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
335    Mask &= ~mask;
336  }
337  void removeFastQualifiers() {
338    removeFastQualifiers(FastMask);
339  }
340  void addFastQualifiers(unsigned mask) {
341    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
342    Mask |= mask;
343  }
344
345  /// hasNonFastQualifiers - Return true if the set contains any
346  /// qualifiers which require an ExtQuals node to be allocated.
347  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
348  Qualifiers getNonFastQualifiers() const {
349    Qualifiers Quals = *this;
350    Quals.setFastQualifiers(0);
351    return Quals;
352  }
353
354  /// hasQualifiers - Return true if the set contains any qualifiers.
355  bool hasQualifiers() const { return Mask; }
356  bool empty() const { return !Mask; }
357
358  /// \brief Add the qualifiers from the given set to this set.
359  void addQualifiers(Qualifiers Q) {
360    // If the other set doesn't have any non-boolean qualifiers, just
361    // bit-or it in.
362    if (!(Q.Mask & ~CVRMask))
363      Mask |= Q.Mask;
364    else {
365      Mask |= (Q.Mask & CVRMask);
366      if (Q.hasAddressSpace())
367        addAddressSpace(Q.getAddressSpace());
368      if (Q.hasObjCGCAttr())
369        addObjCGCAttr(Q.getObjCGCAttr());
370      if (Q.hasObjCLifetime())
371        addObjCLifetime(Q.getObjCLifetime());
372    }
373  }
374
375  /// \brief Remove the qualifiers from the given set from this set.
376  void removeQualifiers(Qualifiers Q) {
377    // If the other set doesn't have any non-boolean qualifiers, just
378    // bit-and the inverse in.
379    if (!(Q.Mask & ~CVRMask))
380      Mask &= ~Q.Mask;
381    else {
382      Mask &= ~(Q.Mask & CVRMask);
383      if (getObjCGCAttr() == Q.getObjCGCAttr())
384        removeObjCGCAttr();
385      if (getObjCLifetime() == Q.getObjCLifetime())
386        removeObjCLifetime();
387      if (getAddressSpace() == Q.getAddressSpace())
388        removeAddressSpace();
389    }
390  }
391
392  /// \brief Add the qualifiers from the given set to this set, given that
393  /// they don't conflict.
394  void addConsistentQualifiers(Qualifiers qs) {
395    assert(getAddressSpace() == qs.getAddressSpace() ||
396           !hasAddressSpace() || !qs.hasAddressSpace());
397    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
398           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
399    assert(getObjCLifetime() == qs.getObjCLifetime() ||
400           !hasObjCLifetime() || !qs.hasObjCLifetime());
401    Mask |= qs.Mask;
402  }
403
404  /// \brief Determines if these qualifiers compatibly include another set.
405  /// Generally this answers the question of whether an object with the other
406  /// qualifiers can be safely used as an object with these qualifiers.
407  bool compatiblyIncludes(Qualifiers other) const {
408    return
409      // Address spaces must match exactly.
410      getAddressSpace() == other.getAddressSpace() &&
411      // ObjC GC qualifiers can match, be added, or be removed, but can't be
412      // changed.
413      (getObjCGCAttr() == other.getObjCGCAttr() ||
414       !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
415      // ObjC lifetime qualifiers must match exactly.
416      getObjCLifetime() == other.getObjCLifetime() &&
417      // CVR qualifiers may subset.
418      (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
419  }
420
421  /// \brief Determines if these qualifiers compatibly include another set of
422  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
423  ///
424  /// One set of Objective-C lifetime qualifiers compatibly includes the other
425  /// if the lifetime qualifiers match, or if both are non-__weak and the
426  /// including set also contains the 'const' qualifier.
427  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
428    if (getObjCLifetime() == other.getObjCLifetime())
429      return true;
430
431    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
432      return false;
433
434    return hasConst();
435  }
436
437  /// \brief Determine whether this set of qualifiers is a strict superset of
438  /// another set of qualifiers, not considering qualifier compatibility.
439  bool isStrictSupersetOf(Qualifiers Other) const;
440
441  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
442  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
443
444  LLVM_EXPLICIT operator bool() const { return hasQualifiers(); }
445
446  Qualifiers &operator+=(Qualifiers R) {
447    addQualifiers(R);
448    return *this;
449  }
450
451  // Union two qualifier sets.  If an enumerated qualifier appears
452  // in both sets, use the one from the right.
453  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
454    L += R;
455    return L;
456  }
457
458  Qualifiers &operator-=(Qualifiers R) {
459    removeQualifiers(R);
460    return *this;
461  }
462
463  /// \brief Compute the difference between two qualifier sets.
464  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
465    L -= R;
466    return L;
467  }
468
469  std::string getAsString() const;
470  std::string getAsString(const PrintingPolicy &Policy) const;
471
472  bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
473  void print(raw_ostream &OS, const PrintingPolicy &Policy,
474             bool appendSpaceIfNonEmpty = false) const;
475
476  void Profile(llvm::FoldingSetNodeID &ID) const {
477    ID.AddInteger(Mask);
478  }
479
480private:
481
482  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
483  //           |C R V|GCAttr|Lifetime|AddressSpace|
484  uint32_t Mask;
485
486  static const uint32_t GCAttrMask = 0x18;
487  static const uint32_t GCAttrShift = 3;
488  static const uint32_t LifetimeMask = 0xE0;
489  static const uint32_t LifetimeShift = 5;
490  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
491  static const uint32_t AddressSpaceShift = 8;
492};
493
494/// A std::pair-like structure for storing a qualified type split
495/// into its local qualifiers and its locally-unqualified type.
496struct SplitQualType {
497  /// The locally-unqualified type.
498  const Type *Ty;
499
500  /// The local qualifiers.
501  Qualifiers Quals;
502
503  SplitQualType() : Ty(0), Quals() {}
504  SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
505
506  SplitQualType getSingleStepDesugaredType() const; // end of this file
507
508  // Make llvm::tie work.
509  operator std::pair<const Type *,Qualifiers>() const {
510    return std::pair<const Type *,Qualifiers>(Ty, Quals);
511  }
512
513  friend bool operator==(SplitQualType a, SplitQualType b) {
514    return a.Ty == b.Ty && a.Quals == b.Quals;
515  }
516  friend bool operator!=(SplitQualType a, SplitQualType b) {
517    return a.Ty != b.Ty || a.Quals != b.Quals;
518  }
519};
520
521/// QualType - For efficiency, we don't store CV-qualified types as nodes on
522/// their own: instead each reference to a type stores the qualifiers.  This
523/// greatly reduces the number of nodes we need to allocate for types (for
524/// example we only need one for 'int', 'const int', 'volatile int',
525/// 'const volatile int', etc).
526///
527/// As an added efficiency bonus, instead of making this a pair, we
528/// just store the two bits we care about in the low bits of the
529/// pointer.  To handle the packing/unpacking, we make QualType be a
530/// simple wrapper class that acts like a smart pointer.  A third bit
531/// indicates whether there are extended qualifiers present, in which
532/// case the pointer points to a special structure.
533class QualType {
534  // Thankfully, these are efficiently composable.
535  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
536                       Qualifiers::FastWidth> Value;
537
538  const ExtQuals *getExtQualsUnsafe() const {
539    return Value.getPointer().get<const ExtQuals*>();
540  }
541
542  const Type *getTypePtrUnsafe() const {
543    return Value.getPointer().get<const Type*>();
544  }
545
546  const ExtQualsTypeCommonBase *getCommonPtr() const {
547    assert(!isNull() && "Cannot retrieve a NULL type pointer");
548    uintptr_t CommonPtrVal
549      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
550    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
551    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
552  }
553
554  friend class QualifierCollector;
555public:
556  QualType() {}
557
558  QualType(const Type *Ptr, unsigned Quals)
559    : Value(Ptr, Quals) {}
560  QualType(const ExtQuals *Ptr, unsigned Quals)
561    : Value(Ptr, Quals) {}
562
563  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
564  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
565
566  /// Retrieves a pointer to the underlying (unqualified) type.
567  ///
568  /// This function requires that the type not be NULL. If the type might be
569  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
570  const Type *getTypePtr() const;
571
572  const Type *getTypePtrOrNull() const;
573
574  /// Retrieves a pointer to the name of the base type.
575  const IdentifierInfo *getBaseTypeIdentifier() const;
576
577  /// Divides a QualType into its unqualified type and a set of local
578  /// qualifiers.
579  SplitQualType split() const;
580
581  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
582  static QualType getFromOpaquePtr(const void *Ptr) {
583    QualType T;
584    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
585    return T;
586  }
587
588  const Type &operator*() const {
589    return *getTypePtr();
590  }
591
592  const Type *operator->() const {
593    return getTypePtr();
594  }
595
596  bool isCanonical() const;
597  bool isCanonicalAsParam() const;
598
599  /// isNull - Return true if this QualType doesn't point to a type yet.
600  bool isNull() const {
601    return Value.getPointer().isNull();
602  }
603
604  /// \brief Determine whether this particular QualType instance has the
605  /// "const" qualifier set, without looking through typedefs that may have
606  /// added "const" at a different level.
607  bool isLocalConstQualified() const {
608    return (getLocalFastQualifiers() & Qualifiers::Const);
609  }
610
611  /// \brief Determine whether this type is const-qualified.
612  bool isConstQualified() const;
613
614  /// \brief Determine whether this particular QualType instance has the
615  /// "restrict" qualifier set, without looking through typedefs that may have
616  /// added "restrict" at a different level.
617  bool isLocalRestrictQualified() const {
618    return (getLocalFastQualifiers() & Qualifiers::Restrict);
619  }
620
621  /// \brief Determine whether this type is restrict-qualified.
622  bool isRestrictQualified() const;
623
624  /// \brief Determine whether this particular QualType instance has the
625  /// "volatile" qualifier set, without looking through typedefs that may have
626  /// added "volatile" at a different level.
627  bool isLocalVolatileQualified() const {
628    return (getLocalFastQualifiers() & Qualifiers::Volatile);
629  }
630
631  /// \brief Determine whether this type is volatile-qualified.
632  bool isVolatileQualified() const;
633
634  /// \brief Determine whether this particular QualType instance has any
635  /// qualifiers, without looking through any typedefs that might add
636  /// qualifiers at a different level.
637  bool hasLocalQualifiers() const {
638    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
639  }
640
641  /// \brief Determine whether this type has any qualifiers.
642  bool hasQualifiers() const;
643
644  /// \brief Determine whether this particular QualType instance has any
645  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
646  /// instance.
647  bool hasLocalNonFastQualifiers() const {
648    return Value.getPointer().is<const ExtQuals*>();
649  }
650
651  /// \brief Retrieve the set of qualifiers local to this particular QualType
652  /// instance, not including any qualifiers acquired through typedefs or
653  /// other sugar.
654  Qualifiers getLocalQualifiers() const;
655
656  /// \brief Retrieve the set of qualifiers applied to this type.
657  Qualifiers getQualifiers() const;
658
659  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
660  /// local to this particular QualType instance, not including any qualifiers
661  /// acquired through typedefs or other sugar.
662  unsigned getLocalCVRQualifiers() const {
663    return getLocalFastQualifiers();
664  }
665
666  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
667  /// applied to this type.
668  unsigned getCVRQualifiers() const;
669
670  bool isConstant(ASTContext& Ctx) const {
671    return QualType::isConstant(*this, Ctx);
672  }
673
674  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
675  bool isPODType(ASTContext &Context) const;
676
677  /// isCXX98PODType() - Return true if this is a POD type according to the
678  /// rules of the C++98 standard, regardless of the current compilation's
679  /// language.
680  bool isCXX98PODType(ASTContext &Context) const;
681
682  /// isCXX11PODType() - Return true if this is a POD type according to the
683  /// more relaxed rules of the C++11 standard, regardless of the current
684  /// compilation's language.
685  /// (C++0x [basic.types]p9)
686  bool isCXX11PODType(ASTContext &Context) const;
687
688  /// isTrivialType - Return true if this is a trivial type
689  /// (C++0x [basic.types]p9)
690  bool isTrivialType(ASTContext &Context) const;
691
692  /// isTriviallyCopyableType - Return true if this is a trivially
693  /// copyable type (C++0x [basic.types]p9)
694  bool isTriviallyCopyableType(ASTContext &Context) const;
695
696  // Don't promise in the API that anything besides 'const' can be
697  // easily added.
698
699  /// addConst - add the specified type qualifier to this QualType.
700  void addConst() {
701    addFastQualifiers(Qualifiers::Const);
702  }
703  QualType withConst() const {
704    return withFastQualifiers(Qualifiers::Const);
705  }
706
707  /// addVolatile - add the specified type qualifier to this QualType.
708  void addVolatile() {
709    addFastQualifiers(Qualifiers::Volatile);
710  }
711  QualType withVolatile() const {
712    return withFastQualifiers(Qualifiers::Volatile);
713  }
714
715  /// Add the restrict qualifier to this QualType.
716  void addRestrict() {
717    addFastQualifiers(Qualifiers::Restrict);
718  }
719  QualType withRestrict() const {
720    return withFastQualifiers(Qualifiers::Restrict);
721  }
722
723  QualType withCVRQualifiers(unsigned CVR) const {
724    return withFastQualifiers(CVR);
725  }
726
727  void addFastQualifiers(unsigned TQs) {
728    assert(!(TQs & ~Qualifiers::FastMask)
729           && "non-fast qualifier bits set in mask!");
730    Value.setInt(Value.getInt() | TQs);
731  }
732
733  void removeLocalConst();
734  void removeLocalVolatile();
735  void removeLocalRestrict();
736  void removeLocalCVRQualifiers(unsigned Mask);
737
738  void removeLocalFastQualifiers() { Value.setInt(0); }
739  void removeLocalFastQualifiers(unsigned Mask) {
740    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
741    Value.setInt(Value.getInt() & ~Mask);
742  }
743
744  // Creates a type with the given qualifiers in addition to any
745  // qualifiers already on this type.
746  QualType withFastQualifiers(unsigned TQs) const {
747    QualType T = *this;
748    T.addFastQualifiers(TQs);
749    return T;
750  }
751
752  // Creates a type with exactly the given fast qualifiers, removing
753  // any existing fast qualifiers.
754  QualType withExactLocalFastQualifiers(unsigned TQs) const {
755    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
756  }
757
758  // Removes fast qualifiers, but leaves any extended qualifiers in place.
759  QualType withoutLocalFastQualifiers() const {
760    QualType T = *this;
761    T.removeLocalFastQualifiers();
762    return T;
763  }
764
765  QualType getCanonicalType() const;
766
767  /// \brief Return this type with all of the instance-specific qualifiers
768  /// removed, but without removing any qualifiers that may have been applied
769  /// through typedefs.
770  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
771
772  /// \brief Retrieve the unqualified variant of the given type,
773  /// removing as little sugar as possible.
774  ///
775  /// This routine looks through various kinds of sugar to find the
776  /// least-desugared type that is unqualified. For example, given:
777  ///
778  /// \code
779  /// typedef int Integer;
780  /// typedef const Integer CInteger;
781  /// typedef CInteger DifferenceType;
782  /// \endcode
783  ///
784  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
785  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
786  ///
787  /// The resulting type might still be qualified if it's sugar for an array
788  /// type.  To strip qualifiers even from within a sugared array type, use
789  /// ASTContext::getUnqualifiedArrayType.
790  inline QualType getUnqualifiedType() const;
791
792  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
793  /// given type, removing as little sugar as possible.
794  ///
795  /// Like getUnqualifiedType(), but also returns the set of
796  /// qualifiers that were built up.
797  ///
798  /// The resulting type might still be qualified if it's sugar for an array
799  /// type.  To strip qualifiers even from within a sugared array type, use
800  /// ASTContext::getUnqualifiedArrayType.
801  inline SplitQualType getSplitUnqualifiedType() const;
802
803  /// \brief Determine whether this type is more qualified than the other
804  /// given type, requiring exact equality for non-CVR qualifiers.
805  bool isMoreQualifiedThan(QualType Other) const;
806
807  /// \brief Determine whether this type is at least as qualified as the other
808  /// given type, requiring exact equality for non-CVR qualifiers.
809  bool isAtLeastAsQualifiedAs(QualType Other) const;
810
811  QualType getNonReferenceType() const;
812
813  /// \brief Determine the type of a (typically non-lvalue) expression with the
814  /// specified result type.
815  ///
816  /// This routine should be used for expressions for which the return type is
817  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
818  /// an lvalue. It removes a top-level reference (since there are no
819  /// expressions of reference type) and deletes top-level cvr-qualifiers
820  /// from non-class types (in C++) or all types (in C).
821  QualType getNonLValueExprType(const ASTContext &Context) const;
822
823  /// getDesugaredType - Return the specified type with any "sugar" removed from
824  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
825  /// the type is already concrete, it returns it unmodified.  This is similar
826  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
827  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
828  /// concrete.
829  ///
830  /// Qualifiers are left in place.
831  QualType getDesugaredType(const ASTContext &Context) const {
832    return getDesugaredType(*this, Context);
833  }
834
835  SplitQualType getSplitDesugaredType() const {
836    return getSplitDesugaredType(*this);
837  }
838
839  /// \brief Return the specified type with one level of "sugar" removed from
840  /// the type.
841  ///
842  /// This routine takes off the first typedef, typeof, etc. If the outer level
843  /// of the type is already concrete, it returns it unmodified.
844  QualType getSingleStepDesugaredType(const ASTContext &Context) const {
845    return getSingleStepDesugaredTypeImpl(*this, Context);
846  }
847
848  /// IgnoreParens - Returns the specified type after dropping any
849  /// outer-level parentheses.
850  QualType IgnoreParens() const {
851    if (isa<ParenType>(*this))
852      return QualType::IgnoreParens(*this);
853    return *this;
854  }
855
856  /// operator==/!= - Indicate whether the specified types and qualifiers are
857  /// identical.
858  friend bool operator==(const QualType &LHS, const QualType &RHS) {
859    return LHS.Value == RHS.Value;
860  }
861  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
862    return LHS.Value != RHS.Value;
863  }
864  std::string getAsString() const {
865    return getAsString(split());
866  }
867  static std::string getAsString(SplitQualType split) {
868    return getAsString(split.Ty, split.Quals);
869  }
870  static std::string getAsString(const Type *ty, Qualifiers qs);
871
872  std::string getAsString(const PrintingPolicy &Policy) const;
873
874  void print(raw_ostream &OS, const PrintingPolicy &Policy,
875             const Twine &PlaceHolder = Twine()) const {
876    print(split(), OS, Policy, PlaceHolder);
877  }
878  static void print(SplitQualType split, raw_ostream &OS,
879                    const PrintingPolicy &policy, const Twine &PlaceHolder) {
880    return print(split.Ty, split.Quals, OS, policy, PlaceHolder);
881  }
882  static void print(const Type *ty, Qualifiers qs,
883                    raw_ostream &OS, const PrintingPolicy &policy,
884                    const Twine &PlaceHolder);
885
886  void getAsStringInternal(std::string &Str,
887                           const PrintingPolicy &Policy) const {
888    return getAsStringInternal(split(), Str, Policy);
889  }
890  static void getAsStringInternal(SplitQualType split, std::string &out,
891                                  const PrintingPolicy &policy) {
892    return getAsStringInternal(split.Ty, split.Quals, out, policy);
893  }
894  static void getAsStringInternal(const Type *ty, Qualifiers qs,
895                                  std::string &out,
896                                  const PrintingPolicy &policy);
897
898  class StreamedQualTypeHelper {
899    const QualType &T;
900    const PrintingPolicy &Policy;
901    const Twine &PlaceHolder;
902  public:
903    StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
904                           const Twine &PlaceHolder)
905      : T(T), Policy(Policy), PlaceHolder(PlaceHolder) { }
906
907    friend raw_ostream &operator<<(raw_ostream &OS,
908                                   const StreamedQualTypeHelper &SQT) {
909      SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder);
910      return OS;
911    }
912  };
913
914  StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
915                                const Twine &PlaceHolder = Twine()) const {
916    return StreamedQualTypeHelper(*this, Policy, PlaceHolder);
917  }
918
919  void dump(const char *s) const;
920  void dump() const;
921
922  void Profile(llvm::FoldingSetNodeID &ID) const {
923    ID.AddPointer(getAsOpaquePtr());
924  }
925
926  /// getAddressSpace - Return the address space of this type.
927  inline unsigned getAddressSpace() const;
928
929  /// getObjCGCAttr - Returns gc attribute of this type.
930  inline Qualifiers::GC getObjCGCAttr() const;
931
932  /// isObjCGCWeak true when Type is objc's weak.
933  bool isObjCGCWeak() const {
934    return getObjCGCAttr() == Qualifiers::Weak;
935  }
936
937  /// isObjCGCStrong true when Type is objc's strong.
938  bool isObjCGCStrong() const {
939    return getObjCGCAttr() == Qualifiers::Strong;
940  }
941
942  /// getObjCLifetime - Returns lifetime attribute of this type.
943  Qualifiers::ObjCLifetime getObjCLifetime() const {
944    return getQualifiers().getObjCLifetime();
945  }
946
947  bool hasNonTrivialObjCLifetime() const {
948    return getQualifiers().hasNonTrivialObjCLifetime();
949  }
950
951  bool hasStrongOrWeakObjCLifetime() const {
952    return getQualifiers().hasStrongOrWeakObjCLifetime();
953  }
954
955  enum DestructionKind {
956    DK_none,
957    DK_cxx_destructor,
958    DK_objc_strong_lifetime,
959    DK_objc_weak_lifetime
960  };
961
962  /// isDestructedType - nonzero if objects of this type require
963  /// non-trivial work to clean up after.  Non-zero because it's
964  /// conceivable that qualifiers (objc_gc(weak)?) could make
965  /// something require destruction.
966  DestructionKind isDestructedType() const {
967    return isDestructedTypeImpl(*this);
968  }
969
970  /// \brief Determine whether expressions of the given type are forbidden
971  /// from being lvalues in C.
972  ///
973  /// The expression types that are forbidden to be lvalues are:
974  ///   - 'void', but not qualified void
975  ///   - function types
976  ///
977  /// The exact rule here is C99 6.3.2.1:
978  ///   An lvalue is an expression with an object type or an incomplete
979  ///   type other than void.
980  bool isCForbiddenLValueType() const;
981
982private:
983  // These methods are implemented in a separate translation unit;
984  // "static"-ize them to avoid creating temporary QualTypes in the
985  // caller.
986  static bool isConstant(QualType T, ASTContext& Ctx);
987  static QualType getDesugaredType(QualType T, const ASTContext &Context);
988  static SplitQualType getSplitDesugaredType(QualType T);
989  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
990  static QualType getSingleStepDesugaredTypeImpl(QualType type,
991                                                 const ASTContext &C);
992  static QualType IgnoreParens(QualType T);
993  static DestructionKind isDestructedTypeImpl(QualType type);
994};
995
996} // end clang.
997
998namespace llvm {
999/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1000/// to a specific Type class.
1001template<> struct simplify_type< ::clang::QualType> {
1002  typedef const ::clang::Type *SimpleType;
1003  static SimpleType getSimplifiedValue(::clang::QualType Val) {
1004    return Val.getTypePtr();
1005  }
1006};
1007
1008// Teach SmallPtrSet that QualType is "basically a pointer".
1009template<>
1010class PointerLikeTypeTraits<clang::QualType> {
1011public:
1012  static inline void *getAsVoidPointer(clang::QualType P) {
1013    return P.getAsOpaquePtr();
1014  }
1015  static inline clang::QualType getFromVoidPointer(void *P) {
1016    return clang::QualType::getFromOpaquePtr(P);
1017  }
1018  // Various qualifiers go in low bits.
1019  enum { NumLowBitsAvailable = 0 };
1020};
1021
1022} // end namespace llvm
1023
1024namespace clang {
1025
1026/// \brief Base class that is common to both the \c ExtQuals and \c Type
1027/// classes, which allows \c QualType to access the common fields between the
1028/// two.
1029///
1030class ExtQualsTypeCommonBase {
1031  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1032    : BaseType(baseType), CanonicalType(canon) {}
1033
1034  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
1035  /// a self-referential pointer (for \c Type).
1036  ///
1037  /// This pointer allows an efficient mapping from a QualType to its
1038  /// underlying type pointer.
1039  const Type *const BaseType;
1040
1041  /// \brief The canonical type of this type.  A QualType.
1042  QualType CanonicalType;
1043
1044  friend class QualType;
1045  friend class Type;
1046  friend class ExtQuals;
1047};
1048
1049/// ExtQuals - We can encode up to four bits in the low bits of a
1050/// type pointer, but there are many more type qualifiers that we want
1051/// to be able to apply to an arbitrary type.  Therefore we have this
1052/// struct, intended to be heap-allocated and used by QualType to
1053/// store qualifiers.
1054///
1055/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1056/// in three low bits on the QualType pointer; a fourth bit records whether
1057/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1058/// Objective-C GC attributes) are much more rare.
1059class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1060  // NOTE: changing the fast qualifiers should be straightforward as
1061  // long as you don't make 'const' non-fast.
1062  // 1. Qualifiers:
1063  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1064  //       Fast qualifiers must occupy the low-order bits.
1065  //    b) Update Qualifiers::FastWidth and FastMask.
1066  // 2. QualType:
1067  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
1068  //    b) Update remove{Volatile,Restrict}, defined near the end of
1069  //       this header.
1070  // 3. ASTContext:
1071  //    a) Update get{Volatile,Restrict}Type.
1072
1073  /// Quals - the immutable set of qualifiers applied by this
1074  /// node;  always contains extended qualifiers.
1075  Qualifiers Quals;
1076
1077  ExtQuals *this_() { return this; }
1078
1079public:
1080  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1081    : ExtQualsTypeCommonBase(baseType,
1082                             canon.isNull() ? QualType(this_(), 0) : canon),
1083      Quals(quals)
1084  {
1085    assert(Quals.hasNonFastQualifiers()
1086           && "ExtQuals created with no fast qualifiers");
1087    assert(!Quals.hasFastQualifiers()
1088           && "ExtQuals created with fast qualifiers");
1089  }
1090
1091  Qualifiers getQualifiers() const { return Quals; }
1092
1093  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1094  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1095
1096  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1097  Qualifiers::ObjCLifetime getObjCLifetime() const {
1098    return Quals.getObjCLifetime();
1099  }
1100
1101  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1102  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
1103
1104  const Type *getBaseType() const { return BaseType; }
1105
1106public:
1107  void Profile(llvm::FoldingSetNodeID &ID) const {
1108    Profile(ID, getBaseType(), Quals);
1109  }
1110  static void Profile(llvm::FoldingSetNodeID &ID,
1111                      const Type *BaseType,
1112                      Qualifiers Quals) {
1113    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1114    ID.AddPointer(BaseType);
1115    Quals.Profile(ID);
1116  }
1117};
1118
1119/// \brief The kind of C++0x ref-qualifier associated with a function type,
1120/// which determines whether a member function's "this" object can be an
1121/// lvalue, rvalue, or neither.
1122enum RefQualifierKind {
1123  /// \brief No ref-qualifier was provided.
1124  RQ_None = 0,
1125  /// \brief An lvalue ref-qualifier was provided (\c &).
1126  RQ_LValue,
1127  /// \brief An rvalue ref-qualifier was provided (\c &&).
1128  RQ_RValue
1129};
1130
1131/// Type - This is the base class of the type hierarchy.  A central concept
1132/// with types is that each type always has a canonical type.  A canonical type
1133/// is the type with any typedef names stripped out of it or the types it
1134/// references.  For example, consider:
1135///
1136///  typedef int  foo;
1137///  typedef foo* bar;
1138///    'int *'    'foo *'    'bar'
1139///
1140/// There will be a Type object created for 'int'.  Since int is canonical, its
1141/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
1142/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1143/// there is a PointerType that represents 'int*', which, like 'int', is
1144/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1145/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1146/// is also 'int*'.
1147///
1148/// Non-canonical types are useful for emitting diagnostics, without losing
1149/// information about typedefs being used.  Canonical types are useful for type
1150/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1151/// about whether something has a particular form (e.g. is a function type),
1152/// because they implicitly, recursively, strip all typedefs out of a type.
1153///
1154/// Types, once created, are immutable.
1155///
1156class Type : public ExtQualsTypeCommonBase {
1157public:
1158  enum TypeClass {
1159#define TYPE(Class, Base) Class,
1160#define LAST_TYPE(Class) TypeLast = Class,
1161#define ABSTRACT_TYPE(Class, Base)
1162#include "clang/AST/TypeNodes.def"
1163    TagFirst = Record, TagLast = Enum
1164  };
1165
1166private:
1167  Type(const Type &) LLVM_DELETED_FUNCTION;
1168  void operator=(const Type &) LLVM_DELETED_FUNCTION;
1169
1170  /// Bitfields required by the Type class.
1171  class TypeBitfields {
1172    friend class Type;
1173    template <class T> friend class TypePropertyCache;
1174
1175    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1176    unsigned TC : 8;
1177
1178    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
1179    unsigned Dependent : 1;
1180
1181    /// \brief Whether this type somehow involves a template parameter, even
1182    /// if the resolution of the type does not depend on a template parameter.
1183    unsigned InstantiationDependent : 1;
1184
1185    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1186    unsigned VariablyModified : 1;
1187
1188    /// \brief Whether this type contains an unexpanded parameter pack
1189    /// (for C++0x variadic templates).
1190    unsigned ContainsUnexpandedParameterPack : 1;
1191
1192    /// \brief True if the cache (i.e. the bitfields here starting with
1193    /// 'Cache') is valid.
1194    mutable unsigned CacheValid : 1;
1195
1196    /// \brief Linkage of this type.
1197    mutable unsigned CachedLinkage : 3;
1198
1199    /// \brief Whether this type involves and local or unnamed types.
1200    mutable unsigned CachedLocalOrUnnamed : 1;
1201
1202    /// \brief FromAST - Whether this type comes from an AST file.
1203    mutable unsigned FromAST : 1;
1204
1205    bool isCacheValid() const {
1206      return CacheValid;
1207    }
1208    Linkage getLinkage() const {
1209      assert(isCacheValid() && "getting linkage from invalid cache");
1210      return static_cast<Linkage>(CachedLinkage);
1211    }
1212    bool hasLocalOrUnnamedType() const {
1213      assert(isCacheValid() && "getting linkage from invalid cache");
1214      return CachedLocalOrUnnamed;
1215    }
1216  };
1217  enum { NumTypeBits = 18 };
1218
1219protected:
1220  // These classes allow subclasses to somewhat cleanly pack bitfields
1221  // into Type.
1222
1223  class ArrayTypeBitfields {
1224    friend class ArrayType;
1225
1226    unsigned : NumTypeBits;
1227
1228    /// IndexTypeQuals - CVR qualifiers from declarations like
1229    /// 'int X[static restrict 4]'. For function parameters only.
1230    unsigned IndexTypeQuals : 3;
1231
1232    /// SizeModifier - storage class qualifiers from declarations like
1233    /// 'int X[static restrict 4]'. For function parameters only.
1234    /// Actually an ArrayType::ArraySizeModifier.
1235    unsigned SizeModifier : 3;
1236  };
1237
1238  class BuiltinTypeBitfields {
1239    friend class BuiltinType;
1240
1241    unsigned : NumTypeBits;
1242
1243    /// The kind (BuiltinType::Kind) of builtin type this is.
1244    unsigned Kind : 8;
1245  };
1246
1247  class FunctionTypeBitfields {
1248    friend class FunctionType;
1249
1250    unsigned : NumTypeBits;
1251
1252    /// Extra information which affects how the function is called, like
1253    /// regparm and the calling convention.
1254    unsigned ExtInfo : 9;
1255
1256    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1257    /// other bitfields.
1258    /// The qualifiers are part of FunctionProtoType because...
1259    ///
1260    /// C++ 8.3.5p4: The return type, the parameter type list and the
1261    /// cv-qualifier-seq, [...], are part of the function type.
1262    unsigned TypeQuals : 3;
1263  };
1264
1265  class ObjCObjectTypeBitfields {
1266    friend class ObjCObjectType;
1267
1268    unsigned : NumTypeBits;
1269
1270    /// NumProtocols - The number of protocols stored directly on this
1271    /// object type.
1272    unsigned NumProtocols : 32 - NumTypeBits;
1273  };
1274
1275  class ReferenceTypeBitfields {
1276    friend class ReferenceType;
1277
1278    unsigned : NumTypeBits;
1279
1280    /// True if the type was originally spelled with an lvalue sigil.
1281    /// This is never true of rvalue references but can also be false
1282    /// on lvalue references because of C++0x [dcl.typedef]p9,
1283    /// as follows:
1284    ///
1285    ///   typedef int &ref;    // lvalue, spelled lvalue
1286    ///   typedef int &&rvref; // rvalue
1287    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1288    ///   ref &&a;             // lvalue, inner ref
1289    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1290    ///   rvref &&a;           // rvalue, inner ref
1291    unsigned SpelledAsLValue : 1;
1292
1293    /// True if the inner type is a reference type.  This only happens
1294    /// in non-canonical forms.
1295    unsigned InnerRef : 1;
1296  };
1297
1298  class TypeWithKeywordBitfields {
1299    friend class TypeWithKeyword;
1300
1301    unsigned : NumTypeBits;
1302
1303    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1304    unsigned Keyword : 8;
1305  };
1306
1307  class VectorTypeBitfields {
1308    friend class VectorType;
1309
1310    unsigned : NumTypeBits;
1311
1312    /// VecKind - The kind of vector, either a generic vector type or some
1313    /// target-specific vector type such as for AltiVec or Neon.
1314    unsigned VecKind : 3;
1315
1316    /// NumElements - The number of elements in the vector.
1317    unsigned NumElements : 29 - NumTypeBits;
1318
1319    enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
1320  };
1321
1322  class AttributedTypeBitfields {
1323    friend class AttributedType;
1324
1325    unsigned : NumTypeBits;
1326
1327    /// AttrKind - an AttributedType::Kind
1328    unsigned AttrKind : 32 - NumTypeBits;
1329  };
1330
1331  class AutoTypeBitfields {
1332    friend class AutoType;
1333
1334    unsigned : NumTypeBits;
1335
1336    /// Was this placeholder type spelled as 'decltype(auto)'?
1337    unsigned IsDecltypeAuto : 1;
1338  };
1339
1340  union {
1341    TypeBitfields TypeBits;
1342    ArrayTypeBitfields ArrayTypeBits;
1343    AttributedTypeBitfields AttributedTypeBits;
1344    AutoTypeBitfields AutoTypeBits;
1345    BuiltinTypeBitfields BuiltinTypeBits;
1346    FunctionTypeBitfields FunctionTypeBits;
1347    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1348    ReferenceTypeBitfields ReferenceTypeBits;
1349    TypeWithKeywordBitfields TypeWithKeywordBits;
1350    VectorTypeBitfields VectorTypeBits;
1351  };
1352
1353private:
1354  /// \brief Set whether this type comes from an AST file.
1355  void setFromAST(bool V = true) const {
1356    TypeBits.FromAST = V;
1357  }
1358
1359  template <class T> friend class TypePropertyCache;
1360
1361protected:
1362  // silence VC++ warning C4355: 'this' : used in base member initializer list
1363  Type *this_() { return this; }
1364  Type(TypeClass tc, QualType canon, bool Dependent,
1365       bool InstantiationDependent, bool VariablyModified,
1366       bool ContainsUnexpandedParameterPack)
1367    : ExtQualsTypeCommonBase(this,
1368                             canon.isNull() ? QualType(this_(), 0) : canon) {
1369    TypeBits.TC = tc;
1370    TypeBits.Dependent = Dependent;
1371    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1372    TypeBits.VariablyModified = VariablyModified;
1373    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1374    TypeBits.CacheValid = false;
1375    TypeBits.CachedLocalOrUnnamed = false;
1376    TypeBits.CachedLinkage = NoLinkage;
1377    TypeBits.FromAST = false;
1378  }
1379  friend class ASTContext;
1380
1381  void setDependent(bool D = true) {
1382    TypeBits.Dependent = D;
1383    if (D)
1384      TypeBits.InstantiationDependent = true;
1385  }
1386  void setInstantiationDependent(bool D = true) {
1387    TypeBits.InstantiationDependent = D; }
1388  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1389  }
1390  void setContainsUnexpandedParameterPack(bool PP = true) {
1391    TypeBits.ContainsUnexpandedParameterPack = PP;
1392  }
1393
1394public:
1395  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1396
1397  /// \brief Whether this type comes from an AST file.
1398  bool isFromAST() const { return TypeBits.FromAST; }
1399
1400  /// \brief Whether this type is or contains an unexpanded parameter
1401  /// pack, used to support C++0x variadic templates.
1402  ///
1403  /// A type that contains a parameter pack shall be expanded by the
1404  /// ellipsis operator at some point. For example, the typedef in the
1405  /// following example contains an unexpanded parameter pack 'T':
1406  ///
1407  /// \code
1408  /// template<typename ...T>
1409  /// struct X {
1410  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1411  /// };
1412  /// \endcode
1413  ///
1414  /// Note that this routine does not specify which
1415  bool containsUnexpandedParameterPack() const {
1416    return TypeBits.ContainsUnexpandedParameterPack;
1417  }
1418
1419  /// Determines if this type would be canonical if it had no further
1420  /// qualification.
1421  bool isCanonicalUnqualified() const {
1422    return CanonicalType == QualType(this, 0);
1423  }
1424
1425  /// Pull a single level of sugar off of this locally-unqualified type.
1426  /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1427  /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1428  QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1429
1430  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1431  /// object types, function types, and incomplete types.
1432
1433  /// isIncompleteType - Return true if this is an incomplete type.
1434  /// A type that can describe objects, but which lacks information needed to
1435  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1436  /// routine will need to determine if the size is actually required.
1437  ///
1438  /// \brief Def If non-NULL, and the type refers to some kind of declaration
1439  /// that can be completed (such as a C struct, C++ class, or Objective-C
1440  /// class), will be set to the declaration.
1441  bool isIncompleteType(NamedDecl **Def = 0) const;
1442
1443  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1444  /// type, in other words, not a function type.
1445  bool isIncompleteOrObjectType() const {
1446    return !isFunctionType();
1447  }
1448
1449  /// \brief Determine whether this type is an object type.
1450  bool isObjectType() const {
1451    // C++ [basic.types]p8:
1452    //   An object type is a (possibly cv-qualified) type that is not a
1453    //   function type, not a reference type, and not a void type.
1454    return !isReferenceType() && !isFunctionType() && !isVoidType();
1455  }
1456
1457  /// isLiteralType - Return true if this is a literal type
1458  /// (C++11 [basic.types]p10)
1459  bool isLiteralType(const ASTContext &Ctx) const;
1460
1461  /// \brief Test if this type is a standard-layout type.
1462  /// (C++0x [basic.type]p9)
1463  bool isStandardLayoutType() const;
1464
1465  /// Helper methods to distinguish type categories. All type predicates
1466  /// operate on the canonical type, ignoring typedefs and qualifiers.
1467
1468  /// isBuiltinType - returns true if the type is a builtin type.
1469  bool isBuiltinType() const;
1470
1471  /// isSpecificBuiltinType - Test for a particular builtin type.
1472  bool isSpecificBuiltinType(unsigned K) const;
1473
1474  /// isPlaceholderType - Test for a type which does not represent an
1475  /// actual type-system type but is instead used as a placeholder for
1476  /// various convenient purposes within Clang.  All such types are
1477  /// BuiltinTypes.
1478  bool isPlaceholderType() const;
1479  const BuiltinType *getAsPlaceholderType() const;
1480
1481  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1482  bool isSpecificPlaceholderType(unsigned K) const;
1483
1484  /// isNonOverloadPlaceholderType - Test for a placeholder type
1485  /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
1486  bool isNonOverloadPlaceholderType() const;
1487
1488  /// isIntegerType() does *not* include complex integers (a GCC extension).
1489  /// isComplexIntegerType() can be used to test for complex integers.
1490  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1491  bool isEnumeralType() const;
1492  bool isBooleanType() const;
1493  bool isCharType() const;
1494  bool isWideCharType() const;
1495  bool isChar16Type() const;
1496  bool isChar32Type() const;
1497  bool isAnyCharacterType() const;
1498  bool isIntegralType(ASTContext &Ctx) const;
1499
1500  /// \brief Determine whether this type is an integral or enumeration type.
1501  bool isIntegralOrEnumerationType() const;
1502  /// \brief Determine whether this type is an integral or unscoped enumeration
1503  /// type.
1504  bool isIntegralOrUnscopedEnumerationType() const;
1505
1506  /// Floating point categories.
1507  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1508  /// isComplexType() does *not* include complex integers (a GCC extension).
1509  /// isComplexIntegerType() can be used to test for complex integers.
1510  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1511  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1512  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1513  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1514  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1515  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1516  bool isVoidType() const;         // C99 6.2.5p19
1517  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1518  bool isAggregateType() const;
1519  bool isFundamentalType() const;
1520  bool isCompoundType() const;
1521
1522  // Type Predicates: Check to see if this type is structurally the specified
1523  // type, ignoring typedefs and qualifiers.
1524  bool isFunctionType() const;
1525  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1526  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1527  bool isPointerType() const;
1528  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1529  bool isBlockPointerType() const;
1530  bool isVoidPointerType() const;
1531  bool isReferenceType() const;
1532  bool isLValueReferenceType() const;
1533  bool isRValueReferenceType() const;
1534  bool isFunctionPointerType() const;
1535  bool isMemberPointerType() const;
1536  bool isMemberFunctionPointerType() const;
1537  bool isMemberDataPointerType() const;
1538  bool isArrayType() const;
1539  bool isConstantArrayType() const;
1540  bool isIncompleteArrayType() const;
1541  bool isVariableArrayType() const;
1542  bool isDependentSizedArrayType() const;
1543  bool isRecordType() const;
1544  bool isClassType() const;
1545  bool isStructureType() const;
1546  bool isInterfaceType() const;
1547  bool isStructureOrClassType() const;
1548  bool isUnionType() const;
1549  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1550  bool isVectorType() const;                    // GCC vector type.
1551  bool isExtVectorType() const;                 // Extended vector type.
1552  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1553  bool isObjCRetainableType() const;            // ObjC object or block pointer
1554  bool isObjCLifetimeType() const;              // (array of)* retainable type
1555  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1556  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1557  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1558  // for the common case.
1559  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1560  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1561  bool isObjCQualifiedIdType() const;           // id<foo>
1562  bool isObjCQualifiedClassType() const;        // Class<foo>
1563  bool isObjCObjectOrInterfaceType() const;
1564  bool isObjCIdType() const;                    // id
1565  bool isObjCClassType() const;                 // Class
1566  bool isObjCSelType() const;                 // Class
1567  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1568  bool isObjCARCBridgableType() const;
1569  bool isCARCBridgableType() const;
1570  bool isTemplateTypeParmType() const;          // C++ template type parameter
1571  bool isNullPtrType() const;                   // C++0x nullptr_t
1572  bool isAtomicType() const;                    // C11 _Atomic()
1573
1574  bool isImage1dT() const;                      // OpenCL image1d_t
1575  bool isImage1dArrayT() const;                 // OpenCL image1d_array_t
1576  bool isImage1dBufferT() const;                // OpenCL image1d_buffer_t
1577  bool isImage2dT() const;                      // OpenCL image2d_t
1578  bool isImage2dArrayT() const;                 // OpenCL image2d_array_t
1579  bool isImage3dT() const;                      // OpenCL image3d_t
1580
1581  bool isImageType() const;                     // Any OpenCL image type
1582
1583  bool isSamplerT() const;                      // OpenCL sampler_t
1584  bool isEventT() const;                        // OpenCL event_t
1585
1586  bool isOpenCLSpecificType() const;            // Any OpenCL specific type
1587
1588  /// Determines if this type, which must satisfy
1589  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1590  /// than implicitly __strong.
1591  bool isObjCARCImplicitlyUnretainedType() const;
1592
1593  /// Return the implicit lifetime for this type, which must not be dependent.
1594  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1595
1596  enum ScalarTypeKind {
1597    STK_CPointer,
1598    STK_BlockPointer,
1599    STK_ObjCObjectPointer,
1600    STK_MemberPointer,
1601    STK_Bool,
1602    STK_Integral,
1603    STK_Floating,
1604    STK_IntegralComplex,
1605    STK_FloatingComplex
1606  };
1607  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1608  ScalarTypeKind getScalarTypeKind() const;
1609
1610  /// isDependentType - Whether this type is a dependent type, meaning
1611  /// that its definition somehow depends on a template parameter
1612  /// (C++ [temp.dep.type]).
1613  bool isDependentType() const { return TypeBits.Dependent; }
1614
1615  /// \brief Determine whether this type is an instantiation-dependent type,
1616  /// meaning that the type involves a template parameter (even if the
1617  /// definition does not actually depend on the type substituted for that
1618  /// template parameter).
1619  bool isInstantiationDependentType() const {
1620    return TypeBits.InstantiationDependent;
1621  }
1622
1623  /// \brief Determine whether this type is an undeduced type, meaning that
1624  /// it somehow involves a C++11 'auto' type which has not yet been deduced.
1625  bool isUndeducedType() const;
1626
1627  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1628  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1629
1630  /// \brief Whether this type involves a variable-length array type
1631  /// with a definite size.
1632  bool hasSizedVLAType() const;
1633
1634  /// \brief Whether this type is or contains a local or unnamed type.
1635  bool hasUnnamedOrLocalType() const;
1636
1637  bool isOverloadableType() const;
1638
1639  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1640  bool isElaboratedTypeSpecifier() const;
1641
1642  bool canDecayToPointerType() const;
1643
1644  /// hasPointerRepresentation - Whether this type is represented
1645  /// natively as a pointer; this includes pointers, references, block
1646  /// pointers, and Objective-C interface, qualified id, and qualified
1647  /// interface types, as well as nullptr_t.
1648  bool hasPointerRepresentation() const;
1649
1650  /// hasObjCPointerRepresentation - Whether this type can represent
1651  /// an objective pointer type for the purpose of GC'ability
1652  bool hasObjCPointerRepresentation() const;
1653
1654  /// \brief Determine whether this type has an integer representation
1655  /// of some sort, e.g., it is an integer type or a vector.
1656  bool hasIntegerRepresentation() const;
1657
1658  /// \brief Determine whether this type has an signed integer representation
1659  /// of some sort, e.g., it is an signed integer type or a vector.
1660  bool hasSignedIntegerRepresentation() const;
1661
1662  /// \brief Determine whether this type has an unsigned integer representation
1663  /// of some sort, e.g., it is an unsigned integer type or a vector.
1664  bool hasUnsignedIntegerRepresentation() const;
1665
1666  /// \brief Determine whether this type has a floating-point representation
1667  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1668  bool hasFloatingRepresentation() const;
1669
1670  // Type Checking Functions: Check to see if this type is structurally the
1671  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1672  // the best type we can.
1673  const RecordType *getAsStructureType() const;
1674  /// NOTE: getAs*ArrayType are methods on ASTContext.
1675  const RecordType *getAsUnionType() const;
1676  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1677  // The following is a convenience method that returns an ObjCObjectPointerType
1678  // for object declared using an interface.
1679  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1680  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1681  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1682  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1683
1684  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1685  /// because the type is a RecordType or because it is the injected-class-name
1686  /// type of a class template or class template partial specialization.
1687  CXXRecordDecl *getAsCXXRecordDecl() const;
1688
1689  /// If this is a pointer or reference to a RecordType, return the
1690  /// CXXRecordDecl that that type refers to.
1691  ///
1692  /// If this is not a pointer or reference, or the type being pointed to does
1693  /// not refer to a CXXRecordDecl, returns NULL.
1694  const CXXRecordDecl *getPointeeCXXRecordDecl() const;
1695
1696  /// \brief Get the AutoType whose type will be deduced for a variable with
1697  /// an initializer of this type. This looks through declarators like pointer
1698  /// types, but not through decltype or typedefs.
1699  AutoType *getContainedAutoType() const;
1700
1701  /// Member-template getAs<specific type>'.  Look through sugar for
1702  /// an instance of \<specific type>.   This scheme will eventually
1703  /// replace the specific getAsXXXX methods above.
1704  ///
1705  /// There are some specializations of this member template listed
1706  /// immediately following this class.
1707  template <typename T> const T *getAs() const;
1708
1709  /// A variant of getAs<> for array types which silently discards
1710  /// qualifiers from the outermost type.
1711  const ArrayType *getAsArrayTypeUnsafe() const;
1712
1713  /// Member-template castAs<specific type>.  Look through sugar for
1714  /// the underlying instance of \<specific type>.
1715  ///
1716  /// This method has the same relationship to getAs<T> as cast<T> has
1717  /// to dyn_cast<T>; which is to say, the underlying type *must*
1718  /// have the intended type, and this method will never return null.
1719  template <typename T> const T *castAs() const;
1720
1721  /// A variant of castAs<> for array type which silently discards
1722  /// qualifiers from the outermost type.
1723  const ArrayType *castAsArrayTypeUnsafe() const;
1724
1725  /// getBaseElementTypeUnsafe - Get the base element type of this
1726  /// type, potentially discarding type qualifiers.  This method
1727  /// should never be used when type qualifiers are meaningful.
1728  const Type *getBaseElementTypeUnsafe() const;
1729
1730  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1731  /// element type of the array, potentially with type qualifiers missing.
1732  /// This method should never be used when type qualifiers are meaningful.
1733  const Type *getArrayElementTypeNoTypeQual() const;
1734
1735  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1736  /// pointer, this returns the respective pointee.
1737  QualType getPointeeType() const;
1738
1739  /// getUnqualifiedDesugaredType() - Return the specified type with
1740  /// any "sugar" removed from the type, removing any typedefs,
1741  /// typeofs, etc., as well as any qualifiers.
1742  const Type *getUnqualifiedDesugaredType() const;
1743
1744  /// More type predicates useful for type checking/promotion
1745  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1746
1747  /// isSignedIntegerType - Return true if this is an integer type that is
1748  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1749  /// or an enum decl which has a signed representation.
1750  bool isSignedIntegerType() const;
1751
1752  /// isUnsignedIntegerType - Return true if this is an integer type that is
1753  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1754  /// or an enum decl which has an unsigned representation.
1755  bool isUnsignedIntegerType() const;
1756
1757  /// Determines whether this is an integer type that is signed or an
1758  /// enumeration types whose underlying type is a signed integer type.
1759  bool isSignedIntegerOrEnumerationType() const;
1760
1761  /// Determines whether this is an integer type that is unsigned or an
1762  /// enumeration types whose underlying type is a unsigned integer type.
1763  bool isUnsignedIntegerOrEnumerationType() const;
1764
1765  /// isConstantSizeType - Return true if this is not a variable sized type,
1766  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1767  /// incomplete types.
1768  bool isConstantSizeType() const;
1769
1770  /// isSpecifierType - Returns true if this type can be represented by some
1771  /// set of type specifiers.
1772  bool isSpecifierType() const;
1773
1774  /// \brief Determine the linkage of this type.
1775  Linkage getLinkage() const;
1776
1777  /// \brief Determine the visibility of this type.
1778  Visibility getVisibility() const {
1779    return getLinkageAndVisibility().getVisibility();
1780  }
1781
1782  /// \brief Return true if the visibility was explicitly set is the code.
1783  bool isVisibilityExplicit() const {
1784    return getLinkageAndVisibility().isVisibilityExplicit();
1785  }
1786
1787  /// \brief Determine the linkage and visibility of this type.
1788  LinkageInfo getLinkageAndVisibility() const;
1789
1790  /// \brief True if the computed linkage is valid. Used for consistency
1791  /// checking. Should always return true.
1792  bool isLinkageValid() const;
1793
1794  const char *getTypeClassName() const;
1795
1796  QualType getCanonicalTypeInternal() const {
1797    return CanonicalType;
1798  }
1799  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1800  LLVM_ATTRIBUTE_USED void dump() const;
1801
1802  friend class ASTReader;
1803  friend class ASTWriter;
1804};
1805
1806/// \brief This will check for a TypedefType by removing any existing sugar
1807/// until it reaches a TypedefType or a non-sugared type.
1808template <> const TypedefType *Type::getAs() const;
1809
1810/// \brief This will check for a TemplateSpecializationType by removing any
1811/// existing sugar until it reaches a TemplateSpecializationType or a
1812/// non-sugared type.
1813template <> const TemplateSpecializationType *Type::getAs() const;
1814
1815/// \brief This will check for an AttributedType by removing any existing sugar
1816/// until it reaches an AttributedType or a non-sugared type.
1817template <> const AttributedType *Type::getAs() const;
1818
1819// We can do canonical leaf types faster, because we don't have to
1820// worry about preserving child type decoration.
1821#define TYPE(Class, Base)
1822#define LEAF_TYPE(Class) \
1823template <> inline const Class##Type *Type::getAs() const { \
1824  return dyn_cast<Class##Type>(CanonicalType); \
1825} \
1826template <> inline const Class##Type *Type::castAs() const { \
1827  return cast<Class##Type>(CanonicalType); \
1828}
1829#include "clang/AST/TypeNodes.def"
1830
1831
1832/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1833/// types are always canonical and have a literal name field.
1834class BuiltinType : public Type {
1835public:
1836  enum Kind {
1837#define BUILTIN_TYPE(Id, SingletonId) Id,
1838#define LAST_BUILTIN_TYPE(Id) LastKind = Id
1839#include "clang/AST/BuiltinTypes.def"
1840  };
1841
1842public:
1843  BuiltinType(Kind K)
1844    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1845           /*InstantiationDependent=*/(K == Dependent),
1846           /*VariablyModified=*/false,
1847           /*Unexpanded paramter pack=*/false) {
1848    BuiltinTypeBits.Kind = K;
1849  }
1850
1851  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1852  StringRef getName(const PrintingPolicy &Policy) const;
1853  const char *getNameAsCString(const PrintingPolicy &Policy) const {
1854    // The StringRef is null-terminated.
1855    StringRef str = getName(Policy);
1856    assert(!str.empty() && str.data()[str.size()] == '\0');
1857    return str.data();
1858  }
1859
1860  bool isSugared() const { return false; }
1861  QualType desugar() const { return QualType(this, 0); }
1862
1863  bool isInteger() const {
1864    return getKind() >= Bool && getKind() <= Int128;
1865  }
1866
1867  bool isSignedInteger() const {
1868    return getKind() >= Char_S && getKind() <= Int128;
1869  }
1870
1871  bool isUnsignedInteger() const {
1872    return getKind() >= Bool && getKind() <= UInt128;
1873  }
1874
1875  bool isFloatingPoint() const {
1876    return getKind() >= Half && getKind() <= LongDouble;
1877  }
1878
1879  /// Determines whether the given kind corresponds to a placeholder type.
1880  static bool isPlaceholderTypeKind(Kind K) {
1881    return K >= Overload;
1882  }
1883
1884  /// Determines whether this type is a placeholder type, i.e. a type
1885  /// which cannot appear in arbitrary positions in a fully-formed
1886  /// expression.
1887  bool isPlaceholderType() const {
1888    return isPlaceholderTypeKind(getKind());
1889  }
1890
1891  /// Determines whether this type is a placeholder type other than
1892  /// Overload.  Most placeholder types require only syntactic
1893  /// information about their context in order to be resolved (e.g.
1894  /// whether it is a call expression), which means they can (and
1895  /// should) be resolved in an earlier "phase" of analysis.
1896  /// Overload expressions sometimes pick up further information
1897  /// from their context, like whether the context expects a
1898  /// specific function-pointer type, and so frequently need
1899  /// special treatment.
1900  bool isNonOverloadPlaceholderType() const {
1901    return getKind() > Overload;
1902  }
1903
1904  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1905};
1906
1907/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1908/// types (_Complex float etc) as well as the GCC integer complex extensions.
1909///
1910class ComplexType : public Type, public llvm::FoldingSetNode {
1911  QualType ElementType;
1912  ComplexType(QualType Element, QualType CanonicalPtr) :
1913    Type(Complex, CanonicalPtr, Element->isDependentType(),
1914         Element->isInstantiationDependentType(),
1915         Element->isVariablyModifiedType(),
1916         Element->containsUnexpandedParameterPack()),
1917    ElementType(Element) {
1918  }
1919  friend class ASTContext;  // ASTContext creates these.
1920
1921public:
1922  QualType getElementType() const { return ElementType; }
1923
1924  bool isSugared() const { return false; }
1925  QualType desugar() const { return QualType(this, 0); }
1926
1927  void Profile(llvm::FoldingSetNodeID &ID) {
1928    Profile(ID, getElementType());
1929  }
1930  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1931    ID.AddPointer(Element.getAsOpaquePtr());
1932  }
1933
1934  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1935};
1936
1937/// ParenType - Sugar for parentheses used when specifying types.
1938///
1939class ParenType : public Type, public llvm::FoldingSetNode {
1940  QualType Inner;
1941
1942  ParenType(QualType InnerType, QualType CanonType) :
1943    Type(Paren, CanonType, InnerType->isDependentType(),
1944         InnerType->isInstantiationDependentType(),
1945         InnerType->isVariablyModifiedType(),
1946         InnerType->containsUnexpandedParameterPack()),
1947    Inner(InnerType) {
1948  }
1949  friend class ASTContext;  // ASTContext creates these.
1950
1951public:
1952
1953  QualType getInnerType() const { return Inner; }
1954
1955  bool isSugared() const { return true; }
1956  QualType desugar() const { return getInnerType(); }
1957
1958  void Profile(llvm::FoldingSetNodeID &ID) {
1959    Profile(ID, getInnerType());
1960  }
1961  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1962    Inner.Profile(ID);
1963  }
1964
1965  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1966};
1967
1968/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1969///
1970class PointerType : public Type, public llvm::FoldingSetNode {
1971  QualType PointeeType;
1972
1973  PointerType(QualType Pointee, QualType CanonicalPtr) :
1974    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1975         Pointee->isInstantiationDependentType(),
1976         Pointee->isVariablyModifiedType(),
1977         Pointee->containsUnexpandedParameterPack()),
1978    PointeeType(Pointee) {
1979  }
1980  friend class ASTContext;  // ASTContext creates these.
1981
1982public:
1983
1984  QualType getPointeeType() const { return PointeeType; }
1985
1986  bool isSugared() const { return false; }
1987  QualType desugar() const { return QualType(this, 0); }
1988
1989  void Profile(llvm::FoldingSetNodeID &ID) {
1990    Profile(ID, getPointeeType());
1991  }
1992  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1993    ID.AddPointer(Pointee.getAsOpaquePtr());
1994  }
1995
1996  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1997};
1998
1999/// \brief Represents a pointer type decayed from an array or function type.
2000class DecayedType : public Type, public llvm::FoldingSetNode {
2001  QualType OriginalType;
2002  QualType DecayedPointer;
2003
2004  DecayedType(QualType OriginalType, QualType DecayedPointer,
2005              QualType CanonicalPtr)
2006      : Type(Decayed, CanonicalPtr, OriginalType->isDependentType(),
2007             OriginalType->isInstantiationDependentType(),
2008             OriginalType->isVariablyModifiedType(),
2009             OriginalType->containsUnexpandedParameterPack()),
2010        OriginalType(OriginalType), DecayedPointer(DecayedPointer) {
2011    assert(isa<PointerType>(DecayedPointer));
2012  }
2013
2014  friend class ASTContext;  // ASTContext creates these.
2015
2016public:
2017  QualType getDecayedType() const { return DecayedPointer; }
2018  QualType getOriginalType() const { return OriginalType; }
2019
2020  QualType getPointeeType() const {
2021    return cast<PointerType>(DecayedPointer)->getPointeeType();
2022  }
2023
2024  bool isSugared() const { return true; }
2025  QualType desugar() const { return DecayedPointer; }
2026
2027  void Profile(llvm::FoldingSetNodeID &ID) {
2028    Profile(ID, OriginalType);
2029  }
2030  static void Profile(llvm::FoldingSetNodeID &ID, QualType OriginalType) {
2031    ID.AddPointer(OriginalType.getAsOpaquePtr());
2032  }
2033
2034  static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2035};
2036
2037/// BlockPointerType - pointer to a block type.
2038/// This type is to represent types syntactically represented as
2039/// "void (^)(int)", etc. Pointee is required to always be a function type.
2040///
2041class BlockPointerType : public Type, public llvm::FoldingSetNode {
2042  QualType PointeeType;  // Block is some kind of pointer type
2043  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
2044    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2045         Pointee->isInstantiationDependentType(),
2046         Pointee->isVariablyModifiedType(),
2047         Pointee->containsUnexpandedParameterPack()),
2048    PointeeType(Pointee) {
2049  }
2050  friend class ASTContext;  // ASTContext creates these.
2051
2052public:
2053
2054  // Get the pointee type. Pointee is required to always be a function type.
2055  QualType getPointeeType() const { return PointeeType; }
2056
2057  bool isSugared() const { return false; }
2058  QualType desugar() const { return QualType(this, 0); }
2059
2060  void Profile(llvm::FoldingSetNodeID &ID) {
2061      Profile(ID, getPointeeType());
2062  }
2063  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2064      ID.AddPointer(Pointee.getAsOpaquePtr());
2065  }
2066
2067  static bool classof(const Type *T) {
2068    return T->getTypeClass() == BlockPointer;
2069  }
2070};
2071
2072/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
2073///
2074class ReferenceType : public Type, public llvm::FoldingSetNode {
2075  QualType PointeeType;
2076
2077protected:
2078  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2079                bool SpelledAsLValue) :
2080    Type(tc, CanonicalRef, Referencee->isDependentType(),
2081         Referencee->isInstantiationDependentType(),
2082         Referencee->isVariablyModifiedType(),
2083         Referencee->containsUnexpandedParameterPack()),
2084    PointeeType(Referencee)
2085  {
2086    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2087    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2088  }
2089
2090public:
2091  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2092  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2093
2094  QualType getPointeeTypeAsWritten() const { return PointeeType; }
2095  QualType getPointeeType() const {
2096    // FIXME: this might strip inner qualifiers; okay?
2097    const ReferenceType *T = this;
2098    while (T->isInnerRef())
2099      T = T->PointeeType->castAs<ReferenceType>();
2100    return T->PointeeType;
2101  }
2102
2103  void Profile(llvm::FoldingSetNodeID &ID) {
2104    Profile(ID, PointeeType, isSpelledAsLValue());
2105  }
2106  static void Profile(llvm::FoldingSetNodeID &ID,
2107                      QualType Referencee,
2108                      bool SpelledAsLValue) {
2109    ID.AddPointer(Referencee.getAsOpaquePtr());
2110    ID.AddBoolean(SpelledAsLValue);
2111  }
2112
2113  static bool classof(const Type *T) {
2114    return T->getTypeClass() == LValueReference ||
2115           T->getTypeClass() == RValueReference;
2116  }
2117};
2118
2119/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
2120///
2121class LValueReferenceType : public ReferenceType {
2122  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2123                      bool SpelledAsLValue) :
2124    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
2125  {}
2126  friend class ASTContext; // ASTContext creates these
2127public:
2128  bool isSugared() const { return false; }
2129  QualType desugar() const { return QualType(this, 0); }
2130
2131  static bool classof(const Type *T) {
2132    return T->getTypeClass() == LValueReference;
2133  }
2134};
2135
2136/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
2137///
2138class RValueReferenceType : public ReferenceType {
2139  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
2140    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
2141  }
2142  friend class ASTContext; // ASTContext creates these
2143public:
2144  bool isSugared() const { return false; }
2145  QualType desugar() const { return QualType(this, 0); }
2146
2147  static bool classof(const Type *T) {
2148    return T->getTypeClass() == RValueReference;
2149  }
2150};
2151
2152/// MemberPointerType - C++ 8.3.3 - Pointers to members
2153///
2154class MemberPointerType : public Type, public llvm::FoldingSetNode {
2155  QualType PointeeType;
2156  /// The class of which the pointee is a member. Must ultimately be a
2157  /// RecordType, but could be a typedef or a template parameter too.
2158  const Type *Class;
2159
2160  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
2161    Type(MemberPointer, CanonicalPtr,
2162         Cls->isDependentType() || Pointee->isDependentType(),
2163         (Cls->isInstantiationDependentType() ||
2164          Pointee->isInstantiationDependentType()),
2165         Pointee->isVariablyModifiedType(),
2166         (Cls->containsUnexpandedParameterPack() ||
2167          Pointee->containsUnexpandedParameterPack())),
2168    PointeeType(Pointee), Class(Cls) {
2169  }
2170  friend class ASTContext; // ASTContext creates these.
2171
2172public:
2173  QualType getPointeeType() const { return PointeeType; }
2174
2175  /// Returns true if the member type (i.e. the pointee type) is a
2176  /// function type rather than a data-member type.
2177  bool isMemberFunctionPointer() const {
2178    return PointeeType->isFunctionProtoType();
2179  }
2180
2181  /// Returns true if the member type (i.e. the pointee type) is a
2182  /// data type rather than a function type.
2183  bool isMemberDataPointer() const {
2184    return !PointeeType->isFunctionProtoType();
2185  }
2186
2187  const Type *getClass() const { return Class; }
2188
2189  bool isSugared() const { return false; }
2190  QualType desugar() const { return QualType(this, 0); }
2191
2192  void Profile(llvm::FoldingSetNodeID &ID) {
2193    Profile(ID, getPointeeType(), getClass());
2194  }
2195  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2196                      const Type *Class) {
2197    ID.AddPointer(Pointee.getAsOpaquePtr());
2198    ID.AddPointer(Class);
2199  }
2200
2201  static bool classof(const Type *T) {
2202    return T->getTypeClass() == MemberPointer;
2203  }
2204};
2205
2206/// ArrayType - C99 6.7.5.2 - Array Declarators.
2207///
2208class ArrayType : public Type, public llvm::FoldingSetNode {
2209public:
2210  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
2211  /// an array with a static size (e.g. int X[static 4]), or an array
2212  /// with a star size (e.g. int X[*]).
2213  /// 'static' is only allowed on function parameters.
2214  enum ArraySizeModifier {
2215    Normal, Static, Star
2216  };
2217private:
2218  /// ElementType - The element type of the array.
2219  QualType ElementType;
2220
2221protected:
2222  // C++ [temp.dep.type]p1:
2223  //   A type is dependent if it is...
2224  //     - an array type constructed from any dependent type or whose
2225  //       size is specified by a constant expression that is
2226  //       value-dependent,
2227  ArrayType(TypeClass tc, QualType et, QualType can,
2228            ArraySizeModifier sm, unsigned tq,
2229            bool ContainsUnexpandedParameterPack)
2230    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2231           et->isInstantiationDependentType() || tc == DependentSizedArray,
2232           (tc == VariableArray || et->isVariablyModifiedType()),
2233           ContainsUnexpandedParameterPack),
2234      ElementType(et) {
2235    ArrayTypeBits.IndexTypeQuals = tq;
2236    ArrayTypeBits.SizeModifier = sm;
2237  }
2238
2239  friend class ASTContext;  // ASTContext creates these.
2240
2241public:
2242  QualType getElementType() const { return ElementType; }
2243  ArraySizeModifier getSizeModifier() const {
2244    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2245  }
2246  Qualifiers getIndexTypeQualifiers() const {
2247    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2248  }
2249  unsigned getIndexTypeCVRQualifiers() const {
2250    return ArrayTypeBits.IndexTypeQuals;
2251  }
2252
2253  static bool classof(const Type *T) {
2254    return T->getTypeClass() == ConstantArray ||
2255           T->getTypeClass() == VariableArray ||
2256           T->getTypeClass() == IncompleteArray ||
2257           T->getTypeClass() == DependentSizedArray;
2258  }
2259};
2260
2261/// ConstantArrayType - This class represents the canonical version of
2262/// C arrays with a specified constant size.  For example, the canonical
2263/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
2264/// type is 'int' and the size is 404.
2265class ConstantArrayType : public ArrayType {
2266  llvm::APInt Size; // Allows us to unique the type.
2267
2268  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2269                    ArraySizeModifier sm, unsigned tq)
2270    : ArrayType(ConstantArray, et, can, sm, tq,
2271                et->containsUnexpandedParameterPack()),
2272      Size(size) {}
2273protected:
2274  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2275                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2276    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2277      Size(size) {}
2278  friend class ASTContext;  // ASTContext creates these.
2279public:
2280  const llvm::APInt &getSize() const { return Size; }
2281  bool isSugared() const { return false; }
2282  QualType desugar() const { return QualType(this, 0); }
2283
2284
2285  /// \brief Determine the number of bits required to address a member of
2286  // an array with the given element type and number of elements.
2287  static unsigned getNumAddressingBits(ASTContext &Context,
2288                                       QualType ElementType,
2289                                       const llvm::APInt &NumElements);
2290
2291  /// \brief Determine the maximum number of active bits that an array's size
2292  /// can require, which limits the maximum size of the array.
2293  static unsigned getMaxSizeBits(ASTContext &Context);
2294
2295  void Profile(llvm::FoldingSetNodeID &ID) {
2296    Profile(ID, getElementType(), getSize(),
2297            getSizeModifier(), getIndexTypeCVRQualifiers());
2298  }
2299  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2300                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2301                      unsigned TypeQuals) {
2302    ID.AddPointer(ET.getAsOpaquePtr());
2303    ID.AddInteger(ArraySize.getZExtValue());
2304    ID.AddInteger(SizeMod);
2305    ID.AddInteger(TypeQuals);
2306  }
2307  static bool classof(const Type *T) {
2308    return T->getTypeClass() == ConstantArray;
2309  }
2310};
2311
2312/// IncompleteArrayType - This class represents C arrays with an unspecified
2313/// size.  For example 'int A[]' has an IncompleteArrayType where the element
2314/// type is 'int' and the size is unspecified.
2315class IncompleteArrayType : public ArrayType {
2316
2317  IncompleteArrayType(QualType et, QualType can,
2318                      ArraySizeModifier sm, unsigned tq)
2319    : ArrayType(IncompleteArray, et, can, sm, tq,
2320                et->containsUnexpandedParameterPack()) {}
2321  friend class ASTContext;  // ASTContext creates these.
2322public:
2323  bool isSugared() const { return false; }
2324  QualType desugar() const { return QualType(this, 0); }
2325
2326  static bool classof(const Type *T) {
2327    return T->getTypeClass() == IncompleteArray;
2328  }
2329
2330  friend class StmtIteratorBase;
2331
2332  void Profile(llvm::FoldingSetNodeID &ID) {
2333    Profile(ID, getElementType(), getSizeModifier(),
2334            getIndexTypeCVRQualifiers());
2335  }
2336
2337  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2338                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2339    ID.AddPointer(ET.getAsOpaquePtr());
2340    ID.AddInteger(SizeMod);
2341    ID.AddInteger(TypeQuals);
2342  }
2343};
2344
2345/// VariableArrayType - This class represents C arrays with a specified size
2346/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
2347/// Since the size expression is an arbitrary expression, we store it as such.
2348///
2349/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2350/// should not be: two lexically equivalent variable array types could mean
2351/// different things, for example, these variables do not have the same type
2352/// dynamically:
2353///
2354/// void foo(int x) {
2355///   int Y[x];
2356///   ++x;
2357///   int Z[x];
2358/// }
2359///
2360class VariableArrayType : public ArrayType {
2361  /// SizeExpr - An assignment expression. VLA's are only permitted within
2362  /// a function block.
2363  Stmt *SizeExpr;
2364  /// Brackets - The left and right array brackets.
2365  SourceRange Brackets;
2366
2367  VariableArrayType(QualType et, QualType can, Expr *e,
2368                    ArraySizeModifier sm, unsigned tq,
2369                    SourceRange brackets)
2370    : ArrayType(VariableArray, et, can, sm, tq,
2371                et->containsUnexpandedParameterPack()),
2372      SizeExpr((Stmt*) e), Brackets(brackets) {}
2373  friend class ASTContext;  // ASTContext creates these.
2374
2375public:
2376  Expr *getSizeExpr() const {
2377    // We use C-style casts instead of cast<> here because we do not wish
2378    // to have a dependency of Type.h on Stmt.h/Expr.h.
2379    return (Expr*) SizeExpr;
2380  }
2381  SourceRange getBracketsRange() const { return Brackets; }
2382  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2383  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2384
2385  bool isSugared() const { return false; }
2386  QualType desugar() const { return QualType(this, 0); }
2387
2388  static bool classof(const Type *T) {
2389    return T->getTypeClass() == VariableArray;
2390  }
2391
2392  friend class StmtIteratorBase;
2393
2394  void Profile(llvm::FoldingSetNodeID &ID) {
2395    llvm_unreachable("Cannot unique VariableArrayTypes.");
2396  }
2397};
2398
2399/// DependentSizedArrayType - This type represents an array type in
2400/// C++ whose size is a value-dependent expression. For example:
2401///
2402/// \code
2403/// template<typename T, int Size>
2404/// class array {
2405///   T data[Size];
2406/// };
2407/// \endcode
2408///
2409/// For these types, we won't actually know what the array bound is
2410/// until template instantiation occurs, at which point this will
2411/// become either a ConstantArrayType or a VariableArrayType.
2412class DependentSizedArrayType : public ArrayType {
2413  const ASTContext &Context;
2414
2415  /// \brief An assignment expression that will instantiate to the
2416  /// size of the array.
2417  ///
2418  /// The expression itself might be NULL, in which case the array
2419  /// type will have its size deduced from an initializer.
2420  Stmt *SizeExpr;
2421
2422  /// Brackets - The left and right array brackets.
2423  SourceRange Brackets;
2424
2425  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2426                          Expr *e, ArraySizeModifier sm, unsigned tq,
2427                          SourceRange brackets);
2428
2429  friend class ASTContext;  // ASTContext creates these.
2430
2431public:
2432  Expr *getSizeExpr() const {
2433    // We use C-style casts instead of cast<> here because we do not wish
2434    // to have a dependency of Type.h on Stmt.h/Expr.h.
2435    return (Expr*) SizeExpr;
2436  }
2437  SourceRange getBracketsRange() const { return Brackets; }
2438  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2439  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2440
2441  bool isSugared() const { return false; }
2442  QualType desugar() const { return QualType(this, 0); }
2443
2444  static bool classof(const Type *T) {
2445    return T->getTypeClass() == DependentSizedArray;
2446  }
2447
2448  friend class StmtIteratorBase;
2449
2450
2451  void Profile(llvm::FoldingSetNodeID &ID) {
2452    Profile(ID, Context, getElementType(),
2453            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2454  }
2455
2456  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2457                      QualType ET, ArraySizeModifier SizeMod,
2458                      unsigned TypeQuals, Expr *E);
2459};
2460
2461/// DependentSizedExtVectorType - This type represent an extended vector type
2462/// where either the type or size is dependent. For example:
2463/// @code
2464/// template<typename T, int Size>
2465/// class vector {
2466///   typedef T __attribute__((ext_vector_type(Size))) type;
2467/// }
2468/// @endcode
2469class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2470  const ASTContext &Context;
2471  Expr *SizeExpr;
2472  /// ElementType - The element type of the array.
2473  QualType ElementType;
2474  SourceLocation loc;
2475
2476  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2477                              QualType can, Expr *SizeExpr, SourceLocation loc);
2478
2479  friend class ASTContext;
2480
2481public:
2482  Expr *getSizeExpr() const { return SizeExpr; }
2483  QualType getElementType() const { return ElementType; }
2484  SourceLocation getAttributeLoc() const { return loc; }
2485
2486  bool isSugared() const { return false; }
2487  QualType desugar() const { return QualType(this, 0); }
2488
2489  static bool classof(const Type *T) {
2490    return T->getTypeClass() == DependentSizedExtVector;
2491  }
2492
2493  void Profile(llvm::FoldingSetNodeID &ID) {
2494    Profile(ID, Context, getElementType(), getSizeExpr());
2495  }
2496
2497  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2498                      QualType ElementType, Expr *SizeExpr);
2499};
2500
2501
2502/// VectorType - GCC generic vector type. This type is created using
2503/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2504/// bytes; or from an Altivec __vector or vector declaration.
2505/// Since the constructor takes the number of vector elements, the
2506/// client is responsible for converting the size into the number of elements.
2507class VectorType : public Type, public llvm::FoldingSetNode {
2508public:
2509  enum VectorKind {
2510    GenericVector,  // not a target-specific vector type
2511    AltiVecVector,  // is AltiVec vector
2512    AltiVecPixel,   // is AltiVec 'vector Pixel'
2513    AltiVecBool,    // is AltiVec 'vector bool ...'
2514    NeonVector,     // is ARM Neon vector
2515    NeonPolyVector  // is ARM Neon polynomial vector
2516  };
2517protected:
2518  /// ElementType - The element type of the vector.
2519  QualType ElementType;
2520
2521  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2522             VectorKind vecKind);
2523
2524  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2525             QualType canonType, VectorKind vecKind);
2526
2527  friend class ASTContext;  // ASTContext creates these.
2528
2529public:
2530
2531  QualType getElementType() const { return ElementType; }
2532  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2533  static bool isVectorSizeTooLarge(unsigned NumElements) {
2534    return NumElements > VectorTypeBitfields::MaxNumElements;
2535  }
2536
2537  bool isSugared() const { return false; }
2538  QualType desugar() const { return QualType(this, 0); }
2539
2540  VectorKind getVectorKind() const {
2541    return VectorKind(VectorTypeBits.VecKind);
2542  }
2543
2544  void Profile(llvm::FoldingSetNodeID &ID) {
2545    Profile(ID, getElementType(), getNumElements(),
2546            getTypeClass(), getVectorKind());
2547  }
2548  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2549                      unsigned NumElements, TypeClass TypeClass,
2550                      VectorKind VecKind) {
2551    ID.AddPointer(ElementType.getAsOpaquePtr());
2552    ID.AddInteger(NumElements);
2553    ID.AddInteger(TypeClass);
2554    ID.AddInteger(VecKind);
2555  }
2556
2557  static bool classof(const Type *T) {
2558    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2559  }
2560};
2561
2562/// ExtVectorType - Extended vector type. This type is created using
2563/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2564/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2565/// class enables syntactic extensions, like Vector Components for accessing
2566/// points, colors, and textures (modeled after OpenGL Shading Language).
2567class ExtVectorType : public VectorType {
2568  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2569    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2570  friend class ASTContext;  // ASTContext creates these.
2571public:
2572  static int getPointAccessorIdx(char c) {
2573    switch (c) {
2574    default: return -1;
2575    case 'x': return 0;
2576    case 'y': return 1;
2577    case 'z': return 2;
2578    case 'w': return 3;
2579    }
2580  }
2581  static int getNumericAccessorIdx(char c) {
2582    switch (c) {
2583      default: return -1;
2584      case '0': return 0;
2585      case '1': return 1;
2586      case '2': return 2;
2587      case '3': return 3;
2588      case '4': return 4;
2589      case '5': return 5;
2590      case '6': return 6;
2591      case '7': return 7;
2592      case '8': return 8;
2593      case '9': return 9;
2594      case 'A':
2595      case 'a': return 10;
2596      case 'B':
2597      case 'b': return 11;
2598      case 'C':
2599      case 'c': return 12;
2600      case 'D':
2601      case 'd': return 13;
2602      case 'E':
2603      case 'e': return 14;
2604      case 'F':
2605      case 'f': return 15;
2606    }
2607  }
2608
2609  static int getAccessorIdx(char c) {
2610    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2611    return getNumericAccessorIdx(c);
2612  }
2613
2614  bool isAccessorWithinNumElements(char c) const {
2615    if (int idx = getAccessorIdx(c)+1)
2616      return unsigned(idx-1) < getNumElements();
2617    return false;
2618  }
2619  bool isSugared() const { return false; }
2620  QualType desugar() const { return QualType(this, 0); }
2621
2622  static bool classof(const Type *T) {
2623    return T->getTypeClass() == ExtVector;
2624  }
2625};
2626
2627/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2628/// class of FunctionNoProtoType and FunctionProtoType.
2629///
2630class FunctionType : public Type {
2631  // The type returned by the function.
2632  QualType ResultType;
2633
2634 public:
2635  /// ExtInfo - A class which abstracts out some details necessary for
2636  /// making a call.
2637  ///
2638  /// It is not actually used directly for storing this information in
2639  /// a FunctionType, although FunctionType does currently use the
2640  /// same bit-pattern.
2641  ///
2642  // If you add a field (say Foo), other than the obvious places (both,
2643  // constructors, compile failures), what you need to update is
2644  // * Operator==
2645  // * getFoo
2646  // * withFoo
2647  // * functionType. Add Foo, getFoo.
2648  // * ASTContext::getFooType
2649  // * ASTContext::mergeFunctionTypes
2650  // * FunctionNoProtoType::Profile
2651  // * FunctionProtoType::Profile
2652  // * TypePrinter::PrintFunctionProto
2653  // * AST read and write
2654  // * Codegen
2655  class ExtInfo {
2656    // Feel free to rearrange or add bits, but if you go over 9,
2657    // you'll need to adjust both the Bits field below and
2658    // Type::FunctionTypeBitfields.
2659
2660    //   |  CC  |noreturn|produces|regparm|
2661    //   |0 .. 3|   4    |    5   | 6 .. 8|
2662    //
2663    // regparm is either 0 (no regparm attribute) or the regparm value+1.
2664    enum { CallConvMask = 0xF };
2665    enum { NoReturnMask = 0x10 };
2666    enum { ProducesResultMask = 0x20 };
2667    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2668           RegParmOffset = 6 }; // Assumed to be the last field
2669
2670    uint16_t Bits;
2671
2672    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2673
2674    friend class FunctionType;
2675
2676   public:
2677    // Constructor with no defaults. Use this when you know that you
2678    // have all the elements (when reading an AST file for example).
2679    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2680            bool producesResult) {
2681      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2682      Bits = ((unsigned) cc) |
2683             (noReturn ? NoReturnMask : 0) |
2684             (producesResult ? ProducesResultMask : 0) |
2685             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2686    }
2687
2688    // Constructor with all defaults. Use when for example creating a
2689    // function know to use defaults.
2690    ExtInfo() : Bits(CC_C) { }
2691
2692    // Constructor with just the calling convention, which is an important part
2693    // of the canonical type.
2694    ExtInfo(CallingConv CC) : Bits(CC) { }
2695
2696    bool getNoReturn() const { return Bits & NoReturnMask; }
2697    bool getProducesResult() const { return Bits & ProducesResultMask; }
2698    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2699    unsigned getRegParm() const {
2700      unsigned RegParm = Bits >> RegParmOffset;
2701      if (RegParm > 0)
2702        --RegParm;
2703      return RegParm;
2704    }
2705    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2706
2707    bool operator==(ExtInfo Other) const {
2708      return Bits == Other.Bits;
2709    }
2710    bool operator!=(ExtInfo Other) const {
2711      return Bits != Other.Bits;
2712    }
2713
2714    // Note that we don't have setters. That is by design, use
2715    // the following with methods instead of mutating these objects.
2716
2717    ExtInfo withNoReturn(bool noReturn) const {
2718      if (noReturn)
2719        return ExtInfo(Bits | NoReturnMask);
2720      else
2721        return ExtInfo(Bits & ~NoReturnMask);
2722    }
2723
2724    ExtInfo withProducesResult(bool producesResult) const {
2725      if (producesResult)
2726        return ExtInfo(Bits | ProducesResultMask);
2727      else
2728        return ExtInfo(Bits & ~ProducesResultMask);
2729    }
2730
2731    ExtInfo withRegParm(unsigned RegParm) const {
2732      assert(RegParm < 7 && "Invalid regparm value");
2733      return ExtInfo((Bits & ~RegParmMask) |
2734                     ((RegParm + 1) << RegParmOffset));
2735    }
2736
2737    ExtInfo withCallingConv(CallingConv cc) const {
2738      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2739    }
2740
2741    void Profile(llvm::FoldingSetNodeID &ID) const {
2742      ID.AddInteger(Bits);
2743    }
2744  };
2745
2746protected:
2747  FunctionType(TypeClass tc, QualType res,
2748               unsigned typeQuals, QualType Canonical, bool Dependent,
2749               bool InstantiationDependent,
2750               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2751               ExtInfo Info)
2752    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
2753           ContainsUnexpandedParameterPack),
2754      ResultType(res) {
2755    FunctionTypeBits.ExtInfo = Info.Bits;
2756    FunctionTypeBits.TypeQuals = typeQuals;
2757  }
2758  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2759
2760public:
2761
2762  QualType getResultType() const { return ResultType; }
2763
2764  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2765  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2766  /// \brief Determine whether this function type includes the GNU noreturn
2767  /// attribute. The C++11 [[noreturn]] attribute does not affect the function
2768  /// type.
2769  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2770  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2771  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2772  bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
2773  bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
2774  bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
2775
2776  /// \brief Determine the type of an expression that calls a function of
2777  /// this type.
2778  QualType getCallResultType(ASTContext &Context) const {
2779    return getResultType().getNonLValueExprType(Context);
2780  }
2781
2782  static StringRef getNameForCallConv(CallingConv CC);
2783
2784  static bool classof(const Type *T) {
2785    return T->getTypeClass() == FunctionNoProto ||
2786           T->getTypeClass() == FunctionProto;
2787  }
2788};
2789
2790/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2791/// no information available about its arguments.
2792class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2793  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2794    : FunctionType(FunctionNoProto, Result, 0, Canonical,
2795                   /*Dependent=*/false, /*InstantiationDependent=*/false,
2796                   Result->isVariablyModifiedType(),
2797                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2798
2799  friend class ASTContext;  // ASTContext creates these.
2800
2801public:
2802  // No additional state past what FunctionType provides.
2803
2804  bool isSugared() const { return false; }
2805  QualType desugar() const { return QualType(this, 0); }
2806
2807  void Profile(llvm::FoldingSetNodeID &ID) {
2808    Profile(ID, getResultType(), getExtInfo());
2809  }
2810  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2811                      ExtInfo Info) {
2812    Info.Profile(ID);
2813    ID.AddPointer(ResultType.getAsOpaquePtr());
2814  }
2815
2816  static bool classof(const Type *T) {
2817    return T->getTypeClass() == FunctionNoProto;
2818  }
2819};
2820
2821/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2822/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2823/// arguments, not as having a single void argument. Such a type can have an
2824/// exception specification, but this specification is not part of the canonical
2825/// type.
2826class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2827public:
2828  /// ExtProtoInfo - Extra information about a function prototype.
2829  struct ExtProtoInfo {
2830    ExtProtoInfo() :
2831      Variadic(false), HasTrailingReturn(false), TypeQuals(0),
2832      ExceptionSpecType(EST_None), RefQualifier(RQ_None),
2833      NumExceptions(0), Exceptions(0), NoexceptExpr(0),
2834      ExceptionSpecDecl(0), ExceptionSpecTemplate(0),
2835      ConsumedArguments(0) {}
2836
2837    ExtProtoInfo(CallingConv CC)
2838        : ExtInfo(CC), Variadic(false), HasTrailingReturn(false), TypeQuals(0),
2839          ExceptionSpecType(EST_None), RefQualifier(RQ_None), NumExceptions(0),
2840          Exceptions(0), NoexceptExpr(0), ExceptionSpecDecl(0),
2841          ExceptionSpecTemplate(0), ConsumedArguments(0) {}
2842
2843    FunctionType::ExtInfo ExtInfo;
2844    bool Variadic : 1;
2845    bool HasTrailingReturn : 1;
2846    unsigned char TypeQuals;
2847    ExceptionSpecificationType ExceptionSpecType;
2848    RefQualifierKind RefQualifier;
2849    unsigned NumExceptions;
2850    const QualType *Exceptions;
2851    Expr *NoexceptExpr;
2852    FunctionDecl *ExceptionSpecDecl;
2853    FunctionDecl *ExceptionSpecTemplate;
2854    const bool *ConsumedArguments;
2855  };
2856
2857private:
2858  /// \brief Determine whether there are any argument types that
2859  /// contain an unexpanded parameter pack.
2860  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2861                                                 unsigned numArgs) {
2862    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2863      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2864        return true;
2865
2866    return false;
2867  }
2868
2869  FunctionProtoType(QualType result, ArrayRef<QualType> args,
2870                    QualType canonical, const ExtProtoInfo &epi);
2871
2872  /// NumArgs - The number of arguments this function has, not counting '...'.
2873  unsigned NumArgs : 15;
2874
2875  /// NumExceptions - The number of types in the exception spec, if any.
2876  unsigned NumExceptions : 9;
2877
2878  /// ExceptionSpecType - The type of exception specification this function has.
2879  unsigned ExceptionSpecType : 3;
2880
2881  /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
2882  unsigned HasAnyConsumedArgs : 1;
2883
2884  /// Variadic - Whether the function is variadic.
2885  unsigned Variadic : 1;
2886
2887  /// HasTrailingReturn - Whether this function has a trailing return type.
2888  unsigned HasTrailingReturn : 1;
2889
2890  /// \brief The ref-qualifier associated with a \c FunctionProtoType.
2891  ///
2892  /// This is a value of type \c RefQualifierKind.
2893  unsigned RefQualifier : 2;
2894
2895  // ArgInfo - There is an variable size array after the class in memory that
2896  // holds the argument types.
2897
2898  // Exceptions - There is another variable size array after ArgInfo that
2899  // holds the exception types.
2900
2901  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2902  // to the expression in the noexcept() specifier.
2903
2904  // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
2905  // be a pair of FunctionDecl* pointing to the function which should be used to
2906  // instantiate this function type's exception specification, and the function
2907  // from which it should be instantiated.
2908
2909  // ConsumedArgs - A variable size array, following Exceptions
2910  // and of length NumArgs, holding flags indicating which arguments
2911  // are consumed.  This only appears if HasAnyConsumedArgs is true.
2912
2913  friend class ASTContext;  // ASTContext creates these.
2914
2915  const bool *getConsumedArgsBuffer() const {
2916    assert(hasAnyConsumedArgs());
2917
2918    // Find the end of the exceptions.
2919    Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
2920    if (getExceptionSpecType() != EST_ComputedNoexcept)
2921      eh_end += NumExceptions;
2922    else
2923      eh_end += 1; // NoexceptExpr
2924
2925    return reinterpret_cast<const bool*>(eh_end);
2926  }
2927
2928public:
2929  unsigned getNumArgs() const { return NumArgs; }
2930  QualType getArgType(unsigned i) const {
2931    assert(i < NumArgs && "Invalid argument number!");
2932    return arg_type_begin()[i];
2933  }
2934  ArrayRef<QualType> getArgTypes() const {
2935    return ArrayRef<QualType>(arg_type_begin(), arg_type_end());
2936  }
2937
2938  ExtProtoInfo getExtProtoInfo() const {
2939    ExtProtoInfo EPI;
2940    EPI.ExtInfo = getExtInfo();
2941    EPI.Variadic = isVariadic();
2942    EPI.HasTrailingReturn = hasTrailingReturn();
2943    EPI.ExceptionSpecType = getExceptionSpecType();
2944    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2945    EPI.RefQualifier = getRefQualifier();
2946    if (EPI.ExceptionSpecType == EST_Dynamic) {
2947      EPI.NumExceptions = NumExceptions;
2948      EPI.Exceptions = exception_begin();
2949    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2950      EPI.NoexceptExpr = getNoexceptExpr();
2951    } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2952      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2953      EPI.ExceptionSpecTemplate = getExceptionSpecTemplate();
2954    } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2955      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2956    }
2957    if (hasAnyConsumedArgs())
2958      EPI.ConsumedArguments = getConsumedArgsBuffer();
2959    return EPI;
2960  }
2961
2962  /// \brief Get the kind of exception specification on this function.
2963  ExceptionSpecificationType getExceptionSpecType() const {
2964    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2965  }
2966  /// \brief Return whether this function has any kind of exception spec.
2967  bool hasExceptionSpec() const {
2968    return getExceptionSpecType() != EST_None;
2969  }
2970  /// \brief Return whether this function has a dynamic (throw) exception spec.
2971  bool hasDynamicExceptionSpec() const {
2972    return isDynamicExceptionSpec(getExceptionSpecType());
2973  }
2974  /// \brief Return whether this function has a noexcept exception spec.
2975  bool hasNoexceptExceptionSpec() const {
2976    return isNoexceptExceptionSpec(getExceptionSpecType());
2977  }
2978  /// \brief Result type of getNoexceptSpec().
2979  enum NoexceptResult {
2980    NR_NoNoexcept,  ///< There is no noexcept specifier.
2981    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2982    NR_Dependent,   ///< The noexcept specifier is dependent.
2983    NR_Throw,       ///< The noexcept specifier evaluates to false.
2984    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2985  };
2986  /// \brief Get the meaning of the noexcept spec on this function, if any.
2987  NoexceptResult getNoexceptSpec(const ASTContext &Ctx) const;
2988  unsigned getNumExceptions() const { return NumExceptions; }
2989  QualType getExceptionType(unsigned i) const {
2990    assert(i < NumExceptions && "Invalid exception number!");
2991    return exception_begin()[i];
2992  }
2993  Expr *getNoexceptExpr() const {
2994    if (getExceptionSpecType() != EST_ComputedNoexcept)
2995      return 0;
2996    // NoexceptExpr sits where the arguments end.
2997    return *reinterpret_cast<Expr *const *>(arg_type_end());
2998  }
2999  /// \brief If this function type has an exception specification which hasn't
3000  /// been determined yet (either because it has not been evaluated or because
3001  /// it has not been instantiated), this is the function whose exception
3002  /// specification is represented by this type.
3003  FunctionDecl *getExceptionSpecDecl() const {
3004    if (getExceptionSpecType() != EST_Uninstantiated &&
3005        getExceptionSpecType() != EST_Unevaluated)
3006      return 0;
3007    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[0];
3008  }
3009  /// \brief If this function type has an uninstantiated exception
3010  /// specification, this is the function whose exception specification
3011  /// should be instantiated to find the exception specification for
3012  /// this type.
3013  FunctionDecl *getExceptionSpecTemplate() const {
3014    if (getExceptionSpecType() != EST_Uninstantiated)
3015      return 0;
3016    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[1];
3017  }
3018  bool isNothrow(const ASTContext &Ctx) const {
3019    ExceptionSpecificationType EST = getExceptionSpecType();
3020    assert(EST != EST_Unevaluated && EST != EST_Uninstantiated);
3021    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
3022      return true;
3023    if (EST != EST_ComputedNoexcept)
3024      return false;
3025    return getNoexceptSpec(Ctx) == NR_Nothrow;
3026  }
3027
3028  bool isVariadic() const { return Variadic; }
3029
3030  /// \brief Determines whether this function prototype contains a
3031  /// parameter pack at the end.
3032  ///
3033  /// A function template whose last parameter is a parameter pack can be
3034  /// called with an arbitrary number of arguments, much like a variadic
3035  /// function.
3036  bool isTemplateVariadic() const;
3037
3038  bool hasTrailingReturn() const { return HasTrailingReturn; }
3039
3040  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
3041
3042
3043  /// \brief Retrieve the ref-qualifier associated with this function type.
3044  RefQualifierKind getRefQualifier() const {
3045    return static_cast<RefQualifierKind>(RefQualifier);
3046  }
3047
3048  typedef const QualType *arg_type_iterator;
3049  arg_type_iterator arg_type_begin() const {
3050    return reinterpret_cast<const QualType *>(this+1);
3051  }
3052  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
3053
3054  typedef const QualType *exception_iterator;
3055  exception_iterator exception_begin() const {
3056    // exceptions begin where arguments end
3057    return arg_type_end();
3058  }
3059  exception_iterator exception_end() const {
3060    if (getExceptionSpecType() != EST_Dynamic)
3061      return exception_begin();
3062    return exception_begin() + NumExceptions;
3063  }
3064
3065  bool hasAnyConsumedArgs() const {
3066    return HasAnyConsumedArgs;
3067  }
3068  bool isArgConsumed(unsigned I) const {
3069    assert(I < getNumArgs() && "argument index out of range!");
3070    if (hasAnyConsumedArgs())
3071      return getConsumedArgsBuffer()[I];
3072    return false;
3073  }
3074
3075  bool isSugared() const { return false; }
3076  QualType desugar() const { return QualType(this, 0); }
3077
3078  void printExceptionSpecification(raw_ostream &OS,
3079                                   const PrintingPolicy &Policy) const;
3080
3081  static bool classof(const Type *T) {
3082    return T->getTypeClass() == FunctionProto;
3083  }
3084
3085  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
3086  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3087                      arg_type_iterator ArgTys, unsigned NumArgs,
3088                      const ExtProtoInfo &EPI, const ASTContext &Context);
3089};
3090
3091
3092/// \brief Represents the dependent type named by a dependently-scoped
3093/// typename using declaration, e.g.
3094///   using typename Base<T>::foo;
3095/// Template instantiation turns these into the underlying type.
3096class UnresolvedUsingType : public Type {
3097  UnresolvedUsingTypenameDecl *Decl;
3098
3099  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
3100    : Type(UnresolvedUsing, QualType(), true, true, false,
3101           /*ContainsUnexpandedParameterPack=*/false),
3102      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
3103  friend class ASTContext; // ASTContext creates these.
3104public:
3105
3106  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
3107
3108  bool isSugared() const { return false; }
3109  QualType desugar() const { return QualType(this, 0); }
3110
3111  static bool classof(const Type *T) {
3112    return T->getTypeClass() == UnresolvedUsing;
3113  }
3114
3115  void Profile(llvm::FoldingSetNodeID &ID) {
3116    return Profile(ID, Decl);
3117  }
3118  static void Profile(llvm::FoldingSetNodeID &ID,
3119                      UnresolvedUsingTypenameDecl *D) {
3120    ID.AddPointer(D);
3121  }
3122};
3123
3124
3125class TypedefType : public Type {
3126  TypedefNameDecl *Decl;
3127protected:
3128  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
3129    : Type(tc, can, can->isDependentType(),
3130           can->isInstantiationDependentType(),
3131           can->isVariablyModifiedType(),
3132           /*ContainsUnexpandedParameterPack=*/false),
3133      Decl(const_cast<TypedefNameDecl*>(D)) {
3134    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3135  }
3136  friend class ASTContext;  // ASTContext creates these.
3137public:
3138
3139  TypedefNameDecl *getDecl() const { return Decl; }
3140
3141  bool isSugared() const { return true; }
3142  QualType desugar() const;
3143
3144  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
3145};
3146
3147/// TypeOfExprType (GCC extension).
3148class TypeOfExprType : public Type {
3149  Expr *TOExpr;
3150
3151protected:
3152  TypeOfExprType(Expr *E, QualType can = QualType());
3153  friend class ASTContext;  // ASTContext creates these.
3154public:
3155  Expr *getUnderlyingExpr() const { return TOExpr; }
3156
3157  /// \brief Remove a single level of sugar.
3158  QualType desugar() const;
3159
3160  /// \brief Returns whether this type directly provides sugar.
3161  bool isSugared() const;
3162
3163  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
3164};
3165
3166/// \brief Internal representation of canonical, dependent
3167/// typeof(expr) types.
3168///
3169/// This class is used internally by the ASTContext to manage
3170/// canonical, dependent types, only. Clients will only see instances
3171/// of this class via TypeOfExprType nodes.
3172class DependentTypeOfExprType
3173  : public TypeOfExprType, public llvm::FoldingSetNode {
3174  const ASTContext &Context;
3175
3176public:
3177  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
3178    : TypeOfExprType(E), Context(Context) { }
3179
3180  void Profile(llvm::FoldingSetNodeID &ID) {
3181    Profile(ID, Context, getUnderlyingExpr());
3182  }
3183
3184  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3185                      Expr *E);
3186};
3187
3188/// TypeOfType (GCC extension).
3189class TypeOfType : public Type {
3190  QualType TOType;
3191  TypeOfType(QualType T, QualType can)
3192    : Type(TypeOf, can, T->isDependentType(),
3193           T->isInstantiationDependentType(),
3194           T->isVariablyModifiedType(),
3195           T->containsUnexpandedParameterPack()),
3196      TOType(T) {
3197    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3198  }
3199  friend class ASTContext;  // ASTContext creates these.
3200public:
3201  QualType getUnderlyingType() const { return TOType; }
3202
3203  /// \brief Remove a single level of sugar.
3204  QualType desugar() const { return getUnderlyingType(); }
3205
3206  /// \brief Returns whether this type directly provides sugar.
3207  bool isSugared() const { return true; }
3208
3209  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
3210};
3211
3212/// DecltypeType (C++0x)
3213class DecltypeType : public Type {
3214  Expr *E;
3215  QualType UnderlyingType;
3216
3217protected:
3218  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3219  friend class ASTContext;  // ASTContext creates these.
3220public:
3221  Expr *getUnderlyingExpr() const { return E; }
3222  QualType getUnderlyingType() const { return UnderlyingType; }
3223
3224  /// \brief Remove a single level of sugar.
3225  QualType desugar() const;
3226
3227  /// \brief Returns whether this type directly provides sugar.
3228  bool isSugared() const;
3229
3230  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3231};
3232
3233/// \brief Internal representation of canonical, dependent
3234/// decltype(expr) types.
3235///
3236/// This class is used internally by the ASTContext to manage
3237/// canonical, dependent types, only. Clients will only see instances
3238/// of this class via DecltypeType nodes.
3239class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3240  const ASTContext &Context;
3241
3242public:
3243  DependentDecltypeType(const ASTContext &Context, Expr *E);
3244
3245  void Profile(llvm::FoldingSetNodeID &ID) {
3246    Profile(ID, Context, getUnderlyingExpr());
3247  }
3248
3249  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3250                      Expr *E);
3251};
3252
3253/// \brief A unary type transform, which is a type constructed from another
3254class UnaryTransformType : public Type {
3255public:
3256  enum UTTKind {
3257    EnumUnderlyingType
3258  };
3259
3260private:
3261  /// The untransformed type.
3262  QualType BaseType;
3263  /// The transformed type if not dependent, otherwise the same as BaseType.
3264  QualType UnderlyingType;
3265
3266  UTTKind UKind;
3267protected:
3268  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3269                     QualType CanonicalTy);
3270  friend class ASTContext;
3271public:
3272  bool isSugared() const { return !isDependentType(); }
3273  QualType desugar() const { return UnderlyingType; }
3274
3275  QualType getUnderlyingType() const { return UnderlyingType; }
3276  QualType getBaseType() const { return BaseType; }
3277
3278  UTTKind getUTTKind() const { return UKind; }
3279
3280  static bool classof(const Type *T) {
3281    return T->getTypeClass() == UnaryTransform;
3282  }
3283};
3284
3285class TagType : public Type {
3286  /// Stores the TagDecl associated with this type. The decl may point to any
3287  /// TagDecl that declares the entity.
3288  TagDecl * decl;
3289
3290  friend class ASTReader;
3291
3292protected:
3293  TagType(TypeClass TC, const TagDecl *D, QualType can);
3294
3295public:
3296  TagDecl *getDecl() const;
3297
3298  /// @brief Determines whether this type is in the process of being
3299  /// defined.
3300  bool isBeingDefined() const;
3301
3302  static bool classof(const Type *T) {
3303    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3304  }
3305};
3306
3307/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
3308/// to detect TagType objects of structs/unions/classes.
3309class RecordType : public TagType {
3310protected:
3311  explicit RecordType(const RecordDecl *D)
3312    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3313  explicit RecordType(TypeClass TC, RecordDecl *D)
3314    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3315  friend class ASTContext;   // ASTContext creates these.
3316public:
3317
3318  RecordDecl *getDecl() const {
3319    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3320  }
3321
3322  // FIXME: This predicate is a helper to QualType/Type. It needs to
3323  // recursively check all fields for const-ness. If any field is declared
3324  // const, it needs to return false.
3325  bool hasConstFields() const { return false; }
3326
3327  bool isSugared() const { return false; }
3328  QualType desugar() const { return QualType(this, 0); }
3329
3330  static bool classof(const Type *T) { return T->getTypeClass() == Record; }
3331};
3332
3333/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
3334/// to detect TagType objects of enums.
3335class EnumType : public TagType {
3336  explicit EnumType(const EnumDecl *D)
3337    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3338  friend class ASTContext;   // ASTContext creates these.
3339public:
3340
3341  EnumDecl *getDecl() const {
3342    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3343  }
3344
3345  bool isSugared() const { return false; }
3346  QualType desugar() const { return QualType(this, 0); }
3347
3348  static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
3349};
3350
3351/// AttributedType - An attributed type is a type to which a type
3352/// attribute has been applied.  The "modified type" is the
3353/// fully-sugared type to which the attributed type was applied;
3354/// generally it is not canonically equivalent to the attributed type.
3355/// The "equivalent type" is the minimally-desugared type which the
3356/// type is canonically equivalent to.
3357///
3358/// For example, in the following attributed type:
3359///     int32_t __attribute__((vector_size(16)))
3360///   - the modified type is the TypedefType for int32_t
3361///   - the equivalent type is VectorType(16, int32_t)
3362///   - the canonical type is VectorType(16, int)
3363class AttributedType : public Type, public llvm::FoldingSetNode {
3364public:
3365  // It is really silly to have yet another attribute-kind enum, but
3366  // clang::attr::Kind doesn't currently cover the pure type attrs.
3367  enum Kind {
3368    // Expression operand.
3369    attr_address_space,
3370    attr_regparm,
3371    attr_vector_size,
3372    attr_neon_vector_type,
3373    attr_neon_polyvector_type,
3374
3375    FirstExprOperandKind = attr_address_space,
3376    LastExprOperandKind = attr_neon_polyvector_type,
3377
3378    // Enumerated operand (string or keyword).
3379    attr_objc_gc,
3380    attr_objc_ownership,
3381    attr_pcs,
3382    attr_pcs_vfp,
3383
3384    FirstEnumOperandKind = attr_objc_gc,
3385    LastEnumOperandKind = attr_pcs_vfp,
3386
3387    // No operand.
3388    attr_noreturn,
3389    attr_cdecl,
3390    attr_fastcall,
3391    attr_stdcall,
3392    attr_thiscall,
3393    attr_pascal,
3394    attr_pnaclcall,
3395    attr_inteloclbicc,
3396    attr_ms_abi,
3397    attr_sysv_abi,
3398    attr_ptr32,
3399    attr_ptr64,
3400    attr_sptr,
3401    attr_uptr
3402  };
3403
3404private:
3405  QualType ModifiedType;
3406  QualType EquivalentType;
3407
3408  friend class ASTContext; // creates these
3409
3410  AttributedType(QualType canon, Kind attrKind,
3411                 QualType modified, QualType equivalent)
3412    : Type(Attributed, canon, canon->isDependentType(),
3413           canon->isInstantiationDependentType(),
3414           canon->isVariablyModifiedType(),
3415           canon->containsUnexpandedParameterPack()),
3416      ModifiedType(modified), EquivalentType(equivalent) {
3417    AttributedTypeBits.AttrKind = attrKind;
3418  }
3419
3420public:
3421  Kind getAttrKind() const {
3422    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3423  }
3424
3425  QualType getModifiedType() const { return ModifiedType; }
3426  QualType getEquivalentType() const { return EquivalentType; }
3427
3428  bool isSugared() const { return true; }
3429  QualType desugar() const { return getEquivalentType(); }
3430
3431  bool isMSTypeSpec() const;
3432
3433  bool isCallingConv() const;
3434
3435  void Profile(llvm::FoldingSetNodeID &ID) {
3436    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3437  }
3438
3439  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3440                      QualType modified, QualType equivalent) {
3441    ID.AddInteger(attrKind);
3442    ID.AddPointer(modified.getAsOpaquePtr());
3443    ID.AddPointer(equivalent.getAsOpaquePtr());
3444  }
3445
3446  static bool classof(const Type *T) {
3447    return T->getTypeClass() == Attributed;
3448  }
3449};
3450
3451class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3452  // Helper data collector for canonical types.
3453  struct CanonicalTTPTInfo {
3454    unsigned Depth : 15;
3455    unsigned ParameterPack : 1;
3456    unsigned Index : 16;
3457  };
3458
3459  union {
3460    // Info for the canonical type.
3461    CanonicalTTPTInfo CanTTPTInfo;
3462    // Info for the non-canonical type.
3463    TemplateTypeParmDecl *TTPDecl;
3464  };
3465
3466  /// Build a non-canonical type.
3467  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3468    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3469           /*InstantiationDependent=*/true,
3470           /*VariablyModified=*/false,
3471           Canon->containsUnexpandedParameterPack()),
3472      TTPDecl(TTPDecl) { }
3473
3474  /// Build the canonical type.
3475  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3476    : Type(TemplateTypeParm, QualType(this, 0),
3477           /*Dependent=*/true,
3478           /*InstantiationDependent=*/true,
3479           /*VariablyModified=*/false, PP) {
3480    CanTTPTInfo.Depth = D;
3481    CanTTPTInfo.Index = I;
3482    CanTTPTInfo.ParameterPack = PP;
3483  }
3484
3485  friend class ASTContext;  // ASTContext creates these
3486
3487  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3488    QualType Can = getCanonicalTypeInternal();
3489    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3490  }
3491
3492public:
3493  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3494  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3495  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3496
3497  TemplateTypeParmDecl *getDecl() const {
3498    return isCanonicalUnqualified() ? 0 : TTPDecl;
3499  }
3500
3501  IdentifierInfo *getIdentifier() const;
3502
3503  bool isSugared() const { return false; }
3504  QualType desugar() const { return QualType(this, 0); }
3505
3506  void Profile(llvm::FoldingSetNodeID &ID) {
3507    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3508  }
3509
3510  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3511                      unsigned Index, bool ParameterPack,
3512                      TemplateTypeParmDecl *TTPDecl) {
3513    ID.AddInteger(Depth);
3514    ID.AddInteger(Index);
3515    ID.AddBoolean(ParameterPack);
3516    ID.AddPointer(TTPDecl);
3517  }
3518
3519  static bool classof(const Type *T) {
3520    return T->getTypeClass() == TemplateTypeParm;
3521  }
3522};
3523
3524/// \brief Represents the result of substituting a type for a template
3525/// type parameter.
3526///
3527/// Within an instantiated template, all template type parameters have
3528/// been replaced with these.  They are used solely to record that a
3529/// type was originally written as a template type parameter;
3530/// therefore they are never canonical.
3531class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3532  // The original type parameter.
3533  const TemplateTypeParmType *Replaced;
3534
3535  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3536    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3537           Canon->isInstantiationDependentType(),
3538           Canon->isVariablyModifiedType(),
3539           Canon->containsUnexpandedParameterPack()),
3540      Replaced(Param) { }
3541
3542  friend class ASTContext;
3543
3544public:
3545  /// Gets the template parameter that was substituted for.
3546  const TemplateTypeParmType *getReplacedParameter() const {
3547    return Replaced;
3548  }
3549
3550  /// Gets the type that was substituted for the template
3551  /// parameter.
3552  QualType getReplacementType() const {
3553    return getCanonicalTypeInternal();
3554  }
3555
3556  bool isSugared() const { return true; }
3557  QualType desugar() const { return getReplacementType(); }
3558
3559  void Profile(llvm::FoldingSetNodeID &ID) {
3560    Profile(ID, getReplacedParameter(), getReplacementType());
3561  }
3562  static void Profile(llvm::FoldingSetNodeID &ID,
3563                      const TemplateTypeParmType *Replaced,
3564                      QualType Replacement) {
3565    ID.AddPointer(Replaced);
3566    ID.AddPointer(Replacement.getAsOpaquePtr());
3567  }
3568
3569  static bool classof(const Type *T) {
3570    return T->getTypeClass() == SubstTemplateTypeParm;
3571  }
3572};
3573
3574/// \brief Represents the result of substituting a set of types for a template
3575/// type parameter pack.
3576///
3577/// When a pack expansion in the source code contains multiple parameter packs
3578/// and those parameter packs correspond to different levels of template
3579/// parameter lists, this type node is used to represent a template type
3580/// parameter pack from an outer level, which has already had its argument pack
3581/// substituted but that still lives within a pack expansion that itself
3582/// could not be instantiated. When actually performing a substitution into
3583/// that pack expansion (e.g., when all template parameters have corresponding
3584/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3585/// at the current pack substitution index.
3586class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3587  /// \brief The original type parameter.
3588  const TemplateTypeParmType *Replaced;
3589
3590  /// \brief A pointer to the set of template arguments that this
3591  /// parameter pack is instantiated with.
3592  const TemplateArgument *Arguments;
3593
3594  /// \brief The number of template arguments in \c Arguments.
3595  unsigned NumArguments;
3596
3597  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3598                                QualType Canon,
3599                                const TemplateArgument &ArgPack);
3600
3601  friend class ASTContext;
3602
3603public:
3604  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
3605
3606  /// Gets the template parameter that was substituted for.
3607  const TemplateTypeParmType *getReplacedParameter() const {
3608    return Replaced;
3609  }
3610
3611  bool isSugared() const { return false; }
3612  QualType desugar() const { return QualType(this, 0); }
3613
3614  TemplateArgument getArgumentPack() const;
3615
3616  void Profile(llvm::FoldingSetNodeID &ID);
3617  static void Profile(llvm::FoldingSetNodeID &ID,
3618                      const TemplateTypeParmType *Replaced,
3619                      const TemplateArgument &ArgPack);
3620
3621  static bool classof(const Type *T) {
3622    return T->getTypeClass() == SubstTemplateTypeParmPack;
3623  }
3624};
3625
3626/// \brief Represents a C++11 auto or C++1y decltype(auto) type.
3627///
3628/// These types are usually a placeholder for a deduced type. However, before
3629/// the initializer is attached, or if the initializer is type-dependent, there
3630/// is no deduced type and an auto type is canonical. In the latter case, it is
3631/// also a dependent type.
3632class AutoType : public Type, public llvm::FoldingSetNode {
3633  AutoType(QualType DeducedType, bool IsDecltypeAuto, bool IsDependent)
3634    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3635           /*Dependent=*/IsDependent, /*InstantiationDependent=*/IsDependent,
3636           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3637    assert((DeducedType.isNull() || !IsDependent) &&
3638           "auto deduced to dependent type");
3639    AutoTypeBits.IsDecltypeAuto = IsDecltypeAuto;
3640  }
3641
3642  friend class ASTContext;  // ASTContext creates these
3643
3644public:
3645  bool isDecltypeAuto() const { return AutoTypeBits.IsDecltypeAuto; }
3646
3647  bool isSugared() const { return !isCanonicalUnqualified(); }
3648  QualType desugar() const { return getCanonicalTypeInternal(); }
3649
3650  /// \brief Get the type deduced for this auto type, or null if it's either
3651  /// not been deduced or was deduced to a dependent type.
3652  QualType getDeducedType() const {
3653    return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
3654  }
3655  bool isDeduced() const {
3656    return !isCanonicalUnqualified() || isDependentType();
3657  }
3658
3659  void Profile(llvm::FoldingSetNodeID &ID) {
3660    Profile(ID, getDeducedType(), isDecltypeAuto(), isDependentType());
3661  }
3662
3663  static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
3664                      bool IsDecltypeAuto, bool IsDependent) {
3665    ID.AddPointer(Deduced.getAsOpaquePtr());
3666    ID.AddBoolean(IsDecltypeAuto);
3667    ID.AddBoolean(IsDependent);
3668  }
3669
3670  static bool classof(const Type *T) {
3671    return T->getTypeClass() == Auto;
3672  }
3673};
3674
3675/// \brief Represents a type template specialization; the template
3676/// must be a class template, a type alias template, or a template
3677/// template parameter.  A template which cannot be resolved to one of
3678/// these, e.g. because it is written with a dependent scope
3679/// specifier, is instead represented as a
3680/// @c DependentTemplateSpecializationType.
3681///
3682/// A non-dependent template specialization type is always "sugar",
3683/// typically for a @c RecordType.  For example, a class template
3684/// specialization type of @c vector<int> will refer to a tag type for
3685/// the instantiation @c std::vector<int, std::allocator<int>>
3686///
3687/// Template specializations are dependent if either the template or
3688/// any of the template arguments are dependent, in which case the
3689/// type may also be canonical.
3690///
3691/// Instances of this type are allocated with a trailing array of
3692/// TemplateArguments, followed by a QualType representing the
3693/// non-canonical aliased type when the template is a type alias
3694/// template.
3695class TemplateSpecializationType
3696  : public Type, public llvm::FoldingSetNode {
3697  /// \brief The name of the template being specialized.  This is
3698  /// either a TemplateName::Template (in which case it is a
3699  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
3700  /// TypeAliasTemplateDecl*), a
3701  /// TemplateName::SubstTemplateTemplateParmPack, or a
3702  /// TemplateName::SubstTemplateTemplateParm (in which case the
3703  /// replacement must, recursively, be one of these).
3704  TemplateName Template;
3705
3706  /// \brief - The number of template arguments named in this class
3707  /// template specialization.
3708  unsigned NumArgs : 31;
3709
3710  /// \brief Whether this template specialization type is a substituted
3711  /// type alias.
3712  bool TypeAlias : 1;
3713
3714  TemplateSpecializationType(TemplateName T,
3715                             const TemplateArgument *Args,
3716                             unsigned NumArgs, QualType Canon,
3717                             QualType Aliased);
3718
3719  friend class ASTContext;  // ASTContext creates these
3720
3721public:
3722  /// \brief Determine whether any of the given template arguments are
3723  /// dependent.
3724  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3725                                            unsigned NumArgs,
3726                                            bool &InstantiationDependent);
3727
3728  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
3729                                            bool &InstantiationDependent);
3730
3731  /// \brief Print a template argument list, including the '<' and '>'
3732  /// enclosing the template arguments.
3733  static void PrintTemplateArgumentList(raw_ostream &OS,
3734                                        const TemplateArgument *Args,
3735                                        unsigned NumArgs,
3736                                        const PrintingPolicy &Policy,
3737                                        bool SkipBrackets = false);
3738
3739  static void PrintTemplateArgumentList(raw_ostream &OS,
3740                                        const TemplateArgumentLoc *Args,
3741                                        unsigned NumArgs,
3742                                        const PrintingPolicy &Policy);
3743
3744  static void PrintTemplateArgumentList(raw_ostream &OS,
3745                                        const TemplateArgumentListInfo &,
3746                                        const PrintingPolicy &Policy);
3747
3748  /// True if this template specialization type matches a current
3749  /// instantiation in the context in which it is found.
3750  bool isCurrentInstantiation() const {
3751    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3752  }
3753
3754  /// \brief Determine if this template specialization type is for a type alias
3755  /// template that has been substituted.
3756  ///
3757  /// Nearly every template specialization type whose template is an alias
3758  /// template will be substituted. However, this is not the case when
3759  /// the specialization contains a pack expansion but the template alias
3760  /// does not have a corresponding parameter pack, e.g.,
3761  ///
3762  /// \code
3763  /// template<typename T, typename U, typename V> struct S;
3764  /// template<typename T, typename U> using A = S<T, int, U>;
3765  /// template<typename... Ts> struct X {
3766  ///   typedef A<Ts...> type; // not a type alias
3767  /// };
3768  /// \endcode
3769  bool isTypeAlias() const { return TypeAlias; }
3770
3771  /// Get the aliased type, if this is a specialization of a type alias
3772  /// template.
3773  QualType getAliasedType() const {
3774    assert(isTypeAlias() && "not a type alias template specialization");
3775    return *reinterpret_cast<const QualType*>(end());
3776  }
3777
3778  typedef const TemplateArgument * iterator;
3779
3780  iterator begin() const { return getArgs(); }
3781  iterator end() const; // defined inline in TemplateBase.h
3782
3783  /// \brief Retrieve the name of the template that we are specializing.
3784  TemplateName getTemplateName() const { return Template; }
3785
3786  /// \brief Retrieve the template arguments.
3787  const TemplateArgument *getArgs() const {
3788    return reinterpret_cast<const TemplateArgument *>(this + 1);
3789  }
3790
3791  /// \brief Retrieve the number of template arguments.
3792  unsigned getNumArgs() const { return NumArgs; }
3793
3794  /// \brief Retrieve a specific template argument as a type.
3795  /// \pre @c isArgType(Arg)
3796  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3797
3798  bool isSugared() const {
3799    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
3800  }
3801  QualType desugar() const { return getCanonicalTypeInternal(); }
3802
3803  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3804    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3805    if (isTypeAlias())
3806      getAliasedType().Profile(ID);
3807  }
3808
3809  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3810                      const TemplateArgument *Args,
3811                      unsigned NumArgs,
3812                      const ASTContext &Context);
3813
3814  static bool classof(const Type *T) {
3815    return T->getTypeClass() == TemplateSpecialization;
3816  }
3817};
3818
3819/// \brief The injected class name of a C++ class template or class
3820/// template partial specialization.  Used to record that a type was
3821/// spelled with a bare identifier rather than as a template-id; the
3822/// equivalent for non-templated classes is just RecordType.
3823///
3824/// Injected class name types are always dependent.  Template
3825/// instantiation turns these into RecordTypes.
3826///
3827/// Injected class name types are always canonical.  This works
3828/// because it is impossible to compare an injected class name type
3829/// with the corresponding non-injected template type, for the same
3830/// reason that it is impossible to directly compare template
3831/// parameters from different dependent contexts: injected class name
3832/// types can only occur within the scope of a particular templated
3833/// declaration, and within that scope every template specialization
3834/// will canonicalize to the injected class name (when appropriate
3835/// according to the rules of the language).
3836class InjectedClassNameType : public Type {
3837  CXXRecordDecl *Decl;
3838
3839  /// The template specialization which this type represents.
3840  /// For example, in
3841  ///   template <class T> class A { ... };
3842  /// this is A<T>, whereas in
3843  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3844  /// this is A<B<X,Y> >.
3845  ///
3846  /// It is always unqualified, always a template specialization type,
3847  /// and always dependent.
3848  QualType InjectedType;
3849
3850  friend class ASTContext; // ASTContext creates these.
3851  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3852                          // currently suitable for AST reading, too much
3853                          // interdependencies.
3854  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3855    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3856           /*InstantiationDependent=*/true,
3857           /*VariablyModified=*/false,
3858           /*ContainsUnexpandedParameterPack=*/false),
3859      Decl(D), InjectedType(TST) {
3860    assert(isa<TemplateSpecializationType>(TST));
3861    assert(!TST.hasQualifiers());
3862    assert(TST->isDependentType());
3863  }
3864
3865public:
3866  QualType getInjectedSpecializationType() const { return InjectedType; }
3867  const TemplateSpecializationType *getInjectedTST() const {
3868    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3869  }
3870
3871  CXXRecordDecl *getDecl() const;
3872
3873  bool isSugared() const { return false; }
3874  QualType desugar() const { return QualType(this, 0); }
3875
3876  static bool classof(const Type *T) {
3877    return T->getTypeClass() == InjectedClassName;
3878  }
3879};
3880
3881/// \brief The kind of a tag type.
3882enum TagTypeKind {
3883  /// \brief The "struct" keyword.
3884  TTK_Struct,
3885  /// \brief The "__interface" keyword.
3886  TTK_Interface,
3887  /// \brief The "union" keyword.
3888  TTK_Union,
3889  /// \brief The "class" keyword.
3890  TTK_Class,
3891  /// \brief The "enum" keyword.
3892  TTK_Enum
3893};
3894
3895/// \brief The elaboration keyword that precedes a qualified type name or
3896/// introduces an elaborated-type-specifier.
3897enum ElaboratedTypeKeyword {
3898  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3899  ETK_Struct,
3900  /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
3901  ETK_Interface,
3902  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3903  ETK_Union,
3904  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3905  ETK_Class,
3906  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3907  ETK_Enum,
3908  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3909  /// \c typename T::type.
3910  ETK_Typename,
3911  /// \brief No keyword precedes the qualified type name.
3912  ETK_None
3913};
3914
3915/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3916/// The keyword in stored in the free bits of the base class.
3917/// Also provides a few static helpers for converting and printing
3918/// elaborated type keyword and tag type kind enumerations.
3919class TypeWithKeyword : public Type {
3920protected:
3921  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3922                  QualType Canonical, bool Dependent,
3923                  bool InstantiationDependent, bool VariablyModified,
3924                  bool ContainsUnexpandedParameterPack)
3925  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3926         ContainsUnexpandedParameterPack) {
3927    TypeWithKeywordBits.Keyword = Keyword;
3928  }
3929
3930public:
3931  ElaboratedTypeKeyword getKeyword() const {
3932    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3933  }
3934
3935  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3936  /// into an elaborated type keyword.
3937  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3938
3939  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3940  /// into a tag type kind.  It is an error to provide a type specifier
3941  /// which *isn't* a tag kind here.
3942  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3943
3944  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3945  /// elaborated type keyword.
3946  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3947
3948  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3949  // a TagTypeKind. It is an error to provide an elaborated type keyword
3950  /// which *isn't* a tag kind here.
3951  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3952
3953  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3954
3955  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3956
3957  static const char *getTagTypeKindName(TagTypeKind Kind) {
3958    return getKeywordName(getKeywordForTagTypeKind(Kind));
3959  }
3960
3961  class CannotCastToThisType {};
3962  static CannotCastToThisType classof(const Type *);
3963};
3964
3965/// \brief Represents a type that was referred to using an elaborated type
3966/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3967/// or both.
3968///
3969/// This type is used to keep track of a type name as written in the
3970/// source code, including tag keywords and any nested-name-specifiers.
3971/// The type itself is always "sugar", used to express what was written
3972/// in the source code but containing no additional semantic information.
3973class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3974
3975  /// \brief The nested name specifier containing the qualifier.
3976  NestedNameSpecifier *NNS;
3977
3978  /// \brief The type that this qualified name refers to.
3979  QualType NamedType;
3980
3981  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3982                 QualType NamedType, QualType CanonType)
3983    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3984                      NamedType->isDependentType(),
3985                      NamedType->isInstantiationDependentType(),
3986                      NamedType->isVariablyModifiedType(),
3987                      NamedType->containsUnexpandedParameterPack()),
3988      NNS(NNS), NamedType(NamedType) {
3989    assert(!(Keyword == ETK_None && NNS == 0) &&
3990           "ElaboratedType cannot have elaborated type keyword "
3991           "and name qualifier both null.");
3992  }
3993
3994  friend class ASTContext;  // ASTContext creates these
3995
3996public:
3997  ~ElaboratedType();
3998
3999  /// \brief Retrieve the qualification on this type.
4000  NestedNameSpecifier *getQualifier() const { return NNS; }
4001
4002  /// \brief Retrieve the type named by the qualified-id.
4003  QualType getNamedType() const { return NamedType; }
4004
4005  /// \brief Remove a single level of sugar.
4006  QualType desugar() const { return getNamedType(); }
4007
4008  /// \brief Returns whether this type directly provides sugar.
4009  bool isSugared() const { return true; }
4010
4011  void Profile(llvm::FoldingSetNodeID &ID) {
4012    Profile(ID, getKeyword(), NNS, NamedType);
4013  }
4014
4015  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
4016                      NestedNameSpecifier *NNS, QualType NamedType) {
4017    ID.AddInteger(Keyword);
4018    ID.AddPointer(NNS);
4019    NamedType.Profile(ID);
4020  }
4021
4022  static bool classof(const Type *T) {
4023    return T->getTypeClass() == Elaborated;
4024  }
4025};
4026
4027/// \brief Represents a qualified type name for which the type name is
4028/// dependent.
4029///
4030/// DependentNameType represents a class of dependent types that involve a
4031/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
4032/// name of a type. The DependentNameType may start with a "typename" (for a
4033/// typename-specifier), "class", "struct", "union", or "enum" (for a
4034/// dependent elaborated-type-specifier), or nothing (in contexts where we
4035/// know that we must be referring to a type, e.g., in a base class specifier).
4036class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
4037
4038  /// \brief The nested name specifier containing the qualifier.
4039  NestedNameSpecifier *NNS;
4040
4041  /// \brief The type that this typename specifier refers to.
4042  const IdentifierInfo *Name;
4043
4044  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
4045                    const IdentifierInfo *Name, QualType CanonType)
4046    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
4047                      /*InstantiationDependent=*/true,
4048                      /*VariablyModified=*/false,
4049                      NNS->containsUnexpandedParameterPack()),
4050      NNS(NNS), Name(Name) {
4051    assert(NNS->isDependent() &&
4052           "DependentNameType requires a dependent nested-name-specifier");
4053  }
4054
4055  friend class ASTContext;  // ASTContext creates these
4056
4057public:
4058  /// \brief Retrieve the qualification on this type.
4059  NestedNameSpecifier *getQualifier() const { return NNS; }
4060
4061  /// \brief Retrieve the type named by the typename specifier as an
4062  /// identifier.
4063  ///
4064  /// This routine will return a non-NULL identifier pointer when the
4065  /// form of the original typename was terminated by an identifier,
4066  /// e.g., "typename T::type".
4067  const IdentifierInfo *getIdentifier() const {
4068    return Name;
4069  }
4070
4071  bool isSugared() const { return false; }
4072  QualType desugar() const { return QualType(this, 0); }
4073
4074  void Profile(llvm::FoldingSetNodeID &ID) {
4075    Profile(ID, getKeyword(), NNS, Name);
4076  }
4077
4078  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
4079                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
4080    ID.AddInteger(Keyword);
4081    ID.AddPointer(NNS);
4082    ID.AddPointer(Name);
4083  }
4084
4085  static bool classof(const Type *T) {
4086    return T->getTypeClass() == DependentName;
4087  }
4088};
4089
4090/// DependentTemplateSpecializationType - Represents a template
4091/// specialization type whose template cannot be resolved, e.g.
4092///   A<T>::template B<T>
4093class DependentTemplateSpecializationType :
4094  public TypeWithKeyword, public llvm::FoldingSetNode {
4095
4096  /// \brief The nested name specifier containing the qualifier.
4097  NestedNameSpecifier *NNS;
4098
4099  /// \brief The identifier of the template.
4100  const IdentifierInfo *Name;
4101
4102  /// \brief - The number of template arguments named in this class
4103  /// template specialization.
4104  unsigned NumArgs;
4105
4106  const TemplateArgument *getArgBuffer() const {
4107    return reinterpret_cast<const TemplateArgument*>(this+1);
4108  }
4109  TemplateArgument *getArgBuffer() {
4110    return reinterpret_cast<TemplateArgument*>(this+1);
4111  }
4112
4113  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
4114                                      NestedNameSpecifier *NNS,
4115                                      const IdentifierInfo *Name,
4116                                      unsigned NumArgs,
4117                                      const TemplateArgument *Args,
4118                                      QualType Canon);
4119
4120  friend class ASTContext;  // ASTContext creates these
4121
4122public:
4123  NestedNameSpecifier *getQualifier() const { return NNS; }
4124  const IdentifierInfo *getIdentifier() const { return Name; }
4125
4126  /// \brief Retrieve the template arguments.
4127  const TemplateArgument *getArgs() const {
4128    return getArgBuffer();
4129  }
4130
4131  /// \brief Retrieve the number of template arguments.
4132  unsigned getNumArgs() const { return NumArgs; }
4133
4134  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4135
4136  typedef const TemplateArgument * iterator;
4137  iterator begin() const { return getArgs(); }
4138  iterator end() const; // inline in TemplateBase.h
4139
4140  bool isSugared() const { return false; }
4141  QualType desugar() const { return QualType(this, 0); }
4142
4143  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
4144    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
4145  }
4146
4147  static void Profile(llvm::FoldingSetNodeID &ID,
4148                      const ASTContext &Context,
4149                      ElaboratedTypeKeyword Keyword,
4150                      NestedNameSpecifier *Qualifier,
4151                      const IdentifierInfo *Name,
4152                      unsigned NumArgs,
4153                      const TemplateArgument *Args);
4154
4155  static bool classof(const Type *T) {
4156    return T->getTypeClass() == DependentTemplateSpecialization;
4157  }
4158};
4159
4160/// \brief Represents a pack expansion of types.
4161///
4162/// Pack expansions are part of C++0x variadic templates. A pack
4163/// expansion contains a pattern, which itself contains one or more
4164/// "unexpanded" parameter packs. When instantiated, a pack expansion
4165/// produces a series of types, each instantiated from the pattern of
4166/// the expansion, where the Ith instantiation of the pattern uses the
4167/// Ith arguments bound to each of the unexpanded parameter packs. The
4168/// pack expansion is considered to "expand" these unexpanded
4169/// parameter packs.
4170///
4171/// \code
4172/// template<typename ...Types> struct tuple;
4173///
4174/// template<typename ...Types>
4175/// struct tuple_of_references {
4176///   typedef tuple<Types&...> type;
4177/// };
4178/// \endcode
4179///
4180/// Here, the pack expansion \c Types&... is represented via a
4181/// PackExpansionType whose pattern is Types&.
4182class PackExpansionType : public Type, public llvm::FoldingSetNode {
4183  /// \brief The pattern of the pack expansion.
4184  QualType Pattern;
4185
4186  /// \brief The number of expansions that this pack expansion will
4187  /// generate when substituted (+1), or indicates that
4188  ///
4189  /// This field will only have a non-zero value when some of the parameter
4190  /// packs that occur within the pattern have been substituted but others have
4191  /// not.
4192  unsigned NumExpansions;
4193
4194  PackExpansionType(QualType Pattern, QualType Canon,
4195                    Optional<unsigned> NumExpansions)
4196    : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
4197           /*InstantiationDependent=*/true,
4198           /*VariableModified=*/Pattern->isVariablyModifiedType(),
4199           /*ContainsUnexpandedParameterPack=*/false),
4200      Pattern(Pattern),
4201      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
4202
4203  friend class ASTContext;  // ASTContext creates these
4204
4205public:
4206  /// \brief Retrieve the pattern of this pack expansion, which is the
4207  /// type that will be repeatedly instantiated when instantiating the
4208  /// pack expansion itself.
4209  QualType getPattern() const { return Pattern; }
4210
4211  /// \brief Retrieve the number of expansions that this pack expansion will
4212  /// generate, if known.
4213  Optional<unsigned> getNumExpansions() const {
4214    if (NumExpansions)
4215      return NumExpansions - 1;
4216
4217    return None;
4218  }
4219
4220  bool isSugared() const { return !Pattern->isDependentType(); }
4221  QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
4222
4223  void Profile(llvm::FoldingSetNodeID &ID) {
4224    Profile(ID, getPattern(), getNumExpansions());
4225  }
4226
4227  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
4228                      Optional<unsigned> NumExpansions) {
4229    ID.AddPointer(Pattern.getAsOpaquePtr());
4230    ID.AddBoolean(NumExpansions.hasValue());
4231    if (NumExpansions)
4232      ID.AddInteger(*NumExpansions);
4233  }
4234
4235  static bool classof(const Type *T) {
4236    return T->getTypeClass() == PackExpansion;
4237  }
4238};
4239
4240/// ObjCObjectType - Represents a class type in Objective C.
4241/// Every Objective C type is a combination of a base type and a
4242/// list of protocols.
4243///
4244/// Given the following declarations:
4245/// \code
4246///   \@class C;
4247///   \@protocol P;
4248/// \endcode
4249///
4250/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4251/// with base C and no protocols.
4252///
4253/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
4254///
4255/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
4256/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4257/// and no protocols.
4258///
4259/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
4260/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4261/// this should get its own sugar class to better represent the source.
4262class ObjCObjectType : public Type {
4263  // ObjCObjectType.NumProtocols - the number of protocols stored
4264  // after the ObjCObjectPointerType node.
4265  //
4266  // These protocols are those written directly on the type.  If
4267  // protocol qualifiers ever become additive, the iterators will need
4268  // to get kindof complicated.
4269  //
4270  // In the canonical object type, these are sorted alphabetically
4271  // and uniqued.
4272
4273  /// Either a BuiltinType or an InterfaceType or sugar for either.
4274  QualType BaseType;
4275
4276  ObjCProtocolDecl * const *getProtocolStorage() const {
4277    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4278  }
4279
4280  ObjCProtocolDecl **getProtocolStorage();
4281
4282protected:
4283  ObjCObjectType(QualType Canonical, QualType Base,
4284                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
4285
4286  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4287  ObjCObjectType(enum Nonce_ObjCInterface)
4288        : Type(ObjCInterface, QualType(), false, false, false, false),
4289      BaseType(QualType(this_(), 0)) {
4290    ObjCObjectTypeBits.NumProtocols = 0;
4291  }
4292
4293public:
4294  /// getBaseType - Gets the base type of this object type.  This is
4295  /// always (possibly sugar for) one of:
4296  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4297  ///    user, which is a typedef for an ObjCObjectPointerType)
4298  ///  - the 'Class' builtin type (same caveat)
4299  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4300  QualType getBaseType() const { return BaseType; }
4301
4302  bool isObjCId() const {
4303    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4304  }
4305  bool isObjCClass() const {
4306    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4307  }
4308  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4309  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4310  bool isObjCUnqualifiedIdOrClass() const {
4311    if (!qual_empty()) return false;
4312    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4313      return T->getKind() == BuiltinType::ObjCId ||
4314             T->getKind() == BuiltinType::ObjCClass;
4315    return false;
4316  }
4317  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4318  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4319
4320  /// Gets the interface declaration for this object type, if the base type
4321  /// really is an interface.
4322  ObjCInterfaceDecl *getInterface() const;
4323
4324  typedef ObjCProtocolDecl * const *qual_iterator;
4325
4326  qual_iterator qual_begin() const { return getProtocolStorage(); }
4327  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4328
4329  bool qual_empty() const { return getNumProtocols() == 0; }
4330
4331  /// getNumProtocols - Return the number of qualifying protocols in this
4332  /// interface type, or 0 if there are none.
4333  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4334
4335  /// \brief Fetch a protocol by index.
4336  ObjCProtocolDecl *getProtocol(unsigned I) const {
4337    assert(I < getNumProtocols() && "Out-of-range protocol access");
4338    return qual_begin()[I];
4339  }
4340
4341  bool isSugared() const { return false; }
4342  QualType desugar() const { return QualType(this, 0); }
4343
4344  static bool classof(const Type *T) {
4345    return T->getTypeClass() == ObjCObject ||
4346           T->getTypeClass() == ObjCInterface;
4347  }
4348};
4349
4350/// ObjCObjectTypeImpl - A class providing a concrete implementation
4351/// of ObjCObjectType, so as to not increase the footprint of
4352/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4353/// system should not reference this type.
4354class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4355  friend class ASTContext;
4356
4357  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4358  // will need to be modified.
4359
4360  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4361                     ObjCProtocolDecl * const *Protocols,
4362                     unsigned NumProtocols)
4363    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
4364
4365public:
4366  void Profile(llvm::FoldingSetNodeID &ID);
4367  static void Profile(llvm::FoldingSetNodeID &ID,
4368                      QualType Base,
4369                      ObjCProtocolDecl *const *protocols,
4370                      unsigned NumProtocols);
4371};
4372
4373inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4374  return reinterpret_cast<ObjCProtocolDecl**>(
4375            static_cast<ObjCObjectTypeImpl*>(this) + 1);
4376}
4377
4378/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
4379/// object oriented design.  They basically correspond to C++ classes.  There
4380/// are two kinds of interface types, normal interfaces like "NSString" and
4381/// qualified interfaces, which are qualified with a protocol list like
4382/// "NSString<NSCopyable, NSAmazing>".
4383///
4384/// ObjCInterfaceType guarantees the following properties when considered
4385/// as a subtype of its superclass, ObjCObjectType:
4386///   - There are no protocol qualifiers.  To reinforce this, code which
4387///     tries to invoke the protocol methods via an ObjCInterfaceType will
4388///     fail to compile.
4389///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4390///     T->getBaseType() == QualType(T, 0).
4391class ObjCInterfaceType : public ObjCObjectType {
4392  mutable ObjCInterfaceDecl *Decl;
4393
4394  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4395    : ObjCObjectType(Nonce_ObjCInterface),
4396      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4397  friend class ASTContext;  // ASTContext creates these.
4398  friend class ASTReader;
4399  friend class ObjCInterfaceDecl;
4400
4401public:
4402  /// getDecl - Get the declaration of this interface.
4403  ObjCInterfaceDecl *getDecl() const { return Decl; }
4404
4405  bool isSugared() const { return false; }
4406  QualType desugar() const { return QualType(this, 0); }
4407
4408  static bool classof(const Type *T) {
4409    return T->getTypeClass() == ObjCInterface;
4410  }
4411
4412  // Nonsense to "hide" certain members of ObjCObjectType within this
4413  // class.  People asking for protocols on an ObjCInterfaceType are
4414  // not going to get what they want: ObjCInterfaceTypes are
4415  // guaranteed to have no protocols.
4416  enum {
4417    qual_iterator,
4418    qual_begin,
4419    qual_end,
4420    getNumProtocols,
4421    getProtocol
4422  };
4423};
4424
4425inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4426  if (const ObjCInterfaceType *T =
4427        getBaseType()->getAs<ObjCInterfaceType>())
4428    return T->getDecl();
4429  return 0;
4430}
4431
4432/// ObjCObjectPointerType - Used to represent a pointer to an
4433/// Objective C object.  These are constructed from pointer
4434/// declarators when the pointee type is an ObjCObjectType (or sugar
4435/// for one).  In addition, the 'id' and 'Class' types are typedefs
4436/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
4437/// are translated into these.
4438///
4439/// Pointers to pointers to Objective C objects are still PointerTypes;
4440/// only the first level of pointer gets it own type implementation.
4441class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4442  QualType PointeeType;
4443
4444  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4445    : Type(ObjCObjectPointer, Canonical, false, false, false, false),
4446      PointeeType(Pointee) {}
4447  friend class ASTContext;  // ASTContext creates these.
4448
4449public:
4450  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
4451  /// The result will always be an ObjCObjectType or sugar thereof.
4452  QualType getPointeeType() const { return PointeeType; }
4453
4454  /// getObjCObjectType - Gets the type pointed to by this ObjC
4455  /// pointer.  This method always returns non-null.
4456  ///
4457  /// This method is equivalent to getPointeeType() except that
4458  /// it discards any typedefs (or other sugar) between this
4459  /// type and the "outermost" object type.  So for:
4460  /// \code
4461  ///   \@class A; \@protocol P; \@protocol Q;
4462  ///   typedef A<P> AP;
4463  ///   typedef A A1;
4464  ///   typedef A1<P> A1P;
4465  ///   typedef A1P<Q> A1PQ;
4466  /// \endcode
4467  /// For 'A*', getObjectType() will return 'A'.
4468  /// For 'A<P>*', getObjectType() will return 'A<P>'.
4469  /// For 'AP*', getObjectType() will return 'A<P>'.
4470  /// For 'A1*', getObjectType() will return 'A'.
4471  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
4472  /// For 'A1P*', getObjectType() will return 'A1<P>'.
4473  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
4474  ///   adding protocols to a protocol-qualified base discards the
4475  ///   old qualifiers (for now).  But if it didn't, getObjectType()
4476  ///   would return 'A1P<Q>' (and we'd have to make iterating over
4477  ///   qualifiers more complicated).
4478  const ObjCObjectType *getObjectType() const {
4479    return PointeeType->castAs<ObjCObjectType>();
4480  }
4481
4482  /// getInterfaceType - If this pointer points to an Objective C
4483  /// \@interface type, gets the type for that interface.  Any protocol
4484  /// qualifiers on the interface are ignored.
4485  ///
4486  /// \return null if the base type for this pointer is 'id' or 'Class'
4487  const ObjCInterfaceType *getInterfaceType() const {
4488    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
4489  }
4490
4491  /// getInterfaceDecl - If this pointer points to an Objective \@interface
4492  /// type, gets the declaration for that interface.
4493  ///
4494  /// \return null if the base type for this pointer is 'id' or 'Class'
4495  ObjCInterfaceDecl *getInterfaceDecl() const {
4496    return getObjectType()->getInterface();
4497  }
4498
4499  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
4500  /// its object type is the primitive 'id' type with no protocols.
4501  bool isObjCIdType() const {
4502    return getObjectType()->isObjCUnqualifiedId();
4503  }
4504
4505  /// isObjCClassType - True if this is equivalent to the 'Class' type,
4506  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
4507  bool isObjCClassType() const {
4508    return getObjectType()->isObjCUnqualifiedClass();
4509  }
4510
4511  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
4512  /// non-empty set of protocols.
4513  bool isObjCQualifiedIdType() const {
4514    return getObjectType()->isObjCQualifiedId();
4515  }
4516
4517  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
4518  /// some non-empty set of protocols.
4519  bool isObjCQualifiedClassType() const {
4520    return getObjectType()->isObjCQualifiedClass();
4521  }
4522
4523  /// An iterator over the qualifiers on the object type.  Provided
4524  /// for convenience.  This will always iterate over the full set of
4525  /// protocols on a type, not just those provided directly.
4526  typedef ObjCObjectType::qual_iterator qual_iterator;
4527
4528  qual_iterator qual_begin() const {
4529    return getObjectType()->qual_begin();
4530  }
4531  qual_iterator qual_end() const {
4532    return getObjectType()->qual_end();
4533  }
4534  bool qual_empty() const { return getObjectType()->qual_empty(); }
4535
4536  /// getNumProtocols - Return the number of qualifying protocols on
4537  /// the object type.
4538  unsigned getNumProtocols() const {
4539    return getObjectType()->getNumProtocols();
4540  }
4541
4542  /// \brief Retrieve a qualifying protocol by index on the object
4543  /// type.
4544  ObjCProtocolDecl *getProtocol(unsigned I) const {
4545    return getObjectType()->getProtocol(I);
4546  }
4547
4548  bool isSugared() const { return false; }
4549  QualType desugar() const { return QualType(this, 0); }
4550
4551  void Profile(llvm::FoldingSetNodeID &ID) {
4552    Profile(ID, getPointeeType());
4553  }
4554  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4555    ID.AddPointer(T.getAsOpaquePtr());
4556  }
4557  static bool classof(const Type *T) {
4558    return T->getTypeClass() == ObjCObjectPointer;
4559  }
4560};
4561
4562class AtomicType : public Type, public llvm::FoldingSetNode {
4563  QualType ValueType;
4564
4565  AtomicType(QualType ValTy, QualType Canonical)
4566    : Type(Atomic, Canonical, ValTy->isDependentType(),
4567           ValTy->isInstantiationDependentType(),
4568           ValTy->isVariablyModifiedType(),
4569           ValTy->containsUnexpandedParameterPack()),
4570      ValueType(ValTy) {}
4571  friend class ASTContext;  // ASTContext creates these.
4572
4573  public:
4574  /// getValueType - Gets the type contained by this atomic type, i.e.
4575  /// the type returned by performing an atomic load of this atomic type.
4576  QualType getValueType() const { return ValueType; }
4577
4578  bool isSugared() const { return false; }
4579  QualType desugar() const { return QualType(this, 0); }
4580
4581  void Profile(llvm::FoldingSetNodeID &ID) {
4582    Profile(ID, getValueType());
4583  }
4584  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4585    ID.AddPointer(T.getAsOpaquePtr());
4586  }
4587  static bool classof(const Type *T) {
4588    return T->getTypeClass() == Atomic;
4589  }
4590};
4591
4592/// A qualifier set is used to build a set of qualifiers.
4593class QualifierCollector : public Qualifiers {
4594public:
4595  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4596
4597  /// Collect any qualifiers on the given type and return an
4598  /// unqualified type.  The qualifiers are assumed to be consistent
4599  /// with those already in the type.
4600  const Type *strip(QualType type) {
4601    addFastQualifiers(type.getLocalFastQualifiers());
4602    if (!type.hasLocalNonFastQualifiers())
4603      return type.getTypePtrUnsafe();
4604
4605    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4606    addConsistentQualifiers(extQuals->getQualifiers());
4607    return extQuals->getBaseType();
4608  }
4609
4610  /// Apply the collected qualifiers to the given type.
4611  QualType apply(const ASTContext &Context, QualType QT) const;
4612
4613  /// Apply the collected qualifiers to the given type.
4614  QualType apply(const ASTContext &Context, const Type* T) const;
4615};
4616
4617
4618// Inline function definitions.
4619
4620inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
4621  SplitQualType desugar =
4622    Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
4623  desugar.Quals.addConsistentQualifiers(Quals);
4624  return desugar;
4625}
4626
4627inline const Type *QualType::getTypePtr() const {
4628  return getCommonPtr()->BaseType;
4629}
4630
4631inline const Type *QualType::getTypePtrOrNull() const {
4632  return (isNull() ? 0 : getCommonPtr()->BaseType);
4633}
4634
4635inline SplitQualType QualType::split() const {
4636  if (!hasLocalNonFastQualifiers())
4637    return SplitQualType(getTypePtrUnsafe(),
4638                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4639
4640  const ExtQuals *eq = getExtQualsUnsafe();
4641  Qualifiers qs = eq->getQualifiers();
4642  qs.addFastQualifiers(getLocalFastQualifiers());
4643  return SplitQualType(eq->getBaseType(), qs);
4644}
4645
4646inline Qualifiers QualType::getLocalQualifiers() const {
4647  Qualifiers Quals;
4648  if (hasLocalNonFastQualifiers())
4649    Quals = getExtQualsUnsafe()->getQualifiers();
4650  Quals.addFastQualifiers(getLocalFastQualifiers());
4651  return Quals;
4652}
4653
4654inline Qualifiers QualType::getQualifiers() const {
4655  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4656  quals.addFastQualifiers(getLocalFastQualifiers());
4657  return quals;
4658}
4659
4660inline unsigned QualType::getCVRQualifiers() const {
4661  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4662  cvr |= getLocalCVRQualifiers();
4663  return cvr;
4664}
4665
4666inline QualType QualType::getCanonicalType() const {
4667  QualType canon = getCommonPtr()->CanonicalType;
4668  return canon.withFastQualifiers(getLocalFastQualifiers());
4669}
4670
4671inline bool QualType::isCanonical() const {
4672  return getTypePtr()->isCanonicalUnqualified();
4673}
4674
4675inline bool QualType::isCanonicalAsParam() const {
4676  if (!isCanonical()) return false;
4677  if (hasLocalQualifiers()) return false;
4678
4679  const Type *T = getTypePtr();
4680  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4681    return false;
4682
4683  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4684}
4685
4686inline bool QualType::isConstQualified() const {
4687  return isLocalConstQualified() ||
4688         getCommonPtr()->CanonicalType.isLocalConstQualified();
4689}
4690
4691inline bool QualType::isRestrictQualified() const {
4692  return isLocalRestrictQualified() ||
4693         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4694}
4695
4696
4697inline bool QualType::isVolatileQualified() const {
4698  return isLocalVolatileQualified() ||
4699         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4700}
4701
4702inline bool QualType::hasQualifiers() const {
4703  return hasLocalQualifiers() ||
4704         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4705}
4706
4707inline QualType QualType::getUnqualifiedType() const {
4708  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4709    return QualType(getTypePtr(), 0);
4710
4711  return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
4712}
4713
4714inline SplitQualType QualType::getSplitUnqualifiedType() const {
4715  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4716    return split();
4717
4718  return getSplitUnqualifiedTypeImpl(*this);
4719}
4720
4721inline void QualType::removeLocalConst() {
4722  removeLocalFastQualifiers(Qualifiers::Const);
4723}
4724
4725inline void QualType::removeLocalRestrict() {
4726  removeLocalFastQualifiers(Qualifiers::Restrict);
4727}
4728
4729inline void QualType::removeLocalVolatile() {
4730  removeLocalFastQualifiers(Qualifiers::Volatile);
4731}
4732
4733inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4734  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4735  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4736
4737  // Fast path: we don't need to touch the slow qualifiers.
4738  removeLocalFastQualifiers(Mask);
4739}
4740
4741/// getAddressSpace - Return the address space of this type.
4742inline unsigned QualType::getAddressSpace() const {
4743  return getQualifiers().getAddressSpace();
4744}
4745
4746/// getObjCGCAttr - Return the gc attribute of this type.
4747inline Qualifiers::GC QualType::getObjCGCAttr() const {
4748  return getQualifiers().getObjCGCAttr();
4749}
4750
4751inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4752  if (const PointerType *PT = t.getAs<PointerType>()) {
4753    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4754      return FT->getExtInfo();
4755  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4756    return FT->getExtInfo();
4757
4758  return FunctionType::ExtInfo();
4759}
4760
4761inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4762  return getFunctionExtInfo(*t);
4763}
4764
4765/// isMoreQualifiedThan - Determine whether this type is more
4766/// qualified than the Other type. For example, "const volatile int"
4767/// is more qualified than "const int", "volatile int", and
4768/// "int". However, it is not more qualified than "const volatile
4769/// int".
4770inline bool QualType::isMoreQualifiedThan(QualType other) const {
4771  Qualifiers myQuals = getQualifiers();
4772  Qualifiers otherQuals = other.getQualifiers();
4773  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4774}
4775
4776/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4777/// as qualified as the Other type. For example, "const volatile
4778/// int" is at least as qualified as "const int", "volatile int",
4779/// "int", and "const volatile int".
4780inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4781  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4782}
4783
4784/// getNonReferenceType - If Type is a reference type (e.g., const
4785/// int&), returns the type that the reference refers to ("const
4786/// int"). Otherwise, returns the type itself. This routine is used
4787/// throughout Sema to implement C++ 5p6:
4788///
4789///   If an expression initially has the type "reference to T" (8.3.2,
4790///   8.5.3), the type is adjusted to "T" prior to any further
4791///   analysis, the expression designates the object or function
4792///   denoted by the reference, and the expression is an lvalue.
4793inline QualType QualType::getNonReferenceType() const {
4794  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4795    return RefType->getPointeeType();
4796  else
4797    return *this;
4798}
4799
4800inline bool QualType::isCForbiddenLValueType() const {
4801  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
4802          getTypePtr()->isFunctionType());
4803}
4804
4805/// \brief Tests whether the type is categorized as a fundamental type.
4806///
4807/// \returns True for types specified in C++0x [basic.fundamental].
4808inline bool Type::isFundamentalType() const {
4809  return isVoidType() ||
4810         // FIXME: It's really annoying that we don't have an
4811         // 'isArithmeticType()' which agrees with the standard definition.
4812         (isArithmeticType() && !isEnumeralType());
4813}
4814
4815/// \brief Tests whether the type is categorized as a compound type.
4816///
4817/// \returns True for types specified in C++0x [basic.compound].
4818inline bool Type::isCompoundType() const {
4819  // C++0x [basic.compound]p1:
4820  //   Compound types can be constructed in the following ways:
4821  //    -- arrays of objects of a given type [...];
4822  return isArrayType() ||
4823  //    -- functions, which have parameters of given types [...];
4824         isFunctionType() ||
4825  //    -- pointers to void or objects or functions [...];
4826         isPointerType() ||
4827  //    -- references to objects or functions of a given type. [...]
4828         isReferenceType() ||
4829  //    -- classes containing a sequence of objects of various types, [...];
4830         isRecordType() ||
4831  //    -- unions, which are classes capable of containing objects of different
4832  //               types at different times;
4833         isUnionType() ||
4834  //    -- enumerations, which comprise a set of named constant values. [...];
4835         isEnumeralType() ||
4836  //    -- pointers to non-static class members, [...].
4837         isMemberPointerType();
4838}
4839
4840inline bool Type::isFunctionType() const {
4841  return isa<FunctionType>(CanonicalType);
4842}
4843inline bool Type::isPointerType() const {
4844  return isa<PointerType>(CanonicalType);
4845}
4846inline bool Type::isAnyPointerType() const {
4847  return isPointerType() || isObjCObjectPointerType();
4848}
4849inline bool Type::isBlockPointerType() const {
4850  return isa<BlockPointerType>(CanonicalType);
4851}
4852inline bool Type::isReferenceType() const {
4853  return isa<ReferenceType>(CanonicalType);
4854}
4855inline bool Type::isLValueReferenceType() const {
4856  return isa<LValueReferenceType>(CanonicalType);
4857}
4858inline bool Type::isRValueReferenceType() const {
4859  return isa<RValueReferenceType>(CanonicalType);
4860}
4861inline bool Type::isFunctionPointerType() const {
4862  if (const PointerType *T = getAs<PointerType>())
4863    return T->getPointeeType()->isFunctionType();
4864  else
4865    return false;
4866}
4867inline bool Type::isMemberPointerType() const {
4868  return isa<MemberPointerType>(CanonicalType);
4869}
4870inline bool Type::isMemberFunctionPointerType() const {
4871  if (const MemberPointerType* T = getAs<MemberPointerType>())
4872    return T->isMemberFunctionPointer();
4873  else
4874    return false;
4875}
4876inline bool Type::isMemberDataPointerType() const {
4877  if (const MemberPointerType* T = getAs<MemberPointerType>())
4878    return T->isMemberDataPointer();
4879  else
4880    return false;
4881}
4882inline bool Type::isArrayType() const {
4883  return isa<ArrayType>(CanonicalType);
4884}
4885inline bool Type::isConstantArrayType() const {
4886  return isa<ConstantArrayType>(CanonicalType);
4887}
4888inline bool Type::isIncompleteArrayType() const {
4889  return isa<IncompleteArrayType>(CanonicalType);
4890}
4891inline bool Type::isVariableArrayType() const {
4892  return isa<VariableArrayType>(CanonicalType);
4893}
4894inline bool Type::isDependentSizedArrayType() const {
4895  return isa<DependentSizedArrayType>(CanonicalType);
4896}
4897inline bool Type::isBuiltinType() const {
4898  return isa<BuiltinType>(CanonicalType);
4899}
4900inline bool Type::isRecordType() const {
4901  return isa<RecordType>(CanonicalType);
4902}
4903inline bool Type::isEnumeralType() const {
4904  return isa<EnumType>(CanonicalType);
4905}
4906inline bool Type::isAnyComplexType() const {
4907  return isa<ComplexType>(CanonicalType);
4908}
4909inline bool Type::isVectorType() const {
4910  return isa<VectorType>(CanonicalType);
4911}
4912inline bool Type::isExtVectorType() const {
4913  return isa<ExtVectorType>(CanonicalType);
4914}
4915inline bool Type::isObjCObjectPointerType() const {
4916  return isa<ObjCObjectPointerType>(CanonicalType);
4917}
4918inline bool Type::isObjCObjectType() const {
4919  return isa<ObjCObjectType>(CanonicalType);
4920}
4921inline bool Type::isObjCObjectOrInterfaceType() const {
4922  return isa<ObjCInterfaceType>(CanonicalType) ||
4923    isa<ObjCObjectType>(CanonicalType);
4924}
4925inline bool Type::isAtomicType() const {
4926  return isa<AtomicType>(CanonicalType);
4927}
4928
4929inline bool Type::isObjCQualifiedIdType() const {
4930  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4931    return OPT->isObjCQualifiedIdType();
4932  return false;
4933}
4934inline bool Type::isObjCQualifiedClassType() const {
4935  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4936    return OPT->isObjCQualifiedClassType();
4937  return false;
4938}
4939inline bool Type::isObjCIdType() const {
4940  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4941    return OPT->isObjCIdType();
4942  return false;
4943}
4944inline bool Type::isObjCClassType() const {
4945  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4946    return OPT->isObjCClassType();
4947  return false;
4948}
4949inline bool Type::isObjCSelType() const {
4950  if (const PointerType *OPT = getAs<PointerType>())
4951    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4952  return false;
4953}
4954inline bool Type::isObjCBuiltinType() const {
4955  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4956}
4957
4958inline bool Type::isImage1dT() const {
4959  return isSpecificBuiltinType(BuiltinType::OCLImage1d);
4960}
4961
4962inline bool Type::isImage1dArrayT() const {
4963  return isSpecificBuiltinType(BuiltinType::OCLImage1dArray);
4964}
4965
4966inline bool Type::isImage1dBufferT() const {
4967  return isSpecificBuiltinType(BuiltinType::OCLImage1dBuffer);
4968}
4969
4970inline bool Type::isImage2dT() const {
4971  return isSpecificBuiltinType(BuiltinType::OCLImage2d);
4972}
4973
4974inline bool Type::isImage2dArrayT() const {
4975  return isSpecificBuiltinType(BuiltinType::OCLImage2dArray);
4976}
4977
4978inline bool Type::isImage3dT() const {
4979  return isSpecificBuiltinType(BuiltinType::OCLImage3d);
4980}
4981
4982inline bool Type::isSamplerT() const {
4983  return isSpecificBuiltinType(BuiltinType::OCLSampler);
4984}
4985
4986inline bool Type::isEventT() const {
4987  return isSpecificBuiltinType(BuiltinType::OCLEvent);
4988}
4989
4990inline bool Type::isImageType() const {
4991  return isImage3dT() ||
4992         isImage2dT() || isImage2dArrayT() ||
4993         isImage1dT() || isImage1dArrayT() || isImage1dBufferT();
4994}
4995
4996inline bool Type::isOpenCLSpecificType() const {
4997  return isSamplerT() || isEventT() || isImageType();
4998}
4999
5000inline bool Type::isTemplateTypeParmType() const {
5001  return isa<TemplateTypeParmType>(CanonicalType);
5002}
5003
5004inline bool Type::isSpecificBuiltinType(unsigned K) const {
5005  if (const BuiltinType *BT = getAs<BuiltinType>())
5006    if (BT->getKind() == (BuiltinType::Kind) K)
5007      return true;
5008  return false;
5009}
5010
5011inline bool Type::isPlaceholderType() const {
5012  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5013    return BT->isPlaceholderType();
5014  return false;
5015}
5016
5017inline const BuiltinType *Type::getAsPlaceholderType() const {
5018  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5019    if (BT->isPlaceholderType())
5020      return BT;
5021  return 0;
5022}
5023
5024inline bool Type::isSpecificPlaceholderType(unsigned K) const {
5025  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
5026  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5027    return (BT->getKind() == (BuiltinType::Kind) K);
5028  return false;
5029}
5030
5031inline bool Type::isNonOverloadPlaceholderType() const {
5032  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
5033    return BT->isNonOverloadPlaceholderType();
5034  return false;
5035}
5036
5037inline bool Type::isVoidType() const {
5038  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5039    return BT->getKind() == BuiltinType::Void;
5040  return false;
5041}
5042
5043inline bool Type::isHalfType() const {
5044  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5045    return BT->getKind() == BuiltinType::Half;
5046  // FIXME: Should we allow complex __fp16? Probably not.
5047  return false;
5048}
5049
5050inline bool Type::isNullPtrType() const {
5051  if (const BuiltinType *BT = getAs<BuiltinType>())
5052    return BT->getKind() == BuiltinType::NullPtr;
5053  return false;
5054}
5055
5056extern bool IsEnumDeclComplete(EnumDecl *);
5057extern bool IsEnumDeclScoped(EnumDecl *);
5058
5059inline bool Type::isIntegerType() const {
5060  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5061    return BT->getKind() >= BuiltinType::Bool &&
5062           BT->getKind() <= BuiltinType::Int128;
5063  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
5064    // Incomplete enum types are not treated as integer types.
5065    // FIXME: In C++, enum types are never integer types.
5066    return IsEnumDeclComplete(ET->getDecl()) &&
5067      !IsEnumDeclScoped(ET->getDecl());
5068  }
5069  return false;
5070}
5071
5072inline bool Type::isScalarType() const {
5073  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5074    return BT->getKind() > BuiltinType::Void &&
5075           BT->getKind() <= BuiltinType::NullPtr;
5076  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5077    // Enums are scalar types, but only if they are defined.  Incomplete enums
5078    // are not treated as scalar types.
5079    return IsEnumDeclComplete(ET->getDecl());
5080  return isa<PointerType>(CanonicalType) ||
5081         isa<BlockPointerType>(CanonicalType) ||
5082         isa<MemberPointerType>(CanonicalType) ||
5083         isa<ComplexType>(CanonicalType) ||
5084         isa<ObjCObjectPointerType>(CanonicalType);
5085}
5086
5087inline bool Type::isIntegralOrEnumerationType() const {
5088  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5089    return BT->getKind() >= BuiltinType::Bool &&
5090           BT->getKind() <= BuiltinType::Int128;
5091
5092  // Check for a complete enum type; incomplete enum types are not properly an
5093  // enumeration type in the sense required here.
5094  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5095    return IsEnumDeclComplete(ET->getDecl());
5096
5097  return false;
5098}
5099
5100inline bool Type::isBooleanType() const {
5101  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5102    return BT->getKind() == BuiltinType::Bool;
5103  return false;
5104}
5105
5106inline bool Type::isUndeducedType() const {
5107  const AutoType *AT = getContainedAutoType();
5108  return AT && !AT->isDeduced();
5109}
5110
5111/// \brief Determines whether this is a type for which one can define
5112/// an overloaded operator.
5113inline bool Type::isOverloadableType() const {
5114  return isDependentType() || isRecordType() || isEnumeralType();
5115}
5116
5117/// \brief Determines whether this type can decay to a pointer type.
5118inline bool Type::canDecayToPointerType() const {
5119  return isFunctionType() || isArrayType();
5120}
5121
5122inline bool Type::hasPointerRepresentation() const {
5123  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
5124          isObjCObjectPointerType() || isNullPtrType());
5125}
5126
5127inline bool Type::hasObjCPointerRepresentation() const {
5128  return isObjCObjectPointerType();
5129}
5130
5131inline const Type *Type::getBaseElementTypeUnsafe() const {
5132  const Type *type = this;
5133  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
5134    type = arrayType->getElementType().getTypePtr();
5135  return type;
5136}
5137
5138/// Insertion operator for diagnostics.  This allows sending QualType's into a
5139/// diagnostic with <<.
5140inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
5141                                           QualType T) {
5142  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5143                  DiagnosticsEngine::ak_qualtype);
5144  return DB;
5145}
5146
5147/// Insertion operator for partial diagnostics.  This allows sending QualType's
5148/// into a diagnostic with <<.
5149inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
5150                                           QualType T) {
5151  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5152                  DiagnosticsEngine::ak_qualtype);
5153  return PD;
5154}
5155
5156// Helper class template that is used by Type::getAs to ensure that one does
5157// not try to look through a qualified type to get to an array type.
5158template<typename T,
5159         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
5160                             llvm::is_base_of<ArrayType, T>::value)>
5161struct ArrayType_cannot_be_used_with_getAs { };
5162
5163template<typename T>
5164struct ArrayType_cannot_be_used_with_getAs<T, true>;
5165
5166// Member-template getAs<specific type>'.
5167template <typename T> const T *Type::getAs() const {
5168  ArrayType_cannot_be_used_with_getAs<T> at;
5169  (void)at;
5170
5171  // If this is directly a T type, return it.
5172  if (const T *Ty = dyn_cast<T>(this))
5173    return Ty;
5174
5175  // If the canonical form of this type isn't the right kind, reject it.
5176  if (!isa<T>(CanonicalType))
5177    return 0;
5178
5179  // If this is a typedef for the type, strip the typedef off without
5180  // losing all typedef information.
5181  return cast<T>(getUnqualifiedDesugaredType());
5182}
5183
5184inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
5185  // If this is directly an array type, return it.
5186  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
5187    return arr;
5188
5189  // If the canonical form of this type isn't the right kind, reject it.
5190  if (!isa<ArrayType>(CanonicalType))
5191    return 0;
5192
5193  // If this is a typedef for the type, strip the typedef off without
5194  // losing all typedef information.
5195  return cast<ArrayType>(getUnqualifiedDesugaredType());
5196}
5197
5198template <typename T> const T *Type::castAs() const {
5199  ArrayType_cannot_be_used_with_getAs<T> at;
5200  (void) at;
5201
5202  assert(isa<T>(CanonicalType));
5203  if (const T *ty = dyn_cast<T>(this)) return ty;
5204  return cast<T>(getUnqualifiedDesugaredType());
5205}
5206
5207inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
5208  assert(isa<ArrayType>(CanonicalType));
5209  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
5210  return cast<ArrayType>(getUnqualifiedDesugaredType());
5211}
5212
5213}  // end namespace clang
5214
5215#endif
5216