Type.h revision 949d2c031f173ec539d1aa667bba503fda7fb763
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/type_traits.h"
25#include "llvm/ADT/APSInt.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/ADT/PointerIntPair.h"
28#include "llvm/ADT/PointerUnion.h"
29
30using llvm::isa;
31using llvm::cast;
32using llvm::cast_or_null;
33using llvm::dyn_cast;
34using llvm::dyn_cast_or_null;
35namespace clang {
36  enum {
37    TypeAlignmentInBits = 3,
38    TypeAlignment = 1 << TypeAlignmentInBits
39  };
40  class Type;
41  class ExtQuals;
42  class QualType;
43}
44
45namespace llvm {
46  template <typename T>
47  class PointerLikeTypeTraits;
48  template<>
49  class PointerLikeTypeTraits< ::clang::Type*> {
50  public:
51    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
52    static inline ::clang::Type *getFromVoidPointer(void *P) {
53      return static_cast< ::clang::Type*>(P);
54    }
55    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
56  };
57  template<>
58  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
59  public:
60    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
61    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
62      return static_cast< ::clang::ExtQuals*>(P);
63    }
64    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
65  };
66
67  template <>
68  struct isPodLike<clang::QualType> { static const bool value = true; };
69}
70
71namespace clang {
72  class ASTContext;
73  class TypedefDecl;
74  class TemplateDecl;
75  class TemplateTypeParmDecl;
76  class NonTypeTemplateParmDecl;
77  class TemplateTemplateParmDecl;
78  class TagDecl;
79  class RecordDecl;
80  class CXXRecordDecl;
81  class EnumDecl;
82  class FieldDecl;
83  class ObjCInterfaceDecl;
84  class ObjCProtocolDecl;
85  class ObjCMethodDecl;
86  class UnresolvedUsingTypenameDecl;
87  class Expr;
88  class Stmt;
89  class SourceLocation;
90  class StmtIteratorBase;
91  class TemplateArgument;
92  class TemplateArgumentLoc;
93  class TemplateArgumentListInfo;
94  class Type;
95  class ElaboratedType;
96  struct PrintingPolicy;
97
98  template <typename> class CanQual;
99  typedef CanQual<Type> CanQualType;
100
101  // Provide forward declarations for all of the *Type classes
102#define TYPE(Class, Base) class Class##Type;
103#include "clang/AST/TypeNodes.def"
104
105/// Qualifiers - The collection of all-type qualifiers we support.
106/// Clang supports five independent qualifiers:
107/// * C99: const, volatile, and restrict
108/// * Embedded C (TR18037): address spaces
109/// * Objective C: the GC attributes (none, weak, or strong)
110class Qualifiers {
111public:
112  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
113    Const    = 0x1,
114    Restrict = 0x2,
115    Volatile = 0x4,
116    CVRMask = Const | Volatile | Restrict
117  };
118
119  enum GC {
120    GCNone = 0,
121    Weak,
122    Strong
123  };
124
125  enum {
126    /// The maximum supported address space number.
127    /// 24 bits should be enough for anyone.
128    MaxAddressSpace = 0xffffffu,
129
130    /// The width of the "fast" qualifier mask.
131    FastWidth = 2,
132
133    /// The fast qualifier mask.
134    FastMask = (1 << FastWidth) - 1
135  };
136
137  Qualifiers() : Mask(0) {}
138
139  static Qualifiers fromFastMask(unsigned Mask) {
140    Qualifiers Qs;
141    Qs.addFastQualifiers(Mask);
142    return Qs;
143  }
144
145  static Qualifiers fromCVRMask(unsigned CVR) {
146    Qualifiers Qs;
147    Qs.addCVRQualifiers(CVR);
148    return Qs;
149  }
150
151  // Deserialize qualifiers from an opaque representation.
152  static Qualifiers fromOpaqueValue(unsigned opaque) {
153    Qualifiers Qs;
154    Qs.Mask = opaque;
155    return Qs;
156  }
157
158  // Serialize these qualifiers into an opaque representation.
159  unsigned getAsOpaqueValue() const {
160    return Mask;
161  }
162
163  bool hasConst() const { return Mask & Const; }
164  void setConst(bool flag) {
165    Mask = (Mask & ~Const) | (flag ? Const : 0);
166  }
167  void removeConst() { Mask &= ~Const; }
168  void addConst() { Mask |= Const; }
169
170  bool hasVolatile() const { return Mask & Volatile; }
171  void setVolatile(bool flag) {
172    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
173  }
174  void removeVolatile() { Mask &= ~Volatile; }
175  void addVolatile() { Mask |= Volatile; }
176
177  bool hasRestrict() const { return Mask & Restrict; }
178  void setRestrict(bool flag) {
179    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
180  }
181  void removeRestrict() { Mask &= ~Restrict; }
182  void addRestrict() { Mask |= Restrict; }
183
184  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
185  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
186  void setCVRQualifiers(unsigned mask) {
187    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
188    Mask = (Mask & ~CVRMask) | mask;
189  }
190  void removeCVRQualifiers(unsigned mask) {
191    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
192    Mask &= ~mask;
193  }
194  void removeCVRQualifiers() {
195    removeCVRQualifiers(CVRMask);
196  }
197  void addCVRQualifiers(unsigned mask) {
198    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
199    Mask |= mask;
200  }
201
202  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
203  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
204  void setObjCGCAttr(GC type) {
205    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
206  }
207  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
208  void addObjCGCAttr(GC type) {
209    assert(type);
210    setObjCGCAttr(type);
211  }
212
213  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
214  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
215  void setAddressSpace(unsigned space) {
216    assert(space <= MaxAddressSpace);
217    Mask = (Mask & ~AddressSpaceMask)
218         | (((uint32_t) space) << AddressSpaceShift);
219  }
220  void removeAddressSpace() { setAddressSpace(0); }
221  void addAddressSpace(unsigned space) {
222    assert(space);
223    setAddressSpace(space);
224  }
225
226  // Fast qualifiers are those that can be allocated directly
227  // on a QualType object.
228  bool hasFastQualifiers() const { return getFastQualifiers(); }
229  unsigned getFastQualifiers() const { return Mask & FastMask; }
230  void setFastQualifiers(unsigned mask) {
231    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
232    Mask = (Mask & ~FastMask) | mask;
233  }
234  void removeFastQualifiers(unsigned mask) {
235    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
236    Mask &= ~mask;
237  }
238  void removeFastQualifiers() {
239    removeFastQualifiers(FastMask);
240  }
241  void addFastQualifiers(unsigned mask) {
242    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
243    Mask |= mask;
244  }
245
246  /// hasNonFastQualifiers - Return true if the set contains any
247  /// qualifiers which require an ExtQuals node to be allocated.
248  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
249  Qualifiers getNonFastQualifiers() const {
250    Qualifiers Quals = *this;
251    Quals.setFastQualifiers(0);
252    return Quals;
253  }
254
255  /// hasQualifiers - Return true if the set contains any qualifiers.
256  bool hasQualifiers() const { return Mask; }
257  bool empty() const { return !Mask; }
258
259  /// \brief Add the qualifiers from the given set to this set.
260  void addQualifiers(Qualifiers Q) {
261    // If the other set doesn't have any non-boolean qualifiers, just
262    // bit-or it in.
263    if (!(Q.Mask & ~CVRMask))
264      Mask |= Q.Mask;
265    else {
266      Mask |= (Q.Mask & CVRMask);
267      if (Q.hasAddressSpace())
268        addAddressSpace(Q.getAddressSpace());
269      if (Q.hasObjCGCAttr())
270        addObjCGCAttr(Q.getObjCGCAttr());
271    }
272  }
273
274  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
275  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
276
277  operator bool() const { return hasQualifiers(); }
278
279  Qualifiers &operator+=(Qualifiers R) {
280    addQualifiers(R);
281    return *this;
282  }
283
284  // Union two qualifier sets.  If an enumerated qualifier appears
285  // in both sets, use the one from the right.
286  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
287    L += R;
288    return L;
289  }
290
291  std::string getAsString() const;
292  std::string getAsString(const PrintingPolicy &Policy) const {
293    std::string Buffer;
294    getAsStringInternal(Buffer, Policy);
295    return Buffer;
296  }
297  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
298
299  void Profile(llvm::FoldingSetNodeID &ID) const {
300    ID.AddInteger(Mask);
301  }
302
303private:
304
305  // bits:     |0 1 2|3 .. 4|5  ..  31|
306  //           |C R V|GCAttr|AddrSpace|
307  uint32_t Mask;
308
309  static const uint32_t GCAttrMask = 0x18;
310  static const uint32_t GCAttrShift = 3;
311  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
312  static const uint32_t AddressSpaceShift = 5;
313};
314
315
316/// ExtQuals - We can encode up to three bits in the low bits of a
317/// type pointer, but there are many more type qualifiers that we want
318/// to be able to apply to an arbitrary type.  Therefore we have this
319/// struct, intended to be heap-allocated and used by QualType to
320/// store qualifiers.
321///
322/// The current design tags the 'const' and 'restrict' qualifiers in
323/// two low bits on the QualType pointer; a third bit records whether
324/// the pointer is an ExtQuals node.  'const' was chosen because it is
325/// orders of magnitude more common than the other two qualifiers, in
326/// both library and user code.  It's relatively rare to see
327/// 'restrict' in user code, but many standard C headers are saturated
328/// with 'restrict' declarations, so that representing them efficiently
329/// is a critical goal of this representation.
330class ExtQuals : public llvm::FoldingSetNode {
331  // NOTE: changing the fast qualifiers should be straightforward as
332  // long as you don't make 'const' non-fast.
333  // 1. Qualifiers:
334  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
335  //       Fast qualifiers must occupy the low-order bits.
336  //    b) Update Qualifiers::FastWidth and FastMask.
337  // 2. QualType:
338  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
339  //    b) Update remove{Volatile,Restrict}, defined near the end of
340  //       this header.
341  // 3. ASTContext:
342  //    a) Update get{Volatile,Restrict}Type.
343
344  /// Context - the context to which this set belongs.  We save this
345  /// here so that QualifierCollector can use it to reapply extended
346  /// qualifiers to an arbitrary type without requiring a context to
347  /// be pushed through every single API dealing with qualifiers.
348  ASTContext& Context;
349
350  /// BaseType - the underlying type that this qualifies
351  const Type *BaseType;
352
353  /// Quals - the immutable set of qualifiers applied by this
354  /// node;  always contains extended qualifiers.
355  Qualifiers Quals;
356
357public:
358  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
359    : Context(Context), BaseType(Base), Quals(Quals)
360  {
361    assert(Quals.hasNonFastQualifiers()
362           && "ExtQuals created with no fast qualifiers");
363    assert(!Quals.hasFastQualifiers()
364           && "ExtQuals created with fast qualifiers");
365  }
366
367  Qualifiers getQualifiers() const { return Quals; }
368
369  bool hasVolatile() const { return Quals.hasVolatile(); }
370
371  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
372  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
373
374  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
375  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
376
377  const Type *getBaseType() const { return BaseType; }
378
379  ASTContext &getContext() const { return Context; }
380
381public:
382  void Profile(llvm::FoldingSetNodeID &ID) const {
383    Profile(ID, getBaseType(), Quals);
384  }
385  static void Profile(llvm::FoldingSetNodeID &ID,
386                      const Type *BaseType,
387                      Qualifiers Quals) {
388    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
389    ID.AddPointer(BaseType);
390    Quals.Profile(ID);
391  }
392};
393
394/// CallingConv - Specifies the calling convention that a function uses.
395enum CallingConv {
396  CC_Default,
397  CC_C,           // __attribute__((cdecl))
398  CC_X86StdCall,  // __attribute__((stdcall))
399  CC_X86FastCall, // __attribute__((fastcall))
400  CC_X86ThisCall  // __attribute__((thiscall))
401};
402
403
404/// QualType - For efficiency, we don't store CV-qualified types as nodes on
405/// their own: instead each reference to a type stores the qualifiers.  This
406/// greatly reduces the number of nodes we need to allocate for types (for
407/// example we only need one for 'int', 'const int', 'volatile int',
408/// 'const volatile int', etc).
409///
410/// As an added efficiency bonus, instead of making this a pair, we
411/// just store the two bits we care about in the low bits of the
412/// pointer.  To handle the packing/unpacking, we make QualType be a
413/// simple wrapper class that acts like a smart pointer.  A third bit
414/// indicates whether there are extended qualifiers present, in which
415/// case the pointer points to a special structure.
416class QualType {
417  // Thankfully, these are efficiently composable.
418  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
419                       Qualifiers::FastWidth> Value;
420
421  const ExtQuals *getExtQualsUnsafe() const {
422    return Value.getPointer().get<const ExtQuals*>();
423  }
424
425  const Type *getTypePtrUnsafe() const {
426    return Value.getPointer().get<const Type*>();
427  }
428
429  QualType getUnqualifiedTypeSlow() const;
430
431  friend class QualifierCollector;
432public:
433  QualType() {}
434
435  QualType(const Type *Ptr, unsigned Quals)
436    : Value(Ptr, Quals) {}
437  QualType(const ExtQuals *Ptr, unsigned Quals)
438    : Value(Ptr, Quals) {}
439
440  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
441  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
442
443  /// Retrieves a pointer to the underlying (unqualified) type.
444  /// This should really return a const Type, but it's not worth
445  /// changing all the users right now.
446  Type *getTypePtr() const {
447    if (hasLocalNonFastQualifiers())
448      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
449    return const_cast<Type*>(getTypePtrUnsafe());
450  }
451
452  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
453  static QualType getFromOpaquePtr(void *Ptr) {
454    QualType T;
455    T.Value.setFromOpaqueValue(Ptr);
456    return T;
457  }
458
459  Type &operator*() const {
460    return *getTypePtr();
461  }
462
463  Type *operator->() const {
464    return getTypePtr();
465  }
466
467  bool isCanonical() const;
468  bool isCanonicalAsParam() const;
469
470  /// isNull - Return true if this QualType doesn't point to a type yet.
471  bool isNull() const {
472    return Value.getPointer().isNull();
473  }
474
475  /// \brief Determine whether this particular QualType instance has the
476  /// "const" qualifier set, without looking through typedefs that may have
477  /// added "const" at a different level.
478  bool isLocalConstQualified() const {
479    return (getLocalFastQualifiers() & Qualifiers::Const);
480  }
481
482  /// \brief Determine whether this type is const-qualified.
483  bool isConstQualified() const;
484
485  /// \brief Determine whether this particular QualType instance has the
486  /// "restrict" qualifier set, without looking through typedefs that may have
487  /// added "restrict" at a different level.
488  bool isLocalRestrictQualified() const {
489    return (getLocalFastQualifiers() & Qualifiers::Restrict);
490  }
491
492  /// \brief Determine whether this type is restrict-qualified.
493  bool isRestrictQualified() const;
494
495  /// \brief Determine whether this particular QualType instance has the
496  /// "volatile" qualifier set, without looking through typedefs that may have
497  /// added "volatile" at a different level.
498  bool isLocalVolatileQualified() const {
499    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
500  }
501
502  /// \brief Determine whether this type is volatile-qualified.
503  bool isVolatileQualified() const;
504
505  /// \brief Determine whether this particular QualType instance has any
506  /// qualifiers, without looking through any typedefs that might add
507  /// qualifiers at a different level.
508  bool hasLocalQualifiers() const {
509    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
510  }
511
512  /// \brief Determine whether this type has any qualifiers.
513  bool hasQualifiers() const;
514
515  /// \brief Determine whether this particular QualType instance has any
516  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
517  /// instance.
518  bool hasLocalNonFastQualifiers() const {
519    return Value.getPointer().is<const ExtQuals*>();
520  }
521
522  /// \brief Retrieve the set of qualifiers local to this particular QualType
523  /// instance, not including any qualifiers acquired through typedefs or
524  /// other sugar.
525  Qualifiers getLocalQualifiers() const {
526    Qualifiers Quals;
527    if (hasLocalNonFastQualifiers())
528      Quals = getExtQualsUnsafe()->getQualifiers();
529    Quals.addFastQualifiers(getLocalFastQualifiers());
530    return Quals;
531  }
532
533  /// \brief Retrieve the set of qualifiers applied to this type.
534  Qualifiers getQualifiers() const;
535
536  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
537  /// local to this particular QualType instance, not including any qualifiers
538  /// acquired through typedefs or other sugar.
539  unsigned getLocalCVRQualifiers() const {
540    unsigned CVR = getLocalFastQualifiers();
541    if (isLocalVolatileQualified())
542      CVR |= Qualifiers::Volatile;
543    return CVR;
544  }
545
546  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
547  /// applied to this type.
548  unsigned getCVRQualifiers() const;
549
550  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
551  /// applied to this type, looking through any number of unqualified array
552  /// types to their element types' qualifiers.
553  unsigned getCVRQualifiersThroughArrayTypes() const;
554
555  bool isConstant(ASTContext& Ctx) const {
556    return QualType::isConstant(*this, Ctx);
557  }
558
559  // Don't promise in the API that anything besides 'const' can be
560  // easily added.
561
562  /// addConst - add the specified type qualifier to this QualType.
563  void addConst() {
564    addFastQualifiers(Qualifiers::Const);
565  }
566  QualType withConst() const {
567    return withFastQualifiers(Qualifiers::Const);
568  }
569
570  void addFastQualifiers(unsigned TQs) {
571    assert(!(TQs & ~Qualifiers::FastMask)
572           && "non-fast qualifier bits set in mask!");
573    Value.setInt(Value.getInt() | TQs);
574  }
575
576  // FIXME: The remove* functions are semantically broken, because they might
577  // not remove a qualifier stored on a typedef. Most of the with* functions
578  // have the same problem.
579  void removeConst();
580  void removeVolatile();
581  void removeRestrict();
582  void removeCVRQualifiers(unsigned Mask);
583
584  void removeFastQualifiers() { Value.setInt(0); }
585  void removeFastQualifiers(unsigned Mask) {
586    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
587    Value.setInt(Value.getInt() & ~Mask);
588  }
589
590  // Creates a type with the given qualifiers in addition to any
591  // qualifiers already on this type.
592  QualType withFastQualifiers(unsigned TQs) const {
593    QualType T = *this;
594    T.addFastQualifiers(TQs);
595    return T;
596  }
597
598  // Creates a type with exactly the given fast qualifiers, removing
599  // any existing fast qualifiers.
600  QualType withExactFastQualifiers(unsigned TQs) const {
601    return withoutFastQualifiers().withFastQualifiers(TQs);
602  }
603
604  // Removes fast qualifiers, but leaves any extended qualifiers in place.
605  QualType withoutFastQualifiers() const {
606    QualType T = *this;
607    T.removeFastQualifiers();
608    return T;
609  }
610
611  /// \brief Return this type with all of the instance-specific qualifiers
612  /// removed, but without removing any qualifiers that may have been applied
613  /// through typedefs.
614  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
615
616  /// \brief Return the unqualified form of the given type, which might be
617  /// desugared to eliminate qualifiers introduced via typedefs.
618  QualType getUnqualifiedType() const {
619    QualType T = getLocalUnqualifiedType();
620    if (!T.hasQualifiers())
621      return T;
622
623    return getUnqualifiedTypeSlow();
624  }
625
626  bool isMoreQualifiedThan(QualType Other) const;
627  bool isAtLeastAsQualifiedAs(QualType Other) const;
628  QualType getNonReferenceType() const;
629
630  /// getDesugaredType - Return the specified type with any "sugar" removed from
631  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
632  /// the type is already concrete, it returns it unmodified.  This is similar
633  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
634  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
635  /// concrete.
636  ///
637  /// Qualifiers are left in place.
638  QualType getDesugaredType() const {
639    return QualType::getDesugaredType(*this);
640  }
641
642  /// operator==/!= - Indicate whether the specified types and qualifiers are
643  /// identical.
644  friend bool operator==(const QualType &LHS, const QualType &RHS) {
645    return LHS.Value == RHS.Value;
646  }
647  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
648    return LHS.Value != RHS.Value;
649  }
650  std::string getAsString() const;
651
652  std::string getAsString(const PrintingPolicy &Policy) const {
653    std::string S;
654    getAsStringInternal(S, Policy);
655    return S;
656  }
657  void getAsStringInternal(std::string &Str,
658                           const PrintingPolicy &Policy) const;
659
660  void dump(const char *s) const;
661  void dump() const;
662
663  void Profile(llvm::FoldingSetNodeID &ID) const {
664    ID.AddPointer(getAsOpaquePtr());
665  }
666
667  /// getAddressSpace - Return the address space of this type.
668  inline unsigned getAddressSpace() const;
669
670  /// GCAttrTypesAttr - Returns gc attribute of this type.
671  inline Qualifiers::GC getObjCGCAttr() const;
672
673  /// isObjCGCWeak true when Type is objc's weak.
674  bool isObjCGCWeak() const {
675    return getObjCGCAttr() == Qualifiers::Weak;
676  }
677
678  /// isObjCGCStrong true when Type is objc's strong.
679  bool isObjCGCStrong() const {
680    return getObjCGCAttr() == Qualifiers::Strong;
681  }
682
683private:
684  // These methods are implemented in a separate translation unit;
685  // "static"-ize them to avoid creating temporary QualTypes in the
686  // caller.
687  static bool isConstant(QualType T, ASTContext& Ctx);
688  static QualType getDesugaredType(QualType T);
689};
690
691} // end clang.
692
693namespace llvm {
694/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
695/// to a specific Type class.
696template<> struct simplify_type<const ::clang::QualType> {
697  typedef ::clang::Type* SimpleType;
698  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
699    return Val.getTypePtr();
700  }
701};
702template<> struct simplify_type< ::clang::QualType>
703  : public simplify_type<const ::clang::QualType> {};
704
705// Teach SmallPtrSet that QualType is "basically a pointer".
706template<>
707class PointerLikeTypeTraits<clang::QualType> {
708public:
709  static inline void *getAsVoidPointer(clang::QualType P) {
710    return P.getAsOpaquePtr();
711  }
712  static inline clang::QualType getFromVoidPointer(void *P) {
713    return clang::QualType::getFromOpaquePtr(P);
714  }
715  // Various qualifiers go in low bits.
716  enum { NumLowBitsAvailable = 0 };
717};
718
719} // end namespace llvm
720
721namespace clang {
722
723/// Type - This is the base class of the type hierarchy.  A central concept
724/// with types is that each type always has a canonical type.  A canonical type
725/// is the type with any typedef names stripped out of it or the types it
726/// references.  For example, consider:
727///
728///  typedef int  foo;
729///  typedef foo* bar;
730///    'int *'    'foo *'    'bar'
731///
732/// There will be a Type object created for 'int'.  Since int is canonical, its
733/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
734/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
735/// there is a PointerType that represents 'int*', which, like 'int', is
736/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
737/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
738/// is also 'int*'.
739///
740/// Non-canonical types are useful for emitting diagnostics, without losing
741/// information about typedefs being used.  Canonical types are useful for type
742/// comparisons (they allow by-pointer equality tests) and useful for reasoning
743/// about whether something has a particular form (e.g. is a function type),
744/// because they implicitly, recursively, strip all typedefs out of a type.
745///
746/// Types, once created, are immutable.
747///
748class Type {
749public:
750  enum TypeClass {
751#define TYPE(Class, Base) Class,
752#define LAST_TYPE(Class) TypeLast = Class,
753#define ABSTRACT_TYPE(Class, Base)
754#include "clang/AST/TypeNodes.def"
755    TagFirst = Record, TagLast = Enum
756  };
757
758private:
759  Type(const Type&);           // DO NOT IMPLEMENT.
760  void operator=(const Type&); // DO NOT IMPLEMENT.
761
762  QualType CanonicalType;
763
764  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
765  unsigned TC : 8;
766
767  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
768  /// Note that this should stay at the end of the ivars for Type so that
769  /// subclasses can pack their bitfields into the same word.
770  bool Dependent : 1;
771
772  /// \brief Whether the linkage of this type is already known.
773  mutable bool LinkageKnown : 1;
774
775  /// \brief Linkage of this type.
776  mutable unsigned CachedLinkage : 2;
777
778protected:
779  /// \brief Compute the linkage of this type.
780  virtual Linkage getLinkageImpl() const;
781
782  enum { BitsRemainingInType = 20 };
783
784  // silence VC++ warning C4355: 'this' : used in base member initializer list
785  Type *this_() { return this; }
786  Type(TypeClass tc, QualType Canonical, bool dependent)
787    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
788      TC(tc), Dependent(dependent), LinkageKnown(false),
789      CachedLinkage(NoLinkage) {}
790  virtual ~Type() {}
791  virtual void Destroy(ASTContext& C);
792  friend class ASTContext;
793
794public:
795  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
796
797  bool isCanonicalUnqualified() const {
798    return CanonicalType.getTypePtr() == this;
799  }
800
801  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
802  /// object types, function types, and incomplete types.
803
804  /// \brief Determines whether the type describes an object in memory.
805  ///
806  /// Note that this definition of object type corresponds to the C++
807  /// definition of object type, which includes incomplete types, as
808  /// opposed to the C definition (which does not include incomplete
809  /// types).
810  bool isObjectType() const;
811
812  /// isIncompleteType - Return true if this is an incomplete type.
813  /// A type that can describe objects, but which lacks information needed to
814  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
815  /// routine will need to determine if the size is actually required.
816  bool isIncompleteType() const;
817
818  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
819  /// type, in other words, not a function type.
820  bool isIncompleteOrObjectType() const {
821    return !isFunctionType();
822  }
823
824  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
825  bool isPODType() const;
826
827  /// isLiteralType - Return true if this is a literal type
828  /// (C++0x [basic.types]p10)
829  bool isLiteralType() const;
830
831  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
832  /// types that have a non-constant expression. This does not include "[]".
833  bool isVariablyModifiedType() const;
834
835  /// Helper methods to distinguish type categories. All type predicates
836  /// operate on the canonical type, ignoring typedefs and qualifiers.
837
838  /// isSpecificBuiltinType - Test for a particular builtin type.
839  bool isSpecificBuiltinType(unsigned K) const;
840
841  /// isIntegerType() does *not* include complex integers (a GCC extension).
842  /// isComplexIntegerType() can be used to test for complex integers.
843  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
844  bool isEnumeralType() const;
845  bool isBooleanType() const;
846  bool isCharType() const;
847  bool isWideCharType() const;
848  bool isAnyCharacterType() const;
849  bool isIntegralType() const;
850
851  /// Floating point categories.
852  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
853  /// isComplexType() does *not* include complex integers (a GCC extension).
854  /// isComplexIntegerType() can be used to test for complex integers.
855  bool isComplexType() const;      // C99 6.2.5p11 (complex)
856  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
857  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
858  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
859  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
860  bool isVoidType() const;         // C99 6.2.5p19
861  bool isDerivedType() const;      // C99 6.2.5p20
862  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
863  bool isAggregateType() const;
864
865  // Type Predicates: Check to see if this type is structurally the specified
866  // type, ignoring typedefs and qualifiers.
867  bool isFunctionType() const;
868  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
869  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
870  bool isPointerType() const;
871  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
872  bool isBlockPointerType() const;
873  bool isVoidPointerType() const;
874  bool isReferenceType() const;
875  bool isLValueReferenceType() const;
876  bool isRValueReferenceType() const;
877  bool isFunctionPointerType() const;
878  bool isMemberPointerType() const;
879  bool isMemberFunctionPointerType() const;
880  bool isArrayType() const;
881  bool isConstantArrayType() const;
882  bool isIncompleteArrayType() const;
883  bool isVariableArrayType() const;
884  bool isDependentSizedArrayType() const;
885  bool isRecordType() const;
886  bool isClassType() const;
887  bool isStructureType() const;
888  bool isStructureOrClassType() const;
889  bool isUnionType() const;
890  bool isComplexIntegerType() const;            // GCC _Complex integer type.
891  bool isVectorType() const;                    // GCC vector type.
892  bool isExtVectorType() const;                 // Extended vector type.
893  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
894  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
895  // for the common case.
896  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
897  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
898  bool isObjCQualifiedIdType() const;           // id<foo>
899  bool isObjCQualifiedClassType() const;        // Class<foo>
900  bool isObjCIdType() const;                    // id
901  bool isObjCClassType() const;                 // Class
902  bool isObjCSelType() const;                 // Class
903  bool isObjCBuiltinType() const;               // 'id' or 'Class'
904  bool isTemplateTypeParmType() const;          // C++ template type parameter
905  bool isNullPtrType() const;                   // C++0x nullptr_t
906
907  /// isDependentType - Whether this type is a dependent type, meaning
908  /// that its definition somehow depends on a template parameter
909  /// (C++ [temp.dep.type]).
910  bool isDependentType() const { return Dependent; }
911  bool isOverloadableType() const;
912
913  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
914  bool isElaboratedTypeSpecifier() const;
915
916  /// hasPointerRepresentation - Whether this type is represented
917  /// natively as a pointer; this includes pointers, references, block
918  /// pointers, and Objective-C interface, qualified id, and qualified
919  /// interface types, as well as nullptr_t.
920  bool hasPointerRepresentation() const;
921
922  /// hasObjCPointerRepresentation - Whether this type can represent
923  /// an objective pointer type for the purpose of GC'ability
924  bool hasObjCPointerRepresentation() const;
925
926  // Type Checking Functions: Check to see if this type is structurally the
927  // specified type, ignoring typedefs and qualifiers, and return a pointer to
928  // the best type we can.
929  const RecordType *getAsStructureType() const;
930  /// NOTE: getAs*ArrayType are methods on ASTContext.
931  const RecordType *getAsUnionType() const;
932  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
933  // The following is a convenience method that returns an ObjCObjectPointerType
934  // for object declared using an interface.
935  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
936  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
937  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
938  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
939
940  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
941  /// because the type is a RecordType or because it is the injected-class-name
942  /// type of a class template or class template partial specialization.
943  CXXRecordDecl *getAsCXXRecordDecl() const;
944
945  // Member-template getAs<specific type>'.  This scheme will eventually
946  // replace the specific getAsXXXX methods above.
947  //
948  // There are some specializations of this member template listed
949  // immediately following this class.
950  template <typename T> const T *getAs() const;
951
952  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
953  /// element type of the array, potentially with type qualifiers missing.
954  /// This method should never be used when type qualifiers are meaningful.
955  const Type *getArrayElementTypeNoTypeQual() const;
956
957  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
958  /// pointer, this returns the respective pointee.
959  QualType getPointeeType() const;
960
961  /// getUnqualifiedDesugaredType() - Return the specified type with
962  /// any "sugar" removed from the type, removing any typedefs,
963  /// typeofs, etc., as well as any qualifiers.
964  const Type *getUnqualifiedDesugaredType() const;
965
966  /// More type predicates useful for type checking/promotion
967  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
968
969  /// isSignedIntegerType - Return true if this is an integer type that is
970  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
971  /// an enum decl which has a signed representation, or a vector of signed
972  /// integer element type.
973  bool isSignedIntegerType() const;
974
975  /// isUnsignedIntegerType - Return true if this is an integer type that is
976  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
977  /// decl which has an unsigned representation, or a vector of unsigned integer
978  /// element type.
979  bool isUnsignedIntegerType() const;
980
981  /// isConstantSizeType - Return true if this is not a variable sized type,
982  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
983  /// incomplete types.
984  bool isConstantSizeType() const;
985
986  /// isSpecifierType - Returns true if this type can be represented by some
987  /// set of type specifiers.
988  bool isSpecifierType() const;
989
990  /// \brief Determine the linkage of this type.
991  Linkage getLinkage() const;
992
993  /// \brief Note that the linkage is no longer known.
994  void ClearLinkageCache();
995
996  const char *getTypeClassName() const;
997
998  QualType getCanonicalTypeInternal() const {
999    return CanonicalType;
1000  }
1001  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1002  void dump() const;
1003  static bool classof(const Type *) { return true; }
1004};
1005
1006template <> inline const TypedefType *Type::getAs() const {
1007  return dyn_cast<TypedefType>(this);
1008}
1009
1010// We can do canonical leaf types faster, because we don't have to
1011// worry about preserving child type decoration.
1012#define TYPE(Class, Base)
1013#define LEAF_TYPE(Class) \
1014template <> inline const Class##Type *Type::getAs() const { \
1015  return dyn_cast<Class##Type>(CanonicalType); \
1016}
1017#include "clang/AST/TypeNodes.def"
1018
1019
1020/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1021/// types are always canonical and have a literal name field.
1022class BuiltinType : public Type {
1023public:
1024  enum Kind {
1025    Void,
1026
1027    Bool,     // This is bool and/or _Bool.
1028    Char_U,   // This is 'char' for targets where char is unsigned.
1029    UChar,    // This is explicitly qualified unsigned char.
1030    Char16,   // This is 'char16_t' for C++.
1031    Char32,   // This is 'char32_t' for C++.
1032    UShort,
1033    UInt,
1034    ULong,
1035    ULongLong,
1036    UInt128,  // __uint128_t
1037
1038    Char_S,   // This is 'char' for targets where char is signed.
1039    SChar,    // This is explicitly qualified signed char.
1040    WChar,    // This is 'wchar_t' for C++.
1041    Short,
1042    Int,
1043    Long,
1044    LongLong,
1045    Int128,   // __int128_t
1046
1047    Float, Double, LongDouble,
1048
1049    NullPtr,  // This is the type of C++0x 'nullptr'.
1050
1051    Overload,  // This represents the type of an overloaded function declaration.
1052    Dependent, // This represents the type of a type-dependent expression.
1053
1054    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1055                   // that has not been deduced yet.
1056
1057    /// The primitive Objective C 'id' type.  The type pointed to by the
1058    /// user-visible 'id' type.  Only ever shows up in an AST as the base
1059    /// type of an ObjCObjectType.
1060    ObjCId,
1061
1062    /// The primitive Objective C 'Class' type.  The type pointed to by the
1063    /// user-visible 'Class' type.  Only ever shows up in an AST as the
1064    /// base type of an ObjCObjectType.
1065    ObjCClass,
1066
1067    ObjCSel    // This represents the ObjC 'SEL' type.
1068  };
1069private:
1070  Kind TypeKind;
1071
1072protected:
1073  virtual Linkage getLinkageImpl() const;
1074
1075public:
1076  BuiltinType(Kind K)
1077    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
1078      TypeKind(K) {}
1079
1080  Kind getKind() const { return TypeKind; }
1081  const char *getName(const LangOptions &LO) const;
1082
1083  bool isSugared() const { return false; }
1084  QualType desugar() const { return QualType(this, 0); }
1085
1086  bool isInteger() const {
1087    return TypeKind >= Bool && TypeKind <= Int128;
1088  }
1089
1090  bool isSignedInteger() const {
1091    return TypeKind >= Char_S && TypeKind <= Int128;
1092  }
1093
1094  bool isUnsignedInteger() const {
1095    return TypeKind >= Bool && TypeKind <= UInt128;
1096  }
1097
1098  bool isFloatingPoint() const {
1099    return TypeKind >= Float && TypeKind <= LongDouble;
1100  }
1101
1102  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1103  static bool classof(const BuiltinType *) { return true; }
1104};
1105
1106/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1107/// types (_Complex float etc) as well as the GCC integer complex extensions.
1108///
1109class ComplexType : public Type, public llvm::FoldingSetNode {
1110  QualType ElementType;
1111  ComplexType(QualType Element, QualType CanonicalPtr) :
1112    Type(Complex, CanonicalPtr, Element->isDependentType()),
1113    ElementType(Element) {
1114  }
1115  friend class ASTContext;  // ASTContext creates these.
1116
1117protected:
1118  virtual Linkage getLinkageImpl() const;
1119
1120public:
1121  QualType getElementType() const { return ElementType; }
1122
1123  bool isSugared() const { return false; }
1124  QualType desugar() const { return QualType(this, 0); }
1125
1126  void Profile(llvm::FoldingSetNodeID &ID) {
1127    Profile(ID, getElementType());
1128  }
1129  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1130    ID.AddPointer(Element.getAsOpaquePtr());
1131  }
1132
1133  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1134  static bool classof(const ComplexType *) { return true; }
1135};
1136
1137/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1138///
1139class PointerType : public Type, public llvm::FoldingSetNode {
1140  QualType PointeeType;
1141
1142  PointerType(QualType Pointee, QualType CanonicalPtr) :
1143    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1144  }
1145  friend class ASTContext;  // ASTContext creates these.
1146
1147protected:
1148  virtual Linkage getLinkageImpl() const;
1149
1150public:
1151
1152  QualType getPointeeType() const { return PointeeType; }
1153
1154  bool isSugared() const { return false; }
1155  QualType desugar() const { return QualType(this, 0); }
1156
1157  void Profile(llvm::FoldingSetNodeID &ID) {
1158    Profile(ID, getPointeeType());
1159  }
1160  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1161    ID.AddPointer(Pointee.getAsOpaquePtr());
1162  }
1163
1164  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1165  static bool classof(const PointerType *) { return true; }
1166};
1167
1168/// BlockPointerType - pointer to a block type.
1169/// This type is to represent types syntactically represented as
1170/// "void (^)(int)", etc. Pointee is required to always be a function type.
1171///
1172class BlockPointerType : public Type, public llvm::FoldingSetNode {
1173  QualType PointeeType;  // Block is some kind of pointer type
1174  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1175    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1176    PointeeType(Pointee) {
1177  }
1178  friend class ASTContext;  // ASTContext creates these.
1179
1180protected:
1181  virtual Linkage getLinkageImpl() const;
1182
1183public:
1184
1185  // Get the pointee type. Pointee is required to always be a function type.
1186  QualType getPointeeType() const { return PointeeType; }
1187
1188  bool isSugared() const { return false; }
1189  QualType desugar() const { return QualType(this, 0); }
1190
1191  void Profile(llvm::FoldingSetNodeID &ID) {
1192      Profile(ID, getPointeeType());
1193  }
1194  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1195      ID.AddPointer(Pointee.getAsOpaquePtr());
1196  }
1197
1198  static bool classof(const Type *T) {
1199    return T->getTypeClass() == BlockPointer;
1200  }
1201  static bool classof(const BlockPointerType *) { return true; }
1202};
1203
1204/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1205///
1206class ReferenceType : public Type, public llvm::FoldingSetNode {
1207  QualType PointeeType;
1208
1209  /// True if the type was originally spelled with an lvalue sigil.
1210  /// This is never true of rvalue references but can also be false
1211  /// on lvalue references because of C++0x [dcl.typedef]p9,
1212  /// as follows:
1213  ///
1214  ///   typedef int &ref;    // lvalue, spelled lvalue
1215  ///   typedef int &&rvref; // rvalue
1216  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1217  ///   ref &&a;             // lvalue, inner ref
1218  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1219  ///   rvref &&a;           // rvalue, inner ref
1220  bool SpelledAsLValue;
1221
1222  /// True if the inner type is a reference type.  This only happens
1223  /// in non-canonical forms.
1224  bool InnerRef;
1225
1226protected:
1227  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1228                bool SpelledAsLValue) :
1229    Type(tc, CanonicalRef, Referencee->isDependentType()),
1230    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1231    InnerRef(Referencee->isReferenceType()) {
1232  }
1233
1234  virtual Linkage getLinkageImpl() const;
1235
1236public:
1237  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1238  bool isInnerRef() const { return InnerRef; }
1239
1240  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1241  QualType getPointeeType() const {
1242    // FIXME: this might strip inner qualifiers; okay?
1243    const ReferenceType *T = this;
1244    while (T->InnerRef)
1245      T = T->PointeeType->getAs<ReferenceType>();
1246    return T->PointeeType;
1247  }
1248
1249  void Profile(llvm::FoldingSetNodeID &ID) {
1250    Profile(ID, PointeeType, SpelledAsLValue);
1251  }
1252  static void Profile(llvm::FoldingSetNodeID &ID,
1253                      QualType Referencee,
1254                      bool SpelledAsLValue) {
1255    ID.AddPointer(Referencee.getAsOpaquePtr());
1256    ID.AddBoolean(SpelledAsLValue);
1257  }
1258
1259  static bool classof(const Type *T) {
1260    return T->getTypeClass() == LValueReference ||
1261           T->getTypeClass() == RValueReference;
1262  }
1263  static bool classof(const ReferenceType *) { return true; }
1264};
1265
1266/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1267///
1268class LValueReferenceType : public ReferenceType {
1269  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1270                      bool SpelledAsLValue) :
1271    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1272  {}
1273  friend class ASTContext; // ASTContext creates these
1274public:
1275  bool isSugared() const { return false; }
1276  QualType desugar() const { return QualType(this, 0); }
1277
1278  static bool classof(const Type *T) {
1279    return T->getTypeClass() == LValueReference;
1280  }
1281  static bool classof(const LValueReferenceType *) { return true; }
1282};
1283
1284/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1285///
1286class RValueReferenceType : public ReferenceType {
1287  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1288    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1289  }
1290  friend class ASTContext; // ASTContext creates these
1291public:
1292  bool isSugared() const { return false; }
1293  QualType desugar() const { return QualType(this, 0); }
1294
1295  static bool classof(const Type *T) {
1296    return T->getTypeClass() == RValueReference;
1297  }
1298  static bool classof(const RValueReferenceType *) { return true; }
1299};
1300
1301/// MemberPointerType - C++ 8.3.3 - Pointers to members
1302///
1303class MemberPointerType : public Type, public llvm::FoldingSetNode {
1304  QualType PointeeType;
1305  /// The class of which the pointee is a member. Must ultimately be a
1306  /// RecordType, but could be a typedef or a template parameter too.
1307  const Type *Class;
1308
1309  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1310    Type(MemberPointer, CanonicalPtr,
1311         Cls->isDependentType() || Pointee->isDependentType()),
1312    PointeeType(Pointee), Class(Cls) {
1313  }
1314  friend class ASTContext; // ASTContext creates these.
1315
1316protected:
1317  virtual Linkage getLinkageImpl() const;
1318
1319public:
1320
1321  QualType getPointeeType() const { return PointeeType; }
1322
1323  const Type *getClass() const { return Class; }
1324
1325  bool isSugared() const { return false; }
1326  QualType desugar() const { return QualType(this, 0); }
1327
1328  void Profile(llvm::FoldingSetNodeID &ID) {
1329    Profile(ID, getPointeeType(), getClass());
1330  }
1331  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1332                      const Type *Class) {
1333    ID.AddPointer(Pointee.getAsOpaquePtr());
1334    ID.AddPointer(Class);
1335  }
1336
1337  static bool classof(const Type *T) {
1338    return T->getTypeClass() == MemberPointer;
1339  }
1340  static bool classof(const MemberPointerType *) { return true; }
1341};
1342
1343/// ArrayType - C99 6.7.5.2 - Array Declarators.
1344///
1345class ArrayType : public Type, public llvm::FoldingSetNode {
1346public:
1347  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1348  /// an array with a static size (e.g. int X[static 4]), or an array
1349  /// with a star size (e.g. int X[*]).
1350  /// 'static' is only allowed on function parameters.
1351  enum ArraySizeModifier {
1352    Normal, Static, Star
1353  };
1354private:
1355  /// ElementType - The element type of the array.
1356  QualType ElementType;
1357
1358  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1359  /// NOTE: These fields are packed into the bitfields space in the Type class.
1360  unsigned SizeModifier : 2;
1361
1362  /// IndexTypeQuals - Capture qualifiers in declarations like:
1363  /// 'int X[static restrict 4]'. For function parameters only.
1364  unsigned IndexTypeQuals : 3;
1365
1366protected:
1367  // C++ [temp.dep.type]p1:
1368  //   A type is dependent if it is...
1369  //     - an array type constructed from any dependent type or whose
1370  //       size is specified by a constant expression that is
1371  //       value-dependent,
1372  ArrayType(TypeClass tc, QualType et, QualType can,
1373            ArraySizeModifier sm, unsigned tq)
1374    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1375      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1376
1377  friend class ASTContext;  // ASTContext creates these.
1378
1379  virtual Linkage getLinkageImpl() const;
1380
1381public:
1382  QualType getElementType() const { return ElementType; }
1383  ArraySizeModifier getSizeModifier() const {
1384    return ArraySizeModifier(SizeModifier);
1385  }
1386  Qualifiers getIndexTypeQualifiers() const {
1387    return Qualifiers::fromCVRMask(IndexTypeQuals);
1388  }
1389  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1390
1391  static bool classof(const Type *T) {
1392    return T->getTypeClass() == ConstantArray ||
1393           T->getTypeClass() == VariableArray ||
1394           T->getTypeClass() == IncompleteArray ||
1395           T->getTypeClass() == DependentSizedArray;
1396  }
1397  static bool classof(const ArrayType *) { return true; }
1398};
1399
1400/// ConstantArrayType - This class represents the canonical version of
1401/// C arrays with a specified constant size.  For example, the canonical
1402/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1403/// type is 'int' and the size is 404.
1404class ConstantArrayType : public ArrayType {
1405  llvm::APInt Size; // Allows us to unique the type.
1406
1407  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1408                    ArraySizeModifier sm, unsigned tq)
1409    : ArrayType(ConstantArray, et, can, sm, tq),
1410      Size(size) {}
1411protected:
1412  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1413                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1414    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1415  friend class ASTContext;  // ASTContext creates these.
1416public:
1417  const llvm::APInt &getSize() const { return Size; }
1418  bool isSugared() const { return false; }
1419  QualType desugar() const { return QualType(this, 0); }
1420
1421  void Profile(llvm::FoldingSetNodeID &ID) {
1422    Profile(ID, getElementType(), getSize(),
1423            getSizeModifier(), getIndexTypeCVRQualifiers());
1424  }
1425  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1426                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1427                      unsigned TypeQuals) {
1428    ID.AddPointer(ET.getAsOpaquePtr());
1429    ID.AddInteger(ArraySize.getZExtValue());
1430    ID.AddInteger(SizeMod);
1431    ID.AddInteger(TypeQuals);
1432  }
1433  static bool classof(const Type *T) {
1434    return T->getTypeClass() == ConstantArray;
1435  }
1436  static bool classof(const ConstantArrayType *) { return true; }
1437};
1438
1439/// IncompleteArrayType - This class represents C arrays with an unspecified
1440/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1441/// type is 'int' and the size is unspecified.
1442class IncompleteArrayType : public ArrayType {
1443
1444  IncompleteArrayType(QualType et, QualType can,
1445                      ArraySizeModifier sm, unsigned tq)
1446    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1447  friend class ASTContext;  // ASTContext creates these.
1448public:
1449  bool isSugared() const { return false; }
1450  QualType desugar() const { return QualType(this, 0); }
1451
1452  static bool classof(const Type *T) {
1453    return T->getTypeClass() == IncompleteArray;
1454  }
1455  static bool classof(const IncompleteArrayType *) { return true; }
1456
1457  friend class StmtIteratorBase;
1458
1459  void Profile(llvm::FoldingSetNodeID &ID) {
1460    Profile(ID, getElementType(), getSizeModifier(),
1461            getIndexTypeCVRQualifiers());
1462  }
1463
1464  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1465                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1466    ID.AddPointer(ET.getAsOpaquePtr());
1467    ID.AddInteger(SizeMod);
1468    ID.AddInteger(TypeQuals);
1469  }
1470};
1471
1472/// VariableArrayType - This class represents C arrays with a specified size
1473/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1474/// Since the size expression is an arbitrary expression, we store it as such.
1475///
1476/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1477/// should not be: two lexically equivalent variable array types could mean
1478/// different things, for example, these variables do not have the same type
1479/// dynamically:
1480///
1481/// void foo(int x) {
1482///   int Y[x];
1483///   ++x;
1484///   int Z[x];
1485/// }
1486///
1487class VariableArrayType : public ArrayType {
1488  /// SizeExpr - An assignment expression. VLA's are only permitted within
1489  /// a function block.
1490  Stmt *SizeExpr;
1491  /// Brackets - The left and right array brackets.
1492  SourceRange Brackets;
1493
1494  VariableArrayType(QualType et, QualType can, Expr *e,
1495                    ArraySizeModifier sm, unsigned tq,
1496                    SourceRange brackets)
1497    : ArrayType(VariableArray, et, can, sm, tq),
1498      SizeExpr((Stmt*) e), Brackets(brackets) {}
1499  friend class ASTContext;  // ASTContext creates these.
1500  virtual void Destroy(ASTContext& C);
1501
1502public:
1503  Expr *getSizeExpr() const {
1504    // We use C-style casts instead of cast<> here because we do not wish
1505    // to have a dependency of Type.h on Stmt.h/Expr.h.
1506    return (Expr*) SizeExpr;
1507  }
1508  SourceRange getBracketsRange() const { return Brackets; }
1509  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1510  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1511
1512  bool isSugared() const { return false; }
1513  QualType desugar() const { return QualType(this, 0); }
1514
1515  static bool classof(const Type *T) {
1516    return T->getTypeClass() == VariableArray;
1517  }
1518  static bool classof(const VariableArrayType *) { return true; }
1519
1520  friend class StmtIteratorBase;
1521
1522  void Profile(llvm::FoldingSetNodeID &ID) {
1523    assert(0 && "Cannnot unique VariableArrayTypes.");
1524  }
1525};
1526
1527/// DependentSizedArrayType - This type represents an array type in
1528/// C++ whose size is a value-dependent expression. For example:
1529///
1530/// \code
1531/// template<typename T, int Size>
1532/// class array {
1533///   T data[Size];
1534/// };
1535/// \endcode
1536///
1537/// For these types, we won't actually know what the array bound is
1538/// until template instantiation occurs, at which point this will
1539/// become either a ConstantArrayType or a VariableArrayType.
1540class DependentSizedArrayType : public ArrayType {
1541  ASTContext &Context;
1542
1543  /// \brief An assignment expression that will instantiate to the
1544  /// size of the array.
1545  ///
1546  /// The expression itself might be NULL, in which case the array
1547  /// type will have its size deduced from an initializer.
1548  Stmt *SizeExpr;
1549
1550  /// Brackets - The left and right array brackets.
1551  SourceRange Brackets;
1552
1553  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1554                          Expr *e, ArraySizeModifier sm, unsigned tq,
1555                          SourceRange brackets)
1556    : ArrayType(DependentSizedArray, et, can, sm, tq),
1557      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1558  friend class ASTContext;  // ASTContext creates these.
1559  virtual void Destroy(ASTContext& C);
1560
1561public:
1562  Expr *getSizeExpr() const {
1563    // We use C-style casts instead of cast<> here because we do not wish
1564    // to have a dependency of Type.h on Stmt.h/Expr.h.
1565    return (Expr*) SizeExpr;
1566  }
1567  SourceRange getBracketsRange() const { return Brackets; }
1568  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1569  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1570
1571  bool isSugared() const { return false; }
1572  QualType desugar() const { return QualType(this, 0); }
1573
1574  static bool classof(const Type *T) {
1575    return T->getTypeClass() == DependentSizedArray;
1576  }
1577  static bool classof(const DependentSizedArrayType *) { return true; }
1578
1579  friend class StmtIteratorBase;
1580
1581
1582  void Profile(llvm::FoldingSetNodeID &ID) {
1583    Profile(ID, Context, getElementType(),
1584            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1585  }
1586
1587  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1588                      QualType ET, ArraySizeModifier SizeMod,
1589                      unsigned TypeQuals, Expr *E);
1590};
1591
1592/// DependentSizedExtVectorType - This type represent an extended vector type
1593/// where either the type or size is dependent. For example:
1594/// @code
1595/// template<typename T, int Size>
1596/// class vector {
1597///   typedef T __attribute__((ext_vector_type(Size))) type;
1598/// }
1599/// @endcode
1600class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1601  ASTContext &Context;
1602  Expr *SizeExpr;
1603  /// ElementType - The element type of the array.
1604  QualType ElementType;
1605  SourceLocation loc;
1606
1607  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1608                              QualType can, Expr *SizeExpr, SourceLocation loc)
1609    : Type (DependentSizedExtVector, can, true),
1610      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1611      loc(loc) {}
1612  friend class ASTContext;
1613  virtual void Destroy(ASTContext& C);
1614
1615public:
1616  Expr *getSizeExpr() const { return SizeExpr; }
1617  QualType getElementType() const { return ElementType; }
1618  SourceLocation getAttributeLoc() const { return loc; }
1619
1620  bool isSugared() const { return false; }
1621  QualType desugar() const { return QualType(this, 0); }
1622
1623  static bool classof(const Type *T) {
1624    return T->getTypeClass() == DependentSizedExtVector;
1625  }
1626  static bool classof(const DependentSizedExtVectorType *) { return true; }
1627
1628  void Profile(llvm::FoldingSetNodeID &ID) {
1629    Profile(ID, Context, getElementType(), getSizeExpr());
1630  }
1631
1632  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1633                      QualType ElementType, Expr *SizeExpr);
1634};
1635
1636
1637/// VectorType - GCC generic vector type. This type is created using
1638/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1639/// bytes; or from an Altivec __vector or vector declaration.
1640/// Since the constructor takes the number of vector elements, the
1641/// client is responsible for converting the size into the number of elements.
1642class VectorType : public Type, public llvm::FoldingSetNode {
1643protected:
1644  /// ElementType - The element type of the vector.
1645  QualType ElementType;
1646
1647  /// NumElements - The number of elements in the vector.
1648  unsigned NumElements;
1649
1650  /// AltiVec - True if this is for an Altivec vector.
1651  bool AltiVec;
1652
1653  /// Pixel - True if this is for an Altivec vector pixel.
1654  bool Pixel;
1655
1656  VectorType(QualType vecType, unsigned nElements, QualType canonType,
1657      bool isAltiVec, bool isPixel) :
1658    Type(Vector, canonType, vecType->isDependentType()),
1659    ElementType(vecType), NumElements(nElements),
1660    AltiVec(isAltiVec), Pixel(isPixel) {}
1661  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1662             QualType canonType, bool isAltiVec, bool isPixel)
1663    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1664      NumElements(nElements), AltiVec(isAltiVec), Pixel(isPixel) {}
1665  friend class ASTContext;  // ASTContext creates these.
1666
1667  virtual Linkage getLinkageImpl() const;
1668
1669public:
1670
1671  QualType getElementType() const { return ElementType; }
1672  unsigned getNumElements() const { return NumElements; }
1673
1674  bool isSugared() const { return false; }
1675  QualType desugar() const { return QualType(this, 0); }
1676
1677  bool isAltiVec() const { return AltiVec; }
1678
1679  bool isPixel() const { return Pixel; }
1680
1681  void Profile(llvm::FoldingSetNodeID &ID) {
1682    Profile(ID, getElementType(), getNumElements(), getTypeClass(),
1683      AltiVec, Pixel);
1684  }
1685  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1686                      unsigned NumElements, TypeClass TypeClass,
1687                      bool isAltiVec, bool isPixel) {
1688    ID.AddPointer(ElementType.getAsOpaquePtr());
1689    ID.AddInteger(NumElements);
1690    ID.AddInteger(TypeClass);
1691    ID.AddBoolean(isAltiVec);
1692    ID.AddBoolean(isPixel);
1693  }
1694
1695  static bool classof(const Type *T) {
1696    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1697  }
1698  static bool classof(const VectorType *) { return true; }
1699};
1700
1701/// ExtVectorType - Extended vector type. This type is created using
1702/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1703/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1704/// class enables syntactic extensions, like Vector Components for accessing
1705/// points, colors, and textures (modeled after OpenGL Shading Language).
1706class ExtVectorType : public VectorType {
1707  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1708    VectorType(ExtVector, vecType, nElements, canonType, false, false) {}
1709  friend class ASTContext;  // ASTContext creates these.
1710public:
1711  static int getPointAccessorIdx(char c) {
1712    switch (c) {
1713    default: return -1;
1714    case 'x': return 0;
1715    case 'y': return 1;
1716    case 'z': return 2;
1717    case 'w': return 3;
1718    }
1719  }
1720  static int getNumericAccessorIdx(char c) {
1721    switch (c) {
1722      default: return -1;
1723      case '0': return 0;
1724      case '1': return 1;
1725      case '2': return 2;
1726      case '3': return 3;
1727      case '4': return 4;
1728      case '5': return 5;
1729      case '6': return 6;
1730      case '7': return 7;
1731      case '8': return 8;
1732      case '9': return 9;
1733      case 'A':
1734      case 'a': return 10;
1735      case 'B':
1736      case 'b': return 11;
1737      case 'C':
1738      case 'c': return 12;
1739      case 'D':
1740      case 'd': return 13;
1741      case 'E':
1742      case 'e': return 14;
1743      case 'F':
1744      case 'f': return 15;
1745    }
1746  }
1747
1748  static int getAccessorIdx(char c) {
1749    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1750    return getNumericAccessorIdx(c);
1751  }
1752
1753  bool isAccessorWithinNumElements(char c) const {
1754    if (int idx = getAccessorIdx(c)+1)
1755      return unsigned(idx-1) < NumElements;
1756    return false;
1757  }
1758  bool isSugared() const { return false; }
1759  QualType desugar() const { return QualType(this, 0); }
1760
1761  static bool classof(const Type *T) {
1762    return T->getTypeClass() == ExtVector;
1763  }
1764  static bool classof(const ExtVectorType *) { return true; }
1765};
1766
1767/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1768/// class of FunctionNoProtoType and FunctionProtoType.
1769///
1770class FunctionType : public Type {
1771  virtual void ANCHOR(); // Key function for FunctionType.
1772
1773  /// SubClassData - This field is owned by the subclass, put here to pack
1774  /// tightly with the ivars in Type.
1775  bool SubClassData : 1;
1776
1777  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1778  /// other bitfields.
1779  /// The qualifiers are part of FunctionProtoType because...
1780  ///
1781  /// C++ 8.3.5p4: The return type, the parameter type list and the
1782  /// cv-qualifier-seq, [...], are part of the function type.
1783  ///
1784  unsigned TypeQuals : 3;
1785
1786  /// NoReturn - Indicates if the function type is attribute noreturn.
1787  unsigned NoReturn : 1;
1788
1789  /// RegParm - How many arguments to pass inreg.
1790  unsigned RegParm : 3;
1791
1792  /// CallConv - The calling convention used by the function.
1793  unsigned CallConv : 3;
1794
1795  // The type returned by the function.
1796  QualType ResultType;
1797
1798 public:
1799  // This class is used for passing arround the information needed to
1800  // construct a call. It is not actually used for storage, just for
1801  // factoring together common arguments.
1802  // If you add a field (say Foo), other than the obvious places (both, constructors,
1803  // compile failures), what you need to update is
1804  // * Operetor==
1805  // * getFoo
1806  // * withFoo
1807  // * functionType. Add Foo, getFoo.
1808  // * ASTContext::getFooType
1809  // * ASTContext::mergeFunctionTypes
1810  // * FunctionNoProtoType::Profile
1811  // * FunctionProtoType::Profile
1812  // * TypePrinter::PrintFunctionProto
1813  // * PCH read and write
1814  // * Codegen
1815
1816  class ExtInfo {
1817   public:
1818    // Constructor with no defaults. Use this when you know that you
1819    // have all the elements (when reading a PCH file for example).
1820    ExtInfo(bool noReturn, unsigned regParm, CallingConv cc) :
1821        NoReturn(noReturn), RegParm(regParm), CC(cc) {}
1822
1823    // Constructor with all defaults. Use when for example creating a
1824    // function know to use defaults.
1825    ExtInfo() : NoReturn(false), RegParm(0), CC(CC_Default) {}
1826
1827    bool getNoReturn() const { return NoReturn; }
1828    unsigned getRegParm() const { return RegParm; }
1829    CallingConv getCC() const { return CC; }
1830
1831    bool operator==(const ExtInfo &Other) const {
1832      return getNoReturn() == Other.getNoReturn() &&
1833          getRegParm() == Other.getRegParm() &&
1834          getCC() == Other.getCC();
1835    }
1836    bool operator!=(const ExtInfo &Other) const {
1837      return !(*this == Other);
1838    }
1839
1840    // Note that we don't have setters. That is by design, use
1841    // the following with methods instead of mutating these objects.
1842
1843    ExtInfo withNoReturn(bool noReturn) const {
1844      return ExtInfo(noReturn, getRegParm(), getCC());
1845    }
1846
1847    ExtInfo withRegParm(unsigned RegParm) const {
1848      return ExtInfo(getNoReturn(), RegParm, getCC());
1849    }
1850
1851    ExtInfo withCallingConv(CallingConv cc) const {
1852      return ExtInfo(getNoReturn(), getRegParm(), cc);
1853    }
1854
1855   private:
1856    // True if we have __attribute__((noreturn))
1857    bool NoReturn;
1858    // The value passed to __attribute__((regparm(x)))
1859    unsigned RegParm;
1860    // The calling convention as specified via
1861    // __attribute__((cdecl|stdcall|fastcall|thiscall))
1862    CallingConv CC;
1863  };
1864
1865protected:
1866  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1867               unsigned typeQuals, QualType Canonical, bool Dependent,
1868               const ExtInfo &Info)
1869    : Type(tc, Canonical, Dependent),
1870      SubClassData(SubclassInfo), TypeQuals(typeQuals),
1871      NoReturn(Info.getNoReturn()),
1872      RegParm(Info.getRegParm()), CallConv(Info.getCC()), ResultType(res) {}
1873  bool getSubClassData() const { return SubClassData; }
1874  unsigned getTypeQuals() const { return TypeQuals; }
1875public:
1876
1877  QualType getResultType() const { return ResultType; }
1878  unsigned getRegParmType() const { return RegParm; }
1879  bool getNoReturnAttr() const { return NoReturn; }
1880  CallingConv getCallConv() const { return (CallingConv)CallConv; }
1881  ExtInfo getExtInfo() const {
1882    return ExtInfo(NoReturn, RegParm, (CallingConv)CallConv);
1883  }
1884
1885  static llvm::StringRef getNameForCallConv(CallingConv CC);
1886
1887  static bool classof(const Type *T) {
1888    return T->getTypeClass() == FunctionNoProto ||
1889           T->getTypeClass() == FunctionProto;
1890  }
1891  static bool classof(const FunctionType *) { return true; }
1892};
1893
1894/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1895/// no information available about its arguments.
1896class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1897  FunctionNoProtoType(QualType Result, QualType Canonical,
1898                      const ExtInfo &Info)
1899    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1900                   /*Dependent=*/false, Info) {}
1901  friend class ASTContext;  // ASTContext creates these.
1902
1903protected:
1904  virtual Linkage getLinkageImpl() const;
1905
1906public:
1907  // No additional state past what FunctionType provides.
1908
1909  bool isSugared() const { return false; }
1910  QualType desugar() const { return QualType(this, 0); }
1911
1912  void Profile(llvm::FoldingSetNodeID &ID) {
1913    Profile(ID, getResultType(), getExtInfo());
1914  }
1915  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1916                      const ExtInfo &Info) {
1917    ID.AddInteger(Info.getCC());
1918    ID.AddInteger(Info.getRegParm());
1919    ID.AddInteger(Info.getNoReturn());
1920    ID.AddPointer(ResultType.getAsOpaquePtr());
1921  }
1922
1923  static bool classof(const Type *T) {
1924    return T->getTypeClass() == FunctionNoProto;
1925  }
1926  static bool classof(const FunctionNoProtoType *) { return true; }
1927};
1928
1929/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1930/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1931/// arguments, not as having a single void argument. Such a type can have an
1932/// exception specification, but this specification is not part of the canonical
1933/// type.
1934class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1935  /// hasAnyDependentType - Determine whether there are any dependent
1936  /// types within the arguments passed in.
1937  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1938    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1939      if (ArgArray[Idx]->isDependentType())
1940    return true;
1941
1942    return false;
1943  }
1944
1945  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1946                    bool isVariadic, unsigned typeQuals, bool hasExs,
1947                    bool hasAnyExs, const QualType *ExArray,
1948                    unsigned numExs, QualType Canonical,
1949                    const ExtInfo &Info)
1950    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1951                   (Result->isDependentType() ||
1952                    hasAnyDependentType(ArgArray, numArgs)),
1953                   Info),
1954      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1955      AnyExceptionSpec(hasAnyExs) {
1956    // Fill in the trailing argument array.
1957    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1958    for (unsigned i = 0; i != numArgs; ++i)
1959      ArgInfo[i] = ArgArray[i];
1960    // Fill in the exception array.
1961    QualType *Ex = ArgInfo + numArgs;
1962    for (unsigned i = 0; i != numExs; ++i)
1963      Ex[i] = ExArray[i];
1964  }
1965
1966  /// NumArgs - The number of arguments this function has, not counting '...'.
1967  unsigned NumArgs : 20;
1968
1969  /// NumExceptions - The number of types in the exception spec, if any.
1970  unsigned NumExceptions : 10;
1971
1972  /// HasExceptionSpec - Whether this function has an exception spec at all.
1973  bool HasExceptionSpec : 1;
1974
1975  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1976  bool AnyExceptionSpec : 1;
1977
1978  /// ArgInfo - There is an variable size array after the class in memory that
1979  /// holds the argument types.
1980
1981  /// Exceptions - There is another variable size array after ArgInfo that
1982  /// holds the exception types.
1983
1984  friend class ASTContext;  // ASTContext creates these.
1985
1986protected:
1987  virtual Linkage getLinkageImpl() const;
1988
1989public:
1990  unsigned getNumArgs() const { return NumArgs; }
1991  QualType getArgType(unsigned i) const {
1992    assert(i < NumArgs && "Invalid argument number!");
1993    return arg_type_begin()[i];
1994  }
1995
1996  bool hasExceptionSpec() const { return HasExceptionSpec; }
1997  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1998  unsigned getNumExceptions() const { return NumExceptions; }
1999  QualType getExceptionType(unsigned i) const {
2000    assert(i < NumExceptions && "Invalid exception number!");
2001    return exception_begin()[i];
2002  }
2003  bool hasEmptyExceptionSpec() const {
2004    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
2005      getNumExceptions() == 0;
2006  }
2007
2008  bool isVariadic() const { return getSubClassData(); }
2009  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2010
2011  typedef const QualType *arg_type_iterator;
2012  arg_type_iterator arg_type_begin() const {
2013    return reinterpret_cast<const QualType *>(this+1);
2014  }
2015  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2016
2017  typedef const QualType *exception_iterator;
2018  exception_iterator exception_begin() const {
2019    // exceptions begin where arguments end
2020    return arg_type_end();
2021  }
2022  exception_iterator exception_end() const {
2023    return exception_begin() + NumExceptions;
2024  }
2025
2026  bool isSugared() const { return false; }
2027  QualType desugar() const { return QualType(this, 0); }
2028
2029  static bool classof(const Type *T) {
2030    return T->getTypeClass() == FunctionProto;
2031  }
2032  static bool classof(const FunctionProtoType *) { return true; }
2033
2034  void Profile(llvm::FoldingSetNodeID &ID);
2035  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2036                      arg_type_iterator ArgTys, unsigned NumArgs,
2037                      bool isVariadic, unsigned TypeQuals,
2038                      bool hasExceptionSpec, bool anyExceptionSpec,
2039                      unsigned NumExceptions, exception_iterator Exs,
2040                      const ExtInfo &ExtInfo);
2041};
2042
2043
2044/// \brief Represents the dependent type named by a dependently-scoped
2045/// typename using declaration, e.g.
2046///   using typename Base<T>::foo;
2047/// Template instantiation turns these into the underlying type.
2048class UnresolvedUsingType : public Type {
2049  UnresolvedUsingTypenameDecl *Decl;
2050
2051  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2052    : Type(UnresolvedUsing, QualType(), true),
2053      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2054  friend class ASTContext; // ASTContext creates these.
2055public:
2056
2057  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2058
2059  bool isSugared() const { return false; }
2060  QualType desugar() const { return QualType(this, 0); }
2061
2062  static bool classof(const Type *T) {
2063    return T->getTypeClass() == UnresolvedUsing;
2064  }
2065  static bool classof(const UnresolvedUsingType *) { return true; }
2066
2067  void Profile(llvm::FoldingSetNodeID &ID) {
2068    return Profile(ID, Decl);
2069  }
2070  static void Profile(llvm::FoldingSetNodeID &ID,
2071                      UnresolvedUsingTypenameDecl *D) {
2072    ID.AddPointer(D);
2073  }
2074};
2075
2076
2077class TypedefType : public Type {
2078  TypedefDecl *Decl;
2079protected:
2080  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
2081    : Type(tc, can, can->isDependentType()),
2082      Decl(const_cast<TypedefDecl*>(D)) {
2083    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2084  }
2085  friend class ASTContext;  // ASTContext creates these.
2086public:
2087
2088  TypedefDecl *getDecl() const { return Decl; }
2089
2090  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
2091  /// potentially looking through *all* consecutive typedefs.  This returns the
2092  /// sum of the type qualifiers, so if you have:
2093  ///   typedef const int A;
2094  ///   typedef volatile A B;
2095  /// looking through the typedefs for B will give you "const volatile A".
2096  QualType LookThroughTypedefs() const;
2097
2098  bool isSugared() const { return true; }
2099  QualType desugar() const;
2100
2101  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2102  static bool classof(const TypedefType *) { return true; }
2103};
2104
2105/// TypeOfExprType (GCC extension).
2106class TypeOfExprType : public Type {
2107  Expr *TOExpr;
2108
2109protected:
2110  TypeOfExprType(Expr *E, QualType can = QualType());
2111  friend class ASTContext;  // ASTContext creates these.
2112public:
2113  Expr *getUnderlyingExpr() const { return TOExpr; }
2114
2115  /// \brief Remove a single level of sugar.
2116  QualType desugar() const;
2117
2118  /// \brief Returns whether this type directly provides sugar.
2119  bool isSugared() const { return true; }
2120
2121  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2122  static bool classof(const TypeOfExprType *) { return true; }
2123};
2124
2125/// \brief Internal representation of canonical, dependent
2126/// typeof(expr) types.
2127///
2128/// This class is used internally by the ASTContext to manage
2129/// canonical, dependent types, only. Clients will only see instances
2130/// of this class via TypeOfExprType nodes.
2131class DependentTypeOfExprType
2132  : public TypeOfExprType, public llvm::FoldingSetNode {
2133  ASTContext &Context;
2134
2135public:
2136  DependentTypeOfExprType(ASTContext &Context, Expr *E)
2137    : TypeOfExprType(E), Context(Context) { }
2138
2139  bool isSugared() const { return false; }
2140  QualType desugar() const { return QualType(this, 0); }
2141
2142  void Profile(llvm::FoldingSetNodeID &ID) {
2143    Profile(ID, Context, getUnderlyingExpr());
2144  }
2145
2146  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2147                      Expr *E);
2148};
2149
2150/// TypeOfType (GCC extension).
2151class TypeOfType : public Type {
2152  QualType TOType;
2153  TypeOfType(QualType T, QualType can)
2154    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
2155    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2156  }
2157  friend class ASTContext;  // ASTContext creates these.
2158public:
2159  QualType getUnderlyingType() const { return TOType; }
2160
2161  /// \brief Remove a single level of sugar.
2162  QualType desugar() const { return getUnderlyingType(); }
2163
2164  /// \brief Returns whether this type directly provides sugar.
2165  bool isSugared() const { return true; }
2166
2167  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2168  static bool classof(const TypeOfType *) { return true; }
2169};
2170
2171/// DecltypeType (C++0x)
2172class DecltypeType : public Type {
2173  Expr *E;
2174
2175  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2176  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2177  // from it.
2178  QualType UnderlyingType;
2179
2180protected:
2181  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2182  friend class ASTContext;  // ASTContext creates these.
2183public:
2184  Expr *getUnderlyingExpr() const { return E; }
2185  QualType getUnderlyingType() const { return UnderlyingType; }
2186
2187  /// \brief Remove a single level of sugar.
2188  QualType desugar() const { return getUnderlyingType(); }
2189
2190  /// \brief Returns whether this type directly provides sugar.
2191  bool isSugared() const { return !isDependentType(); }
2192
2193  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2194  static bool classof(const DecltypeType *) { return true; }
2195};
2196
2197/// \brief Internal representation of canonical, dependent
2198/// decltype(expr) types.
2199///
2200/// This class is used internally by the ASTContext to manage
2201/// canonical, dependent types, only. Clients will only see instances
2202/// of this class via DecltypeType nodes.
2203class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2204  ASTContext &Context;
2205
2206public:
2207  DependentDecltypeType(ASTContext &Context, Expr *E);
2208
2209  bool isSugared() const { return false; }
2210  QualType desugar() const { return QualType(this, 0); }
2211
2212  void Profile(llvm::FoldingSetNodeID &ID) {
2213    Profile(ID, Context, getUnderlyingExpr());
2214  }
2215
2216  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2217                      Expr *E);
2218};
2219
2220class TagType : public Type {
2221  /// Stores the TagDecl associated with this type. The decl will
2222  /// point to the TagDecl that actually defines the entity (or is a
2223  /// definition in progress), if there is such a definition. The
2224  /// single-bit value will be non-zero when this tag is in the
2225  /// process of being defined.
2226  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
2227  friend class ASTContext;
2228  friend class TagDecl;
2229
2230protected:
2231  TagType(TypeClass TC, const TagDecl *D, QualType can);
2232
2233  virtual Linkage getLinkageImpl() const;
2234
2235public:
2236  TagDecl *getDecl() const { return decl.getPointer(); }
2237
2238  /// @brief Determines whether this type is in the process of being
2239  /// defined.
2240  bool isBeingDefined() const { return decl.getInt(); }
2241  void setBeingDefined(bool Def) const { decl.setInt(Def? 1 : 0); }
2242
2243  static bool classof(const Type *T) {
2244    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2245  }
2246  static bool classof(const TagType *) { return true; }
2247  static bool classof(const RecordType *) { return true; }
2248  static bool classof(const EnumType *) { return true; }
2249};
2250
2251/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2252/// to detect TagType objects of structs/unions/classes.
2253class RecordType : public TagType {
2254protected:
2255  explicit RecordType(const RecordDecl *D)
2256    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2257  explicit RecordType(TypeClass TC, RecordDecl *D)
2258    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2259  friend class ASTContext;   // ASTContext creates these.
2260public:
2261
2262  RecordDecl *getDecl() const {
2263    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2264  }
2265
2266  // FIXME: This predicate is a helper to QualType/Type. It needs to
2267  // recursively check all fields for const-ness. If any field is declared
2268  // const, it needs to return false.
2269  bool hasConstFields() const { return false; }
2270
2271  // FIXME: RecordType needs to check when it is created that all fields are in
2272  // the same address space, and return that.
2273  unsigned getAddressSpace() const { return 0; }
2274
2275  bool isSugared() const { return false; }
2276  QualType desugar() const { return QualType(this, 0); }
2277
2278  static bool classof(const TagType *T);
2279  static bool classof(const Type *T) {
2280    return isa<TagType>(T) && classof(cast<TagType>(T));
2281  }
2282  static bool classof(const RecordType *) { return true; }
2283};
2284
2285/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2286/// to detect TagType objects of enums.
2287class EnumType : public TagType {
2288  explicit EnumType(const EnumDecl *D)
2289    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2290  friend class ASTContext;   // ASTContext creates these.
2291public:
2292
2293  EnumDecl *getDecl() const {
2294    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2295  }
2296
2297  bool isSugared() const { return false; }
2298  QualType desugar() const { return QualType(this, 0); }
2299
2300  static bool classof(const TagType *T);
2301  static bool classof(const Type *T) {
2302    return isa<TagType>(T) && classof(cast<TagType>(T));
2303  }
2304  static bool classof(const EnumType *) { return true; }
2305};
2306
2307class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2308  unsigned Depth : 15;
2309  unsigned Index : 16;
2310  unsigned ParameterPack : 1;
2311  IdentifierInfo *Name;
2312
2313  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2314                       QualType Canon)
2315    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2316      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2317
2318  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2319    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2320      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2321
2322  friend class ASTContext;  // ASTContext creates these
2323
2324public:
2325  unsigned getDepth() const { return Depth; }
2326  unsigned getIndex() const { return Index; }
2327  bool isParameterPack() const { return ParameterPack; }
2328  IdentifierInfo *getName() const { return Name; }
2329
2330  bool isSugared() const { return false; }
2331  QualType desugar() const { return QualType(this, 0); }
2332
2333  void Profile(llvm::FoldingSetNodeID &ID) {
2334    Profile(ID, Depth, Index, ParameterPack, Name);
2335  }
2336
2337  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2338                      unsigned Index, bool ParameterPack,
2339                      IdentifierInfo *Name) {
2340    ID.AddInteger(Depth);
2341    ID.AddInteger(Index);
2342    ID.AddBoolean(ParameterPack);
2343    ID.AddPointer(Name);
2344  }
2345
2346  static bool classof(const Type *T) {
2347    return T->getTypeClass() == TemplateTypeParm;
2348  }
2349  static bool classof(const TemplateTypeParmType *T) { return true; }
2350};
2351
2352/// \brief Represents the result of substituting a type for a template
2353/// type parameter.
2354///
2355/// Within an instantiated template, all template type parameters have
2356/// been replaced with these.  They are used solely to record that a
2357/// type was originally written as a template type parameter;
2358/// therefore they are never canonical.
2359class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2360  // The original type parameter.
2361  const TemplateTypeParmType *Replaced;
2362
2363  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2364    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2365      Replaced(Param) { }
2366
2367  friend class ASTContext;
2368
2369public:
2370  IdentifierInfo *getName() const { return Replaced->getName(); }
2371
2372  /// Gets the template parameter that was substituted for.
2373  const TemplateTypeParmType *getReplacedParameter() const {
2374    return Replaced;
2375  }
2376
2377  /// Gets the type that was substituted for the template
2378  /// parameter.
2379  QualType getReplacementType() const {
2380    return getCanonicalTypeInternal();
2381  }
2382
2383  bool isSugared() const { return true; }
2384  QualType desugar() const { return getReplacementType(); }
2385
2386  void Profile(llvm::FoldingSetNodeID &ID) {
2387    Profile(ID, getReplacedParameter(), getReplacementType());
2388  }
2389  static void Profile(llvm::FoldingSetNodeID &ID,
2390                      const TemplateTypeParmType *Replaced,
2391                      QualType Replacement) {
2392    ID.AddPointer(Replaced);
2393    ID.AddPointer(Replacement.getAsOpaquePtr());
2394  }
2395
2396  static bool classof(const Type *T) {
2397    return T->getTypeClass() == SubstTemplateTypeParm;
2398  }
2399  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2400};
2401
2402/// \brief Represents the type of a template specialization as written
2403/// in the source code.
2404///
2405/// Template specialization types represent the syntactic form of a
2406/// template-id that refers to a type, e.g., @c vector<int>. Some
2407/// template specialization types are syntactic sugar, whose canonical
2408/// type will point to some other type node that represents the
2409/// instantiation or class template specialization. For example, a
2410/// class template specialization type of @c vector<int> will refer to
2411/// a tag type for the instantiation
2412/// @c std::vector<int, std::allocator<int>>.
2413///
2414/// Other template specialization types, for which the template name
2415/// is dependent, may be canonical types. These types are always
2416/// dependent.
2417class TemplateSpecializationType
2418  : public Type, public llvm::FoldingSetNode {
2419
2420  // The ASTContext is currently needed in order to profile expressions.
2421  // FIXME: avoid this.
2422  //
2423  // The bool is whether this is a current instantiation.
2424  llvm::PointerIntPair<ASTContext*, 1, bool> ContextAndCurrentInstantiation;
2425
2426    /// \brief The name of the template being specialized.
2427  TemplateName Template;
2428
2429  /// \brief - The number of template arguments named in this class
2430  /// template specialization.
2431  unsigned NumArgs;
2432
2433  TemplateSpecializationType(ASTContext &Context,
2434                             TemplateName T,
2435                             bool IsCurrentInstantiation,
2436                             const TemplateArgument *Args,
2437                             unsigned NumArgs, QualType Canon);
2438
2439  virtual void Destroy(ASTContext& C);
2440
2441  friend class ASTContext;  // ASTContext creates these
2442
2443public:
2444  /// \brief Determine whether any of the given template arguments are
2445  /// dependent.
2446  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2447                                            unsigned NumArgs);
2448
2449  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2450                                            unsigned NumArgs);
2451
2452  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2453
2454  /// \brief Print a template argument list, including the '<' and '>'
2455  /// enclosing the template arguments.
2456  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2457                                               unsigned NumArgs,
2458                                               const PrintingPolicy &Policy);
2459
2460  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2461                                               unsigned NumArgs,
2462                                               const PrintingPolicy &Policy);
2463
2464  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2465                                               const PrintingPolicy &Policy);
2466
2467  /// True if this template specialization type matches a current
2468  /// instantiation in the context in which it is found.
2469  bool isCurrentInstantiation() const {
2470    return ContextAndCurrentInstantiation.getInt();
2471  }
2472
2473  typedef const TemplateArgument * iterator;
2474
2475  iterator begin() const { return getArgs(); }
2476  iterator end() const;
2477
2478  /// \brief Retrieve the name of the template that we are specializing.
2479  TemplateName getTemplateName() const { return Template; }
2480
2481  /// \brief Retrieve the template arguments.
2482  const TemplateArgument *getArgs() const {
2483    return reinterpret_cast<const TemplateArgument *>(this + 1);
2484  }
2485
2486  /// \brief Retrieve the number of template arguments.
2487  unsigned getNumArgs() const { return NumArgs; }
2488
2489  /// \brief Retrieve a specific template argument as a type.
2490  /// \precondition @c isArgType(Arg)
2491  const TemplateArgument &getArg(unsigned Idx) const;
2492
2493  bool isSugared() const {
2494    return !isDependentType() || isCurrentInstantiation();
2495  }
2496  QualType desugar() const { return getCanonicalTypeInternal(); }
2497
2498  void Profile(llvm::FoldingSetNodeID &ID) {
2499    Profile(ID, Template, isCurrentInstantiation(), getArgs(), NumArgs,
2500            *ContextAndCurrentInstantiation.getPointer());
2501  }
2502
2503  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2504                      bool IsCurrentInstantiation,
2505                      const TemplateArgument *Args,
2506                      unsigned NumArgs,
2507                      ASTContext &Context);
2508
2509  static bool classof(const Type *T) {
2510    return T->getTypeClass() == TemplateSpecialization;
2511  }
2512  static bool classof(const TemplateSpecializationType *T) { return true; }
2513};
2514
2515/// \brief The injected class name of a C++ class template or class
2516/// template partial specialization.  Used to record that a type was
2517/// spelled with a bare identifier rather than as a template-id; the
2518/// equivalent for non-templated classes is just RecordType.
2519///
2520/// Injected class name types are always dependent.  Template
2521/// instantiation turns these into RecordTypes.
2522///
2523/// Injected class name types are always canonical.  This works
2524/// because it is impossible to compare an injected class name type
2525/// with the corresponding non-injected template type, for the same
2526/// reason that it is impossible to directly compare template
2527/// parameters from different dependent contexts: injected class name
2528/// types can only occur within the scope of a particular templated
2529/// declaration, and within that scope every template specialization
2530/// will canonicalize to the injected class name (when appropriate
2531/// according to the rules of the language).
2532class InjectedClassNameType : public Type {
2533  CXXRecordDecl *Decl;
2534
2535  /// The template specialization which this type represents.
2536  /// For example, in
2537  ///   template <class T> class A { ... };
2538  /// this is A<T>, whereas in
2539  ///   template <class X, class Y> class A<B<X,Y> > { ... };
2540  /// this is A<B<X,Y> >.
2541  ///
2542  /// It is always unqualified, always a template specialization type,
2543  /// and always dependent.
2544  QualType InjectedType;
2545
2546  friend class ASTContext; // ASTContext creates these.
2547  friend class TagDecl; // TagDecl mutilates the Decl
2548  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
2549    : Type(InjectedClassName, QualType(), true),
2550      Decl(D), InjectedType(TST) {
2551    assert(isa<TemplateSpecializationType>(TST));
2552    assert(!TST.hasQualifiers());
2553    assert(TST->isDependentType());
2554  }
2555
2556public:
2557  QualType getInjectedSpecializationType() const { return InjectedType; }
2558  const TemplateSpecializationType *getInjectedTST() const {
2559    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
2560  }
2561
2562  CXXRecordDecl *getDecl() const { return Decl; }
2563
2564  bool isSugared() const { return false; }
2565  QualType desugar() const { return QualType(this, 0); }
2566
2567  static bool classof(const Type *T) {
2568    return T->getTypeClass() == InjectedClassName;
2569  }
2570  static bool classof(const InjectedClassNameType *T) { return true; }
2571};
2572
2573/// \brief The kind of a tag type.
2574enum TagTypeKind {
2575  /// \brief The "struct" keyword.
2576  TTK_Struct,
2577  /// \brief The "union" keyword.
2578  TTK_Union,
2579  /// \brief The "class" keyword.
2580  TTK_Class,
2581  /// \brief The "enum" keyword.
2582  TTK_Enum
2583};
2584
2585/// \brief The elaboration keyword that precedes a qualified type name or
2586/// introduces an elaborated-type-specifier.
2587enum ElaboratedTypeKeyword {
2588  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
2589  ETK_Struct,
2590  /// \brief The "union" keyword introduces the elaborated-type-specifier.
2591  ETK_Union,
2592  /// \brief The "class" keyword introduces the elaborated-type-specifier.
2593  ETK_Class,
2594  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
2595  ETK_Enum,
2596  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
2597  /// \c typename T::type.
2598  ETK_Typename,
2599  /// \brief No keyword precedes the qualified type name.
2600  ETK_None
2601};
2602
2603/// A helper class for Type nodes having an ElaboratedTypeKeyword.
2604/// The keyword in stored in the free bits of the base class.
2605/// Also provides a few static helpers for converting and printing
2606/// elaborated type keyword and tag type kind enumerations.
2607class TypeWithKeyword : public Type {
2608  /// Keyword - Encodes an ElaboratedTypeKeyword enumeration constant.
2609  unsigned Keyword : 3;
2610
2611protected:
2612  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
2613                  QualType Canonical, bool dependent)
2614    : Type(tc, Canonical, dependent), Keyword(Keyword) {}
2615
2616public:
2617  virtual ~TypeWithKeyword(); // pin vtable to Type.cpp
2618
2619  ElaboratedTypeKeyword getKeyword() const {
2620    return static_cast<ElaboratedTypeKeyword>(Keyword);
2621  }
2622
2623  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
2624  /// into an elaborated type keyword.
2625  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
2626
2627  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
2628  /// into a tag type kind.  It is an error to provide a type specifier
2629  /// which *isn't* a tag kind here.
2630  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
2631
2632  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
2633  /// elaborated type keyword.
2634  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
2635
2636  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
2637  // a TagTypeKind. It is an error to provide an elaborated type keyword
2638  /// which *isn't* a tag kind here.
2639  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
2640
2641  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
2642
2643  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
2644
2645  static const char *getTagTypeKindName(TagTypeKind Kind) {
2646    return getKeywordName(getKeywordForTagTypeKind(Kind));
2647  }
2648
2649  class CannotCastToThisType {};
2650  static CannotCastToThisType classof(const Type *);
2651};
2652
2653/// \brief Represents a type that was referred to using an elaborated type
2654/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
2655/// or both.
2656///
2657/// This type is used to keep track of a type name as written in the
2658/// source code, including tag keywords and any nested-name-specifiers.
2659/// The type itself is always "sugar", used to express what was written
2660/// in the source code but containing no additional semantic information.
2661class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
2662
2663  /// \brief The nested name specifier containing the qualifier.
2664  NestedNameSpecifier *NNS;
2665
2666  /// \brief The type that this qualified name refers to.
2667  QualType NamedType;
2668
2669  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2670                 QualType NamedType, QualType CanonType)
2671    : TypeWithKeyword(Keyword, Elaborated, CanonType,
2672                      NamedType->isDependentType()),
2673      NNS(NNS), NamedType(NamedType) {
2674    assert(!(Keyword == ETK_None && NNS == 0) &&
2675           "ElaboratedType cannot have elaborated type keyword "
2676           "and name qualifier both null.");
2677  }
2678
2679  friend class ASTContext;  // ASTContext creates these
2680
2681public:
2682
2683  /// \brief Retrieve the qualification on this type.
2684  NestedNameSpecifier *getQualifier() const { return NNS; }
2685
2686  /// \brief Retrieve the type named by the qualified-id.
2687  QualType getNamedType() const { return NamedType; }
2688
2689  /// \brief Remove a single level of sugar.
2690  QualType desugar() const { return getNamedType(); }
2691
2692  /// \brief Returns whether this type directly provides sugar.
2693  bool isSugared() const { return true; }
2694
2695  void Profile(llvm::FoldingSetNodeID &ID) {
2696    Profile(ID, getKeyword(), NNS, NamedType);
2697  }
2698
2699  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2700                      NestedNameSpecifier *NNS, QualType NamedType) {
2701    ID.AddInteger(Keyword);
2702    ID.AddPointer(NNS);
2703    NamedType.Profile(ID);
2704  }
2705
2706  static bool classof(const Type *T) {
2707    return T->getTypeClass() == Elaborated;
2708  }
2709  static bool classof(const ElaboratedType *T) { return true; }
2710};
2711
2712/// \brief Represents a qualified type name for which the type name is
2713/// dependent.
2714///
2715/// DependentNameType represents a class of dependent types that involve a
2716/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
2717/// name of a type. The DependentNameType may start with a "typename" (for a
2718/// typename-specifier), "class", "struct", "union", or "enum" (for a
2719/// dependent elaborated-type-specifier), or nothing (in contexts where we
2720/// know that we must be referring to a type, e.g., in a base class specifier).
2721class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
2722
2723  /// \brief The nested name specifier containing the qualifier.
2724  NestedNameSpecifier *NNS;
2725
2726  typedef llvm::PointerUnion<const IdentifierInfo *,
2727                             const TemplateSpecializationType *> NameType;
2728
2729  /// \brief The type that this typename specifier refers to.
2730  NameType Name;
2731
2732  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2733                    const IdentifierInfo *Name, QualType CanonType)
2734    : TypeWithKeyword(Keyword, DependentName, CanonType, true),
2735      NNS(NNS), Name(Name) {
2736    assert(NNS->isDependent() &&
2737           "DependentNameType requires a dependent nested-name-specifier");
2738  }
2739
2740  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2741                    const TemplateSpecializationType *Ty, QualType CanonType)
2742    : TypeWithKeyword(Keyword, DependentName, CanonType, true),
2743      NNS(NNS), Name(Ty) {
2744    assert(NNS->isDependent() &&
2745           "DependentNameType requires a dependent nested-name-specifier");
2746  }
2747
2748  friend class ASTContext;  // ASTContext creates these
2749
2750public:
2751
2752  /// \brief Retrieve the qualification on this type.
2753  NestedNameSpecifier *getQualifier() const { return NNS; }
2754
2755  /// \brief Retrieve the type named by the typename specifier as an
2756  /// identifier.
2757  ///
2758  /// This routine will return a non-NULL identifier pointer when the
2759  /// form of the original typename was terminated by an identifier,
2760  /// e.g., "typename T::type".
2761  const IdentifierInfo *getIdentifier() const {
2762    return Name.dyn_cast<const IdentifierInfo *>();
2763  }
2764
2765  /// \brief Retrieve the type named by the typename specifier as a
2766  /// type specialization.
2767  const TemplateSpecializationType *getTemplateId() const {
2768    return Name.dyn_cast<const TemplateSpecializationType *>();
2769  }
2770
2771  bool isSugared() const { return false; }
2772  QualType desugar() const { return QualType(this, 0); }
2773
2774  void Profile(llvm::FoldingSetNodeID &ID) {
2775    Profile(ID, getKeyword(), NNS, Name);
2776  }
2777
2778  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2779                      NestedNameSpecifier *NNS, NameType Name) {
2780    ID.AddInteger(Keyword);
2781    ID.AddPointer(NNS);
2782    ID.AddPointer(Name.getOpaqueValue());
2783  }
2784
2785  static bool classof(const Type *T) {
2786    return T->getTypeClass() == DependentName;
2787  }
2788  static bool classof(const DependentNameType *T) { return true; }
2789};
2790
2791/// ObjCObjectType - Represents a class type in Objective C.
2792/// Every Objective C type is a combination of a base type and a
2793/// list of protocols.
2794///
2795/// Given the following declarations:
2796///   @class C;
2797///   @protocol P;
2798///
2799/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
2800/// with base C and no protocols.
2801///
2802/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
2803///
2804/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
2805/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
2806/// and no protocols.
2807///
2808/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
2809/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
2810/// this should get its own sugar class to better represent the source.
2811class ObjCObjectType : public Type {
2812  // Pad the bit count up so that NumProtocols is 2-byte aligned
2813  unsigned : BitsRemainingInType - 16;
2814
2815  /// \brief The number of protocols stored after the
2816  /// ObjCObjectPointerType node.
2817  ///
2818  /// These protocols are those written directly on the type.  If
2819  /// protocol qualifiers ever become additive, the iterators will
2820  /// get kindof complicated.
2821  ///
2822  /// In the canonical object type, these are sorted alphabetically
2823  /// and uniqued.
2824  unsigned NumProtocols : 16;
2825
2826  /// Either a BuiltinType or an InterfaceType or sugar for either.
2827  QualType BaseType;
2828
2829  ObjCProtocolDecl * const *getProtocolStorage() const {
2830    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
2831  }
2832
2833  ObjCProtocolDecl **getProtocolStorage();
2834
2835protected:
2836  ObjCObjectType(QualType Canonical, QualType Base,
2837                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
2838
2839  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
2840  ObjCObjectType(enum Nonce_ObjCInterface)
2841    : Type(ObjCInterface, QualType(), false),
2842      NumProtocols(0),
2843      BaseType(QualType(this_(), 0)) {}
2844
2845protected:
2846  Linkage getLinkageImpl() const; // key function
2847
2848public:
2849  /// getBaseType - Gets the base type of this object type.  This is
2850  /// always (possibly sugar for) one of:
2851  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
2852  ///    user, which is a typedef for an ObjCPointerType)
2853  ///  - the 'Class' builtin type (same caveat)
2854  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
2855  QualType getBaseType() const { return BaseType; }
2856
2857  bool isObjCId() const {
2858    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
2859  }
2860  bool isObjCClass() const {
2861    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
2862  }
2863  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
2864  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
2865  bool isObjCUnqualifiedIdOrClass() const {
2866    if (!qual_empty()) return false;
2867    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
2868      return T->getKind() == BuiltinType::ObjCId ||
2869             T->getKind() == BuiltinType::ObjCClass;
2870    return false;
2871  }
2872  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
2873  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
2874
2875  /// Gets the interface declaration for this object type, if the base type
2876  /// really is an interface.
2877  ObjCInterfaceDecl *getInterface() const;
2878
2879  typedef ObjCProtocolDecl * const *qual_iterator;
2880
2881  qual_iterator qual_begin() const { return getProtocolStorage(); }
2882  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
2883
2884  bool qual_empty() const { return getNumProtocols() == 0; }
2885
2886  /// getNumProtocols - Return the number of qualifying protocols in this
2887  /// interface type, or 0 if there are none.
2888  unsigned getNumProtocols() const { return NumProtocols; }
2889
2890  /// \brief Fetch a protocol by index.
2891  ObjCProtocolDecl *getProtocol(unsigned I) const {
2892    assert(I < getNumProtocols() && "Out-of-range protocol access");
2893    return qual_begin()[I];
2894  }
2895
2896  bool isSugared() const { return false; }
2897  QualType desugar() const { return QualType(this, 0); }
2898
2899  static bool classof(const Type *T) {
2900    return T->getTypeClass() == ObjCObject ||
2901           T->getTypeClass() == ObjCInterface;
2902  }
2903  static bool classof(const ObjCObjectType *) { return true; }
2904};
2905
2906/// ObjCObjectTypeImpl - A class providing a concrete implementation
2907/// of ObjCObjectType, so as to not increase the footprint of
2908/// ObjCInterfaceType.  Code outside of ASTContext and the core type
2909/// system should not reference this type.
2910class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
2911  friend class ASTContext;
2912
2913  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
2914  // will need to be modified.
2915
2916  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
2917                     ObjCProtocolDecl * const *Protocols,
2918                     unsigned NumProtocols)
2919    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
2920
2921public:
2922  void Destroy(ASTContext& C); // key function
2923
2924  void Profile(llvm::FoldingSetNodeID &ID);
2925  static void Profile(llvm::FoldingSetNodeID &ID,
2926                      QualType Base,
2927                      ObjCProtocolDecl *const *protocols,
2928                      unsigned NumProtocols);
2929};
2930
2931inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
2932  return reinterpret_cast<ObjCProtocolDecl**>(
2933            static_cast<ObjCObjectTypeImpl*>(this) + 1);
2934}
2935
2936/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
2937/// object oriented design.  They basically correspond to C++ classes.  There
2938/// are two kinds of interface types, normal interfaces like "NSString" and
2939/// qualified interfaces, which are qualified with a protocol list like
2940/// "NSString<NSCopyable, NSAmazing>".
2941///
2942/// ObjCInterfaceType guarantees the following properties when considered
2943/// as a subtype of its superclass, ObjCObjectType:
2944///   - There are no protocol qualifiers.  To reinforce this, code which
2945///     tries to invoke the protocol methods via an ObjCInterfaceType will
2946///     fail to compile.
2947///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
2948///     T->getBaseType() == QualType(T, 0).
2949class ObjCInterfaceType : public ObjCObjectType {
2950  ObjCInterfaceDecl *Decl;
2951
2952  ObjCInterfaceType(const ObjCInterfaceDecl *D)
2953    : ObjCObjectType(Nonce_ObjCInterface),
2954      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
2955  friend class ASTContext;  // ASTContext creates these.
2956public:
2957  void Destroy(ASTContext& C); // key function
2958
2959  /// getDecl - Get the declaration of this interface.
2960  ObjCInterfaceDecl *getDecl() const { return Decl; }
2961
2962  bool isSugared() const { return false; }
2963  QualType desugar() const { return QualType(this, 0); }
2964
2965  static bool classof(const Type *T) {
2966    return T->getTypeClass() == ObjCInterface;
2967  }
2968  static bool classof(const ObjCInterfaceType *) { return true; }
2969
2970  // Nonsense to "hide" certain members of ObjCObjectType within this
2971  // class.  People asking for protocols on an ObjCInterfaceType are
2972  // not going to get what they want: ObjCInterfaceTypes are
2973  // guaranteed to have no protocols.
2974  enum {
2975    qual_iterator,
2976    qual_begin,
2977    qual_end,
2978    getNumProtocols,
2979    getProtocol
2980  };
2981};
2982
2983inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
2984  if (const ObjCInterfaceType *T =
2985        getBaseType()->getAs<ObjCInterfaceType>())
2986    return T->getDecl();
2987  return 0;
2988}
2989
2990/// ObjCObjectPointerType - Used to represent a pointer to an
2991/// Objective C object.  These are constructed from pointer
2992/// declarators when the pointee type is an ObjCObjectType (or sugar
2993/// for one).  In addition, the 'id' and 'Class' types are typedefs
2994/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
2995/// are translated into these.
2996///
2997/// Pointers to pointers to Objective C objects are still PointerTypes;
2998/// only the first level of pointer gets it own type implementation.
2999class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
3000  QualType PointeeType;
3001
3002  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
3003    : Type(ObjCObjectPointer, Canonical, false),
3004      PointeeType(Pointee) {}
3005  friend class ASTContext;  // ASTContext creates these.
3006
3007protected:
3008  virtual Linkage getLinkageImpl() const;
3009
3010public:
3011  void Destroy(ASTContext& C);
3012
3013  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
3014  /// The result will always be an ObjCObjectType or sugar thereof.
3015  QualType getPointeeType() const { return PointeeType; }
3016
3017  /// getObjCObjectType - Gets the type pointed to by this ObjC
3018  /// pointer.  This method always returns non-null.
3019  ///
3020  /// This method is equivalent to getPointeeType() except that
3021  /// it discards any typedefs (or other sugar) between this
3022  /// type and the "outermost" object type.  So for:
3023  ///   @class A; @protocol P; @protocol Q;
3024  ///   typedef A<P> AP;
3025  ///   typedef A A1;
3026  ///   typedef A1<P> A1P;
3027  ///   typedef A1P<Q> A1PQ;
3028  /// For 'A*', getObjectType() will return 'A'.
3029  /// For 'A<P>*', getObjectType() will return 'A<P>'.
3030  /// For 'AP*', getObjectType() will return 'A<P>'.
3031  /// For 'A1*', getObjectType() will return 'A'.
3032  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
3033  /// For 'A1P*', getObjectType() will return 'A1<P>'.
3034  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
3035  ///   adding protocols to a protocol-qualified base discards the
3036  ///   old qualifiers (for now).  But if it didn't, getObjectType()
3037  ///   would return 'A1P<Q>' (and we'd have to make iterating over
3038  ///   qualifiers more complicated).
3039  const ObjCObjectType *getObjectType() const {
3040    return PointeeType->getAs<ObjCObjectType>();
3041  }
3042
3043  /// getInterfaceType - If this pointer points to an Objective C
3044  /// @interface type, gets the type for that interface.  Any protocol
3045  /// qualifiers on the interface are ignored.
3046  ///
3047  /// \return null if the base type for this pointer is 'id' or 'Class'
3048  const ObjCInterfaceType *getInterfaceType() const {
3049    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
3050  }
3051
3052  /// getInterfaceDecl - If this pointer points to an Objective @interface
3053  /// type, gets the declaration for that interface.
3054  ///
3055  /// \return null if the base type for this pointer is 'id' or 'Class'
3056  ObjCInterfaceDecl *getInterfaceDecl() const {
3057    return getObjectType()->getInterface();
3058  }
3059
3060  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
3061  /// its object type is the primitive 'id' type with no protocols.
3062  bool isObjCIdType() const {
3063    return getObjectType()->isObjCUnqualifiedId();
3064  }
3065
3066  /// isObjCClassType - True if this is equivalent to the 'Class' type,
3067  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
3068  bool isObjCClassType() const {
3069    return getObjectType()->isObjCUnqualifiedClass();
3070  }
3071
3072  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
3073  /// non-empty set of protocols.
3074  bool isObjCQualifiedIdType() const {
3075    return getObjectType()->isObjCQualifiedId();
3076  }
3077
3078  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
3079  /// some non-empty set of protocols.
3080  bool isObjCQualifiedClassType() const {
3081    return getObjectType()->isObjCQualifiedClass();
3082  }
3083
3084  /// An iterator over the qualifiers on the object type.  Provided
3085  /// for convenience.  This will always iterate over the full set of
3086  /// protocols on a type, not just those provided directly.
3087  typedef ObjCObjectType::qual_iterator qual_iterator;
3088
3089  qual_iterator qual_begin() const {
3090    return getObjectType()->qual_begin();
3091  }
3092  qual_iterator qual_end() const {
3093    return getObjectType()->qual_end();
3094  }
3095  bool qual_empty() const { return getObjectType()->qual_empty(); }
3096
3097  /// getNumProtocols - Return the number of qualifying protocols on
3098  /// the object type.
3099  unsigned getNumProtocols() const {
3100    return getObjectType()->getNumProtocols();
3101  }
3102
3103  /// \brief Retrieve a qualifying protocol by index on the object
3104  /// type.
3105  ObjCProtocolDecl *getProtocol(unsigned I) const {
3106    return getObjectType()->getProtocol(I);
3107  }
3108
3109  bool isSugared() const { return false; }
3110  QualType desugar() const { return QualType(this, 0); }
3111
3112  void Profile(llvm::FoldingSetNodeID &ID) {
3113    Profile(ID, getPointeeType());
3114  }
3115  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
3116    ID.AddPointer(T.getAsOpaquePtr());
3117  }
3118  static bool classof(const Type *T) {
3119    return T->getTypeClass() == ObjCObjectPointer;
3120  }
3121  static bool classof(const ObjCObjectPointerType *) { return true; }
3122};
3123
3124/// A qualifier set is used to build a set of qualifiers.
3125class QualifierCollector : public Qualifiers {
3126  ASTContext *Context;
3127
3128public:
3129  QualifierCollector(Qualifiers Qs = Qualifiers())
3130    : Qualifiers(Qs), Context(0) {}
3131  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
3132    : Qualifiers(Qs), Context(&Context) {}
3133
3134  void setContext(ASTContext &C) { Context = &C; }
3135
3136  /// Collect any qualifiers on the given type and return an
3137  /// unqualified type.
3138  const Type *strip(QualType QT) {
3139    addFastQualifiers(QT.getLocalFastQualifiers());
3140    if (QT.hasLocalNonFastQualifiers()) {
3141      const ExtQuals *EQ = QT.getExtQualsUnsafe();
3142      Context = &EQ->getContext();
3143      addQualifiers(EQ->getQualifiers());
3144      return EQ->getBaseType();
3145    }
3146    return QT.getTypePtrUnsafe();
3147  }
3148
3149  /// Apply the collected qualifiers to the given type.
3150  QualType apply(QualType QT) const;
3151
3152  /// Apply the collected qualifiers to the given type.
3153  QualType apply(const Type* T) const;
3154
3155};
3156
3157
3158// Inline function definitions.
3159
3160inline bool QualType::isCanonical() const {
3161  const Type *T = getTypePtr();
3162  if (hasLocalQualifiers())
3163    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
3164  return T->isCanonicalUnqualified();
3165}
3166
3167inline bool QualType::isCanonicalAsParam() const {
3168  if (hasLocalQualifiers()) return false;
3169  const Type *T = getTypePtr();
3170  return T->isCanonicalUnqualified() &&
3171           !isa<FunctionType>(T) && !isa<ArrayType>(T);
3172}
3173
3174inline bool QualType::isConstQualified() const {
3175  return isLocalConstQualified() ||
3176              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
3177}
3178
3179inline bool QualType::isRestrictQualified() const {
3180  return isLocalRestrictQualified() ||
3181            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
3182}
3183
3184
3185inline bool QualType::isVolatileQualified() const {
3186  return isLocalVolatileQualified() ||
3187  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
3188}
3189
3190inline bool QualType::hasQualifiers() const {
3191  return hasLocalQualifiers() ||
3192                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
3193}
3194
3195inline Qualifiers QualType::getQualifiers() const {
3196  Qualifiers Quals = getLocalQualifiers();
3197  Quals.addQualifiers(
3198                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
3199  return Quals;
3200}
3201
3202inline unsigned QualType::getCVRQualifiers() const {
3203  return getLocalCVRQualifiers() |
3204              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
3205}
3206
3207/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
3208/// type, returns them. Otherwise, if this is an array type, recurses
3209/// on the element type until some qualifiers have been found or a non-array
3210/// type reached.
3211inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
3212  if (unsigned Quals = getCVRQualifiers())
3213    return Quals;
3214  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3215  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3216    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
3217  return 0;
3218}
3219
3220inline void QualType::removeConst() {
3221  removeFastQualifiers(Qualifiers::Const);
3222}
3223
3224inline void QualType::removeRestrict() {
3225  removeFastQualifiers(Qualifiers::Restrict);
3226}
3227
3228inline void QualType::removeVolatile() {
3229  QualifierCollector Qc;
3230  const Type *Ty = Qc.strip(*this);
3231  if (Qc.hasVolatile()) {
3232    Qc.removeVolatile();
3233    *this = Qc.apply(Ty);
3234  }
3235}
3236
3237inline void QualType::removeCVRQualifiers(unsigned Mask) {
3238  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
3239
3240  // Fast path: we don't need to touch the slow qualifiers.
3241  if (!(Mask & ~Qualifiers::FastMask)) {
3242    removeFastQualifiers(Mask);
3243    return;
3244  }
3245
3246  QualifierCollector Qc;
3247  const Type *Ty = Qc.strip(*this);
3248  Qc.removeCVRQualifiers(Mask);
3249  *this = Qc.apply(Ty);
3250}
3251
3252/// getAddressSpace - Return the address space of this type.
3253inline unsigned QualType::getAddressSpace() const {
3254  if (hasLocalNonFastQualifiers()) {
3255    const ExtQuals *EQ = getExtQualsUnsafe();
3256    if (EQ->hasAddressSpace())
3257      return EQ->getAddressSpace();
3258  }
3259
3260  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3261  if (CT.hasLocalNonFastQualifiers()) {
3262    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3263    if (EQ->hasAddressSpace())
3264      return EQ->getAddressSpace();
3265  }
3266
3267  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3268    return AT->getElementType().getAddressSpace();
3269  if (const RecordType *RT = dyn_cast<RecordType>(CT))
3270    return RT->getAddressSpace();
3271  return 0;
3272}
3273
3274/// getObjCGCAttr - Return the gc attribute of this type.
3275inline Qualifiers::GC QualType::getObjCGCAttr() const {
3276  if (hasLocalNonFastQualifiers()) {
3277    const ExtQuals *EQ = getExtQualsUnsafe();
3278    if (EQ->hasObjCGCAttr())
3279      return EQ->getObjCGCAttr();
3280  }
3281
3282  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3283  if (CT.hasLocalNonFastQualifiers()) {
3284    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3285    if (EQ->hasObjCGCAttr())
3286      return EQ->getObjCGCAttr();
3287  }
3288
3289  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3290      return AT->getElementType().getObjCGCAttr();
3291  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
3292    return PT->getPointeeType().getObjCGCAttr();
3293  // We most look at all pointer types, not just pointer to interface types.
3294  if (const PointerType *PT = CT->getAs<PointerType>())
3295    return PT->getPointeeType().getObjCGCAttr();
3296  return Qualifiers::GCNone;
3297}
3298
3299inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
3300  if (const PointerType *PT = t.getAs<PointerType>()) {
3301    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
3302      return FT->getExtInfo();
3303  } else if (const FunctionType *FT = t.getAs<FunctionType>())
3304    return FT->getExtInfo();
3305
3306  return FunctionType::ExtInfo();
3307}
3308
3309inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
3310  return getFunctionExtInfo(*t);
3311}
3312
3313/// isMoreQualifiedThan - Determine whether this type is more
3314/// qualified than the Other type. For example, "const volatile int"
3315/// is more qualified than "const int", "volatile int", and
3316/// "int". However, it is not more qualified than "const volatile
3317/// int".
3318inline bool QualType::isMoreQualifiedThan(QualType Other) const {
3319  // FIXME: work on arbitrary qualifiers
3320  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3321  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3322  if (getAddressSpace() != Other.getAddressSpace())
3323    return false;
3324  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
3325}
3326
3327/// isAtLeastAsQualifiedAs - Determine whether this type is at last
3328/// as qualified as the Other type. For example, "const volatile
3329/// int" is at least as qualified as "const int", "volatile int",
3330/// "int", and "const volatile int".
3331inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
3332  // FIXME: work on arbitrary qualifiers
3333  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3334  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3335  if (getAddressSpace() != Other.getAddressSpace())
3336    return false;
3337  return (MyQuals | OtherQuals) == MyQuals;
3338}
3339
3340/// getNonReferenceType - If Type is a reference type (e.g., const
3341/// int&), returns the type that the reference refers to ("const
3342/// int"). Otherwise, returns the type itself. This routine is used
3343/// throughout Sema to implement C++ 5p6:
3344///
3345///   If an expression initially has the type "reference to T" (8.3.2,
3346///   8.5.3), the type is adjusted to "T" prior to any further
3347///   analysis, the expression designates the object or function
3348///   denoted by the reference, and the expression is an lvalue.
3349inline QualType QualType::getNonReferenceType() const {
3350  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
3351    return RefType->getPointeeType();
3352  else
3353    return *this;
3354}
3355
3356inline bool Type::isFunctionType() const {
3357  return isa<FunctionType>(CanonicalType);
3358}
3359inline bool Type::isPointerType() const {
3360  return isa<PointerType>(CanonicalType);
3361}
3362inline bool Type::isAnyPointerType() const {
3363  return isPointerType() || isObjCObjectPointerType();
3364}
3365inline bool Type::isBlockPointerType() const {
3366  return isa<BlockPointerType>(CanonicalType);
3367}
3368inline bool Type::isReferenceType() const {
3369  return isa<ReferenceType>(CanonicalType);
3370}
3371inline bool Type::isLValueReferenceType() const {
3372  return isa<LValueReferenceType>(CanonicalType);
3373}
3374inline bool Type::isRValueReferenceType() const {
3375  return isa<RValueReferenceType>(CanonicalType);
3376}
3377inline bool Type::isFunctionPointerType() const {
3378  if (const PointerType* T = getAs<PointerType>())
3379    return T->getPointeeType()->isFunctionType();
3380  else
3381    return false;
3382}
3383inline bool Type::isMemberPointerType() const {
3384  return isa<MemberPointerType>(CanonicalType);
3385}
3386inline bool Type::isMemberFunctionPointerType() const {
3387  if (const MemberPointerType* T = getAs<MemberPointerType>())
3388    return T->getPointeeType()->isFunctionType();
3389  else
3390    return false;
3391}
3392inline bool Type::isArrayType() const {
3393  return isa<ArrayType>(CanonicalType);
3394}
3395inline bool Type::isConstantArrayType() const {
3396  return isa<ConstantArrayType>(CanonicalType);
3397}
3398inline bool Type::isIncompleteArrayType() const {
3399  return isa<IncompleteArrayType>(CanonicalType);
3400}
3401inline bool Type::isVariableArrayType() const {
3402  return isa<VariableArrayType>(CanonicalType);
3403}
3404inline bool Type::isDependentSizedArrayType() const {
3405  return isa<DependentSizedArrayType>(CanonicalType);
3406}
3407inline bool Type::isRecordType() const {
3408  return isa<RecordType>(CanonicalType);
3409}
3410inline bool Type::isAnyComplexType() const {
3411  return isa<ComplexType>(CanonicalType);
3412}
3413inline bool Type::isVectorType() const {
3414  return isa<VectorType>(CanonicalType);
3415}
3416inline bool Type::isExtVectorType() const {
3417  return isa<ExtVectorType>(CanonicalType);
3418}
3419inline bool Type::isObjCObjectPointerType() const {
3420  return isa<ObjCObjectPointerType>(CanonicalType);
3421}
3422inline bool Type::isObjCObjectType() const {
3423  return isa<ObjCObjectType>(CanonicalType);
3424}
3425inline bool Type::isObjCQualifiedIdType() const {
3426  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3427    return OPT->isObjCQualifiedIdType();
3428  return false;
3429}
3430inline bool Type::isObjCQualifiedClassType() const {
3431  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3432    return OPT->isObjCQualifiedClassType();
3433  return false;
3434}
3435inline bool Type::isObjCIdType() const {
3436  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3437    return OPT->isObjCIdType();
3438  return false;
3439}
3440inline bool Type::isObjCClassType() const {
3441  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3442    return OPT->isObjCClassType();
3443  return false;
3444}
3445inline bool Type::isObjCSelType() const {
3446  if (const PointerType *OPT = getAs<PointerType>())
3447    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3448  return false;
3449}
3450inline bool Type::isObjCBuiltinType() const {
3451  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3452}
3453inline bool Type::isTemplateTypeParmType() const {
3454  return isa<TemplateTypeParmType>(CanonicalType);
3455}
3456
3457inline bool Type::isSpecificBuiltinType(unsigned K) const {
3458  if (const BuiltinType *BT = getAs<BuiltinType>())
3459    if (BT->getKind() == (BuiltinType::Kind) K)
3460      return true;
3461  return false;
3462}
3463
3464/// \brief Determines whether this is a type for which one can define
3465/// an overloaded operator.
3466inline bool Type::isOverloadableType() const {
3467  return isDependentType() || isRecordType() || isEnumeralType();
3468}
3469
3470inline bool Type::hasPointerRepresentation() const {
3471  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3472          isObjCObjectPointerType() || isNullPtrType());
3473}
3474
3475inline bool Type::hasObjCPointerRepresentation() const {
3476  return isObjCObjectPointerType();
3477}
3478
3479/// Insertion operator for diagnostics.  This allows sending QualType's into a
3480/// diagnostic with <<.
3481inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3482                                           QualType T) {
3483  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3484                  Diagnostic::ak_qualtype);
3485  return DB;
3486}
3487
3488/// Insertion operator for partial diagnostics.  This allows sending QualType's
3489/// into a diagnostic with <<.
3490inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
3491                                           QualType T) {
3492  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3493                  Diagnostic::ak_qualtype);
3494  return PD;
3495}
3496
3497// Helper class template that is used by Type::getAs to ensure that one does
3498// not try to look through a qualified type to get to an array type.
3499template<typename T,
3500         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3501                             llvm::is_base_of<ArrayType, T>::value)>
3502struct ArrayType_cannot_be_used_with_getAs { };
3503
3504template<typename T>
3505struct ArrayType_cannot_be_used_with_getAs<T, true>;
3506
3507/// Member-template getAs<specific type>'.
3508template <typename T> const T *Type::getAs() const {
3509  ArrayType_cannot_be_used_with_getAs<T> at;
3510  (void)at;
3511
3512  // If this is directly a T type, return it.
3513  if (const T *Ty = dyn_cast<T>(this))
3514    return Ty;
3515
3516  // If the canonical form of this type isn't the right kind, reject it.
3517  if (!isa<T>(CanonicalType))
3518    return 0;
3519
3520  // If this is a typedef for the type, strip the typedef off without
3521  // losing all typedef information.
3522  return cast<T>(getUnqualifiedDesugaredType());
3523}
3524
3525}  // end namespace clang
3526
3527#endif
3528