Type.h revision 99eef4a6d3632a78155e7639a9f91d10b33e8218
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/AST/TemplateName.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/ADT/APSInt.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/PointerUnion.h"
26
27using llvm::isa;
28using llvm::cast;
29using llvm::cast_or_null;
30using llvm::dyn_cast;
31using llvm::dyn_cast_or_null;
32namespace clang { class Type; }
33
34namespace llvm {
35  template <typename T>
36  class PointerLikeTypeTraits;
37  template<>
38  class PointerLikeTypeTraits< ::clang::Type*> {
39  public:
40    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
41    static inline ::clang::Type *getFromVoidPointer(void *P) {
42      return static_cast< ::clang::Type*>(P);
43    }
44    enum { NumLowBitsAvailable = 3 };
45  };
46}
47
48namespace clang {
49  class ASTContext;
50  class TypedefDecl;
51  class TemplateDecl;
52  class TemplateTypeParmDecl;
53  class NonTypeTemplateParmDecl;
54  class TemplateTemplateParmDecl;
55  class TagDecl;
56  class RecordDecl;
57  class CXXRecordDecl;
58  class EnumDecl;
59  class FieldDecl;
60  class ObjCInterfaceDecl;
61  class ObjCProtocolDecl;
62  class ObjCMethodDecl;
63  class Expr;
64  class Stmt;
65  class SourceLocation;
66  class StmtIteratorBase;
67  class TemplateArgument;
68  class QualifiedNameType;
69  struct PrintingPolicy;
70
71  // Provide forward declarations for all of the *Type classes
72#define TYPE(Class, Base) class Class##Type;
73#include "clang/AST/TypeNodes.def"
74
75/// QualType - For efficiency, we don't store CVR-qualified types as nodes on
76/// their own: instead each reference to a type stores the qualifiers.  This
77/// greatly reduces the number of nodes we need to allocate for types (for
78/// example we only need one for 'int', 'const int', 'volatile int',
79/// 'const volatile int', etc).
80///
81/// As an added efficiency bonus, instead of making this a pair, we just store
82/// the three bits we care about in the low bits of the pointer.  To handle the
83/// packing/unpacking, we make QualType be a simple wrapper class that acts like
84/// a smart pointer.
85class QualType {
86  llvm::PointerIntPair<Type*, 3> Value;
87public:
88  enum TQ {   // NOTE: These flags must be kept in sync with DeclSpec::TQ.
89    Const    = 0x1,
90    Restrict = 0x2,
91    Volatile = 0x4,
92    CVRFlags = Const|Restrict|Volatile
93  };
94
95  enum GCAttrTypes {
96    GCNone = 0,
97    Weak,
98    Strong
99  };
100
101  // 24 bits should be enough for anyone.
102  static const unsigned MaxAddressSpace = 0xffffffu;
103
104  QualType() {}
105
106  QualType(const Type *Ptr, unsigned Quals)
107    : Value(const_cast<Type*>(Ptr), Quals) {}
108
109  unsigned getCVRQualifiers() const { return Value.getInt(); }
110  void setCVRQualifiers(unsigned Quals) { Value.setInt(Quals); }
111  Type *getTypePtr() const { return Value.getPointer(); }
112
113  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
114  static QualType getFromOpaquePtr(void *Ptr) {
115    QualType T;
116    T.Value.setFromOpaqueValue(Ptr);
117    return T;
118  }
119
120  Type &operator*() const {
121    return *getTypePtr();
122  }
123
124  Type *operator->() const {
125    return getTypePtr();
126  }
127
128  /// isNull - Return true if this QualType doesn't point to a type yet.
129  bool isNull() const {
130    return getTypePtr() == 0;
131  }
132
133  bool isConstQualified() const {
134    return (getCVRQualifiers() & Const) ? true : false;
135  }
136  bool isVolatileQualified() const {
137    return (getCVRQualifiers() & Volatile) ? true : false;
138  }
139  bool isRestrictQualified() const {
140    return (getCVRQualifiers() & Restrict) ? true : false;
141  }
142
143  bool isConstant(ASTContext& Ctx) const;
144
145  /// addConst/addVolatile/addRestrict - add the specified type qual to this
146  /// QualType.
147  void addConst()    { Value.setInt(Value.getInt() | Const); }
148  void addVolatile() { Value.setInt(Value.getInt() | Volatile); }
149  void addRestrict() { Value.setInt(Value.getInt() | Restrict); }
150
151  void removeConst()    { Value.setInt(Value.getInt() & ~Const); }
152  void removeVolatile() { Value.setInt(Value.getInt() & ~Volatile); }
153  void removeRestrict() { Value.setInt(Value.getInt() & ~Restrict); }
154
155  QualType getQualifiedType(unsigned TQs) const {
156    return QualType(getTypePtr(), TQs);
157  }
158  QualType getWithAdditionalQualifiers(unsigned TQs) const {
159    return QualType(getTypePtr(), TQs|getCVRQualifiers());
160  }
161
162  QualType withConst() const { return getWithAdditionalQualifiers(Const); }
163  QualType withVolatile() const { return getWithAdditionalQualifiers(Volatile);}
164  QualType withRestrict() const { return getWithAdditionalQualifiers(Restrict);}
165
166  QualType getUnqualifiedType() const;
167  bool isMoreQualifiedThan(QualType Other) const;
168  bool isAtLeastAsQualifiedAs(QualType Other) const;
169  QualType getNonReferenceType() const;
170
171  /// getDesugaredType - Return the specified type with any "sugar" removed from
172  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
173  /// the type is already concrete, it returns it unmodified.  This is similar
174  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
175  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
176  /// concrete.
177  QualType getDesugaredType(bool ForDisplay = false) const;
178
179  /// operator==/!= - Indicate whether the specified types and qualifiers are
180  /// identical.
181  bool operator==(const QualType &RHS) const {
182    return Value == RHS.Value;
183  }
184  bool operator!=(const QualType &RHS) const {
185    return Value != RHS.Value;
186  }
187  std::string getAsString() const;
188
189  std::string getAsString(const PrintingPolicy &Policy) const {
190    std::string S;
191    getAsStringInternal(S, Policy);
192    return S;
193  }
194  void getAsStringInternal(std::string &Str,
195                           const PrintingPolicy &Policy) const;
196
197  void dump(const char *s) const;
198  void dump() const;
199
200  void Profile(llvm::FoldingSetNodeID &ID) const {
201    ID.AddPointer(getAsOpaquePtr());
202  }
203
204public:
205
206  /// getAddressSpace - Return the address space of this type.
207  inline unsigned getAddressSpace() const;
208
209  /// GCAttrTypesAttr - Returns gc attribute of this type.
210  inline QualType::GCAttrTypes getObjCGCAttr() const;
211
212  /// isObjCGCWeak true when Type is objc's weak.
213  bool isObjCGCWeak() const {
214    return getObjCGCAttr() == Weak;
215  }
216
217  /// isObjCGCStrong true when Type is objc's strong.
218  bool isObjCGCStrong() const {
219    return getObjCGCAttr() == Strong;
220  }
221
222  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
223  /// false otherwise.
224  bool getNoReturnAttr() const;
225};
226
227} // end clang.
228
229namespace llvm {
230/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
231/// to a specific Type class.
232template<> struct simplify_type<const ::clang::QualType> {
233  typedef ::clang::Type* SimpleType;
234  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
235    return Val.getTypePtr();
236  }
237};
238template<> struct simplify_type< ::clang::QualType>
239  : public simplify_type<const ::clang::QualType> {};
240
241// Teach SmallPtrSet that QualType is "basically a pointer".
242template<>
243class PointerLikeTypeTraits<clang::QualType> {
244public:
245  static inline void *getAsVoidPointer(clang::QualType P) {
246    return P.getAsOpaquePtr();
247  }
248  static inline clang::QualType getFromVoidPointer(void *P) {
249    return clang::QualType::getFromOpaquePtr(P);
250  }
251  // CVR qualifiers go in low bits.
252  enum { NumLowBitsAvailable = 0 };
253};
254} // end namespace llvm
255
256namespace clang {
257
258/// Type - This is the base class of the type hierarchy.  A central concept
259/// with types is that each type always has a canonical type.  A canonical type
260/// is the type with any typedef names stripped out of it or the types it
261/// references.  For example, consider:
262///
263///  typedef int  foo;
264///  typedef foo* bar;
265///    'int *'    'foo *'    'bar'
266///
267/// There will be a Type object created for 'int'.  Since int is canonical, its
268/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
269/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
270/// there is a PointerType that represents 'int*', which, like 'int', is
271/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
272/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
273/// is also 'int*'.
274///
275/// Non-canonical types are useful for emitting diagnostics, without losing
276/// information about typedefs being used.  Canonical types are useful for type
277/// comparisons (they allow by-pointer equality tests) and useful for reasoning
278/// about whether something has a particular form (e.g. is a function type),
279/// because they implicitly, recursively, strip all typedefs out of a type.
280///
281/// Types, once created, are immutable.
282///
283class Type {
284public:
285  enum TypeClass {
286#define TYPE(Class, Base) Class,
287#define ABSTRACT_TYPE(Class, Base)
288#include "clang/AST/TypeNodes.def"
289    TagFirst = Record, TagLast = Enum
290  };
291
292private:
293  QualType CanonicalType;
294
295  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
296  bool Dependent : 1;
297
298  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
299  /// Note that this should stay at the end of the ivars for Type so that
300  /// subclasses can pack their bitfields into the same word.
301  unsigned TC : 6;
302
303  Type(const Type&);           // DO NOT IMPLEMENT.
304  void operator=(const Type&); // DO NOT IMPLEMENT.
305protected:
306  // silence VC++ warning C4355: 'this' : used in base member initializer list
307  Type *this_() { return this; }
308  Type(TypeClass tc, QualType Canonical, bool dependent)
309    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
310      Dependent(dependent), TC(tc) {}
311  virtual ~Type() {}
312  virtual void Destroy(ASTContext& C);
313  friend class ASTContext;
314
315public:
316  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
317
318  bool isCanonical() const { return CanonicalType.getTypePtr() == this; }
319
320  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
321  /// object types, function types, and incomplete types.
322
323  /// \brief Determines whether the type describes an object in memory.
324  ///
325  /// Note that this definition of object type corresponds to the C++
326  /// definition of object type, which includes incomplete types, as
327  /// opposed to the C definition (which does not include incomplete
328  /// types).
329  bool isObjectType() const;
330
331  /// isIncompleteType - Return true if this is an incomplete type.
332  /// A type that can describe objects, but which lacks information needed to
333  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
334  /// routine will need to determine if the size is actually required.
335  bool isIncompleteType() const;
336
337  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
338  /// type, in other words, not a function type.
339  bool isIncompleteOrObjectType() const {
340    return !isFunctionType();
341  }
342
343  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
344  bool isPODType() const;
345
346  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
347  /// types that have a non-constant expression. This does not include "[]".
348  bool isVariablyModifiedType() const;
349
350  /// Helper methods to distinguish type categories. All type predicates
351  /// operate on the canonical type, ignoring typedefs and qualifiers.
352
353  /// isSpecificBuiltinType - Test for a particular builtin type.
354  bool isSpecificBuiltinType(unsigned K) const;
355
356  /// isIntegerType() does *not* include complex integers (a GCC extension).
357  /// isComplexIntegerType() can be used to test for complex integers.
358  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
359  bool isEnumeralType() const;
360  bool isBooleanType() const;
361  bool isCharType() const;
362  bool isWideCharType() const;
363  bool isIntegralType() const;
364
365  /// Floating point categories.
366  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
367  /// isComplexType() does *not* include complex integers (a GCC extension).
368  /// isComplexIntegerType() can be used to test for complex integers.
369  bool isComplexType() const;      // C99 6.2.5p11 (complex)
370  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
371  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
372  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
373  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
374  bool isVoidType() const;         // C99 6.2.5p19
375  bool isDerivedType() const;      // C99 6.2.5p20
376  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
377  bool isAggregateType() const;
378
379  // Type Predicates: Check to see if this type is structurally the specified
380  // type, ignoring typedefs and qualifiers.
381  bool isFunctionType() const;
382  bool isFunctionNoProtoType() const { return getAsFunctionNoProtoType() != 0; }
383  bool isFunctionProtoType() const { return getAsFunctionProtoType() != 0; }
384  bool isPointerType() const;
385  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
386  bool isBlockPointerType() const;
387  bool isVoidPointerType() const;
388  bool isReferenceType() const;
389  bool isLValueReferenceType() const;
390  bool isRValueReferenceType() const;
391  bool isFunctionPointerType() const;
392  bool isMemberPointerType() const;
393  bool isMemberFunctionPointerType() const;
394  bool isArrayType() const;
395  bool isConstantArrayType() const;
396  bool isIncompleteArrayType() const;
397  bool isVariableArrayType() const;
398  bool isDependentSizedArrayType() const;
399  bool isRecordType() const;
400  bool isClassType() const;
401  bool isStructureType() const;
402  bool isUnionType() const;
403  bool isComplexIntegerType() const;            // GCC _Complex integer type.
404  bool isVectorType() const;                    // GCC vector type.
405  bool isExtVectorType() const;                 // Extended vector type.
406  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
407  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
408  // for the common case.
409  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
410  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
411  bool isObjCQualifiedIdType() const;           // id<foo>
412  bool isObjCQualifiedClassType() const;        // Class<foo>
413  bool isObjCIdType() const;                    // id
414  bool isObjCClassType() const;                 // Class
415  bool isObjCBuiltinType() const;               // 'id' or 'Class'
416  bool isTemplateTypeParmType() const;          // C++ template type parameter
417  bool isNullPtrType() const;                   // C++0x nullptr_t
418
419  /// isDependentType - Whether this type is a dependent type, meaning
420  /// that its definition somehow depends on a template parameter
421  /// (C++ [temp.dep.type]).
422  bool isDependentType() const { return Dependent; }
423  bool isOverloadableType() const;
424
425  /// hasPointerRepresentation - Whether this type is represented
426  /// natively as a pointer; this includes pointers, references, block
427  /// pointers, and Objective-C interface, qualified id, and qualified
428  /// interface types, as well as nullptr_t.
429  bool hasPointerRepresentation() const;
430
431  /// hasObjCPointerRepresentation - Whether this type can represent
432  /// an objective pointer type for the purpose of GC'ability
433  bool hasObjCPointerRepresentation() const;
434
435  // Type Checking Functions: Check to see if this type is structurally the
436  // specified type, ignoring typedefs and qualifiers, and return a pointer to
437  // the best type we can.
438  const BuiltinType *getAsBuiltinType() const;
439  const FunctionType *getAsFunctionType() const;
440  const FunctionNoProtoType *getAsFunctionNoProtoType() const;
441  const FunctionProtoType *getAsFunctionProtoType() const;
442  const PointerType *getAsPointerType() const;
443  const BlockPointerType *getAsBlockPointerType() const;
444  const ReferenceType *getAsReferenceType() const;
445  const LValueReferenceType *getAsLValueReferenceType() const;
446  const RValueReferenceType *getAsRValueReferenceType() const;
447  const MemberPointerType *getAsMemberPointerType() const;
448  const TagType *getAsTagType() const;
449  const RecordType *getAsRecordType() const;
450  const RecordType *getAsStructureType() const;
451  /// NOTE: getAs*ArrayType are methods on ASTContext.
452  const TypedefType *getAsTypedefType() const;
453  const RecordType *getAsUnionType() const;
454  const EnumType *getAsEnumType() const;
455  const VectorType *getAsVectorType() const; // GCC vector type.
456  const ComplexType *getAsComplexType() const;
457  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
458  const ExtVectorType *getAsExtVectorType() const; // Extended vector type.
459  const ObjCObjectPointerType *getAsObjCObjectPointerType() const;
460  // The following is a convenience method that returns an ObjCObjectPointerType
461  // for object declared using an interface.
462  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
463  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
464  const ObjCInterfaceType *getAsObjCInterfaceType() const;
465  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
466  const TemplateTypeParmType *getAsTemplateTypeParmType() const;
467  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
468
469  // Member-template getAs<specific type>'.  This scheme will eventually
470  // replace the specific getAsXXXX methods above.
471  template <typename T> const T *getAs() const;
472
473  const TemplateSpecializationType *
474    getAsTemplateSpecializationType() const;
475
476  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
477  /// interface, return the interface type, otherwise return null.
478  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
479
480  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
481  /// element type of the array, potentially with type qualifiers missing.
482  /// This method should never be used when type qualifiers are meaningful.
483  const Type *getArrayElementTypeNoTypeQual() const;
484
485  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
486  /// pointer, this returns the respective pointee.
487  QualType getPointeeType() const;
488
489  /// getDesugaredType - Return the specified type with any "sugar" removed from
490  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
491  /// the type is already concrete, it returns it unmodified.  This is similar
492  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
493  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
494  /// concrete.
495  QualType getDesugaredType(bool ForDisplay = false) const;
496
497  /// More type predicates useful for type checking/promotion
498  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
499
500  /// isSignedIntegerType - Return true if this is an integer type that is
501  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
502  /// an enum decl which has a signed representation, or a vector of signed
503  /// integer element type.
504  bool isSignedIntegerType() const;
505
506  /// isUnsignedIntegerType - Return true if this is an integer type that is
507  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
508  /// decl which has an unsigned representation, or a vector of unsigned integer
509  /// element type.
510  bool isUnsignedIntegerType() const;
511
512  /// isConstantSizeType - Return true if this is not a variable sized type,
513  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
514  /// incomplete types.
515  bool isConstantSizeType() const;
516
517  /// isSpecifierType - Returns true if this type can be represented by some
518  /// set of type specifiers.
519  bool isSpecifierType() const;
520
521  QualType getCanonicalTypeInternal() const { return CanonicalType; }
522  void dump() const;
523  virtual void getAsStringInternal(std::string &InnerString,
524                                   const PrintingPolicy &Policy) const = 0;
525  static bool classof(const Type *) { return true; }
526};
527
528/// ExtQualType - TR18037 (C embedded extensions) 6.2.5p26
529/// This supports all kinds of type attributes; including,
530/// address space qualified types, objective-c's __weak and
531/// __strong attributes.
532///
533class ExtQualType : public Type, public llvm::FoldingSetNode {
534  /// BaseType - This is the underlying type that this qualifies.  All CVR
535  /// qualifiers are stored on the QualType that references this type, so we
536  /// can't have any here.
537  Type *BaseType;
538
539  /// Address Space ID - The address space ID this type is qualified with.
540  unsigned AddressSpace;
541  /// GC __weak/__strong attributes
542  QualType::GCAttrTypes GCAttrType;
543
544  ExtQualType(Type *Base, QualType CanonicalPtr, unsigned AddrSpace,
545              QualType::GCAttrTypes gcAttr) :
546      Type(ExtQual, CanonicalPtr, Base->isDependentType()), BaseType(Base),
547      AddressSpace(AddrSpace), GCAttrType(gcAttr) {
548    assert(!isa<ExtQualType>(BaseType) &&
549           "Cannot have ExtQualType of ExtQualType");
550  }
551  friend class ASTContext;  // ASTContext creates these.
552public:
553  Type *getBaseType() const { return BaseType; }
554  QualType::GCAttrTypes getObjCGCAttr() const { return GCAttrType; }
555  unsigned getAddressSpace() const { return AddressSpace; }
556
557  virtual void getAsStringInternal(std::string &InnerString,
558                                   const PrintingPolicy &Policy) const;
559
560  void Profile(llvm::FoldingSetNodeID &ID) {
561    Profile(ID, getBaseType(), AddressSpace, GCAttrType);
562  }
563  static void Profile(llvm::FoldingSetNodeID &ID, Type *Base,
564                      unsigned AddrSpace, QualType::GCAttrTypes gcAttr) {
565    ID.AddPointer(Base);
566    ID.AddInteger(AddrSpace);
567    ID.AddInteger(gcAttr);
568  }
569
570  static bool classof(const Type *T) { return T->getTypeClass() == ExtQual; }
571  static bool classof(const ExtQualType *) { return true; }
572};
573
574
575/// QualifierSet - This class is used to collect qualifiers.
576/// Clang supports five independent qualifiers:
577/// * C99: const, volatile, and restrict
578/// * Embedded C (TR18037): address spaces
579/// * Objective C: the GC attributes (none, weak, or strong)
580class QualifierSet {
581public:
582  QualifierSet() : Mask(0) {}
583
584  void removeConst() { removeCVR(QualType::Const); }
585  void removeVolatile() { removeCVR(QualType::Volatile); }
586  void removeRestrict() { removeCVR(QualType::Restrict); }
587  void removeCVR(unsigned mask) { Mask &= ~mask; }
588  void removeAddressSpace() { setAddressSpace(0); }
589  void removeObjCGCAttrType() { setGCAttrType(QualType::GCNone); }
590
591  void addConst() { addCVR(QualType::Const); }
592  void addVolatile() { addCVR(QualType::Volatile); }
593  void addRestrict() { addCVR(QualType::Restrict); }
594  void addCVR(unsigned mask) { Mask |= mask; }
595  void addAddressSpace(unsigned space) {
596    assert(space);
597    setAddressSpace(space);
598  }
599  void addObjCGCAttrType(QualType::GCAttrTypes type) {
600    assert(type);
601    setGCAttrType(type);
602  }
603
604  bool hasConst() const { return Mask & QualType::Const; }
605  bool hasVolatile() const { return Mask & QualType::Volatile; }
606  bool hasRestrict() const { return Mask & QualType::Restrict; }
607  unsigned getCVRMask() const { return Mask & CVRMask; }
608
609  bool hasObjCGCAttrType() const { return Mask & GCAttrMask; }
610  QualType::GCAttrTypes getObjCGCAttrType() const {
611    return QualType::GCAttrTypes((Mask & GCAttrMask) >> GCAttrShift);
612  }
613
614  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
615  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
616
617  /// empty() - Return true if there are no qualifiers collected
618  /// in this set.
619  bool empty() {
620    return (Mask == 0);
621  }
622
623  /// Collect any qualifiers on the given type and return an
624  /// unqualified type.
625  const Type *strip(QualType QT) {
626    Mask |= QT.getCVRQualifiers();
627    return strip(QT.getTypePtr());
628  }
629
630  /// Collect any qualifiers on the given type and return an
631  /// unqualified type.
632  const Type *strip(const Type* T);
633
634  /// Apply the collected qualifiers to the given type.
635  QualType apply(QualType QT, ASTContext& C);
636
637  /// Apply the collected qualifiers to the given type.
638  QualType apply(const Type* T, ASTContext& C) {
639    return apply(QualType(T, 0), C);
640  }
641
642  bool operator==(QualifierSet& Other) { return Mask == Other.Mask; }
643
644private:
645  void setAddressSpace(unsigned space) {
646    assert(space <= MaxAddressSpace);
647    Mask = (Mask & ~AddressSpaceMask)
648         | (((uint32_t) space) << AddressSpaceShift);
649  }
650
651  void setGCAttrType(QualType::GCAttrTypes type) {
652    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
653  }
654
655  // bits:     |0 1 2|3 .. 4|5  ..  31|
656  //           |C R V|GCAttr|AddrSpace|
657  uint32_t Mask;
658
659  static const uint32_t CVRMask = 0x07;
660  static const uint32_t GCAttrMask = 0x18;
661  static const uint32_t GCAttrShift = 3;
662  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
663  static const uint32_t AddressSpaceShift = 5;
664  static const unsigned MaxAddressSpace = QualType::MaxAddressSpace;
665};
666
667
668/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
669/// types are always canonical and have a literal name field.
670class BuiltinType : public Type {
671public:
672  enum Kind {
673    Void,
674
675    Bool,     // This is bool and/or _Bool.
676    Char_U,   // This is 'char' for targets where char is unsigned.
677    UChar,    // This is explicitly qualified unsigned char.
678    Char16,   // This is 'char16_t' for C++.
679    Char32,   // This is 'char32_t' for C++.
680    UShort,
681    UInt,
682    ULong,
683    ULongLong,
684    UInt128,  // __uint128_t
685
686    Char_S,   // This is 'char' for targets where char is signed.
687    SChar,    // This is explicitly qualified signed char.
688    WChar,    // This is 'wchar_t' for C++.
689    Short,
690    Int,
691    Long,
692    LongLong,
693    Int128,   // __int128_t
694
695    Float, Double, LongDouble,
696
697    NullPtr,  // This is the type of C++0x 'nullptr'.
698
699    Overload,  // This represents the type of an overloaded function declaration.
700    Dependent, // This represents the type of a type-dependent expression.
701
702    UndeducedAuto, // In C++0x, this represents the type of an auto variable
703                   // that has not been deduced yet.
704    ObjCId,    // This represents the ObjC 'id' type.
705    ObjCClass  // This represents the ObjC 'Class' type.
706  };
707private:
708  Kind TypeKind;
709public:
710  BuiltinType(Kind K)
711    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
712      TypeKind(K) {}
713
714  Kind getKind() const { return TypeKind; }
715  const char *getName(const LangOptions &LO) const;
716
717  virtual void getAsStringInternal(std::string &InnerString,
718                                   const PrintingPolicy &Policy) const;
719
720  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
721  static bool classof(const BuiltinType *) { return true; }
722};
723
724/// FixedWidthIntType - Used for arbitrary width types that we either don't
725/// want to or can't map to named integer types.  These always have a lower
726/// integer rank than builtin types of the same width.
727class FixedWidthIntType : public Type {
728private:
729  unsigned Width;
730  bool Signed;
731public:
732  FixedWidthIntType(unsigned W, bool S) : Type(FixedWidthInt, QualType(), false),
733                                          Width(W), Signed(S) {}
734
735  unsigned getWidth() const { return Width; }
736  bool isSigned() const { return Signed; }
737  const char *getName() const;
738
739  virtual void getAsStringInternal(std::string &InnerString,
740                                   const PrintingPolicy &Policy) const;
741
742  static bool classof(const Type *T) { return T->getTypeClass() == FixedWidthInt; }
743  static bool classof(const FixedWidthIntType *) { return true; }
744};
745
746/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
747/// types (_Complex float etc) as well as the GCC integer complex extensions.
748///
749class ComplexType : public Type, public llvm::FoldingSetNode {
750  QualType ElementType;
751  ComplexType(QualType Element, QualType CanonicalPtr) :
752    Type(Complex, CanonicalPtr, Element->isDependentType()),
753    ElementType(Element) {
754  }
755  friend class ASTContext;  // ASTContext creates these.
756public:
757  QualType getElementType() const { return ElementType; }
758
759  virtual void getAsStringInternal(std::string &InnerString,
760                                   const PrintingPolicy &Policy) const;
761
762  void Profile(llvm::FoldingSetNodeID &ID) {
763    Profile(ID, getElementType());
764  }
765  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
766    ID.AddPointer(Element.getAsOpaquePtr());
767  }
768
769  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
770  static bool classof(const ComplexType *) { return true; }
771};
772
773/// PointerType - C99 6.7.5.1 - Pointer Declarators.
774///
775class PointerType : public Type, public llvm::FoldingSetNode {
776  QualType PointeeType;
777
778  PointerType(QualType Pointee, QualType CanonicalPtr) :
779    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
780  }
781  friend class ASTContext;  // ASTContext creates these.
782public:
783
784  virtual void getAsStringInternal(std::string &InnerString,
785                                   const PrintingPolicy &Policy) const;
786
787  QualType getPointeeType() const { return PointeeType; }
788
789  void Profile(llvm::FoldingSetNodeID &ID) {
790    Profile(ID, getPointeeType());
791  }
792  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
793    ID.AddPointer(Pointee.getAsOpaquePtr());
794  }
795
796  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
797  static bool classof(const PointerType *) { return true; }
798};
799
800/// BlockPointerType - pointer to a block type.
801/// This type is to represent types syntactically represented as
802/// "void (^)(int)", etc. Pointee is required to always be a function type.
803///
804class BlockPointerType : public Type, public llvm::FoldingSetNode {
805  QualType PointeeType;  // Block is some kind of pointer type
806  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
807    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
808    PointeeType(Pointee) {
809  }
810  friend class ASTContext;  // ASTContext creates these.
811public:
812
813  // Get the pointee type. Pointee is required to always be a function type.
814  QualType getPointeeType() const { return PointeeType; }
815
816  virtual void getAsStringInternal(std::string &InnerString,
817                                   const PrintingPolicy &Policy) const;
818
819  void Profile(llvm::FoldingSetNodeID &ID) {
820      Profile(ID, getPointeeType());
821  }
822  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
823      ID.AddPointer(Pointee.getAsOpaquePtr());
824  }
825
826  static bool classof(const Type *T) {
827    return T->getTypeClass() == BlockPointer;
828  }
829  static bool classof(const BlockPointerType *) { return true; }
830};
831
832/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
833///
834class ReferenceType : public Type, public llvm::FoldingSetNode {
835  QualType PointeeType;
836
837protected:
838  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef) :
839    Type(tc, CanonicalRef, Referencee->isDependentType()),
840    PointeeType(Referencee) {
841  }
842public:
843  QualType getPointeeType() const { return PointeeType; }
844
845  void Profile(llvm::FoldingSetNodeID &ID) {
846    Profile(ID, getPointeeType());
847  }
848  static void Profile(llvm::FoldingSetNodeID &ID, QualType Referencee) {
849    ID.AddPointer(Referencee.getAsOpaquePtr());
850  }
851
852  static bool classof(const Type *T) {
853    return T->getTypeClass() == LValueReference ||
854           T->getTypeClass() == RValueReference;
855  }
856  static bool classof(const ReferenceType *) { return true; }
857};
858
859/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
860///
861class LValueReferenceType : public ReferenceType {
862  LValueReferenceType(QualType Referencee, QualType CanonicalRef) :
863    ReferenceType(LValueReference, Referencee, CanonicalRef) {
864  }
865  friend class ASTContext; // ASTContext creates these
866public:
867  virtual void getAsStringInternal(std::string &InnerString,
868                                   const PrintingPolicy &Policy) const;
869
870  static bool classof(const Type *T) {
871    return T->getTypeClass() == LValueReference;
872  }
873  static bool classof(const LValueReferenceType *) { return true; }
874};
875
876/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
877///
878class RValueReferenceType : public ReferenceType {
879  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
880    ReferenceType(RValueReference, Referencee, CanonicalRef) {
881  }
882  friend class ASTContext; // ASTContext creates these
883public:
884  virtual void getAsStringInternal(std::string &InnerString,
885                                   const PrintingPolicy &Policy) const;
886
887  static bool classof(const Type *T) {
888    return T->getTypeClass() == RValueReference;
889  }
890  static bool classof(const RValueReferenceType *) { return true; }
891};
892
893/// MemberPointerType - C++ 8.3.3 - Pointers to members
894///
895class MemberPointerType : public Type, public llvm::FoldingSetNode {
896  QualType PointeeType;
897  /// The class of which the pointee is a member. Must ultimately be a
898  /// RecordType, but could be a typedef or a template parameter too.
899  const Type *Class;
900
901  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
902    Type(MemberPointer, CanonicalPtr,
903         Cls->isDependentType() || Pointee->isDependentType()),
904    PointeeType(Pointee), Class(Cls) {
905  }
906  friend class ASTContext; // ASTContext creates these.
907public:
908
909  QualType getPointeeType() const { return PointeeType; }
910
911  const Type *getClass() const { return Class; }
912
913  virtual void getAsStringInternal(std::string &InnerString,
914                                   const PrintingPolicy &Policy) const;
915
916  void Profile(llvm::FoldingSetNodeID &ID) {
917    Profile(ID, getPointeeType(), getClass());
918  }
919  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
920                      const Type *Class) {
921    ID.AddPointer(Pointee.getAsOpaquePtr());
922    ID.AddPointer(Class);
923  }
924
925  static bool classof(const Type *T) {
926    return T->getTypeClass() == MemberPointer;
927  }
928  static bool classof(const MemberPointerType *) { return true; }
929};
930
931/// ArrayType - C99 6.7.5.2 - Array Declarators.
932///
933class ArrayType : public Type, public llvm::FoldingSetNode {
934public:
935  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
936  /// an array with a static size (e.g. int X[static 4]), or an array
937  /// with a star size (e.g. int X[*]).
938  /// 'static' is only allowed on function parameters.
939  enum ArraySizeModifier {
940    Normal, Static, Star
941  };
942private:
943  /// ElementType - The element type of the array.
944  QualType ElementType;
945
946  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
947  /// NOTE: These fields are packed into the bitfields space in the Type class.
948  unsigned SizeModifier : 2;
949
950  /// IndexTypeQuals - Capture qualifiers in declarations like:
951  /// 'int X[static restrict 4]'. For function parameters only.
952  unsigned IndexTypeQuals : 3;
953
954protected:
955  // C++ [temp.dep.type]p1:
956  //   A type is dependent if it is...
957  //     - an array type constructed from any dependent type or whose
958  //       size is specified by a constant expression that is
959  //       value-dependent,
960  ArrayType(TypeClass tc, QualType et, QualType can,
961            ArraySizeModifier sm, unsigned tq)
962    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
963      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
964
965  friend class ASTContext;  // ASTContext creates these.
966public:
967  QualType getElementType() const { return ElementType; }
968  ArraySizeModifier getSizeModifier() const {
969    return ArraySizeModifier(SizeModifier);
970  }
971  unsigned getIndexTypeQualifier() const { return IndexTypeQuals; }
972
973  static bool classof(const Type *T) {
974    return T->getTypeClass() == ConstantArray ||
975           T->getTypeClass() == ConstantArrayWithExpr ||
976           T->getTypeClass() == ConstantArrayWithoutExpr ||
977           T->getTypeClass() == VariableArray ||
978           T->getTypeClass() == IncompleteArray ||
979           T->getTypeClass() == DependentSizedArray;
980  }
981  static bool classof(const ArrayType *) { return true; }
982};
983
984/// ConstantArrayType - This class represents the canonical version of
985/// C arrays with a specified constant size.  For example, the canonical
986/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
987/// type is 'int' and the size is 404.
988class ConstantArrayType : public ArrayType {
989  llvm::APInt Size; // Allows us to unique the type.
990
991  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
992                    ArraySizeModifier sm, unsigned tq)
993    : ArrayType(ConstantArray, et, can, sm, tq),
994      Size(size) {}
995protected:
996  ConstantArrayType(TypeClass tc, QualType et, QualType can,
997                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
998    : ArrayType(tc, et, can, sm, tq), Size(size) {}
999  friend class ASTContext;  // ASTContext creates these.
1000public:
1001  const llvm::APInt &getSize() const { return Size; }
1002  virtual void getAsStringInternal(std::string &InnerString,
1003                                   const PrintingPolicy &Policy) const;
1004
1005  void Profile(llvm::FoldingSetNodeID &ID) {
1006    Profile(ID, getElementType(), getSize(),
1007            getSizeModifier(), getIndexTypeQualifier());
1008  }
1009  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1010                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1011                      unsigned TypeQuals) {
1012    ID.AddPointer(ET.getAsOpaquePtr());
1013    ID.AddInteger(ArraySize.getZExtValue());
1014    ID.AddInteger(SizeMod);
1015    ID.AddInteger(TypeQuals);
1016  }
1017  static bool classof(const Type *T) {
1018    return T->getTypeClass() == ConstantArray ||
1019           T->getTypeClass() == ConstantArrayWithExpr ||
1020           T->getTypeClass() == ConstantArrayWithoutExpr;
1021  }
1022  static bool classof(const ConstantArrayType *) { return true; }
1023};
1024
1025/// ConstantArrayWithExprType - This class represents C arrays with a
1026/// constant size specified by means of an integer constant expression.
1027/// For example 'int A[sizeof(int)]' has ConstantArrayWithExprType where
1028/// the element type is 'int' and the size expression is 'sizeof(int)'.
1029/// These types are non-canonical.
1030class ConstantArrayWithExprType : public ConstantArrayType {
1031  /// SizeExpr - The ICE occurring in the concrete syntax.
1032  Expr *SizeExpr;
1033  /// Brackets - The left and right array brackets.
1034  SourceRange Brackets;
1035
1036  ConstantArrayWithExprType(QualType et, QualType can,
1037                            const llvm::APInt &size, Expr *e,
1038                            ArraySizeModifier sm, unsigned tq,
1039                            SourceRange brackets)
1040    : ConstantArrayType(ConstantArrayWithExpr, et, can, size, sm, tq),
1041      SizeExpr(e), Brackets(brackets) {}
1042  friend class ASTContext;  // ASTContext creates these.
1043  virtual void Destroy(ASTContext& C);
1044
1045public:
1046  Expr *getSizeExpr() const { return SizeExpr; }
1047  SourceRange getBracketsRange() const { return Brackets; }
1048  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1049  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1050
1051  virtual void getAsStringInternal(std::string &InnerString,
1052                                   const PrintingPolicy &Policy) const;
1053
1054  static bool classof(const Type *T) {
1055    return T->getTypeClass() == ConstantArrayWithExpr;
1056  }
1057  static bool classof(const ConstantArrayWithExprType *) { return true; }
1058
1059  void Profile(llvm::FoldingSetNodeID &ID) {
1060    assert(0 && "Cannot unique ConstantArrayWithExprTypes.");
1061  }
1062};
1063
1064/// ConstantArrayWithoutExprType - This class represents C arrays with a
1065/// constant size that was not specified by an integer constant expression,
1066/// but inferred by static semantics.
1067/// For example 'int A[] = { 0, 1, 2 }' has ConstantArrayWithoutExprType.
1068/// These types are non-canonical: the corresponding canonical type,
1069/// having the size specified in an APInt object, is a ConstantArrayType.
1070class ConstantArrayWithoutExprType : public ConstantArrayType {
1071
1072  ConstantArrayWithoutExprType(QualType et, QualType can,
1073                               const llvm::APInt &size,
1074                               ArraySizeModifier sm, unsigned tq)
1075    : ConstantArrayType(ConstantArrayWithoutExpr, et, can, size, sm, tq) {}
1076  friend class ASTContext;  // ASTContext creates these.
1077
1078public:
1079  virtual void getAsStringInternal(std::string &InnerString,
1080                                   const PrintingPolicy &Policy) const;
1081
1082  static bool classof(const Type *T) {
1083    return T->getTypeClass() == ConstantArrayWithoutExpr;
1084  }
1085  static bool classof(const ConstantArrayWithoutExprType *) { return true; }
1086
1087  void Profile(llvm::FoldingSetNodeID &ID) {
1088    assert(0 && "Cannot unique ConstantArrayWithoutExprTypes.");
1089  }
1090};
1091
1092/// IncompleteArrayType - This class represents C arrays with an unspecified
1093/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1094/// type is 'int' and the size is unspecified.
1095class IncompleteArrayType : public ArrayType {
1096
1097  IncompleteArrayType(QualType et, QualType can,
1098                      ArraySizeModifier sm, unsigned tq)
1099    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1100  friend class ASTContext;  // ASTContext creates these.
1101public:
1102  virtual void getAsStringInternal(std::string &InnerString,
1103                                   const PrintingPolicy &Policy) const;
1104
1105  static bool classof(const Type *T) {
1106    return T->getTypeClass() == IncompleteArray;
1107  }
1108  static bool classof(const IncompleteArrayType *) { return true; }
1109
1110  friend class StmtIteratorBase;
1111
1112  void Profile(llvm::FoldingSetNodeID &ID) {
1113    Profile(ID, getElementType(), getSizeModifier(), getIndexTypeQualifier());
1114  }
1115
1116  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1117                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1118    ID.AddPointer(ET.getAsOpaquePtr());
1119    ID.AddInteger(SizeMod);
1120    ID.AddInteger(TypeQuals);
1121  }
1122};
1123
1124/// VariableArrayType - This class represents C arrays with a specified size
1125/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1126/// Since the size expression is an arbitrary expression, we store it as such.
1127///
1128/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1129/// should not be: two lexically equivalent variable array types could mean
1130/// different things, for example, these variables do not have the same type
1131/// dynamically:
1132///
1133/// void foo(int x) {
1134///   int Y[x];
1135///   ++x;
1136///   int Z[x];
1137/// }
1138///
1139class VariableArrayType : public ArrayType {
1140  /// SizeExpr - An assignment expression. VLA's are only permitted within
1141  /// a function block.
1142  Stmt *SizeExpr;
1143  /// Brackets - The left and right array brackets.
1144  SourceRange Brackets;
1145
1146  VariableArrayType(QualType et, QualType can, Expr *e,
1147                    ArraySizeModifier sm, unsigned tq,
1148                    SourceRange brackets)
1149    : ArrayType(VariableArray, et, can, sm, tq),
1150      SizeExpr((Stmt*) e), Brackets(brackets) {}
1151  friend class ASTContext;  // ASTContext creates these.
1152  virtual void Destroy(ASTContext& C);
1153
1154public:
1155  Expr *getSizeExpr() const {
1156    // We use C-style casts instead of cast<> here because we do not wish
1157    // to have a dependency of Type.h on Stmt.h/Expr.h.
1158    return (Expr*) SizeExpr;
1159  }
1160  SourceRange getBracketsRange() const { return Brackets; }
1161  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1162  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1163
1164  virtual void getAsStringInternal(std::string &InnerString,
1165                                   const PrintingPolicy &Policy) const;
1166
1167  static bool classof(const Type *T) {
1168    return T->getTypeClass() == VariableArray;
1169  }
1170  static bool classof(const VariableArrayType *) { return true; }
1171
1172  friend class StmtIteratorBase;
1173
1174  void Profile(llvm::FoldingSetNodeID &ID) {
1175    assert(0 && "Cannnot unique VariableArrayTypes.");
1176  }
1177};
1178
1179/// DependentSizedArrayType - This type represents an array type in
1180/// C++ whose size is a value-dependent expression. For example:
1181/// @code
1182/// template<typename T, int Size>
1183/// class array {
1184///   T data[Size];
1185/// };
1186/// @endcode
1187/// For these types, we won't actually know what the array bound is
1188/// until template instantiation occurs, at which point this will
1189/// become either a ConstantArrayType or a VariableArrayType.
1190class DependentSizedArrayType : public ArrayType {
1191  /// SizeExpr - An assignment expression that will instantiate to the
1192  /// size of the array.
1193  Stmt *SizeExpr;
1194  /// Brackets - The left and right array brackets.
1195  SourceRange Brackets;
1196
1197  DependentSizedArrayType(QualType et, QualType can, Expr *e,
1198			  ArraySizeModifier sm, unsigned tq,
1199                          SourceRange brackets)
1200    : ArrayType(DependentSizedArray, et, can, sm, tq),
1201      SizeExpr((Stmt*) e), Brackets(brackets) {}
1202  friend class ASTContext;  // ASTContext creates these.
1203  virtual void Destroy(ASTContext& C);
1204
1205public:
1206  Expr *getSizeExpr() const {
1207    // We use C-style casts instead of cast<> here because we do not wish
1208    // to have a dependency of Type.h on Stmt.h/Expr.h.
1209    return (Expr*) SizeExpr;
1210  }
1211  SourceRange getBracketsRange() const { return Brackets; }
1212  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1213  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1214
1215  virtual void getAsStringInternal(std::string &InnerString,
1216                                   const PrintingPolicy &Policy) const;
1217
1218  static bool classof(const Type *T) {
1219    return T->getTypeClass() == DependentSizedArray;
1220  }
1221  static bool classof(const DependentSizedArrayType *) { return true; }
1222
1223  friend class StmtIteratorBase;
1224
1225  void Profile(llvm::FoldingSetNodeID &ID) {
1226    assert(0 && "Cannnot unique DependentSizedArrayTypes.");
1227  }
1228};
1229
1230/// DependentSizedExtVectorType - This type represent an extended vector type
1231/// where either the type or size is dependent. For example:
1232/// @code
1233/// template<typename T, int Size>
1234/// class vector {
1235///   typedef T __attribute__((ext_vector_type(Size))) type;
1236/// }
1237/// @endcode
1238class DependentSizedExtVectorType : public Type {
1239  Expr *SizeExpr;
1240  /// ElementType - The element type of the array.
1241  QualType ElementType;
1242  SourceLocation loc;
1243
1244  DependentSizedExtVectorType(QualType ElementType, QualType can,
1245                              Expr *SizeExpr, SourceLocation loc)
1246    : Type (DependentSizedExtVector, can, true),
1247    SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {}
1248  friend class ASTContext;
1249  virtual void Destroy(ASTContext& C);
1250
1251public:
1252  const Expr *getSizeExpr() const { return SizeExpr; }
1253  QualType getElementType() const { return ElementType; }
1254  SourceLocation getAttributeLoc() const { return loc; }
1255
1256  virtual void getAsStringInternal(std::string &InnerString,
1257                                   const PrintingPolicy &Policy) const;
1258
1259  static bool classof(const Type *T) {
1260    return T->getTypeClass() == DependentSizedExtVector;
1261  }
1262  static bool classof(const DependentSizedExtVectorType *) { return true; }
1263};
1264
1265
1266/// VectorType - GCC generic vector type. This type is created using
1267/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1268/// bytes. Since the constructor takes the number of vector elements, the
1269/// client is responsible for converting the size into the number of elements.
1270class VectorType : public Type, public llvm::FoldingSetNode {
1271protected:
1272  /// ElementType - The element type of the vector.
1273  QualType ElementType;
1274
1275  /// NumElements - The number of elements in the vector.
1276  unsigned NumElements;
1277
1278  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1279    Type(Vector, canonType, vecType->isDependentType()),
1280    ElementType(vecType), NumElements(nElements) {}
1281  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1282             QualType canonType)
1283    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1284      NumElements(nElements) {}
1285  friend class ASTContext;  // ASTContext creates these.
1286public:
1287
1288  QualType getElementType() const { return ElementType; }
1289  unsigned getNumElements() const { return NumElements; }
1290
1291  virtual void getAsStringInternal(std::string &InnerString,
1292                                   const PrintingPolicy &Policy) const;
1293
1294  void Profile(llvm::FoldingSetNodeID &ID) {
1295    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1296  }
1297  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1298                      unsigned NumElements, TypeClass TypeClass) {
1299    ID.AddPointer(ElementType.getAsOpaquePtr());
1300    ID.AddInteger(NumElements);
1301    ID.AddInteger(TypeClass);
1302  }
1303  static bool classof(const Type *T) {
1304    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1305  }
1306  static bool classof(const VectorType *) { return true; }
1307};
1308
1309/// ExtVectorType - Extended vector type. This type is created using
1310/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1311/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1312/// class enables syntactic extensions, like Vector Components for accessing
1313/// points, colors, and textures (modeled after OpenGL Shading Language).
1314class ExtVectorType : public VectorType {
1315  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1316    VectorType(ExtVector, vecType, nElements, canonType) {}
1317  friend class ASTContext;  // ASTContext creates these.
1318public:
1319  static int getPointAccessorIdx(char c) {
1320    switch (c) {
1321    default: return -1;
1322    case 'x': return 0;
1323    case 'y': return 1;
1324    case 'z': return 2;
1325    case 'w': return 3;
1326    }
1327  }
1328  static int getNumericAccessorIdx(char c) {
1329    switch (c) {
1330      default: return -1;
1331      case '0': return 0;
1332      case '1': return 1;
1333      case '2': return 2;
1334      case '3': return 3;
1335      case '4': return 4;
1336      case '5': return 5;
1337      case '6': return 6;
1338      case '7': return 7;
1339      case '8': return 8;
1340      case '9': return 9;
1341      case 'A':
1342      case 'a': return 10;
1343      case 'B':
1344      case 'b': return 11;
1345      case 'C':
1346      case 'c': return 12;
1347      case 'D':
1348      case 'd': return 13;
1349      case 'E':
1350      case 'e': return 14;
1351      case 'F':
1352      case 'f': return 15;
1353    }
1354  }
1355
1356  static int getAccessorIdx(char c) {
1357    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1358    return getNumericAccessorIdx(c);
1359  }
1360
1361  bool isAccessorWithinNumElements(char c) const {
1362    if (int idx = getAccessorIdx(c)+1)
1363      return unsigned(idx-1) < NumElements;
1364    return false;
1365  }
1366  virtual void getAsStringInternal(std::string &InnerString,
1367                                   const PrintingPolicy &Policy) const;
1368
1369  static bool classof(const Type *T) {
1370    return T->getTypeClass() == ExtVector;
1371  }
1372  static bool classof(const ExtVectorType *) { return true; }
1373};
1374
1375/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1376/// class of FunctionNoProtoType and FunctionProtoType.
1377///
1378class FunctionType : public Type {
1379  /// SubClassData - This field is owned by the subclass, put here to pack
1380  /// tightly with the ivars in Type.
1381  bool SubClassData : 1;
1382
1383  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1384  /// other bitfields.
1385  /// The qualifiers are part of FunctionProtoType because...
1386  ///
1387  /// C++ 8.3.5p4: The return type, the parameter type list and the
1388  /// cv-qualifier-seq, [...], are part of the function type.
1389  ///
1390  unsigned TypeQuals : 3;
1391
1392  /// NoReturn - Indicates if the function type is attribute noreturn.
1393  unsigned NoReturn : 1;
1394
1395  // The type returned by the function.
1396  QualType ResultType;
1397protected:
1398  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1399               unsigned typeQuals, QualType Canonical, bool Dependent,
1400               bool noReturn = false)
1401    : Type(tc, Canonical, Dependent),
1402      SubClassData(SubclassInfo), TypeQuals(typeQuals), NoReturn(noReturn),
1403      ResultType(res) {}
1404  bool getSubClassData() const { return SubClassData; }
1405  unsigned getTypeQuals() const { return TypeQuals; }
1406public:
1407
1408  QualType getResultType() const { return ResultType; }
1409  bool getNoReturnAttr() const { return NoReturn; }
1410
1411
1412  static bool classof(const Type *T) {
1413    return T->getTypeClass() == FunctionNoProto ||
1414           T->getTypeClass() == FunctionProto;
1415  }
1416  static bool classof(const FunctionType *) { return true; }
1417};
1418
1419/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1420/// no information available about its arguments.
1421class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1422  FunctionNoProtoType(QualType Result, QualType Canonical,
1423                      bool NoReturn = false)
1424    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1425                   /*Dependent=*/false, NoReturn) {}
1426  friend class ASTContext;  // ASTContext creates these.
1427public:
1428  // No additional state past what FunctionType provides.
1429
1430  virtual void getAsStringInternal(std::string &InnerString,
1431                                   const PrintingPolicy &Policy) const;
1432
1433  void Profile(llvm::FoldingSetNodeID &ID) {
1434    Profile(ID, getResultType(), getNoReturnAttr());
1435  }
1436  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1437                      bool NoReturn) {
1438    ID.AddInteger(NoReturn);
1439    ID.AddPointer(ResultType.getAsOpaquePtr());
1440  }
1441
1442  static bool classof(const Type *T) {
1443    return T->getTypeClass() == FunctionNoProto;
1444  }
1445  static bool classof(const FunctionNoProtoType *) { return true; }
1446};
1447
1448/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1449/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1450/// arguments, not as having a single void argument. Such a type can have an
1451/// exception specification, but this specification is not part of the canonical
1452/// type.
1453class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1454  /// hasAnyDependentType - Determine whether there are any dependent
1455  /// types within the arguments passed in.
1456  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1457    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1458      if (ArgArray[Idx]->isDependentType())
1459    return true;
1460
1461    return false;
1462  }
1463
1464  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1465                    bool isVariadic, unsigned typeQuals, bool hasExs,
1466                    bool hasAnyExs, const QualType *ExArray,
1467                    unsigned numExs, QualType Canonical, bool NoReturn)
1468    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1469                   (Result->isDependentType() ||
1470                    hasAnyDependentType(ArgArray, numArgs)), NoReturn),
1471      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1472      AnyExceptionSpec(hasAnyExs) {
1473    // Fill in the trailing argument array.
1474    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1475    for (unsigned i = 0; i != numArgs; ++i)
1476      ArgInfo[i] = ArgArray[i];
1477    // Fill in the exception array.
1478    QualType *Ex = ArgInfo + numArgs;
1479    for (unsigned i = 0; i != numExs; ++i)
1480      Ex[i] = ExArray[i];
1481  }
1482
1483  /// NumArgs - The number of arguments this function has, not counting '...'.
1484  unsigned NumArgs : 20;
1485
1486  /// NumExceptions - The number of types in the exception spec, if any.
1487  unsigned NumExceptions : 10;
1488
1489  /// HasExceptionSpec - Whether this function has an exception spec at all.
1490  bool HasExceptionSpec : 1;
1491
1492  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1493  bool AnyExceptionSpec : 1;
1494
1495  /// ArgInfo - There is an variable size array after the class in memory that
1496  /// holds the argument types.
1497
1498  /// Exceptions - There is another variable size array after ArgInfo that
1499  /// holds the exception types.
1500
1501  friend class ASTContext;  // ASTContext creates these.
1502
1503public:
1504  unsigned getNumArgs() const { return NumArgs; }
1505  QualType getArgType(unsigned i) const {
1506    assert(i < NumArgs && "Invalid argument number!");
1507    return arg_type_begin()[i];
1508  }
1509
1510  bool hasExceptionSpec() const { return HasExceptionSpec; }
1511  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1512  unsigned getNumExceptions() const { return NumExceptions; }
1513  QualType getExceptionType(unsigned i) const {
1514    assert(i < NumExceptions && "Invalid exception number!");
1515    return exception_begin()[i];
1516  }
1517  bool hasEmptyExceptionSpec() const {
1518    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1519      getNumExceptions() == 0;
1520  }
1521
1522  bool isVariadic() const { return getSubClassData(); }
1523  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1524
1525  typedef const QualType *arg_type_iterator;
1526  arg_type_iterator arg_type_begin() const {
1527    return reinterpret_cast<const QualType *>(this+1);
1528  }
1529  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1530
1531  typedef const QualType *exception_iterator;
1532  exception_iterator exception_begin() const {
1533    // exceptions begin where arguments end
1534    return arg_type_end();
1535  }
1536  exception_iterator exception_end() const {
1537    return exception_begin() + NumExceptions;
1538  }
1539
1540  virtual void getAsStringInternal(std::string &InnerString,
1541                                   const PrintingPolicy &Policy) const;
1542
1543  static bool classof(const Type *T) {
1544    return T->getTypeClass() == FunctionProto;
1545  }
1546  static bool classof(const FunctionProtoType *) { return true; }
1547
1548  void Profile(llvm::FoldingSetNodeID &ID);
1549  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1550                      arg_type_iterator ArgTys, unsigned NumArgs,
1551                      bool isVariadic, unsigned TypeQuals,
1552                      bool hasExceptionSpec, bool anyExceptionSpec,
1553                      unsigned NumExceptions, exception_iterator Exs,
1554                      bool NoReturn);
1555};
1556
1557
1558class TypedefType : public Type {
1559  TypedefDecl *Decl;
1560protected:
1561  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1562    : Type(tc, can, can->isDependentType()), Decl(D) {
1563    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1564  }
1565  friend class ASTContext;  // ASTContext creates these.
1566public:
1567
1568  TypedefDecl *getDecl() const { return Decl; }
1569
1570  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1571  /// potentially looking through *all* consecutive typedefs.  This returns the
1572  /// sum of the type qualifiers, so if you have:
1573  ///   typedef const int A;
1574  ///   typedef volatile A B;
1575  /// looking through the typedefs for B will give you "const volatile A".
1576  QualType LookThroughTypedefs() const;
1577
1578  virtual void getAsStringInternal(std::string &InnerString,
1579                                   const PrintingPolicy &Policy) const;
1580
1581  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1582  static bool classof(const TypedefType *) { return true; }
1583};
1584
1585/// TypeOfExprType (GCC extension).
1586class TypeOfExprType : public Type {
1587  Expr *TOExpr;
1588  TypeOfExprType(Expr *E, QualType can = QualType());
1589  friend class ASTContext;  // ASTContext creates these.
1590public:
1591  Expr *getUnderlyingExpr() const { return TOExpr; }
1592
1593  virtual void getAsStringInternal(std::string &InnerString,
1594                                   const PrintingPolicy &Policy) const;
1595
1596  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1597  static bool classof(const TypeOfExprType *) { return true; }
1598};
1599
1600/// TypeOfType (GCC extension).
1601class TypeOfType : public Type {
1602  QualType TOType;
1603  TypeOfType(QualType T, QualType can)
1604    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
1605    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1606  }
1607  friend class ASTContext;  // ASTContext creates these.
1608public:
1609  QualType getUnderlyingType() const { return TOType; }
1610
1611  virtual void getAsStringInternal(std::string &InnerString,
1612                                   const PrintingPolicy &Policy) const;
1613
1614  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
1615  static bool classof(const TypeOfType *) { return true; }
1616};
1617
1618/// DecltypeType (C++0x)
1619class DecltypeType : public Type {
1620  Expr *E;
1621
1622  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
1623  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
1624  // from it.
1625  QualType UnderlyingType;
1626
1627  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
1628  friend class ASTContext;  // ASTContext creates these.
1629public:
1630  Expr *getUnderlyingExpr() const { return E; }
1631  QualType getUnderlyingType() const { return UnderlyingType; }
1632
1633  virtual void getAsStringInternal(std::string &InnerString,
1634                                   const PrintingPolicy &Policy) const;
1635
1636  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
1637  static bool classof(const DecltypeType *) { return true; }
1638};
1639
1640class TagType : public Type {
1641  /// Stores the TagDecl associated with this type. The decl will
1642  /// point to the TagDecl that actually defines the entity (or is a
1643  /// definition in progress), if there is such a definition. The
1644  /// single-bit value will be non-zero when this tag is in the
1645  /// process of being defined.
1646  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
1647  friend class ASTContext;
1648  friend class TagDecl;
1649
1650protected:
1651  TagType(TypeClass TC, TagDecl *D, QualType can);
1652
1653public:
1654  TagDecl *getDecl() const { return decl.getPointer(); }
1655
1656  /// @brief Determines whether this type is in the process of being
1657  /// defined.
1658  bool isBeingDefined() const { return decl.getInt(); }
1659  void setBeingDefined(bool Def) { decl.setInt(Def? 1 : 0); }
1660
1661  virtual void getAsStringInternal(std::string &InnerString,
1662                                   const PrintingPolicy &Policy) const;
1663
1664  static bool classof(const Type *T) {
1665    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
1666  }
1667  static bool classof(const TagType *) { return true; }
1668  static bool classof(const RecordType *) { return true; }
1669  static bool classof(const EnumType *) { return true; }
1670};
1671
1672/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
1673/// to detect TagType objects of structs/unions/classes.
1674class RecordType : public TagType {
1675protected:
1676  explicit RecordType(RecordDecl *D)
1677    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
1678  explicit RecordType(TypeClass TC, RecordDecl *D)
1679    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
1680  friend class ASTContext;   // ASTContext creates these.
1681public:
1682
1683  RecordDecl *getDecl() const {
1684    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
1685  }
1686
1687  // FIXME: This predicate is a helper to QualType/Type. It needs to
1688  // recursively check all fields for const-ness. If any field is declared
1689  // const, it needs to return false.
1690  bool hasConstFields() const { return false; }
1691
1692  // FIXME: RecordType needs to check when it is created that all fields are in
1693  // the same address space, and return that.
1694  unsigned getAddressSpace() const { return 0; }
1695
1696  static bool classof(const TagType *T);
1697  static bool classof(const Type *T) {
1698    return isa<TagType>(T) && classof(cast<TagType>(T));
1699  }
1700  static bool classof(const RecordType *) { return true; }
1701};
1702
1703/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
1704/// to detect TagType objects of enums.
1705class EnumType : public TagType {
1706  explicit EnumType(EnumDecl *D)
1707    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
1708  friend class ASTContext;   // ASTContext creates these.
1709public:
1710
1711  EnumDecl *getDecl() const {
1712    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
1713  }
1714
1715  static bool classof(const TagType *T);
1716  static bool classof(const Type *T) {
1717    return isa<TagType>(T) && classof(cast<TagType>(T));
1718  }
1719  static bool classof(const EnumType *) { return true; }
1720};
1721
1722class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
1723  unsigned Depth : 15;
1724  unsigned Index : 16;
1725  unsigned ParameterPack : 1;
1726  IdentifierInfo *Name;
1727
1728  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
1729                       QualType Canon)
1730    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
1731      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
1732
1733  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
1734    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
1735      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
1736
1737  friend class ASTContext;  // ASTContext creates these
1738
1739public:
1740  unsigned getDepth() const { return Depth; }
1741  unsigned getIndex() const { return Index; }
1742  bool isParameterPack() const { return ParameterPack; }
1743  IdentifierInfo *getName() const { return Name; }
1744
1745  virtual void getAsStringInternal(std::string &InnerString,
1746                                   const PrintingPolicy &Policy) const;
1747
1748  void Profile(llvm::FoldingSetNodeID &ID) {
1749    Profile(ID, Depth, Index, ParameterPack, Name);
1750  }
1751
1752  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
1753                      unsigned Index, bool ParameterPack,
1754                      IdentifierInfo *Name) {
1755    ID.AddInteger(Depth);
1756    ID.AddInteger(Index);
1757    ID.AddBoolean(ParameterPack);
1758    ID.AddPointer(Name);
1759  }
1760
1761  static bool classof(const Type *T) {
1762    return T->getTypeClass() == TemplateTypeParm;
1763  }
1764  static bool classof(const TemplateTypeParmType *T) { return true; }
1765};
1766
1767/// \brief Represents the type of a template specialization as written
1768/// in the source code.
1769///
1770/// Template specialization types represent the syntactic form of a
1771/// template-id that refers to a type, e.g., @c vector<int>. Some
1772/// template specialization types are syntactic sugar, whose canonical
1773/// type will point to some other type node that represents the
1774/// instantiation or class template specialization. For example, a
1775/// class template specialization type of @c vector<int> will refer to
1776/// a tag type for the instantiation
1777/// @c std::vector<int, std::allocator<int>>.
1778///
1779/// Other template specialization types, for which the template name
1780/// is dependent, may be canonical types. These types are always
1781/// dependent.
1782class TemplateSpecializationType
1783  : public Type, public llvm::FoldingSetNode {
1784
1785  // FIXME: Currently needed for profiling expressions; can we avoid this?
1786  ASTContext &Context;
1787
1788    /// \brief The name of the template being specialized.
1789  TemplateName Template;
1790
1791  /// \brief - The number of template arguments named in this class
1792  /// template specialization.
1793  unsigned NumArgs;
1794
1795  TemplateSpecializationType(ASTContext &Context,
1796                             TemplateName T,
1797                             const TemplateArgument *Args,
1798                             unsigned NumArgs, QualType Canon);
1799
1800  virtual void Destroy(ASTContext& C);
1801
1802  friend class ASTContext;  // ASTContext creates these
1803
1804public:
1805  /// \brief Determine whether any of the given template arguments are
1806  /// dependent.
1807  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
1808                                            unsigned NumArgs);
1809
1810  /// \brief Print a template argument list, including the '<' and '>'
1811  /// enclosing the template arguments.
1812  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
1813                                               unsigned NumArgs,
1814                                               const PrintingPolicy &Policy);
1815
1816  typedef const TemplateArgument * iterator;
1817
1818  iterator begin() const { return getArgs(); }
1819  iterator end() const;
1820
1821  /// \brief Retrieve the name of the template that we are specializing.
1822  TemplateName getTemplateName() const { return Template; }
1823
1824  /// \brief Retrieve the template arguments.
1825  const TemplateArgument *getArgs() const {
1826    return reinterpret_cast<const TemplateArgument *>(this + 1);
1827  }
1828
1829  /// \brief Retrieve the number of template arguments.
1830  unsigned getNumArgs() const { return NumArgs; }
1831
1832  /// \brief Retrieve a specific template argument as a type.
1833  /// \precondition @c isArgType(Arg)
1834  const TemplateArgument &getArg(unsigned Idx) const;
1835
1836  virtual void getAsStringInternal(std::string &InnerString,
1837                                   const PrintingPolicy &Policy) const;
1838
1839  void Profile(llvm::FoldingSetNodeID &ID) {
1840    Profile(ID, Template, getArgs(), NumArgs, Context);
1841  }
1842
1843  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
1844                      const TemplateArgument *Args, unsigned NumArgs,
1845                      ASTContext &Context);
1846
1847  static bool classof(const Type *T) {
1848    return T->getTypeClass() == TemplateSpecialization;
1849  }
1850  static bool classof(const TemplateSpecializationType *T) { return true; }
1851};
1852
1853/// \brief Represents a type that was referred to via a qualified
1854/// name, e.g., N::M::type.
1855///
1856/// This type is used to keep track of a type name as written in the
1857/// source code, including any nested-name-specifiers. The type itself
1858/// is always "sugar", used to express what was written in the source
1859/// code but containing no additional semantic information.
1860class QualifiedNameType : public Type, public llvm::FoldingSetNode {
1861  /// \brief The nested name specifier containing the qualifier.
1862  NestedNameSpecifier *NNS;
1863
1864  /// \brief The type that this qualified name refers to.
1865  QualType NamedType;
1866
1867  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
1868                    QualType CanonType)
1869    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
1870      NNS(NNS), NamedType(NamedType) { }
1871
1872  friend class ASTContext;  // ASTContext creates these
1873
1874public:
1875  /// \brief Retrieve the qualification on this type.
1876  NestedNameSpecifier *getQualifier() const { return NNS; }
1877
1878  /// \brief Retrieve the type named by the qualified-id.
1879  QualType getNamedType() const { return NamedType; }
1880
1881  virtual void getAsStringInternal(std::string &InnerString,
1882                                   const PrintingPolicy &Policy) const;
1883
1884  void Profile(llvm::FoldingSetNodeID &ID) {
1885    Profile(ID, NNS, NamedType);
1886  }
1887
1888  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1889                      QualType NamedType) {
1890    ID.AddPointer(NNS);
1891    NamedType.Profile(ID);
1892  }
1893
1894  static bool classof(const Type *T) {
1895    return T->getTypeClass() == QualifiedName;
1896  }
1897  static bool classof(const QualifiedNameType *T) { return true; }
1898};
1899
1900/// \brief Represents a 'typename' specifier that names a type within
1901/// a dependent type, e.g., "typename T::type".
1902///
1903/// TypenameType has a very similar structure to QualifiedNameType,
1904/// which also involves a nested-name-specifier following by a type,
1905/// and (FIXME!) both can even be prefixed by the 'typename'
1906/// keyword. However, the two types serve very different roles:
1907/// QualifiedNameType is a non-semantic type that serves only as sugar
1908/// to show how a particular type was written in the source
1909/// code. TypenameType, on the other hand, only occurs when the
1910/// nested-name-specifier is dependent, such that we cannot resolve
1911/// the actual type until after instantiation.
1912class TypenameType : public Type, public llvm::FoldingSetNode {
1913  /// \brief The nested name specifier containing the qualifier.
1914  NestedNameSpecifier *NNS;
1915
1916  typedef llvm::PointerUnion<const IdentifierInfo *,
1917                             const TemplateSpecializationType *> NameType;
1918
1919  /// \brief The type that this typename specifier refers to.
1920  NameType Name;
1921
1922  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1923               QualType CanonType)
1924    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
1925    assert(NNS->isDependent() &&
1926           "TypenameType requires a dependent nested-name-specifier");
1927  }
1928
1929  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
1930               QualType CanonType)
1931    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
1932    assert(NNS->isDependent() &&
1933           "TypenameType requires a dependent nested-name-specifier");
1934  }
1935
1936  friend class ASTContext;  // ASTContext creates these
1937
1938public:
1939  /// \brief Retrieve the qualification on this type.
1940  NestedNameSpecifier *getQualifier() const { return NNS; }
1941
1942  /// \brief Retrieve the type named by the typename specifier as an
1943  /// identifier.
1944  ///
1945  /// This routine will return a non-NULL identifier pointer when the
1946  /// form of the original typename was terminated by an identifier,
1947  /// e.g., "typename T::type".
1948  const IdentifierInfo *getIdentifier() const {
1949    return Name.dyn_cast<const IdentifierInfo *>();
1950  }
1951
1952  /// \brief Retrieve the type named by the typename specifier as a
1953  /// type specialization.
1954  const TemplateSpecializationType *getTemplateId() const {
1955    return Name.dyn_cast<const TemplateSpecializationType *>();
1956  }
1957
1958  virtual void getAsStringInternal(std::string &InnerString,
1959                                   const PrintingPolicy &Policy) const;
1960
1961  void Profile(llvm::FoldingSetNodeID &ID) {
1962    Profile(ID, NNS, Name);
1963  }
1964
1965  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1966                      NameType Name) {
1967    ID.AddPointer(NNS);
1968    ID.AddPointer(Name.getOpaqueValue());
1969  }
1970
1971  static bool classof(const Type *T) {
1972    return T->getTypeClass() == Typename;
1973  }
1974  static bool classof(const TypenameType *T) { return true; }
1975};
1976
1977/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
1978/// object oriented design.  They basically correspond to C++ classes.  There
1979/// are two kinds of interface types, normal interfaces like "NSString" and
1980/// qualified interfaces, which are qualified with a protocol list like
1981/// "NSString<NSCopyable, NSAmazing>".
1982class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
1983  ObjCInterfaceDecl *Decl;
1984
1985  // List of protocols for this protocol conforming object type
1986  // List is sorted on protocol name. No protocol is enterred more than once.
1987  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;
1988
1989  ObjCInterfaceType(ObjCInterfaceDecl *D,
1990                    ObjCProtocolDecl **Protos, unsigned NumP) :
1991    Type(ObjCInterface, QualType(), /*Dependent=*/false),
1992    Decl(D), Protocols(Protos, Protos+NumP) { }
1993  friend class ASTContext;  // ASTContext creates these.
1994public:
1995  ObjCInterfaceDecl *getDecl() const { return Decl; }
1996
1997  /// getNumProtocols - Return the number of qualifying protocols in this
1998  /// interface type, or 0 if there are none.
1999  unsigned getNumProtocols() const { return Protocols.size(); }
2000
2001  /// qual_iterator and friends: this provides access to the (potentially empty)
2002  /// list of protocols qualifying this interface.
2003  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
2004  qual_iterator qual_begin() const { return Protocols.begin(); }
2005  qual_iterator qual_end() const   { return Protocols.end(); }
2006  bool qual_empty() const { return Protocols.size() == 0; }
2007
2008  virtual void getAsStringInternal(std::string &InnerString,
2009                                   const PrintingPolicy &Policy) const;
2010
2011  void Profile(llvm::FoldingSetNodeID &ID);
2012  static void Profile(llvm::FoldingSetNodeID &ID,
2013                      const ObjCInterfaceDecl *Decl,
2014                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2015
2016  static bool classof(const Type *T) {
2017    return T->getTypeClass() == ObjCInterface;
2018  }
2019  static bool classof(const ObjCInterfaceType *) { return true; }
2020};
2021
2022/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
2023/// and 'Interface <p> *'.
2024///
2025/// Duplicate protocols are removed and protocol list is canonicalized to be in
2026/// alphabetical order.
2027class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
2028  QualType PointeeType; // A builtin or interface type.
2029
2030  // List of protocols for this protocol conforming object type
2031  // List is sorted on protocol name. No protocol is entered more than once.
2032  llvm::SmallVector<ObjCProtocolDecl*, 8> Protocols;
2033
2034  ObjCObjectPointerType(QualType T, ObjCProtocolDecl **Protos, unsigned NumP) :
2035    Type(ObjCObjectPointer, QualType(), /*Dependent=*/false),
2036    PointeeType(T), Protocols(Protos, Protos+NumP) { }
2037  friend class ASTContext;  // ASTContext creates these.
2038
2039public:
2040  // Get the pointee type. Pointee will either be:
2041  // - a built-in type (for 'id' and 'Class').
2042  // - an interface type (for user-defined types).
2043  // - a TypedefType whose canonical type is an interface (as in 'T' below).
2044  //   For example: typedef NSObject T; T *var;
2045  QualType getPointeeType() const { return PointeeType; }
2046
2047  const ObjCInterfaceType *getInterfaceType() const {
2048    return PointeeType->getAsObjCInterfaceType();
2049  }
2050  /// getInterfaceDecl - returns an interface decl for user-defined types.
2051  ObjCInterfaceDecl *getInterfaceDecl() const {
2052    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
2053  }
2054  /// isObjCIdType - true for "id".
2055  bool isObjCIdType() const {
2056    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2057           !Protocols.size();
2058  }
2059  /// isObjCClassType - true for "Class".
2060  bool isObjCClassType() const {
2061    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2062           !Protocols.size();
2063  }
2064  /// isObjCQualifiedIdType - true for "id <p>".
2065  bool isObjCQualifiedIdType() const {
2066    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2067           Protocols.size();
2068  }
2069  /// isObjCQualifiedClassType - true for "Class <p>".
2070  bool isObjCQualifiedClassType() const {
2071    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2072           Protocols.size();
2073  }
2074  /// qual_iterator and friends: this provides access to the (potentially empty)
2075  /// list of protocols qualifying this interface.
2076  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
2077
2078  qual_iterator qual_begin() const { return Protocols.begin(); }
2079  qual_iterator qual_end() const   { return Protocols.end(); }
2080  bool qual_empty() const { return Protocols.size() == 0; }
2081
2082  /// getNumProtocols - Return the number of qualifying protocols in this
2083  /// interface type, or 0 if there are none.
2084  unsigned getNumProtocols() const { return Protocols.size(); }
2085
2086  void Profile(llvm::FoldingSetNodeID &ID);
2087  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2088                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2089  virtual void getAsStringInternal(std::string &InnerString,
2090                                   const PrintingPolicy &Policy) const;
2091  static bool classof(const Type *T) {
2092    return T->getTypeClass() == ObjCObjectPointer;
2093  }
2094  static bool classof(const ObjCObjectPointerType *) { return true; }
2095};
2096
2097// Inline function definitions.
2098
2099/// getUnqualifiedType - Return the type without any qualifiers.
2100inline QualType QualType::getUnqualifiedType() const {
2101  Type *TP = getTypePtr();
2102  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(TP))
2103    TP = EXTQT->getBaseType();
2104  return QualType(TP, 0);
2105}
2106
2107/// getAddressSpace - Return the address space of this type.
2108inline unsigned QualType::getAddressSpace() const {
2109  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2110  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2111    return AT->getElementType().getAddressSpace();
2112  if (const RecordType *RT = dyn_cast<RecordType>(CT))
2113    return RT->getAddressSpace();
2114  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
2115    return EXTQT->getAddressSpace();
2116  return 0;
2117}
2118
2119/// getObjCGCAttr - Return the gc attribute of this type.
2120inline QualType::GCAttrTypes QualType::getObjCGCAttr() const {
2121  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2122  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2123      return AT->getElementType().getObjCGCAttr();
2124  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
2125    return EXTQT->getObjCGCAttr();
2126  if (const ObjCObjectPointerType *PT = CT->getAsObjCObjectPointerType())
2127    return PT->getPointeeType().getObjCGCAttr();
2128  return GCNone;
2129}
2130
2131  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
2132  /// false otherwise.
2133inline bool QualType::getNoReturnAttr() const {
2134  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2135  if (const PointerType *PT = getTypePtr()->getAsPointerType()) {
2136    if (const FunctionType *FT = PT->getPointeeType()->getAsFunctionType())
2137      return FT->getNoReturnAttr();
2138  } else if (const FunctionType *FT = getTypePtr()->getAsFunctionType())
2139    return FT->getNoReturnAttr();
2140
2141  return false;
2142}
2143
2144/// isMoreQualifiedThan - Determine whether this type is more
2145/// qualified than the Other type. For example, "const volatile int"
2146/// is more qualified than "const int", "volatile int", and
2147/// "int". However, it is not more qualified than "const volatile
2148/// int".
2149inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2150  unsigned MyQuals = this->getCVRQualifiers();
2151  unsigned OtherQuals = Other.getCVRQualifiers();
2152  if (getAddressSpace() != Other.getAddressSpace())
2153    return false;
2154  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2155}
2156
2157/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2158/// as qualified as the Other type. For example, "const volatile
2159/// int" is at least as qualified as "const int", "volatile int",
2160/// "int", and "const volatile int".
2161inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2162  unsigned MyQuals = this->getCVRQualifiers();
2163  unsigned OtherQuals = Other.getCVRQualifiers();
2164  if (getAddressSpace() != Other.getAddressSpace())
2165    return false;
2166  return (MyQuals | OtherQuals) == MyQuals;
2167}
2168
2169/// getNonReferenceType - If Type is a reference type (e.g., const
2170/// int&), returns the type that the reference refers to ("const
2171/// int"). Otherwise, returns the type itself. This routine is used
2172/// throughout Sema to implement C++ 5p6:
2173///
2174///   If an expression initially has the type "reference to T" (8.3.2,
2175///   8.5.3), the type is adjusted to "T" prior to any further
2176///   analysis, the expression designates the object or function
2177///   denoted by the reference, and the expression is an lvalue.
2178inline QualType QualType::getNonReferenceType() const {
2179  if (const ReferenceType *RefType = (*this)->getAsReferenceType())
2180    return RefType->getPointeeType();
2181  else
2182    return *this;
2183}
2184
2185inline const TypedefType* Type::getAsTypedefType() const {
2186  return dyn_cast<TypedefType>(this);
2187}
2188inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
2189  if (const PointerType *PT = getAsPointerType())
2190    return PT->getPointeeType()->getAsObjCInterfaceType();
2191  return 0;
2192}
2193
2194// NOTE: All of these methods use "getUnqualifiedType" to strip off address
2195// space qualifiers if present.
2196inline bool Type::isFunctionType() const {
2197  return isa<FunctionType>(CanonicalType.getUnqualifiedType());
2198}
2199inline bool Type::isPointerType() const {
2200  return isa<PointerType>(CanonicalType.getUnqualifiedType());
2201}
2202inline bool Type::isAnyPointerType() const {
2203  return isPointerType() || isObjCObjectPointerType();
2204}
2205inline bool Type::isBlockPointerType() const {
2206  return isa<BlockPointerType>(CanonicalType.getUnqualifiedType());
2207}
2208inline bool Type::isReferenceType() const {
2209  return isa<ReferenceType>(CanonicalType.getUnqualifiedType());
2210}
2211inline bool Type::isLValueReferenceType() const {
2212  return isa<LValueReferenceType>(CanonicalType.getUnqualifiedType());
2213}
2214inline bool Type::isRValueReferenceType() const {
2215  return isa<RValueReferenceType>(CanonicalType.getUnqualifiedType());
2216}
2217inline bool Type::isFunctionPointerType() const {
2218  if (const PointerType* T = getAsPointerType())
2219    return T->getPointeeType()->isFunctionType();
2220  else
2221    return false;
2222}
2223inline bool Type::isMemberPointerType() const {
2224  return isa<MemberPointerType>(CanonicalType.getUnqualifiedType());
2225}
2226inline bool Type::isMemberFunctionPointerType() const {
2227  if (const MemberPointerType* T = getAsMemberPointerType())
2228    return T->getPointeeType()->isFunctionType();
2229  else
2230    return false;
2231}
2232inline bool Type::isArrayType() const {
2233  return isa<ArrayType>(CanonicalType.getUnqualifiedType());
2234}
2235inline bool Type::isConstantArrayType() const {
2236  return isa<ConstantArrayType>(CanonicalType.getUnqualifiedType());
2237}
2238inline bool Type::isIncompleteArrayType() const {
2239  return isa<IncompleteArrayType>(CanonicalType.getUnqualifiedType());
2240}
2241inline bool Type::isVariableArrayType() const {
2242  return isa<VariableArrayType>(CanonicalType.getUnqualifiedType());
2243}
2244inline bool Type::isDependentSizedArrayType() const {
2245  return isa<DependentSizedArrayType>(CanonicalType.getUnqualifiedType());
2246}
2247inline bool Type::isRecordType() const {
2248  return isa<RecordType>(CanonicalType.getUnqualifiedType());
2249}
2250inline bool Type::isAnyComplexType() const {
2251  return isa<ComplexType>(CanonicalType.getUnqualifiedType());
2252}
2253inline bool Type::isVectorType() const {
2254  return isa<VectorType>(CanonicalType.getUnqualifiedType());
2255}
2256inline bool Type::isExtVectorType() const {
2257  return isa<ExtVectorType>(CanonicalType.getUnqualifiedType());
2258}
2259inline bool Type::isObjCObjectPointerType() const {
2260  return isa<ObjCObjectPointerType>(CanonicalType.getUnqualifiedType());
2261}
2262inline bool Type::isObjCInterfaceType() const {
2263  return isa<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
2264}
2265inline bool Type::isObjCQualifiedIdType() const {
2266  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2267    return OPT->isObjCQualifiedIdType();
2268  return false;
2269}
2270inline bool Type::isObjCQualifiedClassType() const {
2271  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2272    return OPT->isObjCQualifiedClassType();
2273  return false;
2274}
2275inline bool Type::isObjCIdType() const {
2276  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2277    return OPT->isObjCIdType();
2278  return false;
2279}
2280inline bool Type::isObjCClassType() const {
2281  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2282    return OPT->isObjCClassType();
2283  return false;
2284}
2285inline bool Type::isObjCBuiltinType() const {
2286  return isObjCIdType() || isObjCClassType();
2287}
2288inline bool Type::isTemplateTypeParmType() const {
2289  return isa<TemplateTypeParmType>(CanonicalType.getUnqualifiedType());
2290}
2291
2292inline bool Type::isSpecificBuiltinType(unsigned K) const {
2293  if (const BuiltinType *BT = getAsBuiltinType())
2294    if (BT->getKind() == (BuiltinType::Kind) K)
2295      return true;
2296  return false;
2297}
2298
2299/// \brief Determines whether this is a type for which one can define
2300/// an overloaded operator.
2301inline bool Type::isOverloadableType() const {
2302  return isDependentType() || isRecordType() || isEnumeralType();
2303}
2304
2305inline bool Type::hasPointerRepresentation() const {
2306  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
2307          isObjCInterfaceType() || isObjCObjectPointerType() ||
2308          isObjCQualifiedInterfaceType() || isNullPtrType());
2309}
2310
2311inline bool Type::hasObjCPointerRepresentation() const {
2312  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
2313          isObjCQualifiedInterfaceType());
2314}
2315
2316/// Insertion operator for diagnostics.  This allows sending QualType's into a
2317/// diagnostic with <<.
2318inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2319                                           QualType T) {
2320  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
2321                  Diagnostic::ak_qualtype);
2322  return DB;
2323}
2324
2325/// Member-template getAs<specific type>'.
2326template <typename T> const T *Type::getAs() const {
2327  // If this is directly a T type, return it.
2328  if (const T *Ty = dyn_cast<T>(this))
2329    return Ty;
2330
2331  // If the canonical form of this type isn't the right kind, reject it.
2332  if (!isa<T>(CanonicalType)) {
2333    // Look through type qualifiers
2334    if (isa<T>(CanonicalType.getUnqualifiedType()))
2335      return CanonicalType.getUnqualifiedType()->getAs<T>();
2336    return 0;
2337  }
2338
2339  // If this is a typedef for a pointer type, strip the typedef off without
2340  // losing all typedef information.
2341  return cast<T>(getDesugaredType());
2342}
2343
2344}  // end namespace clang
2345
2346#endif
2347