Type.h revision a8225449421e8c1e996a7c48300521028946482a
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/ExceptionSpecificationType.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/Linkage.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Basic/Visibility.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/TemplateName.h"
25#include "llvm/Support/Casting.h"
26#include "llvm/Support/type_traits.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32
33using llvm::isa;
34using llvm::cast;
35using llvm::cast_or_null;
36using llvm::dyn_cast;
37using llvm::dyn_cast_or_null;
38namespace clang {
39  enum {
40    TypeAlignmentInBits = 4,
41    TypeAlignment = 1 << TypeAlignmentInBits
42  };
43  class Type;
44  class ExtQuals;
45  class QualType;
46}
47
48namespace llvm {
49  template <typename T>
50  class PointerLikeTypeTraits;
51  template<>
52  class PointerLikeTypeTraits< ::clang::Type*> {
53  public:
54    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
55    static inline ::clang::Type *getFromVoidPointer(void *P) {
56      return static_cast< ::clang::Type*>(P);
57    }
58    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
59  };
60  template<>
61  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
62  public:
63    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
64    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
65      return static_cast< ::clang::ExtQuals*>(P);
66    }
67    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
68  };
69
70  template <>
71  struct isPodLike<clang::QualType> { static const bool value = true; };
72}
73
74namespace clang {
75  class ASTContext;
76  class TypedefNameDecl;
77  class TemplateDecl;
78  class TemplateTypeParmDecl;
79  class NonTypeTemplateParmDecl;
80  class TemplateTemplateParmDecl;
81  class TagDecl;
82  class RecordDecl;
83  class CXXRecordDecl;
84  class EnumDecl;
85  class FieldDecl;
86  class ObjCInterfaceDecl;
87  class ObjCProtocolDecl;
88  class ObjCMethodDecl;
89  class UnresolvedUsingTypenameDecl;
90  class Expr;
91  class Stmt;
92  class SourceLocation;
93  class StmtIteratorBase;
94  class TemplateArgument;
95  class TemplateArgumentLoc;
96  class TemplateArgumentListInfo;
97  class ElaboratedType;
98  class ExtQuals;
99  class ExtQualsTypeCommonBase;
100  struct PrintingPolicy;
101
102  template <typename> class CanQual;
103  typedef CanQual<Type> CanQualType;
104
105  // Provide forward declarations for all of the *Type classes
106#define TYPE(Class, Base) class Class##Type;
107#include "clang/AST/TypeNodes.def"
108
109/// Qualifiers - The collection of all-type qualifiers we support.
110/// Clang supports five independent qualifiers:
111/// * C99: const, volatile, and restrict
112/// * Embedded C (TR18037): address spaces
113/// * Objective C: the GC attributes (none, weak, or strong)
114class Qualifiers {
115public:
116  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
117    Const    = 0x1,
118    Restrict = 0x2,
119    Volatile = 0x4,
120    CVRMask = Const | Volatile | Restrict
121  };
122
123  enum GC {
124    GCNone = 0,
125    Weak,
126    Strong
127  };
128
129  enum {
130    /// The maximum supported address space number.
131    /// 24 bits should be enough for anyone.
132    MaxAddressSpace = 0xffffffu,
133
134    /// The width of the "fast" qualifier mask.
135    FastWidth = 3,
136
137    /// The fast qualifier mask.
138    FastMask = (1 << FastWidth) - 1
139  };
140
141  Qualifiers() : Mask(0) {}
142
143  static Qualifiers fromFastMask(unsigned Mask) {
144    Qualifiers Qs;
145    Qs.addFastQualifiers(Mask);
146    return Qs;
147  }
148
149  static Qualifiers fromCVRMask(unsigned CVR) {
150    Qualifiers Qs;
151    Qs.addCVRQualifiers(CVR);
152    return Qs;
153  }
154
155  // Deserialize qualifiers from an opaque representation.
156  static Qualifiers fromOpaqueValue(unsigned opaque) {
157    Qualifiers Qs;
158    Qs.Mask = opaque;
159    return Qs;
160  }
161
162  // Serialize these qualifiers into an opaque representation.
163  unsigned getAsOpaqueValue() const {
164    return Mask;
165  }
166
167  bool hasConst() const { return Mask & Const; }
168  void setConst(bool flag) {
169    Mask = (Mask & ~Const) | (flag ? Const : 0);
170  }
171  void removeConst() { Mask &= ~Const; }
172  void addConst() { Mask |= Const; }
173
174  bool hasVolatile() const { return Mask & Volatile; }
175  void setVolatile(bool flag) {
176    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
177  }
178  void removeVolatile() { Mask &= ~Volatile; }
179  void addVolatile() { Mask |= Volatile; }
180
181  bool hasRestrict() const { return Mask & Restrict; }
182  void setRestrict(bool flag) {
183    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
184  }
185  void removeRestrict() { Mask &= ~Restrict; }
186  void addRestrict() { Mask |= Restrict; }
187
188  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
189  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
190  void setCVRQualifiers(unsigned mask) {
191    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
192    Mask = (Mask & ~CVRMask) | mask;
193  }
194  void removeCVRQualifiers(unsigned mask) {
195    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
196    Mask &= ~mask;
197  }
198  void removeCVRQualifiers() {
199    removeCVRQualifiers(CVRMask);
200  }
201  void addCVRQualifiers(unsigned mask) {
202    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
203    Mask |= mask;
204  }
205
206  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
207  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
208  void setObjCGCAttr(GC type) {
209    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
210  }
211  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
212  void addObjCGCAttr(GC type) {
213    assert(type);
214    setObjCGCAttr(type);
215  }
216  Qualifiers withoutObjCGCAttr() const {
217    Qualifiers qs = *this;
218    qs.removeObjCGCAttr();
219    return qs;
220  }
221
222  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
223  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
224  void setAddressSpace(unsigned space) {
225    assert(space <= MaxAddressSpace);
226    Mask = (Mask & ~AddressSpaceMask)
227         | (((uint32_t) space) << AddressSpaceShift);
228  }
229  void removeAddressSpace() { setAddressSpace(0); }
230  void addAddressSpace(unsigned space) {
231    assert(space);
232    setAddressSpace(space);
233  }
234
235  // Fast qualifiers are those that can be allocated directly
236  // on a QualType object.
237  bool hasFastQualifiers() const { return getFastQualifiers(); }
238  unsigned getFastQualifiers() const { return Mask & FastMask; }
239  void setFastQualifiers(unsigned mask) {
240    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
241    Mask = (Mask & ~FastMask) | mask;
242  }
243  void removeFastQualifiers(unsigned mask) {
244    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
245    Mask &= ~mask;
246  }
247  void removeFastQualifiers() {
248    removeFastQualifiers(FastMask);
249  }
250  void addFastQualifiers(unsigned mask) {
251    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
252    Mask |= mask;
253  }
254
255  /// hasNonFastQualifiers - Return true if the set contains any
256  /// qualifiers which require an ExtQuals node to be allocated.
257  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
258  Qualifiers getNonFastQualifiers() const {
259    Qualifiers Quals = *this;
260    Quals.setFastQualifiers(0);
261    return Quals;
262  }
263
264  /// hasQualifiers - Return true if the set contains any qualifiers.
265  bool hasQualifiers() const { return Mask; }
266  bool empty() const { return !Mask; }
267
268  /// \brief Add the qualifiers from the given set to this set.
269  void addQualifiers(Qualifiers Q) {
270    // If the other set doesn't have any non-boolean qualifiers, just
271    // bit-or it in.
272    if (!(Q.Mask & ~CVRMask))
273      Mask |= Q.Mask;
274    else {
275      Mask |= (Q.Mask & CVRMask);
276      if (Q.hasAddressSpace())
277        addAddressSpace(Q.getAddressSpace());
278      if (Q.hasObjCGCAttr())
279        addObjCGCAttr(Q.getObjCGCAttr());
280    }
281  }
282
283  /// \brief Add the qualifiers from the given set to this set, given that
284  /// they don't conflict.
285  void addConsistentQualifiers(Qualifiers qs) {
286    assert(getAddressSpace() == qs.getAddressSpace() ||
287           !hasAddressSpace() || !qs.hasAddressSpace());
288    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
289           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
290    Mask |= qs.Mask;
291  }
292
293  /// \brief Determines if these qualifiers compatibly include another set.
294  /// Generally this answers the question of whether an object with the other
295  /// qualifiers can be safely used as an object with these qualifiers.
296  bool compatiblyIncludes(Qualifiers other) const {
297    // Non-CVR qualifiers must match exactly.  CVR qualifiers may subset.
298    return ((Mask & ~CVRMask) == (other.Mask & ~CVRMask)) &&
299           (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
300  }
301
302  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
303  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
304
305  operator bool() const { return hasQualifiers(); }
306
307  Qualifiers &operator+=(Qualifiers R) {
308    addQualifiers(R);
309    return *this;
310  }
311
312  // Union two qualifier sets.  If an enumerated qualifier appears
313  // in both sets, use the one from the right.
314  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
315    L += R;
316    return L;
317  }
318
319  Qualifiers &operator-=(Qualifiers R) {
320    Mask = Mask & ~(R.Mask);
321    return *this;
322  }
323
324  /// \brief Compute the difference between two qualifier sets.
325  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
326    L -= R;
327    return L;
328  }
329
330  std::string getAsString() const;
331  std::string getAsString(const PrintingPolicy &Policy) const {
332    std::string Buffer;
333    getAsStringInternal(Buffer, Policy);
334    return Buffer;
335  }
336  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
337
338  void Profile(llvm::FoldingSetNodeID &ID) const {
339    ID.AddInteger(Mask);
340  }
341
342private:
343
344  // bits:     |0 1 2|3 .. 4|5  ..  31|
345  //           |C R V|GCAttr|AddrSpace|
346  uint32_t Mask;
347
348  static const uint32_t GCAttrMask = 0x18;
349  static const uint32_t GCAttrShift = 3;
350  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
351  static const uint32_t AddressSpaceShift = 5;
352};
353
354/// CallingConv - Specifies the calling convention that a function uses.
355enum CallingConv {
356  CC_Default,
357  CC_C,           // __attribute__((cdecl))
358  CC_X86StdCall,  // __attribute__((stdcall))
359  CC_X86FastCall, // __attribute__((fastcall))
360  CC_X86ThisCall, // __attribute__((thiscall))
361  CC_X86Pascal,   // __attribute__((pascal))
362  CC_AAPCS,       // __attribute__((pcs("aapcs")))
363  CC_AAPCS_VFP    // __attribute__((pcs("aapcs-vfp")))
364};
365
366typedef std::pair<const Type*, Qualifiers> SplitQualType;
367
368/// QualType - For efficiency, we don't store CV-qualified types as nodes on
369/// their own: instead each reference to a type stores the qualifiers.  This
370/// greatly reduces the number of nodes we need to allocate for types (for
371/// example we only need one for 'int', 'const int', 'volatile int',
372/// 'const volatile int', etc).
373///
374/// As an added efficiency bonus, instead of making this a pair, we
375/// just store the two bits we care about in the low bits of the
376/// pointer.  To handle the packing/unpacking, we make QualType be a
377/// simple wrapper class that acts like a smart pointer.  A third bit
378/// indicates whether there are extended qualifiers present, in which
379/// case the pointer points to a special structure.
380class QualType {
381  // Thankfully, these are efficiently composable.
382  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
383                       Qualifiers::FastWidth> Value;
384
385  const ExtQuals *getExtQualsUnsafe() const {
386    return Value.getPointer().get<const ExtQuals*>();
387  }
388
389  const Type *getTypePtrUnsafe() const {
390    return Value.getPointer().get<const Type*>();
391  }
392
393  const ExtQualsTypeCommonBase *getCommonPtr() const {
394    assert(!isNull() && "Cannot retrieve a NULL type pointer");
395    uintptr_t CommonPtrVal
396      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
397    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
398    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
399  }
400
401  friend class QualifierCollector;
402public:
403  QualType() {}
404
405  QualType(const Type *Ptr, unsigned Quals)
406    : Value(Ptr, Quals) {}
407  QualType(const ExtQuals *Ptr, unsigned Quals)
408    : Value(Ptr, Quals) {}
409
410  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
411  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
412
413  /// Retrieves a pointer to the underlying (unqualified) type.
414  /// This should really return a const Type, but it's not worth
415  /// changing all the users right now.
416  ///
417  /// This function requires that the type not be NULL. If the type might be
418  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
419  const Type *getTypePtr() const;
420
421  const Type *getTypePtrOrNull() const;
422
423  /// Divides a QualType into its unqualified type and a set of local
424  /// qualifiers.
425  SplitQualType split() const;
426
427  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
428  static QualType getFromOpaquePtr(const void *Ptr) {
429    QualType T;
430    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
431    return T;
432  }
433
434  const Type &operator*() const {
435    return *getTypePtr();
436  }
437
438  const Type *operator->() const {
439    return getTypePtr();
440  }
441
442  bool isCanonical() const;
443  bool isCanonicalAsParam() const;
444
445  /// isNull - Return true if this QualType doesn't point to a type yet.
446  bool isNull() const {
447    return Value.getPointer().isNull();
448  }
449
450  /// \brief Determine whether this particular QualType instance has the
451  /// "const" qualifier set, without looking through typedefs that may have
452  /// added "const" at a different level.
453  bool isLocalConstQualified() const {
454    return (getLocalFastQualifiers() & Qualifiers::Const);
455  }
456
457  /// \brief Determine whether this type is const-qualified.
458  bool isConstQualified() const;
459
460  /// \brief Determine whether this particular QualType instance has the
461  /// "restrict" qualifier set, without looking through typedefs that may have
462  /// added "restrict" at a different level.
463  bool isLocalRestrictQualified() const {
464    return (getLocalFastQualifiers() & Qualifiers::Restrict);
465  }
466
467  /// \brief Determine whether this type is restrict-qualified.
468  bool isRestrictQualified() const;
469
470  /// \brief Determine whether this particular QualType instance has the
471  /// "volatile" qualifier set, without looking through typedefs that may have
472  /// added "volatile" at a different level.
473  bool isLocalVolatileQualified() const {
474    return (getLocalFastQualifiers() & Qualifiers::Volatile);
475  }
476
477  /// \brief Determine whether this type is volatile-qualified.
478  bool isVolatileQualified() const;
479
480  /// \brief Determine whether this particular QualType instance has any
481  /// qualifiers, without looking through any typedefs that might add
482  /// qualifiers at a different level.
483  bool hasLocalQualifiers() const {
484    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
485  }
486
487  /// \brief Determine whether this type has any qualifiers.
488  bool hasQualifiers() const;
489
490  /// \brief Determine whether this particular QualType instance has any
491  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
492  /// instance.
493  bool hasLocalNonFastQualifiers() const {
494    return Value.getPointer().is<const ExtQuals*>();
495  }
496
497  /// \brief Retrieve the set of qualifiers local to this particular QualType
498  /// instance, not including any qualifiers acquired through typedefs or
499  /// other sugar.
500  Qualifiers getLocalQualifiers() const;
501
502  /// \brief Retrieve the set of qualifiers applied to this type.
503  Qualifiers getQualifiers() const;
504
505  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
506  /// local to this particular QualType instance, not including any qualifiers
507  /// acquired through typedefs or other sugar.
508  unsigned getLocalCVRQualifiers() const {
509    return getLocalFastQualifiers();
510  }
511
512  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
513  /// applied to this type.
514  unsigned getCVRQualifiers() const;
515
516  bool isConstant(ASTContext& Ctx) const {
517    return QualType::isConstant(*this, Ctx);
518  }
519
520  // Don't promise in the API that anything besides 'const' can be
521  // easily added.
522
523  /// addConst - add the specified type qualifier to this QualType.
524  void addConst() {
525    addFastQualifiers(Qualifiers::Const);
526  }
527  QualType withConst() const {
528    return withFastQualifiers(Qualifiers::Const);
529  }
530
531  void addFastQualifiers(unsigned TQs) {
532    assert(!(TQs & ~Qualifiers::FastMask)
533           && "non-fast qualifier bits set in mask!");
534    Value.setInt(Value.getInt() | TQs);
535  }
536
537  void removeLocalConst();
538  void removeLocalVolatile();
539  void removeLocalRestrict();
540  void removeLocalCVRQualifiers(unsigned Mask);
541
542  void removeLocalFastQualifiers() { Value.setInt(0); }
543  void removeLocalFastQualifiers(unsigned Mask) {
544    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
545    Value.setInt(Value.getInt() & ~Mask);
546  }
547
548  // Creates a type with the given qualifiers in addition to any
549  // qualifiers already on this type.
550  QualType withFastQualifiers(unsigned TQs) const {
551    QualType T = *this;
552    T.addFastQualifiers(TQs);
553    return T;
554  }
555
556  // Creates a type with exactly the given fast qualifiers, removing
557  // any existing fast qualifiers.
558  QualType withExactLocalFastQualifiers(unsigned TQs) const {
559    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
560  }
561
562  // Removes fast qualifiers, but leaves any extended qualifiers in place.
563  QualType withoutLocalFastQualifiers() const {
564    QualType T = *this;
565    T.removeLocalFastQualifiers();
566    return T;
567  }
568
569  QualType getCanonicalType() const;
570
571  /// \brief Return this type with all of the instance-specific qualifiers
572  /// removed, but without removing any qualifiers that may have been applied
573  /// through typedefs.
574  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
575
576  /// \brief Retrieve the unqualified variant of the given type,
577  /// removing as little sugar as possible.
578  ///
579  /// This routine looks through various kinds of sugar to find the
580  /// least-desugared type that is unqualified. For example, given:
581  ///
582  /// \code
583  /// typedef int Integer;
584  /// typedef const Integer CInteger;
585  /// typedef CInteger DifferenceType;
586  /// \endcode
587  ///
588  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
589  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
590  ///
591  /// The resulting type might still be qualified if it's an array
592  /// type.  To strip qualifiers even from within an array type, use
593  /// ASTContext::getUnqualifiedArrayType.
594  inline QualType getUnqualifiedType() const;
595
596  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
597  /// given type, removing as little sugar as possible.
598  ///
599  /// Like getUnqualifiedType(), but also returns the set of
600  /// qualifiers that were built up.
601  ///
602  /// The resulting type might still be qualified if it's an array
603  /// type.  To strip qualifiers even from within an array type, use
604  /// ASTContext::getUnqualifiedArrayType.
605  inline SplitQualType getSplitUnqualifiedType() const;
606
607  /// \brief Determine whether this type is more qualified than the other
608  /// given type, requiring exact equality for non-CVR qualifiers.
609  bool isMoreQualifiedThan(QualType Other) const;
610
611  /// \brief Determine whether this type is at least as qualified as the other
612  /// given type, requiring exact equality for non-CVR qualifiers.
613  bool isAtLeastAsQualifiedAs(QualType Other) const;
614
615  QualType getNonReferenceType() const;
616
617  /// \brief Determine the type of a (typically non-lvalue) expression with the
618  /// specified result type.
619  ///
620  /// This routine should be used for expressions for which the return type is
621  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
622  /// an lvalue. It removes a top-level reference (since there are no
623  /// expressions of reference type) and deletes top-level cvr-qualifiers
624  /// from non-class types (in C++) or all types (in C).
625  QualType getNonLValueExprType(ASTContext &Context) const;
626
627  /// getDesugaredType - Return the specified type with any "sugar" removed from
628  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
629  /// the type is already concrete, it returns it unmodified.  This is similar
630  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
631  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
632  /// concrete.
633  ///
634  /// Qualifiers are left in place.
635  QualType getDesugaredType(const ASTContext &Context) const {
636    return getDesugaredType(*this, Context);
637  }
638
639  SplitQualType getSplitDesugaredType() const {
640    return getSplitDesugaredType(*this);
641  }
642
643  /// IgnoreParens - Returns the specified type after dropping any
644  /// outer-level parentheses.
645  QualType IgnoreParens() const {
646    if (isa<ParenType>(*this))
647      return QualType::IgnoreParens(*this);
648    return *this;
649  }
650
651  /// operator==/!= - Indicate whether the specified types and qualifiers are
652  /// identical.
653  friend bool operator==(const QualType &LHS, const QualType &RHS) {
654    return LHS.Value == RHS.Value;
655  }
656  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
657    return LHS.Value != RHS.Value;
658  }
659  std::string getAsString() const {
660    return getAsString(split());
661  }
662  static std::string getAsString(SplitQualType split) {
663    return getAsString(split.first, split.second);
664  }
665  static std::string getAsString(const Type *ty, Qualifiers qs);
666
667  std::string getAsString(const PrintingPolicy &Policy) const {
668    std::string S;
669    getAsStringInternal(S, Policy);
670    return S;
671  }
672  void getAsStringInternal(std::string &Str,
673                           const PrintingPolicy &Policy) const {
674    return getAsStringInternal(split(), Str, Policy);
675  }
676  static void getAsStringInternal(SplitQualType split, std::string &out,
677                                  const PrintingPolicy &policy) {
678    return getAsStringInternal(split.first, split.second, out, policy);
679  }
680  static void getAsStringInternal(const Type *ty, Qualifiers qs,
681                                  std::string &out,
682                                  const PrintingPolicy &policy);
683
684  void dump(const char *s) const;
685  void dump() const;
686
687  void Profile(llvm::FoldingSetNodeID &ID) const {
688    ID.AddPointer(getAsOpaquePtr());
689  }
690
691  /// getAddressSpace - Return the address space of this type.
692  inline unsigned getAddressSpace() const;
693
694  /// GCAttrTypesAttr - Returns gc attribute of this type.
695  inline Qualifiers::GC getObjCGCAttr() const;
696
697  /// isObjCGCWeak true when Type is objc's weak.
698  bool isObjCGCWeak() const {
699    return getObjCGCAttr() == Qualifiers::Weak;
700  }
701
702  /// isObjCGCStrong true when Type is objc's strong.
703  bool isObjCGCStrong() const {
704    return getObjCGCAttr() == Qualifiers::Strong;
705  }
706
707  enum DestructionKind {
708    DK_none,
709    DK_cxx_destructor
710  };
711
712  /// isDestructedType - nonzero if objects of this type require
713  /// non-trivial work to clean up after.  Non-zero because it's
714  /// conceivable that qualifiers (objc_gc(weak)?) could make
715  /// something require destruction.
716  DestructionKind isDestructedType() const {
717    return isDestructedTypeImpl(*this);
718  }
719
720private:
721  // These methods are implemented in a separate translation unit;
722  // "static"-ize them to avoid creating temporary QualTypes in the
723  // caller.
724  static bool isConstant(QualType T, ASTContext& Ctx);
725  static QualType getDesugaredType(QualType T, const ASTContext &Context);
726  static SplitQualType getSplitDesugaredType(QualType T);
727  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
728  static QualType IgnoreParens(QualType T);
729  static DestructionKind isDestructedTypeImpl(QualType type);
730};
731
732} // end clang.
733
734namespace llvm {
735/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
736/// to a specific Type class.
737template<> struct simplify_type<const ::clang::QualType> {
738  typedef const ::clang::Type *SimpleType;
739  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
740    return Val.getTypePtr();
741  }
742};
743template<> struct simplify_type< ::clang::QualType>
744  : public simplify_type<const ::clang::QualType> {};
745
746// Teach SmallPtrSet that QualType is "basically a pointer".
747template<>
748class PointerLikeTypeTraits<clang::QualType> {
749public:
750  static inline void *getAsVoidPointer(clang::QualType P) {
751    return P.getAsOpaquePtr();
752  }
753  static inline clang::QualType getFromVoidPointer(void *P) {
754    return clang::QualType::getFromOpaquePtr(P);
755  }
756  // Various qualifiers go in low bits.
757  enum { NumLowBitsAvailable = 0 };
758};
759
760} // end namespace llvm
761
762namespace clang {
763
764/// \brief Base class that is common to both the \c ExtQuals and \c Type
765/// classes, which allows \c QualType to access the common fields between the
766/// two.
767///
768class ExtQualsTypeCommonBase {
769  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
770    : BaseType(baseType), CanonicalType(canon) {}
771
772  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
773  /// a self-referential pointer (for \c Type).
774  ///
775  /// This pointer allows an efficient mapping from a QualType to its
776  /// underlying type pointer.
777  const Type *const BaseType;
778
779  /// \brief The canonical type of this type.  A QualType.
780  QualType CanonicalType;
781
782  friend class QualType;
783  friend class Type;
784  friend class ExtQuals;
785};
786
787/// ExtQuals - We can encode up to four bits in the low bits of a
788/// type pointer, but there are many more type qualifiers that we want
789/// to be able to apply to an arbitrary type.  Therefore we have this
790/// struct, intended to be heap-allocated and used by QualType to
791/// store qualifiers.
792///
793/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
794/// in three low bits on the QualType pointer; a fourth bit records whether
795/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
796/// Objective-C GC attributes) are much more rare.
797class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
798  // NOTE: changing the fast qualifiers should be straightforward as
799  // long as you don't make 'const' non-fast.
800  // 1. Qualifiers:
801  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
802  //       Fast qualifiers must occupy the low-order bits.
803  //    b) Update Qualifiers::FastWidth and FastMask.
804  // 2. QualType:
805  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
806  //    b) Update remove{Volatile,Restrict}, defined near the end of
807  //       this header.
808  // 3. ASTContext:
809  //    a) Update get{Volatile,Restrict}Type.
810
811  /// Quals - the immutable set of qualifiers applied by this
812  /// node;  always contains extended qualifiers.
813  Qualifiers Quals;
814
815  ExtQuals *this_() { return this; }
816
817public:
818  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
819    : ExtQualsTypeCommonBase(baseType,
820                             canon.isNull() ? QualType(this_(), 0) : canon),
821      Quals(quals)
822  {
823    assert(Quals.hasNonFastQualifiers()
824           && "ExtQuals created with no fast qualifiers");
825    assert(!Quals.hasFastQualifiers()
826           && "ExtQuals created with fast qualifiers");
827  }
828
829  Qualifiers getQualifiers() const { return Quals; }
830
831  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
832  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
833
834  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
835  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
836
837  const Type *getBaseType() const { return BaseType; }
838
839public:
840  void Profile(llvm::FoldingSetNodeID &ID) const {
841    Profile(ID, getBaseType(), Quals);
842  }
843  static void Profile(llvm::FoldingSetNodeID &ID,
844                      const Type *BaseType,
845                      Qualifiers Quals) {
846    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
847    ID.AddPointer(BaseType);
848    Quals.Profile(ID);
849  }
850};
851
852/// \brief The kind of C++0x ref-qualifier associated with a function type,
853/// which determines whether a member function's "this" object can be an
854/// lvalue, rvalue, or neither.
855enum RefQualifierKind {
856  /// \brief No ref-qualifier was provided.
857  RQ_None = 0,
858  /// \brief An lvalue ref-qualifier was provided (\c &).
859  RQ_LValue,
860  /// \brief An rvalue ref-qualifier was provided (\c &&).
861  RQ_RValue
862};
863
864/// Type - This is the base class of the type hierarchy.  A central concept
865/// with types is that each type always has a canonical type.  A canonical type
866/// is the type with any typedef names stripped out of it or the types it
867/// references.  For example, consider:
868///
869///  typedef int  foo;
870///  typedef foo* bar;
871///    'int *'    'foo *'    'bar'
872///
873/// There will be a Type object created for 'int'.  Since int is canonical, its
874/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
875/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
876/// there is a PointerType that represents 'int*', which, like 'int', is
877/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
878/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
879/// is also 'int*'.
880///
881/// Non-canonical types are useful for emitting diagnostics, without losing
882/// information about typedefs being used.  Canonical types are useful for type
883/// comparisons (they allow by-pointer equality tests) and useful for reasoning
884/// about whether something has a particular form (e.g. is a function type),
885/// because they implicitly, recursively, strip all typedefs out of a type.
886///
887/// Types, once created, are immutable.
888///
889class Type : public ExtQualsTypeCommonBase {
890public:
891  enum TypeClass {
892#define TYPE(Class, Base) Class,
893#define LAST_TYPE(Class) TypeLast = Class,
894#define ABSTRACT_TYPE(Class, Base)
895#include "clang/AST/TypeNodes.def"
896    TagFirst = Record, TagLast = Enum
897  };
898
899private:
900  Type(const Type&);           // DO NOT IMPLEMENT.
901  void operator=(const Type&); // DO NOT IMPLEMENT.
902
903  /// Bitfields required by the Type class.
904  class TypeBitfields {
905    friend class Type;
906    template <class T> friend class TypePropertyCache;
907
908    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
909    unsigned TC : 8;
910
911    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
912    /// Note that this should stay at the end of the ivars for Type so that
913    /// subclasses can pack their bitfields into the same word.
914    unsigned Dependent : 1;
915
916    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
917    unsigned VariablyModified : 1;
918
919    /// \brief Whether this type contains an unexpanded parameter pack
920    /// (for C++0x variadic templates).
921    unsigned ContainsUnexpandedParameterPack : 1;
922
923    /// \brief Nonzero if the cache (i.e. the bitfields here starting
924    /// with 'Cache') is valid.  If so, then this is a
925    /// LangOptions::VisibilityMode+1.
926    mutable unsigned CacheValidAndVisibility : 2;
927
928    /// \brief Linkage of this type.
929    mutable unsigned CachedLinkage : 2;
930
931    /// \brief Whether this type involves and local or unnamed types.
932    mutable unsigned CachedLocalOrUnnamed : 1;
933
934    /// \brief FromAST - Whether this type comes from an AST file.
935    mutable unsigned FromAST : 1;
936
937    bool isCacheValid() const {
938      return (CacheValidAndVisibility != 0);
939    }
940    Visibility getVisibility() const {
941      assert(isCacheValid() && "getting linkage from invalid cache");
942      return static_cast<Visibility>(CacheValidAndVisibility-1);
943    }
944    Linkage getLinkage() const {
945      assert(isCacheValid() && "getting linkage from invalid cache");
946      return static_cast<Linkage>(CachedLinkage);
947    }
948    bool hasLocalOrUnnamedType() const {
949      assert(isCacheValid() && "getting linkage from invalid cache");
950      return CachedLocalOrUnnamed;
951    }
952  };
953  enum { NumTypeBits = 17 };
954
955protected:
956  // These classes allow subclasses to somewhat cleanly pack bitfields
957  // into Type.
958
959  class ArrayTypeBitfields {
960    friend class ArrayType;
961
962    unsigned : NumTypeBits;
963
964    /// IndexTypeQuals - CVR qualifiers from declarations like
965    /// 'int X[static restrict 4]'. For function parameters only.
966    unsigned IndexTypeQuals : 3;
967
968    /// SizeModifier - storage class qualifiers from declarations like
969    /// 'int X[static restrict 4]'. For function parameters only.
970    /// Actually an ArrayType::ArraySizeModifier.
971    unsigned SizeModifier : 3;
972  };
973
974  class BuiltinTypeBitfields {
975    friend class BuiltinType;
976
977    unsigned : NumTypeBits;
978
979    /// The kind (BuiltinType::Kind) of builtin type this is.
980    unsigned Kind : 8;
981  };
982
983  class FunctionTypeBitfields {
984    friend class FunctionType;
985
986    unsigned : NumTypeBits;
987
988    /// Extra information which affects how the function is called, like
989    /// regparm and the calling convention.
990    unsigned ExtInfo : 8;
991
992    /// Whether the function is variadic.  Only used by FunctionProtoType.
993    unsigned Variadic : 1;
994
995    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
996    /// other bitfields.
997    /// The qualifiers are part of FunctionProtoType because...
998    ///
999    /// C++ 8.3.5p4: The return type, the parameter type list and the
1000    /// cv-qualifier-seq, [...], are part of the function type.
1001    unsigned TypeQuals : 3;
1002
1003    /// \brief The ref-qualifier associated with a \c FunctionProtoType.
1004    ///
1005    /// This is a value of type \c RefQualifierKind.
1006    unsigned RefQualifier : 2;
1007  };
1008
1009  class ObjCObjectTypeBitfields {
1010    friend class ObjCObjectType;
1011
1012    unsigned : NumTypeBits;
1013
1014    /// NumProtocols - The number of protocols stored directly on this
1015    /// object type.
1016    unsigned NumProtocols : 32 - NumTypeBits;
1017  };
1018
1019  class ReferenceTypeBitfields {
1020    friend class ReferenceType;
1021
1022    unsigned : NumTypeBits;
1023
1024    /// True if the type was originally spelled with an lvalue sigil.
1025    /// This is never true of rvalue references but can also be false
1026    /// on lvalue references because of C++0x [dcl.typedef]p9,
1027    /// as follows:
1028    ///
1029    ///   typedef int &ref;    // lvalue, spelled lvalue
1030    ///   typedef int &&rvref; // rvalue
1031    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1032    ///   ref &&a;             // lvalue, inner ref
1033    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1034    ///   rvref &&a;           // rvalue, inner ref
1035    unsigned SpelledAsLValue : 1;
1036
1037    /// True if the inner type is a reference type.  This only happens
1038    /// in non-canonical forms.
1039    unsigned InnerRef : 1;
1040  };
1041
1042  class TypeWithKeywordBitfields {
1043    friend class TypeWithKeyword;
1044
1045    unsigned : NumTypeBits;
1046
1047    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1048    unsigned Keyword : 8;
1049  };
1050
1051  class VectorTypeBitfields {
1052    friend class VectorType;
1053
1054    unsigned : NumTypeBits;
1055
1056    /// VecKind - The kind of vector, either a generic vector type or some
1057    /// target-specific vector type such as for AltiVec or Neon.
1058    unsigned VecKind : 3;
1059
1060    /// NumElements - The number of elements in the vector.
1061    unsigned NumElements : 29 - NumTypeBits;
1062  };
1063
1064  class AttributedTypeBitfields {
1065    friend class AttributedType;
1066
1067    unsigned : NumTypeBits;
1068
1069    /// AttrKind - an AttributedType::Kind
1070    unsigned AttrKind : 32 - NumTypeBits;
1071  };
1072
1073  union {
1074    TypeBitfields TypeBits;
1075    ArrayTypeBitfields ArrayTypeBits;
1076    AttributedTypeBitfields AttributedTypeBits;
1077    BuiltinTypeBitfields BuiltinTypeBits;
1078    FunctionTypeBitfields FunctionTypeBits;
1079    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1080    ReferenceTypeBitfields ReferenceTypeBits;
1081    TypeWithKeywordBitfields TypeWithKeywordBits;
1082    VectorTypeBitfields VectorTypeBits;
1083  };
1084
1085private:
1086  /// \brief Set whether this type comes from an AST file.
1087  void setFromAST(bool V = true) const {
1088    TypeBits.FromAST = V;
1089  }
1090
1091  template <class T> friend class TypePropertyCache;
1092
1093protected:
1094  // silence VC++ warning C4355: 'this' : used in base member initializer list
1095  Type *this_() { return this; }
1096  Type(TypeClass tc, QualType canon, bool Dependent, bool VariablyModified,
1097       bool ContainsUnexpandedParameterPack)
1098    : ExtQualsTypeCommonBase(this,
1099                             canon.isNull() ? QualType(this_(), 0) : canon) {
1100    TypeBits.TC = tc;
1101    TypeBits.Dependent = Dependent;
1102    TypeBits.VariablyModified = VariablyModified;
1103    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1104    TypeBits.CacheValidAndVisibility = 0;
1105    TypeBits.CachedLocalOrUnnamed = false;
1106    TypeBits.CachedLinkage = NoLinkage;
1107    TypeBits.FromAST = false;
1108  }
1109  friend class ASTContext;
1110
1111  void setDependent(bool D = true) { TypeBits.Dependent = D; }
1112  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1113  void setContainsUnexpandedParameterPack(bool PP = true) {
1114    TypeBits.ContainsUnexpandedParameterPack = PP;
1115  }
1116
1117public:
1118  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1119
1120  /// \brief Whether this type comes from an AST file.
1121  bool isFromAST() const { return TypeBits.FromAST; }
1122
1123  /// \brief Whether this type is or contains an unexpanded parameter
1124  /// pack, used to support C++0x variadic templates.
1125  ///
1126  /// A type that contains a parameter pack shall be expanded by the
1127  /// ellipsis operator at some point. For example, the typedef in the
1128  /// following example contains an unexpanded parameter pack 'T':
1129  ///
1130  /// \code
1131  /// template<typename ...T>
1132  /// struct X {
1133  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1134  /// };
1135  /// \endcode
1136  ///
1137  /// Note that this routine does not specify which
1138  bool containsUnexpandedParameterPack() const {
1139    return TypeBits.ContainsUnexpandedParameterPack;
1140  }
1141
1142  /// Determines if this type would be canonical if it had no further
1143  /// qualification.
1144  bool isCanonicalUnqualified() const {
1145    return CanonicalType == QualType(this, 0);
1146  }
1147
1148  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1149  /// object types, function types, and incomplete types.
1150
1151  /// isIncompleteType - Return true if this is an incomplete type.
1152  /// A type that can describe objects, but which lacks information needed to
1153  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1154  /// routine will need to determine if the size is actually required.
1155  bool isIncompleteType() const;
1156
1157  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1158  /// type, in other words, not a function type.
1159  bool isIncompleteOrObjectType() const {
1160    return !isFunctionType();
1161  }
1162
1163  /// \brief Determine whether this type is an object type.
1164  bool isObjectType() const {
1165    // C++ [basic.types]p8:
1166    //   An object type is a (possibly cv-qualified) type that is not a
1167    //   function type, not a reference type, and not a void type.
1168    return !isReferenceType() && !isFunctionType() && !isVoidType();
1169  }
1170
1171  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
1172  bool isPODType() const;
1173
1174  /// isLiteralType - Return true if this is a literal type
1175  /// (C++0x [basic.types]p10)
1176  bool isLiteralType() const;
1177
1178  /// isTrivialType - Return true if this is a trivial type
1179  /// (C++0x [basic.types]p9)
1180  bool isTrivialType() const;
1181
1182  /// isCXX11PODType() - Return true if this is a POD type according to the
1183  /// more relaxed rules of the C++11 standard, regardless of the current
1184  /// compilation's language.
1185  /// (C++0x [basic.types]p9)
1186  bool isCXX11PODType() const;
1187
1188  /// Helper methods to distinguish type categories. All type predicates
1189  /// operate on the canonical type, ignoring typedefs and qualifiers.
1190
1191  /// isBuiltinType - returns true if the type is a builtin type.
1192  bool isBuiltinType() const;
1193
1194  /// isSpecificBuiltinType - Test for a particular builtin type.
1195  bool isSpecificBuiltinType(unsigned K) const;
1196
1197  /// isPlaceholderType - Test for a type which does not represent an
1198  /// actual type-system type but is instead used as a placeholder for
1199  /// various convenient purposes within Clang.  All such types are
1200  /// BuiltinTypes.
1201  bool isPlaceholderType() const;
1202
1203  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1204  bool isSpecificPlaceholderType(unsigned K) const;
1205
1206  /// isIntegerType() does *not* include complex integers (a GCC extension).
1207  /// isComplexIntegerType() can be used to test for complex integers.
1208  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1209  bool isEnumeralType() const;
1210  bool isBooleanType() const;
1211  bool isCharType() const;
1212  bool isWideCharType() const;
1213  bool isAnyCharacterType() const;
1214  bool isIntegralType(ASTContext &Ctx) const;
1215
1216  /// \brief Determine whether this type is an integral or enumeration type.
1217  bool isIntegralOrEnumerationType() const;
1218  /// \brief Determine whether this type is an integral or unscoped enumeration
1219  /// type.
1220  bool isIntegralOrUnscopedEnumerationType() const;
1221
1222  /// Floating point categories.
1223  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1224  /// isComplexType() does *not* include complex integers (a GCC extension).
1225  /// isComplexIntegerType() can be used to test for complex integers.
1226  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1227  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1228  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1229  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1230  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1231  bool isVoidType() const;         // C99 6.2.5p19
1232  bool isDerivedType() const;      // C99 6.2.5p20
1233  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1234  bool isAggregateType() const;
1235
1236  // Type Predicates: Check to see if this type is structurally the specified
1237  // type, ignoring typedefs and qualifiers.
1238  bool isFunctionType() const;
1239  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1240  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1241  bool isPointerType() const;
1242  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1243  bool isBlockPointerType() const;
1244  bool isVoidPointerType() const;
1245  bool isReferenceType() const;
1246  bool isLValueReferenceType() const;
1247  bool isRValueReferenceType() const;
1248  bool isFunctionPointerType() const;
1249  bool isMemberPointerType() const;
1250  bool isMemberFunctionPointerType() const;
1251  bool isMemberDataPointerType() const;
1252  bool isArrayType() const;
1253  bool isConstantArrayType() const;
1254  bool isIncompleteArrayType() const;
1255  bool isVariableArrayType() const;
1256  bool isDependentSizedArrayType() const;
1257  bool isRecordType() const;
1258  bool isClassType() const;
1259  bool isStructureType() const;
1260  bool isStructureOrClassType() const;
1261  bool isUnionType() const;
1262  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1263  bool isVectorType() const;                    // GCC vector type.
1264  bool isExtVectorType() const;                 // Extended vector type.
1265  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
1266  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1267  // for the common case.
1268  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1269  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1270  bool isObjCQualifiedIdType() const;           // id<foo>
1271  bool isObjCQualifiedClassType() const;        // Class<foo>
1272  bool isObjCObjectOrInterfaceType() const;
1273  bool isObjCIdType() const;                    // id
1274  bool isObjCClassType() const;                 // Class
1275  bool isObjCSelType() const;                 // Class
1276  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1277  bool isTemplateTypeParmType() const;          // C++ template type parameter
1278  bool isNullPtrType() const;                   // C++0x nullptr_t
1279
1280  enum ScalarTypeKind {
1281    STK_Pointer,
1282    STK_MemberPointer,
1283    STK_Bool,
1284    STK_Integral,
1285    STK_Floating,
1286    STK_IntegralComplex,
1287    STK_FloatingComplex
1288  };
1289  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1290  ScalarTypeKind getScalarTypeKind() const;
1291
1292  /// isDependentType - Whether this type is a dependent type, meaning
1293  /// that its definition somehow depends on a template parameter
1294  /// (C++ [temp.dep.type]).
1295  bool isDependentType() const { return TypeBits.Dependent; }
1296
1297  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1298  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1299
1300  /// \brief Whether this type involves a variable-length array type
1301  /// with a definite size.
1302  bool hasSizedVLAType() const;
1303
1304  /// \brief Whether this type is or contains a local or unnamed type.
1305  bool hasUnnamedOrLocalType() const;
1306
1307  bool isOverloadableType() const;
1308
1309  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1310  bool isElaboratedTypeSpecifier() const;
1311
1312  /// hasPointerRepresentation - Whether this type is represented
1313  /// natively as a pointer; this includes pointers, references, block
1314  /// pointers, and Objective-C interface, qualified id, and qualified
1315  /// interface types, as well as nullptr_t.
1316  bool hasPointerRepresentation() const;
1317
1318  /// hasObjCPointerRepresentation - Whether this type can represent
1319  /// an objective pointer type for the purpose of GC'ability
1320  bool hasObjCPointerRepresentation() const;
1321
1322  /// \brief Determine whether this type has an integer representation
1323  /// of some sort, e.g., it is an integer type or a vector.
1324  bool hasIntegerRepresentation() const;
1325
1326  /// \brief Determine whether this type has an signed integer representation
1327  /// of some sort, e.g., it is an signed integer type or a vector.
1328  bool hasSignedIntegerRepresentation() const;
1329
1330  /// \brief Determine whether this type has an unsigned integer representation
1331  /// of some sort, e.g., it is an unsigned integer type or a vector.
1332  bool hasUnsignedIntegerRepresentation() const;
1333
1334  /// \brief Determine whether this type has a floating-point representation
1335  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1336  bool hasFloatingRepresentation() const;
1337
1338  // Type Checking Functions: Check to see if this type is structurally the
1339  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1340  // the best type we can.
1341  const RecordType *getAsStructureType() const;
1342  /// NOTE: getAs*ArrayType are methods on ASTContext.
1343  const RecordType *getAsUnionType() const;
1344  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1345  // The following is a convenience method that returns an ObjCObjectPointerType
1346  // for object declared using an interface.
1347  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1348  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1349  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1350  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1351  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
1352
1353  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1354  /// because the type is a RecordType or because it is the injected-class-name
1355  /// type of a class template or class template partial specialization.
1356  CXXRecordDecl *getAsCXXRecordDecl() const;
1357
1358  /// \brief Get the AutoType whose type will be deduced for a variable with
1359  /// an initializer of this type. This looks through declarators like pointer
1360  /// types, but not through decltype or typedefs.
1361  AutoType *getContainedAutoType() const;
1362
1363  /// Member-template getAs<specific type>'.  Look through sugar for
1364  /// an instance of <specific type>.   This scheme will eventually
1365  /// replace the specific getAsXXXX methods above.
1366  ///
1367  /// There are some specializations of this member template listed
1368  /// immediately following this class.
1369  template <typename T> const T *getAs() const;
1370
1371  /// A variant of getAs<> for array types which silently discards
1372  /// qualifiers from the outermost type.
1373  const ArrayType *getAsArrayTypeUnsafe() const;
1374
1375  /// Member-template castAs<specific type>.  Look through sugar for
1376  /// the underlying instance of <specific type>.
1377  ///
1378  /// This method has the same relationship to getAs<T> as cast<T> has
1379  /// to dyn_cast<T>; which is to say, the underlying type *must*
1380  /// have the intended type, and this method will never return null.
1381  template <typename T> const T *castAs() const;
1382
1383  /// A variant of castAs<> for array type which silently discards
1384  /// qualifiers from the outermost type.
1385  const ArrayType *castAsArrayTypeUnsafe() const;
1386
1387  /// getBaseElementTypeUnsafe - Get the base element type of this
1388  /// type, potentially discarding type qualifiers.  This method
1389  /// should never be used when type qualifiers are meaningful.
1390  const Type *getBaseElementTypeUnsafe() const;
1391
1392  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1393  /// element type of the array, potentially with type qualifiers missing.
1394  /// This method should never be used when type qualifiers are meaningful.
1395  const Type *getArrayElementTypeNoTypeQual() const;
1396
1397  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1398  /// pointer, this returns the respective pointee.
1399  QualType getPointeeType() const;
1400
1401  /// getUnqualifiedDesugaredType() - Return the specified type with
1402  /// any "sugar" removed from the type, removing any typedefs,
1403  /// typeofs, etc., as well as any qualifiers.
1404  const Type *getUnqualifiedDesugaredType() const;
1405
1406  /// More type predicates useful for type checking/promotion
1407  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1408
1409  /// isSignedIntegerType - Return true if this is an integer type that is
1410  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1411  /// an enum decl which has a signed representation, or a vector of signed
1412  /// integer element type.
1413  bool isSignedIntegerType() const;
1414
1415  /// isUnsignedIntegerType - Return true if this is an integer type that is
1416  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1417  /// decl which has an unsigned representation, or a vector of unsigned integer
1418  /// element type.
1419  bool isUnsignedIntegerType() const;
1420
1421  /// isConstantSizeType - Return true if this is not a variable sized type,
1422  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1423  /// incomplete types.
1424  bool isConstantSizeType() const;
1425
1426  /// isSpecifierType - Returns true if this type can be represented by some
1427  /// set of type specifiers.
1428  bool isSpecifierType() const;
1429
1430  /// \brief Determine the linkage of this type.
1431  Linkage getLinkage() const;
1432
1433  /// \brief Determine the visibility of this type.
1434  Visibility getVisibility() const;
1435
1436  /// \brief Determine the linkage and visibility of this type.
1437  std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
1438
1439  /// \brief Note that the linkage is no longer known.
1440  void ClearLinkageCache();
1441
1442  const char *getTypeClassName() const;
1443
1444  QualType getCanonicalTypeInternal() const {
1445    return CanonicalType;
1446  }
1447  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1448  void dump() const;
1449  static bool classof(const Type *) { return true; }
1450
1451  friend class ASTReader;
1452  friend class ASTWriter;
1453};
1454
1455template <> inline const TypedefType *Type::getAs() const {
1456  return dyn_cast<TypedefType>(this);
1457}
1458
1459// We can do canonical leaf types faster, because we don't have to
1460// worry about preserving child type decoration.
1461#define TYPE(Class, Base)
1462#define LEAF_TYPE(Class) \
1463template <> inline const Class##Type *Type::getAs() const { \
1464  return dyn_cast<Class##Type>(CanonicalType); \
1465} \
1466template <> inline const Class##Type *Type::castAs() const { \
1467  return cast<Class##Type>(CanonicalType); \
1468}
1469#include "clang/AST/TypeNodes.def"
1470
1471
1472/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1473/// types are always canonical and have a literal name field.
1474class BuiltinType : public Type {
1475public:
1476  enum Kind {
1477    Void,
1478
1479    Bool,     // This is bool and/or _Bool.
1480    Char_U,   // This is 'char' for targets where char is unsigned.
1481    UChar,    // This is explicitly qualified unsigned char.
1482    WChar_U,  // This is 'wchar_t' for C++, when unsigned.
1483    Char16,   // This is 'char16_t' for C++.
1484    Char32,   // This is 'char32_t' for C++.
1485    UShort,
1486    UInt,
1487    ULong,
1488    ULongLong,
1489    UInt128,  // __uint128_t
1490
1491    Char_S,   // This is 'char' for targets where char is signed.
1492    SChar,    // This is explicitly qualified signed char.
1493    WChar_S,  // This is 'wchar_t' for C++, when signed.
1494    Short,
1495    Int,
1496    Long,
1497    LongLong,
1498    Int128,   // __int128_t
1499
1500    Float, Double, LongDouble,
1501
1502    NullPtr,  // This is the type of C++0x 'nullptr'.
1503
1504    /// The primitive Objective C 'id' type.  The user-visible 'id'
1505    /// type is a typedef of an ObjCObjectPointerType to an
1506    /// ObjCObjectType with this as its base.  In fact, this only ever
1507    /// shows up in an AST as the base type of an ObjCObjectType.
1508    ObjCId,
1509
1510    /// The primitive Objective C 'Class' type.  The user-visible
1511    /// 'Class' type is a typedef of an ObjCObjectPointerType to an
1512    /// ObjCObjectType with this as its base.  In fact, this only ever
1513    /// shows up in an AST as the base type of an ObjCObjectType.
1514    ObjCClass,
1515
1516    /// The primitive Objective C 'SEL' type.  The user-visible 'SEL'
1517    /// type is a typedef of a PointerType to this.
1518    ObjCSel,
1519
1520    /// This represents the type of an expression whose type is
1521    /// totally unknown, e.g. 'T::foo'.  It is permitted for this to
1522    /// appear in situations where the structure of the type is
1523    /// theoretically deducible.
1524    Dependent,
1525
1526    /// The type of an unresolved overload set.  A placeholder type.
1527    /// Expressions with this type have one of the following basic
1528    /// forms, with parentheses generally permitted:
1529    ///   foo          # possibly qualified, not if an implicit access
1530    ///   foo          # possibly qualified, not if an implicit access
1531    ///   &foo         # possibly qualified, not if an implicit access
1532    ///   x->foo       # only if might be a static member function
1533    ///   &x->foo      # only if might be a static member function
1534    ///   &Class::foo  # when a pointer-to-member; sub-expr also has this type
1535    /// OverloadExpr::find can be used to analyze the expression.
1536    Overload,
1537
1538    /// The type of a bound C++ non-static member function.
1539    /// A placeholder type.  Expressions with this type have one of the
1540    /// following basic forms:
1541    ///   foo          # if an implicit access
1542    ///   x->foo       # if only contains non-static members
1543    BoundMember,
1544
1545    /// __builtin_any_type.  A placeholder type.  Useful for clients
1546    /// like debuggers that don't know what type to give something.
1547    /// Only a small number of operations are valid on expressions of
1548    /// unknown type, most notably explicit casts.
1549    UnknownAny
1550  };
1551
1552public:
1553  BuiltinType(Kind K)
1554    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1555           /*VariablyModified=*/false,
1556           /*Unexpanded paramter pack=*/false) {
1557    BuiltinTypeBits.Kind = K;
1558  }
1559
1560  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1561  const char *getName(const LangOptions &LO) const;
1562
1563  bool isSugared() const { return false; }
1564  QualType desugar() const { return QualType(this, 0); }
1565
1566  bool isInteger() const {
1567    return getKind() >= Bool && getKind() <= Int128;
1568  }
1569
1570  bool isSignedInteger() const {
1571    return getKind() >= Char_S && getKind() <= Int128;
1572  }
1573
1574  bool isUnsignedInteger() const {
1575    return getKind() >= Bool && getKind() <= UInt128;
1576  }
1577
1578  bool isFloatingPoint() const {
1579    return getKind() >= Float && getKind() <= LongDouble;
1580  }
1581
1582  /// Determines whether this type is a placeholder type, i.e. a type
1583  /// which cannot appear in arbitrary positions in a fully-formed
1584  /// expression.
1585  bool isPlaceholderType() const {
1586    return getKind() >= Overload;
1587  }
1588
1589  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1590  static bool classof(const BuiltinType *) { return true; }
1591};
1592
1593/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1594/// types (_Complex float etc) as well as the GCC integer complex extensions.
1595///
1596class ComplexType : public Type, public llvm::FoldingSetNode {
1597  QualType ElementType;
1598  ComplexType(QualType Element, QualType CanonicalPtr) :
1599    Type(Complex, CanonicalPtr, Element->isDependentType(),
1600         Element->isVariablyModifiedType(),
1601         Element->containsUnexpandedParameterPack()),
1602    ElementType(Element) {
1603  }
1604  friend class ASTContext;  // ASTContext creates these.
1605
1606public:
1607  QualType getElementType() const { return ElementType; }
1608
1609  bool isSugared() const { return false; }
1610  QualType desugar() const { return QualType(this, 0); }
1611
1612  void Profile(llvm::FoldingSetNodeID &ID) {
1613    Profile(ID, getElementType());
1614  }
1615  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1616    ID.AddPointer(Element.getAsOpaquePtr());
1617  }
1618
1619  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1620  static bool classof(const ComplexType *) { return true; }
1621};
1622
1623/// ParenType - Sugar for parentheses used when specifying types.
1624///
1625class ParenType : public Type, public llvm::FoldingSetNode {
1626  QualType Inner;
1627
1628  ParenType(QualType InnerType, QualType CanonType) :
1629    Type(Paren, CanonType, InnerType->isDependentType(),
1630         InnerType->isVariablyModifiedType(),
1631         InnerType->containsUnexpandedParameterPack()),
1632    Inner(InnerType) {
1633  }
1634  friend class ASTContext;  // ASTContext creates these.
1635
1636public:
1637
1638  QualType getInnerType() const { return Inner; }
1639
1640  bool isSugared() const { return true; }
1641  QualType desugar() const { return getInnerType(); }
1642
1643  void Profile(llvm::FoldingSetNodeID &ID) {
1644    Profile(ID, getInnerType());
1645  }
1646  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1647    Inner.Profile(ID);
1648  }
1649
1650  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1651  static bool classof(const ParenType *) { return true; }
1652};
1653
1654/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1655///
1656class PointerType : public Type, public llvm::FoldingSetNode {
1657  QualType PointeeType;
1658
1659  PointerType(QualType Pointee, QualType CanonicalPtr) :
1660    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1661         Pointee->isVariablyModifiedType(),
1662         Pointee->containsUnexpandedParameterPack()),
1663    PointeeType(Pointee) {
1664  }
1665  friend class ASTContext;  // ASTContext creates these.
1666
1667public:
1668
1669  QualType getPointeeType() const { return PointeeType; }
1670
1671  bool isSugared() const { return false; }
1672  QualType desugar() const { return QualType(this, 0); }
1673
1674  void Profile(llvm::FoldingSetNodeID &ID) {
1675    Profile(ID, getPointeeType());
1676  }
1677  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1678    ID.AddPointer(Pointee.getAsOpaquePtr());
1679  }
1680
1681  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1682  static bool classof(const PointerType *) { return true; }
1683};
1684
1685/// BlockPointerType - pointer to a block type.
1686/// This type is to represent types syntactically represented as
1687/// "void (^)(int)", etc. Pointee is required to always be a function type.
1688///
1689class BlockPointerType : public Type, public llvm::FoldingSetNode {
1690  QualType PointeeType;  // Block is some kind of pointer type
1691  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1692    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1693         Pointee->isVariablyModifiedType(),
1694         Pointee->containsUnexpandedParameterPack()),
1695    PointeeType(Pointee) {
1696  }
1697  friend class ASTContext;  // ASTContext creates these.
1698
1699public:
1700
1701  // Get the pointee type. Pointee is required to always be a function type.
1702  QualType getPointeeType() const { return PointeeType; }
1703
1704  bool isSugared() const { return false; }
1705  QualType desugar() const { return QualType(this, 0); }
1706
1707  void Profile(llvm::FoldingSetNodeID &ID) {
1708      Profile(ID, getPointeeType());
1709  }
1710  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1711      ID.AddPointer(Pointee.getAsOpaquePtr());
1712  }
1713
1714  static bool classof(const Type *T) {
1715    return T->getTypeClass() == BlockPointer;
1716  }
1717  static bool classof(const BlockPointerType *) { return true; }
1718};
1719
1720/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1721///
1722class ReferenceType : public Type, public llvm::FoldingSetNode {
1723  QualType PointeeType;
1724
1725protected:
1726  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1727                bool SpelledAsLValue) :
1728    Type(tc, CanonicalRef, Referencee->isDependentType(),
1729         Referencee->isVariablyModifiedType(),
1730         Referencee->containsUnexpandedParameterPack()),
1731    PointeeType(Referencee)
1732  {
1733    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
1734    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
1735  }
1736
1737public:
1738  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
1739  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
1740
1741  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1742  QualType getPointeeType() const {
1743    // FIXME: this might strip inner qualifiers; okay?
1744    const ReferenceType *T = this;
1745    while (T->isInnerRef())
1746      T = T->PointeeType->castAs<ReferenceType>();
1747    return T->PointeeType;
1748  }
1749
1750  void Profile(llvm::FoldingSetNodeID &ID) {
1751    Profile(ID, PointeeType, isSpelledAsLValue());
1752  }
1753  static void Profile(llvm::FoldingSetNodeID &ID,
1754                      QualType Referencee,
1755                      bool SpelledAsLValue) {
1756    ID.AddPointer(Referencee.getAsOpaquePtr());
1757    ID.AddBoolean(SpelledAsLValue);
1758  }
1759
1760  static bool classof(const Type *T) {
1761    return T->getTypeClass() == LValueReference ||
1762           T->getTypeClass() == RValueReference;
1763  }
1764  static bool classof(const ReferenceType *) { return true; }
1765};
1766
1767/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1768///
1769class LValueReferenceType : public ReferenceType {
1770  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1771                      bool SpelledAsLValue) :
1772    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1773  {}
1774  friend class ASTContext; // ASTContext creates these
1775public:
1776  bool isSugared() const { return false; }
1777  QualType desugar() const { return QualType(this, 0); }
1778
1779  static bool classof(const Type *T) {
1780    return T->getTypeClass() == LValueReference;
1781  }
1782  static bool classof(const LValueReferenceType *) { return true; }
1783};
1784
1785/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1786///
1787class RValueReferenceType : public ReferenceType {
1788  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1789    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1790  }
1791  friend class ASTContext; // ASTContext creates these
1792public:
1793  bool isSugared() const { return false; }
1794  QualType desugar() const { return QualType(this, 0); }
1795
1796  static bool classof(const Type *T) {
1797    return T->getTypeClass() == RValueReference;
1798  }
1799  static bool classof(const RValueReferenceType *) { return true; }
1800};
1801
1802/// MemberPointerType - C++ 8.3.3 - Pointers to members
1803///
1804class MemberPointerType : public Type, public llvm::FoldingSetNode {
1805  QualType PointeeType;
1806  /// The class of which the pointee is a member. Must ultimately be a
1807  /// RecordType, but could be a typedef or a template parameter too.
1808  const Type *Class;
1809
1810  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1811    Type(MemberPointer, CanonicalPtr,
1812         Cls->isDependentType() || Pointee->isDependentType(),
1813         Pointee->isVariablyModifiedType(),
1814         (Cls->containsUnexpandedParameterPack() ||
1815          Pointee->containsUnexpandedParameterPack())),
1816    PointeeType(Pointee), Class(Cls) {
1817  }
1818  friend class ASTContext; // ASTContext creates these.
1819
1820public:
1821  QualType getPointeeType() const { return PointeeType; }
1822
1823  /// Returns true if the member type (i.e. the pointee type) is a
1824  /// function type rather than a data-member type.
1825  bool isMemberFunctionPointer() const {
1826    return PointeeType->isFunctionProtoType();
1827  }
1828
1829  /// Returns true if the member type (i.e. the pointee type) is a
1830  /// data type rather than a function type.
1831  bool isMemberDataPointer() const {
1832    return !PointeeType->isFunctionProtoType();
1833  }
1834
1835  const Type *getClass() const { return Class; }
1836
1837  bool isSugared() const { return false; }
1838  QualType desugar() const { return QualType(this, 0); }
1839
1840  void Profile(llvm::FoldingSetNodeID &ID) {
1841    Profile(ID, getPointeeType(), getClass());
1842  }
1843  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1844                      const Type *Class) {
1845    ID.AddPointer(Pointee.getAsOpaquePtr());
1846    ID.AddPointer(Class);
1847  }
1848
1849  static bool classof(const Type *T) {
1850    return T->getTypeClass() == MemberPointer;
1851  }
1852  static bool classof(const MemberPointerType *) { return true; }
1853};
1854
1855/// ArrayType - C99 6.7.5.2 - Array Declarators.
1856///
1857class ArrayType : public Type, public llvm::FoldingSetNode {
1858public:
1859  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1860  /// an array with a static size (e.g. int X[static 4]), or an array
1861  /// with a star size (e.g. int X[*]).
1862  /// 'static' is only allowed on function parameters.
1863  enum ArraySizeModifier {
1864    Normal, Static, Star
1865  };
1866private:
1867  /// ElementType - The element type of the array.
1868  QualType ElementType;
1869
1870protected:
1871  // C++ [temp.dep.type]p1:
1872  //   A type is dependent if it is...
1873  //     - an array type constructed from any dependent type or whose
1874  //       size is specified by a constant expression that is
1875  //       value-dependent,
1876  ArrayType(TypeClass tc, QualType et, QualType can,
1877            ArraySizeModifier sm, unsigned tq,
1878            bool ContainsUnexpandedParameterPack)
1879    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
1880           (tc == VariableArray || et->isVariablyModifiedType()),
1881           ContainsUnexpandedParameterPack),
1882      ElementType(et) {
1883    ArrayTypeBits.IndexTypeQuals = tq;
1884    ArrayTypeBits.SizeModifier = sm;
1885  }
1886
1887  friend class ASTContext;  // ASTContext creates these.
1888
1889public:
1890  QualType getElementType() const { return ElementType; }
1891  ArraySizeModifier getSizeModifier() const {
1892    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
1893  }
1894  Qualifiers getIndexTypeQualifiers() const {
1895    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
1896  }
1897  unsigned getIndexTypeCVRQualifiers() const {
1898    return ArrayTypeBits.IndexTypeQuals;
1899  }
1900
1901  static bool classof(const Type *T) {
1902    return T->getTypeClass() == ConstantArray ||
1903           T->getTypeClass() == VariableArray ||
1904           T->getTypeClass() == IncompleteArray ||
1905           T->getTypeClass() == DependentSizedArray;
1906  }
1907  static bool classof(const ArrayType *) { return true; }
1908};
1909
1910/// ConstantArrayType - This class represents the canonical version of
1911/// C arrays with a specified constant size.  For example, the canonical
1912/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1913/// type is 'int' and the size is 404.
1914class ConstantArrayType : public ArrayType {
1915  llvm::APInt Size; // Allows us to unique the type.
1916
1917  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1918                    ArraySizeModifier sm, unsigned tq)
1919    : ArrayType(ConstantArray, et, can, sm, tq,
1920                et->containsUnexpandedParameterPack()),
1921      Size(size) {}
1922protected:
1923  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1924                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1925    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
1926      Size(size) {}
1927  friend class ASTContext;  // ASTContext creates these.
1928public:
1929  const llvm::APInt &getSize() const { return Size; }
1930  bool isSugared() const { return false; }
1931  QualType desugar() const { return QualType(this, 0); }
1932
1933
1934  /// \brief Determine the number of bits required to address a member of
1935  // an array with the given element type and number of elements.
1936  static unsigned getNumAddressingBits(ASTContext &Context,
1937                                       QualType ElementType,
1938                                       const llvm::APInt &NumElements);
1939
1940  /// \brief Determine the maximum number of active bits that an array's size
1941  /// can require, which limits the maximum size of the array.
1942  static unsigned getMaxSizeBits(ASTContext &Context);
1943
1944  void Profile(llvm::FoldingSetNodeID &ID) {
1945    Profile(ID, getElementType(), getSize(),
1946            getSizeModifier(), getIndexTypeCVRQualifiers());
1947  }
1948  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1949                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1950                      unsigned TypeQuals) {
1951    ID.AddPointer(ET.getAsOpaquePtr());
1952    ID.AddInteger(ArraySize.getZExtValue());
1953    ID.AddInteger(SizeMod);
1954    ID.AddInteger(TypeQuals);
1955  }
1956  static bool classof(const Type *T) {
1957    return T->getTypeClass() == ConstantArray;
1958  }
1959  static bool classof(const ConstantArrayType *) { return true; }
1960};
1961
1962/// IncompleteArrayType - This class represents C arrays with an unspecified
1963/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1964/// type is 'int' and the size is unspecified.
1965class IncompleteArrayType : public ArrayType {
1966
1967  IncompleteArrayType(QualType et, QualType can,
1968                      ArraySizeModifier sm, unsigned tq)
1969    : ArrayType(IncompleteArray, et, can, sm, tq,
1970                et->containsUnexpandedParameterPack()) {}
1971  friend class ASTContext;  // ASTContext creates these.
1972public:
1973  bool isSugared() const { return false; }
1974  QualType desugar() const { return QualType(this, 0); }
1975
1976  static bool classof(const Type *T) {
1977    return T->getTypeClass() == IncompleteArray;
1978  }
1979  static bool classof(const IncompleteArrayType *) { return true; }
1980
1981  friend class StmtIteratorBase;
1982
1983  void Profile(llvm::FoldingSetNodeID &ID) {
1984    Profile(ID, getElementType(), getSizeModifier(),
1985            getIndexTypeCVRQualifiers());
1986  }
1987
1988  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1989                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1990    ID.AddPointer(ET.getAsOpaquePtr());
1991    ID.AddInteger(SizeMod);
1992    ID.AddInteger(TypeQuals);
1993  }
1994};
1995
1996/// VariableArrayType - This class represents C arrays with a specified size
1997/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1998/// Since the size expression is an arbitrary expression, we store it as such.
1999///
2000/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2001/// should not be: two lexically equivalent variable array types could mean
2002/// different things, for example, these variables do not have the same type
2003/// dynamically:
2004///
2005/// void foo(int x) {
2006///   int Y[x];
2007///   ++x;
2008///   int Z[x];
2009/// }
2010///
2011class VariableArrayType : public ArrayType {
2012  /// SizeExpr - An assignment expression. VLA's are only permitted within
2013  /// a function block.
2014  Stmt *SizeExpr;
2015  /// Brackets - The left and right array brackets.
2016  SourceRange Brackets;
2017
2018  VariableArrayType(QualType et, QualType can, Expr *e,
2019                    ArraySizeModifier sm, unsigned tq,
2020                    SourceRange brackets)
2021    : ArrayType(VariableArray, et, can, sm, tq,
2022                et->containsUnexpandedParameterPack()),
2023      SizeExpr((Stmt*) e), Brackets(brackets) {}
2024  friend class ASTContext;  // ASTContext creates these.
2025
2026public:
2027  Expr *getSizeExpr() const {
2028    // We use C-style casts instead of cast<> here because we do not wish
2029    // to have a dependency of Type.h on Stmt.h/Expr.h.
2030    return (Expr*) SizeExpr;
2031  }
2032  SourceRange getBracketsRange() const { return Brackets; }
2033  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2034  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2035
2036  bool isSugared() const { return false; }
2037  QualType desugar() const { return QualType(this, 0); }
2038
2039  static bool classof(const Type *T) {
2040    return T->getTypeClass() == VariableArray;
2041  }
2042  static bool classof(const VariableArrayType *) { return true; }
2043
2044  friend class StmtIteratorBase;
2045
2046  void Profile(llvm::FoldingSetNodeID &ID) {
2047    assert(0 && "Cannot unique VariableArrayTypes.");
2048  }
2049};
2050
2051/// DependentSizedArrayType - This type represents an array type in
2052/// C++ whose size is a value-dependent expression. For example:
2053///
2054/// \code
2055/// template<typename T, int Size>
2056/// class array {
2057///   T data[Size];
2058/// };
2059/// \endcode
2060///
2061/// For these types, we won't actually know what the array bound is
2062/// until template instantiation occurs, at which point this will
2063/// become either a ConstantArrayType or a VariableArrayType.
2064class DependentSizedArrayType : public ArrayType {
2065  const ASTContext &Context;
2066
2067  /// \brief An assignment expression that will instantiate to the
2068  /// size of the array.
2069  ///
2070  /// The expression itself might be NULL, in which case the array
2071  /// type will have its size deduced from an initializer.
2072  Stmt *SizeExpr;
2073
2074  /// Brackets - The left and right array brackets.
2075  SourceRange Brackets;
2076
2077  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2078                          Expr *e, ArraySizeModifier sm, unsigned tq,
2079                          SourceRange brackets);
2080
2081  friend class ASTContext;  // ASTContext creates these.
2082
2083public:
2084  Expr *getSizeExpr() const {
2085    // We use C-style casts instead of cast<> here because we do not wish
2086    // to have a dependency of Type.h on Stmt.h/Expr.h.
2087    return (Expr*) SizeExpr;
2088  }
2089  SourceRange getBracketsRange() const { return Brackets; }
2090  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2091  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2092
2093  bool isSugared() const { return false; }
2094  QualType desugar() const { return QualType(this, 0); }
2095
2096  static bool classof(const Type *T) {
2097    return T->getTypeClass() == DependentSizedArray;
2098  }
2099  static bool classof(const DependentSizedArrayType *) { return true; }
2100
2101  friend class StmtIteratorBase;
2102
2103
2104  void Profile(llvm::FoldingSetNodeID &ID) {
2105    Profile(ID, Context, getElementType(),
2106            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2107  }
2108
2109  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2110                      QualType ET, ArraySizeModifier SizeMod,
2111                      unsigned TypeQuals, Expr *E);
2112};
2113
2114/// DependentSizedExtVectorType - This type represent an extended vector type
2115/// where either the type or size is dependent. For example:
2116/// @code
2117/// template<typename T, int Size>
2118/// class vector {
2119///   typedef T __attribute__((ext_vector_type(Size))) type;
2120/// }
2121/// @endcode
2122class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2123  const ASTContext &Context;
2124  Expr *SizeExpr;
2125  /// ElementType - The element type of the array.
2126  QualType ElementType;
2127  SourceLocation loc;
2128
2129  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2130                              QualType can, Expr *SizeExpr, SourceLocation loc);
2131
2132  friend class ASTContext;
2133
2134public:
2135  Expr *getSizeExpr() const { return SizeExpr; }
2136  QualType getElementType() const { return ElementType; }
2137  SourceLocation getAttributeLoc() const { return loc; }
2138
2139  bool isSugared() const { return false; }
2140  QualType desugar() const { return QualType(this, 0); }
2141
2142  static bool classof(const Type *T) {
2143    return T->getTypeClass() == DependentSizedExtVector;
2144  }
2145  static bool classof(const DependentSizedExtVectorType *) { return true; }
2146
2147  void Profile(llvm::FoldingSetNodeID &ID) {
2148    Profile(ID, Context, getElementType(), getSizeExpr());
2149  }
2150
2151  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2152                      QualType ElementType, Expr *SizeExpr);
2153};
2154
2155
2156/// VectorType - GCC generic vector type. This type is created using
2157/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2158/// bytes; or from an Altivec __vector or vector declaration.
2159/// Since the constructor takes the number of vector elements, the
2160/// client is responsible for converting the size into the number of elements.
2161class VectorType : public Type, public llvm::FoldingSetNode {
2162public:
2163  enum VectorKind {
2164    GenericVector,  // not a target-specific vector type
2165    AltiVecVector,  // is AltiVec vector
2166    AltiVecPixel,   // is AltiVec 'vector Pixel'
2167    AltiVecBool,    // is AltiVec 'vector bool ...'
2168    NeonVector,     // is ARM Neon vector
2169    NeonPolyVector  // is ARM Neon polynomial vector
2170  };
2171protected:
2172  /// ElementType - The element type of the vector.
2173  QualType ElementType;
2174
2175  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2176             VectorKind vecKind);
2177
2178  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2179             QualType canonType, VectorKind vecKind);
2180
2181  friend class ASTContext;  // ASTContext creates these.
2182
2183public:
2184
2185  QualType getElementType() const { return ElementType; }
2186  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2187
2188  bool isSugared() const { return false; }
2189  QualType desugar() const { return QualType(this, 0); }
2190
2191  VectorKind getVectorKind() const {
2192    return VectorKind(VectorTypeBits.VecKind);
2193  }
2194
2195  void Profile(llvm::FoldingSetNodeID &ID) {
2196    Profile(ID, getElementType(), getNumElements(),
2197            getTypeClass(), getVectorKind());
2198  }
2199  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2200                      unsigned NumElements, TypeClass TypeClass,
2201                      VectorKind VecKind) {
2202    ID.AddPointer(ElementType.getAsOpaquePtr());
2203    ID.AddInteger(NumElements);
2204    ID.AddInteger(TypeClass);
2205    ID.AddInteger(VecKind);
2206  }
2207
2208  static bool classof(const Type *T) {
2209    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2210  }
2211  static bool classof(const VectorType *) { return true; }
2212};
2213
2214/// ExtVectorType - Extended vector type. This type is created using
2215/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2216/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2217/// class enables syntactic extensions, like Vector Components for accessing
2218/// points, colors, and textures (modeled after OpenGL Shading Language).
2219class ExtVectorType : public VectorType {
2220  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2221    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2222  friend class ASTContext;  // ASTContext creates these.
2223public:
2224  static int getPointAccessorIdx(char c) {
2225    switch (c) {
2226    default: return -1;
2227    case 'x': return 0;
2228    case 'y': return 1;
2229    case 'z': return 2;
2230    case 'w': return 3;
2231    }
2232  }
2233  static int getNumericAccessorIdx(char c) {
2234    switch (c) {
2235      default: return -1;
2236      case '0': return 0;
2237      case '1': return 1;
2238      case '2': return 2;
2239      case '3': return 3;
2240      case '4': return 4;
2241      case '5': return 5;
2242      case '6': return 6;
2243      case '7': return 7;
2244      case '8': return 8;
2245      case '9': return 9;
2246      case 'A':
2247      case 'a': return 10;
2248      case 'B':
2249      case 'b': return 11;
2250      case 'C':
2251      case 'c': return 12;
2252      case 'D':
2253      case 'd': return 13;
2254      case 'E':
2255      case 'e': return 14;
2256      case 'F':
2257      case 'f': return 15;
2258    }
2259  }
2260
2261  static int getAccessorIdx(char c) {
2262    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2263    return getNumericAccessorIdx(c);
2264  }
2265
2266  bool isAccessorWithinNumElements(char c) const {
2267    if (int idx = getAccessorIdx(c)+1)
2268      return unsigned(idx-1) < getNumElements();
2269    return false;
2270  }
2271  bool isSugared() const { return false; }
2272  QualType desugar() const { return QualType(this, 0); }
2273
2274  static bool classof(const Type *T) {
2275    return T->getTypeClass() == ExtVector;
2276  }
2277  static bool classof(const ExtVectorType *) { return true; }
2278};
2279
2280/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2281/// class of FunctionNoProtoType and FunctionProtoType.
2282///
2283class FunctionType : public Type {
2284  // The type returned by the function.
2285  QualType ResultType;
2286
2287 public:
2288  /// ExtInfo - A class which abstracts out some details necessary for
2289  /// making a call.
2290  ///
2291  /// It is not actually used directly for storing this information in
2292  /// a FunctionType, although FunctionType does currently use the
2293  /// same bit-pattern.
2294  ///
2295  // If you add a field (say Foo), other than the obvious places (both,
2296  // constructors, compile failures), what you need to update is
2297  // * Operator==
2298  // * getFoo
2299  // * withFoo
2300  // * functionType. Add Foo, getFoo.
2301  // * ASTContext::getFooType
2302  // * ASTContext::mergeFunctionTypes
2303  // * FunctionNoProtoType::Profile
2304  // * FunctionProtoType::Profile
2305  // * TypePrinter::PrintFunctionProto
2306  // * AST read and write
2307  // * Codegen
2308  class ExtInfo {
2309    // Feel free to rearrange or add bits, but if you go over 8,
2310    // you'll need to adjust both the Bits field below and
2311    // Type::FunctionTypeBitfields.
2312
2313    //   |  CC  |noreturn|hasregparm|regparm
2314    //   |0 .. 2|   3    |    4     |5 ..  7
2315    enum { CallConvMask = 0x7 };
2316    enum { NoReturnMask = 0x8 };
2317    enum { HasRegParmMask = 0x10 };
2318    enum { RegParmMask = ~(CallConvMask | NoReturnMask),
2319           RegParmOffset = 5 };
2320
2321    unsigned char Bits;
2322
2323    ExtInfo(unsigned Bits) : Bits(static_cast<unsigned char>(Bits)) {}
2324
2325    friend class FunctionType;
2326
2327   public:
2328    // Constructor with no defaults. Use this when you know that you
2329    // have all the elements (when reading an AST file for example).
2330    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc) {
2331      Bits = ((unsigned) cc) |
2332             (noReturn ? NoReturnMask : 0) |
2333             (hasRegParm ? HasRegParmMask : 0) |
2334             (regParm << RegParmOffset);
2335    }
2336
2337    // Constructor with all defaults. Use when for example creating a
2338    // function know to use defaults.
2339    ExtInfo() : Bits(0) {}
2340
2341    bool getNoReturn() const { return Bits & NoReturnMask; }
2342    bool getHasRegParm() const { return Bits & HasRegParmMask; }
2343    unsigned getRegParm() const { return Bits >> RegParmOffset; }
2344    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2345
2346    bool operator==(ExtInfo Other) const {
2347      return Bits == Other.Bits;
2348    }
2349    bool operator!=(ExtInfo Other) const {
2350      return Bits != Other.Bits;
2351    }
2352
2353    // Note that we don't have setters. That is by design, use
2354    // the following with methods instead of mutating these objects.
2355
2356    ExtInfo withNoReturn(bool noReturn) const {
2357      if (noReturn)
2358        return ExtInfo(Bits | NoReturnMask);
2359      else
2360        return ExtInfo(Bits & ~NoReturnMask);
2361    }
2362
2363    ExtInfo withRegParm(unsigned RegParm) const {
2364      return ExtInfo(HasRegParmMask | (Bits & ~RegParmMask) | (RegParm << RegParmOffset));
2365    }
2366
2367    ExtInfo withCallingConv(CallingConv cc) const {
2368      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2369    }
2370
2371    void Profile(llvm::FoldingSetNodeID &ID) const {
2372      ID.AddInteger(Bits);
2373    }
2374  };
2375
2376protected:
2377  FunctionType(TypeClass tc, QualType res, bool variadic,
2378               unsigned typeQuals, RefQualifierKind RefQualifier,
2379               QualType Canonical, bool Dependent,
2380               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2381               ExtInfo Info)
2382    : Type(tc, Canonical, Dependent, VariablyModified,
2383           ContainsUnexpandedParameterPack),
2384      ResultType(res) {
2385    FunctionTypeBits.ExtInfo = Info.Bits;
2386    FunctionTypeBits.Variadic = variadic;
2387    FunctionTypeBits.TypeQuals = typeQuals;
2388    FunctionTypeBits.RefQualifier = static_cast<unsigned>(RefQualifier);
2389  }
2390  bool isVariadic() const { return FunctionTypeBits.Variadic; }
2391  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2392
2393  RefQualifierKind getRefQualifier() const {
2394    return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
2395  }
2396
2397public:
2398
2399  QualType getResultType() const { return ResultType; }
2400
2401  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2402  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2403  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2404  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2405  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2406
2407  /// \brief Determine the type of an expression that calls a function of
2408  /// this type.
2409  QualType getCallResultType(ASTContext &Context) const {
2410    return getResultType().getNonLValueExprType(Context);
2411  }
2412
2413  static llvm::StringRef getNameForCallConv(CallingConv CC);
2414
2415  static bool classof(const Type *T) {
2416    return T->getTypeClass() == FunctionNoProto ||
2417           T->getTypeClass() == FunctionProto;
2418  }
2419  static bool classof(const FunctionType *) { return true; }
2420};
2421
2422/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2423/// no information available about its arguments.
2424class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2425  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2426    : FunctionType(FunctionNoProto, Result, false, 0, RQ_None, Canonical,
2427                   /*Dependent=*/false, Result->isVariablyModifiedType(),
2428                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2429
2430  friend class ASTContext;  // ASTContext creates these.
2431
2432public:
2433  // No additional state past what FunctionType provides.
2434
2435  bool isSugared() const { return false; }
2436  QualType desugar() const { return QualType(this, 0); }
2437
2438  void Profile(llvm::FoldingSetNodeID &ID) {
2439    Profile(ID, getResultType(), getExtInfo());
2440  }
2441  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2442                      ExtInfo Info) {
2443    Info.Profile(ID);
2444    ID.AddPointer(ResultType.getAsOpaquePtr());
2445  }
2446
2447  static bool classof(const Type *T) {
2448    return T->getTypeClass() == FunctionNoProto;
2449  }
2450  static bool classof(const FunctionNoProtoType *) { return true; }
2451};
2452
2453/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2454/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2455/// arguments, not as having a single void argument. Such a type can have an
2456/// exception specification, but this specification is not part of the canonical
2457/// type.
2458class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2459public:
2460  /// ExtProtoInfo - Extra information about a function prototype.
2461  struct ExtProtoInfo {
2462    ExtProtoInfo() :
2463      Variadic(false), ExceptionSpecType(EST_None), TypeQuals(0),
2464      RefQualifier(RQ_None), NumExceptions(0), Exceptions(0), NoexceptExpr(0) {}
2465
2466    FunctionType::ExtInfo ExtInfo;
2467    bool Variadic;
2468    ExceptionSpecificationType ExceptionSpecType;
2469    unsigned char TypeQuals;
2470    RefQualifierKind RefQualifier;
2471    unsigned NumExceptions;
2472    const QualType *Exceptions;
2473    Expr *NoexceptExpr;
2474  };
2475
2476private:
2477  /// \brief Determine whether there are any argument types that
2478  /// contain an unexpanded parameter pack.
2479  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2480                                                 unsigned numArgs) {
2481    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2482      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2483        return true;
2484
2485    return false;
2486  }
2487
2488  FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
2489                    QualType canonical, const ExtProtoInfo &epi);
2490
2491  /// NumArgs - The number of arguments this function has, not counting '...'.
2492  unsigned NumArgs : 20;
2493
2494  /// NumExceptions - The number of types in the exception spec, if any.
2495  unsigned NumExceptions : 9;
2496
2497  /// ExceptionSpecType - The type of exception specification this function has.
2498  unsigned ExceptionSpecType : 3;
2499
2500  /// ArgInfo - There is an variable size array after the class in memory that
2501  /// holds the argument types.
2502
2503  /// Exceptions - There is another variable size array after ArgInfo that
2504  /// holds the exception types.
2505
2506  /// NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2507  /// to the expression in the noexcept() specifier.
2508
2509  friend class ASTContext;  // ASTContext creates these.
2510
2511public:
2512  unsigned getNumArgs() const { return NumArgs; }
2513  QualType getArgType(unsigned i) const {
2514    assert(i < NumArgs && "Invalid argument number!");
2515    return arg_type_begin()[i];
2516  }
2517
2518  ExtProtoInfo getExtProtoInfo() const {
2519    ExtProtoInfo EPI;
2520    EPI.ExtInfo = getExtInfo();
2521    EPI.Variadic = isVariadic();
2522    EPI.ExceptionSpecType = getExceptionSpecType();
2523    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2524    EPI.RefQualifier = getRefQualifier();
2525    if (EPI.ExceptionSpecType == EST_Dynamic) {
2526      EPI.NumExceptions = NumExceptions;
2527      EPI.Exceptions = exception_begin();
2528    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2529      EPI.NoexceptExpr = getNoexceptExpr();
2530    }
2531    return EPI;
2532  }
2533
2534  /// \brief Get the kind of exception specification on this function.
2535  ExceptionSpecificationType getExceptionSpecType() const {
2536    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2537  }
2538  /// \brief Return whether this function has any kind of exception spec.
2539  bool hasExceptionSpec() const {
2540    return getExceptionSpecType() != EST_None;
2541  }
2542  /// \brief Return whether this function has a dynamic (throw) exception spec.
2543  bool hasDynamicExceptionSpec() const {
2544    return isDynamicExceptionSpec(getExceptionSpecType());
2545  }
2546  /// \brief Return whether this function has a noexcept exception spec.
2547  bool hasNoexceptExceptionSpec() const {
2548    return isNoexceptExceptionSpec(getExceptionSpecType());
2549  }
2550  /// \brief Result type of getNoexceptSpec().
2551  enum NoexceptResult {
2552    NR_NoNoexcept,  ///< There is no noexcept specifier.
2553    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2554    NR_Dependent,   ///< The noexcept specifier is dependent.
2555    NR_Throw,       ///< The noexcept specifier evaluates to false.
2556    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2557  };
2558  /// \brief Get the meaning of the noexcept spec on this function, if any.
2559  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2560  unsigned getNumExceptions() const { return NumExceptions; }
2561  QualType getExceptionType(unsigned i) const {
2562    assert(i < NumExceptions && "Invalid exception number!");
2563    return exception_begin()[i];
2564  }
2565  Expr *getNoexceptExpr() const {
2566    if (getExceptionSpecType() != EST_ComputedNoexcept)
2567      return 0;
2568    // NoexceptExpr sits where the arguments end.
2569    return *reinterpret_cast<Expr *const *>(arg_type_end());
2570  }
2571  bool isNothrow(ASTContext &Ctx) const {
2572    ExceptionSpecificationType EST = getExceptionSpecType();
2573    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2574      return true;
2575    if (EST != EST_ComputedNoexcept)
2576      return false;
2577    return getNoexceptSpec(Ctx) == NR_Nothrow;
2578  }
2579
2580  using FunctionType::isVariadic;
2581
2582  /// \brief Determines whether this function prototype contains a
2583  /// parameter pack at the end.
2584  ///
2585  /// A function template whose last parameter is a parameter pack can be
2586  /// called with an arbitrary number of arguments, much like a variadic
2587  /// function. However,
2588  bool isTemplateVariadic() const;
2589
2590  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2591
2592
2593  /// \brief Retrieve the ref-qualifier associated with this function type.
2594  RefQualifierKind getRefQualifier() const {
2595    return FunctionType::getRefQualifier();
2596  }
2597
2598  typedef const QualType *arg_type_iterator;
2599  arg_type_iterator arg_type_begin() const {
2600    return reinterpret_cast<const QualType *>(this+1);
2601  }
2602  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2603
2604  typedef const QualType *exception_iterator;
2605  exception_iterator exception_begin() const {
2606    // exceptions begin where arguments end
2607    return arg_type_end();
2608  }
2609  exception_iterator exception_end() const {
2610    if (getExceptionSpecType() != EST_Dynamic)
2611      return exception_begin();
2612    return exception_begin() + NumExceptions;
2613  }
2614
2615  bool isSugared() const { return false; }
2616  QualType desugar() const { return QualType(this, 0); }
2617
2618  static bool classof(const Type *T) {
2619    return T->getTypeClass() == FunctionProto;
2620  }
2621  static bool classof(const FunctionProtoType *) { return true; }
2622
2623  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
2624  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2625                      arg_type_iterator ArgTys, unsigned NumArgs,
2626                      const ExtProtoInfo &EPI, const ASTContext &Context);
2627};
2628
2629
2630/// \brief Represents the dependent type named by a dependently-scoped
2631/// typename using declaration, e.g.
2632///   using typename Base<T>::foo;
2633/// Template instantiation turns these into the underlying type.
2634class UnresolvedUsingType : public Type {
2635  UnresolvedUsingTypenameDecl *Decl;
2636
2637  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2638    : Type(UnresolvedUsing, QualType(), true, false,
2639           /*ContainsUnexpandedParameterPack=*/false),
2640      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2641  friend class ASTContext; // ASTContext creates these.
2642public:
2643
2644  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2645
2646  bool isSugared() const { return false; }
2647  QualType desugar() const { return QualType(this, 0); }
2648
2649  static bool classof(const Type *T) {
2650    return T->getTypeClass() == UnresolvedUsing;
2651  }
2652  static bool classof(const UnresolvedUsingType *) { return true; }
2653
2654  void Profile(llvm::FoldingSetNodeID &ID) {
2655    return Profile(ID, Decl);
2656  }
2657  static void Profile(llvm::FoldingSetNodeID &ID,
2658                      UnresolvedUsingTypenameDecl *D) {
2659    ID.AddPointer(D);
2660  }
2661};
2662
2663
2664class TypedefType : public Type {
2665  TypedefNameDecl *Decl;
2666protected:
2667  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
2668    : Type(tc, can, can->isDependentType(), can->isVariablyModifiedType(),
2669           /*ContainsUnexpandedParameterPack=*/false),
2670      Decl(const_cast<TypedefNameDecl*>(D)) {
2671    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2672  }
2673  friend class ASTContext;  // ASTContext creates these.
2674public:
2675
2676  TypedefNameDecl *getDecl() const { return Decl; }
2677
2678  bool isSugared() const { return true; }
2679  QualType desugar() const;
2680
2681  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2682  static bool classof(const TypedefType *) { return true; }
2683};
2684
2685/// TypeOfExprType (GCC extension).
2686class TypeOfExprType : public Type {
2687  Expr *TOExpr;
2688
2689protected:
2690  TypeOfExprType(Expr *E, QualType can = QualType());
2691  friend class ASTContext;  // ASTContext creates these.
2692public:
2693  Expr *getUnderlyingExpr() const { return TOExpr; }
2694
2695  /// \brief Remove a single level of sugar.
2696  QualType desugar() const;
2697
2698  /// \brief Returns whether this type directly provides sugar.
2699  bool isSugared() const { return true; }
2700
2701  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2702  static bool classof(const TypeOfExprType *) { return true; }
2703};
2704
2705/// \brief Internal representation of canonical, dependent
2706/// typeof(expr) types.
2707///
2708/// This class is used internally by the ASTContext to manage
2709/// canonical, dependent types, only. Clients will only see instances
2710/// of this class via TypeOfExprType nodes.
2711class DependentTypeOfExprType
2712  : public TypeOfExprType, public llvm::FoldingSetNode {
2713  const ASTContext &Context;
2714
2715public:
2716  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
2717    : TypeOfExprType(E), Context(Context) { }
2718
2719  bool isSugared() const { return false; }
2720  QualType desugar() const { return QualType(this, 0); }
2721
2722  void Profile(llvm::FoldingSetNodeID &ID) {
2723    Profile(ID, Context, getUnderlyingExpr());
2724  }
2725
2726  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2727                      Expr *E);
2728};
2729
2730/// TypeOfType (GCC extension).
2731class TypeOfType : public Type {
2732  QualType TOType;
2733  TypeOfType(QualType T, QualType can)
2734    : Type(TypeOf, can, T->isDependentType(), T->isVariablyModifiedType(),
2735           T->containsUnexpandedParameterPack()),
2736      TOType(T) {
2737    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2738  }
2739  friend class ASTContext;  // ASTContext creates these.
2740public:
2741  QualType getUnderlyingType() const { return TOType; }
2742
2743  /// \brief Remove a single level of sugar.
2744  QualType desugar() const { return getUnderlyingType(); }
2745
2746  /// \brief Returns whether this type directly provides sugar.
2747  bool isSugared() const { return true; }
2748
2749  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2750  static bool classof(const TypeOfType *) { return true; }
2751};
2752
2753/// DecltypeType (C++0x)
2754class DecltypeType : public Type {
2755  Expr *E;
2756
2757  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2758  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2759  // from it.
2760  QualType UnderlyingType;
2761
2762protected:
2763  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2764  friend class ASTContext;  // ASTContext creates these.
2765public:
2766  Expr *getUnderlyingExpr() const { return E; }
2767  QualType getUnderlyingType() const { return UnderlyingType; }
2768
2769  /// \brief Remove a single level of sugar.
2770  QualType desugar() const { return getUnderlyingType(); }
2771
2772  /// \brief Returns whether this type directly provides sugar.
2773  bool isSugared() const { return !isDependentType(); }
2774
2775  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2776  static bool classof(const DecltypeType *) { return true; }
2777};
2778
2779/// \brief Internal representation of canonical, dependent
2780/// decltype(expr) types.
2781///
2782/// This class is used internally by the ASTContext to manage
2783/// canonical, dependent types, only. Clients will only see instances
2784/// of this class via DecltypeType nodes.
2785class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2786  const ASTContext &Context;
2787
2788public:
2789  DependentDecltypeType(const ASTContext &Context, Expr *E);
2790
2791  bool isSugared() const { return false; }
2792  QualType desugar() const { return QualType(this, 0); }
2793
2794  void Profile(llvm::FoldingSetNodeID &ID) {
2795    Profile(ID, Context, getUnderlyingExpr());
2796  }
2797
2798  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2799                      Expr *E);
2800};
2801
2802class TagType : public Type {
2803  /// Stores the TagDecl associated with this type. The decl may point to any
2804  /// TagDecl that declares the entity.
2805  TagDecl * decl;
2806
2807protected:
2808  TagType(TypeClass TC, const TagDecl *D, QualType can);
2809
2810public:
2811  TagDecl *getDecl() const;
2812
2813  /// @brief Determines whether this type is in the process of being
2814  /// defined.
2815  bool isBeingDefined() const;
2816
2817  static bool classof(const Type *T) {
2818    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2819  }
2820  static bool classof(const TagType *) { return true; }
2821  static bool classof(const RecordType *) { return true; }
2822  static bool classof(const EnumType *) { return true; }
2823};
2824
2825/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2826/// to detect TagType objects of structs/unions/classes.
2827class RecordType : public TagType {
2828protected:
2829  explicit RecordType(const RecordDecl *D)
2830    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2831  explicit RecordType(TypeClass TC, RecordDecl *D)
2832    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2833  friend class ASTContext;   // ASTContext creates these.
2834public:
2835
2836  RecordDecl *getDecl() const {
2837    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2838  }
2839
2840  // FIXME: This predicate is a helper to QualType/Type. It needs to
2841  // recursively check all fields for const-ness. If any field is declared
2842  // const, it needs to return false.
2843  bool hasConstFields() const { return false; }
2844
2845  /// \brief Whether this class has standard layout
2846  bool hasStandardLayout() const;
2847
2848  bool isSugared() const { return false; }
2849  QualType desugar() const { return QualType(this, 0); }
2850
2851  static bool classof(const TagType *T);
2852  static bool classof(const Type *T) {
2853    return isa<TagType>(T) && classof(cast<TagType>(T));
2854  }
2855  static bool classof(const RecordType *) { return true; }
2856};
2857
2858/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2859/// to detect TagType objects of enums.
2860class EnumType : public TagType {
2861  explicit EnumType(const EnumDecl *D)
2862    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2863  friend class ASTContext;   // ASTContext creates these.
2864public:
2865
2866  EnumDecl *getDecl() const {
2867    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2868  }
2869
2870  bool isSugared() const { return false; }
2871  QualType desugar() const { return QualType(this, 0); }
2872
2873  static bool classof(const TagType *T);
2874  static bool classof(const Type *T) {
2875    return isa<TagType>(T) && classof(cast<TagType>(T));
2876  }
2877  static bool classof(const EnumType *) { return true; }
2878};
2879
2880/// AttributedType - An attributed type is a type to which a type
2881/// attribute has been applied.  The "modified type" is the
2882/// fully-sugared type to which the attributed type was applied;
2883/// generally it is not canonically equivalent to the attributed type.
2884/// The "equivalent type" is the minimally-desugared type which the
2885/// type is canonically equivalent to.
2886///
2887/// For example, in the following attributed type:
2888///     int32_t __attribute__((vector_size(16)))
2889///   - the modified type is the TypedefType for int32_t
2890///   - the equivalent type is VectorType(16, int32_t)
2891///   - the canonical type is VectorType(16, int)
2892class AttributedType : public Type, public llvm::FoldingSetNode {
2893public:
2894  // It is really silly to have yet another attribute-kind enum, but
2895  // clang::attr::Kind doesn't currently cover the pure type attrs.
2896  enum Kind {
2897    // Expression operand.
2898    attr_address_space,
2899    attr_regparm,
2900    attr_vector_size,
2901    attr_neon_vector_type,
2902    attr_neon_polyvector_type,
2903
2904    FirstExprOperandKind = attr_address_space,
2905    LastExprOperandKind = attr_neon_polyvector_type,
2906
2907    // Enumerated operand (string or keyword).
2908    attr_objc_gc,
2909    attr_pcs,
2910
2911    FirstEnumOperandKind = attr_objc_gc,
2912    LastEnumOperandKind = attr_pcs,
2913
2914    // No operand.
2915    attr_noreturn,
2916    attr_cdecl,
2917    attr_fastcall,
2918    attr_stdcall,
2919    attr_thiscall,
2920    attr_pascal
2921  };
2922
2923private:
2924  QualType ModifiedType;
2925  QualType EquivalentType;
2926
2927  friend class ASTContext; // creates these
2928
2929  AttributedType(QualType canon, Kind attrKind,
2930                 QualType modified, QualType equivalent)
2931    : Type(Attributed, canon, canon->isDependentType(),
2932           canon->isVariablyModifiedType(),
2933           canon->containsUnexpandedParameterPack()),
2934      ModifiedType(modified), EquivalentType(equivalent) {
2935    AttributedTypeBits.AttrKind = attrKind;
2936  }
2937
2938public:
2939  Kind getAttrKind() const {
2940    return static_cast<Kind>(AttributedTypeBits.AttrKind);
2941  }
2942
2943  QualType getModifiedType() const { return ModifiedType; }
2944  QualType getEquivalentType() const { return EquivalentType; }
2945
2946  bool isSugared() const { return true; }
2947  QualType desugar() const { return getEquivalentType(); }
2948
2949  void Profile(llvm::FoldingSetNodeID &ID) {
2950    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
2951  }
2952
2953  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
2954                      QualType modified, QualType equivalent) {
2955    ID.AddInteger(attrKind);
2956    ID.AddPointer(modified.getAsOpaquePtr());
2957    ID.AddPointer(equivalent.getAsOpaquePtr());
2958  }
2959
2960  static bool classof(const Type *T) {
2961    return T->getTypeClass() == Attributed;
2962  }
2963  static bool classof(const AttributedType *T) { return true; }
2964};
2965
2966class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2967  unsigned Depth : 15;
2968  unsigned ParameterPack : 1;
2969  unsigned Index : 16;
2970  IdentifierInfo *Name;
2971
2972  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2973                       QualType Canon)
2974    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
2975           /*VariablyModified=*/false, PP),
2976      Depth(D), ParameterPack(PP), Index(I), Name(N) { }
2977
2978  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2979    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true,
2980           /*VariablyModified=*/false, PP),
2981      Depth(D), ParameterPack(PP), Index(I), Name(0) { }
2982
2983  friend class ASTContext;  // ASTContext creates these
2984
2985public:
2986  unsigned getDepth() const { return Depth; }
2987  unsigned getIndex() const { return Index; }
2988  bool isParameterPack() const { return ParameterPack; }
2989  IdentifierInfo *getName() const { return Name; }
2990
2991  bool isSugared() const { return false; }
2992  QualType desugar() const { return QualType(this, 0); }
2993
2994  void Profile(llvm::FoldingSetNodeID &ID) {
2995    Profile(ID, Depth, Index, ParameterPack, Name);
2996  }
2997
2998  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2999                      unsigned Index, bool ParameterPack,
3000                      IdentifierInfo *Name) {
3001    ID.AddInteger(Depth);
3002    ID.AddInteger(Index);
3003    ID.AddBoolean(ParameterPack);
3004    ID.AddPointer(Name);
3005  }
3006
3007  static bool classof(const Type *T) {
3008    return T->getTypeClass() == TemplateTypeParm;
3009  }
3010  static bool classof(const TemplateTypeParmType *T) { return true; }
3011};
3012
3013/// \brief Represents the result of substituting a type for a template
3014/// type parameter.
3015///
3016/// Within an instantiated template, all template type parameters have
3017/// been replaced with these.  They are used solely to record that a
3018/// type was originally written as a template type parameter;
3019/// therefore they are never canonical.
3020class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3021  // The original type parameter.
3022  const TemplateTypeParmType *Replaced;
3023
3024  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3025    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3026           Canon->isVariablyModifiedType(),
3027           Canon->containsUnexpandedParameterPack()),
3028      Replaced(Param) { }
3029
3030  friend class ASTContext;
3031
3032public:
3033  IdentifierInfo *getName() const { return Replaced->getName(); }
3034
3035  /// Gets the template parameter that was substituted for.
3036  const TemplateTypeParmType *getReplacedParameter() const {
3037    return Replaced;
3038  }
3039
3040  /// Gets the type that was substituted for the template
3041  /// parameter.
3042  QualType getReplacementType() const {
3043    return getCanonicalTypeInternal();
3044  }
3045
3046  bool isSugared() const { return true; }
3047  QualType desugar() const { return getReplacementType(); }
3048
3049  void Profile(llvm::FoldingSetNodeID &ID) {
3050    Profile(ID, getReplacedParameter(), getReplacementType());
3051  }
3052  static void Profile(llvm::FoldingSetNodeID &ID,
3053                      const TemplateTypeParmType *Replaced,
3054                      QualType Replacement) {
3055    ID.AddPointer(Replaced);
3056    ID.AddPointer(Replacement.getAsOpaquePtr());
3057  }
3058
3059  static bool classof(const Type *T) {
3060    return T->getTypeClass() == SubstTemplateTypeParm;
3061  }
3062  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
3063};
3064
3065/// \brief Represents the result of substituting a set of types for a template
3066/// type parameter pack.
3067///
3068/// When a pack expansion in the source code contains multiple parameter packs
3069/// and those parameter packs correspond to different levels of template
3070/// parameter lists, this type node is used to represent a template type
3071/// parameter pack from an outer level, which has already had its argument pack
3072/// substituted but that still lives within a pack expansion that itself
3073/// could not be instantiated. When actually performing a substitution into
3074/// that pack expansion (e.g., when all template parameters have corresponding
3075/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3076/// at the current pack substitution index.
3077class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3078  /// \brief The original type parameter.
3079  const TemplateTypeParmType *Replaced;
3080
3081  /// \brief A pointer to the set of template arguments that this
3082  /// parameter pack is instantiated with.
3083  const TemplateArgument *Arguments;
3084
3085  /// \brief The number of template arguments in \c Arguments.
3086  unsigned NumArguments;
3087
3088  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3089                                QualType Canon,
3090                                const TemplateArgument &ArgPack);
3091
3092  friend class ASTContext;
3093
3094public:
3095  IdentifierInfo *getName() const { return Replaced->getName(); }
3096
3097  /// Gets the template parameter that was substituted for.
3098  const TemplateTypeParmType *getReplacedParameter() const {
3099    return Replaced;
3100  }
3101
3102  bool isSugared() const { return false; }
3103  QualType desugar() const { return QualType(this, 0); }
3104
3105  TemplateArgument getArgumentPack() const;
3106
3107  void Profile(llvm::FoldingSetNodeID &ID);
3108  static void Profile(llvm::FoldingSetNodeID &ID,
3109                      const TemplateTypeParmType *Replaced,
3110                      const TemplateArgument &ArgPack);
3111
3112  static bool classof(const Type *T) {
3113    return T->getTypeClass() == SubstTemplateTypeParmPack;
3114  }
3115  static bool classof(const SubstTemplateTypeParmPackType *T) { return true; }
3116};
3117
3118/// \brief Represents a C++0x auto type.
3119///
3120/// These types are usually a placeholder for a deduced type. However, within
3121/// templates and before the initializer is attached, there is no deduced type
3122/// and an auto type is type-dependent and canonical.
3123class AutoType : public Type, public llvm::FoldingSetNode {
3124  AutoType(QualType DeducedType)
3125    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3126           /*Dependent=*/DeducedType.isNull(),
3127           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3128    assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
3129           "deduced a dependent type for auto");
3130  }
3131
3132  friend class ASTContext;  // ASTContext creates these
3133
3134public:
3135  bool isSugared() const { return isDeduced(); }
3136  QualType desugar() const { return getCanonicalTypeInternal(); }
3137
3138  QualType getDeducedType() const {
3139    return isDeduced() ? getCanonicalTypeInternal() : QualType();
3140  }
3141  bool isDeduced() const {
3142    return !isDependentType();
3143  }
3144
3145  void Profile(llvm::FoldingSetNodeID &ID) {
3146    Profile(ID, getDeducedType());
3147  }
3148
3149  static void Profile(llvm::FoldingSetNodeID &ID,
3150                      QualType Deduced) {
3151    ID.AddPointer(Deduced.getAsOpaquePtr());
3152  }
3153
3154  static bool classof(const Type *T) {
3155    return T->getTypeClass() == Auto;
3156  }
3157  static bool classof(const AutoType *T) { return true; }
3158};
3159
3160/// \brief Represents the type of a template specialization as written
3161/// in the source code.
3162///
3163/// Template specialization types represent the syntactic form of a
3164/// template-id that refers to a type, e.g., @c vector<int>. Some
3165/// template specialization types are syntactic sugar, whose canonical
3166/// type will point to some other type node that represents the
3167/// instantiation or class template specialization. For example, a
3168/// class template specialization type of @c vector<int> will refer to
3169/// a tag type for the instantiation
3170/// @c std::vector<int, std::allocator<int>>.
3171///
3172/// Other template specialization types, for which the template name
3173/// is dependent, may be canonical types. These types are always
3174/// dependent.
3175class TemplateSpecializationType
3176  : public Type, public llvm::FoldingSetNode {
3177  /// \brief The name of the template being specialized.
3178  TemplateName Template;
3179
3180  /// \brief - The number of template arguments named in this class
3181  /// template specialization.
3182  unsigned NumArgs;
3183
3184  TemplateSpecializationType(TemplateName T,
3185                             const TemplateArgument *Args,
3186                             unsigned NumArgs, QualType Canon);
3187
3188  friend class ASTContext;  // ASTContext creates these
3189
3190public:
3191  /// \brief Determine whether any of the given template arguments are
3192  /// dependent.
3193  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3194                                            unsigned NumArgs);
3195
3196  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3197                                            unsigned NumArgs);
3198
3199  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
3200
3201  /// \brief Print a template argument list, including the '<' and '>'
3202  /// enclosing the template arguments.
3203  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
3204                                               unsigned NumArgs,
3205                                               const PrintingPolicy &Policy,
3206                                               bool SkipBrackets = false);
3207
3208  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
3209                                               unsigned NumArgs,
3210                                               const PrintingPolicy &Policy);
3211
3212  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
3213                                               const PrintingPolicy &Policy);
3214
3215  /// True if this template specialization type matches a current
3216  /// instantiation in the context in which it is found.
3217  bool isCurrentInstantiation() const {
3218    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3219  }
3220
3221  typedef const TemplateArgument * iterator;
3222
3223  iterator begin() const { return getArgs(); }
3224  iterator end() const; // defined inline in TemplateBase.h
3225
3226  /// \brief Retrieve the name of the template that we are specializing.
3227  TemplateName getTemplateName() const { return Template; }
3228
3229  /// \brief Retrieve the template arguments.
3230  const TemplateArgument *getArgs() const {
3231    return reinterpret_cast<const TemplateArgument *>(this + 1);
3232  }
3233
3234  /// \brief Retrieve the number of template arguments.
3235  unsigned getNumArgs() const { return NumArgs; }
3236
3237  /// \brief Retrieve a specific template argument as a type.
3238  /// \precondition @c isArgType(Arg)
3239  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3240
3241  bool isSugared() const {
3242    return !isDependentType() || isCurrentInstantiation();
3243  }
3244  QualType desugar() const { return getCanonicalTypeInternal(); }
3245
3246  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3247    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3248  }
3249
3250  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3251                      const TemplateArgument *Args,
3252                      unsigned NumArgs,
3253                      const ASTContext &Context);
3254
3255  static bool classof(const Type *T) {
3256    return T->getTypeClass() == TemplateSpecialization;
3257  }
3258  static bool classof(const TemplateSpecializationType *T) { return true; }
3259};
3260
3261/// \brief The injected class name of a C++ class template or class
3262/// template partial specialization.  Used to record that a type was
3263/// spelled with a bare identifier rather than as a template-id; the
3264/// equivalent for non-templated classes is just RecordType.
3265///
3266/// Injected class name types are always dependent.  Template
3267/// instantiation turns these into RecordTypes.
3268///
3269/// Injected class name types are always canonical.  This works
3270/// because it is impossible to compare an injected class name type
3271/// with the corresponding non-injected template type, for the same
3272/// reason that it is impossible to directly compare template
3273/// parameters from different dependent contexts: injected class name
3274/// types can only occur within the scope of a particular templated
3275/// declaration, and within that scope every template specialization
3276/// will canonicalize to the injected class name (when appropriate
3277/// according to the rules of the language).
3278class InjectedClassNameType : public Type {
3279  CXXRecordDecl *Decl;
3280
3281  /// The template specialization which this type represents.
3282  /// For example, in
3283  ///   template <class T> class A { ... };
3284  /// this is A<T>, whereas in
3285  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3286  /// this is A<B<X,Y> >.
3287  ///
3288  /// It is always unqualified, always a template specialization type,
3289  /// and always dependent.
3290  QualType InjectedType;
3291
3292  friend class ASTContext; // ASTContext creates these.
3293  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3294                          // currently suitable for AST reading, too much
3295                          // interdependencies.
3296  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3297    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3298           /*VariablyModified=*/false,
3299           /*ContainsUnexpandedParameterPack=*/false),
3300      Decl(D), InjectedType(TST) {
3301    assert(isa<TemplateSpecializationType>(TST));
3302    assert(!TST.hasQualifiers());
3303    assert(TST->isDependentType());
3304  }
3305
3306public:
3307  QualType getInjectedSpecializationType() const { return InjectedType; }
3308  const TemplateSpecializationType *getInjectedTST() const {
3309    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3310  }
3311
3312  CXXRecordDecl *getDecl() const;
3313
3314  bool isSugared() const { return false; }
3315  QualType desugar() const { return QualType(this, 0); }
3316
3317  static bool classof(const Type *T) {
3318    return T->getTypeClass() == InjectedClassName;
3319  }
3320  static bool classof(const InjectedClassNameType *T) { return true; }
3321};
3322
3323/// \brief The kind of a tag type.
3324enum TagTypeKind {
3325  /// \brief The "struct" keyword.
3326  TTK_Struct,
3327  /// \brief The "union" keyword.
3328  TTK_Union,
3329  /// \brief The "class" keyword.
3330  TTK_Class,
3331  /// \brief The "enum" keyword.
3332  TTK_Enum
3333};
3334
3335/// \brief The elaboration keyword that precedes a qualified type name or
3336/// introduces an elaborated-type-specifier.
3337enum ElaboratedTypeKeyword {
3338  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3339  ETK_Struct,
3340  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3341  ETK_Union,
3342  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3343  ETK_Class,
3344  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3345  ETK_Enum,
3346  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3347  /// \c typename T::type.
3348  ETK_Typename,
3349  /// \brief No keyword precedes the qualified type name.
3350  ETK_None
3351};
3352
3353/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3354/// The keyword in stored in the free bits of the base class.
3355/// Also provides a few static helpers for converting and printing
3356/// elaborated type keyword and tag type kind enumerations.
3357class TypeWithKeyword : public Type {
3358protected:
3359  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3360                  QualType Canonical, bool Dependent, bool VariablyModified,
3361                  bool ContainsUnexpandedParameterPack)
3362  : Type(tc, Canonical, Dependent, VariablyModified,
3363         ContainsUnexpandedParameterPack) {
3364    TypeWithKeywordBits.Keyword = Keyword;
3365  }
3366
3367public:
3368  ElaboratedTypeKeyword getKeyword() const {
3369    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3370  }
3371
3372  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3373  /// into an elaborated type keyword.
3374  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3375
3376  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3377  /// into a tag type kind.  It is an error to provide a type specifier
3378  /// which *isn't* a tag kind here.
3379  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3380
3381  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3382  /// elaborated type keyword.
3383  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3384
3385  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3386  // a TagTypeKind. It is an error to provide an elaborated type keyword
3387  /// which *isn't* a tag kind here.
3388  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3389
3390  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3391
3392  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3393
3394  static const char *getTagTypeKindName(TagTypeKind Kind) {
3395    return getKeywordName(getKeywordForTagTypeKind(Kind));
3396  }
3397
3398  class CannotCastToThisType {};
3399  static CannotCastToThisType classof(const Type *);
3400};
3401
3402/// \brief Represents a type that was referred to using an elaborated type
3403/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3404/// or both.
3405///
3406/// This type is used to keep track of a type name as written in the
3407/// source code, including tag keywords and any nested-name-specifiers.
3408/// The type itself is always "sugar", used to express what was written
3409/// in the source code but containing no additional semantic information.
3410class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3411
3412  /// \brief The nested name specifier containing the qualifier.
3413  NestedNameSpecifier *NNS;
3414
3415  /// \brief The type that this qualified name refers to.
3416  QualType NamedType;
3417
3418  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3419                 QualType NamedType, QualType CanonType)
3420    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3421                      NamedType->isDependentType(),
3422                      NamedType->isVariablyModifiedType(),
3423                      NamedType->containsUnexpandedParameterPack()),
3424      NNS(NNS), NamedType(NamedType) {
3425    assert(!(Keyword == ETK_None && NNS == 0) &&
3426           "ElaboratedType cannot have elaborated type keyword "
3427           "and name qualifier both null.");
3428  }
3429
3430  friend class ASTContext;  // ASTContext creates these
3431
3432public:
3433  ~ElaboratedType();
3434
3435  /// \brief Retrieve the qualification on this type.
3436  NestedNameSpecifier *getQualifier() const { return NNS; }
3437
3438  /// \brief Retrieve the type named by the qualified-id.
3439  QualType getNamedType() const { return NamedType; }
3440
3441  /// \brief Remove a single level of sugar.
3442  QualType desugar() const { return getNamedType(); }
3443
3444  /// \brief Returns whether this type directly provides sugar.
3445  bool isSugared() const { return true; }
3446
3447  void Profile(llvm::FoldingSetNodeID &ID) {
3448    Profile(ID, getKeyword(), NNS, NamedType);
3449  }
3450
3451  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3452                      NestedNameSpecifier *NNS, QualType NamedType) {
3453    ID.AddInteger(Keyword);
3454    ID.AddPointer(NNS);
3455    NamedType.Profile(ID);
3456  }
3457
3458  static bool classof(const Type *T) {
3459    return T->getTypeClass() == Elaborated;
3460  }
3461  static bool classof(const ElaboratedType *T) { return true; }
3462};
3463
3464/// \brief Represents a qualified type name for which the type name is
3465/// dependent.
3466///
3467/// DependentNameType represents a class of dependent types that involve a
3468/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3469/// name of a type. The DependentNameType may start with a "typename" (for a
3470/// typename-specifier), "class", "struct", "union", or "enum" (for a
3471/// dependent elaborated-type-specifier), or nothing (in contexts where we
3472/// know that we must be referring to a type, e.g., in a base class specifier).
3473class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3474
3475  /// \brief The nested name specifier containing the qualifier.
3476  NestedNameSpecifier *NNS;
3477
3478  /// \brief The type that this typename specifier refers to.
3479  const IdentifierInfo *Name;
3480
3481  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3482                    const IdentifierInfo *Name, QualType CanonType)
3483    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3484                      /*VariablyModified=*/false,
3485                      NNS->containsUnexpandedParameterPack()),
3486      NNS(NNS), Name(Name) {
3487    assert(NNS->isDependent() &&
3488           "DependentNameType requires a dependent nested-name-specifier");
3489  }
3490
3491  friend class ASTContext;  // ASTContext creates these
3492
3493public:
3494  /// \brief Retrieve the qualification on this type.
3495  NestedNameSpecifier *getQualifier() const { return NNS; }
3496
3497  /// \brief Retrieve the type named by the typename specifier as an
3498  /// identifier.
3499  ///
3500  /// This routine will return a non-NULL identifier pointer when the
3501  /// form of the original typename was terminated by an identifier,
3502  /// e.g., "typename T::type".
3503  const IdentifierInfo *getIdentifier() const {
3504    return Name;
3505  }
3506
3507  bool isSugared() const { return false; }
3508  QualType desugar() const { return QualType(this, 0); }
3509
3510  void Profile(llvm::FoldingSetNodeID &ID) {
3511    Profile(ID, getKeyword(), NNS, Name);
3512  }
3513
3514  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3515                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
3516    ID.AddInteger(Keyword);
3517    ID.AddPointer(NNS);
3518    ID.AddPointer(Name);
3519  }
3520
3521  static bool classof(const Type *T) {
3522    return T->getTypeClass() == DependentName;
3523  }
3524  static bool classof(const DependentNameType *T) { return true; }
3525};
3526
3527/// DependentTemplateSpecializationType - Represents a template
3528/// specialization type whose template cannot be resolved, e.g.
3529///   A<T>::template B<T>
3530class DependentTemplateSpecializationType :
3531  public TypeWithKeyword, public llvm::FoldingSetNode {
3532
3533  /// \brief The nested name specifier containing the qualifier.
3534  NestedNameSpecifier *NNS;
3535
3536  /// \brief The identifier of the template.
3537  const IdentifierInfo *Name;
3538
3539  /// \brief - The number of template arguments named in this class
3540  /// template specialization.
3541  unsigned NumArgs;
3542
3543  const TemplateArgument *getArgBuffer() const {
3544    return reinterpret_cast<const TemplateArgument*>(this+1);
3545  }
3546  TemplateArgument *getArgBuffer() {
3547    return reinterpret_cast<TemplateArgument*>(this+1);
3548  }
3549
3550  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
3551                                      NestedNameSpecifier *NNS,
3552                                      const IdentifierInfo *Name,
3553                                      unsigned NumArgs,
3554                                      const TemplateArgument *Args,
3555                                      QualType Canon);
3556
3557  friend class ASTContext;  // ASTContext creates these
3558
3559public:
3560  NestedNameSpecifier *getQualifier() const { return NNS; }
3561  const IdentifierInfo *getIdentifier() const { return Name; }
3562
3563  /// \brief Retrieve the template arguments.
3564  const TemplateArgument *getArgs() const {
3565    return getArgBuffer();
3566  }
3567
3568  /// \brief Retrieve the number of template arguments.
3569  unsigned getNumArgs() const { return NumArgs; }
3570
3571  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3572
3573  typedef const TemplateArgument * iterator;
3574  iterator begin() const { return getArgs(); }
3575  iterator end() const; // inline in TemplateBase.h
3576
3577  bool isSugared() const { return false; }
3578  QualType desugar() const { return QualType(this, 0); }
3579
3580  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
3581    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
3582  }
3583
3584  static void Profile(llvm::FoldingSetNodeID &ID,
3585                      const ASTContext &Context,
3586                      ElaboratedTypeKeyword Keyword,
3587                      NestedNameSpecifier *Qualifier,
3588                      const IdentifierInfo *Name,
3589                      unsigned NumArgs,
3590                      const TemplateArgument *Args);
3591
3592  static bool classof(const Type *T) {
3593    return T->getTypeClass() == DependentTemplateSpecialization;
3594  }
3595  static bool classof(const DependentTemplateSpecializationType *T) {
3596    return true;
3597  }
3598};
3599
3600/// \brief Represents a pack expansion of types.
3601///
3602/// Pack expansions are part of C++0x variadic templates. A pack
3603/// expansion contains a pattern, which itself contains one or more
3604/// "unexpanded" parameter packs. When instantiated, a pack expansion
3605/// produces a series of types, each instantiated from the pattern of
3606/// the expansion, where the Ith instantiation of the pattern uses the
3607/// Ith arguments bound to each of the unexpanded parameter packs. The
3608/// pack expansion is considered to "expand" these unexpanded
3609/// parameter packs.
3610///
3611/// \code
3612/// template<typename ...Types> struct tuple;
3613///
3614/// template<typename ...Types>
3615/// struct tuple_of_references {
3616///   typedef tuple<Types&...> type;
3617/// };
3618/// \endcode
3619///
3620/// Here, the pack expansion \c Types&... is represented via a
3621/// PackExpansionType whose pattern is Types&.
3622class PackExpansionType : public Type, public llvm::FoldingSetNode {
3623  /// \brief The pattern of the pack expansion.
3624  QualType Pattern;
3625
3626  /// \brief The number of expansions that this pack expansion will
3627  /// generate when substituted (+1), or indicates that
3628  ///
3629  /// This field will only have a non-zero value when some of the parameter
3630  /// packs that occur within the pattern have been substituted but others have
3631  /// not.
3632  unsigned NumExpansions;
3633
3634  PackExpansionType(QualType Pattern, QualType Canon,
3635                    llvm::Optional<unsigned> NumExpansions)
3636    : Type(PackExpansion, Canon, /*Dependent=*/true,
3637           /*VariableModified=*/Pattern->isVariablyModifiedType(),
3638           /*ContainsUnexpandedParameterPack=*/false),
3639      Pattern(Pattern),
3640      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
3641
3642  friend class ASTContext;  // ASTContext creates these
3643
3644public:
3645  /// \brief Retrieve the pattern of this pack expansion, which is the
3646  /// type that will be repeatedly instantiated when instantiating the
3647  /// pack expansion itself.
3648  QualType getPattern() const { return Pattern; }
3649
3650  /// \brief Retrieve the number of expansions that this pack expansion will
3651  /// generate, if known.
3652  llvm::Optional<unsigned> getNumExpansions() const {
3653    if (NumExpansions)
3654      return NumExpansions - 1;
3655
3656    return llvm::Optional<unsigned>();
3657  }
3658
3659  bool isSugared() const { return false; }
3660  QualType desugar() const { return QualType(this, 0); }
3661
3662  void Profile(llvm::FoldingSetNodeID &ID) {
3663    Profile(ID, getPattern(), getNumExpansions());
3664  }
3665
3666  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
3667                      llvm::Optional<unsigned> NumExpansions) {
3668    ID.AddPointer(Pattern.getAsOpaquePtr());
3669    ID.AddBoolean(NumExpansions);
3670    if (NumExpansions)
3671      ID.AddInteger(*NumExpansions);
3672  }
3673
3674  static bool classof(const Type *T) {
3675    return T->getTypeClass() == PackExpansion;
3676  }
3677  static bool classof(const PackExpansionType *T) {
3678    return true;
3679  }
3680};
3681
3682/// ObjCObjectType - Represents a class type in Objective C.
3683/// Every Objective C type is a combination of a base type and a
3684/// list of protocols.
3685///
3686/// Given the following declarations:
3687///   @class C;
3688///   @protocol P;
3689///
3690/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
3691/// with base C and no protocols.
3692///
3693/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
3694///
3695/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
3696/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
3697/// and no protocols.
3698///
3699/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
3700/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
3701/// this should get its own sugar class to better represent the source.
3702class ObjCObjectType : public Type {
3703  // ObjCObjectType.NumProtocols - the number of protocols stored
3704  // after the ObjCObjectPointerType node.
3705  //
3706  // These protocols are those written directly on the type.  If
3707  // protocol qualifiers ever become additive, the iterators will need
3708  // to get kindof complicated.
3709  //
3710  // In the canonical object type, these are sorted alphabetically
3711  // and uniqued.
3712
3713  /// Either a BuiltinType or an InterfaceType or sugar for either.
3714  QualType BaseType;
3715
3716  ObjCProtocolDecl * const *getProtocolStorage() const {
3717    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
3718  }
3719
3720  ObjCProtocolDecl **getProtocolStorage();
3721
3722protected:
3723  ObjCObjectType(QualType Canonical, QualType Base,
3724                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
3725
3726  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
3727  ObjCObjectType(enum Nonce_ObjCInterface)
3728        : Type(ObjCInterface, QualType(), false, false, false),
3729      BaseType(QualType(this_(), 0)) {
3730    ObjCObjectTypeBits.NumProtocols = 0;
3731  }
3732
3733public:
3734  /// getBaseType - Gets the base type of this object type.  This is
3735  /// always (possibly sugar for) one of:
3736  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
3737  ///    user, which is a typedef for an ObjCPointerType)
3738  ///  - the 'Class' builtin type (same caveat)
3739  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
3740  QualType getBaseType() const { return BaseType; }
3741
3742  bool isObjCId() const {
3743    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
3744  }
3745  bool isObjCClass() const {
3746    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
3747  }
3748  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
3749  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
3750  bool isObjCUnqualifiedIdOrClass() const {
3751    if (!qual_empty()) return false;
3752    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
3753      return T->getKind() == BuiltinType::ObjCId ||
3754             T->getKind() == BuiltinType::ObjCClass;
3755    return false;
3756  }
3757  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
3758  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
3759
3760  /// Gets the interface declaration for this object type, if the base type
3761  /// really is an interface.
3762  ObjCInterfaceDecl *getInterface() const;
3763
3764  typedef ObjCProtocolDecl * const *qual_iterator;
3765
3766  qual_iterator qual_begin() const { return getProtocolStorage(); }
3767  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
3768
3769  bool qual_empty() const { return getNumProtocols() == 0; }
3770
3771  /// getNumProtocols - Return the number of qualifying protocols in this
3772  /// interface type, or 0 if there are none.
3773  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
3774
3775  /// \brief Fetch a protocol by index.
3776  ObjCProtocolDecl *getProtocol(unsigned I) const {
3777    assert(I < getNumProtocols() && "Out-of-range protocol access");
3778    return qual_begin()[I];
3779  }
3780
3781  bool isSugared() const { return false; }
3782  QualType desugar() const { return QualType(this, 0); }
3783
3784  static bool classof(const Type *T) {
3785    return T->getTypeClass() == ObjCObject ||
3786           T->getTypeClass() == ObjCInterface;
3787  }
3788  static bool classof(const ObjCObjectType *) { return true; }
3789};
3790
3791/// ObjCObjectTypeImpl - A class providing a concrete implementation
3792/// of ObjCObjectType, so as to not increase the footprint of
3793/// ObjCInterfaceType.  Code outside of ASTContext and the core type
3794/// system should not reference this type.
3795class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
3796  friend class ASTContext;
3797
3798  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
3799  // will need to be modified.
3800
3801  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
3802                     ObjCProtocolDecl * const *Protocols,
3803                     unsigned NumProtocols)
3804    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
3805
3806public:
3807  void Profile(llvm::FoldingSetNodeID &ID);
3808  static void Profile(llvm::FoldingSetNodeID &ID,
3809                      QualType Base,
3810                      ObjCProtocolDecl *const *protocols,
3811                      unsigned NumProtocols);
3812};
3813
3814inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
3815  return reinterpret_cast<ObjCProtocolDecl**>(
3816            static_cast<ObjCObjectTypeImpl*>(this) + 1);
3817}
3818
3819/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
3820/// object oriented design.  They basically correspond to C++ classes.  There
3821/// are two kinds of interface types, normal interfaces like "NSString" and
3822/// qualified interfaces, which are qualified with a protocol list like
3823/// "NSString<NSCopyable, NSAmazing>".
3824///
3825/// ObjCInterfaceType guarantees the following properties when considered
3826/// as a subtype of its superclass, ObjCObjectType:
3827///   - There are no protocol qualifiers.  To reinforce this, code which
3828///     tries to invoke the protocol methods via an ObjCInterfaceType will
3829///     fail to compile.
3830///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
3831///     T->getBaseType() == QualType(T, 0).
3832class ObjCInterfaceType : public ObjCObjectType {
3833  ObjCInterfaceDecl *Decl;
3834
3835  ObjCInterfaceType(const ObjCInterfaceDecl *D)
3836    : ObjCObjectType(Nonce_ObjCInterface),
3837      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
3838  friend class ASTContext;  // ASTContext creates these.
3839
3840public:
3841  /// getDecl - Get the declaration of this interface.
3842  ObjCInterfaceDecl *getDecl() const { return Decl; }
3843
3844  bool isSugared() const { return false; }
3845  QualType desugar() const { return QualType(this, 0); }
3846
3847  static bool classof(const Type *T) {
3848    return T->getTypeClass() == ObjCInterface;
3849  }
3850  static bool classof(const ObjCInterfaceType *) { return true; }
3851
3852  // Nonsense to "hide" certain members of ObjCObjectType within this
3853  // class.  People asking for protocols on an ObjCInterfaceType are
3854  // not going to get what they want: ObjCInterfaceTypes are
3855  // guaranteed to have no protocols.
3856  enum {
3857    qual_iterator,
3858    qual_begin,
3859    qual_end,
3860    getNumProtocols,
3861    getProtocol
3862  };
3863};
3864
3865inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
3866  if (const ObjCInterfaceType *T =
3867        getBaseType()->getAs<ObjCInterfaceType>())
3868    return T->getDecl();
3869  return 0;
3870}
3871
3872/// ObjCObjectPointerType - Used to represent a pointer to an
3873/// Objective C object.  These are constructed from pointer
3874/// declarators when the pointee type is an ObjCObjectType (or sugar
3875/// for one).  In addition, the 'id' and 'Class' types are typedefs
3876/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
3877/// are translated into these.
3878///
3879/// Pointers to pointers to Objective C objects are still PointerTypes;
3880/// only the first level of pointer gets it own type implementation.
3881class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
3882  QualType PointeeType;
3883
3884  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
3885    : Type(ObjCObjectPointer, Canonical, false, false, false),
3886      PointeeType(Pointee) {}
3887  friend class ASTContext;  // ASTContext creates these.
3888
3889public:
3890  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
3891  /// The result will always be an ObjCObjectType or sugar thereof.
3892  QualType getPointeeType() const { return PointeeType; }
3893
3894  /// getObjCObjectType - Gets the type pointed to by this ObjC
3895  /// pointer.  This method always returns non-null.
3896  ///
3897  /// This method is equivalent to getPointeeType() except that
3898  /// it discards any typedefs (or other sugar) between this
3899  /// type and the "outermost" object type.  So for:
3900  ///   @class A; @protocol P; @protocol Q;
3901  ///   typedef A<P> AP;
3902  ///   typedef A A1;
3903  ///   typedef A1<P> A1P;
3904  ///   typedef A1P<Q> A1PQ;
3905  /// For 'A*', getObjectType() will return 'A'.
3906  /// For 'A<P>*', getObjectType() will return 'A<P>'.
3907  /// For 'AP*', getObjectType() will return 'A<P>'.
3908  /// For 'A1*', getObjectType() will return 'A'.
3909  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
3910  /// For 'A1P*', getObjectType() will return 'A1<P>'.
3911  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
3912  ///   adding protocols to a protocol-qualified base discards the
3913  ///   old qualifiers (for now).  But if it didn't, getObjectType()
3914  ///   would return 'A1P<Q>' (and we'd have to make iterating over
3915  ///   qualifiers more complicated).
3916  const ObjCObjectType *getObjectType() const {
3917    return PointeeType->castAs<ObjCObjectType>();
3918  }
3919
3920  /// getInterfaceType - If this pointer points to an Objective C
3921  /// @interface type, gets the type for that interface.  Any protocol
3922  /// qualifiers on the interface are ignored.
3923  ///
3924  /// \return null if the base type for this pointer is 'id' or 'Class'
3925  const ObjCInterfaceType *getInterfaceType() const {
3926    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
3927  }
3928
3929  /// getInterfaceDecl - If this pointer points to an Objective @interface
3930  /// type, gets the declaration for that interface.
3931  ///
3932  /// \return null if the base type for this pointer is 'id' or 'Class'
3933  ObjCInterfaceDecl *getInterfaceDecl() const {
3934    return getObjectType()->getInterface();
3935  }
3936
3937  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
3938  /// its object type is the primitive 'id' type with no protocols.
3939  bool isObjCIdType() const {
3940    return getObjectType()->isObjCUnqualifiedId();
3941  }
3942
3943  /// isObjCClassType - True if this is equivalent to the 'Class' type,
3944  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
3945  bool isObjCClassType() const {
3946    return getObjectType()->isObjCUnqualifiedClass();
3947  }
3948
3949  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
3950  /// non-empty set of protocols.
3951  bool isObjCQualifiedIdType() const {
3952    return getObjectType()->isObjCQualifiedId();
3953  }
3954
3955  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
3956  /// some non-empty set of protocols.
3957  bool isObjCQualifiedClassType() const {
3958    return getObjectType()->isObjCQualifiedClass();
3959  }
3960
3961  /// An iterator over the qualifiers on the object type.  Provided
3962  /// for convenience.  This will always iterate over the full set of
3963  /// protocols on a type, not just those provided directly.
3964  typedef ObjCObjectType::qual_iterator qual_iterator;
3965
3966  qual_iterator qual_begin() const {
3967    return getObjectType()->qual_begin();
3968  }
3969  qual_iterator qual_end() const {
3970    return getObjectType()->qual_end();
3971  }
3972  bool qual_empty() const { return getObjectType()->qual_empty(); }
3973
3974  /// getNumProtocols - Return the number of qualifying protocols on
3975  /// the object type.
3976  unsigned getNumProtocols() const {
3977    return getObjectType()->getNumProtocols();
3978  }
3979
3980  /// \brief Retrieve a qualifying protocol by index on the object
3981  /// type.
3982  ObjCProtocolDecl *getProtocol(unsigned I) const {
3983    return getObjectType()->getProtocol(I);
3984  }
3985
3986  bool isSugared() const { return false; }
3987  QualType desugar() const { return QualType(this, 0); }
3988
3989  void Profile(llvm::FoldingSetNodeID &ID) {
3990    Profile(ID, getPointeeType());
3991  }
3992  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
3993    ID.AddPointer(T.getAsOpaquePtr());
3994  }
3995  static bool classof(const Type *T) {
3996    return T->getTypeClass() == ObjCObjectPointer;
3997  }
3998  static bool classof(const ObjCObjectPointerType *) { return true; }
3999};
4000
4001/// A qualifier set is used to build a set of qualifiers.
4002class QualifierCollector : public Qualifiers {
4003public:
4004  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4005
4006  /// Collect any qualifiers on the given type and return an
4007  /// unqualified type.  The qualifiers are assumed to be consistent
4008  /// with those already in the type.
4009  const Type *strip(QualType type) {
4010    addFastQualifiers(type.getLocalFastQualifiers());
4011    if (!type.hasLocalNonFastQualifiers())
4012      return type.getTypePtrUnsafe();
4013
4014    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4015    addConsistentQualifiers(extQuals->getQualifiers());
4016    return extQuals->getBaseType();
4017  }
4018
4019  /// Apply the collected qualifiers to the given type.
4020  QualType apply(const ASTContext &Context, QualType QT) const;
4021
4022  /// Apply the collected qualifiers to the given type.
4023  QualType apply(const ASTContext &Context, const Type* T) const;
4024};
4025
4026
4027// Inline function definitions.
4028
4029inline const Type *QualType::getTypePtr() const {
4030  return getCommonPtr()->BaseType;
4031}
4032
4033inline const Type *QualType::getTypePtrOrNull() const {
4034  return (isNull() ? 0 : getCommonPtr()->BaseType);
4035}
4036
4037inline SplitQualType QualType::split() const {
4038  if (!hasLocalNonFastQualifiers())
4039    return SplitQualType(getTypePtrUnsafe(),
4040                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4041
4042  const ExtQuals *eq = getExtQualsUnsafe();
4043  Qualifiers qs = eq->getQualifiers();
4044  qs.addFastQualifiers(getLocalFastQualifiers());
4045  return SplitQualType(eq->getBaseType(), qs);
4046}
4047
4048inline Qualifiers QualType::getLocalQualifiers() const {
4049  Qualifiers Quals;
4050  if (hasLocalNonFastQualifiers())
4051    Quals = getExtQualsUnsafe()->getQualifiers();
4052  Quals.addFastQualifiers(getLocalFastQualifiers());
4053  return Quals;
4054}
4055
4056inline Qualifiers QualType::getQualifiers() const {
4057  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4058  quals.addFastQualifiers(getLocalFastQualifiers());
4059  return quals;
4060}
4061
4062inline unsigned QualType::getCVRQualifiers() const {
4063  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4064  cvr |= getLocalCVRQualifiers();
4065  return cvr;
4066}
4067
4068inline QualType QualType::getCanonicalType() const {
4069  QualType canon = getCommonPtr()->CanonicalType;
4070  return canon.withFastQualifiers(getLocalFastQualifiers());
4071}
4072
4073inline bool QualType::isCanonical() const {
4074  return getTypePtr()->isCanonicalUnqualified();
4075}
4076
4077inline bool QualType::isCanonicalAsParam() const {
4078  if (!isCanonical()) return false;
4079  if (hasLocalQualifiers()) return false;
4080
4081  const Type *T = getTypePtr();
4082  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4083    return false;
4084
4085  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4086}
4087
4088inline bool QualType::isConstQualified() const {
4089  return isLocalConstQualified() ||
4090         getCommonPtr()->CanonicalType.isLocalConstQualified();
4091}
4092
4093inline bool QualType::isRestrictQualified() const {
4094  return isLocalRestrictQualified() ||
4095         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4096}
4097
4098
4099inline bool QualType::isVolatileQualified() const {
4100  return isLocalVolatileQualified() ||
4101         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4102}
4103
4104inline bool QualType::hasQualifiers() const {
4105  return hasLocalQualifiers() ||
4106         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4107}
4108
4109inline QualType QualType::getUnqualifiedType() const {
4110  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4111    return QualType(getTypePtr(), 0);
4112
4113  return QualType(getSplitUnqualifiedTypeImpl(*this).first, 0);
4114}
4115
4116inline SplitQualType QualType::getSplitUnqualifiedType() const {
4117  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4118    return split();
4119
4120  return getSplitUnqualifiedTypeImpl(*this);
4121}
4122
4123inline void QualType::removeLocalConst() {
4124  removeLocalFastQualifiers(Qualifiers::Const);
4125}
4126
4127inline void QualType::removeLocalRestrict() {
4128  removeLocalFastQualifiers(Qualifiers::Restrict);
4129}
4130
4131inline void QualType::removeLocalVolatile() {
4132  removeLocalFastQualifiers(Qualifiers::Volatile);
4133}
4134
4135inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4136  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4137  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4138
4139  // Fast path: we don't need to touch the slow qualifiers.
4140  removeLocalFastQualifiers(Mask);
4141}
4142
4143/// getAddressSpace - Return the address space of this type.
4144inline unsigned QualType::getAddressSpace() const {
4145  return getQualifiers().getAddressSpace();
4146}
4147
4148/// getObjCGCAttr - Return the gc attribute of this type.
4149inline Qualifiers::GC QualType::getObjCGCAttr() const {
4150  return getQualifiers().getObjCGCAttr();
4151}
4152
4153inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4154  if (const PointerType *PT = t.getAs<PointerType>()) {
4155    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4156      return FT->getExtInfo();
4157  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4158    return FT->getExtInfo();
4159
4160  return FunctionType::ExtInfo();
4161}
4162
4163inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4164  return getFunctionExtInfo(*t);
4165}
4166
4167/// isMoreQualifiedThan - Determine whether this type is more
4168/// qualified than the Other type. For example, "const volatile int"
4169/// is more qualified than "const int", "volatile int", and
4170/// "int". However, it is not more qualified than "const volatile
4171/// int".
4172inline bool QualType::isMoreQualifiedThan(QualType other) const {
4173  Qualifiers myQuals = getQualifiers();
4174  Qualifiers otherQuals = other.getQualifiers();
4175  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4176}
4177
4178/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4179/// as qualified as the Other type. For example, "const volatile
4180/// int" is at least as qualified as "const int", "volatile int",
4181/// "int", and "const volatile int".
4182inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4183  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4184}
4185
4186/// getNonReferenceType - If Type is a reference type (e.g., const
4187/// int&), returns the type that the reference refers to ("const
4188/// int"). Otherwise, returns the type itself. This routine is used
4189/// throughout Sema to implement C++ 5p6:
4190///
4191///   If an expression initially has the type "reference to T" (8.3.2,
4192///   8.5.3), the type is adjusted to "T" prior to any further
4193///   analysis, the expression designates the object or function
4194///   denoted by the reference, and the expression is an lvalue.
4195inline QualType QualType::getNonReferenceType() const {
4196  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4197    return RefType->getPointeeType();
4198  else
4199    return *this;
4200}
4201
4202inline bool Type::isFunctionType() const {
4203  return isa<FunctionType>(CanonicalType);
4204}
4205inline bool Type::isPointerType() const {
4206  return isa<PointerType>(CanonicalType);
4207}
4208inline bool Type::isAnyPointerType() const {
4209  return isPointerType() || isObjCObjectPointerType();
4210}
4211inline bool Type::isBlockPointerType() const {
4212  return isa<BlockPointerType>(CanonicalType);
4213}
4214inline bool Type::isReferenceType() const {
4215  return isa<ReferenceType>(CanonicalType);
4216}
4217inline bool Type::isLValueReferenceType() const {
4218  return isa<LValueReferenceType>(CanonicalType);
4219}
4220inline bool Type::isRValueReferenceType() const {
4221  return isa<RValueReferenceType>(CanonicalType);
4222}
4223inline bool Type::isFunctionPointerType() const {
4224  if (const PointerType *T = getAs<PointerType>())
4225    return T->getPointeeType()->isFunctionType();
4226  else
4227    return false;
4228}
4229inline bool Type::isMemberPointerType() const {
4230  return isa<MemberPointerType>(CanonicalType);
4231}
4232inline bool Type::isMemberFunctionPointerType() const {
4233  if (const MemberPointerType* T = getAs<MemberPointerType>())
4234    return T->isMemberFunctionPointer();
4235  else
4236    return false;
4237}
4238inline bool Type::isMemberDataPointerType() const {
4239  if (const MemberPointerType* T = getAs<MemberPointerType>())
4240    return T->isMemberDataPointer();
4241  else
4242    return false;
4243}
4244inline bool Type::isArrayType() const {
4245  return isa<ArrayType>(CanonicalType);
4246}
4247inline bool Type::isConstantArrayType() const {
4248  return isa<ConstantArrayType>(CanonicalType);
4249}
4250inline bool Type::isIncompleteArrayType() const {
4251  return isa<IncompleteArrayType>(CanonicalType);
4252}
4253inline bool Type::isVariableArrayType() const {
4254  return isa<VariableArrayType>(CanonicalType);
4255}
4256inline bool Type::isDependentSizedArrayType() const {
4257  return isa<DependentSizedArrayType>(CanonicalType);
4258}
4259inline bool Type::isBuiltinType() const {
4260  return isa<BuiltinType>(CanonicalType);
4261}
4262inline bool Type::isRecordType() const {
4263  return isa<RecordType>(CanonicalType);
4264}
4265inline bool Type::isEnumeralType() const {
4266  return isa<EnumType>(CanonicalType);
4267}
4268inline bool Type::isAnyComplexType() const {
4269  return isa<ComplexType>(CanonicalType);
4270}
4271inline bool Type::isVectorType() const {
4272  return isa<VectorType>(CanonicalType);
4273}
4274inline bool Type::isExtVectorType() const {
4275  return isa<ExtVectorType>(CanonicalType);
4276}
4277inline bool Type::isObjCObjectPointerType() const {
4278  return isa<ObjCObjectPointerType>(CanonicalType);
4279}
4280inline bool Type::isObjCObjectType() const {
4281  return isa<ObjCObjectType>(CanonicalType);
4282}
4283inline bool Type::isObjCObjectOrInterfaceType() const {
4284  return isa<ObjCInterfaceType>(CanonicalType) ||
4285    isa<ObjCObjectType>(CanonicalType);
4286}
4287
4288inline bool Type::isObjCQualifiedIdType() const {
4289  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4290    return OPT->isObjCQualifiedIdType();
4291  return false;
4292}
4293inline bool Type::isObjCQualifiedClassType() const {
4294  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4295    return OPT->isObjCQualifiedClassType();
4296  return false;
4297}
4298inline bool Type::isObjCIdType() const {
4299  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4300    return OPT->isObjCIdType();
4301  return false;
4302}
4303inline bool Type::isObjCClassType() const {
4304  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4305    return OPT->isObjCClassType();
4306  return false;
4307}
4308inline bool Type::isObjCSelType() const {
4309  if (const PointerType *OPT = getAs<PointerType>())
4310    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4311  return false;
4312}
4313inline bool Type::isObjCBuiltinType() const {
4314  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4315}
4316inline bool Type::isTemplateTypeParmType() const {
4317  return isa<TemplateTypeParmType>(CanonicalType);
4318}
4319
4320inline bool Type::isSpecificBuiltinType(unsigned K) const {
4321  if (const BuiltinType *BT = getAs<BuiltinType>())
4322    if (BT->getKind() == (BuiltinType::Kind) K)
4323      return true;
4324  return false;
4325}
4326
4327inline bool Type::isPlaceholderType() const {
4328  if (const BuiltinType *BT = getAs<BuiltinType>())
4329    return BT->isPlaceholderType();
4330  return false;
4331}
4332
4333inline bool Type::isSpecificPlaceholderType(unsigned K) const {
4334  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4335    return (BT->getKind() == (BuiltinType::Kind) K);
4336  return false;
4337}
4338
4339/// \brief Determines whether this is a type for which one can define
4340/// an overloaded operator.
4341inline bool Type::isOverloadableType() const {
4342  return isDependentType() || isRecordType() || isEnumeralType();
4343}
4344
4345inline bool Type::hasPointerRepresentation() const {
4346  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
4347          isObjCObjectPointerType() || isNullPtrType());
4348}
4349
4350inline bool Type::hasObjCPointerRepresentation() const {
4351  return isObjCObjectPointerType();
4352}
4353
4354inline const Type *Type::getBaseElementTypeUnsafe() const {
4355  const Type *type = this;
4356  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
4357    type = arrayType->getElementType().getTypePtr();
4358  return type;
4359}
4360
4361/// Insertion operator for diagnostics.  This allows sending QualType's into a
4362/// diagnostic with <<.
4363inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
4364                                           QualType T) {
4365  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4366                  Diagnostic::ak_qualtype);
4367  return DB;
4368}
4369
4370/// Insertion operator for partial diagnostics.  This allows sending QualType's
4371/// into a diagnostic with <<.
4372inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
4373                                           QualType T) {
4374  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4375                  Diagnostic::ak_qualtype);
4376  return PD;
4377}
4378
4379// Helper class template that is used by Type::getAs to ensure that one does
4380// not try to look through a qualified type to get to an array type.
4381template<typename T,
4382         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
4383                             llvm::is_base_of<ArrayType, T>::value)>
4384struct ArrayType_cannot_be_used_with_getAs { };
4385
4386template<typename T>
4387struct ArrayType_cannot_be_used_with_getAs<T, true>;
4388
4389/// Member-template getAs<specific type>'.
4390template <typename T> const T *Type::getAs() const {
4391  ArrayType_cannot_be_used_with_getAs<T> at;
4392  (void)at;
4393
4394  // If this is directly a T type, return it.
4395  if (const T *Ty = dyn_cast<T>(this))
4396    return Ty;
4397
4398  // If the canonical form of this type isn't the right kind, reject it.
4399  if (!isa<T>(CanonicalType))
4400    return 0;
4401
4402  // If this is a typedef for the type, strip the typedef off without
4403  // losing all typedef information.
4404  return cast<T>(getUnqualifiedDesugaredType());
4405}
4406
4407inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
4408  // If this is directly an array type, return it.
4409  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
4410    return arr;
4411
4412  // If the canonical form of this type isn't the right kind, reject it.
4413  if (!isa<ArrayType>(CanonicalType))
4414    return 0;
4415
4416  // If this is a typedef for the type, strip the typedef off without
4417  // losing all typedef information.
4418  return cast<ArrayType>(getUnqualifiedDesugaredType());
4419}
4420
4421template <typename T> const T *Type::castAs() const {
4422  ArrayType_cannot_be_used_with_getAs<T> at;
4423  (void) at;
4424
4425  assert(isa<T>(CanonicalType));
4426  if (const T *ty = dyn_cast<T>(this)) return ty;
4427  return cast<T>(getUnqualifiedDesugaredType());
4428}
4429
4430inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
4431  assert(isa<ArrayType>(CanonicalType));
4432  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
4433  return cast<ArrayType>(getUnqualifiedDesugaredType());
4434}
4435
4436}  // end namespace clang
4437
4438#endif
4439