Type.h revision a2c3646c35dd09d21b74826240aa916545b1873f
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/AST/NestedNameSpecifier.h"
18#include "clang/AST/TemplateName.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Basic/ExceptionSpecificationType.h"
21#include "clang/Basic/IdentifierTable.h"
22#include "clang/Basic/LLVM.h"
23#include "clang/Basic/Linkage.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/Specifiers.h"
26#include "clang/Basic/Visibility.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32#include "llvm/ADT/Twine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/type_traits.h"
35
36namespace clang {
37  enum {
38    TypeAlignmentInBits = 4,
39    TypeAlignment = 1 << TypeAlignmentInBits
40  };
41  class Type;
42  class ExtQuals;
43  class QualType;
44}
45
46namespace llvm {
47  template <typename T>
48  class PointerLikeTypeTraits;
49  template<>
50  class PointerLikeTypeTraits< ::clang::Type*> {
51  public:
52    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
53    static inline ::clang::Type *getFromVoidPointer(void *P) {
54      return static_cast< ::clang::Type*>(P);
55    }
56    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
57  };
58  template<>
59  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
60  public:
61    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
62    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
63      return static_cast< ::clang::ExtQuals*>(P);
64    }
65    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
66  };
67
68  template <>
69  struct isPodLike<clang::QualType> { static const bool value = true; };
70}
71
72namespace clang {
73  class ASTContext;
74  class TypedefNameDecl;
75  class TemplateDecl;
76  class TemplateTypeParmDecl;
77  class NonTypeTemplateParmDecl;
78  class TemplateTemplateParmDecl;
79  class TagDecl;
80  class RecordDecl;
81  class CXXRecordDecl;
82  class EnumDecl;
83  class FieldDecl;
84  class FunctionDecl;
85  class ObjCInterfaceDecl;
86  class ObjCProtocolDecl;
87  class ObjCMethodDecl;
88  class UnresolvedUsingTypenameDecl;
89  class Expr;
90  class Stmt;
91  class SourceLocation;
92  class StmtIteratorBase;
93  class TemplateArgument;
94  class TemplateArgumentLoc;
95  class TemplateArgumentListInfo;
96  class ElaboratedType;
97  class ExtQuals;
98  class ExtQualsTypeCommonBase;
99  struct PrintingPolicy;
100
101  template <typename> class CanQual;
102  typedef CanQual<Type> CanQualType;
103
104  // Provide forward declarations for all of the *Type classes
105#define TYPE(Class, Base) class Class##Type;
106#include "clang/AST/TypeNodes.def"
107
108/// Qualifiers - The collection of all-type qualifiers we support.
109/// Clang supports five independent qualifiers:
110/// * C99: const, volatile, and restrict
111/// * Embedded C (TR18037): address spaces
112/// * Objective C: the GC attributes (none, weak, or strong)
113class Qualifiers {
114public:
115  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
116    Const    = 0x1,
117    Restrict = 0x2,
118    Volatile = 0x4,
119    CVRMask = Const | Volatile | Restrict
120  };
121
122  enum GC {
123    GCNone = 0,
124    Weak,
125    Strong
126  };
127
128  enum ObjCLifetime {
129    /// There is no lifetime qualification on this type.
130    OCL_None,
131
132    /// This object can be modified without requiring retains or
133    /// releases.
134    OCL_ExplicitNone,
135
136    /// Assigning into this object requires the old value to be
137    /// released and the new value to be retained.  The timing of the
138    /// release of the old value is inexact: it may be moved to
139    /// immediately after the last known point where the value is
140    /// live.
141    OCL_Strong,
142
143    /// Reading or writing from this object requires a barrier call.
144    OCL_Weak,
145
146    /// Assigning into this object requires a lifetime extension.
147    OCL_Autoreleasing
148  };
149
150  enum {
151    /// The maximum supported address space number.
152    /// 24 bits should be enough for anyone.
153    MaxAddressSpace = 0xffffffu,
154
155    /// The width of the "fast" qualifier mask.
156    FastWidth = 3,
157
158    /// The fast qualifier mask.
159    FastMask = (1 << FastWidth) - 1
160  };
161
162  Qualifiers() : Mask(0) {}
163
164  /// \brief Returns the common set of qualifiers while removing them from
165  /// the given sets.
166  static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
167    // If both are only CVR-qualified, bit operations are sufficient.
168    if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
169      Qualifiers Q;
170      Q.Mask = L.Mask & R.Mask;
171      L.Mask &= ~Q.Mask;
172      R.Mask &= ~Q.Mask;
173      return Q;
174    }
175
176    Qualifiers Q;
177    unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
178    Q.addCVRQualifiers(CommonCRV);
179    L.removeCVRQualifiers(CommonCRV);
180    R.removeCVRQualifiers(CommonCRV);
181
182    if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
183      Q.setObjCGCAttr(L.getObjCGCAttr());
184      L.removeObjCGCAttr();
185      R.removeObjCGCAttr();
186    }
187
188    if (L.getObjCLifetime() == R.getObjCLifetime()) {
189      Q.setObjCLifetime(L.getObjCLifetime());
190      L.removeObjCLifetime();
191      R.removeObjCLifetime();
192    }
193
194    if (L.getAddressSpace() == R.getAddressSpace()) {
195      Q.setAddressSpace(L.getAddressSpace());
196      L.removeAddressSpace();
197      R.removeAddressSpace();
198    }
199    return Q;
200  }
201
202  static Qualifiers fromFastMask(unsigned Mask) {
203    Qualifiers Qs;
204    Qs.addFastQualifiers(Mask);
205    return Qs;
206  }
207
208  static Qualifiers fromCVRMask(unsigned CVR) {
209    Qualifiers Qs;
210    Qs.addCVRQualifiers(CVR);
211    return Qs;
212  }
213
214  // Deserialize qualifiers from an opaque representation.
215  static Qualifiers fromOpaqueValue(unsigned opaque) {
216    Qualifiers Qs;
217    Qs.Mask = opaque;
218    return Qs;
219  }
220
221  // Serialize these qualifiers into an opaque representation.
222  unsigned getAsOpaqueValue() const {
223    return Mask;
224  }
225
226  bool hasConst() const { return Mask & Const; }
227  void setConst(bool flag) {
228    Mask = (Mask & ~Const) | (flag ? Const : 0);
229  }
230  void removeConst() { Mask &= ~Const; }
231  void addConst() { Mask |= Const; }
232
233  bool hasVolatile() const { return Mask & Volatile; }
234  void setVolatile(bool flag) {
235    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
236  }
237  void removeVolatile() { Mask &= ~Volatile; }
238  void addVolatile() { Mask |= Volatile; }
239
240  bool hasRestrict() const { return Mask & Restrict; }
241  void setRestrict(bool flag) {
242    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
243  }
244  void removeRestrict() { Mask &= ~Restrict; }
245  void addRestrict() { Mask |= Restrict; }
246
247  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
248  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
249  void setCVRQualifiers(unsigned mask) {
250    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
251    Mask = (Mask & ~CVRMask) | mask;
252  }
253  void removeCVRQualifiers(unsigned mask) {
254    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
255    Mask &= ~mask;
256  }
257  void removeCVRQualifiers() {
258    removeCVRQualifiers(CVRMask);
259  }
260  void addCVRQualifiers(unsigned mask) {
261    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
262    Mask |= mask;
263  }
264
265  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
266  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
267  void setObjCGCAttr(GC type) {
268    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
269  }
270  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
271  void addObjCGCAttr(GC type) {
272    assert(type);
273    setObjCGCAttr(type);
274  }
275  Qualifiers withoutObjCGCAttr() const {
276    Qualifiers qs = *this;
277    qs.removeObjCGCAttr();
278    return qs;
279  }
280  Qualifiers withoutObjCLifetime() const {
281    Qualifiers qs = *this;
282    qs.removeObjCLifetime();
283    return qs;
284  }
285
286  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
287  ObjCLifetime getObjCLifetime() const {
288    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
289  }
290  void setObjCLifetime(ObjCLifetime type) {
291    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
292  }
293  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
294  void addObjCLifetime(ObjCLifetime type) {
295    assert(type);
296    assert(!hasObjCLifetime());
297    Mask |= (type << LifetimeShift);
298  }
299
300  /// True if the lifetime is neither None or ExplicitNone.
301  bool hasNonTrivialObjCLifetime() const {
302    ObjCLifetime lifetime = getObjCLifetime();
303    return (lifetime > OCL_ExplicitNone);
304  }
305
306  /// True if the lifetime is either strong or weak.
307  bool hasStrongOrWeakObjCLifetime() const {
308    ObjCLifetime lifetime = getObjCLifetime();
309    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
310  }
311
312  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
313  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
314  void setAddressSpace(unsigned space) {
315    assert(space <= MaxAddressSpace);
316    Mask = (Mask & ~AddressSpaceMask)
317         | (((uint32_t) space) << AddressSpaceShift);
318  }
319  void removeAddressSpace() { setAddressSpace(0); }
320  void addAddressSpace(unsigned space) {
321    assert(space);
322    setAddressSpace(space);
323  }
324
325  // Fast qualifiers are those that can be allocated directly
326  // on a QualType object.
327  bool hasFastQualifiers() const { return getFastQualifiers(); }
328  unsigned getFastQualifiers() const { return Mask & FastMask; }
329  void setFastQualifiers(unsigned mask) {
330    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
331    Mask = (Mask & ~FastMask) | mask;
332  }
333  void removeFastQualifiers(unsigned mask) {
334    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
335    Mask &= ~mask;
336  }
337  void removeFastQualifiers() {
338    removeFastQualifiers(FastMask);
339  }
340  void addFastQualifiers(unsigned mask) {
341    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
342    Mask |= mask;
343  }
344
345  /// hasNonFastQualifiers - Return true if the set contains any
346  /// qualifiers which require an ExtQuals node to be allocated.
347  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
348  Qualifiers getNonFastQualifiers() const {
349    Qualifiers Quals = *this;
350    Quals.setFastQualifiers(0);
351    return Quals;
352  }
353
354  /// hasQualifiers - Return true if the set contains any qualifiers.
355  bool hasQualifiers() const { return Mask; }
356  bool empty() const { return !Mask; }
357
358  /// \brief Add the qualifiers from the given set to this set.
359  void addQualifiers(Qualifiers Q) {
360    // If the other set doesn't have any non-boolean qualifiers, just
361    // bit-or it in.
362    if (!(Q.Mask & ~CVRMask))
363      Mask |= Q.Mask;
364    else {
365      Mask |= (Q.Mask & CVRMask);
366      if (Q.hasAddressSpace())
367        addAddressSpace(Q.getAddressSpace());
368      if (Q.hasObjCGCAttr())
369        addObjCGCAttr(Q.getObjCGCAttr());
370      if (Q.hasObjCLifetime())
371        addObjCLifetime(Q.getObjCLifetime());
372    }
373  }
374
375  /// \brief Remove the qualifiers from the given set from this set.
376  void removeQualifiers(Qualifiers Q) {
377    // If the other set doesn't have any non-boolean qualifiers, just
378    // bit-and the inverse in.
379    if (!(Q.Mask & ~CVRMask))
380      Mask &= ~Q.Mask;
381    else {
382      Mask &= ~(Q.Mask & CVRMask);
383      if (getObjCGCAttr() == Q.getObjCGCAttr())
384        removeObjCGCAttr();
385      if (getObjCLifetime() == Q.getObjCLifetime())
386        removeObjCLifetime();
387      if (getAddressSpace() == Q.getAddressSpace())
388        removeAddressSpace();
389    }
390  }
391
392  /// \brief Add the qualifiers from the given set to this set, given that
393  /// they don't conflict.
394  void addConsistentQualifiers(Qualifiers qs) {
395    assert(getAddressSpace() == qs.getAddressSpace() ||
396           !hasAddressSpace() || !qs.hasAddressSpace());
397    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
398           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
399    assert(getObjCLifetime() == qs.getObjCLifetime() ||
400           !hasObjCLifetime() || !qs.hasObjCLifetime());
401    Mask |= qs.Mask;
402  }
403
404  /// \brief Determines if these qualifiers compatibly include another set.
405  /// Generally this answers the question of whether an object with the other
406  /// qualifiers can be safely used as an object with these qualifiers.
407  bool compatiblyIncludes(Qualifiers other) const {
408    return
409      // Address spaces must match exactly.
410      getAddressSpace() == other.getAddressSpace() &&
411      // ObjC GC qualifiers can match, be added, or be removed, but can't be
412      // changed.
413      (getObjCGCAttr() == other.getObjCGCAttr() ||
414       !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
415      // ObjC lifetime qualifiers must match exactly.
416      getObjCLifetime() == other.getObjCLifetime() &&
417      // CVR qualifiers may subset.
418      (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
419  }
420
421  /// \brief Determines if these qualifiers compatibly include another set of
422  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
423  ///
424  /// One set of Objective-C lifetime qualifiers compatibly includes the other
425  /// if the lifetime qualifiers match, or if both are non-__weak and the
426  /// including set also contains the 'const' qualifier.
427  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
428    if (getObjCLifetime() == other.getObjCLifetime())
429      return true;
430
431    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
432      return false;
433
434    return hasConst();
435  }
436
437  /// \brief Determine whether this set of qualifiers is a strict superset of
438  /// another set of qualifiers, not considering qualifier compatibility.
439  bool isStrictSupersetOf(Qualifiers Other) const;
440
441  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
442  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
443
444  operator bool() const { return hasQualifiers(); }
445
446  Qualifiers &operator+=(Qualifiers R) {
447    addQualifiers(R);
448    return *this;
449  }
450
451  // Union two qualifier sets.  If an enumerated qualifier appears
452  // in both sets, use the one from the right.
453  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
454    L += R;
455    return L;
456  }
457
458  Qualifiers &operator-=(Qualifiers R) {
459    removeQualifiers(R);
460    return *this;
461  }
462
463  /// \brief Compute the difference between two qualifier sets.
464  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
465    L -= R;
466    return L;
467  }
468
469  std::string getAsString() const;
470  std::string getAsString(const PrintingPolicy &Policy) const;
471
472  bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
473  void print(raw_ostream &OS, const PrintingPolicy &Policy,
474             bool appendSpaceIfNonEmpty = false) const;
475
476  void Profile(llvm::FoldingSetNodeID &ID) const {
477    ID.AddInteger(Mask);
478  }
479
480private:
481
482  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
483  //           |C R V|GCAttr|Lifetime|AddressSpace|
484  uint32_t Mask;
485
486  static const uint32_t GCAttrMask = 0x18;
487  static const uint32_t GCAttrShift = 3;
488  static const uint32_t LifetimeMask = 0xE0;
489  static const uint32_t LifetimeShift = 5;
490  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
491  static const uint32_t AddressSpaceShift = 8;
492};
493
494/// A std::pair-like structure for storing a qualified type split
495/// into its local qualifiers and its locally-unqualified type.
496struct SplitQualType {
497  /// The locally-unqualified type.
498  const Type *Ty;
499
500  /// The local qualifiers.
501  Qualifiers Quals;
502
503  SplitQualType() : Ty(0), Quals() {}
504  SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
505
506  SplitQualType getSingleStepDesugaredType() const; // end of this file
507
508  // Make llvm::tie work.
509  operator std::pair<const Type *,Qualifiers>() const {
510    return std::pair<const Type *,Qualifiers>(Ty, Quals);
511  }
512
513  friend bool operator==(SplitQualType a, SplitQualType b) {
514    return a.Ty == b.Ty && a.Quals == b.Quals;
515  }
516  friend bool operator!=(SplitQualType a, SplitQualType b) {
517    return a.Ty != b.Ty || a.Quals != b.Quals;
518  }
519};
520
521/// QualType - For efficiency, we don't store CV-qualified types as nodes on
522/// their own: instead each reference to a type stores the qualifiers.  This
523/// greatly reduces the number of nodes we need to allocate for types (for
524/// example we only need one for 'int', 'const int', 'volatile int',
525/// 'const volatile int', etc).
526///
527/// As an added efficiency bonus, instead of making this a pair, we
528/// just store the two bits we care about in the low bits of the
529/// pointer.  To handle the packing/unpacking, we make QualType be a
530/// simple wrapper class that acts like a smart pointer.  A third bit
531/// indicates whether there are extended qualifiers present, in which
532/// case the pointer points to a special structure.
533class QualType {
534  // Thankfully, these are efficiently composable.
535  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
536                       Qualifiers::FastWidth> Value;
537
538  const ExtQuals *getExtQualsUnsafe() const {
539    return Value.getPointer().get<const ExtQuals*>();
540  }
541
542  const Type *getTypePtrUnsafe() const {
543    return Value.getPointer().get<const Type*>();
544  }
545
546  const ExtQualsTypeCommonBase *getCommonPtr() const {
547    assert(!isNull() && "Cannot retrieve a NULL type pointer");
548    uintptr_t CommonPtrVal
549      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
550    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
551    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
552  }
553
554  friend class QualifierCollector;
555public:
556  QualType() {}
557
558  QualType(const Type *Ptr, unsigned Quals)
559    : Value(Ptr, Quals) {}
560  QualType(const ExtQuals *Ptr, unsigned Quals)
561    : Value(Ptr, Quals) {}
562
563  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
564  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
565
566  /// Retrieves a pointer to the underlying (unqualified) type.
567  ///
568  /// This function requires that the type not be NULL. If the type might be
569  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
570  const Type *getTypePtr() const;
571
572  const Type *getTypePtrOrNull() const;
573
574  /// Retrieves a pointer to the name of the base type.
575  const IdentifierInfo *getBaseTypeIdentifier() const;
576
577  /// Divides a QualType into its unqualified type and a set of local
578  /// qualifiers.
579  SplitQualType split() const;
580
581  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
582  static QualType getFromOpaquePtr(const void *Ptr) {
583    QualType T;
584    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
585    return T;
586  }
587
588  const Type &operator*() const {
589    return *getTypePtr();
590  }
591
592  const Type *operator->() const {
593    return getTypePtr();
594  }
595
596  bool isCanonical() const;
597  bool isCanonicalAsParam() const;
598
599  /// isNull - Return true if this QualType doesn't point to a type yet.
600  bool isNull() const {
601    return Value.getPointer().isNull();
602  }
603
604  /// \brief Determine whether this particular QualType instance has the
605  /// "const" qualifier set, without looking through typedefs that may have
606  /// added "const" at a different level.
607  bool isLocalConstQualified() const {
608    return (getLocalFastQualifiers() & Qualifiers::Const);
609  }
610
611  /// \brief Determine whether this type is const-qualified.
612  bool isConstQualified() const;
613
614  /// \brief Determine whether this particular QualType instance has the
615  /// "restrict" qualifier set, without looking through typedefs that may have
616  /// added "restrict" at a different level.
617  bool isLocalRestrictQualified() const {
618    return (getLocalFastQualifiers() & Qualifiers::Restrict);
619  }
620
621  /// \brief Determine whether this type is restrict-qualified.
622  bool isRestrictQualified() const;
623
624  /// \brief Determine whether this particular QualType instance has the
625  /// "volatile" qualifier set, without looking through typedefs that may have
626  /// added "volatile" at a different level.
627  bool isLocalVolatileQualified() const {
628    return (getLocalFastQualifiers() & Qualifiers::Volatile);
629  }
630
631  /// \brief Determine whether this type is volatile-qualified.
632  bool isVolatileQualified() const;
633
634  /// \brief Determine whether this particular QualType instance has any
635  /// qualifiers, without looking through any typedefs that might add
636  /// qualifiers at a different level.
637  bool hasLocalQualifiers() const {
638    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
639  }
640
641  /// \brief Determine whether this type has any qualifiers.
642  bool hasQualifiers() const;
643
644  /// \brief Determine whether this particular QualType instance has any
645  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
646  /// instance.
647  bool hasLocalNonFastQualifiers() const {
648    return Value.getPointer().is<const ExtQuals*>();
649  }
650
651  /// \brief Retrieve the set of qualifiers local to this particular QualType
652  /// instance, not including any qualifiers acquired through typedefs or
653  /// other sugar.
654  Qualifiers getLocalQualifiers() const;
655
656  /// \brief Retrieve the set of qualifiers applied to this type.
657  Qualifiers getQualifiers() const;
658
659  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
660  /// local to this particular QualType instance, not including any qualifiers
661  /// acquired through typedefs or other sugar.
662  unsigned getLocalCVRQualifiers() const {
663    return getLocalFastQualifiers();
664  }
665
666  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
667  /// applied to this type.
668  unsigned getCVRQualifiers() const;
669
670  bool isConstant(ASTContext& Ctx) const {
671    return QualType::isConstant(*this, Ctx);
672  }
673
674  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
675  bool isPODType(ASTContext &Context) const;
676
677  /// isCXX98PODType() - Return true if this is a POD type according to the
678  /// rules of the C++98 standard, regardless of the current compilation's
679  /// language.
680  bool isCXX98PODType(ASTContext &Context) const;
681
682  /// isCXX11PODType() - Return true if this is a POD type according to the
683  /// more relaxed rules of the C++11 standard, regardless of the current
684  /// compilation's language.
685  /// (C++0x [basic.types]p9)
686  bool isCXX11PODType(ASTContext &Context) const;
687
688  /// isTrivialType - Return true if this is a trivial type
689  /// (C++0x [basic.types]p9)
690  bool isTrivialType(ASTContext &Context) const;
691
692  /// isTriviallyCopyableType - Return true if this is a trivially
693  /// copyable type (C++0x [basic.types]p9)
694  bool isTriviallyCopyableType(ASTContext &Context) const;
695
696  // Don't promise in the API that anything besides 'const' can be
697  // easily added.
698
699  /// addConst - add the specified type qualifier to this QualType.
700  void addConst() {
701    addFastQualifiers(Qualifiers::Const);
702  }
703  QualType withConst() const {
704    return withFastQualifiers(Qualifiers::Const);
705  }
706
707  /// addVolatile - add the specified type qualifier to this QualType.
708  void addVolatile() {
709    addFastQualifiers(Qualifiers::Volatile);
710  }
711  QualType withVolatile() const {
712    return withFastQualifiers(Qualifiers::Volatile);
713  }
714
715  /// Add the restrict qualifier to this QualType.
716  void addRestrict() {
717    addFastQualifiers(Qualifiers::Restrict);
718  }
719  QualType withRestrict() const {
720    return withFastQualifiers(Qualifiers::Restrict);
721  }
722
723  QualType withCVRQualifiers(unsigned CVR) const {
724    return withFastQualifiers(CVR);
725  }
726
727  void addFastQualifiers(unsigned TQs) {
728    assert(!(TQs & ~Qualifiers::FastMask)
729           && "non-fast qualifier bits set in mask!");
730    Value.setInt(Value.getInt() | TQs);
731  }
732
733  void removeLocalConst();
734  void removeLocalVolatile();
735  void removeLocalRestrict();
736  void removeLocalCVRQualifiers(unsigned Mask);
737
738  void removeLocalFastQualifiers() { Value.setInt(0); }
739  void removeLocalFastQualifiers(unsigned Mask) {
740    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
741    Value.setInt(Value.getInt() & ~Mask);
742  }
743
744  // Creates a type with the given qualifiers in addition to any
745  // qualifiers already on this type.
746  QualType withFastQualifiers(unsigned TQs) const {
747    QualType T = *this;
748    T.addFastQualifiers(TQs);
749    return T;
750  }
751
752  // Creates a type with exactly the given fast qualifiers, removing
753  // any existing fast qualifiers.
754  QualType withExactLocalFastQualifiers(unsigned TQs) const {
755    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
756  }
757
758  // Removes fast qualifiers, but leaves any extended qualifiers in place.
759  QualType withoutLocalFastQualifiers() const {
760    QualType T = *this;
761    T.removeLocalFastQualifiers();
762    return T;
763  }
764
765  QualType getCanonicalType() const;
766
767  /// \brief Return this type with all of the instance-specific qualifiers
768  /// removed, but without removing any qualifiers that may have been applied
769  /// through typedefs.
770  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
771
772  /// \brief Retrieve the unqualified variant of the given type,
773  /// removing as little sugar as possible.
774  ///
775  /// This routine looks through various kinds of sugar to find the
776  /// least-desugared type that is unqualified. For example, given:
777  ///
778  /// \code
779  /// typedef int Integer;
780  /// typedef const Integer CInteger;
781  /// typedef CInteger DifferenceType;
782  /// \endcode
783  ///
784  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
785  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
786  ///
787  /// The resulting type might still be qualified if it's sugar for an array
788  /// type.  To strip qualifiers even from within a sugared array type, use
789  /// ASTContext::getUnqualifiedArrayType.
790  inline QualType getUnqualifiedType() const;
791
792  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
793  /// given type, removing as little sugar as possible.
794  ///
795  /// Like getUnqualifiedType(), but also returns the set of
796  /// qualifiers that were built up.
797  ///
798  /// The resulting type might still be qualified if it's sugar for an array
799  /// type.  To strip qualifiers even from within a sugared array type, use
800  /// ASTContext::getUnqualifiedArrayType.
801  inline SplitQualType getSplitUnqualifiedType() const;
802
803  /// \brief Determine whether this type is more qualified than the other
804  /// given type, requiring exact equality for non-CVR qualifiers.
805  bool isMoreQualifiedThan(QualType Other) const;
806
807  /// \brief Determine whether this type is at least as qualified as the other
808  /// given type, requiring exact equality for non-CVR qualifiers.
809  bool isAtLeastAsQualifiedAs(QualType Other) const;
810
811  QualType getNonReferenceType() const;
812
813  /// \brief Determine the type of a (typically non-lvalue) expression with the
814  /// specified result type.
815  ///
816  /// This routine should be used for expressions for which the return type is
817  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
818  /// an lvalue. It removes a top-level reference (since there are no
819  /// expressions of reference type) and deletes top-level cvr-qualifiers
820  /// from non-class types (in C++) or all types (in C).
821  QualType getNonLValueExprType(ASTContext &Context) const;
822
823  /// getDesugaredType - Return the specified type with any "sugar" removed from
824  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
825  /// the type is already concrete, it returns it unmodified.  This is similar
826  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
827  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
828  /// concrete.
829  ///
830  /// Qualifiers are left in place.
831  QualType getDesugaredType(const ASTContext &Context) const {
832    return getDesugaredType(*this, Context);
833  }
834
835  SplitQualType getSplitDesugaredType() const {
836    return getSplitDesugaredType(*this);
837  }
838
839  /// \brief Return the specified type with one level of "sugar" removed from
840  /// the type.
841  ///
842  /// This routine takes off the first typedef, typeof, etc. If the outer level
843  /// of the type is already concrete, it returns it unmodified.
844  QualType getSingleStepDesugaredType(const ASTContext &Context) const {
845    return getSingleStepDesugaredTypeImpl(*this, Context);
846  }
847
848  /// IgnoreParens - Returns the specified type after dropping any
849  /// outer-level parentheses.
850  QualType IgnoreParens() const {
851    if (isa<ParenType>(*this))
852      return QualType::IgnoreParens(*this);
853    return *this;
854  }
855
856  /// operator==/!= - Indicate whether the specified types and qualifiers are
857  /// identical.
858  friend bool operator==(const QualType &LHS, const QualType &RHS) {
859    return LHS.Value == RHS.Value;
860  }
861  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
862    return LHS.Value != RHS.Value;
863  }
864  std::string getAsString() const {
865    return getAsString(split());
866  }
867  static std::string getAsString(SplitQualType split) {
868    return getAsString(split.Ty, split.Quals);
869  }
870  static std::string getAsString(const Type *ty, Qualifiers qs);
871
872  std::string getAsString(const PrintingPolicy &Policy) const;
873
874  void print(raw_ostream &OS, const PrintingPolicy &Policy,
875             const Twine &PlaceHolder = Twine()) const {
876    print(split(), OS, Policy, PlaceHolder);
877  }
878  static void print(SplitQualType split, raw_ostream &OS,
879                    const PrintingPolicy &policy, const Twine &PlaceHolder) {
880    return print(split.Ty, split.Quals, OS, policy, PlaceHolder);
881  }
882  static void print(const Type *ty, Qualifiers qs,
883                    raw_ostream &OS, const PrintingPolicy &policy,
884                    const Twine &PlaceHolder);
885
886  void getAsStringInternal(std::string &Str,
887                           const PrintingPolicy &Policy) const {
888    return getAsStringInternal(split(), Str, Policy);
889  }
890  static void getAsStringInternal(SplitQualType split, std::string &out,
891                                  const PrintingPolicy &policy) {
892    return getAsStringInternal(split.Ty, split.Quals, out, policy);
893  }
894  static void getAsStringInternal(const Type *ty, Qualifiers qs,
895                                  std::string &out,
896                                  const PrintingPolicy &policy);
897
898  class StreamedQualTypeHelper {
899    const QualType &T;
900    const PrintingPolicy &Policy;
901    const Twine &PlaceHolder;
902  public:
903    StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
904                           const Twine &PlaceHolder)
905      : T(T), Policy(Policy), PlaceHolder(PlaceHolder) { }
906
907    friend raw_ostream &operator<<(raw_ostream &OS,
908                                   const StreamedQualTypeHelper &SQT) {
909      SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder);
910      return OS;
911    }
912  };
913
914  StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
915                                const Twine &PlaceHolder = Twine()) const {
916    return StreamedQualTypeHelper(*this, Policy, PlaceHolder);
917  }
918
919  void dump(const char *s) const;
920  void dump() const;
921
922  void Profile(llvm::FoldingSetNodeID &ID) const {
923    ID.AddPointer(getAsOpaquePtr());
924  }
925
926  /// getAddressSpace - Return the address space of this type.
927  inline unsigned getAddressSpace() const;
928
929  /// getObjCGCAttr - Returns gc attribute of this type.
930  inline Qualifiers::GC getObjCGCAttr() const;
931
932  /// isObjCGCWeak true when Type is objc's weak.
933  bool isObjCGCWeak() const {
934    return getObjCGCAttr() == Qualifiers::Weak;
935  }
936
937  /// isObjCGCStrong true when Type is objc's strong.
938  bool isObjCGCStrong() const {
939    return getObjCGCAttr() == Qualifiers::Strong;
940  }
941
942  /// getObjCLifetime - Returns lifetime attribute of this type.
943  Qualifiers::ObjCLifetime getObjCLifetime() const {
944    return getQualifiers().getObjCLifetime();
945  }
946
947  bool hasNonTrivialObjCLifetime() const {
948    return getQualifiers().hasNonTrivialObjCLifetime();
949  }
950
951  bool hasStrongOrWeakObjCLifetime() const {
952    return getQualifiers().hasStrongOrWeakObjCLifetime();
953  }
954
955  enum DestructionKind {
956    DK_none,
957    DK_cxx_destructor,
958    DK_objc_strong_lifetime,
959    DK_objc_weak_lifetime
960  };
961
962  /// isDestructedType - nonzero if objects of this type require
963  /// non-trivial work to clean up after.  Non-zero because it's
964  /// conceivable that qualifiers (objc_gc(weak)?) could make
965  /// something require destruction.
966  DestructionKind isDestructedType() const {
967    return isDestructedTypeImpl(*this);
968  }
969
970  /// \brief Determine whether expressions of the given type are forbidden
971  /// from being lvalues in C.
972  ///
973  /// The expression types that are forbidden to be lvalues are:
974  ///   - 'void', but not qualified void
975  ///   - function types
976  ///
977  /// The exact rule here is C99 6.3.2.1:
978  ///   An lvalue is an expression with an object type or an incomplete
979  ///   type other than void.
980  bool isCForbiddenLValueType() const;
981
982private:
983  // These methods are implemented in a separate translation unit;
984  // "static"-ize them to avoid creating temporary QualTypes in the
985  // caller.
986  static bool isConstant(QualType T, ASTContext& Ctx);
987  static QualType getDesugaredType(QualType T, const ASTContext &Context);
988  static SplitQualType getSplitDesugaredType(QualType T);
989  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
990  static QualType getSingleStepDesugaredTypeImpl(QualType type,
991                                                 const ASTContext &C);
992  static QualType IgnoreParens(QualType T);
993  static DestructionKind isDestructedTypeImpl(QualType type);
994};
995
996} // end clang.
997
998namespace llvm {
999/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1000/// to a specific Type class.
1001template<> struct simplify_type< ::clang::QualType> {
1002  typedef const ::clang::Type *SimpleType;
1003  static SimpleType getSimplifiedValue(::clang::QualType Val) {
1004    return Val.getTypePtr();
1005  }
1006};
1007
1008// Teach SmallPtrSet that QualType is "basically a pointer".
1009template<>
1010class PointerLikeTypeTraits<clang::QualType> {
1011public:
1012  static inline void *getAsVoidPointer(clang::QualType P) {
1013    return P.getAsOpaquePtr();
1014  }
1015  static inline clang::QualType getFromVoidPointer(void *P) {
1016    return clang::QualType::getFromOpaquePtr(P);
1017  }
1018  // Various qualifiers go in low bits.
1019  enum { NumLowBitsAvailable = 0 };
1020};
1021
1022} // end namespace llvm
1023
1024namespace clang {
1025
1026/// \brief Base class that is common to both the \c ExtQuals and \c Type
1027/// classes, which allows \c QualType to access the common fields between the
1028/// two.
1029///
1030class ExtQualsTypeCommonBase {
1031  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1032    : BaseType(baseType), CanonicalType(canon) {}
1033
1034  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
1035  /// a self-referential pointer (for \c Type).
1036  ///
1037  /// This pointer allows an efficient mapping from a QualType to its
1038  /// underlying type pointer.
1039  const Type *const BaseType;
1040
1041  /// \brief The canonical type of this type.  A QualType.
1042  QualType CanonicalType;
1043
1044  friend class QualType;
1045  friend class Type;
1046  friend class ExtQuals;
1047};
1048
1049/// ExtQuals - We can encode up to four bits in the low bits of a
1050/// type pointer, but there are many more type qualifiers that we want
1051/// to be able to apply to an arbitrary type.  Therefore we have this
1052/// struct, intended to be heap-allocated and used by QualType to
1053/// store qualifiers.
1054///
1055/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1056/// in three low bits on the QualType pointer; a fourth bit records whether
1057/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1058/// Objective-C GC attributes) are much more rare.
1059class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1060  // NOTE: changing the fast qualifiers should be straightforward as
1061  // long as you don't make 'const' non-fast.
1062  // 1. Qualifiers:
1063  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1064  //       Fast qualifiers must occupy the low-order bits.
1065  //    b) Update Qualifiers::FastWidth and FastMask.
1066  // 2. QualType:
1067  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
1068  //    b) Update remove{Volatile,Restrict}, defined near the end of
1069  //       this header.
1070  // 3. ASTContext:
1071  //    a) Update get{Volatile,Restrict}Type.
1072
1073  /// Quals - the immutable set of qualifiers applied by this
1074  /// node;  always contains extended qualifiers.
1075  Qualifiers Quals;
1076
1077  ExtQuals *this_() { return this; }
1078
1079public:
1080  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1081    : ExtQualsTypeCommonBase(baseType,
1082                             canon.isNull() ? QualType(this_(), 0) : canon),
1083      Quals(quals)
1084  {
1085    assert(Quals.hasNonFastQualifiers()
1086           && "ExtQuals created with no fast qualifiers");
1087    assert(!Quals.hasFastQualifiers()
1088           && "ExtQuals created with fast qualifiers");
1089  }
1090
1091  Qualifiers getQualifiers() const { return Quals; }
1092
1093  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1094  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1095
1096  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1097  Qualifiers::ObjCLifetime getObjCLifetime() const {
1098    return Quals.getObjCLifetime();
1099  }
1100
1101  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1102  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
1103
1104  const Type *getBaseType() const { return BaseType; }
1105
1106public:
1107  void Profile(llvm::FoldingSetNodeID &ID) const {
1108    Profile(ID, getBaseType(), Quals);
1109  }
1110  static void Profile(llvm::FoldingSetNodeID &ID,
1111                      const Type *BaseType,
1112                      Qualifiers Quals) {
1113    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1114    ID.AddPointer(BaseType);
1115    Quals.Profile(ID);
1116  }
1117};
1118
1119/// \brief The kind of C++0x ref-qualifier associated with a function type,
1120/// which determines whether a member function's "this" object can be an
1121/// lvalue, rvalue, or neither.
1122enum RefQualifierKind {
1123  /// \brief No ref-qualifier was provided.
1124  RQ_None = 0,
1125  /// \brief An lvalue ref-qualifier was provided (\c &).
1126  RQ_LValue,
1127  /// \brief An rvalue ref-qualifier was provided (\c &&).
1128  RQ_RValue
1129};
1130
1131/// Type - This is the base class of the type hierarchy.  A central concept
1132/// with types is that each type always has a canonical type.  A canonical type
1133/// is the type with any typedef names stripped out of it or the types it
1134/// references.  For example, consider:
1135///
1136///  typedef int  foo;
1137///  typedef foo* bar;
1138///    'int *'    'foo *'    'bar'
1139///
1140/// There will be a Type object created for 'int'.  Since int is canonical, its
1141/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
1142/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1143/// there is a PointerType that represents 'int*', which, like 'int', is
1144/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1145/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1146/// is also 'int*'.
1147///
1148/// Non-canonical types are useful for emitting diagnostics, without losing
1149/// information about typedefs being used.  Canonical types are useful for type
1150/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1151/// about whether something has a particular form (e.g. is a function type),
1152/// because they implicitly, recursively, strip all typedefs out of a type.
1153///
1154/// Types, once created, are immutable.
1155///
1156class Type : public ExtQualsTypeCommonBase {
1157public:
1158  enum TypeClass {
1159#define TYPE(Class, Base) Class,
1160#define LAST_TYPE(Class) TypeLast = Class,
1161#define ABSTRACT_TYPE(Class, Base)
1162#include "clang/AST/TypeNodes.def"
1163    TagFirst = Record, TagLast = Enum
1164  };
1165
1166private:
1167  Type(const Type &) LLVM_DELETED_FUNCTION;
1168  void operator=(const Type &) LLVM_DELETED_FUNCTION;
1169
1170  /// Bitfields required by the Type class.
1171  class TypeBitfields {
1172    friend class Type;
1173    template <class T> friend class TypePropertyCache;
1174
1175    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1176    unsigned TC : 8;
1177
1178    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
1179    unsigned Dependent : 1;
1180
1181    /// \brief Whether this type somehow involves a template parameter, even
1182    /// if the resolution of the type does not depend on a template parameter.
1183    unsigned InstantiationDependent : 1;
1184
1185    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1186    unsigned VariablyModified : 1;
1187
1188    /// \brief Whether this type contains an unexpanded parameter pack
1189    /// (for C++0x variadic templates).
1190    unsigned ContainsUnexpandedParameterPack : 1;
1191
1192    /// \brief True if the cache (i.e. the bitfields here starting with
1193    /// 'Cache') is valid.
1194    mutable unsigned CacheValid : 1;
1195
1196    /// \brief Linkage of this type.
1197    mutable unsigned CachedLinkage : 2;
1198
1199    /// \brief Whether this type involves and local or unnamed types.
1200    mutable unsigned CachedLocalOrUnnamed : 1;
1201
1202    /// \brief FromAST - Whether this type comes from an AST file.
1203    mutable unsigned FromAST : 1;
1204
1205    bool isCacheValid() const {
1206      return CacheValid;
1207    }
1208    Linkage getLinkage() const {
1209      assert(isCacheValid() && "getting linkage from invalid cache");
1210      return static_cast<Linkage>(CachedLinkage);
1211    }
1212    bool hasLocalOrUnnamedType() const {
1213      assert(isCacheValid() && "getting linkage from invalid cache");
1214      return CachedLocalOrUnnamed;
1215    }
1216  };
1217  enum { NumTypeBits = 19 };
1218
1219protected:
1220  // These classes allow subclasses to somewhat cleanly pack bitfields
1221  // into Type.
1222
1223  class ArrayTypeBitfields {
1224    friend class ArrayType;
1225
1226    unsigned : NumTypeBits;
1227
1228    /// IndexTypeQuals - CVR qualifiers from declarations like
1229    /// 'int X[static restrict 4]'. For function parameters only.
1230    unsigned IndexTypeQuals : 3;
1231
1232    /// SizeModifier - storage class qualifiers from declarations like
1233    /// 'int X[static restrict 4]'. For function parameters only.
1234    /// Actually an ArrayType::ArraySizeModifier.
1235    unsigned SizeModifier : 3;
1236  };
1237
1238  class BuiltinTypeBitfields {
1239    friend class BuiltinType;
1240
1241    unsigned : NumTypeBits;
1242
1243    /// The kind (BuiltinType::Kind) of builtin type this is.
1244    unsigned Kind : 8;
1245  };
1246
1247  class FunctionTypeBitfields {
1248    friend class FunctionType;
1249
1250    unsigned : NumTypeBits;
1251
1252    /// Extra information which affects how the function is called, like
1253    /// regparm and the calling convention.
1254    unsigned ExtInfo : 9;
1255
1256    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1257    /// other bitfields.
1258    /// The qualifiers are part of FunctionProtoType because...
1259    ///
1260    /// C++ 8.3.5p4: The return type, the parameter type list and the
1261    /// cv-qualifier-seq, [...], are part of the function type.
1262    unsigned TypeQuals : 3;
1263  };
1264
1265  class ObjCObjectTypeBitfields {
1266    friend class ObjCObjectType;
1267
1268    unsigned : NumTypeBits;
1269
1270    /// NumProtocols - The number of protocols stored directly on this
1271    /// object type.
1272    unsigned NumProtocols : 32 - NumTypeBits;
1273  };
1274
1275  class ReferenceTypeBitfields {
1276    friend class ReferenceType;
1277
1278    unsigned : NumTypeBits;
1279
1280    /// True if the type was originally spelled with an lvalue sigil.
1281    /// This is never true of rvalue references but can also be false
1282    /// on lvalue references because of C++0x [dcl.typedef]p9,
1283    /// as follows:
1284    ///
1285    ///   typedef int &ref;    // lvalue, spelled lvalue
1286    ///   typedef int &&rvref; // rvalue
1287    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1288    ///   ref &&a;             // lvalue, inner ref
1289    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1290    ///   rvref &&a;           // rvalue, inner ref
1291    unsigned SpelledAsLValue : 1;
1292
1293    /// True if the inner type is a reference type.  This only happens
1294    /// in non-canonical forms.
1295    unsigned InnerRef : 1;
1296  };
1297
1298  class TypeWithKeywordBitfields {
1299    friend class TypeWithKeyword;
1300
1301    unsigned : NumTypeBits;
1302
1303    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1304    unsigned Keyword : 8;
1305  };
1306
1307  class VectorTypeBitfields {
1308    friend class VectorType;
1309
1310    unsigned : NumTypeBits;
1311
1312    /// VecKind - The kind of vector, either a generic vector type or some
1313    /// target-specific vector type such as for AltiVec or Neon.
1314    unsigned VecKind : 3;
1315
1316    /// NumElements - The number of elements in the vector.
1317    unsigned NumElements : 29 - NumTypeBits;
1318  };
1319
1320  class AttributedTypeBitfields {
1321    friend class AttributedType;
1322
1323    unsigned : NumTypeBits;
1324
1325    /// AttrKind - an AttributedType::Kind
1326    unsigned AttrKind : 32 - NumTypeBits;
1327  };
1328
1329  class AutoTypeBitfields {
1330    friend class AutoType;
1331
1332    unsigned : NumTypeBits;
1333
1334    /// Was this placeholder type spelled as 'decltype(auto)'?
1335    unsigned IsDecltypeAuto : 1;
1336  };
1337
1338  union {
1339    TypeBitfields TypeBits;
1340    ArrayTypeBitfields ArrayTypeBits;
1341    AttributedTypeBitfields AttributedTypeBits;
1342    AutoTypeBitfields AutoTypeBits;
1343    BuiltinTypeBitfields BuiltinTypeBits;
1344    FunctionTypeBitfields FunctionTypeBits;
1345    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1346    ReferenceTypeBitfields ReferenceTypeBits;
1347    TypeWithKeywordBitfields TypeWithKeywordBits;
1348    VectorTypeBitfields VectorTypeBits;
1349  };
1350
1351private:
1352  /// \brief Set whether this type comes from an AST file.
1353  void setFromAST(bool V = true) const {
1354    TypeBits.FromAST = V;
1355  }
1356
1357  template <class T> friend class TypePropertyCache;
1358
1359protected:
1360  // silence VC++ warning C4355: 'this' : used in base member initializer list
1361  Type *this_() { return this; }
1362  Type(TypeClass tc, QualType canon, bool Dependent,
1363       bool InstantiationDependent, bool VariablyModified,
1364       bool ContainsUnexpandedParameterPack)
1365    : ExtQualsTypeCommonBase(this,
1366                             canon.isNull() ? QualType(this_(), 0) : canon) {
1367    TypeBits.TC = tc;
1368    TypeBits.Dependent = Dependent;
1369    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1370    TypeBits.VariablyModified = VariablyModified;
1371    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1372    TypeBits.CacheValid = false;
1373    TypeBits.CachedLocalOrUnnamed = false;
1374    TypeBits.CachedLinkage = NoLinkage;
1375    TypeBits.FromAST = false;
1376  }
1377  friend class ASTContext;
1378
1379  void setDependent(bool D = true) {
1380    TypeBits.Dependent = D;
1381    if (D)
1382      TypeBits.InstantiationDependent = true;
1383  }
1384  void setInstantiationDependent(bool D = true) {
1385    TypeBits.InstantiationDependent = D; }
1386  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1387  }
1388  void setContainsUnexpandedParameterPack(bool PP = true) {
1389    TypeBits.ContainsUnexpandedParameterPack = PP;
1390  }
1391
1392public:
1393  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1394
1395  /// \brief Whether this type comes from an AST file.
1396  bool isFromAST() const { return TypeBits.FromAST; }
1397
1398  /// \brief Whether this type is or contains an unexpanded parameter
1399  /// pack, used to support C++0x variadic templates.
1400  ///
1401  /// A type that contains a parameter pack shall be expanded by the
1402  /// ellipsis operator at some point. For example, the typedef in the
1403  /// following example contains an unexpanded parameter pack 'T':
1404  ///
1405  /// \code
1406  /// template<typename ...T>
1407  /// struct X {
1408  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1409  /// };
1410  /// \endcode
1411  ///
1412  /// Note that this routine does not specify which
1413  bool containsUnexpandedParameterPack() const {
1414    return TypeBits.ContainsUnexpandedParameterPack;
1415  }
1416
1417  /// Determines if this type would be canonical if it had no further
1418  /// qualification.
1419  bool isCanonicalUnqualified() const {
1420    return CanonicalType == QualType(this, 0);
1421  }
1422
1423  /// Pull a single level of sugar off of this locally-unqualified type.
1424  /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1425  /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1426  QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1427
1428  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1429  /// object types, function types, and incomplete types.
1430
1431  /// isIncompleteType - Return true if this is an incomplete type.
1432  /// A type that can describe objects, but which lacks information needed to
1433  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1434  /// routine will need to determine if the size is actually required.
1435  ///
1436  /// \brief Def If non-NULL, and the type refers to some kind of declaration
1437  /// that can be completed (such as a C struct, C++ class, or Objective-C
1438  /// class), will be set to the declaration.
1439  bool isIncompleteType(NamedDecl **Def = 0) const;
1440
1441  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1442  /// type, in other words, not a function type.
1443  bool isIncompleteOrObjectType() const {
1444    return !isFunctionType();
1445  }
1446
1447  /// \brief Determine whether this type is an object type.
1448  bool isObjectType() const {
1449    // C++ [basic.types]p8:
1450    //   An object type is a (possibly cv-qualified) type that is not a
1451    //   function type, not a reference type, and not a void type.
1452    return !isReferenceType() && !isFunctionType() && !isVoidType();
1453  }
1454
1455  /// isLiteralType - Return true if this is a literal type
1456  /// (C++11 [basic.types]p10)
1457  bool isLiteralType(ASTContext &Ctx) const;
1458
1459  /// \brief Test if this type is a standard-layout type.
1460  /// (C++0x [basic.type]p9)
1461  bool isStandardLayoutType() const;
1462
1463  /// Helper methods to distinguish type categories. All type predicates
1464  /// operate on the canonical type, ignoring typedefs and qualifiers.
1465
1466  /// isBuiltinType - returns true if the type is a builtin type.
1467  bool isBuiltinType() const;
1468
1469  /// isSpecificBuiltinType - Test for a particular builtin type.
1470  bool isSpecificBuiltinType(unsigned K) const;
1471
1472  /// isPlaceholderType - Test for a type which does not represent an
1473  /// actual type-system type but is instead used as a placeholder for
1474  /// various convenient purposes within Clang.  All such types are
1475  /// BuiltinTypes.
1476  bool isPlaceholderType() const;
1477  const BuiltinType *getAsPlaceholderType() const;
1478
1479  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1480  bool isSpecificPlaceholderType(unsigned K) const;
1481
1482  /// isNonOverloadPlaceholderType - Test for a placeholder type
1483  /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
1484  bool isNonOverloadPlaceholderType() const;
1485
1486  /// isIntegerType() does *not* include complex integers (a GCC extension).
1487  /// isComplexIntegerType() can be used to test for complex integers.
1488  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1489  bool isEnumeralType() const;
1490  bool isBooleanType() const;
1491  bool isCharType() const;
1492  bool isWideCharType() const;
1493  bool isChar16Type() const;
1494  bool isChar32Type() const;
1495  bool isAnyCharacterType() const;
1496  bool isIntegralType(ASTContext &Ctx) const;
1497
1498  /// \brief Determine whether this type is an integral or enumeration type.
1499  bool isIntegralOrEnumerationType() const;
1500  /// \brief Determine whether this type is an integral or unscoped enumeration
1501  /// type.
1502  bool isIntegralOrUnscopedEnumerationType() const;
1503
1504  /// Floating point categories.
1505  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1506  /// isComplexType() does *not* include complex integers (a GCC extension).
1507  /// isComplexIntegerType() can be used to test for complex integers.
1508  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1509  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1510  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1511  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1512  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1513  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1514  bool isVoidType() const;         // C99 6.2.5p19
1515  bool isDerivedType() const;      // C99 6.2.5p20
1516  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1517  bool isAggregateType() const;
1518  bool isFundamentalType() const;
1519  bool isCompoundType() const;
1520
1521  // Type Predicates: Check to see if this type is structurally the specified
1522  // type, ignoring typedefs and qualifiers.
1523  bool isFunctionType() const;
1524  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1525  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1526  bool isPointerType() const;
1527  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1528  bool isBlockPointerType() const;
1529  bool isVoidPointerType() const;
1530  bool isReferenceType() const;
1531  bool isLValueReferenceType() const;
1532  bool isRValueReferenceType() const;
1533  bool isFunctionPointerType() const;
1534  bool isMemberPointerType() const;
1535  bool isMemberFunctionPointerType() const;
1536  bool isMemberDataPointerType() const;
1537  bool isArrayType() const;
1538  bool isConstantArrayType() const;
1539  bool isIncompleteArrayType() const;
1540  bool isVariableArrayType() const;
1541  bool isDependentSizedArrayType() const;
1542  bool isRecordType() const;
1543  bool isClassType() const;
1544  bool isStructureType() const;
1545  bool isInterfaceType() const;
1546  bool isStructureOrClassType() const;
1547  bool isUnionType() const;
1548  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1549  bool isVectorType() const;                    // GCC vector type.
1550  bool isExtVectorType() const;                 // Extended vector type.
1551  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1552  bool isObjCRetainableType() const;            // ObjC object or block pointer
1553  bool isObjCLifetimeType() const;              // (array of)* retainable type
1554  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1555  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1556  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1557  // for the common case.
1558  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1559  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1560  bool isObjCQualifiedIdType() const;           // id<foo>
1561  bool isObjCQualifiedClassType() const;        // Class<foo>
1562  bool isObjCObjectOrInterfaceType() const;
1563  bool isObjCIdType() const;                    // id
1564  bool isObjCClassType() const;                 // Class
1565  bool isObjCSelType() const;                 // Class
1566  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1567  bool isObjCARCBridgableType() const;
1568  bool isCARCBridgableType() const;
1569  bool isTemplateTypeParmType() const;          // C++ template type parameter
1570  bool isNullPtrType() const;                   // C++0x nullptr_t
1571  bool isAtomicType() const;                    // C11 _Atomic()
1572
1573  bool isImage1dT() const;                      // OpenCL image1d_t
1574  bool isImage1dArrayT() const;                 // OpenCL image1d_array_t
1575  bool isImage1dBufferT() const;                // OpenCL image1d_buffer_t
1576  bool isImage2dT() const;                      // OpenCL image2d_t
1577  bool isImage2dArrayT() const;                 // OpenCL image2d_array_t
1578  bool isImage3dT() const;                      // OpenCL image3d_t
1579
1580  bool isImageType() const;                     // Any OpenCL image type
1581
1582  bool isSamplerT() const;                      // OpenCL sampler_t
1583  bool isEventT() const;                        // OpenCL event_t
1584
1585  bool isOpenCLSpecificType() const;            // Any OpenCL specific type
1586
1587  /// Determines if this type, which must satisfy
1588  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1589  /// than implicitly __strong.
1590  bool isObjCARCImplicitlyUnretainedType() const;
1591
1592  /// Return the implicit lifetime for this type, which must not be dependent.
1593  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1594
1595  enum ScalarTypeKind {
1596    STK_CPointer,
1597    STK_BlockPointer,
1598    STK_ObjCObjectPointer,
1599    STK_MemberPointer,
1600    STK_Bool,
1601    STK_Integral,
1602    STK_Floating,
1603    STK_IntegralComplex,
1604    STK_FloatingComplex
1605  };
1606  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1607  ScalarTypeKind getScalarTypeKind() const;
1608
1609  /// isDependentType - Whether this type is a dependent type, meaning
1610  /// that its definition somehow depends on a template parameter
1611  /// (C++ [temp.dep.type]).
1612  bool isDependentType() const { return TypeBits.Dependent; }
1613
1614  /// \brief Determine whether this type is an instantiation-dependent type,
1615  /// meaning that the type involves a template parameter (even if the
1616  /// definition does not actually depend on the type substituted for that
1617  /// template parameter).
1618  bool isInstantiationDependentType() const {
1619    return TypeBits.InstantiationDependent;
1620  }
1621
1622  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1623  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1624
1625  /// \brief Whether this type involves a variable-length array type
1626  /// with a definite size.
1627  bool hasSizedVLAType() const;
1628
1629  /// \brief Whether this type is or contains a local or unnamed type.
1630  bool hasUnnamedOrLocalType() const;
1631
1632  bool isOverloadableType() const;
1633
1634  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1635  bool isElaboratedTypeSpecifier() const;
1636
1637  bool canDecayToPointerType() const;
1638
1639  /// hasPointerRepresentation - Whether this type is represented
1640  /// natively as a pointer; this includes pointers, references, block
1641  /// pointers, and Objective-C interface, qualified id, and qualified
1642  /// interface types, as well as nullptr_t.
1643  bool hasPointerRepresentation() const;
1644
1645  /// hasObjCPointerRepresentation - Whether this type can represent
1646  /// an objective pointer type for the purpose of GC'ability
1647  bool hasObjCPointerRepresentation() const;
1648
1649  /// \brief Determine whether this type has an integer representation
1650  /// of some sort, e.g., it is an integer type or a vector.
1651  bool hasIntegerRepresentation() const;
1652
1653  /// \brief Determine whether this type has an signed integer representation
1654  /// of some sort, e.g., it is an signed integer type or a vector.
1655  bool hasSignedIntegerRepresentation() const;
1656
1657  /// \brief Determine whether this type has an unsigned integer representation
1658  /// of some sort, e.g., it is an unsigned integer type or a vector.
1659  bool hasUnsignedIntegerRepresentation() const;
1660
1661  /// \brief Determine whether this type has a floating-point representation
1662  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1663  bool hasFloatingRepresentation() const;
1664
1665  // Type Checking Functions: Check to see if this type is structurally the
1666  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1667  // the best type we can.
1668  const RecordType *getAsStructureType() const;
1669  /// NOTE: getAs*ArrayType are methods on ASTContext.
1670  const RecordType *getAsUnionType() const;
1671  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1672  // The following is a convenience method that returns an ObjCObjectPointerType
1673  // for object declared using an interface.
1674  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1675  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1676  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1677  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1678
1679  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1680  /// because the type is a RecordType or because it is the injected-class-name
1681  /// type of a class template or class template partial specialization.
1682  CXXRecordDecl *getAsCXXRecordDecl() const;
1683
1684  /// If this is a pointer or reference to a RecordType, return the
1685  /// CXXRecordDecl that that type refers to.
1686  ///
1687  /// If this is not a pointer or reference, or the type being pointed to does
1688  /// not refer to a CXXRecordDecl, returns NULL.
1689  const CXXRecordDecl *getPointeeCXXRecordDecl() const;
1690
1691  /// \brief Get the AutoType whose type will be deduced for a variable with
1692  /// an initializer of this type. This looks through declarators like pointer
1693  /// types, but not through decltype or typedefs.
1694  AutoType *getContainedAutoType() const;
1695
1696  /// Member-template getAs<specific type>'.  Look through sugar for
1697  /// an instance of \<specific type>.   This scheme will eventually
1698  /// replace the specific getAsXXXX methods above.
1699  ///
1700  /// There are some specializations of this member template listed
1701  /// immediately following this class.
1702  template <typename T> const T *getAs() const;
1703
1704  /// A variant of getAs<> for array types which silently discards
1705  /// qualifiers from the outermost type.
1706  const ArrayType *getAsArrayTypeUnsafe() const;
1707
1708  /// Member-template castAs<specific type>.  Look through sugar for
1709  /// the underlying instance of \<specific type>.
1710  ///
1711  /// This method has the same relationship to getAs<T> as cast<T> has
1712  /// to dyn_cast<T>; which is to say, the underlying type *must*
1713  /// have the intended type, and this method will never return null.
1714  template <typename T> const T *castAs() const;
1715
1716  /// A variant of castAs<> for array type which silently discards
1717  /// qualifiers from the outermost type.
1718  const ArrayType *castAsArrayTypeUnsafe() const;
1719
1720  /// getBaseElementTypeUnsafe - Get the base element type of this
1721  /// type, potentially discarding type qualifiers.  This method
1722  /// should never be used when type qualifiers are meaningful.
1723  const Type *getBaseElementTypeUnsafe() const;
1724
1725  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1726  /// element type of the array, potentially with type qualifiers missing.
1727  /// This method should never be used when type qualifiers are meaningful.
1728  const Type *getArrayElementTypeNoTypeQual() const;
1729
1730  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1731  /// pointer, this returns the respective pointee.
1732  QualType getPointeeType() const;
1733
1734  /// getUnqualifiedDesugaredType() - Return the specified type with
1735  /// any "sugar" removed from the type, removing any typedefs,
1736  /// typeofs, etc., as well as any qualifiers.
1737  const Type *getUnqualifiedDesugaredType() const;
1738
1739  /// More type predicates useful for type checking/promotion
1740  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1741
1742  /// isSignedIntegerType - Return true if this is an integer type that is
1743  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1744  /// or an enum decl which has a signed representation.
1745  bool isSignedIntegerType() const;
1746
1747  /// isUnsignedIntegerType - Return true if this is an integer type that is
1748  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1749  /// or an enum decl which has an unsigned representation.
1750  bool isUnsignedIntegerType() const;
1751
1752  /// Determines whether this is an integer type that is signed or an
1753  /// enumeration types whose underlying type is a signed integer type.
1754  bool isSignedIntegerOrEnumerationType() const;
1755
1756  /// Determines whether this is an integer type that is unsigned or an
1757  /// enumeration types whose underlying type is a unsigned integer type.
1758  bool isUnsignedIntegerOrEnumerationType() const;
1759
1760  /// isConstantSizeType - Return true if this is not a variable sized type,
1761  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1762  /// incomplete types.
1763  bool isConstantSizeType() const;
1764
1765  /// isSpecifierType - Returns true if this type can be represented by some
1766  /// set of type specifiers.
1767  bool isSpecifierType() const;
1768
1769  /// \brief Determine the linkage of this type.
1770  Linkage getLinkage() const;
1771
1772  /// \brief Determine the visibility of this type.
1773  Visibility getVisibility() const {
1774    return getLinkageAndVisibility().getVisibility();
1775  }
1776
1777  /// \brief Return true if the visibility was explicitly set is the code.
1778  bool isVisibilityExplicit() const {
1779    return getLinkageAndVisibility().isVisibilityExplicit();
1780  }
1781
1782  /// \brief Determine the linkage and visibility of this type.
1783  LinkageInfo getLinkageAndVisibility() const;
1784
1785  /// \brief True if the computed linkage is valid. Used for consistency
1786  /// checking. Should always return true.
1787  bool isLinkageValid() const;
1788
1789  const char *getTypeClassName() const;
1790
1791  QualType getCanonicalTypeInternal() const {
1792    return CanonicalType;
1793  }
1794  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1795  LLVM_ATTRIBUTE_USED void dump() const;
1796
1797  friend class ASTReader;
1798  friend class ASTWriter;
1799};
1800
1801/// \brief This will check for a TypedefType by removing any existing sugar
1802/// until it reaches a TypedefType or a non-sugared type.
1803template <> const TypedefType *Type::getAs() const;
1804
1805/// \brief This will check for a TemplateSpecializationType by removing any
1806/// existing sugar until it reaches a TemplateSpecializationType or a
1807/// non-sugared type.
1808template <> const TemplateSpecializationType *Type::getAs() const;
1809
1810// We can do canonical leaf types faster, because we don't have to
1811// worry about preserving child type decoration.
1812#define TYPE(Class, Base)
1813#define LEAF_TYPE(Class) \
1814template <> inline const Class##Type *Type::getAs() const { \
1815  return dyn_cast<Class##Type>(CanonicalType); \
1816} \
1817template <> inline const Class##Type *Type::castAs() const { \
1818  return cast<Class##Type>(CanonicalType); \
1819}
1820#include "clang/AST/TypeNodes.def"
1821
1822
1823/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1824/// types are always canonical and have a literal name field.
1825class BuiltinType : public Type {
1826public:
1827  enum Kind {
1828#define BUILTIN_TYPE(Id, SingletonId) Id,
1829#define LAST_BUILTIN_TYPE(Id) LastKind = Id
1830#include "clang/AST/BuiltinTypes.def"
1831  };
1832
1833public:
1834  BuiltinType(Kind K)
1835    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1836           /*InstantiationDependent=*/(K == Dependent),
1837           /*VariablyModified=*/false,
1838           /*Unexpanded paramter pack=*/false) {
1839    BuiltinTypeBits.Kind = K;
1840  }
1841
1842  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1843  StringRef getName(const PrintingPolicy &Policy) const;
1844  const char *getNameAsCString(const PrintingPolicy &Policy) const {
1845    // The StringRef is null-terminated.
1846    StringRef str = getName(Policy);
1847    assert(!str.empty() && str.data()[str.size()] == '\0');
1848    return str.data();
1849  }
1850
1851  bool isSugared() const { return false; }
1852  QualType desugar() const { return QualType(this, 0); }
1853
1854  bool isInteger() const {
1855    return getKind() >= Bool && getKind() <= Int128;
1856  }
1857
1858  bool isSignedInteger() const {
1859    return getKind() >= Char_S && getKind() <= Int128;
1860  }
1861
1862  bool isUnsignedInteger() const {
1863    return getKind() >= Bool && getKind() <= UInt128;
1864  }
1865
1866  bool isFloatingPoint() const {
1867    return getKind() >= Half && getKind() <= LongDouble;
1868  }
1869
1870  /// Determines whether the given kind corresponds to a placeholder type.
1871  static bool isPlaceholderTypeKind(Kind K) {
1872    return K >= Overload;
1873  }
1874
1875  /// Determines whether this type is a placeholder type, i.e. a type
1876  /// which cannot appear in arbitrary positions in a fully-formed
1877  /// expression.
1878  bool isPlaceholderType() const {
1879    return isPlaceholderTypeKind(getKind());
1880  }
1881
1882  /// Determines whether this type is a placeholder type other than
1883  /// Overload.  Most placeholder types require only syntactic
1884  /// information about their context in order to be resolved (e.g.
1885  /// whether it is a call expression), which means they can (and
1886  /// should) be resolved in an earlier "phase" of analysis.
1887  /// Overload expressions sometimes pick up further information
1888  /// from their context, like whether the context expects a
1889  /// specific function-pointer type, and so frequently need
1890  /// special treatment.
1891  bool isNonOverloadPlaceholderType() const {
1892    return getKind() > Overload;
1893  }
1894
1895  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1896};
1897
1898/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1899/// types (_Complex float etc) as well as the GCC integer complex extensions.
1900///
1901class ComplexType : public Type, public llvm::FoldingSetNode {
1902  QualType ElementType;
1903  ComplexType(QualType Element, QualType CanonicalPtr) :
1904    Type(Complex, CanonicalPtr, Element->isDependentType(),
1905         Element->isInstantiationDependentType(),
1906         Element->isVariablyModifiedType(),
1907         Element->containsUnexpandedParameterPack()),
1908    ElementType(Element) {
1909  }
1910  friend class ASTContext;  // ASTContext creates these.
1911
1912public:
1913  QualType getElementType() const { return ElementType; }
1914
1915  bool isSugared() const { return false; }
1916  QualType desugar() const { return QualType(this, 0); }
1917
1918  void Profile(llvm::FoldingSetNodeID &ID) {
1919    Profile(ID, getElementType());
1920  }
1921  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1922    ID.AddPointer(Element.getAsOpaquePtr());
1923  }
1924
1925  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1926};
1927
1928/// ParenType - Sugar for parentheses used when specifying types.
1929///
1930class ParenType : public Type, public llvm::FoldingSetNode {
1931  QualType Inner;
1932
1933  ParenType(QualType InnerType, QualType CanonType) :
1934    Type(Paren, CanonType, InnerType->isDependentType(),
1935         InnerType->isInstantiationDependentType(),
1936         InnerType->isVariablyModifiedType(),
1937         InnerType->containsUnexpandedParameterPack()),
1938    Inner(InnerType) {
1939  }
1940  friend class ASTContext;  // ASTContext creates these.
1941
1942public:
1943
1944  QualType getInnerType() const { return Inner; }
1945
1946  bool isSugared() const { return true; }
1947  QualType desugar() const { return getInnerType(); }
1948
1949  void Profile(llvm::FoldingSetNodeID &ID) {
1950    Profile(ID, getInnerType());
1951  }
1952  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1953    Inner.Profile(ID);
1954  }
1955
1956  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1957};
1958
1959/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1960///
1961class PointerType : public Type, public llvm::FoldingSetNode {
1962  QualType PointeeType;
1963
1964  PointerType(QualType Pointee, QualType CanonicalPtr) :
1965    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1966         Pointee->isInstantiationDependentType(),
1967         Pointee->isVariablyModifiedType(),
1968         Pointee->containsUnexpandedParameterPack()),
1969    PointeeType(Pointee) {
1970  }
1971  friend class ASTContext;  // ASTContext creates these.
1972
1973public:
1974
1975  QualType getPointeeType() const { return PointeeType; }
1976
1977  bool isSugared() const { return false; }
1978  QualType desugar() const { return QualType(this, 0); }
1979
1980  void Profile(llvm::FoldingSetNodeID &ID) {
1981    Profile(ID, getPointeeType());
1982  }
1983  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1984    ID.AddPointer(Pointee.getAsOpaquePtr());
1985  }
1986
1987  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1988};
1989
1990/// BlockPointerType - pointer to a block type.
1991/// This type is to represent types syntactically represented as
1992/// "void (^)(int)", etc. Pointee is required to always be a function type.
1993///
1994class BlockPointerType : public Type, public llvm::FoldingSetNode {
1995  QualType PointeeType;  // Block is some kind of pointer type
1996  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1997    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1998         Pointee->isInstantiationDependentType(),
1999         Pointee->isVariablyModifiedType(),
2000         Pointee->containsUnexpandedParameterPack()),
2001    PointeeType(Pointee) {
2002  }
2003  friend class ASTContext;  // ASTContext creates these.
2004
2005public:
2006
2007  // Get the pointee type. Pointee is required to always be a function type.
2008  QualType getPointeeType() const { return PointeeType; }
2009
2010  bool isSugared() const { return false; }
2011  QualType desugar() const { return QualType(this, 0); }
2012
2013  void Profile(llvm::FoldingSetNodeID &ID) {
2014      Profile(ID, getPointeeType());
2015  }
2016  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2017      ID.AddPointer(Pointee.getAsOpaquePtr());
2018  }
2019
2020  static bool classof(const Type *T) {
2021    return T->getTypeClass() == BlockPointer;
2022  }
2023};
2024
2025/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
2026///
2027class ReferenceType : public Type, public llvm::FoldingSetNode {
2028  QualType PointeeType;
2029
2030protected:
2031  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2032                bool SpelledAsLValue) :
2033    Type(tc, CanonicalRef, Referencee->isDependentType(),
2034         Referencee->isInstantiationDependentType(),
2035         Referencee->isVariablyModifiedType(),
2036         Referencee->containsUnexpandedParameterPack()),
2037    PointeeType(Referencee)
2038  {
2039    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2040    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2041  }
2042
2043public:
2044  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2045  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2046
2047  QualType getPointeeTypeAsWritten() const { return PointeeType; }
2048  QualType getPointeeType() const {
2049    // FIXME: this might strip inner qualifiers; okay?
2050    const ReferenceType *T = this;
2051    while (T->isInnerRef())
2052      T = T->PointeeType->castAs<ReferenceType>();
2053    return T->PointeeType;
2054  }
2055
2056  void Profile(llvm::FoldingSetNodeID &ID) {
2057    Profile(ID, PointeeType, isSpelledAsLValue());
2058  }
2059  static void Profile(llvm::FoldingSetNodeID &ID,
2060                      QualType Referencee,
2061                      bool SpelledAsLValue) {
2062    ID.AddPointer(Referencee.getAsOpaquePtr());
2063    ID.AddBoolean(SpelledAsLValue);
2064  }
2065
2066  static bool classof(const Type *T) {
2067    return T->getTypeClass() == LValueReference ||
2068           T->getTypeClass() == RValueReference;
2069  }
2070};
2071
2072/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
2073///
2074class LValueReferenceType : public ReferenceType {
2075  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2076                      bool SpelledAsLValue) :
2077    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
2078  {}
2079  friend class ASTContext; // ASTContext creates these
2080public:
2081  bool isSugared() const { return false; }
2082  QualType desugar() const { return QualType(this, 0); }
2083
2084  static bool classof(const Type *T) {
2085    return T->getTypeClass() == LValueReference;
2086  }
2087};
2088
2089/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
2090///
2091class RValueReferenceType : public ReferenceType {
2092  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
2093    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
2094  }
2095  friend class ASTContext; // ASTContext creates these
2096public:
2097  bool isSugared() const { return false; }
2098  QualType desugar() const { return QualType(this, 0); }
2099
2100  static bool classof(const Type *T) {
2101    return T->getTypeClass() == RValueReference;
2102  }
2103};
2104
2105/// MemberPointerType - C++ 8.3.3 - Pointers to members
2106///
2107class MemberPointerType : public Type, public llvm::FoldingSetNode {
2108  QualType PointeeType;
2109  /// The class of which the pointee is a member. Must ultimately be a
2110  /// RecordType, but could be a typedef or a template parameter too.
2111  const Type *Class;
2112
2113  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
2114    Type(MemberPointer, CanonicalPtr,
2115         Cls->isDependentType() || Pointee->isDependentType(),
2116         (Cls->isInstantiationDependentType() ||
2117          Pointee->isInstantiationDependentType()),
2118         Pointee->isVariablyModifiedType(),
2119         (Cls->containsUnexpandedParameterPack() ||
2120          Pointee->containsUnexpandedParameterPack())),
2121    PointeeType(Pointee), Class(Cls) {
2122  }
2123  friend class ASTContext; // ASTContext creates these.
2124
2125public:
2126  QualType getPointeeType() const { return PointeeType; }
2127
2128  /// Returns true if the member type (i.e. the pointee type) is a
2129  /// function type rather than a data-member type.
2130  bool isMemberFunctionPointer() const {
2131    return PointeeType->isFunctionProtoType();
2132  }
2133
2134  /// Returns true if the member type (i.e. the pointee type) is a
2135  /// data type rather than a function type.
2136  bool isMemberDataPointer() const {
2137    return !PointeeType->isFunctionProtoType();
2138  }
2139
2140  const Type *getClass() const { return Class; }
2141
2142  bool isSugared() const { return false; }
2143  QualType desugar() const { return QualType(this, 0); }
2144
2145  void Profile(llvm::FoldingSetNodeID &ID) {
2146    Profile(ID, getPointeeType(), getClass());
2147  }
2148  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2149                      const Type *Class) {
2150    ID.AddPointer(Pointee.getAsOpaquePtr());
2151    ID.AddPointer(Class);
2152  }
2153
2154  static bool classof(const Type *T) {
2155    return T->getTypeClass() == MemberPointer;
2156  }
2157};
2158
2159/// ArrayType - C99 6.7.5.2 - Array Declarators.
2160///
2161class ArrayType : public Type, public llvm::FoldingSetNode {
2162public:
2163  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
2164  /// an array with a static size (e.g. int X[static 4]), or an array
2165  /// with a star size (e.g. int X[*]).
2166  /// 'static' is only allowed on function parameters.
2167  enum ArraySizeModifier {
2168    Normal, Static, Star
2169  };
2170private:
2171  /// ElementType - The element type of the array.
2172  QualType ElementType;
2173
2174protected:
2175  // C++ [temp.dep.type]p1:
2176  //   A type is dependent if it is...
2177  //     - an array type constructed from any dependent type or whose
2178  //       size is specified by a constant expression that is
2179  //       value-dependent,
2180  ArrayType(TypeClass tc, QualType et, QualType can,
2181            ArraySizeModifier sm, unsigned tq,
2182            bool ContainsUnexpandedParameterPack)
2183    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2184           et->isInstantiationDependentType() || tc == DependentSizedArray,
2185           (tc == VariableArray || et->isVariablyModifiedType()),
2186           ContainsUnexpandedParameterPack),
2187      ElementType(et) {
2188    ArrayTypeBits.IndexTypeQuals = tq;
2189    ArrayTypeBits.SizeModifier = sm;
2190  }
2191
2192  friend class ASTContext;  // ASTContext creates these.
2193
2194public:
2195  QualType getElementType() const { return ElementType; }
2196  ArraySizeModifier getSizeModifier() const {
2197    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2198  }
2199  Qualifiers getIndexTypeQualifiers() const {
2200    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2201  }
2202  unsigned getIndexTypeCVRQualifiers() const {
2203    return ArrayTypeBits.IndexTypeQuals;
2204  }
2205
2206  static bool classof(const Type *T) {
2207    return T->getTypeClass() == ConstantArray ||
2208           T->getTypeClass() == VariableArray ||
2209           T->getTypeClass() == IncompleteArray ||
2210           T->getTypeClass() == DependentSizedArray;
2211  }
2212};
2213
2214/// ConstantArrayType - This class represents the canonical version of
2215/// C arrays with a specified constant size.  For example, the canonical
2216/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
2217/// type is 'int' and the size is 404.
2218class ConstantArrayType : public ArrayType {
2219  llvm::APInt Size; // Allows us to unique the type.
2220
2221  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2222                    ArraySizeModifier sm, unsigned tq)
2223    : ArrayType(ConstantArray, et, can, sm, tq,
2224                et->containsUnexpandedParameterPack()),
2225      Size(size) {}
2226protected:
2227  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2228                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2229    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2230      Size(size) {}
2231  friend class ASTContext;  // ASTContext creates these.
2232public:
2233  const llvm::APInt &getSize() const { return Size; }
2234  bool isSugared() const { return false; }
2235  QualType desugar() const { return QualType(this, 0); }
2236
2237
2238  /// \brief Determine the number of bits required to address a member of
2239  // an array with the given element type and number of elements.
2240  static unsigned getNumAddressingBits(ASTContext &Context,
2241                                       QualType ElementType,
2242                                       const llvm::APInt &NumElements);
2243
2244  /// \brief Determine the maximum number of active bits that an array's size
2245  /// can require, which limits the maximum size of the array.
2246  static unsigned getMaxSizeBits(ASTContext &Context);
2247
2248  void Profile(llvm::FoldingSetNodeID &ID) {
2249    Profile(ID, getElementType(), getSize(),
2250            getSizeModifier(), getIndexTypeCVRQualifiers());
2251  }
2252  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2253                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2254                      unsigned TypeQuals) {
2255    ID.AddPointer(ET.getAsOpaquePtr());
2256    ID.AddInteger(ArraySize.getZExtValue());
2257    ID.AddInteger(SizeMod);
2258    ID.AddInteger(TypeQuals);
2259  }
2260  static bool classof(const Type *T) {
2261    return T->getTypeClass() == ConstantArray;
2262  }
2263};
2264
2265/// IncompleteArrayType - This class represents C arrays with an unspecified
2266/// size.  For example 'int A[]' has an IncompleteArrayType where the element
2267/// type is 'int' and the size is unspecified.
2268class IncompleteArrayType : public ArrayType {
2269
2270  IncompleteArrayType(QualType et, QualType can,
2271                      ArraySizeModifier sm, unsigned tq)
2272    : ArrayType(IncompleteArray, et, can, sm, tq,
2273                et->containsUnexpandedParameterPack()) {}
2274  friend class ASTContext;  // ASTContext creates these.
2275public:
2276  bool isSugared() const { return false; }
2277  QualType desugar() const { return QualType(this, 0); }
2278
2279  static bool classof(const Type *T) {
2280    return T->getTypeClass() == IncompleteArray;
2281  }
2282
2283  friend class StmtIteratorBase;
2284
2285  void Profile(llvm::FoldingSetNodeID &ID) {
2286    Profile(ID, getElementType(), getSizeModifier(),
2287            getIndexTypeCVRQualifiers());
2288  }
2289
2290  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2291                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2292    ID.AddPointer(ET.getAsOpaquePtr());
2293    ID.AddInteger(SizeMod);
2294    ID.AddInteger(TypeQuals);
2295  }
2296};
2297
2298/// VariableArrayType - This class represents C arrays with a specified size
2299/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
2300/// Since the size expression is an arbitrary expression, we store it as such.
2301///
2302/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2303/// should not be: two lexically equivalent variable array types could mean
2304/// different things, for example, these variables do not have the same type
2305/// dynamically:
2306///
2307/// void foo(int x) {
2308///   int Y[x];
2309///   ++x;
2310///   int Z[x];
2311/// }
2312///
2313class VariableArrayType : public ArrayType {
2314  /// SizeExpr - An assignment expression. VLA's are only permitted within
2315  /// a function block.
2316  Stmt *SizeExpr;
2317  /// Brackets - The left and right array brackets.
2318  SourceRange Brackets;
2319
2320  VariableArrayType(QualType et, QualType can, Expr *e,
2321                    ArraySizeModifier sm, unsigned tq,
2322                    SourceRange brackets)
2323    : ArrayType(VariableArray, et, can, sm, tq,
2324                et->containsUnexpandedParameterPack()),
2325      SizeExpr((Stmt*) e), Brackets(brackets) {}
2326  friend class ASTContext;  // ASTContext creates these.
2327
2328public:
2329  Expr *getSizeExpr() const {
2330    // We use C-style casts instead of cast<> here because we do not wish
2331    // to have a dependency of Type.h on Stmt.h/Expr.h.
2332    return (Expr*) SizeExpr;
2333  }
2334  SourceRange getBracketsRange() const { return Brackets; }
2335  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2336  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2337
2338  bool isSugared() const { return false; }
2339  QualType desugar() const { return QualType(this, 0); }
2340
2341  static bool classof(const Type *T) {
2342    return T->getTypeClass() == VariableArray;
2343  }
2344
2345  friend class StmtIteratorBase;
2346
2347  void Profile(llvm::FoldingSetNodeID &ID) {
2348    llvm_unreachable("Cannot unique VariableArrayTypes.");
2349  }
2350};
2351
2352/// DependentSizedArrayType - This type represents an array type in
2353/// C++ whose size is a value-dependent expression. For example:
2354///
2355/// \code
2356/// template<typename T, int Size>
2357/// class array {
2358///   T data[Size];
2359/// };
2360/// \endcode
2361///
2362/// For these types, we won't actually know what the array bound is
2363/// until template instantiation occurs, at which point this will
2364/// become either a ConstantArrayType or a VariableArrayType.
2365class DependentSizedArrayType : public ArrayType {
2366  const ASTContext &Context;
2367
2368  /// \brief An assignment expression that will instantiate to the
2369  /// size of the array.
2370  ///
2371  /// The expression itself might be NULL, in which case the array
2372  /// type will have its size deduced from an initializer.
2373  Stmt *SizeExpr;
2374
2375  /// Brackets - The left and right array brackets.
2376  SourceRange Brackets;
2377
2378  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2379                          Expr *e, ArraySizeModifier sm, unsigned tq,
2380                          SourceRange brackets);
2381
2382  friend class ASTContext;  // ASTContext creates these.
2383
2384public:
2385  Expr *getSizeExpr() const {
2386    // We use C-style casts instead of cast<> here because we do not wish
2387    // to have a dependency of Type.h on Stmt.h/Expr.h.
2388    return (Expr*) SizeExpr;
2389  }
2390  SourceRange getBracketsRange() const { return Brackets; }
2391  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2392  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2393
2394  bool isSugared() const { return false; }
2395  QualType desugar() const { return QualType(this, 0); }
2396
2397  static bool classof(const Type *T) {
2398    return T->getTypeClass() == DependentSizedArray;
2399  }
2400
2401  friend class StmtIteratorBase;
2402
2403
2404  void Profile(llvm::FoldingSetNodeID &ID) {
2405    Profile(ID, Context, getElementType(),
2406            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2407  }
2408
2409  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2410                      QualType ET, ArraySizeModifier SizeMod,
2411                      unsigned TypeQuals, Expr *E);
2412};
2413
2414/// DependentSizedExtVectorType - This type represent an extended vector type
2415/// where either the type or size is dependent. For example:
2416/// @code
2417/// template<typename T, int Size>
2418/// class vector {
2419///   typedef T __attribute__((ext_vector_type(Size))) type;
2420/// }
2421/// @endcode
2422class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2423  const ASTContext &Context;
2424  Expr *SizeExpr;
2425  /// ElementType - The element type of the array.
2426  QualType ElementType;
2427  SourceLocation loc;
2428
2429  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2430                              QualType can, Expr *SizeExpr, SourceLocation loc);
2431
2432  friend class ASTContext;
2433
2434public:
2435  Expr *getSizeExpr() const { return SizeExpr; }
2436  QualType getElementType() const { return ElementType; }
2437  SourceLocation getAttributeLoc() const { return loc; }
2438
2439  bool isSugared() const { return false; }
2440  QualType desugar() const { return QualType(this, 0); }
2441
2442  static bool classof(const Type *T) {
2443    return T->getTypeClass() == DependentSizedExtVector;
2444  }
2445
2446  void Profile(llvm::FoldingSetNodeID &ID) {
2447    Profile(ID, Context, getElementType(), getSizeExpr());
2448  }
2449
2450  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2451                      QualType ElementType, Expr *SizeExpr);
2452};
2453
2454
2455/// VectorType - GCC generic vector type. This type is created using
2456/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2457/// bytes; or from an Altivec __vector or vector declaration.
2458/// Since the constructor takes the number of vector elements, the
2459/// client is responsible for converting the size into the number of elements.
2460class VectorType : public Type, public llvm::FoldingSetNode {
2461public:
2462  enum VectorKind {
2463    GenericVector,  // not a target-specific vector type
2464    AltiVecVector,  // is AltiVec vector
2465    AltiVecPixel,   // is AltiVec 'vector Pixel'
2466    AltiVecBool,    // is AltiVec 'vector bool ...'
2467    NeonVector,     // is ARM Neon vector
2468    NeonPolyVector  // is ARM Neon polynomial vector
2469  };
2470protected:
2471  /// ElementType - The element type of the vector.
2472  QualType ElementType;
2473
2474  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2475             VectorKind vecKind);
2476
2477  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2478             QualType canonType, VectorKind vecKind);
2479
2480  friend class ASTContext;  // ASTContext creates these.
2481
2482public:
2483
2484  QualType getElementType() const { return ElementType; }
2485  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2486
2487  bool isSugared() const { return false; }
2488  QualType desugar() const { return QualType(this, 0); }
2489
2490  VectorKind getVectorKind() const {
2491    return VectorKind(VectorTypeBits.VecKind);
2492  }
2493
2494  void Profile(llvm::FoldingSetNodeID &ID) {
2495    Profile(ID, getElementType(), getNumElements(),
2496            getTypeClass(), getVectorKind());
2497  }
2498  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2499                      unsigned NumElements, TypeClass TypeClass,
2500                      VectorKind VecKind) {
2501    ID.AddPointer(ElementType.getAsOpaquePtr());
2502    ID.AddInteger(NumElements);
2503    ID.AddInteger(TypeClass);
2504    ID.AddInteger(VecKind);
2505  }
2506
2507  static bool classof(const Type *T) {
2508    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2509  }
2510};
2511
2512/// ExtVectorType - Extended vector type. This type is created using
2513/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2514/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2515/// class enables syntactic extensions, like Vector Components for accessing
2516/// points, colors, and textures (modeled after OpenGL Shading Language).
2517class ExtVectorType : public VectorType {
2518  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2519    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2520  friend class ASTContext;  // ASTContext creates these.
2521public:
2522  static int getPointAccessorIdx(char c) {
2523    switch (c) {
2524    default: return -1;
2525    case 'x': return 0;
2526    case 'y': return 1;
2527    case 'z': return 2;
2528    case 'w': return 3;
2529    }
2530  }
2531  static int getNumericAccessorIdx(char c) {
2532    switch (c) {
2533      default: return -1;
2534      case '0': return 0;
2535      case '1': return 1;
2536      case '2': return 2;
2537      case '3': return 3;
2538      case '4': return 4;
2539      case '5': return 5;
2540      case '6': return 6;
2541      case '7': return 7;
2542      case '8': return 8;
2543      case '9': return 9;
2544      case 'A':
2545      case 'a': return 10;
2546      case 'B':
2547      case 'b': return 11;
2548      case 'C':
2549      case 'c': return 12;
2550      case 'D':
2551      case 'd': return 13;
2552      case 'E':
2553      case 'e': return 14;
2554      case 'F':
2555      case 'f': return 15;
2556    }
2557  }
2558
2559  static int getAccessorIdx(char c) {
2560    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2561    return getNumericAccessorIdx(c);
2562  }
2563
2564  bool isAccessorWithinNumElements(char c) const {
2565    if (int idx = getAccessorIdx(c)+1)
2566      return unsigned(idx-1) < getNumElements();
2567    return false;
2568  }
2569  bool isSugared() const { return false; }
2570  QualType desugar() const { return QualType(this, 0); }
2571
2572  static bool classof(const Type *T) {
2573    return T->getTypeClass() == ExtVector;
2574  }
2575};
2576
2577/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2578/// class of FunctionNoProtoType and FunctionProtoType.
2579///
2580class FunctionType : public Type {
2581  // The type returned by the function.
2582  QualType ResultType;
2583
2584 public:
2585  /// ExtInfo - A class which abstracts out some details necessary for
2586  /// making a call.
2587  ///
2588  /// It is not actually used directly for storing this information in
2589  /// a FunctionType, although FunctionType does currently use the
2590  /// same bit-pattern.
2591  ///
2592  // If you add a field (say Foo), other than the obvious places (both,
2593  // constructors, compile failures), what you need to update is
2594  // * Operator==
2595  // * getFoo
2596  // * withFoo
2597  // * functionType. Add Foo, getFoo.
2598  // * ASTContext::getFooType
2599  // * ASTContext::mergeFunctionTypes
2600  // * FunctionNoProtoType::Profile
2601  // * FunctionProtoType::Profile
2602  // * TypePrinter::PrintFunctionProto
2603  // * AST read and write
2604  // * Codegen
2605  class ExtInfo {
2606    // Feel free to rearrange or add bits, but if you go over 9,
2607    // you'll need to adjust both the Bits field below and
2608    // Type::FunctionTypeBitfields.
2609
2610    //   |  CC  |noreturn|produces|regparm|
2611    //   |0 .. 3|   4    |    5   | 6 .. 8|
2612    //
2613    // regparm is either 0 (no regparm attribute) or the regparm value+1.
2614    enum { CallConvMask = 0xF };
2615    enum { NoReturnMask = 0x10 };
2616    enum { ProducesResultMask = 0x20 };
2617    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2618           RegParmOffset = 6 }; // Assumed to be the last field
2619
2620    uint16_t Bits;
2621
2622    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2623
2624    friend class FunctionType;
2625
2626   public:
2627    // Constructor with no defaults. Use this when you know that you
2628    // have all the elements (when reading an AST file for example).
2629    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2630            bool producesResult) {
2631      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2632      Bits = ((unsigned) cc) |
2633             (noReturn ? NoReturnMask : 0) |
2634             (producesResult ? ProducesResultMask : 0) |
2635             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2636    }
2637
2638    // Constructor with all defaults. Use when for example creating a
2639    // function know to use defaults.
2640    ExtInfo() : Bits(0) {}
2641
2642    bool getNoReturn() const { return Bits & NoReturnMask; }
2643    bool getProducesResult() const { return Bits & ProducesResultMask; }
2644    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2645    unsigned getRegParm() const {
2646      unsigned RegParm = Bits >> RegParmOffset;
2647      if (RegParm > 0)
2648        --RegParm;
2649      return RegParm;
2650    }
2651    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2652
2653    bool operator==(ExtInfo Other) const {
2654      return Bits == Other.Bits;
2655    }
2656    bool operator!=(ExtInfo Other) const {
2657      return Bits != Other.Bits;
2658    }
2659
2660    // Note that we don't have setters. That is by design, use
2661    // the following with methods instead of mutating these objects.
2662
2663    ExtInfo withNoReturn(bool noReturn) const {
2664      if (noReturn)
2665        return ExtInfo(Bits | NoReturnMask);
2666      else
2667        return ExtInfo(Bits & ~NoReturnMask);
2668    }
2669
2670    ExtInfo withProducesResult(bool producesResult) const {
2671      if (producesResult)
2672        return ExtInfo(Bits | ProducesResultMask);
2673      else
2674        return ExtInfo(Bits & ~ProducesResultMask);
2675    }
2676
2677    ExtInfo withRegParm(unsigned RegParm) const {
2678      assert(RegParm < 7 && "Invalid regparm value");
2679      return ExtInfo((Bits & ~RegParmMask) |
2680                     ((RegParm + 1) << RegParmOffset));
2681    }
2682
2683    ExtInfo withCallingConv(CallingConv cc) const {
2684      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2685    }
2686
2687    void Profile(llvm::FoldingSetNodeID &ID) const {
2688      ID.AddInteger(Bits);
2689    }
2690  };
2691
2692protected:
2693  FunctionType(TypeClass tc, QualType res,
2694               unsigned typeQuals, QualType Canonical, bool Dependent,
2695               bool InstantiationDependent,
2696               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2697               ExtInfo Info)
2698    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
2699           ContainsUnexpandedParameterPack),
2700      ResultType(res) {
2701    FunctionTypeBits.ExtInfo = Info.Bits;
2702    FunctionTypeBits.TypeQuals = typeQuals;
2703  }
2704  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2705
2706public:
2707
2708  QualType getResultType() const { return ResultType; }
2709
2710  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2711  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2712  /// \brief Determine whether this function type includes the GNU noreturn
2713  /// attribute. The C++11 [[noreturn]] attribute does not affect the function
2714  /// type.
2715  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2716  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2717  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2718  bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
2719  bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
2720  bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
2721
2722  /// \brief Determine the type of an expression that calls a function of
2723  /// this type.
2724  QualType getCallResultType(ASTContext &Context) const {
2725    return getResultType().getNonLValueExprType(Context);
2726  }
2727
2728  static StringRef getNameForCallConv(CallingConv CC);
2729
2730  static bool classof(const Type *T) {
2731    return T->getTypeClass() == FunctionNoProto ||
2732           T->getTypeClass() == FunctionProto;
2733  }
2734};
2735
2736/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2737/// no information available about its arguments.
2738class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2739  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2740    : FunctionType(FunctionNoProto, Result, 0, Canonical,
2741                   /*Dependent=*/false, /*InstantiationDependent=*/false,
2742                   Result->isVariablyModifiedType(),
2743                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2744
2745  friend class ASTContext;  // ASTContext creates these.
2746
2747public:
2748  // No additional state past what FunctionType provides.
2749
2750  bool isSugared() const { return false; }
2751  QualType desugar() const { return QualType(this, 0); }
2752
2753  void Profile(llvm::FoldingSetNodeID &ID) {
2754    Profile(ID, getResultType(), getExtInfo());
2755  }
2756  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2757                      ExtInfo Info) {
2758    Info.Profile(ID);
2759    ID.AddPointer(ResultType.getAsOpaquePtr());
2760  }
2761
2762  static bool classof(const Type *T) {
2763    return T->getTypeClass() == FunctionNoProto;
2764  }
2765};
2766
2767/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2768/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2769/// arguments, not as having a single void argument. Such a type can have an
2770/// exception specification, but this specification is not part of the canonical
2771/// type.
2772class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2773public:
2774  /// ExtProtoInfo - Extra information about a function prototype.
2775  struct ExtProtoInfo {
2776    ExtProtoInfo() :
2777      Variadic(false), HasTrailingReturn(false), TypeQuals(0),
2778      ExceptionSpecType(EST_None), RefQualifier(RQ_None),
2779      NumExceptions(0), Exceptions(0), NoexceptExpr(0),
2780      ExceptionSpecDecl(0), ExceptionSpecTemplate(0),
2781      ConsumedArguments(0) {}
2782
2783    FunctionType::ExtInfo ExtInfo;
2784    bool Variadic : 1;
2785    bool HasTrailingReturn : 1;
2786    unsigned char TypeQuals;
2787    ExceptionSpecificationType ExceptionSpecType;
2788    RefQualifierKind RefQualifier;
2789    unsigned NumExceptions;
2790    const QualType *Exceptions;
2791    Expr *NoexceptExpr;
2792    FunctionDecl *ExceptionSpecDecl;
2793    FunctionDecl *ExceptionSpecTemplate;
2794    const bool *ConsumedArguments;
2795  };
2796
2797private:
2798  /// \brief Determine whether there are any argument types that
2799  /// contain an unexpanded parameter pack.
2800  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2801                                                 unsigned numArgs) {
2802    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2803      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2804        return true;
2805
2806    return false;
2807  }
2808
2809  FunctionProtoType(QualType result, ArrayRef<QualType> args,
2810                    QualType canonical, const ExtProtoInfo &epi);
2811
2812  /// NumArgs - The number of arguments this function has, not counting '...'.
2813  unsigned NumArgs : 15;
2814
2815  /// NumExceptions - The number of types in the exception spec, if any.
2816  unsigned NumExceptions : 9;
2817
2818  /// ExceptionSpecType - The type of exception specification this function has.
2819  unsigned ExceptionSpecType : 3;
2820
2821  /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
2822  unsigned HasAnyConsumedArgs : 1;
2823
2824  /// Variadic - Whether the function is variadic.
2825  unsigned Variadic : 1;
2826
2827  /// HasTrailingReturn - Whether this function has a trailing return type.
2828  unsigned HasTrailingReturn : 1;
2829
2830  /// \brief The ref-qualifier associated with a \c FunctionProtoType.
2831  ///
2832  /// This is a value of type \c RefQualifierKind.
2833  unsigned RefQualifier : 2;
2834
2835  // ArgInfo - There is an variable size array after the class in memory that
2836  // holds the argument types.
2837
2838  // Exceptions - There is another variable size array after ArgInfo that
2839  // holds the exception types.
2840
2841  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2842  // to the expression in the noexcept() specifier.
2843
2844  // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
2845  // be a pair of FunctionDecl* pointing to the function which should be used to
2846  // instantiate this function type's exception specification, and the function
2847  // from which it should be instantiated.
2848
2849  // ConsumedArgs - A variable size array, following Exceptions
2850  // and of length NumArgs, holding flags indicating which arguments
2851  // are consumed.  This only appears if HasAnyConsumedArgs is true.
2852
2853  friend class ASTContext;  // ASTContext creates these.
2854
2855  const bool *getConsumedArgsBuffer() const {
2856    assert(hasAnyConsumedArgs());
2857
2858    // Find the end of the exceptions.
2859    Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
2860    if (getExceptionSpecType() != EST_ComputedNoexcept)
2861      eh_end += NumExceptions;
2862    else
2863      eh_end += 1; // NoexceptExpr
2864
2865    return reinterpret_cast<const bool*>(eh_end);
2866  }
2867
2868public:
2869  unsigned getNumArgs() const { return NumArgs; }
2870  QualType getArgType(unsigned i) const {
2871    assert(i < NumArgs && "Invalid argument number!");
2872    return arg_type_begin()[i];
2873  }
2874  ArrayRef<QualType> getArgTypes() const {
2875    return ArrayRef<QualType>(arg_type_begin(), arg_type_end());
2876  }
2877
2878  ExtProtoInfo getExtProtoInfo() const {
2879    ExtProtoInfo EPI;
2880    EPI.ExtInfo = getExtInfo();
2881    EPI.Variadic = isVariadic();
2882    EPI.HasTrailingReturn = hasTrailingReturn();
2883    EPI.ExceptionSpecType = getExceptionSpecType();
2884    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2885    EPI.RefQualifier = getRefQualifier();
2886    if (EPI.ExceptionSpecType == EST_Dynamic) {
2887      EPI.NumExceptions = NumExceptions;
2888      EPI.Exceptions = exception_begin();
2889    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2890      EPI.NoexceptExpr = getNoexceptExpr();
2891    } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2892      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2893      EPI.ExceptionSpecTemplate = getExceptionSpecTemplate();
2894    } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2895      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2896    }
2897    if (hasAnyConsumedArgs())
2898      EPI.ConsumedArguments = getConsumedArgsBuffer();
2899    return EPI;
2900  }
2901
2902  /// \brief Get the kind of exception specification on this function.
2903  ExceptionSpecificationType getExceptionSpecType() const {
2904    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2905  }
2906  /// \brief Return whether this function has any kind of exception spec.
2907  bool hasExceptionSpec() const {
2908    return getExceptionSpecType() != EST_None;
2909  }
2910  /// \brief Return whether this function has a dynamic (throw) exception spec.
2911  bool hasDynamicExceptionSpec() const {
2912    return isDynamicExceptionSpec(getExceptionSpecType());
2913  }
2914  /// \brief Return whether this function has a noexcept exception spec.
2915  bool hasNoexceptExceptionSpec() const {
2916    return isNoexceptExceptionSpec(getExceptionSpecType());
2917  }
2918  /// \brief Result type of getNoexceptSpec().
2919  enum NoexceptResult {
2920    NR_NoNoexcept,  ///< There is no noexcept specifier.
2921    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2922    NR_Dependent,   ///< The noexcept specifier is dependent.
2923    NR_Throw,       ///< The noexcept specifier evaluates to false.
2924    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2925  };
2926  /// \brief Get the meaning of the noexcept spec on this function, if any.
2927  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2928  unsigned getNumExceptions() const { return NumExceptions; }
2929  QualType getExceptionType(unsigned i) const {
2930    assert(i < NumExceptions && "Invalid exception number!");
2931    return exception_begin()[i];
2932  }
2933  Expr *getNoexceptExpr() const {
2934    if (getExceptionSpecType() != EST_ComputedNoexcept)
2935      return 0;
2936    // NoexceptExpr sits where the arguments end.
2937    return *reinterpret_cast<Expr *const *>(arg_type_end());
2938  }
2939  /// \brief If this function type has an exception specification which hasn't
2940  /// been determined yet (either because it has not been evaluated or because
2941  /// it has not been instantiated), this is the function whose exception
2942  /// specification is represented by this type.
2943  FunctionDecl *getExceptionSpecDecl() const {
2944    if (getExceptionSpecType() != EST_Uninstantiated &&
2945        getExceptionSpecType() != EST_Unevaluated)
2946      return 0;
2947    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[0];
2948  }
2949  /// \brief If this function type has an uninstantiated exception
2950  /// specification, this is the function whose exception specification
2951  /// should be instantiated to find the exception specification for
2952  /// this type.
2953  FunctionDecl *getExceptionSpecTemplate() const {
2954    if (getExceptionSpecType() != EST_Uninstantiated)
2955      return 0;
2956    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[1];
2957  }
2958  bool isNothrow(ASTContext &Ctx) const {
2959    ExceptionSpecificationType EST = getExceptionSpecType();
2960    assert(EST != EST_Unevaluated && EST != EST_Uninstantiated);
2961    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2962      return true;
2963    if (EST != EST_ComputedNoexcept)
2964      return false;
2965    return getNoexceptSpec(Ctx) == NR_Nothrow;
2966  }
2967
2968  bool isVariadic() const { return Variadic; }
2969
2970  /// \brief Determines whether this function prototype contains a
2971  /// parameter pack at the end.
2972  ///
2973  /// A function template whose last parameter is a parameter pack can be
2974  /// called with an arbitrary number of arguments, much like a variadic
2975  /// function.
2976  bool isTemplateVariadic() const;
2977
2978  bool hasTrailingReturn() const { return HasTrailingReturn; }
2979
2980  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2981
2982
2983  /// \brief Retrieve the ref-qualifier associated with this function type.
2984  RefQualifierKind getRefQualifier() const {
2985    return static_cast<RefQualifierKind>(RefQualifier);
2986  }
2987
2988  typedef const QualType *arg_type_iterator;
2989  arg_type_iterator arg_type_begin() const {
2990    return reinterpret_cast<const QualType *>(this+1);
2991  }
2992  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2993
2994  typedef const QualType *exception_iterator;
2995  exception_iterator exception_begin() const {
2996    // exceptions begin where arguments end
2997    return arg_type_end();
2998  }
2999  exception_iterator exception_end() const {
3000    if (getExceptionSpecType() != EST_Dynamic)
3001      return exception_begin();
3002    return exception_begin() + NumExceptions;
3003  }
3004
3005  bool hasAnyConsumedArgs() const {
3006    return HasAnyConsumedArgs;
3007  }
3008  bool isArgConsumed(unsigned I) const {
3009    assert(I < getNumArgs() && "argument index out of range!");
3010    if (hasAnyConsumedArgs())
3011      return getConsumedArgsBuffer()[I];
3012    return false;
3013  }
3014
3015  bool isSugared() const { return false; }
3016  QualType desugar() const { return QualType(this, 0); }
3017
3018  void printExceptionSpecification(raw_ostream &OS,
3019                                   const PrintingPolicy &Policy) const;
3020
3021  static bool classof(const Type *T) {
3022    return T->getTypeClass() == FunctionProto;
3023  }
3024
3025  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
3026  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3027                      arg_type_iterator ArgTys, unsigned NumArgs,
3028                      const ExtProtoInfo &EPI, const ASTContext &Context);
3029};
3030
3031
3032/// \brief Represents the dependent type named by a dependently-scoped
3033/// typename using declaration, e.g.
3034///   using typename Base<T>::foo;
3035/// Template instantiation turns these into the underlying type.
3036class UnresolvedUsingType : public Type {
3037  UnresolvedUsingTypenameDecl *Decl;
3038
3039  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
3040    : Type(UnresolvedUsing, QualType(), true, true, false,
3041           /*ContainsUnexpandedParameterPack=*/false),
3042      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
3043  friend class ASTContext; // ASTContext creates these.
3044public:
3045
3046  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
3047
3048  bool isSugared() const { return false; }
3049  QualType desugar() const { return QualType(this, 0); }
3050
3051  static bool classof(const Type *T) {
3052    return T->getTypeClass() == UnresolvedUsing;
3053  }
3054
3055  void Profile(llvm::FoldingSetNodeID &ID) {
3056    return Profile(ID, Decl);
3057  }
3058  static void Profile(llvm::FoldingSetNodeID &ID,
3059                      UnresolvedUsingTypenameDecl *D) {
3060    ID.AddPointer(D);
3061  }
3062};
3063
3064
3065class TypedefType : public Type {
3066  TypedefNameDecl *Decl;
3067protected:
3068  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
3069    : Type(tc, can, can->isDependentType(),
3070           can->isInstantiationDependentType(),
3071           can->isVariablyModifiedType(),
3072           /*ContainsUnexpandedParameterPack=*/false),
3073      Decl(const_cast<TypedefNameDecl*>(D)) {
3074    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3075  }
3076  friend class ASTContext;  // ASTContext creates these.
3077public:
3078
3079  TypedefNameDecl *getDecl() const { return Decl; }
3080
3081  bool isSugared() const { return true; }
3082  QualType desugar() const;
3083
3084  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
3085};
3086
3087/// TypeOfExprType (GCC extension).
3088class TypeOfExprType : public Type {
3089  Expr *TOExpr;
3090
3091protected:
3092  TypeOfExprType(Expr *E, QualType can = QualType());
3093  friend class ASTContext;  // ASTContext creates these.
3094public:
3095  Expr *getUnderlyingExpr() const { return TOExpr; }
3096
3097  /// \brief Remove a single level of sugar.
3098  QualType desugar() const;
3099
3100  /// \brief Returns whether this type directly provides sugar.
3101  bool isSugared() const;
3102
3103  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
3104};
3105
3106/// \brief Internal representation of canonical, dependent
3107/// typeof(expr) types.
3108///
3109/// This class is used internally by the ASTContext to manage
3110/// canonical, dependent types, only. Clients will only see instances
3111/// of this class via TypeOfExprType nodes.
3112class DependentTypeOfExprType
3113  : public TypeOfExprType, public llvm::FoldingSetNode {
3114  const ASTContext &Context;
3115
3116public:
3117  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
3118    : TypeOfExprType(E), Context(Context) { }
3119
3120  void Profile(llvm::FoldingSetNodeID &ID) {
3121    Profile(ID, Context, getUnderlyingExpr());
3122  }
3123
3124  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3125                      Expr *E);
3126};
3127
3128/// TypeOfType (GCC extension).
3129class TypeOfType : public Type {
3130  QualType TOType;
3131  TypeOfType(QualType T, QualType can)
3132    : Type(TypeOf, can, T->isDependentType(),
3133           T->isInstantiationDependentType(),
3134           T->isVariablyModifiedType(),
3135           T->containsUnexpandedParameterPack()),
3136      TOType(T) {
3137    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3138  }
3139  friend class ASTContext;  // ASTContext creates these.
3140public:
3141  QualType getUnderlyingType() const { return TOType; }
3142
3143  /// \brief Remove a single level of sugar.
3144  QualType desugar() const { return getUnderlyingType(); }
3145
3146  /// \brief Returns whether this type directly provides sugar.
3147  bool isSugared() const { return true; }
3148
3149  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
3150};
3151
3152/// DecltypeType (C++0x)
3153class DecltypeType : public Type {
3154  Expr *E;
3155  QualType UnderlyingType;
3156
3157protected:
3158  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3159  friend class ASTContext;  // ASTContext creates these.
3160public:
3161  Expr *getUnderlyingExpr() const { return E; }
3162  QualType getUnderlyingType() const { return UnderlyingType; }
3163
3164  /// \brief Remove a single level of sugar.
3165  QualType desugar() const;
3166
3167  /// \brief Returns whether this type directly provides sugar.
3168  bool isSugared() const;
3169
3170  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3171};
3172
3173/// \brief Internal representation of canonical, dependent
3174/// decltype(expr) types.
3175///
3176/// This class is used internally by the ASTContext to manage
3177/// canonical, dependent types, only. Clients will only see instances
3178/// of this class via DecltypeType nodes.
3179class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3180  const ASTContext &Context;
3181
3182public:
3183  DependentDecltypeType(const ASTContext &Context, Expr *E);
3184
3185  void Profile(llvm::FoldingSetNodeID &ID) {
3186    Profile(ID, Context, getUnderlyingExpr());
3187  }
3188
3189  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3190                      Expr *E);
3191};
3192
3193/// \brief A unary type transform, which is a type constructed from another
3194class UnaryTransformType : public Type {
3195public:
3196  enum UTTKind {
3197    EnumUnderlyingType
3198  };
3199
3200private:
3201  /// The untransformed type.
3202  QualType BaseType;
3203  /// The transformed type if not dependent, otherwise the same as BaseType.
3204  QualType UnderlyingType;
3205
3206  UTTKind UKind;
3207protected:
3208  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3209                     QualType CanonicalTy);
3210  friend class ASTContext;
3211public:
3212  bool isSugared() const { return !isDependentType(); }
3213  QualType desugar() const { return UnderlyingType; }
3214
3215  QualType getUnderlyingType() const { return UnderlyingType; }
3216  QualType getBaseType() const { return BaseType; }
3217
3218  UTTKind getUTTKind() const { return UKind; }
3219
3220  static bool classof(const Type *T) {
3221    return T->getTypeClass() == UnaryTransform;
3222  }
3223};
3224
3225class TagType : public Type {
3226  /// Stores the TagDecl associated with this type. The decl may point to any
3227  /// TagDecl that declares the entity.
3228  TagDecl * decl;
3229
3230  friend class ASTReader;
3231
3232protected:
3233  TagType(TypeClass TC, const TagDecl *D, QualType can);
3234
3235public:
3236  TagDecl *getDecl() const;
3237
3238  /// @brief Determines whether this type is in the process of being
3239  /// defined.
3240  bool isBeingDefined() const;
3241
3242  static bool classof(const Type *T) {
3243    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3244  }
3245};
3246
3247/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
3248/// to detect TagType objects of structs/unions/classes.
3249class RecordType : public TagType {
3250protected:
3251  explicit RecordType(const RecordDecl *D)
3252    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3253  explicit RecordType(TypeClass TC, RecordDecl *D)
3254    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3255  friend class ASTContext;   // ASTContext creates these.
3256public:
3257
3258  RecordDecl *getDecl() const {
3259    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3260  }
3261
3262  // FIXME: This predicate is a helper to QualType/Type. It needs to
3263  // recursively check all fields for const-ness. If any field is declared
3264  // const, it needs to return false.
3265  bool hasConstFields() const { return false; }
3266
3267  bool isSugared() const { return false; }
3268  QualType desugar() const { return QualType(this, 0); }
3269
3270  static bool classof(const Type *T) { return T->getTypeClass() == Record; }
3271};
3272
3273/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
3274/// to detect TagType objects of enums.
3275class EnumType : public TagType {
3276  explicit EnumType(const EnumDecl *D)
3277    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3278  friend class ASTContext;   // ASTContext creates these.
3279public:
3280
3281  EnumDecl *getDecl() const {
3282    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3283  }
3284
3285  bool isSugared() const { return false; }
3286  QualType desugar() const { return QualType(this, 0); }
3287
3288  static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
3289};
3290
3291/// AttributedType - An attributed type is a type to which a type
3292/// attribute has been applied.  The "modified type" is the
3293/// fully-sugared type to which the attributed type was applied;
3294/// generally it is not canonically equivalent to the attributed type.
3295/// The "equivalent type" is the minimally-desugared type which the
3296/// type is canonically equivalent to.
3297///
3298/// For example, in the following attributed type:
3299///     int32_t __attribute__((vector_size(16)))
3300///   - the modified type is the TypedefType for int32_t
3301///   - the equivalent type is VectorType(16, int32_t)
3302///   - the canonical type is VectorType(16, int)
3303class AttributedType : public Type, public llvm::FoldingSetNode {
3304public:
3305  // It is really silly to have yet another attribute-kind enum, but
3306  // clang::attr::Kind doesn't currently cover the pure type attrs.
3307  enum Kind {
3308    // Expression operand.
3309    attr_address_space,
3310    attr_regparm,
3311    attr_vector_size,
3312    attr_neon_vector_type,
3313    attr_neon_polyvector_type,
3314
3315    FirstExprOperandKind = attr_address_space,
3316    LastExprOperandKind = attr_neon_polyvector_type,
3317
3318    // Enumerated operand (string or keyword).
3319    attr_objc_gc,
3320    attr_objc_ownership,
3321    attr_pcs,
3322
3323    FirstEnumOperandKind = attr_objc_gc,
3324    LastEnumOperandKind = attr_pcs,
3325
3326    // No operand.
3327    attr_noreturn,
3328    attr_cdecl,
3329    attr_fastcall,
3330    attr_stdcall,
3331    attr_thiscall,
3332    attr_pascal,
3333    attr_pnaclcall,
3334    attr_inteloclbicc
3335  };
3336
3337private:
3338  QualType ModifiedType;
3339  QualType EquivalentType;
3340
3341  friend class ASTContext; // creates these
3342
3343  AttributedType(QualType canon, Kind attrKind,
3344                 QualType modified, QualType equivalent)
3345    : Type(Attributed, canon, canon->isDependentType(),
3346           canon->isInstantiationDependentType(),
3347           canon->isVariablyModifiedType(),
3348           canon->containsUnexpandedParameterPack()),
3349      ModifiedType(modified), EquivalentType(equivalent) {
3350    AttributedTypeBits.AttrKind = attrKind;
3351  }
3352
3353public:
3354  Kind getAttrKind() const {
3355    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3356  }
3357
3358  QualType getModifiedType() const { return ModifiedType; }
3359  QualType getEquivalentType() const { return EquivalentType; }
3360
3361  bool isSugared() const { return true; }
3362  QualType desugar() const { return getEquivalentType(); }
3363
3364  void Profile(llvm::FoldingSetNodeID &ID) {
3365    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3366  }
3367
3368  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3369                      QualType modified, QualType equivalent) {
3370    ID.AddInteger(attrKind);
3371    ID.AddPointer(modified.getAsOpaquePtr());
3372    ID.AddPointer(equivalent.getAsOpaquePtr());
3373  }
3374
3375  static bool classof(const Type *T) {
3376    return T->getTypeClass() == Attributed;
3377  }
3378};
3379
3380class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3381  // Helper data collector for canonical types.
3382  struct CanonicalTTPTInfo {
3383    unsigned Depth : 15;
3384    unsigned ParameterPack : 1;
3385    unsigned Index : 16;
3386  };
3387
3388  union {
3389    // Info for the canonical type.
3390    CanonicalTTPTInfo CanTTPTInfo;
3391    // Info for the non-canonical type.
3392    TemplateTypeParmDecl *TTPDecl;
3393  };
3394
3395  /// Build a non-canonical type.
3396  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3397    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3398           /*InstantiationDependent=*/true,
3399           /*VariablyModified=*/false,
3400           Canon->containsUnexpandedParameterPack()),
3401      TTPDecl(TTPDecl) { }
3402
3403  /// Build the canonical type.
3404  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3405    : Type(TemplateTypeParm, QualType(this, 0),
3406           /*Dependent=*/true,
3407           /*InstantiationDependent=*/true,
3408           /*VariablyModified=*/false, PP) {
3409    CanTTPTInfo.Depth = D;
3410    CanTTPTInfo.Index = I;
3411    CanTTPTInfo.ParameterPack = PP;
3412  }
3413
3414  friend class ASTContext;  // ASTContext creates these
3415
3416  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3417    QualType Can = getCanonicalTypeInternal();
3418    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3419  }
3420
3421public:
3422  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3423  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3424  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3425
3426  TemplateTypeParmDecl *getDecl() const {
3427    return isCanonicalUnqualified() ? 0 : TTPDecl;
3428  }
3429
3430  IdentifierInfo *getIdentifier() const;
3431
3432  bool isSugared() const { return false; }
3433  QualType desugar() const { return QualType(this, 0); }
3434
3435  void Profile(llvm::FoldingSetNodeID &ID) {
3436    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3437  }
3438
3439  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3440                      unsigned Index, bool ParameterPack,
3441                      TemplateTypeParmDecl *TTPDecl) {
3442    ID.AddInteger(Depth);
3443    ID.AddInteger(Index);
3444    ID.AddBoolean(ParameterPack);
3445    ID.AddPointer(TTPDecl);
3446  }
3447
3448  static bool classof(const Type *T) {
3449    return T->getTypeClass() == TemplateTypeParm;
3450  }
3451};
3452
3453/// \brief Represents the result of substituting a type for a template
3454/// type parameter.
3455///
3456/// Within an instantiated template, all template type parameters have
3457/// been replaced with these.  They are used solely to record that a
3458/// type was originally written as a template type parameter;
3459/// therefore they are never canonical.
3460class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3461  // The original type parameter.
3462  const TemplateTypeParmType *Replaced;
3463
3464  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3465    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3466           Canon->isInstantiationDependentType(),
3467           Canon->isVariablyModifiedType(),
3468           Canon->containsUnexpandedParameterPack()),
3469      Replaced(Param) { }
3470
3471  friend class ASTContext;
3472
3473public:
3474  /// Gets the template parameter that was substituted for.
3475  const TemplateTypeParmType *getReplacedParameter() const {
3476    return Replaced;
3477  }
3478
3479  /// Gets the type that was substituted for the template
3480  /// parameter.
3481  QualType getReplacementType() const {
3482    return getCanonicalTypeInternal();
3483  }
3484
3485  bool isSugared() const { return true; }
3486  QualType desugar() const { return getReplacementType(); }
3487
3488  void Profile(llvm::FoldingSetNodeID &ID) {
3489    Profile(ID, getReplacedParameter(), getReplacementType());
3490  }
3491  static void Profile(llvm::FoldingSetNodeID &ID,
3492                      const TemplateTypeParmType *Replaced,
3493                      QualType Replacement) {
3494    ID.AddPointer(Replaced);
3495    ID.AddPointer(Replacement.getAsOpaquePtr());
3496  }
3497
3498  static bool classof(const Type *T) {
3499    return T->getTypeClass() == SubstTemplateTypeParm;
3500  }
3501};
3502
3503/// \brief Represents the result of substituting a set of types for a template
3504/// type parameter pack.
3505///
3506/// When a pack expansion in the source code contains multiple parameter packs
3507/// and those parameter packs correspond to different levels of template
3508/// parameter lists, this type node is used to represent a template type
3509/// parameter pack from an outer level, which has already had its argument pack
3510/// substituted but that still lives within a pack expansion that itself
3511/// could not be instantiated. When actually performing a substitution into
3512/// that pack expansion (e.g., when all template parameters have corresponding
3513/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3514/// at the current pack substitution index.
3515class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3516  /// \brief The original type parameter.
3517  const TemplateTypeParmType *Replaced;
3518
3519  /// \brief A pointer to the set of template arguments that this
3520  /// parameter pack is instantiated with.
3521  const TemplateArgument *Arguments;
3522
3523  /// \brief The number of template arguments in \c Arguments.
3524  unsigned NumArguments;
3525
3526  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3527                                QualType Canon,
3528                                const TemplateArgument &ArgPack);
3529
3530  friend class ASTContext;
3531
3532public:
3533  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
3534
3535  /// Gets the template parameter that was substituted for.
3536  const TemplateTypeParmType *getReplacedParameter() const {
3537    return Replaced;
3538  }
3539
3540  bool isSugared() const { return false; }
3541  QualType desugar() const { return QualType(this, 0); }
3542
3543  TemplateArgument getArgumentPack() const;
3544
3545  void Profile(llvm::FoldingSetNodeID &ID);
3546  static void Profile(llvm::FoldingSetNodeID &ID,
3547                      const TemplateTypeParmType *Replaced,
3548                      const TemplateArgument &ArgPack);
3549
3550  static bool classof(const Type *T) {
3551    return T->getTypeClass() == SubstTemplateTypeParmPack;
3552  }
3553};
3554
3555/// \brief Represents a C++11 auto or C++1y decltype(auto) type.
3556///
3557/// These types are usually a placeholder for a deduced type. However, within
3558/// templates and before the initializer is attached, there is no deduced type
3559/// and an auto type is type-dependent and canonical.
3560class AutoType : public Type, public llvm::FoldingSetNode {
3561  AutoType(QualType DeducedType, bool IsDecltypeAuto)
3562    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3563           /*Dependent=*/DeducedType.isNull(),
3564           /*InstantiationDependent=*/DeducedType.isNull(),
3565           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3566    assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
3567           "deduced a dependent type for auto");
3568    AutoTypeBits.IsDecltypeAuto = IsDecltypeAuto;
3569  }
3570
3571  friend class ASTContext;  // ASTContext creates these
3572
3573public:
3574  bool isDecltypeAuto() const { return AutoTypeBits.IsDecltypeAuto; }
3575
3576  bool isSugared() const { return isDeduced(); }
3577  QualType desugar() const { return getCanonicalTypeInternal(); }
3578
3579  QualType getDeducedType() const {
3580    return isDeduced() ? getCanonicalTypeInternal() : QualType();
3581  }
3582  bool isDeduced() const {
3583    return !isDependentType();
3584  }
3585
3586  void Profile(llvm::FoldingSetNodeID &ID) {
3587    Profile(ID, getDeducedType(), isDecltypeAuto());
3588  }
3589
3590  static void Profile(llvm::FoldingSetNodeID &ID,
3591                      QualType Deduced, bool IsDecltypeAuto) {
3592    ID.AddPointer(Deduced.getAsOpaquePtr());
3593    ID.AddBoolean(IsDecltypeAuto);
3594  }
3595
3596  static bool classof(const Type *T) {
3597    return T->getTypeClass() == Auto;
3598  }
3599};
3600
3601/// \brief Represents a type template specialization; the template
3602/// must be a class template, a type alias template, or a template
3603/// template parameter.  A template which cannot be resolved to one of
3604/// these, e.g. because it is written with a dependent scope
3605/// specifier, is instead represented as a
3606/// @c DependentTemplateSpecializationType.
3607///
3608/// A non-dependent template specialization type is always "sugar",
3609/// typically for a @c RecordType.  For example, a class template
3610/// specialization type of @c vector<int> will refer to a tag type for
3611/// the instantiation @c std::vector<int, std::allocator<int>>
3612///
3613/// Template specializations are dependent if either the template or
3614/// any of the template arguments are dependent, in which case the
3615/// type may also be canonical.
3616///
3617/// Instances of this type are allocated with a trailing array of
3618/// TemplateArguments, followed by a QualType representing the
3619/// non-canonical aliased type when the template is a type alias
3620/// template.
3621class TemplateSpecializationType
3622  : public Type, public llvm::FoldingSetNode {
3623  /// \brief The name of the template being specialized.  This is
3624  /// either a TemplateName::Template (in which case it is a
3625  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
3626  /// TypeAliasTemplateDecl*), a
3627  /// TemplateName::SubstTemplateTemplateParmPack, or a
3628  /// TemplateName::SubstTemplateTemplateParm (in which case the
3629  /// replacement must, recursively, be one of these).
3630  TemplateName Template;
3631
3632  /// \brief - The number of template arguments named in this class
3633  /// template specialization.
3634  unsigned NumArgs : 31;
3635
3636  /// \brief Whether this template specialization type is a substituted
3637  /// type alias.
3638  bool TypeAlias : 1;
3639
3640  TemplateSpecializationType(TemplateName T,
3641                             const TemplateArgument *Args,
3642                             unsigned NumArgs, QualType Canon,
3643                             QualType Aliased);
3644
3645  friend class ASTContext;  // ASTContext creates these
3646
3647public:
3648  /// \brief Determine whether any of the given template arguments are
3649  /// dependent.
3650  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3651                                            unsigned NumArgs,
3652                                            bool &InstantiationDependent);
3653
3654  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3655                                            unsigned NumArgs,
3656                                            bool &InstantiationDependent);
3657
3658  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
3659                                            bool &InstantiationDependent);
3660
3661  /// \brief Print a template argument list, including the '<' and '>'
3662  /// enclosing the template arguments.
3663  static void PrintTemplateArgumentList(raw_ostream &OS,
3664                                        const TemplateArgument *Args,
3665                                        unsigned NumArgs,
3666                                        const PrintingPolicy &Policy,
3667                                        bool SkipBrackets = false);
3668
3669  static void PrintTemplateArgumentList(raw_ostream &OS,
3670                                        const TemplateArgumentLoc *Args,
3671                                        unsigned NumArgs,
3672                                        const PrintingPolicy &Policy);
3673
3674  static void PrintTemplateArgumentList(raw_ostream &OS,
3675                                        const TemplateArgumentListInfo &,
3676                                        const PrintingPolicy &Policy);
3677
3678  /// True if this template specialization type matches a current
3679  /// instantiation in the context in which it is found.
3680  bool isCurrentInstantiation() const {
3681    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3682  }
3683
3684  /// \brief Determine if this template specialization type is for a type alias
3685  /// template that has been substituted.
3686  ///
3687  /// Nearly every template specialization type whose template is an alias
3688  /// template will be substituted. However, this is not the case when
3689  /// the specialization contains a pack expansion but the template alias
3690  /// does not have a corresponding parameter pack, e.g.,
3691  ///
3692  /// \code
3693  /// template<typename T, typename U, typename V> struct S;
3694  /// template<typename T, typename U> using A = S<T, int, U>;
3695  /// template<typename... Ts> struct X {
3696  ///   typedef A<Ts...> type; // not a type alias
3697  /// };
3698  /// \endcode
3699  bool isTypeAlias() const { return TypeAlias; }
3700
3701  /// Get the aliased type, if this is a specialization of a type alias
3702  /// template.
3703  QualType getAliasedType() const {
3704    assert(isTypeAlias() && "not a type alias template specialization");
3705    return *reinterpret_cast<const QualType*>(end());
3706  }
3707
3708  typedef const TemplateArgument * iterator;
3709
3710  iterator begin() const { return getArgs(); }
3711  iterator end() const; // defined inline in TemplateBase.h
3712
3713  /// \brief Retrieve the name of the template that we are specializing.
3714  TemplateName getTemplateName() const { return Template; }
3715
3716  /// \brief Retrieve the template arguments.
3717  const TemplateArgument *getArgs() const {
3718    return reinterpret_cast<const TemplateArgument *>(this + 1);
3719  }
3720
3721  /// \brief Retrieve the number of template arguments.
3722  unsigned getNumArgs() const { return NumArgs; }
3723
3724  /// \brief Retrieve a specific template argument as a type.
3725  /// \pre @c isArgType(Arg)
3726  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3727
3728  bool isSugared() const {
3729    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
3730  }
3731  QualType desugar() const { return getCanonicalTypeInternal(); }
3732
3733  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3734    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3735    if (isTypeAlias())
3736      getAliasedType().Profile(ID);
3737  }
3738
3739  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3740                      const TemplateArgument *Args,
3741                      unsigned NumArgs,
3742                      const ASTContext &Context);
3743
3744  static bool classof(const Type *T) {
3745    return T->getTypeClass() == TemplateSpecialization;
3746  }
3747};
3748
3749/// \brief The injected class name of a C++ class template or class
3750/// template partial specialization.  Used to record that a type was
3751/// spelled with a bare identifier rather than as a template-id; the
3752/// equivalent for non-templated classes is just RecordType.
3753///
3754/// Injected class name types are always dependent.  Template
3755/// instantiation turns these into RecordTypes.
3756///
3757/// Injected class name types are always canonical.  This works
3758/// because it is impossible to compare an injected class name type
3759/// with the corresponding non-injected template type, for the same
3760/// reason that it is impossible to directly compare template
3761/// parameters from different dependent contexts: injected class name
3762/// types can only occur within the scope of a particular templated
3763/// declaration, and within that scope every template specialization
3764/// will canonicalize to the injected class name (when appropriate
3765/// according to the rules of the language).
3766class InjectedClassNameType : public Type {
3767  CXXRecordDecl *Decl;
3768
3769  /// The template specialization which this type represents.
3770  /// For example, in
3771  ///   template <class T> class A { ... };
3772  /// this is A<T>, whereas in
3773  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3774  /// this is A<B<X,Y> >.
3775  ///
3776  /// It is always unqualified, always a template specialization type,
3777  /// and always dependent.
3778  QualType InjectedType;
3779
3780  friend class ASTContext; // ASTContext creates these.
3781  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3782                          // currently suitable for AST reading, too much
3783                          // interdependencies.
3784  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3785    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3786           /*InstantiationDependent=*/true,
3787           /*VariablyModified=*/false,
3788           /*ContainsUnexpandedParameterPack=*/false),
3789      Decl(D), InjectedType(TST) {
3790    assert(isa<TemplateSpecializationType>(TST));
3791    assert(!TST.hasQualifiers());
3792    assert(TST->isDependentType());
3793  }
3794
3795public:
3796  QualType getInjectedSpecializationType() const { return InjectedType; }
3797  const TemplateSpecializationType *getInjectedTST() const {
3798    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3799  }
3800
3801  CXXRecordDecl *getDecl() const;
3802
3803  bool isSugared() const { return false; }
3804  QualType desugar() const { return QualType(this, 0); }
3805
3806  static bool classof(const Type *T) {
3807    return T->getTypeClass() == InjectedClassName;
3808  }
3809};
3810
3811/// \brief The kind of a tag type.
3812enum TagTypeKind {
3813  /// \brief The "struct" keyword.
3814  TTK_Struct,
3815  /// \brief The "__interface" keyword.
3816  TTK_Interface,
3817  /// \brief The "union" keyword.
3818  TTK_Union,
3819  /// \brief The "class" keyword.
3820  TTK_Class,
3821  /// \brief The "enum" keyword.
3822  TTK_Enum
3823};
3824
3825/// \brief The elaboration keyword that precedes a qualified type name or
3826/// introduces an elaborated-type-specifier.
3827enum ElaboratedTypeKeyword {
3828  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3829  ETK_Struct,
3830  /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
3831  ETK_Interface,
3832  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3833  ETK_Union,
3834  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3835  ETK_Class,
3836  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3837  ETK_Enum,
3838  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3839  /// \c typename T::type.
3840  ETK_Typename,
3841  /// \brief No keyword precedes the qualified type name.
3842  ETK_None
3843};
3844
3845/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3846/// The keyword in stored in the free bits of the base class.
3847/// Also provides a few static helpers for converting and printing
3848/// elaborated type keyword and tag type kind enumerations.
3849class TypeWithKeyword : public Type {
3850protected:
3851  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3852                  QualType Canonical, bool Dependent,
3853                  bool InstantiationDependent, bool VariablyModified,
3854                  bool ContainsUnexpandedParameterPack)
3855  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3856         ContainsUnexpandedParameterPack) {
3857    TypeWithKeywordBits.Keyword = Keyword;
3858  }
3859
3860public:
3861  ElaboratedTypeKeyword getKeyword() const {
3862    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3863  }
3864
3865  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3866  /// into an elaborated type keyword.
3867  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3868
3869  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3870  /// into a tag type kind.  It is an error to provide a type specifier
3871  /// which *isn't* a tag kind here.
3872  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3873
3874  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3875  /// elaborated type keyword.
3876  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3877
3878  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3879  // a TagTypeKind. It is an error to provide an elaborated type keyword
3880  /// which *isn't* a tag kind here.
3881  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3882
3883  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3884
3885  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3886
3887  static const char *getTagTypeKindName(TagTypeKind Kind) {
3888    return getKeywordName(getKeywordForTagTypeKind(Kind));
3889  }
3890
3891  class CannotCastToThisType {};
3892  static CannotCastToThisType classof(const Type *);
3893};
3894
3895/// \brief Represents a type that was referred to using an elaborated type
3896/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3897/// or both.
3898///
3899/// This type is used to keep track of a type name as written in the
3900/// source code, including tag keywords and any nested-name-specifiers.
3901/// The type itself is always "sugar", used to express what was written
3902/// in the source code but containing no additional semantic information.
3903class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3904
3905  /// \brief The nested name specifier containing the qualifier.
3906  NestedNameSpecifier *NNS;
3907
3908  /// \brief The type that this qualified name refers to.
3909  QualType NamedType;
3910
3911  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3912                 QualType NamedType, QualType CanonType)
3913    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3914                      NamedType->isDependentType(),
3915                      NamedType->isInstantiationDependentType(),
3916                      NamedType->isVariablyModifiedType(),
3917                      NamedType->containsUnexpandedParameterPack()),
3918      NNS(NNS), NamedType(NamedType) {
3919    assert(!(Keyword == ETK_None && NNS == 0) &&
3920           "ElaboratedType cannot have elaborated type keyword "
3921           "and name qualifier both null.");
3922  }
3923
3924  friend class ASTContext;  // ASTContext creates these
3925
3926public:
3927  ~ElaboratedType();
3928
3929  /// \brief Retrieve the qualification on this type.
3930  NestedNameSpecifier *getQualifier() const { return NNS; }
3931
3932  /// \brief Retrieve the type named by the qualified-id.
3933  QualType getNamedType() const { return NamedType; }
3934
3935  /// \brief Remove a single level of sugar.
3936  QualType desugar() const { return getNamedType(); }
3937
3938  /// \brief Returns whether this type directly provides sugar.
3939  bool isSugared() const { return true; }
3940
3941  void Profile(llvm::FoldingSetNodeID &ID) {
3942    Profile(ID, getKeyword(), NNS, NamedType);
3943  }
3944
3945  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3946                      NestedNameSpecifier *NNS, QualType NamedType) {
3947    ID.AddInteger(Keyword);
3948    ID.AddPointer(NNS);
3949    NamedType.Profile(ID);
3950  }
3951
3952  static bool classof(const Type *T) {
3953    return T->getTypeClass() == Elaborated;
3954  }
3955};
3956
3957/// \brief Represents a qualified type name for which the type name is
3958/// dependent.
3959///
3960/// DependentNameType represents a class of dependent types that involve a
3961/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3962/// name of a type. The DependentNameType may start with a "typename" (for a
3963/// typename-specifier), "class", "struct", "union", or "enum" (for a
3964/// dependent elaborated-type-specifier), or nothing (in contexts where we
3965/// know that we must be referring to a type, e.g., in a base class specifier).
3966class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3967
3968  /// \brief The nested name specifier containing the qualifier.
3969  NestedNameSpecifier *NNS;
3970
3971  /// \brief The type that this typename specifier refers to.
3972  const IdentifierInfo *Name;
3973
3974  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3975                    const IdentifierInfo *Name, QualType CanonType)
3976    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3977                      /*InstantiationDependent=*/true,
3978                      /*VariablyModified=*/false,
3979                      NNS->containsUnexpandedParameterPack()),
3980      NNS(NNS), Name(Name) {
3981    assert(NNS->isDependent() &&
3982           "DependentNameType requires a dependent nested-name-specifier");
3983  }
3984
3985  friend class ASTContext;  // ASTContext creates these
3986
3987public:
3988  /// \brief Retrieve the qualification on this type.
3989  NestedNameSpecifier *getQualifier() const { return NNS; }
3990
3991  /// \brief Retrieve the type named by the typename specifier as an
3992  /// identifier.
3993  ///
3994  /// This routine will return a non-NULL identifier pointer when the
3995  /// form of the original typename was terminated by an identifier,
3996  /// e.g., "typename T::type".
3997  const IdentifierInfo *getIdentifier() const {
3998    return Name;
3999  }
4000
4001  bool isSugared() const { return false; }
4002  QualType desugar() const { return QualType(this, 0); }
4003
4004  void Profile(llvm::FoldingSetNodeID &ID) {
4005    Profile(ID, getKeyword(), NNS, Name);
4006  }
4007
4008  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
4009                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
4010    ID.AddInteger(Keyword);
4011    ID.AddPointer(NNS);
4012    ID.AddPointer(Name);
4013  }
4014
4015  static bool classof(const Type *T) {
4016    return T->getTypeClass() == DependentName;
4017  }
4018};
4019
4020/// DependentTemplateSpecializationType - Represents a template
4021/// specialization type whose template cannot be resolved, e.g.
4022///   A<T>::template B<T>
4023class DependentTemplateSpecializationType :
4024  public TypeWithKeyword, public llvm::FoldingSetNode {
4025
4026  /// \brief The nested name specifier containing the qualifier.
4027  NestedNameSpecifier *NNS;
4028
4029  /// \brief The identifier of the template.
4030  const IdentifierInfo *Name;
4031
4032  /// \brief - The number of template arguments named in this class
4033  /// template specialization.
4034  unsigned NumArgs;
4035
4036  const TemplateArgument *getArgBuffer() const {
4037    return reinterpret_cast<const TemplateArgument*>(this+1);
4038  }
4039  TemplateArgument *getArgBuffer() {
4040    return reinterpret_cast<TemplateArgument*>(this+1);
4041  }
4042
4043  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
4044                                      NestedNameSpecifier *NNS,
4045                                      const IdentifierInfo *Name,
4046                                      unsigned NumArgs,
4047                                      const TemplateArgument *Args,
4048                                      QualType Canon);
4049
4050  friend class ASTContext;  // ASTContext creates these
4051
4052public:
4053  NestedNameSpecifier *getQualifier() const { return NNS; }
4054  const IdentifierInfo *getIdentifier() const { return Name; }
4055
4056  /// \brief Retrieve the template arguments.
4057  const TemplateArgument *getArgs() const {
4058    return getArgBuffer();
4059  }
4060
4061  /// \brief Retrieve the number of template arguments.
4062  unsigned getNumArgs() const { return NumArgs; }
4063
4064  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4065
4066  typedef const TemplateArgument * iterator;
4067  iterator begin() const { return getArgs(); }
4068  iterator end() const; // inline in TemplateBase.h
4069
4070  bool isSugared() const { return false; }
4071  QualType desugar() const { return QualType(this, 0); }
4072
4073  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
4074    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
4075  }
4076
4077  static void Profile(llvm::FoldingSetNodeID &ID,
4078                      const ASTContext &Context,
4079                      ElaboratedTypeKeyword Keyword,
4080                      NestedNameSpecifier *Qualifier,
4081                      const IdentifierInfo *Name,
4082                      unsigned NumArgs,
4083                      const TemplateArgument *Args);
4084
4085  static bool classof(const Type *T) {
4086    return T->getTypeClass() == DependentTemplateSpecialization;
4087  }
4088};
4089
4090/// \brief Represents a pack expansion of types.
4091///
4092/// Pack expansions are part of C++0x variadic templates. A pack
4093/// expansion contains a pattern, which itself contains one or more
4094/// "unexpanded" parameter packs. When instantiated, a pack expansion
4095/// produces a series of types, each instantiated from the pattern of
4096/// the expansion, where the Ith instantiation of the pattern uses the
4097/// Ith arguments bound to each of the unexpanded parameter packs. The
4098/// pack expansion is considered to "expand" these unexpanded
4099/// parameter packs.
4100///
4101/// \code
4102/// template<typename ...Types> struct tuple;
4103///
4104/// template<typename ...Types>
4105/// struct tuple_of_references {
4106///   typedef tuple<Types&...> type;
4107/// };
4108/// \endcode
4109///
4110/// Here, the pack expansion \c Types&... is represented via a
4111/// PackExpansionType whose pattern is Types&.
4112class PackExpansionType : public Type, public llvm::FoldingSetNode {
4113  /// \brief The pattern of the pack expansion.
4114  QualType Pattern;
4115
4116  /// \brief The number of expansions that this pack expansion will
4117  /// generate when substituted (+1), or indicates that
4118  ///
4119  /// This field will only have a non-zero value when some of the parameter
4120  /// packs that occur within the pattern have been substituted but others have
4121  /// not.
4122  unsigned NumExpansions;
4123
4124  PackExpansionType(QualType Pattern, QualType Canon,
4125                    Optional<unsigned> NumExpansions)
4126    : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
4127           /*InstantiationDependent=*/true,
4128           /*VariableModified=*/Pattern->isVariablyModifiedType(),
4129           /*ContainsUnexpandedParameterPack=*/false),
4130      Pattern(Pattern),
4131      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
4132
4133  friend class ASTContext;  // ASTContext creates these
4134
4135public:
4136  /// \brief Retrieve the pattern of this pack expansion, which is the
4137  /// type that will be repeatedly instantiated when instantiating the
4138  /// pack expansion itself.
4139  QualType getPattern() const { return Pattern; }
4140
4141  /// \brief Retrieve the number of expansions that this pack expansion will
4142  /// generate, if known.
4143  Optional<unsigned> getNumExpansions() const {
4144    if (NumExpansions)
4145      return NumExpansions - 1;
4146
4147    return None;
4148  }
4149
4150  bool isSugared() const { return false; }
4151  QualType desugar() const { return QualType(this, 0); }
4152
4153  void Profile(llvm::FoldingSetNodeID &ID) {
4154    Profile(ID, getPattern(), getNumExpansions());
4155  }
4156
4157  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
4158                      Optional<unsigned> NumExpansions) {
4159    ID.AddPointer(Pattern.getAsOpaquePtr());
4160    ID.AddBoolean(NumExpansions.hasValue());
4161    if (NumExpansions)
4162      ID.AddInteger(*NumExpansions);
4163  }
4164
4165  static bool classof(const Type *T) {
4166    return T->getTypeClass() == PackExpansion;
4167  }
4168};
4169
4170/// ObjCObjectType - Represents a class type in Objective C.
4171/// Every Objective C type is a combination of a base type and a
4172/// list of protocols.
4173///
4174/// Given the following declarations:
4175/// \code
4176///   \@class C;
4177///   \@protocol P;
4178/// \endcode
4179///
4180/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4181/// with base C and no protocols.
4182///
4183/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
4184///
4185/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
4186/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4187/// and no protocols.
4188///
4189/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
4190/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4191/// this should get its own sugar class to better represent the source.
4192class ObjCObjectType : public Type {
4193  // ObjCObjectType.NumProtocols - the number of protocols stored
4194  // after the ObjCObjectPointerType node.
4195  //
4196  // These protocols are those written directly on the type.  If
4197  // protocol qualifiers ever become additive, the iterators will need
4198  // to get kindof complicated.
4199  //
4200  // In the canonical object type, these are sorted alphabetically
4201  // and uniqued.
4202
4203  /// Either a BuiltinType or an InterfaceType or sugar for either.
4204  QualType BaseType;
4205
4206  ObjCProtocolDecl * const *getProtocolStorage() const {
4207    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4208  }
4209
4210  ObjCProtocolDecl **getProtocolStorage();
4211
4212protected:
4213  ObjCObjectType(QualType Canonical, QualType Base,
4214                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
4215
4216  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4217  ObjCObjectType(enum Nonce_ObjCInterface)
4218        : Type(ObjCInterface, QualType(), false, false, false, false),
4219      BaseType(QualType(this_(), 0)) {
4220    ObjCObjectTypeBits.NumProtocols = 0;
4221  }
4222
4223public:
4224  /// getBaseType - Gets the base type of this object type.  This is
4225  /// always (possibly sugar for) one of:
4226  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4227  ///    user, which is a typedef for an ObjCPointerType)
4228  ///  - the 'Class' builtin type (same caveat)
4229  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4230  QualType getBaseType() const { return BaseType; }
4231
4232  bool isObjCId() const {
4233    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4234  }
4235  bool isObjCClass() const {
4236    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4237  }
4238  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4239  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4240  bool isObjCUnqualifiedIdOrClass() const {
4241    if (!qual_empty()) return false;
4242    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4243      return T->getKind() == BuiltinType::ObjCId ||
4244             T->getKind() == BuiltinType::ObjCClass;
4245    return false;
4246  }
4247  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4248  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4249
4250  /// Gets the interface declaration for this object type, if the base type
4251  /// really is an interface.
4252  ObjCInterfaceDecl *getInterface() const;
4253
4254  typedef ObjCProtocolDecl * const *qual_iterator;
4255
4256  qual_iterator qual_begin() const { return getProtocolStorage(); }
4257  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4258
4259  bool qual_empty() const { return getNumProtocols() == 0; }
4260
4261  /// getNumProtocols - Return the number of qualifying protocols in this
4262  /// interface type, or 0 if there are none.
4263  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4264
4265  /// \brief Fetch a protocol by index.
4266  ObjCProtocolDecl *getProtocol(unsigned I) const {
4267    assert(I < getNumProtocols() && "Out-of-range protocol access");
4268    return qual_begin()[I];
4269  }
4270
4271  bool isSugared() const { return false; }
4272  QualType desugar() const { return QualType(this, 0); }
4273
4274  static bool classof(const Type *T) {
4275    return T->getTypeClass() == ObjCObject ||
4276           T->getTypeClass() == ObjCInterface;
4277  }
4278};
4279
4280/// ObjCObjectTypeImpl - A class providing a concrete implementation
4281/// of ObjCObjectType, so as to not increase the footprint of
4282/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4283/// system should not reference this type.
4284class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4285  friend class ASTContext;
4286
4287  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4288  // will need to be modified.
4289
4290  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4291                     ObjCProtocolDecl * const *Protocols,
4292                     unsigned NumProtocols)
4293    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
4294
4295public:
4296  void Profile(llvm::FoldingSetNodeID &ID);
4297  static void Profile(llvm::FoldingSetNodeID &ID,
4298                      QualType Base,
4299                      ObjCProtocolDecl *const *protocols,
4300                      unsigned NumProtocols);
4301};
4302
4303inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4304  return reinterpret_cast<ObjCProtocolDecl**>(
4305            static_cast<ObjCObjectTypeImpl*>(this) + 1);
4306}
4307
4308/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
4309/// object oriented design.  They basically correspond to C++ classes.  There
4310/// are two kinds of interface types, normal interfaces like "NSString" and
4311/// qualified interfaces, which are qualified with a protocol list like
4312/// "NSString<NSCopyable, NSAmazing>".
4313///
4314/// ObjCInterfaceType guarantees the following properties when considered
4315/// as a subtype of its superclass, ObjCObjectType:
4316///   - There are no protocol qualifiers.  To reinforce this, code which
4317///     tries to invoke the protocol methods via an ObjCInterfaceType will
4318///     fail to compile.
4319///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4320///     T->getBaseType() == QualType(T, 0).
4321class ObjCInterfaceType : public ObjCObjectType {
4322  mutable ObjCInterfaceDecl *Decl;
4323
4324  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4325    : ObjCObjectType(Nonce_ObjCInterface),
4326      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4327  friend class ASTContext;  // ASTContext creates these.
4328  friend class ASTReader;
4329  friend class ObjCInterfaceDecl;
4330
4331public:
4332  /// getDecl - Get the declaration of this interface.
4333  ObjCInterfaceDecl *getDecl() const { return Decl; }
4334
4335  bool isSugared() const { return false; }
4336  QualType desugar() const { return QualType(this, 0); }
4337
4338  static bool classof(const Type *T) {
4339    return T->getTypeClass() == ObjCInterface;
4340  }
4341
4342  // Nonsense to "hide" certain members of ObjCObjectType within this
4343  // class.  People asking for protocols on an ObjCInterfaceType are
4344  // not going to get what they want: ObjCInterfaceTypes are
4345  // guaranteed to have no protocols.
4346  enum {
4347    qual_iterator,
4348    qual_begin,
4349    qual_end,
4350    getNumProtocols,
4351    getProtocol
4352  };
4353};
4354
4355inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4356  if (const ObjCInterfaceType *T =
4357        getBaseType()->getAs<ObjCInterfaceType>())
4358    return T->getDecl();
4359  return 0;
4360}
4361
4362/// ObjCObjectPointerType - Used to represent a pointer to an
4363/// Objective C object.  These are constructed from pointer
4364/// declarators when the pointee type is an ObjCObjectType (or sugar
4365/// for one).  In addition, the 'id' and 'Class' types are typedefs
4366/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
4367/// are translated into these.
4368///
4369/// Pointers to pointers to Objective C objects are still PointerTypes;
4370/// only the first level of pointer gets it own type implementation.
4371class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4372  QualType PointeeType;
4373
4374  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4375    : Type(ObjCObjectPointer, Canonical, false, false, false, false),
4376      PointeeType(Pointee) {}
4377  friend class ASTContext;  // ASTContext creates these.
4378
4379public:
4380  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
4381  /// The result will always be an ObjCObjectType or sugar thereof.
4382  QualType getPointeeType() const { return PointeeType; }
4383
4384  /// getObjCObjectType - Gets the type pointed to by this ObjC
4385  /// pointer.  This method always returns non-null.
4386  ///
4387  /// This method is equivalent to getPointeeType() except that
4388  /// it discards any typedefs (or other sugar) between this
4389  /// type and the "outermost" object type.  So for:
4390  /// \code
4391  ///   \@class A; \@protocol P; \@protocol Q;
4392  ///   typedef A<P> AP;
4393  ///   typedef A A1;
4394  ///   typedef A1<P> A1P;
4395  ///   typedef A1P<Q> A1PQ;
4396  /// \endcode
4397  /// For 'A*', getObjectType() will return 'A'.
4398  /// For 'A<P>*', getObjectType() will return 'A<P>'.
4399  /// For 'AP*', getObjectType() will return 'A<P>'.
4400  /// For 'A1*', getObjectType() will return 'A'.
4401  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
4402  /// For 'A1P*', getObjectType() will return 'A1<P>'.
4403  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
4404  ///   adding protocols to a protocol-qualified base discards the
4405  ///   old qualifiers (for now).  But if it didn't, getObjectType()
4406  ///   would return 'A1P<Q>' (and we'd have to make iterating over
4407  ///   qualifiers more complicated).
4408  const ObjCObjectType *getObjectType() const {
4409    return PointeeType->castAs<ObjCObjectType>();
4410  }
4411
4412  /// getInterfaceType - If this pointer points to an Objective C
4413  /// \@interface type, gets the type for that interface.  Any protocol
4414  /// qualifiers on the interface are ignored.
4415  ///
4416  /// \return null if the base type for this pointer is 'id' or 'Class'
4417  const ObjCInterfaceType *getInterfaceType() const {
4418    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
4419  }
4420
4421  /// getInterfaceDecl - If this pointer points to an Objective \@interface
4422  /// type, gets the declaration for that interface.
4423  ///
4424  /// \return null if the base type for this pointer is 'id' or 'Class'
4425  ObjCInterfaceDecl *getInterfaceDecl() const {
4426    return getObjectType()->getInterface();
4427  }
4428
4429  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
4430  /// its object type is the primitive 'id' type with no protocols.
4431  bool isObjCIdType() const {
4432    return getObjectType()->isObjCUnqualifiedId();
4433  }
4434
4435  /// isObjCClassType - True if this is equivalent to the 'Class' type,
4436  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
4437  bool isObjCClassType() const {
4438    return getObjectType()->isObjCUnqualifiedClass();
4439  }
4440
4441  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
4442  /// non-empty set of protocols.
4443  bool isObjCQualifiedIdType() const {
4444    return getObjectType()->isObjCQualifiedId();
4445  }
4446
4447  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
4448  /// some non-empty set of protocols.
4449  bool isObjCQualifiedClassType() const {
4450    return getObjectType()->isObjCQualifiedClass();
4451  }
4452
4453  /// An iterator over the qualifiers on the object type.  Provided
4454  /// for convenience.  This will always iterate over the full set of
4455  /// protocols on a type, not just those provided directly.
4456  typedef ObjCObjectType::qual_iterator qual_iterator;
4457
4458  qual_iterator qual_begin() const {
4459    return getObjectType()->qual_begin();
4460  }
4461  qual_iterator qual_end() const {
4462    return getObjectType()->qual_end();
4463  }
4464  bool qual_empty() const { return getObjectType()->qual_empty(); }
4465
4466  /// getNumProtocols - Return the number of qualifying protocols on
4467  /// the object type.
4468  unsigned getNumProtocols() const {
4469    return getObjectType()->getNumProtocols();
4470  }
4471
4472  /// \brief Retrieve a qualifying protocol by index on the object
4473  /// type.
4474  ObjCProtocolDecl *getProtocol(unsigned I) const {
4475    return getObjectType()->getProtocol(I);
4476  }
4477
4478  bool isSugared() const { return false; }
4479  QualType desugar() const { return QualType(this, 0); }
4480
4481  void Profile(llvm::FoldingSetNodeID &ID) {
4482    Profile(ID, getPointeeType());
4483  }
4484  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4485    ID.AddPointer(T.getAsOpaquePtr());
4486  }
4487  static bool classof(const Type *T) {
4488    return T->getTypeClass() == ObjCObjectPointer;
4489  }
4490};
4491
4492class AtomicType : public Type, public llvm::FoldingSetNode {
4493  QualType ValueType;
4494
4495  AtomicType(QualType ValTy, QualType Canonical)
4496    : Type(Atomic, Canonical, ValTy->isDependentType(),
4497           ValTy->isInstantiationDependentType(),
4498           ValTy->isVariablyModifiedType(),
4499           ValTy->containsUnexpandedParameterPack()),
4500      ValueType(ValTy) {}
4501  friend class ASTContext;  // ASTContext creates these.
4502
4503  public:
4504  /// getValueType - Gets the type contained by this atomic type, i.e.
4505  /// the type returned by performing an atomic load of this atomic type.
4506  QualType getValueType() const { return ValueType; }
4507
4508  bool isSugared() const { return false; }
4509  QualType desugar() const { return QualType(this, 0); }
4510
4511  void Profile(llvm::FoldingSetNodeID &ID) {
4512    Profile(ID, getValueType());
4513  }
4514  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4515    ID.AddPointer(T.getAsOpaquePtr());
4516  }
4517  static bool classof(const Type *T) {
4518    return T->getTypeClass() == Atomic;
4519  }
4520};
4521
4522/// A qualifier set is used to build a set of qualifiers.
4523class QualifierCollector : public Qualifiers {
4524public:
4525  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4526
4527  /// Collect any qualifiers on the given type and return an
4528  /// unqualified type.  The qualifiers are assumed to be consistent
4529  /// with those already in the type.
4530  const Type *strip(QualType type) {
4531    addFastQualifiers(type.getLocalFastQualifiers());
4532    if (!type.hasLocalNonFastQualifiers())
4533      return type.getTypePtrUnsafe();
4534
4535    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4536    addConsistentQualifiers(extQuals->getQualifiers());
4537    return extQuals->getBaseType();
4538  }
4539
4540  /// Apply the collected qualifiers to the given type.
4541  QualType apply(const ASTContext &Context, QualType QT) const;
4542
4543  /// Apply the collected qualifiers to the given type.
4544  QualType apply(const ASTContext &Context, const Type* T) const;
4545};
4546
4547
4548// Inline function definitions.
4549
4550inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
4551  SplitQualType desugar =
4552    Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
4553  desugar.Quals.addConsistentQualifiers(Quals);
4554  return desugar;
4555}
4556
4557inline const Type *QualType::getTypePtr() const {
4558  return getCommonPtr()->BaseType;
4559}
4560
4561inline const Type *QualType::getTypePtrOrNull() const {
4562  return (isNull() ? 0 : getCommonPtr()->BaseType);
4563}
4564
4565inline SplitQualType QualType::split() const {
4566  if (!hasLocalNonFastQualifiers())
4567    return SplitQualType(getTypePtrUnsafe(),
4568                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4569
4570  const ExtQuals *eq = getExtQualsUnsafe();
4571  Qualifiers qs = eq->getQualifiers();
4572  qs.addFastQualifiers(getLocalFastQualifiers());
4573  return SplitQualType(eq->getBaseType(), qs);
4574}
4575
4576inline Qualifiers QualType::getLocalQualifiers() const {
4577  Qualifiers Quals;
4578  if (hasLocalNonFastQualifiers())
4579    Quals = getExtQualsUnsafe()->getQualifiers();
4580  Quals.addFastQualifiers(getLocalFastQualifiers());
4581  return Quals;
4582}
4583
4584inline Qualifiers QualType::getQualifiers() const {
4585  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4586  quals.addFastQualifiers(getLocalFastQualifiers());
4587  return quals;
4588}
4589
4590inline unsigned QualType::getCVRQualifiers() const {
4591  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4592  cvr |= getLocalCVRQualifiers();
4593  return cvr;
4594}
4595
4596inline QualType QualType::getCanonicalType() const {
4597  QualType canon = getCommonPtr()->CanonicalType;
4598  return canon.withFastQualifiers(getLocalFastQualifiers());
4599}
4600
4601inline bool QualType::isCanonical() const {
4602  return getTypePtr()->isCanonicalUnqualified();
4603}
4604
4605inline bool QualType::isCanonicalAsParam() const {
4606  if (!isCanonical()) return false;
4607  if (hasLocalQualifiers()) return false;
4608
4609  const Type *T = getTypePtr();
4610  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4611    return false;
4612
4613  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4614}
4615
4616inline bool QualType::isConstQualified() const {
4617  return isLocalConstQualified() ||
4618         getCommonPtr()->CanonicalType.isLocalConstQualified();
4619}
4620
4621inline bool QualType::isRestrictQualified() const {
4622  return isLocalRestrictQualified() ||
4623         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4624}
4625
4626
4627inline bool QualType::isVolatileQualified() const {
4628  return isLocalVolatileQualified() ||
4629         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4630}
4631
4632inline bool QualType::hasQualifiers() const {
4633  return hasLocalQualifiers() ||
4634         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4635}
4636
4637inline QualType QualType::getUnqualifiedType() const {
4638  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4639    return QualType(getTypePtr(), 0);
4640
4641  return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
4642}
4643
4644inline SplitQualType QualType::getSplitUnqualifiedType() const {
4645  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4646    return split();
4647
4648  return getSplitUnqualifiedTypeImpl(*this);
4649}
4650
4651inline void QualType::removeLocalConst() {
4652  removeLocalFastQualifiers(Qualifiers::Const);
4653}
4654
4655inline void QualType::removeLocalRestrict() {
4656  removeLocalFastQualifiers(Qualifiers::Restrict);
4657}
4658
4659inline void QualType::removeLocalVolatile() {
4660  removeLocalFastQualifiers(Qualifiers::Volatile);
4661}
4662
4663inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4664  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4665  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4666
4667  // Fast path: we don't need to touch the slow qualifiers.
4668  removeLocalFastQualifiers(Mask);
4669}
4670
4671/// getAddressSpace - Return the address space of this type.
4672inline unsigned QualType::getAddressSpace() const {
4673  return getQualifiers().getAddressSpace();
4674}
4675
4676/// getObjCGCAttr - Return the gc attribute of this type.
4677inline Qualifiers::GC QualType::getObjCGCAttr() const {
4678  return getQualifiers().getObjCGCAttr();
4679}
4680
4681inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4682  if (const PointerType *PT = t.getAs<PointerType>()) {
4683    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4684      return FT->getExtInfo();
4685  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4686    return FT->getExtInfo();
4687
4688  return FunctionType::ExtInfo();
4689}
4690
4691inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4692  return getFunctionExtInfo(*t);
4693}
4694
4695/// isMoreQualifiedThan - Determine whether this type is more
4696/// qualified than the Other type. For example, "const volatile int"
4697/// is more qualified than "const int", "volatile int", and
4698/// "int". However, it is not more qualified than "const volatile
4699/// int".
4700inline bool QualType::isMoreQualifiedThan(QualType other) const {
4701  Qualifiers myQuals = getQualifiers();
4702  Qualifiers otherQuals = other.getQualifiers();
4703  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4704}
4705
4706/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4707/// as qualified as the Other type. For example, "const volatile
4708/// int" is at least as qualified as "const int", "volatile int",
4709/// "int", and "const volatile int".
4710inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4711  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4712}
4713
4714/// getNonReferenceType - If Type is a reference type (e.g., const
4715/// int&), returns the type that the reference refers to ("const
4716/// int"). Otherwise, returns the type itself. This routine is used
4717/// throughout Sema to implement C++ 5p6:
4718///
4719///   If an expression initially has the type "reference to T" (8.3.2,
4720///   8.5.3), the type is adjusted to "T" prior to any further
4721///   analysis, the expression designates the object or function
4722///   denoted by the reference, and the expression is an lvalue.
4723inline QualType QualType::getNonReferenceType() const {
4724  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4725    return RefType->getPointeeType();
4726  else
4727    return *this;
4728}
4729
4730inline bool QualType::isCForbiddenLValueType() const {
4731  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
4732          getTypePtr()->isFunctionType());
4733}
4734
4735/// \brief Tests whether the type is categorized as a fundamental type.
4736///
4737/// \returns True for types specified in C++0x [basic.fundamental].
4738inline bool Type::isFundamentalType() const {
4739  return isVoidType() ||
4740         // FIXME: It's really annoying that we don't have an
4741         // 'isArithmeticType()' which agrees with the standard definition.
4742         (isArithmeticType() && !isEnumeralType());
4743}
4744
4745/// \brief Tests whether the type is categorized as a compound type.
4746///
4747/// \returns True for types specified in C++0x [basic.compound].
4748inline bool Type::isCompoundType() const {
4749  // C++0x [basic.compound]p1:
4750  //   Compound types can be constructed in the following ways:
4751  //    -- arrays of objects of a given type [...];
4752  return isArrayType() ||
4753  //    -- functions, which have parameters of given types [...];
4754         isFunctionType() ||
4755  //    -- pointers to void or objects or functions [...];
4756         isPointerType() ||
4757  //    -- references to objects or functions of a given type. [...]
4758         isReferenceType() ||
4759  //    -- classes containing a sequence of objects of various types, [...];
4760         isRecordType() ||
4761  //    -- unions, which are classes capable of containing objects of different
4762  //               types at different times;
4763         isUnionType() ||
4764  //    -- enumerations, which comprise a set of named constant values. [...];
4765         isEnumeralType() ||
4766  //    -- pointers to non-static class members, [...].
4767         isMemberPointerType();
4768}
4769
4770inline bool Type::isFunctionType() const {
4771  return isa<FunctionType>(CanonicalType);
4772}
4773inline bool Type::isPointerType() const {
4774  return isa<PointerType>(CanonicalType);
4775}
4776inline bool Type::isAnyPointerType() const {
4777  return isPointerType() || isObjCObjectPointerType();
4778}
4779inline bool Type::isBlockPointerType() const {
4780  return isa<BlockPointerType>(CanonicalType);
4781}
4782inline bool Type::isReferenceType() const {
4783  return isa<ReferenceType>(CanonicalType);
4784}
4785inline bool Type::isLValueReferenceType() const {
4786  return isa<LValueReferenceType>(CanonicalType);
4787}
4788inline bool Type::isRValueReferenceType() const {
4789  return isa<RValueReferenceType>(CanonicalType);
4790}
4791inline bool Type::isFunctionPointerType() const {
4792  if (const PointerType *T = getAs<PointerType>())
4793    return T->getPointeeType()->isFunctionType();
4794  else
4795    return false;
4796}
4797inline bool Type::isMemberPointerType() const {
4798  return isa<MemberPointerType>(CanonicalType);
4799}
4800inline bool Type::isMemberFunctionPointerType() const {
4801  if (const MemberPointerType* T = getAs<MemberPointerType>())
4802    return T->isMemberFunctionPointer();
4803  else
4804    return false;
4805}
4806inline bool Type::isMemberDataPointerType() const {
4807  if (const MemberPointerType* T = getAs<MemberPointerType>())
4808    return T->isMemberDataPointer();
4809  else
4810    return false;
4811}
4812inline bool Type::isArrayType() const {
4813  return isa<ArrayType>(CanonicalType);
4814}
4815inline bool Type::isConstantArrayType() const {
4816  return isa<ConstantArrayType>(CanonicalType);
4817}
4818inline bool Type::isIncompleteArrayType() const {
4819  return isa<IncompleteArrayType>(CanonicalType);
4820}
4821inline bool Type::isVariableArrayType() const {
4822  return isa<VariableArrayType>(CanonicalType);
4823}
4824inline bool Type::isDependentSizedArrayType() const {
4825  return isa<DependentSizedArrayType>(CanonicalType);
4826}
4827inline bool Type::isBuiltinType() const {
4828  return isa<BuiltinType>(CanonicalType);
4829}
4830inline bool Type::isRecordType() const {
4831  return isa<RecordType>(CanonicalType);
4832}
4833inline bool Type::isEnumeralType() const {
4834  return isa<EnumType>(CanonicalType);
4835}
4836inline bool Type::isAnyComplexType() const {
4837  return isa<ComplexType>(CanonicalType);
4838}
4839inline bool Type::isVectorType() const {
4840  return isa<VectorType>(CanonicalType);
4841}
4842inline bool Type::isExtVectorType() const {
4843  return isa<ExtVectorType>(CanonicalType);
4844}
4845inline bool Type::isObjCObjectPointerType() const {
4846  return isa<ObjCObjectPointerType>(CanonicalType);
4847}
4848inline bool Type::isObjCObjectType() const {
4849  return isa<ObjCObjectType>(CanonicalType);
4850}
4851inline bool Type::isObjCObjectOrInterfaceType() const {
4852  return isa<ObjCInterfaceType>(CanonicalType) ||
4853    isa<ObjCObjectType>(CanonicalType);
4854}
4855inline bool Type::isAtomicType() const {
4856  return isa<AtomicType>(CanonicalType);
4857}
4858
4859inline bool Type::isObjCQualifiedIdType() const {
4860  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4861    return OPT->isObjCQualifiedIdType();
4862  return false;
4863}
4864inline bool Type::isObjCQualifiedClassType() const {
4865  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4866    return OPT->isObjCQualifiedClassType();
4867  return false;
4868}
4869inline bool Type::isObjCIdType() const {
4870  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4871    return OPT->isObjCIdType();
4872  return false;
4873}
4874inline bool Type::isObjCClassType() const {
4875  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4876    return OPT->isObjCClassType();
4877  return false;
4878}
4879inline bool Type::isObjCSelType() const {
4880  if (const PointerType *OPT = getAs<PointerType>())
4881    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4882  return false;
4883}
4884inline bool Type::isObjCBuiltinType() const {
4885  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4886}
4887
4888inline bool Type::isImage1dT() const {
4889  return isSpecificBuiltinType(BuiltinType::OCLImage1d);
4890}
4891
4892inline bool Type::isImage1dArrayT() const {
4893  return isSpecificBuiltinType(BuiltinType::OCLImage1dArray);
4894}
4895
4896inline bool Type::isImage1dBufferT() const {
4897  return isSpecificBuiltinType(BuiltinType::OCLImage1dBuffer);
4898}
4899
4900inline bool Type::isImage2dT() const {
4901  return isSpecificBuiltinType(BuiltinType::OCLImage2d);
4902}
4903
4904inline bool Type::isImage2dArrayT() const {
4905  return isSpecificBuiltinType(BuiltinType::OCLImage2dArray);
4906}
4907
4908inline bool Type::isImage3dT() const {
4909  return isSpecificBuiltinType(BuiltinType::OCLImage3d);
4910}
4911
4912inline bool Type::isSamplerT() const {
4913  return isSpecificBuiltinType(BuiltinType::OCLSampler);
4914}
4915
4916inline bool Type::isEventT() const {
4917  return isSpecificBuiltinType(BuiltinType::OCLEvent);
4918}
4919
4920inline bool Type::isImageType() const {
4921  return isImage3dT() ||
4922         isImage2dT() || isImage2dArrayT() ||
4923         isImage1dT() || isImage1dArrayT() || isImage1dBufferT();
4924}
4925
4926inline bool Type::isOpenCLSpecificType() const {
4927  return isSamplerT() || isEventT() || isImageType();
4928}
4929
4930inline bool Type::isTemplateTypeParmType() const {
4931  return isa<TemplateTypeParmType>(CanonicalType);
4932}
4933
4934inline bool Type::isSpecificBuiltinType(unsigned K) const {
4935  if (const BuiltinType *BT = getAs<BuiltinType>())
4936    if (BT->getKind() == (BuiltinType::Kind) K)
4937      return true;
4938  return false;
4939}
4940
4941inline bool Type::isPlaceholderType() const {
4942  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4943    return BT->isPlaceholderType();
4944  return false;
4945}
4946
4947inline const BuiltinType *Type::getAsPlaceholderType() const {
4948  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4949    if (BT->isPlaceholderType())
4950      return BT;
4951  return 0;
4952}
4953
4954inline bool Type::isSpecificPlaceholderType(unsigned K) const {
4955  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
4956  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4957    return (BT->getKind() == (BuiltinType::Kind) K);
4958  return false;
4959}
4960
4961inline bool Type::isNonOverloadPlaceholderType() const {
4962  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4963    return BT->isNonOverloadPlaceholderType();
4964  return false;
4965}
4966
4967inline bool Type::isVoidType() const {
4968  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4969    return BT->getKind() == BuiltinType::Void;
4970  return false;
4971}
4972
4973inline bool Type::isHalfType() const {
4974  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4975    return BT->getKind() == BuiltinType::Half;
4976  // FIXME: Should we allow complex __fp16? Probably not.
4977  return false;
4978}
4979
4980inline bool Type::isNullPtrType() const {
4981  if (const BuiltinType *BT = getAs<BuiltinType>())
4982    return BT->getKind() == BuiltinType::NullPtr;
4983  return false;
4984}
4985
4986extern bool IsEnumDeclComplete(EnumDecl *);
4987extern bool IsEnumDeclScoped(EnumDecl *);
4988
4989inline bool Type::isIntegerType() const {
4990  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4991    return BT->getKind() >= BuiltinType::Bool &&
4992           BT->getKind() <= BuiltinType::Int128;
4993  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
4994    // Incomplete enum types are not treated as integer types.
4995    // FIXME: In C++, enum types are never integer types.
4996    return IsEnumDeclComplete(ET->getDecl()) &&
4997      !IsEnumDeclScoped(ET->getDecl());
4998  }
4999  return false;
5000}
5001
5002inline bool Type::isScalarType() const {
5003  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5004    return BT->getKind() > BuiltinType::Void &&
5005           BT->getKind() <= BuiltinType::NullPtr;
5006  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5007    // Enums are scalar types, but only if they are defined.  Incomplete enums
5008    // are not treated as scalar types.
5009    return IsEnumDeclComplete(ET->getDecl());
5010  return isa<PointerType>(CanonicalType) ||
5011         isa<BlockPointerType>(CanonicalType) ||
5012         isa<MemberPointerType>(CanonicalType) ||
5013         isa<ComplexType>(CanonicalType) ||
5014         isa<ObjCObjectPointerType>(CanonicalType);
5015}
5016
5017inline bool Type::isIntegralOrEnumerationType() const {
5018  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5019    return BT->getKind() >= BuiltinType::Bool &&
5020           BT->getKind() <= BuiltinType::Int128;
5021
5022  // Check for a complete enum type; incomplete enum types are not properly an
5023  // enumeration type in the sense required here.
5024  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5025    return IsEnumDeclComplete(ET->getDecl());
5026
5027  return false;
5028}
5029
5030inline bool Type::isBooleanType() const {
5031  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5032    return BT->getKind() == BuiltinType::Bool;
5033  return false;
5034}
5035
5036/// \brief Determines whether this is a type for which one can define
5037/// an overloaded operator.
5038inline bool Type::isOverloadableType() const {
5039  return isDependentType() || isRecordType() || isEnumeralType();
5040}
5041
5042/// \brief Determines whether this type can decay to a pointer type.
5043inline bool Type::canDecayToPointerType() const {
5044  return isFunctionType() || isArrayType();
5045}
5046
5047inline bool Type::hasPointerRepresentation() const {
5048  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
5049          isObjCObjectPointerType() || isNullPtrType());
5050}
5051
5052inline bool Type::hasObjCPointerRepresentation() const {
5053  return isObjCObjectPointerType();
5054}
5055
5056inline const Type *Type::getBaseElementTypeUnsafe() const {
5057  const Type *type = this;
5058  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
5059    type = arrayType->getElementType().getTypePtr();
5060  return type;
5061}
5062
5063/// Insertion operator for diagnostics.  This allows sending QualType's into a
5064/// diagnostic with <<.
5065inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
5066                                           QualType T) {
5067  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5068                  DiagnosticsEngine::ak_qualtype);
5069  return DB;
5070}
5071
5072/// Insertion operator for partial diagnostics.  This allows sending QualType's
5073/// into a diagnostic with <<.
5074inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
5075                                           QualType T) {
5076  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5077                  DiagnosticsEngine::ak_qualtype);
5078  return PD;
5079}
5080
5081// Helper class template that is used by Type::getAs to ensure that one does
5082// not try to look through a qualified type to get to an array type.
5083template<typename T,
5084         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
5085                             llvm::is_base_of<ArrayType, T>::value)>
5086struct ArrayType_cannot_be_used_with_getAs { };
5087
5088template<typename T>
5089struct ArrayType_cannot_be_used_with_getAs<T, true>;
5090
5091// Member-template getAs<specific type>'.
5092template <typename T> const T *Type::getAs() const {
5093  ArrayType_cannot_be_used_with_getAs<T> at;
5094  (void)at;
5095
5096  // If this is directly a T type, return it.
5097  if (const T *Ty = dyn_cast<T>(this))
5098    return Ty;
5099
5100  // If the canonical form of this type isn't the right kind, reject it.
5101  if (!isa<T>(CanonicalType))
5102    return 0;
5103
5104  // If this is a typedef for the type, strip the typedef off without
5105  // losing all typedef information.
5106  return cast<T>(getUnqualifiedDesugaredType());
5107}
5108
5109inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
5110  // If this is directly an array type, return it.
5111  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
5112    return arr;
5113
5114  // If the canonical form of this type isn't the right kind, reject it.
5115  if (!isa<ArrayType>(CanonicalType))
5116    return 0;
5117
5118  // If this is a typedef for the type, strip the typedef off without
5119  // losing all typedef information.
5120  return cast<ArrayType>(getUnqualifiedDesugaredType());
5121}
5122
5123template <typename T> const T *Type::castAs() const {
5124  ArrayType_cannot_be_used_with_getAs<T> at;
5125  (void) at;
5126
5127  assert(isa<T>(CanonicalType));
5128  if (const T *ty = dyn_cast<T>(this)) return ty;
5129  return cast<T>(getUnqualifiedDesugaredType());
5130}
5131
5132inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
5133  assert(isa<ArrayType>(CanonicalType));
5134  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
5135  return cast<ArrayType>(getUnqualifiedDesugaredType());
5136}
5137
5138}  // end namespace clang
5139
5140#endif
5141