Type.h revision aa9df09729fb8aee3e645549e95fcb413306a7aa
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/AST/NestedNameSpecifier.h"
18#include "clang/AST/TemplateName.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Basic/ExceptionSpecificationType.h"
21#include "clang/Basic/IdentifierTable.h"
22#include "clang/Basic/LLVM.h"
23#include "clang/Basic/Linkage.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/Specifiers.h"
26#include "clang/Basic/Visibility.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32#include "llvm/ADT/Twine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/type_traits.h"
35
36namespace clang {
37  enum {
38    TypeAlignmentInBits = 4,
39    TypeAlignment = 1 << TypeAlignmentInBits
40  };
41  class Type;
42  class ExtQuals;
43  class QualType;
44}
45
46namespace llvm {
47  template <typename T>
48  class PointerLikeTypeTraits;
49  template<>
50  class PointerLikeTypeTraits< ::clang::Type*> {
51  public:
52    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
53    static inline ::clang::Type *getFromVoidPointer(void *P) {
54      return static_cast< ::clang::Type*>(P);
55    }
56    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
57  };
58  template<>
59  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
60  public:
61    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
62    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
63      return static_cast< ::clang::ExtQuals*>(P);
64    }
65    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
66  };
67
68  template <>
69  struct isPodLike<clang::QualType> { static const bool value = true; };
70}
71
72namespace clang {
73  class ASTContext;
74  class TypedefNameDecl;
75  class TemplateDecl;
76  class TemplateTypeParmDecl;
77  class NonTypeTemplateParmDecl;
78  class TemplateTemplateParmDecl;
79  class TagDecl;
80  class RecordDecl;
81  class CXXRecordDecl;
82  class EnumDecl;
83  class FieldDecl;
84  class FunctionDecl;
85  class ObjCInterfaceDecl;
86  class ObjCProtocolDecl;
87  class ObjCMethodDecl;
88  class UnresolvedUsingTypenameDecl;
89  class Expr;
90  class Stmt;
91  class SourceLocation;
92  class StmtIteratorBase;
93  class TemplateArgument;
94  class TemplateArgumentLoc;
95  class TemplateArgumentListInfo;
96  class ElaboratedType;
97  class ExtQuals;
98  class ExtQualsTypeCommonBase;
99  struct PrintingPolicy;
100
101  template <typename> class CanQual;
102  typedef CanQual<Type> CanQualType;
103
104  // Provide forward declarations for all of the *Type classes
105#define TYPE(Class, Base) class Class##Type;
106#include "clang/AST/TypeNodes.def"
107
108/// Qualifiers - The collection of all-type qualifiers we support.
109/// Clang supports five independent qualifiers:
110/// * C99: const, volatile, and restrict
111/// * Embedded C (TR18037): address spaces
112/// * Objective C: the GC attributes (none, weak, or strong)
113class Qualifiers {
114public:
115  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
116    Const    = 0x1,
117    Restrict = 0x2,
118    Volatile = 0x4,
119    CVRMask = Const | Volatile | Restrict
120  };
121
122  enum GC {
123    GCNone = 0,
124    Weak,
125    Strong
126  };
127
128  enum ObjCLifetime {
129    /// There is no lifetime qualification on this type.
130    OCL_None,
131
132    /// This object can be modified without requiring retains or
133    /// releases.
134    OCL_ExplicitNone,
135
136    /// Assigning into this object requires the old value to be
137    /// released and the new value to be retained.  The timing of the
138    /// release of the old value is inexact: it may be moved to
139    /// immediately after the last known point where the value is
140    /// live.
141    OCL_Strong,
142
143    /// Reading or writing from this object requires a barrier call.
144    OCL_Weak,
145
146    /// Assigning into this object requires a lifetime extension.
147    OCL_Autoreleasing
148  };
149
150  enum {
151    /// The maximum supported address space number.
152    /// 24 bits should be enough for anyone.
153    MaxAddressSpace = 0xffffffu,
154
155    /// The width of the "fast" qualifier mask.
156    FastWidth = 3,
157
158    /// The fast qualifier mask.
159    FastMask = (1 << FastWidth) - 1
160  };
161
162  Qualifiers() : Mask(0) {}
163
164  /// \brief Returns the common set of qualifiers while removing them from
165  /// the given sets.
166  static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
167    // If both are only CVR-qualified, bit operations are sufficient.
168    if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
169      Qualifiers Q;
170      Q.Mask = L.Mask & R.Mask;
171      L.Mask &= ~Q.Mask;
172      R.Mask &= ~Q.Mask;
173      return Q;
174    }
175
176    Qualifiers Q;
177    unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
178    Q.addCVRQualifiers(CommonCRV);
179    L.removeCVRQualifiers(CommonCRV);
180    R.removeCVRQualifiers(CommonCRV);
181
182    if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
183      Q.setObjCGCAttr(L.getObjCGCAttr());
184      L.removeObjCGCAttr();
185      R.removeObjCGCAttr();
186    }
187
188    if (L.getObjCLifetime() == R.getObjCLifetime()) {
189      Q.setObjCLifetime(L.getObjCLifetime());
190      L.removeObjCLifetime();
191      R.removeObjCLifetime();
192    }
193
194    if (L.getAddressSpace() == R.getAddressSpace()) {
195      Q.setAddressSpace(L.getAddressSpace());
196      L.removeAddressSpace();
197      R.removeAddressSpace();
198    }
199    return Q;
200  }
201
202  static Qualifiers fromFastMask(unsigned Mask) {
203    Qualifiers Qs;
204    Qs.addFastQualifiers(Mask);
205    return Qs;
206  }
207
208  static Qualifiers fromCVRMask(unsigned CVR) {
209    Qualifiers Qs;
210    Qs.addCVRQualifiers(CVR);
211    return Qs;
212  }
213
214  // Deserialize qualifiers from an opaque representation.
215  static Qualifiers fromOpaqueValue(unsigned opaque) {
216    Qualifiers Qs;
217    Qs.Mask = opaque;
218    return Qs;
219  }
220
221  // Serialize these qualifiers into an opaque representation.
222  unsigned getAsOpaqueValue() const {
223    return Mask;
224  }
225
226  bool hasConst() const { return Mask & Const; }
227  void setConst(bool flag) {
228    Mask = (Mask & ~Const) | (flag ? Const : 0);
229  }
230  void removeConst() { Mask &= ~Const; }
231  void addConst() { Mask |= Const; }
232
233  bool hasVolatile() const { return Mask & Volatile; }
234  void setVolatile(bool flag) {
235    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
236  }
237  void removeVolatile() { Mask &= ~Volatile; }
238  void addVolatile() { Mask |= Volatile; }
239
240  bool hasRestrict() const { return Mask & Restrict; }
241  void setRestrict(bool flag) {
242    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
243  }
244  void removeRestrict() { Mask &= ~Restrict; }
245  void addRestrict() { Mask |= Restrict; }
246
247  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
248  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
249  void setCVRQualifiers(unsigned mask) {
250    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
251    Mask = (Mask & ~CVRMask) | mask;
252  }
253  void removeCVRQualifiers(unsigned mask) {
254    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
255    Mask &= ~mask;
256  }
257  void removeCVRQualifiers() {
258    removeCVRQualifiers(CVRMask);
259  }
260  void addCVRQualifiers(unsigned mask) {
261    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
262    Mask |= mask;
263  }
264
265  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
266  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
267  void setObjCGCAttr(GC type) {
268    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
269  }
270  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
271  void addObjCGCAttr(GC type) {
272    assert(type);
273    setObjCGCAttr(type);
274  }
275  Qualifiers withoutObjCGCAttr() const {
276    Qualifiers qs = *this;
277    qs.removeObjCGCAttr();
278    return qs;
279  }
280  Qualifiers withoutObjCLifetime() const {
281    Qualifiers qs = *this;
282    qs.removeObjCLifetime();
283    return qs;
284  }
285
286  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
287  ObjCLifetime getObjCLifetime() const {
288    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
289  }
290  void setObjCLifetime(ObjCLifetime type) {
291    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
292  }
293  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
294  void addObjCLifetime(ObjCLifetime type) {
295    assert(type);
296    assert(!hasObjCLifetime());
297    Mask |= (type << LifetimeShift);
298  }
299
300  /// True if the lifetime is neither None or ExplicitNone.
301  bool hasNonTrivialObjCLifetime() const {
302    ObjCLifetime lifetime = getObjCLifetime();
303    return (lifetime > OCL_ExplicitNone);
304  }
305
306  /// True if the lifetime is either strong or weak.
307  bool hasStrongOrWeakObjCLifetime() const {
308    ObjCLifetime lifetime = getObjCLifetime();
309    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
310  }
311
312  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
313  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
314  void setAddressSpace(unsigned space) {
315    assert(space <= MaxAddressSpace);
316    Mask = (Mask & ~AddressSpaceMask)
317         | (((uint32_t) space) << AddressSpaceShift);
318  }
319  void removeAddressSpace() { setAddressSpace(0); }
320  void addAddressSpace(unsigned space) {
321    assert(space);
322    setAddressSpace(space);
323  }
324
325  // Fast qualifiers are those that can be allocated directly
326  // on a QualType object.
327  bool hasFastQualifiers() const { return getFastQualifiers(); }
328  unsigned getFastQualifiers() const { return Mask & FastMask; }
329  void setFastQualifiers(unsigned mask) {
330    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
331    Mask = (Mask & ~FastMask) | mask;
332  }
333  void removeFastQualifiers(unsigned mask) {
334    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
335    Mask &= ~mask;
336  }
337  void removeFastQualifiers() {
338    removeFastQualifiers(FastMask);
339  }
340  void addFastQualifiers(unsigned mask) {
341    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
342    Mask |= mask;
343  }
344
345  /// hasNonFastQualifiers - Return true if the set contains any
346  /// qualifiers which require an ExtQuals node to be allocated.
347  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
348  Qualifiers getNonFastQualifiers() const {
349    Qualifiers Quals = *this;
350    Quals.setFastQualifiers(0);
351    return Quals;
352  }
353
354  /// hasQualifiers - Return true if the set contains any qualifiers.
355  bool hasQualifiers() const { return Mask; }
356  bool empty() const { return !Mask; }
357
358  /// \brief Add the qualifiers from the given set to this set.
359  void addQualifiers(Qualifiers Q) {
360    // If the other set doesn't have any non-boolean qualifiers, just
361    // bit-or it in.
362    if (!(Q.Mask & ~CVRMask))
363      Mask |= Q.Mask;
364    else {
365      Mask |= (Q.Mask & CVRMask);
366      if (Q.hasAddressSpace())
367        addAddressSpace(Q.getAddressSpace());
368      if (Q.hasObjCGCAttr())
369        addObjCGCAttr(Q.getObjCGCAttr());
370      if (Q.hasObjCLifetime())
371        addObjCLifetime(Q.getObjCLifetime());
372    }
373  }
374
375  /// \brief Remove the qualifiers from the given set from this set.
376  void removeQualifiers(Qualifiers Q) {
377    // If the other set doesn't have any non-boolean qualifiers, just
378    // bit-and the inverse in.
379    if (!(Q.Mask & ~CVRMask))
380      Mask &= ~Q.Mask;
381    else {
382      Mask &= ~(Q.Mask & CVRMask);
383      if (getObjCGCAttr() == Q.getObjCGCAttr())
384        removeObjCGCAttr();
385      if (getObjCLifetime() == Q.getObjCLifetime())
386        removeObjCLifetime();
387      if (getAddressSpace() == Q.getAddressSpace())
388        removeAddressSpace();
389    }
390  }
391
392  /// \brief Add the qualifiers from the given set to this set, given that
393  /// they don't conflict.
394  void addConsistentQualifiers(Qualifiers qs) {
395    assert(getAddressSpace() == qs.getAddressSpace() ||
396           !hasAddressSpace() || !qs.hasAddressSpace());
397    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
398           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
399    assert(getObjCLifetime() == qs.getObjCLifetime() ||
400           !hasObjCLifetime() || !qs.hasObjCLifetime());
401    Mask |= qs.Mask;
402  }
403
404  /// \brief Determines if these qualifiers compatibly include another set.
405  /// Generally this answers the question of whether an object with the other
406  /// qualifiers can be safely used as an object with these qualifiers.
407  bool compatiblyIncludes(Qualifiers other) const {
408    return
409      // Address spaces must match exactly.
410      getAddressSpace() == other.getAddressSpace() &&
411      // ObjC GC qualifiers can match, be added, or be removed, but can't be
412      // changed.
413      (getObjCGCAttr() == other.getObjCGCAttr() ||
414       !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
415      // ObjC lifetime qualifiers must match exactly.
416      getObjCLifetime() == other.getObjCLifetime() &&
417      // CVR qualifiers may subset.
418      (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
419  }
420
421  /// \brief Determines if these qualifiers compatibly include another set of
422  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
423  ///
424  /// One set of Objective-C lifetime qualifiers compatibly includes the other
425  /// if the lifetime qualifiers match, or if both are non-__weak and the
426  /// including set also contains the 'const' qualifier.
427  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
428    if (getObjCLifetime() == other.getObjCLifetime())
429      return true;
430
431    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
432      return false;
433
434    return hasConst();
435  }
436
437  /// \brief Determine whether this set of qualifiers is a strict superset of
438  /// another set of qualifiers, not considering qualifier compatibility.
439  bool isStrictSupersetOf(Qualifiers Other) const;
440
441  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
442  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
443
444  LLVM_EXPLICIT operator bool() const { return hasQualifiers(); }
445
446  Qualifiers &operator+=(Qualifiers R) {
447    addQualifiers(R);
448    return *this;
449  }
450
451  // Union two qualifier sets.  If an enumerated qualifier appears
452  // in both sets, use the one from the right.
453  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
454    L += R;
455    return L;
456  }
457
458  Qualifiers &operator-=(Qualifiers R) {
459    removeQualifiers(R);
460    return *this;
461  }
462
463  /// \brief Compute the difference between two qualifier sets.
464  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
465    L -= R;
466    return L;
467  }
468
469  std::string getAsString() const;
470  std::string getAsString(const PrintingPolicy &Policy) const;
471
472  bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
473  void print(raw_ostream &OS, const PrintingPolicy &Policy,
474             bool appendSpaceIfNonEmpty = false) const;
475
476  void Profile(llvm::FoldingSetNodeID &ID) const {
477    ID.AddInteger(Mask);
478  }
479
480private:
481
482  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
483  //           |C R V|GCAttr|Lifetime|AddressSpace|
484  uint32_t Mask;
485
486  static const uint32_t GCAttrMask = 0x18;
487  static const uint32_t GCAttrShift = 3;
488  static const uint32_t LifetimeMask = 0xE0;
489  static const uint32_t LifetimeShift = 5;
490  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
491  static const uint32_t AddressSpaceShift = 8;
492};
493
494/// A std::pair-like structure for storing a qualified type split
495/// into its local qualifiers and its locally-unqualified type.
496struct SplitQualType {
497  /// The locally-unqualified type.
498  const Type *Ty;
499
500  /// The local qualifiers.
501  Qualifiers Quals;
502
503  SplitQualType() : Ty(0), Quals() {}
504  SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
505
506  SplitQualType getSingleStepDesugaredType() const; // end of this file
507
508  // Make llvm::tie work.
509  operator std::pair<const Type *,Qualifiers>() const {
510    return std::pair<const Type *,Qualifiers>(Ty, Quals);
511  }
512
513  friend bool operator==(SplitQualType a, SplitQualType b) {
514    return a.Ty == b.Ty && a.Quals == b.Quals;
515  }
516  friend bool operator!=(SplitQualType a, SplitQualType b) {
517    return a.Ty != b.Ty || a.Quals != b.Quals;
518  }
519};
520
521/// QualType - For efficiency, we don't store CV-qualified types as nodes on
522/// their own: instead each reference to a type stores the qualifiers.  This
523/// greatly reduces the number of nodes we need to allocate for types (for
524/// example we only need one for 'int', 'const int', 'volatile int',
525/// 'const volatile int', etc).
526///
527/// As an added efficiency bonus, instead of making this a pair, we
528/// just store the two bits we care about in the low bits of the
529/// pointer.  To handle the packing/unpacking, we make QualType be a
530/// simple wrapper class that acts like a smart pointer.  A third bit
531/// indicates whether there are extended qualifiers present, in which
532/// case the pointer points to a special structure.
533class QualType {
534  // Thankfully, these are efficiently composable.
535  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
536                       Qualifiers::FastWidth> Value;
537
538  const ExtQuals *getExtQualsUnsafe() const {
539    return Value.getPointer().get<const ExtQuals*>();
540  }
541
542  const Type *getTypePtrUnsafe() const {
543    return Value.getPointer().get<const Type*>();
544  }
545
546  const ExtQualsTypeCommonBase *getCommonPtr() const {
547    assert(!isNull() && "Cannot retrieve a NULL type pointer");
548    uintptr_t CommonPtrVal
549      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
550    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
551    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
552  }
553
554  friend class QualifierCollector;
555public:
556  QualType() {}
557
558  QualType(const Type *Ptr, unsigned Quals)
559    : Value(Ptr, Quals) {}
560  QualType(const ExtQuals *Ptr, unsigned Quals)
561    : Value(Ptr, Quals) {}
562
563  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
564  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
565
566  /// Retrieves a pointer to the underlying (unqualified) type.
567  ///
568  /// This function requires that the type not be NULL. If the type might be
569  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
570  const Type *getTypePtr() const;
571
572  const Type *getTypePtrOrNull() const;
573
574  /// Retrieves a pointer to the name of the base type.
575  const IdentifierInfo *getBaseTypeIdentifier() const;
576
577  /// Divides a QualType into its unqualified type and a set of local
578  /// qualifiers.
579  SplitQualType split() const;
580
581  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
582  static QualType getFromOpaquePtr(const void *Ptr) {
583    QualType T;
584    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
585    return T;
586  }
587
588  const Type &operator*() const {
589    return *getTypePtr();
590  }
591
592  const Type *operator->() const {
593    return getTypePtr();
594  }
595
596  bool isCanonical() const;
597  bool isCanonicalAsParam() const;
598
599  /// isNull - Return true if this QualType doesn't point to a type yet.
600  bool isNull() const {
601    return Value.getPointer().isNull();
602  }
603
604  /// \brief Determine whether this particular QualType instance has the
605  /// "const" qualifier set, without looking through typedefs that may have
606  /// added "const" at a different level.
607  bool isLocalConstQualified() const {
608    return (getLocalFastQualifiers() & Qualifiers::Const);
609  }
610
611  /// \brief Determine whether this type is const-qualified.
612  bool isConstQualified() const;
613
614  /// \brief Determine whether this particular QualType instance has the
615  /// "restrict" qualifier set, without looking through typedefs that may have
616  /// added "restrict" at a different level.
617  bool isLocalRestrictQualified() const {
618    return (getLocalFastQualifiers() & Qualifiers::Restrict);
619  }
620
621  /// \brief Determine whether this type is restrict-qualified.
622  bool isRestrictQualified() const;
623
624  /// \brief Determine whether this particular QualType instance has the
625  /// "volatile" qualifier set, without looking through typedefs that may have
626  /// added "volatile" at a different level.
627  bool isLocalVolatileQualified() const {
628    return (getLocalFastQualifiers() & Qualifiers::Volatile);
629  }
630
631  /// \brief Determine whether this type is volatile-qualified.
632  bool isVolatileQualified() const;
633
634  /// \brief Determine whether this particular QualType instance has any
635  /// qualifiers, without looking through any typedefs that might add
636  /// qualifiers at a different level.
637  bool hasLocalQualifiers() const {
638    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
639  }
640
641  /// \brief Determine whether this type has any qualifiers.
642  bool hasQualifiers() const;
643
644  /// \brief Determine whether this particular QualType instance has any
645  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
646  /// instance.
647  bool hasLocalNonFastQualifiers() const {
648    return Value.getPointer().is<const ExtQuals*>();
649  }
650
651  /// \brief Retrieve the set of qualifiers local to this particular QualType
652  /// instance, not including any qualifiers acquired through typedefs or
653  /// other sugar.
654  Qualifiers getLocalQualifiers() const;
655
656  /// \brief Retrieve the set of qualifiers applied to this type.
657  Qualifiers getQualifiers() const;
658
659  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
660  /// local to this particular QualType instance, not including any qualifiers
661  /// acquired through typedefs or other sugar.
662  unsigned getLocalCVRQualifiers() const {
663    return getLocalFastQualifiers();
664  }
665
666  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
667  /// applied to this type.
668  unsigned getCVRQualifiers() const;
669
670  bool isConstant(ASTContext& Ctx) const {
671    return QualType::isConstant(*this, Ctx);
672  }
673
674  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
675  bool isPODType(ASTContext &Context) const;
676
677  /// isCXX98PODType() - Return true if this is a POD type according to the
678  /// rules of the C++98 standard, regardless of the current compilation's
679  /// language.
680  bool isCXX98PODType(ASTContext &Context) const;
681
682  /// isCXX11PODType() - Return true if this is a POD type according to the
683  /// more relaxed rules of the C++11 standard, regardless of the current
684  /// compilation's language.
685  /// (C++0x [basic.types]p9)
686  bool isCXX11PODType(ASTContext &Context) const;
687
688  /// isTrivialType - Return true if this is a trivial type
689  /// (C++0x [basic.types]p9)
690  bool isTrivialType(ASTContext &Context) const;
691
692  /// isTriviallyCopyableType - Return true if this is a trivially
693  /// copyable type (C++0x [basic.types]p9)
694  bool isTriviallyCopyableType(ASTContext &Context) const;
695
696  // Don't promise in the API that anything besides 'const' can be
697  // easily added.
698
699  /// addConst - add the specified type qualifier to this QualType.
700  void addConst() {
701    addFastQualifiers(Qualifiers::Const);
702  }
703  QualType withConst() const {
704    return withFastQualifiers(Qualifiers::Const);
705  }
706
707  /// addVolatile - add the specified type qualifier to this QualType.
708  void addVolatile() {
709    addFastQualifiers(Qualifiers::Volatile);
710  }
711  QualType withVolatile() const {
712    return withFastQualifiers(Qualifiers::Volatile);
713  }
714
715  /// Add the restrict qualifier to this QualType.
716  void addRestrict() {
717    addFastQualifiers(Qualifiers::Restrict);
718  }
719  QualType withRestrict() const {
720    return withFastQualifiers(Qualifiers::Restrict);
721  }
722
723  QualType withCVRQualifiers(unsigned CVR) const {
724    return withFastQualifiers(CVR);
725  }
726
727  void addFastQualifiers(unsigned TQs) {
728    assert(!(TQs & ~Qualifiers::FastMask)
729           && "non-fast qualifier bits set in mask!");
730    Value.setInt(Value.getInt() | TQs);
731  }
732
733  void removeLocalConst();
734  void removeLocalVolatile();
735  void removeLocalRestrict();
736  void removeLocalCVRQualifiers(unsigned Mask);
737
738  void removeLocalFastQualifiers() { Value.setInt(0); }
739  void removeLocalFastQualifiers(unsigned Mask) {
740    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
741    Value.setInt(Value.getInt() & ~Mask);
742  }
743
744  // Creates a type with the given qualifiers in addition to any
745  // qualifiers already on this type.
746  QualType withFastQualifiers(unsigned TQs) const {
747    QualType T = *this;
748    T.addFastQualifiers(TQs);
749    return T;
750  }
751
752  // Creates a type with exactly the given fast qualifiers, removing
753  // any existing fast qualifiers.
754  QualType withExactLocalFastQualifiers(unsigned TQs) const {
755    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
756  }
757
758  // Removes fast qualifiers, but leaves any extended qualifiers in place.
759  QualType withoutLocalFastQualifiers() const {
760    QualType T = *this;
761    T.removeLocalFastQualifiers();
762    return T;
763  }
764
765  QualType getCanonicalType() const;
766
767  /// \brief Return this type with all of the instance-specific qualifiers
768  /// removed, but without removing any qualifiers that may have been applied
769  /// through typedefs.
770  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
771
772  /// \brief Retrieve the unqualified variant of the given type,
773  /// removing as little sugar as possible.
774  ///
775  /// This routine looks through various kinds of sugar to find the
776  /// least-desugared type that is unqualified. For example, given:
777  ///
778  /// \code
779  /// typedef int Integer;
780  /// typedef const Integer CInteger;
781  /// typedef CInteger DifferenceType;
782  /// \endcode
783  ///
784  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
785  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
786  ///
787  /// The resulting type might still be qualified if it's sugar for an array
788  /// type.  To strip qualifiers even from within a sugared array type, use
789  /// ASTContext::getUnqualifiedArrayType.
790  inline QualType getUnqualifiedType() const;
791
792  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
793  /// given type, removing as little sugar as possible.
794  ///
795  /// Like getUnqualifiedType(), but also returns the set of
796  /// qualifiers that were built up.
797  ///
798  /// The resulting type might still be qualified if it's sugar for an array
799  /// type.  To strip qualifiers even from within a sugared array type, use
800  /// ASTContext::getUnqualifiedArrayType.
801  inline SplitQualType getSplitUnqualifiedType() const;
802
803  /// \brief Determine whether this type is more qualified than the other
804  /// given type, requiring exact equality for non-CVR qualifiers.
805  bool isMoreQualifiedThan(QualType Other) const;
806
807  /// \brief Determine whether this type is at least as qualified as the other
808  /// given type, requiring exact equality for non-CVR qualifiers.
809  bool isAtLeastAsQualifiedAs(QualType Other) const;
810
811  QualType getNonReferenceType() const;
812
813  /// \brief Determine the type of a (typically non-lvalue) expression with the
814  /// specified result type.
815  ///
816  /// This routine should be used for expressions for which the return type is
817  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
818  /// an lvalue. It removes a top-level reference (since there are no
819  /// expressions of reference type) and deletes top-level cvr-qualifiers
820  /// from non-class types (in C++) or all types (in C).
821  QualType getNonLValueExprType(ASTContext &Context) const;
822
823  /// getDesugaredType - Return the specified type with any "sugar" removed from
824  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
825  /// the type is already concrete, it returns it unmodified.  This is similar
826  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
827  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
828  /// concrete.
829  ///
830  /// Qualifiers are left in place.
831  QualType getDesugaredType(const ASTContext &Context) const {
832    return getDesugaredType(*this, Context);
833  }
834
835  SplitQualType getSplitDesugaredType() const {
836    return getSplitDesugaredType(*this);
837  }
838
839  /// \brief Return the specified type with one level of "sugar" removed from
840  /// the type.
841  ///
842  /// This routine takes off the first typedef, typeof, etc. If the outer level
843  /// of the type is already concrete, it returns it unmodified.
844  QualType getSingleStepDesugaredType(const ASTContext &Context) const {
845    return getSingleStepDesugaredTypeImpl(*this, Context);
846  }
847
848  /// IgnoreParens - Returns the specified type after dropping any
849  /// outer-level parentheses.
850  QualType IgnoreParens() const {
851    if (isa<ParenType>(*this))
852      return QualType::IgnoreParens(*this);
853    return *this;
854  }
855
856  /// operator==/!= - Indicate whether the specified types and qualifiers are
857  /// identical.
858  friend bool operator==(const QualType &LHS, const QualType &RHS) {
859    return LHS.Value == RHS.Value;
860  }
861  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
862    return LHS.Value != RHS.Value;
863  }
864  std::string getAsString() const {
865    return getAsString(split());
866  }
867  static std::string getAsString(SplitQualType split) {
868    return getAsString(split.Ty, split.Quals);
869  }
870  static std::string getAsString(const Type *ty, Qualifiers qs);
871
872  std::string getAsString(const PrintingPolicy &Policy) const;
873
874  void print(raw_ostream &OS, const PrintingPolicy &Policy,
875             const Twine &PlaceHolder = Twine()) const {
876    print(split(), OS, Policy, PlaceHolder);
877  }
878  static void print(SplitQualType split, raw_ostream &OS,
879                    const PrintingPolicy &policy, const Twine &PlaceHolder) {
880    return print(split.Ty, split.Quals, OS, policy, PlaceHolder);
881  }
882  static void print(const Type *ty, Qualifiers qs,
883                    raw_ostream &OS, const PrintingPolicy &policy,
884                    const Twine &PlaceHolder);
885
886  void getAsStringInternal(std::string &Str,
887                           const PrintingPolicy &Policy) const {
888    return getAsStringInternal(split(), Str, Policy);
889  }
890  static void getAsStringInternal(SplitQualType split, std::string &out,
891                                  const PrintingPolicy &policy) {
892    return getAsStringInternal(split.Ty, split.Quals, out, policy);
893  }
894  static void getAsStringInternal(const Type *ty, Qualifiers qs,
895                                  std::string &out,
896                                  const PrintingPolicy &policy);
897
898  class StreamedQualTypeHelper {
899    const QualType &T;
900    const PrintingPolicy &Policy;
901    const Twine &PlaceHolder;
902  public:
903    StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
904                           const Twine &PlaceHolder)
905      : T(T), Policy(Policy), PlaceHolder(PlaceHolder) { }
906
907    friend raw_ostream &operator<<(raw_ostream &OS,
908                                   const StreamedQualTypeHelper &SQT) {
909      SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder);
910      return OS;
911    }
912  };
913
914  StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
915                                const Twine &PlaceHolder = Twine()) const {
916    return StreamedQualTypeHelper(*this, Policy, PlaceHolder);
917  }
918
919  void dump(const char *s) const;
920  void dump() const;
921
922  void Profile(llvm::FoldingSetNodeID &ID) const {
923    ID.AddPointer(getAsOpaquePtr());
924  }
925
926  /// getAddressSpace - Return the address space of this type.
927  inline unsigned getAddressSpace() const;
928
929  /// getObjCGCAttr - Returns gc attribute of this type.
930  inline Qualifiers::GC getObjCGCAttr() const;
931
932  /// isObjCGCWeak true when Type is objc's weak.
933  bool isObjCGCWeak() const {
934    return getObjCGCAttr() == Qualifiers::Weak;
935  }
936
937  /// isObjCGCStrong true when Type is objc's strong.
938  bool isObjCGCStrong() const {
939    return getObjCGCAttr() == Qualifiers::Strong;
940  }
941
942  /// getObjCLifetime - Returns lifetime attribute of this type.
943  Qualifiers::ObjCLifetime getObjCLifetime() const {
944    return getQualifiers().getObjCLifetime();
945  }
946
947  bool hasNonTrivialObjCLifetime() const {
948    return getQualifiers().hasNonTrivialObjCLifetime();
949  }
950
951  bool hasStrongOrWeakObjCLifetime() const {
952    return getQualifiers().hasStrongOrWeakObjCLifetime();
953  }
954
955  enum DestructionKind {
956    DK_none,
957    DK_cxx_destructor,
958    DK_objc_strong_lifetime,
959    DK_objc_weak_lifetime
960  };
961
962  /// isDestructedType - nonzero if objects of this type require
963  /// non-trivial work to clean up after.  Non-zero because it's
964  /// conceivable that qualifiers (objc_gc(weak)?) could make
965  /// something require destruction.
966  DestructionKind isDestructedType() const {
967    return isDestructedTypeImpl(*this);
968  }
969
970  /// \brief Determine whether expressions of the given type are forbidden
971  /// from being lvalues in C.
972  ///
973  /// The expression types that are forbidden to be lvalues are:
974  ///   - 'void', but not qualified void
975  ///   - function types
976  ///
977  /// The exact rule here is C99 6.3.2.1:
978  ///   An lvalue is an expression with an object type or an incomplete
979  ///   type other than void.
980  bool isCForbiddenLValueType() const;
981
982private:
983  // These methods are implemented in a separate translation unit;
984  // "static"-ize them to avoid creating temporary QualTypes in the
985  // caller.
986  static bool isConstant(QualType T, ASTContext& Ctx);
987  static QualType getDesugaredType(QualType T, const ASTContext &Context);
988  static SplitQualType getSplitDesugaredType(QualType T);
989  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
990  static QualType getSingleStepDesugaredTypeImpl(QualType type,
991                                                 const ASTContext &C);
992  static QualType IgnoreParens(QualType T);
993  static DestructionKind isDestructedTypeImpl(QualType type);
994};
995
996} // end clang.
997
998namespace llvm {
999/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1000/// to a specific Type class.
1001template<> struct simplify_type< ::clang::QualType> {
1002  typedef const ::clang::Type *SimpleType;
1003  static SimpleType getSimplifiedValue(::clang::QualType Val) {
1004    return Val.getTypePtr();
1005  }
1006};
1007
1008// Teach SmallPtrSet that QualType is "basically a pointer".
1009template<>
1010class PointerLikeTypeTraits<clang::QualType> {
1011public:
1012  static inline void *getAsVoidPointer(clang::QualType P) {
1013    return P.getAsOpaquePtr();
1014  }
1015  static inline clang::QualType getFromVoidPointer(void *P) {
1016    return clang::QualType::getFromOpaquePtr(P);
1017  }
1018  // Various qualifiers go in low bits.
1019  enum { NumLowBitsAvailable = 0 };
1020};
1021
1022} // end namespace llvm
1023
1024namespace clang {
1025
1026/// \brief Base class that is common to both the \c ExtQuals and \c Type
1027/// classes, which allows \c QualType to access the common fields between the
1028/// two.
1029///
1030class ExtQualsTypeCommonBase {
1031  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1032    : BaseType(baseType), CanonicalType(canon) {}
1033
1034  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
1035  /// a self-referential pointer (for \c Type).
1036  ///
1037  /// This pointer allows an efficient mapping from a QualType to its
1038  /// underlying type pointer.
1039  const Type *const BaseType;
1040
1041  /// \brief The canonical type of this type.  A QualType.
1042  QualType CanonicalType;
1043
1044  friend class QualType;
1045  friend class Type;
1046  friend class ExtQuals;
1047};
1048
1049/// ExtQuals - We can encode up to four bits in the low bits of a
1050/// type pointer, but there are many more type qualifiers that we want
1051/// to be able to apply to an arbitrary type.  Therefore we have this
1052/// struct, intended to be heap-allocated and used by QualType to
1053/// store qualifiers.
1054///
1055/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1056/// in three low bits on the QualType pointer; a fourth bit records whether
1057/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1058/// Objective-C GC attributes) are much more rare.
1059class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1060  // NOTE: changing the fast qualifiers should be straightforward as
1061  // long as you don't make 'const' non-fast.
1062  // 1. Qualifiers:
1063  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1064  //       Fast qualifiers must occupy the low-order bits.
1065  //    b) Update Qualifiers::FastWidth and FastMask.
1066  // 2. QualType:
1067  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
1068  //    b) Update remove{Volatile,Restrict}, defined near the end of
1069  //       this header.
1070  // 3. ASTContext:
1071  //    a) Update get{Volatile,Restrict}Type.
1072
1073  /// Quals - the immutable set of qualifiers applied by this
1074  /// node;  always contains extended qualifiers.
1075  Qualifiers Quals;
1076
1077  ExtQuals *this_() { return this; }
1078
1079public:
1080  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1081    : ExtQualsTypeCommonBase(baseType,
1082                             canon.isNull() ? QualType(this_(), 0) : canon),
1083      Quals(quals)
1084  {
1085    assert(Quals.hasNonFastQualifiers()
1086           && "ExtQuals created with no fast qualifiers");
1087    assert(!Quals.hasFastQualifiers()
1088           && "ExtQuals created with fast qualifiers");
1089  }
1090
1091  Qualifiers getQualifiers() const { return Quals; }
1092
1093  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1094  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1095
1096  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1097  Qualifiers::ObjCLifetime getObjCLifetime() const {
1098    return Quals.getObjCLifetime();
1099  }
1100
1101  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1102  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
1103
1104  const Type *getBaseType() const { return BaseType; }
1105
1106public:
1107  void Profile(llvm::FoldingSetNodeID &ID) const {
1108    Profile(ID, getBaseType(), Quals);
1109  }
1110  static void Profile(llvm::FoldingSetNodeID &ID,
1111                      const Type *BaseType,
1112                      Qualifiers Quals) {
1113    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1114    ID.AddPointer(BaseType);
1115    Quals.Profile(ID);
1116  }
1117};
1118
1119/// \brief The kind of C++0x ref-qualifier associated with a function type,
1120/// which determines whether a member function's "this" object can be an
1121/// lvalue, rvalue, or neither.
1122enum RefQualifierKind {
1123  /// \brief No ref-qualifier was provided.
1124  RQ_None = 0,
1125  /// \brief An lvalue ref-qualifier was provided (\c &).
1126  RQ_LValue,
1127  /// \brief An rvalue ref-qualifier was provided (\c &&).
1128  RQ_RValue
1129};
1130
1131/// Type - This is the base class of the type hierarchy.  A central concept
1132/// with types is that each type always has a canonical type.  A canonical type
1133/// is the type with any typedef names stripped out of it or the types it
1134/// references.  For example, consider:
1135///
1136///  typedef int  foo;
1137///  typedef foo* bar;
1138///    'int *'    'foo *'    'bar'
1139///
1140/// There will be a Type object created for 'int'.  Since int is canonical, its
1141/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
1142/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1143/// there is a PointerType that represents 'int*', which, like 'int', is
1144/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1145/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1146/// is also 'int*'.
1147///
1148/// Non-canonical types are useful for emitting diagnostics, without losing
1149/// information about typedefs being used.  Canonical types are useful for type
1150/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1151/// about whether something has a particular form (e.g. is a function type),
1152/// because they implicitly, recursively, strip all typedefs out of a type.
1153///
1154/// Types, once created, are immutable.
1155///
1156class Type : public ExtQualsTypeCommonBase {
1157public:
1158  enum TypeClass {
1159#define TYPE(Class, Base) Class,
1160#define LAST_TYPE(Class) TypeLast = Class,
1161#define ABSTRACT_TYPE(Class, Base)
1162#include "clang/AST/TypeNodes.def"
1163    TagFirst = Record, TagLast = Enum
1164  };
1165
1166private:
1167  Type(const Type &) LLVM_DELETED_FUNCTION;
1168  void operator=(const Type &) LLVM_DELETED_FUNCTION;
1169
1170  /// Bitfields required by the Type class.
1171  class TypeBitfields {
1172    friend class Type;
1173    template <class T> friend class TypePropertyCache;
1174
1175    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1176    unsigned TC : 8;
1177
1178    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
1179    unsigned Dependent : 1;
1180
1181    /// \brief Whether this type somehow involves a template parameter, even
1182    /// if the resolution of the type does not depend on a template parameter.
1183    unsigned InstantiationDependent : 1;
1184
1185    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1186    unsigned VariablyModified : 1;
1187
1188    /// \brief Whether this type contains an unexpanded parameter pack
1189    /// (for C++0x variadic templates).
1190    unsigned ContainsUnexpandedParameterPack : 1;
1191
1192    /// \brief True if the cache (i.e. the bitfields here starting with
1193    /// 'Cache') is valid.
1194    mutable unsigned CacheValid : 1;
1195
1196    /// \brief Linkage of this type.
1197    mutable unsigned CachedLinkage : 2;
1198
1199    /// \brief Whether this type involves and local or unnamed types.
1200    mutable unsigned CachedLocalOrUnnamed : 1;
1201
1202    /// \brief FromAST - Whether this type comes from an AST file.
1203    mutable unsigned FromAST : 1;
1204
1205    bool isCacheValid() const {
1206      return CacheValid;
1207    }
1208    Linkage getLinkage() const {
1209      assert(isCacheValid() && "getting linkage from invalid cache");
1210      return static_cast<Linkage>(CachedLinkage);
1211    }
1212    bool hasLocalOrUnnamedType() const {
1213      assert(isCacheValid() && "getting linkage from invalid cache");
1214      return CachedLocalOrUnnamed;
1215    }
1216  };
1217  enum { NumTypeBits = 19 };
1218
1219protected:
1220  // These classes allow subclasses to somewhat cleanly pack bitfields
1221  // into Type.
1222
1223  class ArrayTypeBitfields {
1224    friend class ArrayType;
1225
1226    unsigned : NumTypeBits;
1227
1228    /// IndexTypeQuals - CVR qualifiers from declarations like
1229    /// 'int X[static restrict 4]'. For function parameters only.
1230    unsigned IndexTypeQuals : 3;
1231
1232    /// SizeModifier - storage class qualifiers from declarations like
1233    /// 'int X[static restrict 4]'. For function parameters only.
1234    /// Actually an ArrayType::ArraySizeModifier.
1235    unsigned SizeModifier : 3;
1236  };
1237
1238  class BuiltinTypeBitfields {
1239    friend class BuiltinType;
1240
1241    unsigned : NumTypeBits;
1242
1243    /// The kind (BuiltinType::Kind) of builtin type this is.
1244    unsigned Kind : 8;
1245  };
1246
1247  class FunctionTypeBitfields {
1248    friend class FunctionType;
1249
1250    unsigned : NumTypeBits;
1251
1252    /// Extra information which affects how the function is called, like
1253    /// regparm and the calling convention.
1254    unsigned ExtInfo : 9;
1255
1256    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1257    /// other bitfields.
1258    /// The qualifiers are part of FunctionProtoType because...
1259    ///
1260    /// C++ 8.3.5p4: The return type, the parameter type list and the
1261    /// cv-qualifier-seq, [...], are part of the function type.
1262    unsigned TypeQuals : 3;
1263  };
1264
1265  class ObjCObjectTypeBitfields {
1266    friend class ObjCObjectType;
1267
1268    unsigned : NumTypeBits;
1269
1270    /// NumProtocols - The number of protocols stored directly on this
1271    /// object type.
1272    unsigned NumProtocols : 32 - NumTypeBits;
1273  };
1274
1275  class ReferenceTypeBitfields {
1276    friend class ReferenceType;
1277
1278    unsigned : NumTypeBits;
1279
1280    /// True if the type was originally spelled with an lvalue sigil.
1281    /// This is never true of rvalue references but can also be false
1282    /// on lvalue references because of C++0x [dcl.typedef]p9,
1283    /// as follows:
1284    ///
1285    ///   typedef int &ref;    // lvalue, spelled lvalue
1286    ///   typedef int &&rvref; // rvalue
1287    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1288    ///   ref &&a;             // lvalue, inner ref
1289    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1290    ///   rvref &&a;           // rvalue, inner ref
1291    unsigned SpelledAsLValue : 1;
1292
1293    /// True if the inner type is a reference type.  This only happens
1294    /// in non-canonical forms.
1295    unsigned InnerRef : 1;
1296  };
1297
1298  class TypeWithKeywordBitfields {
1299    friend class TypeWithKeyword;
1300
1301    unsigned : NumTypeBits;
1302
1303    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1304    unsigned Keyword : 8;
1305  };
1306
1307  class VectorTypeBitfields {
1308    friend class VectorType;
1309
1310    unsigned : NumTypeBits;
1311
1312    /// VecKind - The kind of vector, either a generic vector type or some
1313    /// target-specific vector type such as for AltiVec or Neon.
1314    unsigned VecKind : 3;
1315
1316    /// NumElements - The number of elements in the vector.
1317    unsigned NumElements : 29 - NumTypeBits;
1318  };
1319
1320  class AttributedTypeBitfields {
1321    friend class AttributedType;
1322
1323    unsigned : NumTypeBits;
1324
1325    /// AttrKind - an AttributedType::Kind
1326    unsigned AttrKind : 32 - NumTypeBits;
1327  };
1328
1329  class AutoTypeBitfields {
1330    friend class AutoType;
1331
1332    unsigned : NumTypeBits;
1333
1334    /// Was this placeholder type spelled as 'decltype(auto)'?
1335    unsigned IsDecltypeAuto : 1;
1336  };
1337
1338  union {
1339    TypeBitfields TypeBits;
1340    ArrayTypeBitfields ArrayTypeBits;
1341    AttributedTypeBitfields AttributedTypeBits;
1342    AutoTypeBitfields AutoTypeBits;
1343    BuiltinTypeBitfields BuiltinTypeBits;
1344    FunctionTypeBitfields FunctionTypeBits;
1345    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1346    ReferenceTypeBitfields ReferenceTypeBits;
1347    TypeWithKeywordBitfields TypeWithKeywordBits;
1348    VectorTypeBitfields VectorTypeBits;
1349  };
1350
1351private:
1352  /// \brief Set whether this type comes from an AST file.
1353  void setFromAST(bool V = true) const {
1354    TypeBits.FromAST = V;
1355  }
1356
1357  template <class T> friend class TypePropertyCache;
1358
1359protected:
1360  // silence VC++ warning C4355: 'this' : used in base member initializer list
1361  Type *this_() { return this; }
1362  Type(TypeClass tc, QualType canon, bool Dependent,
1363       bool InstantiationDependent, bool VariablyModified,
1364       bool ContainsUnexpandedParameterPack)
1365    : ExtQualsTypeCommonBase(this,
1366                             canon.isNull() ? QualType(this_(), 0) : canon) {
1367    TypeBits.TC = tc;
1368    TypeBits.Dependent = Dependent;
1369    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1370    TypeBits.VariablyModified = VariablyModified;
1371    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1372    TypeBits.CacheValid = false;
1373    TypeBits.CachedLocalOrUnnamed = false;
1374    TypeBits.CachedLinkage = NoLinkage;
1375    TypeBits.FromAST = false;
1376  }
1377  friend class ASTContext;
1378
1379  void setDependent(bool D = true) {
1380    TypeBits.Dependent = D;
1381    if (D)
1382      TypeBits.InstantiationDependent = true;
1383  }
1384  void setInstantiationDependent(bool D = true) {
1385    TypeBits.InstantiationDependent = D; }
1386  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1387  }
1388  void setContainsUnexpandedParameterPack(bool PP = true) {
1389    TypeBits.ContainsUnexpandedParameterPack = PP;
1390  }
1391
1392public:
1393  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1394
1395  /// \brief Whether this type comes from an AST file.
1396  bool isFromAST() const { return TypeBits.FromAST; }
1397
1398  /// \brief Whether this type is or contains an unexpanded parameter
1399  /// pack, used to support C++0x variadic templates.
1400  ///
1401  /// A type that contains a parameter pack shall be expanded by the
1402  /// ellipsis operator at some point. For example, the typedef in the
1403  /// following example contains an unexpanded parameter pack 'T':
1404  ///
1405  /// \code
1406  /// template<typename ...T>
1407  /// struct X {
1408  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1409  /// };
1410  /// \endcode
1411  ///
1412  /// Note that this routine does not specify which
1413  bool containsUnexpandedParameterPack() const {
1414    return TypeBits.ContainsUnexpandedParameterPack;
1415  }
1416
1417  /// Determines if this type would be canonical if it had no further
1418  /// qualification.
1419  bool isCanonicalUnqualified() const {
1420    return CanonicalType == QualType(this, 0);
1421  }
1422
1423  /// Pull a single level of sugar off of this locally-unqualified type.
1424  /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1425  /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1426  QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1427
1428  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1429  /// object types, function types, and incomplete types.
1430
1431  /// isIncompleteType - Return true if this is an incomplete type.
1432  /// A type that can describe objects, but which lacks information needed to
1433  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1434  /// routine will need to determine if the size is actually required.
1435  ///
1436  /// \brief Def If non-NULL, and the type refers to some kind of declaration
1437  /// that can be completed (such as a C struct, C++ class, or Objective-C
1438  /// class), will be set to the declaration.
1439  bool isIncompleteType(NamedDecl **Def = 0) const;
1440
1441  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1442  /// type, in other words, not a function type.
1443  bool isIncompleteOrObjectType() const {
1444    return !isFunctionType();
1445  }
1446
1447  /// \brief Determine whether this type is an object type.
1448  bool isObjectType() const {
1449    // C++ [basic.types]p8:
1450    //   An object type is a (possibly cv-qualified) type that is not a
1451    //   function type, not a reference type, and not a void type.
1452    return !isReferenceType() && !isFunctionType() && !isVoidType();
1453  }
1454
1455  /// isLiteralType - Return true if this is a literal type
1456  /// (C++11 [basic.types]p10)
1457  bool isLiteralType(ASTContext &Ctx) const;
1458
1459  /// \brief Test if this type is a standard-layout type.
1460  /// (C++0x [basic.type]p9)
1461  bool isStandardLayoutType() const;
1462
1463  /// Helper methods to distinguish type categories. All type predicates
1464  /// operate on the canonical type, ignoring typedefs and qualifiers.
1465
1466  /// isBuiltinType - returns true if the type is a builtin type.
1467  bool isBuiltinType() const;
1468
1469  /// isSpecificBuiltinType - Test for a particular builtin type.
1470  bool isSpecificBuiltinType(unsigned K) const;
1471
1472  /// isPlaceholderType - Test for a type which does not represent an
1473  /// actual type-system type but is instead used as a placeholder for
1474  /// various convenient purposes within Clang.  All such types are
1475  /// BuiltinTypes.
1476  bool isPlaceholderType() const;
1477  const BuiltinType *getAsPlaceholderType() const;
1478
1479  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1480  bool isSpecificPlaceholderType(unsigned K) const;
1481
1482  /// isNonOverloadPlaceholderType - Test for a placeholder type
1483  /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
1484  bool isNonOverloadPlaceholderType() const;
1485
1486  /// isIntegerType() does *not* include complex integers (a GCC extension).
1487  /// isComplexIntegerType() can be used to test for complex integers.
1488  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1489  bool isEnumeralType() const;
1490  bool isBooleanType() const;
1491  bool isCharType() const;
1492  bool isWideCharType() const;
1493  bool isChar16Type() const;
1494  bool isChar32Type() const;
1495  bool isAnyCharacterType() const;
1496  bool isIntegralType(ASTContext &Ctx) const;
1497
1498  /// \brief Determine whether this type is an integral or enumeration type.
1499  bool isIntegralOrEnumerationType() const;
1500  /// \brief Determine whether this type is an integral or unscoped enumeration
1501  /// type.
1502  bool isIntegralOrUnscopedEnumerationType() const;
1503
1504  /// Floating point categories.
1505  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1506  /// isComplexType() does *not* include complex integers (a GCC extension).
1507  /// isComplexIntegerType() can be used to test for complex integers.
1508  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1509  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1510  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1511  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1512  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1513  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1514  bool isVoidType() const;         // C99 6.2.5p19
1515  bool isDerivedType() const;      // C99 6.2.5p20
1516  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1517  bool isAggregateType() const;
1518  bool isFundamentalType() const;
1519  bool isCompoundType() const;
1520
1521  // Type Predicates: Check to see if this type is structurally the specified
1522  // type, ignoring typedefs and qualifiers.
1523  bool isFunctionType() const;
1524  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1525  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1526  bool isPointerType() const;
1527  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1528  bool isBlockPointerType() const;
1529  bool isVoidPointerType() const;
1530  bool isReferenceType() const;
1531  bool isLValueReferenceType() const;
1532  bool isRValueReferenceType() const;
1533  bool isFunctionPointerType() const;
1534  bool isMemberPointerType() const;
1535  bool isMemberFunctionPointerType() const;
1536  bool isMemberDataPointerType() const;
1537  bool isArrayType() const;
1538  bool isConstantArrayType() const;
1539  bool isIncompleteArrayType() const;
1540  bool isVariableArrayType() const;
1541  bool isDependentSizedArrayType() const;
1542  bool isRecordType() const;
1543  bool isClassType() const;
1544  bool isStructureType() const;
1545  bool isInterfaceType() const;
1546  bool isStructureOrClassType() const;
1547  bool isUnionType() const;
1548  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1549  bool isVectorType() const;                    // GCC vector type.
1550  bool isExtVectorType() const;                 // Extended vector type.
1551  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1552  bool isObjCRetainableType() const;            // ObjC object or block pointer
1553  bool isObjCLifetimeType() const;              // (array of)* retainable type
1554  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1555  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1556  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1557  // for the common case.
1558  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1559  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1560  bool isObjCQualifiedIdType() const;           // id<foo>
1561  bool isObjCQualifiedClassType() const;        // Class<foo>
1562  bool isObjCObjectOrInterfaceType() const;
1563  bool isObjCIdType() const;                    // id
1564  bool isObjCClassType() const;                 // Class
1565  bool isObjCSelType() const;                 // Class
1566  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1567  bool isObjCARCBridgableType() const;
1568  bool isCARCBridgableType() const;
1569  bool isTemplateTypeParmType() const;          // C++ template type parameter
1570  bool isNullPtrType() const;                   // C++0x nullptr_t
1571  bool isAtomicType() const;                    // C11 _Atomic()
1572
1573  bool isImage1dT() const;                      // OpenCL image1d_t
1574  bool isImage1dArrayT() const;                 // OpenCL image1d_array_t
1575  bool isImage1dBufferT() const;                // OpenCL image1d_buffer_t
1576  bool isImage2dT() const;                      // OpenCL image2d_t
1577  bool isImage2dArrayT() const;                 // OpenCL image2d_array_t
1578  bool isImage3dT() const;                      // OpenCL image3d_t
1579
1580  bool isImageType() const;                     // Any OpenCL image type
1581
1582  bool isSamplerT() const;                      // OpenCL sampler_t
1583  bool isEventT() const;                        // OpenCL event_t
1584
1585  bool isOpenCLSpecificType() const;            // Any OpenCL specific type
1586
1587  /// Determines if this type, which must satisfy
1588  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1589  /// than implicitly __strong.
1590  bool isObjCARCImplicitlyUnretainedType() const;
1591
1592  /// Return the implicit lifetime for this type, which must not be dependent.
1593  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1594
1595  enum ScalarTypeKind {
1596    STK_CPointer,
1597    STK_BlockPointer,
1598    STK_ObjCObjectPointer,
1599    STK_MemberPointer,
1600    STK_Bool,
1601    STK_Integral,
1602    STK_Floating,
1603    STK_IntegralComplex,
1604    STK_FloatingComplex
1605  };
1606  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1607  ScalarTypeKind getScalarTypeKind() const;
1608
1609  /// isDependentType - Whether this type is a dependent type, meaning
1610  /// that its definition somehow depends on a template parameter
1611  /// (C++ [temp.dep.type]).
1612  bool isDependentType() const { return TypeBits.Dependent; }
1613
1614  /// \brief Determine whether this type is an instantiation-dependent type,
1615  /// meaning that the type involves a template parameter (even if the
1616  /// definition does not actually depend on the type substituted for that
1617  /// template parameter).
1618  bool isInstantiationDependentType() const {
1619    return TypeBits.InstantiationDependent;
1620  }
1621
1622  /// \brief Determine whether this type is an undeduced type, meaning that
1623  /// it somehow involves a C++11 'auto' type which has not yet been deduced.
1624  bool isUndeducedType() const;
1625
1626  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1627  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1628
1629  /// \brief Whether this type involves a variable-length array type
1630  /// with a definite size.
1631  bool hasSizedVLAType() const;
1632
1633  /// \brief Whether this type is or contains a local or unnamed type.
1634  bool hasUnnamedOrLocalType() const;
1635
1636  bool isOverloadableType() const;
1637
1638  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1639  bool isElaboratedTypeSpecifier() const;
1640
1641  bool canDecayToPointerType() const;
1642
1643  /// hasPointerRepresentation - Whether this type is represented
1644  /// natively as a pointer; this includes pointers, references, block
1645  /// pointers, and Objective-C interface, qualified id, and qualified
1646  /// interface types, as well as nullptr_t.
1647  bool hasPointerRepresentation() const;
1648
1649  /// hasObjCPointerRepresentation - Whether this type can represent
1650  /// an objective pointer type for the purpose of GC'ability
1651  bool hasObjCPointerRepresentation() const;
1652
1653  /// \brief Determine whether this type has an integer representation
1654  /// of some sort, e.g., it is an integer type or a vector.
1655  bool hasIntegerRepresentation() const;
1656
1657  /// \brief Determine whether this type has an signed integer representation
1658  /// of some sort, e.g., it is an signed integer type or a vector.
1659  bool hasSignedIntegerRepresentation() const;
1660
1661  /// \brief Determine whether this type has an unsigned integer representation
1662  /// of some sort, e.g., it is an unsigned integer type or a vector.
1663  bool hasUnsignedIntegerRepresentation() const;
1664
1665  /// \brief Determine whether this type has a floating-point representation
1666  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1667  bool hasFloatingRepresentation() const;
1668
1669  // Type Checking Functions: Check to see if this type is structurally the
1670  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1671  // the best type we can.
1672  const RecordType *getAsStructureType() const;
1673  /// NOTE: getAs*ArrayType are methods on ASTContext.
1674  const RecordType *getAsUnionType() const;
1675  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1676  // The following is a convenience method that returns an ObjCObjectPointerType
1677  // for object declared using an interface.
1678  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1679  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1680  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1681  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1682
1683  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1684  /// because the type is a RecordType or because it is the injected-class-name
1685  /// type of a class template or class template partial specialization.
1686  CXXRecordDecl *getAsCXXRecordDecl() const;
1687
1688  /// If this is a pointer or reference to a RecordType, return the
1689  /// CXXRecordDecl that that type refers to.
1690  ///
1691  /// If this is not a pointer or reference, or the type being pointed to does
1692  /// not refer to a CXXRecordDecl, returns NULL.
1693  const CXXRecordDecl *getPointeeCXXRecordDecl() const;
1694
1695  /// \brief Get the AutoType whose type will be deduced for a variable with
1696  /// an initializer of this type. This looks through declarators like pointer
1697  /// types, but not through decltype or typedefs.
1698  AutoType *getContainedAutoType() const;
1699
1700  /// Member-template getAs<specific type>'.  Look through sugar for
1701  /// an instance of \<specific type>.   This scheme will eventually
1702  /// replace the specific getAsXXXX methods above.
1703  ///
1704  /// There are some specializations of this member template listed
1705  /// immediately following this class.
1706  template <typename T> const T *getAs() const;
1707
1708  /// A variant of getAs<> for array types which silently discards
1709  /// qualifiers from the outermost type.
1710  const ArrayType *getAsArrayTypeUnsafe() const;
1711
1712  /// Member-template castAs<specific type>.  Look through sugar for
1713  /// the underlying instance of \<specific type>.
1714  ///
1715  /// This method has the same relationship to getAs<T> as cast<T> has
1716  /// to dyn_cast<T>; which is to say, the underlying type *must*
1717  /// have the intended type, and this method will never return null.
1718  template <typename T> const T *castAs() const;
1719
1720  /// A variant of castAs<> for array type which silently discards
1721  /// qualifiers from the outermost type.
1722  const ArrayType *castAsArrayTypeUnsafe() const;
1723
1724  /// getBaseElementTypeUnsafe - Get the base element type of this
1725  /// type, potentially discarding type qualifiers.  This method
1726  /// should never be used when type qualifiers are meaningful.
1727  const Type *getBaseElementTypeUnsafe() const;
1728
1729  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1730  /// element type of the array, potentially with type qualifiers missing.
1731  /// This method should never be used when type qualifiers are meaningful.
1732  const Type *getArrayElementTypeNoTypeQual() const;
1733
1734  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1735  /// pointer, this returns the respective pointee.
1736  QualType getPointeeType() const;
1737
1738  /// getUnqualifiedDesugaredType() - Return the specified type with
1739  /// any "sugar" removed from the type, removing any typedefs,
1740  /// typeofs, etc., as well as any qualifiers.
1741  const Type *getUnqualifiedDesugaredType() const;
1742
1743  /// More type predicates useful for type checking/promotion
1744  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1745
1746  /// isSignedIntegerType - Return true if this is an integer type that is
1747  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1748  /// or an enum decl which has a signed representation.
1749  bool isSignedIntegerType() const;
1750
1751  /// isUnsignedIntegerType - Return true if this is an integer type that is
1752  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1753  /// or an enum decl which has an unsigned representation.
1754  bool isUnsignedIntegerType() const;
1755
1756  /// Determines whether this is an integer type that is signed or an
1757  /// enumeration types whose underlying type is a signed integer type.
1758  bool isSignedIntegerOrEnumerationType() const;
1759
1760  /// Determines whether this is an integer type that is unsigned or an
1761  /// enumeration types whose underlying type is a unsigned integer type.
1762  bool isUnsignedIntegerOrEnumerationType() const;
1763
1764  /// isConstantSizeType - Return true if this is not a variable sized type,
1765  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1766  /// incomplete types.
1767  bool isConstantSizeType() const;
1768
1769  /// isSpecifierType - Returns true if this type can be represented by some
1770  /// set of type specifiers.
1771  bool isSpecifierType() const;
1772
1773  /// \brief Determine the linkage of this type.
1774  Linkage getLinkage() const;
1775
1776  /// \brief Determine the visibility of this type.
1777  Visibility getVisibility() const {
1778    return getLinkageAndVisibility().getVisibility();
1779  }
1780
1781  /// \brief Return true if the visibility was explicitly set is the code.
1782  bool isVisibilityExplicit() const {
1783    return getLinkageAndVisibility().isVisibilityExplicit();
1784  }
1785
1786  /// \brief Determine the linkage and visibility of this type.
1787  LinkageInfo getLinkageAndVisibility() const;
1788
1789  /// \brief True if the computed linkage is valid. Used for consistency
1790  /// checking. Should always return true.
1791  bool isLinkageValid() const;
1792
1793  const char *getTypeClassName() const;
1794
1795  QualType getCanonicalTypeInternal() const {
1796    return CanonicalType;
1797  }
1798  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1799  LLVM_ATTRIBUTE_USED void dump() const;
1800
1801  friend class ASTReader;
1802  friend class ASTWriter;
1803};
1804
1805/// \brief This will check for a TypedefType by removing any existing sugar
1806/// until it reaches a TypedefType or a non-sugared type.
1807template <> const TypedefType *Type::getAs() const;
1808
1809/// \brief This will check for a TemplateSpecializationType by removing any
1810/// existing sugar until it reaches a TemplateSpecializationType or a
1811/// non-sugared type.
1812template <> const TemplateSpecializationType *Type::getAs() const;
1813
1814// We can do canonical leaf types faster, because we don't have to
1815// worry about preserving child type decoration.
1816#define TYPE(Class, Base)
1817#define LEAF_TYPE(Class) \
1818template <> inline const Class##Type *Type::getAs() const { \
1819  return dyn_cast<Class##Type>(CanonicalType); \
1820} \
1821template <> inline const Class##Type *Type::castAs() const { \
1822  return cast<Class##Type>(CanonicalType); \
1823}
1824#include "clang/AST/TypeNodes.def"
1825
1826
1827/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1828/// types are always canonical and have a literal name field.
1829class BuiltinType : public Type {
1830public:
1831  enum Kind {
1832#define BUILTIN_TYPE(Id, SingletonId) Id,
1833#define LAST_BUILTIN_TYPE(Id) LastKind = Id
1834#include "clang/AST/BuiltinTypes.def"
1835  };
1836
1837public:
1838  BuiltinType(Kind K)
1839    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1840           /*InstantiationDependent=*/(K == Dependent),
1841           /*VariablyModified=*/false,
1842           /*Unexpanded paramter pack=*/false) {
1843    BuiltinTypeBits.Kind = K;
1844  }
1845
1846  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1847  StringRef getName(const PrintingPolicy &Policy) const;
1848  const char *getNameAsCString(const PrintingPolicy &Policy) const {
1849    // The StringRef is null-terminated.
1850    StringRef str = getName(Policy);
1851    assert(!str.empty() && str.data()[str.size()] == '\0');
1852    return str.data();
1853  }
1854
1855  bool isSugared() const { return false; }
1856  QualType desugar() const { return QualType(this, 0); }
1857
1858  bool isInteger() const {
1859    return getKind() >= Bool && getKind() <= Int128;
1860  }
1861
1862  bool isSignedInteger() const {
1863    return getKind() >= Char_S && getKind() <= Int128;
1864  }
1865
1866  bool isUnsignedInteger() const {
1867    return getKind() >= Bool && getKind() <= UInt128;
1868  }
1869
1870  bool isFloatingPoint() const {
1871    return getKind() >= Half && getKind() <= LongDouble;
1872  }
1873
1874  /// Determines whether the given kind corresponds to a placeholder type.
1875  static bool isPlaceholderTypeKind(Kind K) {
1876    return K >= Overload;
1877  }
1878
1879  /// Determines whether this type is a placeholder type, i.e. a type
1880  /// which cannot appear in arbitrary positions in a fully-formed
1881  /// expression.
1882  bool isPlaceholderType() const {
1883    return isPlaceholderTypeKind(getKind());
1884  }
1885
1886  /// Determines whether this type is a placeholder type other than
1887  /// Overload.  Most placeholder types require only syntactic
1888  /// information about their context in order to be resolved (e.g.
1889  /// whether it is a call expression), which means they can (and
1890  /// should) be resolved in an earlier "phase" of analysis.
1891  /// Overload expressions sometimes pick up further information
1892  /// from their context, like whether the context expects a
1893  /// specific function-pointer type, and so frequently need
1894  /// special treatment.
1895  bool isNonOverloadPlaceholderType() const {
1896    return getKind() > Overload;
1897  }
1898
1899  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1900};
1901
1902/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1903/// types (_Complex float etc) as well as the GCC integer complex extensions.
1904///
1905class ComplexType : public Type, public llvm::FoldingSetNode {
1906  QualType ElementType;
1907  ComplexType(QualType Element, QualType CanonicalPtr) :
1908    Type(Complex, CanonicalPtr, Element->isDependentType(),
1909         Element->isInstantiationDependentType(),
1910         Element->isVariablyModifiedType(),
1911         Element->containsUnexpandedParameterPack()),
1912    ElementType(Element) {
1913  }
1914  friend class ASTContext;  // ASTContext creates these.
1915
1916public:
1917  QualType getElementType() const { return ElementType; }
1918
1919  bool isSugared() const { return false; }
1920  QualType desugar() const { return QualType(this, 0); }
1921
1922  void Profile(llvm::FoldingSetNodeID &ID) {
1923    Profile(ID, getElementType());
1924  }
1925  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1926    ID.AddPointer(Element.getAsOpaquePtr());
1927  }
1928
1929  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1930};
1931
1932/// ParenType - Sugar for parentheses used when specifying types.
1933///
1934class ParenType : public Type, public llvm::FoldingSetNode {
1935  QualType Inner;
1936
1937  ParenType(QualType InnerType, QualType CanonType) :
1938    Type(Paren, CanonType, InnerType->isDependentType(),
1939         InnerType->isInstantiationDependentType(),
1940         InnerType->isVariablyModifiedType(),
1941         InnerType->containsUnexpandedParameterPack()),
1942    Inner(InnerType) {
1943  }
1944  friend class ASTContext;  // ASTContext creates these.
1945
1946public:
1947
1948  QualType getInnerType() const { return Inner; }
1949
1950  bool isSugared() const { return true; }
1951  QualType desugar() const { return getInnerType(); }
1952
1953  void Profile(llvm::FoldingSetNodeID &ID) {
1954    Profile(ID, getInnerType());
1955  }
1956  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1957    Inner.Profile(ID);
1958  }
1959
1960  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1961};
1962
1963/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1964///
1965class PointerType : public Type, public llvm::FoldingSetNode {
1966  QualType PointeeType;
1967
1968  PointerType(QualType Pointee, QualType CanonicalPtr) :
1969    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1970         Pointee->isInstantiationDependentType(),
1971         Pointee->isVariablyModifiedType(),
1972         Pointee->containsUnexpandedParameterPack()),
1973    PointeeType(Pointee) {
1974  }
1975  friend class ASTContext;  // ASTContext creates these.
1976
1977public:
1978
1979  QualType getPointeeType() const { return PointeeType; }
1980
1981  bool isSugared() const { return false; }
1982  QualType desugar() const { return QualType(this, 0); }
1983
1984  void Profile(llvm::FoldingSetNodeID &ID) {
1985    Profile(ID, getPointeeType());
1986  }
1987  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1988    ID.AddPointer(Pointee.getAsOpaquePtr());
1989  }
1990
1991  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1992};
1993
1994/// BlockPointerType - pointer to a block type.
1995/// This type is to represent types syntactically represented as
1996/// "void (^)(int)", etc. Pointee is required to always be a function type.
1997///
1998class BlockPointerType : public Type, public llvm::FoldingSetNode {
1999  QualType PointeeType;  // Block is some kind of pointer type
2000  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
2001    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2002         Pointee->isInstantiationDependentType(),
2003         Pointee->isVariablyModifiedType(),
2004         Pointee->containsUnexpandedParameterPack()),
2005    PointeeType(Pointee) {
2006  }
2007  friend class ASTContext;  // ASTContext creates these.
2008
2009public:
2010
2011  // Get the pointee type. Pointee is required to always be a function type.
2012  QualType getPointeeType() const { return PointeeType; }
2013
2014  bool isSugared() const { return false; }
2015  QualType desugar() const { return QualType(this, 0); }
2016
2017  void Profile(llvm::FoldingSetNodeID &ID) {
2018      Profile(ID, getPointeeType());
2019  }
2020  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2021      ID.AddPointer(Pointee.getAsOpaquePtr());
2022  }
2023
2024  static bool classof(const Type *T) {
2025    return T->getTypeClass() == BlockPointer;
2026  }
2027};
2028
2029/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
2030///
2031class ReferenceType : public Type, public llvm::FoldingSetNode {
2032  QualType PointeeType;
2033
2034protected:
2035  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2036                bool SpelledAsLValue) :
2037    Type(tc, CanonicalRef, Referencee->isDependentType(),
2038         Referencee->isInstantiationDependentType(),
2039         Referencee->isVariablyModifiedType(),
2040         Referencee->containsUnexpandedParameterPack()),
2041    PointeeType(Referencee)
2042  {
2043    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2044    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2045  }
2046
2047public:
2048  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2049  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2050
2051  QualType getPointeeTypeAsWritten() const { return PointeeType; }
2052  QualType getPointeeType() const {
2053    // FIXME: this might strip inner qualifiers; okay?
2054    const ReferenceType *T = this;
2055    while (T->isInnerRef())
2056      T = T->PointeeType->castAs<ReferenceType>();
2057    return T->PointeeType;
2058  }
2059
2060  void Profile(llvm::FoldingSetNodeID &ID) {
2061    Profile(ID, PointeeType, isSpelledAsLValue());
2062  }
2063  static void Profile(llvm::FoldingSetNodeID &ID,
2064                      QualType Referencee,
2065                      bool SpelledAsLValue) {
2066    ID.AddPointer(Referencee.getAsOpaquePtr());
2067    ID.AddBoolean(SpelledAsLValue);
2068  }
2069
2070  static bool classof(const Type *T) {
2071    return T->getTypeClass() == LValueReference ||
2072           T->getTypeClass() == RValueReference;
2073  }
2074};
2075
2076/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
2077///
2078class LValueReferenceType : public ReferenceType {
2079  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2080                      bool SpelledAsLValue) :
2081    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
2082  {}
2083  friend class ASTContext; // ASTContext creates these
2084public:
2085  bool isSugared() const { return false; }
2086  QualType desugar() const { return QualType(this, 0); }
2087
2088  static bool classof(const Type *T) {
2089    return T->getTypeClass() == LValueReference;
2090  }
2091};
2092
2093/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
2094///
2095class RValueReferenceType : public ReferenceType {
2096  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
2097    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
2098  }
2099  friend class ASTContext; // ASTContext creates these
2100public:
2101  bool isSugared() const { return false; }
2102  QualType desugar() const { return QualType(this, 0); }
2103
2104  static bool classof(const Type *T) {
2105    return T->getTypeClass() == RValueReference;
2106  }
2107};
2108
2109/// MemberPointerType - C++ 8.3.3 - Pointers to members
2110///
2111class MemberPointerType : public Type, public llvm::FoldingSetNode {
2112  QualType PointeeType;
2113  /// The class of which the pointee is a member. Must ultimately be a
2114  /// RecordType, but could be a typedef or a template parameter too.
2115  const Type *Class;
2116
2117  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
2118    Type(MemberPointer, CanonicalPtr,
2119         Cls->isDependentType() || Pointee->isDependentType(),
2120         (Cls->isInstantiationDependentType() ||
2121          Pointee->isInstantiationDependentType()),
2122         Pointee->isVariablyModifiedType(),
2123         (Cls->containsUnexpandedParameterPack() ||
2124          Pointee->containsUnexpandedParameterPack())),
2125    PointeeType(Pointee), Class(Cls) {
2126  }
2127  friend class ASTContext; // ASTContext creates these.
2128
2129public:
2130  QualType getPointeeType() const { return PointeeType; }
2131
2132  /// Returns true if the member type (i.e. the pointee type) is a
2133  /// function type rather than a data-member type.
2134  bool isMemberFunctionPointer() const {
2135    return PointeeType->isFunctionProtoType();
2136  }
2137
2138  /// Returns true if the member type (i.e. the pointee type) is a
2139  /// data type rather than a function type.
2140  bool isMemberDataPointer() const {
2141    return !PointeeType->isFunctionProtoType();
2142  }
2143
2144  const Type *getClass() const { return Class; }
2145
2146  bool isSugared() const { return false; }
2147  QualType desugar() const { return QualType(this, 0); }
2148
2149  void Profile(llvm::FoldingSetNodeID &ID) {
2150    Profile(ID, getPointeeType(), getClass());
2151  }
2152  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2153                      const Type *Class) {
2154    ID.AddPointer(Pointee.getAsOpaquePtr());
2155    ID.AddPointer(Class);
2156  }
2157
2158  static bool classof(const Type *T) {
2159    return T->getTypeClass() == MemberPointer;
2160  }
2161};
2162
2163/// ArrayType - C99 6.7.5.2 - Array Declarators.
2164///
2165class ArrayType : public Type, public llvm::FoldingSetNode {
2166public:
2167  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
2168  /// an array with a static size (e.g. int X[static 4]), or an array
2169  /// with a star size (e.g. int X[*]).
2170  /// 'static' is only allowed on function parameters.
2171  enum ArraySizeModifier {
2172    Normal, Static, Star
2173  };
2174private:
2175  /// ElementType - The element type of the array.
2176  QualType ElementType;
2177
2178protected:
2179  // C++ [temp.dep.type]p1:
2180  //   A type is dependent if it is...
2181  //     - an array type constructed from any dependent type or whose
2182  //       size is specified by a constant expression that is
2183  //       value-dependent,
2184  ArrayType(TypeClass tc, QualType et, QualType can,
2185            ArraySizeModifier sm, unsigned tq,
2186            bool ContainsUnexpandedParameterPack)
2187    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2188           et->isInstantiationDependentType() || tc == DependentSizedArray,
2189           (tc == VariableArray || et->isVariablyModifiedType()),
2190           ContainsUnexpandedParameterPack),
2191      ElementType(et) {
2192    ArrayTypeBits.IndexTypeQuals = tq;
2193    ArrayTypeBits.SizeModifier = sm;
2194  }
2195
2196  friend class ASTContext;  // ASTContext creates these.
2197
2198public:
2199  QualType getElementType() const { return ElementType; }
2200  ArraySizeModifier getSizeModifier() const {
2201    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2202  }
2203  Qualifiers getIndexTypeQualifiers() const {
2204    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2205  }
2206  unsigned getIndexTypeCVRQualifiers() const {
2207    return ArrayTypeBits.IndexTypeQuals;
2208  }
2209
2210  static bool classof(const Type *T) {
2211    return T->getTypeClass() == ConstantArray ||
2212           T->getTypeClass() == VariableArray ||
2213           T->getTypeClass() == IncompleteArray ||
2214           T->getTypeClass() == DependentSizedArray;
2215  }
2216};
2217
2218/// ConstantArrayType - This class represents the canonical version of
2219/// C arrays with a specified constant size.  For example, the canonical
2220/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
2221/// type is 'int' and the size is 404.
2222class ConstantArrayType : public ArrayType {
2223  llvm::APInt Size; // Allows us to unique the type.
2224
2225  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2226                    ArraySizeModifier sm, unsigned tq)
2227    : ArrayType(ConstantArray, et, can, sm, tq,
2228                et->containsUnexpandedParameterPack()),
2229      Size(size) {}
2230protected:
2231  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2232                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2233    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2234      Size(size) {}
2235  friend class ASTContext;  // ASTContext creates these.
2236public:
2237  const llvm::APInt &getSize() const { return Size; }
2238  bool isSugared() const { return false; }
2239  QualType desugar() const { return QualType(this, 0); }
2240
2241
2242  /// \brief Determine the number of bits required to address a member of
2243  // an array with the given element type and number of elements.
2244  static unsigned getNumAddressingBits(ASTContext &Context,
2245                                       QualType ElementType,
2246                                       const llvm::APInt &NumElements);
2247
2248  /// \brief Determine the maximum number of active bits that an array's size
2249  /// can require, which limits the maximum size of the array.
2250  static unsigned getMaxSizeBits(ASTContext &Context);
2251
2252  void Profile(llvm::FoldingSetNodeID &ID) {
2253    Profile(ID, getElementType(), getSize(),
2254            getSizeModifier(), getIndexTypeCVRQualifiers());
2255  }
2256  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2257                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2258                      unsigned TypeQuals) {
2259    ID.AddPointer(ET.getAsOpaquePtr());
2260    ID.AddInteger(ArraySize.getZExtValue());
2261    ID.AddInteger(SizeMod);
2262    ID.AddInteger(TypeQuals);
2263  }
2264  static bool classof(const Type *T) {
2265    return T->getTypeClass() == ConstantArray;
2266  }
2267};
2268
2269/// IncompleteArrayType - This class represents C arrays with an unspecified
2270/// size.  For example 'int A[]' has an IncompleteArrayType where the element
2271/// type is 'int' and the size is unspecified.
2272class IncompleteArrayType : public ArrayType {
2273
2274  IncompleteArrayType(QualType et, QualType can,
2275                      ArraySizeModifier sm, unsigned tq)
2276    : ArrayType(IncompleteArray, et, can, sm, tq,
2277                et->containsUnexpandedParameterPack()) {}
2278  friend class ASTContext;  // ASTContext creates these.
2279public:
2280  bool isSugared() const { return false; }
2281  QualType desugar() const { return QualType(this, 0); }
2282
2283  static bool classof(const Type *T) {
2284    return T->getTypeClass() == IncompleteArray;
2285  }
2286
2287  friend class StmtIteratorBase;
2288
2289  void Profile(llvm::FoldingSetNodeID &ID) {
2290    Profile(ID, getElementType(), getSizeModifier(),
2291            getIndexTypeCVRQualifiers());
2292  }
2293
2294  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2295                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2296    ID.AddPointer(ET.getAsOpaquePtr());
2297    ID.AddInteger(SizeMod);
2298    ID.AddInteger(TypeQuals);
2299  }
2300};
2301
2302/// VariableArrayType - This class represents C arrays with a specified size
2303/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
2304/// Since the size expression is an arbitrary expression, we store it as such.
2305///
2306/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2307/// should not be: two lexically equivalent variable array types could mean
2308/// different things, for example, these variables do not have the same type
2309/// dynamically:
2310///
2311/// void foo(int x) {
2312///   int Y[x];
2313///   ++x;
2314///   int Z[x];
2315/// }
2316///
2317class VariableArrayType : public ArrayType {
2318  /// SizeExpr - An assignment expression. VLA's are only permitted within
2319  /// a function block.
2320  Stmt *SizeExpr;
2321  /// Brackets - The left and right array brackets.
2322  SourceRange Brackets;
2323
2324  VariableArrayType(QualType et, QualType can, Expr *e,
2325                    ArraySizeModifier sm, unsigned tq,
2326                    SourceRange brackets)
2327    : ArrayType(VariableArray, et, can, sm, tq,
2328                et->containsUnexpandedParameterPack()),
2329      SizeExpr((Stmt*) e), Brackets(brackets) {}
2330  friend class ASTContext;  // ASTContext creates these.
2331
2332public:
2333  Expr *getSizeExpr() const {
2334    // We use C-style casts instead of cast<> here because we do not wish
2335    // to have a dependency of Type.h on Stmt.h/Expr.h.
2336    return (Expr*) SizeExpr;
2337  }
2338  SourceRange getBracketsRange() const { return Brackets; }
2339  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2340  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2341
2342  bool isSugared() const { return false; }
2343  QualType desugar() const { return QualType(this, 0); }
2344
2345  static bool classof(const Type *T) {
2346    return T->getTypeClass() == VariableArray;
2347  }
2348
2349  friend class StmtIteratorBase;
2350
2351  void Profile(llvm::FoldingSetNodeID &ID) {
2352    llvm_unreachable("Cannot unique VariableArrayTypes.");
2353  }
2354};
2355
2356/// DependentSizedArrayType - This type represents an array type in
2357/// C++ whose size is a value-dependent expression. For example:
2358///
2359/// \code
2360/// template<typename T, int Size>
2361/// class array {
2362///   T data[Size];
2363/// };
2364/// \endcode
2365///
2366/// For these types, we won't actually know what the array bound is
2367/// until template instantiation occurs, at which point this will
2368/// become either a ConstantArrayType or a VariableArrayType.
2369class DependentSizedArrayType : public ArrayType {
2370  const ASTContext &Context;
2371
2372  /// \brief An assignment expression that will instantiate to the
2373  /// size of the array.
2374  ///
2375  /// The expression itself might be NULL, in which case the array
2376  /// type will have its size deduced from an initializer.
2377  Stmt *SizeExpr;
2378
2379  /// Brackets - The left and right array brackets.
2380  SourceRange Brackets;
2381
2382  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2383                          Expr *e, ArraySizeModifier sm, unsigned tq,
2384                          SourceRange brackets);
2385
2386  friend class ASTContext;  // ASTContext creates these.
2387
2388public:
2389  Expr *getSizeExpr() const {
2390    // We use C-style casts instead of cast<> here because we do not wish
2391    // to have a dependency of Type.h on Stmt.h/Expr.h.
2392    return (Expr*) SizeExpr;
2393  }
2394  SourceRange getBracketsRange() const { return Brackets; }
2395  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2396  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2397
2398  bool isSugared() const { return false; }
2399  QualType desugar() const { return QualType(this, 0); }
2400
2401  static bool classof(const Type *T) {
2402    return T->getTypeClass() == DependentSizedArray;
2403  }
2404
2405  friend class StmtIteratorBase;
2406
2407
2408  void Profile(llvm::FoldingSetNodeID &ID) {
2409    Profile(ID, Context, getElementType(),
2410            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2411  }
2412
2413  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2414                      QualType ET, ArraySizeModifier SizeMod,
2415                      unsigned TypeQuals, Expr *E);
2416};
2417
2418/// DependentSizedExtVectorType - This type represent an extended vector type
2419/// where either the type or size is dependent. For example:
2420/// @code
2421/// template<typename T, int Size>
2422/// class vector {
2423///   typedef T __attribute__((ext_vector_type(Size))) type;
2424/// }
2425/// @endcode
2426class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2427  const ASTContext &Context;
2428  Expr *SizeExpr;
2429  /// ElementType - The element type of the array.
2430  QualType ElementType;
2431  SourceLocation loc;
2432
2433  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2434                              QualType can, Expr *SizeExpr, SourceLocation loc);
2435
2436  friend class ASTContext;
2437
2438public:
2439  Expr *getSizeExpr() const { return SizeExpr; }
2440  QualType getElementType() const { return ElementType; }
2441  SourceLocation getAttributeLoc() const { return loc; }
2442
2443  bool isSugared() const { return false; }
2444  QualType desugar() const { return QualType(this, 0); }
2445
2446  static bool classof(const Type *T) {
2447    return T->getTypeClass() == DependentSizedExtVector;
2448  }
2449
2450  void Profile(llvm::FoldingSetNodeID &ID) {
2451    Profile(ID, Context, getElementType(), getSizeExpr());
2452  }
2453
2454  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2455                      QualType ElementType, Expr *SizeExpr);
2456};
2457
2458
2459/// VectorType - GCC generic vector type. This type is created using
2460/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2461/// bytes; or from an Altivec __vector or vector declaration.
2462/// Since the constructor takes the number of vector elements, the
2463/// client is responsible for converting the size into the number of elements.
2464class VectorType : public Type, public llvm::FoldingSetNode {
2465public:
2466  enum VectorKind {
2467    GenericVector,  // not a target-specific vector type
2468    AltiVecVector,  // is AltiVec vector
2469    AltiVecPixel,   // is AltiVec 'vector Pixel'
2470    AltiVecBool,    // is AltiVec 'vector bool ...'
2471    NeonVector,     // is ARM Neon vector
2472    NeonPolyVector  // is ARM Neon polynomial vector
2473  };
2474protected:
2475  /// ElementType - The element type of the vector.
2476  QualType ElementType;
2477
2478  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2479             VectorKind vecKind);
2480
2481  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2482             QualType canonType, VectorKind vecKind);
2483
2484  friend class ASTContext;  // ASTContext creates these.
2485
2486public:
2487
2488  QualType getElementType() const { return ElementType; }
2489  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2490
2491  bool isSugared() const { return false; }
2492  QualType desugar() const { return QualType(this, 0); }
2493
2494  VectorKind getVectorKind() const {
2495    return VectorKind(VectorTypeBits.VecKind);
2496  }
2497
2498  void Profile(llvm::FoldingSetNodeID &ID) {
2499    Profile(ID, getElementType(), getNumElements(),
2500            getTypeClass(), getVectorKind());
2501  }
2502  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2503                      unsigned NumElements, TypeClass TypeClass,
2504                      VectorKind VecKind) {
2505    ID.AddPointer(ElementType.getAsOpaquePtr());
2506    ID.AddInteger(NumElements);
2507    ID.AddInteger(TypeClass);
2508    ID.AddInteger(VecKind);
2509  }
2510
2511  static bool classof(const Type *T) {
2512    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2513  }
2514};
2515
2516/// ExtVectorType - Extended vector type. This type is created using
2517/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2518/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2519/// class enables syntactic extensions, like Vector Components for accessing
2520/// points, colors, and textures (modeled after OpenGL Shading Language).
2521class ExtVectorType : public VectorType {
2522  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2523    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2524  friend class ASTContext;  // ASTContext creates these.
2525public:
2526  static int getPointAccessorIdx(char c) {
2527    switch (c) {
2528    default: return -1;
2529    case 'x': return 0;
2530    case 'y': return 1;
2531    case 'z': return 2;
2532    case 'w': return 3;
2533    }
2534  }
2535  static int getNumericAccessorIdx(char c) {
2536    switch (c) {
2537      default: return -1;
2538      case '0': return 0;
2539      case '1': return 1;
2540      case '2': return 2;
2541      case '3': return 3;
2542      case '4': return 4;
2543      case '5': return 5;
2544      case '6': return 6;
2545      case '7': return 7;
2546      case '8': return 8;
2547      case '9': return 9;
2548      case 'A':
2549      case 'a': return 10;
2550      case 'B':
2551      case 'b': return 11;
2552      case 'C':
2553      case 'c': return 12;
2554      case 'D':
2555      case 'd': return 13;
2556      case 'E':
2557      case 'e': return 14;
2558      case 'F':
2559      case 'f': return 15;
2560    }
2561  }
2562
2563  static int getAccessorIdx(char c) {
2564    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2565    return getNumericAccessorIdx(c);
2566  }
2567
2568  bool isAccessorWithinNumElements(char c) const {
2569    if (int idx = getAccessorIdx(c)+1)
2570      return unsigned(idx-1) < getNumElements();
2571    return false;
2572  }
2573  bool isSugared() const { return false; }
2574  QualType desugar() const { return QualType(this, 0); }
2575
2576  static bool classof(const Type *T) {
2577    return T->getTypeClass() == ExtVector;
2578  }
2579};
2580
2581/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2582/// class of FunctionNoProtoType and FunctionProtoType.
2583///
2584class FunctionType : public Type {
2585  // The type returned by the function.
2586  QualType ResultType;
2587
2588 public:
2589  /// ExtInfo - A class which abstracts out some details necessary for
2590  /// making a call.
2591  ///
2592  /// It is not actually used directly for storing this information in
2593  /// a FunctionType, although FunctionType does currently use the
2594  /// same bit-pattern.
2595  ///
2596  // If you add a field (say Foo), other than the obvious places (both,
2597  // constructors, compile failures), what you need to update is
2598  // * Operator==
2599  // * getFoo
2600  // * withFoo
2601  // * functionType. Add Foo, getFoo.
2602  // * ASTContext::getFooType
2603  // * ASTContext::mergeFunctionTypes
2604  // * FunctionNoProtoType::Profile
2605  // * FunctionProtoType::Profile
2606  // * TypePrinter::PrintFunctionProto
2607  // * AST read and write
2608  // * Codegen
2609  class ExtInfo {
2610    // Feel free to rearrange or add bits, but if you go over 9,
2611    // you'll need to adjust both the Bits field below and
2612    // Type::FunctionTypeBitfields.
2613
2614    //   |  CC  |noreturn|produces|regparm|
2615    //   |0 .. 3|   4    |    5   | 6 .. 8|
2616    //
2617    // regparm is either 0 (no regparm attribute) or the regparm value+1.
2618    enum { CallConvMask = 0xF };
2619    enum { NoReturnMask = 0x10 };
2620    enum { ProducesResultMask = 0x20 };
2621    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2622           RegParmOffset = 6 }; // Assumed to be the last field
2623
2624    uint16_t Bits;
2625
2626    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2627
2628    friend class FunctionType;
2629
2630   public:
2631    // Constructor with no defaults. Use this when you know that you
2632    // have all the elements (when reading an AST file for example).
2633    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2634            bool producesResult) {
2635      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2636      Bits = ((unsigned) cc) |
2637             (noReturn ? NoReturnMask : 0) |
2638             (producesResult ? ProducesResultMask : 0) |
2639             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2640    }
2641
2642    // Constructor with all defaults. Use when for example creating a
2643    // function know to use defaults.
2644    ExtInfo() : Bits(0) {}
2645
2646    bool getNoReturn() const { return Bits & NoReturnMask; }
2647    bool getProducesResult() const { return Bits & ProducesResultMask; }
2648    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2649    unsigned getRegParm() const {
2650      unsigned RegParm = Bits >> RegParmOffset;
2651      if (RegParm > 0)
2652        --RegParm;
2653      return RegParm;
2654    }
2655    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2656
2657    bool operator==(ExtInfo Other) const {
2658      return Bits == Other.Bits;
2659    }
2660    bool operator!=(ExtInfo Other) const {
2661      return Bits != Other.Bits;
2662    }
2663
2664    // Note that we don't have setters. That is by design, use
2665    // the following with methods instead of mutating these objects.
2666
2667    ExtInfo withNoReturn(bool noReturn) const {
2668      if (noReturn)
2669        return ExtInfo(Bits | NoReturnMask);
2670      else
2671        return ExtInfo(Bits & ~NoReturnMask);
2672    }
2673
2674    ExtInfo withProducesResult(bool producesResult) const {
2675      if (producesResult)
2676        return ExtInfo(Bits | ProducesResultMask);
2677      else
2678        return ExtInfo(Bits & ~ProducesResultMask);
2679    }
2680
2681    ExtInfo withRegParm(unsigned RegParm) const {
2682      assert(RegParm < 7 && "Invalid regparm value");
2683      return ExtInfo((Bits & ~RegParmMask) |
2684                     ((RegParm + 1) << RegParmOffset));
2685    }
2686
2687    ExtInfo withCallingConv(CallingConv cc) const {
2688      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2689    }
2690
2691    void Profile(llvm::FoldingSetNodeID &ID) const {
2692      ID.AddInteger(Bits);
2693    }
2694  };
2695
2696protected:
2697  FunctionType(TypeClass tc, QualType res,
2698               unsigned typeQuals, QualType Canonical, bool Dependent,
2699               bool InstantiationDependent,
2700               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2701               ExtInfo Info)
2702    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
2703           ContainsUnexpandedParameterPack),
2704      ResultType(res) {
2705    FunctionTypeBits.ExtInfo = Info.Bits;
2706    FunctionTypeBits.TypeQuals = typeQuals;
2707  }
2708  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2709
2710public:
2711
2712  QualType getResultType() const { return ResultType; }
2713
2714  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2715  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2716  /// \brief Determine whether this function type includes the GNU noreturn
2717  /// attribute. The C++11 [[noreturn]] attribute does not affect the function
2718  /// type.
2719  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2720  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2721  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2722  bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
2723  bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
2724  bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
2725
2726  /// \brief Determine the type of an expression that calls a function of
2727  /// this type.
2728  QualType getCallResultType(ASTContext &Context) const {
2729    return getResultType().getNonLValueExprType(Context);
2730  }
2731
2732  static StringRef getNameForCallConv(CallingConv CC);
2733
2734  static bool classof(const Type *T) {
2735    return T->getTypeClass() == FunctionNoProto ||
2736           T->getTypeClass() == FunctionProto;
2737  }
2738};
2739
2740/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2741/// no information available about its arguments.
2742class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2743  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2744    : FunctionType(FunctionNoProto, Result, 0, Canonical,
2745                   /*Dependent=*/false, /*InstantiationDependent=*/false,
2746                   Result->isVariablyModifiedType(),
2747                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2748
2749  friend class ASTContext;  // ASTContext creates these.
2750
2751public:
2752  // No additional state past what FunctionType provides.
2753
2754  bool isSugared() const { return false; }
2755  QualType desugar() const { return QualType(this, 0); }
2756
2757  void Profile(llvm::FoldingSetNodeID &ID) {
2758    Profile(ID, getResultType(), getExtInfo());
2759  }
2760  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2761                      ExtInfo Info) {
2762    Info.Profile(ID);
2763    ID.AddPointer(ResultType.getAsOpaquePtr());
2764  }
2765
2766  static bool classof(const Type *T) {
2767    return T->getTypeClass() == FunctionNoProto;
2768  }
2769};
2770
2771/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2772/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2773/// arguments, not as having a single void argument. Such a type can have an
2774/// exception specification, but this specification is not part of the canonical
2775/// type.
2776class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2777public:
2778  /// ExtProtoInfo - Extra information about a function prototype.
2779  struct ExtProtoInfo {
2780    ExtProtoInfo() :
2781      Variadic(false), HasTrailingReturn(false), TypeQuals(0),
2782      ExceptionSpecType(EST_None), RefQualifier(RQ_None),
2783      NumExceptions(0), Exceptions(0), NoexceptExpr(0),
2784      ExceptionSpecDecl(0), ExceptionSpecTemplate(0),
2785      ConsumedArguments(0) {}
2786
2787    FunctionType::ExtInfo ExtInfo;
2788    bool Variadic : 1;
2789    bool HasTrailingReturn : 1;
2790    unsigned char TypeQuals;
2791    ExceptionSpecificationType ExceptionSpecType;
2792    RefQualifierKind RefQualifier;
2793    unsigned NumExceptions;
2794    const QualType *Exceptions;
2795    Expr *NoexceptExpr;
2796    FunctionDecl *ExceptionSpecDecl;
2797    FunctionDecl *ExceptionSpecTemplate;
2798    const bool *ConsumedArguments;
2799  };
2800
2801private:
2802  /// \brief Determine whether there are any argument types that
2803  /// contain an unexpanded parameter pack.
2804  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2805                                                 unsigned numArgs) {
2806    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2807      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2808        return true;
2809
2810    return false;
2811  }
2812
2813  FunctionProtoType(QualType result, ArrayRef<QualType> args,
2814                    QualType canonical, const ExtProtoInfo &epi);
2815
2816  /// NumArgs - The number of arguments this function has, not counting '...'.
2817  unsigned NumArgs : 15;
2818
2819  /// NumExceptions - The number of types in the exception spec, if any.
2820  unsigned NumExceptions : 9;
2821
2822  /// ExceptionSpecType - The type of exception specification this function has.
2823  unsigned ExceptionSpecType : 3;
2824
2825  /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
2826  unsigned HasAnyConsumedArgs : 1;
2827
2828  /// Variadic - Whether the function is variadic.
2829  unsigned Variadic : 1;
2830
2831  /// HasTrailingReturn - Whether this function has a trailing return type.
2832  unsigned HasTrailingReturn : 1;
2833
2834  /// \brief The ref-qualifier associated with a \c FunctionProtoType.
2835  ///
2836  /// This is a value of type \c RefQualifierKind.
2837  unsigned RefQualifier : 2;
2838
2839  // ArgInfo - There is an variable size array after the class in memory that
2840  // holds the argument types.
2841
2842  // Exceptions - There is another variable size array after ArgInfo that
2843  // holds the exception types.
2844
2845  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2846  // to the expression in the noexcept() specifier.
2847
2848  // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
2849  // be a pair of FunctionDecl* pointing to the function which should be used to
2850  // instantiate this function type's exception specification, and the function
2851  // from which it should be instantiated.
2852
2853  // ConsumedArgs - A variable size array, following Exceptions
2854  // and of length NumArgs, holding flags indicating which arguments
2855  // are consumed.  This only appears if HasAnyConsumedArgs is true.
2856
2857  friend class ASTContext;  // ASTContext creates these.
2858
2859  const bool *getConsumedArgsBuffer() const {
2860    assert(hasAnyConsumedArgs());
2861
2862    // Find the end of the exceptions.
2863    Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
2864    if (getExceptionSpecType() != EST_ComputedNoexcept)
2865      eh_end += NumExceptions;
2866    else
2867      eh_end += 1; // NoexceptExpr
2868
2869    return reinterpret_cast<const bool*>(eh_end);
2870  }
2871
2872public:
2873  unsigned getNumArgs() const { return NumArgs; }
2874  QualType getArgType(unsigned i) const {
2875    assert(i < NumArgs && "Invalid argument number!");
2876    return arg_type_begin()[i];
2877  }
2878  ArrayRef<QualType> getArgTypes() const {
2879    return ArrayRef<QualType>(arg_type_begin(), arg_type_end());
2880  }
2881
2882  ExtProtoInfo getExtProtoInfo() const {
2883    ExtProtoInfo EPI;
2884    EPI.ExtInfo = getExtInfo();
2885    EPI.Variadic = isVariadic();
2886    EPI.HasTrailingReturn = hasTrailingReturn();
2887    EPI.ExceptionSpecType = getExceptionSpecType();
2888    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2889    EPI.RefQualifier = getRefQualifier();
2890    if (EPI.ExceptionSpecType == EST_Dynamic) {
2891      EPI.NumExceptions = NumExceptions;
2892      EPI.Exceptions = exception_begin();
2893    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2894      EPI.NoexceptExpr = getNoexceptExpr();
2895    } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2896      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2897      EPI.ExceptionSpecTemplate = getExceptionSpecTemplate();
2898    } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2899      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2900    }
2901    if (hasAnyConsumedArgs())
2902      EPI.ConsumedArguments = getConsumedArgsBuffer();
2903    return EPI;
2904  }
2905
2906  /// \brief Get the kind of exception specification on this function.
2907  ExceptionSpecificationType getExceptionSpecType() const {
2908    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2909  }
2910  /// \brief Return whether this function has any kind of exception spec.
2911  bool hasExceptionSpec() const {
2912    return getExceptionSpecType() != EST_None;
2913  }
2914  /// \brief Return whether this function has a dynamic (throw) exception spec.
2915  bool hasDynamicExceptionSpec() const {
2916    return isDynamicExceptionSpec(getExceptionSpecType());
2917  }
2918  /// \brief Return whether this function has a noexcept exception spec.
2919  bool hasNoexceptExceptionSpec() const {
2920    return isNoexceptExceptionSpec(getExceptionSpecType());
2921  }
2922  /// \brief Result type of getNoexceptSpec().
2923  enum NoexceptResult {
2924    NR_NoNoexcept,  ///< There is no noexcept specifier.
2925    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2926    NR_Dependent,   ///< The noexcept specifier is dependent.
2927    NR_Throw,       ///< The noexcept specifier evaluates to false.
2928    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2929  };
2930  /// \brief Get the meaning of the noexcept spec on this function, if any.
2931  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2932  unsigned getNumExceptions() const { return NumExceptions; }
2933  QualType getExceptionType(unsigned i) const {
2934    assert(i < NumExceptions && "Invalid exception number!");
2935    return exception_begin()[i];
2936  }
2937  Expr *getNoexceptExpr() const {
2938    if (getExceptionSpecType() != EST_ComputedNoexcept)
2939      return 0;
2940    // NoexceptExpr sits where the arguments end.
2941    return *reinterpret_cast<Expr *const *>(arg_type_end());
2942  }
2943  /// \brief If this function type has an exception specification which hasn't
2944  /// been determined yet (either because it has not been evaluated or because
2945  /// it has not been instantiated), this is the function whose exception
2946  /// specification is represented by this type.
2947  FunctionDecl *getExceptionSpecDecl() const {
2948    if (getExceptionSpecType() != EST_Uninstantiated &&
2949        getExceptionSpecType() != EST_Unevaluated)
2950      return 0;
2951    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[0];
2952  }
2953  /// \brief If this function type has an uninstantiated exception
2954  /// specification, this is the function whose exception specification
2955  /// should be instantiated to find the exception specification for
2956  /// this type.
2957  FunctionDecl *getExceptionSpecTemplate() const {
2958    if (getExceptionSpecType() != EST_Uninstantiated)
2959      return 0;
2960    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[1];
2961  }
2962  bool isNothrow(ASTContext &Ctx) const {
2963    ExceptionSpecificationType EST = getExceptionSpecType();
2964    assert(EST != EST_Unevaluated && EST != EST_Uninstantiated);
2965    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2966      return true;
2967    if (EST != EST_ComputedNoexcept)
2968      return false;
2969    return getNoexceptSpec(Ctx) == NR_Nothrow;
2970  }
2971
2972  bool isVariadic() const { return Variadic; }
2973
2974  /// \brief Determines whether this function prototype contains a
2975  /// parameter pack at the end.
2976  ///
2977  /// A function template whose last parameter is a parameter pack can be
2978  /// called with an arbitrary number of arguments, much like a variadic
2979  /// function.
2980  bool isTemplateVariadic() const;
2981
2982  bool hasTrailingReturn() const { return HasTrailingReturn; }
2983
2984  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2985
2986
2987  /// \brief Retrieve the ref-qualifier associated with this function type.
2988  RefQualifierKind getRefQualifier() const {
2989    return static_cast<RefQualifierKind>(RefQualifier);
2990  }
2991
2992  typedef const QualType *arg_type_iterator;
2993  arg_type_iterator arg_type_begin() const {
2994    return reinterpret_cast<const QualType *>(this+1);
2995  }
2996  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2997
2998  typedef const QualType *exception_iterator;
2999  exception_iterator exception_begin() const {
3000    // exceptions begin where arguments end
3001    return arg_type_end();
3002  }
3003  exception_iterator exception_end() const {
3004    if (getExceptionSpecType() != EST_Dynamic)
3005      return exception_begin();
3006    return exception_begin() + NumExceptions;
3007  }
3008
3009  bool hasAnyConsumedArgs() const {
3010    return HasAnyConsumedArgs;
3011  }
3012  bool isArgConsumed(unsigned I) const {
3013    assert(I < getNumArgs() && "argument index out of range!");
3014    if (hasAnyConsumedArgs())
3015      return getConsumedArgsBuffer()[I];
3016    return false;
3017  }
3018
3019  bool isSugared() const { return false; }
3020  QualType desugar() const { return QualType(this, 0); }
3021
3022  void printExceptionSpecification(raw_ostream &OS,
3023                                   const PrintingPolicy &Policy) const;
3024
3025  static bool classof(const Type *T) {
3026    return T->getTypeClass() == FunctionProto;
3027  }
3028
3029  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
3030  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3031                      arg_type_iterator ArgTys, unsigned NumArgs,
3032                      const ExtProtoInfo &EPI, const ASTContext &Context);
3033};
3034
3035
3036/// \brief Represents the dependent type named by a dependently-scoped
3037/// typename using declaration, e.g.
3038///   using typename Base<T>::foo;
3039/// Template instantiation turns these into the underlying type.
3040class UnresolvedUsingType : public Type {
3041  UnresolvedUsingTypenameDecl *Decl;
3042
3043  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
3044    : Type(UnresolvedUsing, QualType(), true, true, false,
3045           /*ContainsUnexpandedParameterPack=*/false),
3046      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
3047  friend class ASTContext; // ASTContext creates these.
3048public:
3049
3050  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
3051
3052  bool isSugared() const { return false; }
3053  QualType desugar() const { return QualType(this, 0); }
3054
3055  static bool classof(const Type *T) {
3056    return T->getTypeClass() == UnresolvedUsing;
3057  }
3058
3059  void Profile(llvm::FoldingSetNodeID &ID) {
3060    return Profile(ID, Decl);
3061  }
3062  static void Profile(llvm::FoldingSetNodeID &ID,
3063                      UnresolvedUsingTypenameDecl *D) {
3064    ID.AddPointer(D);
3065  }
3066};
3067
3068
3069class TypedefType : public Type {
3070  TypedefNameDecl *Decl;
3071protected:
3072  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
3073    : Type(tc, can, can->isDependentType(),
3074           can->isInstantiationDependentType(),
3075           can->isVariablyModifiedType(),
3076           /*ContainsUnexpandedParameterPack=*/false),
3077      Decl(const_cast<TypedefNameDecl*>(D)) {
3078    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3079  }
3080  friend class ASTContext;  // ASTContext creates these.
3081public:
3082
3083  TypedefNameDecl *getDecl() const { return Decl; }
3084
3085  bool isSugared() const { return true; }
3086  QualType desugar() const;
3087
3088  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
3089};
3090
3091/// TypeOfExprType (GCC extension).
3092class TypeOfExprType : public Type {
3093  Expr *TOExpr;
3094
3095protected:
3096  TypeOfExprType(Expr *E, QualType can = QualType());
3097  friend class ASTContext;  // ASTContext creates these.
3098public:
3099  Expr *getUnderlyingExpr() const { return TOExpr; }
3100
3101  /// \brief Remove a single level of sugar.
3102  QualType desugar() const;
3103
3104  /// \brief Returns whether this type directly provides sugar.
3105  bool isSugared() const;
3106
3107  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
3108};
3109
3110/// \brief Internal representation of canonical, dependent
3111/// typeof(expr) types.
3112///
3113/// This class is used internally by the ASTContext to manage
3114/// canonical, dependent types, only. Clients will only see instances
3115/// of this class via TypeOfExprType nodes.
3116class DependentTypeOfExprType
3117  : public TypeOfExprType, public llvm::FoldingSetNode {
3118  const ASTContext &Context;
3119
3120public:
3121  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
3122    : TypeOfExprType(E), Context(Context) { }
3123
3124  void Profile(llvm::FoldingSetNodeID &ID) {
3125    Profile(ID, Context, getUnderlyingExpr());
3126  }
3127
3128  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3129                      Expr *E);
3130};
3131
3132/// TypeOfType (GCC extension).
3133class TypeOfType : public Type {
3134  QualType TOType;
3135  TypeOfType(QualType T, QualType can)
3136    : Type(TypeOf, can, T->isDependentType(),
3137           T->isInstantiationDependentType(),
3138           T->isVariablyModifiedType(),
3139           T->containsUnexpandedParameterPack()),
3140      TOType(T) {
3141    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3142  }
3143  friend class ASTContext;  // ASTContext creates these.
3144public:
3145  QualType getUnderlyingType() const { return TOType; }
3146
3147  /// \brief Remove a single level of sugar.
3148  QualType desugar() const { return getUnderlyingType(); }
3149
3150  /// \brief Returns whether this type directly provides sugar.
3151  bool isSugared() const { return true; }
3152
3153  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
3154};
3155
3156/// DecltypeType (C++0x)
3157class DecltypeType : public Type {
3158  Expr *E;
3159  QualType UnderlyingType;
3160
3161protected:
3162  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3163  friend class ASTContext;  // ASTContext creates these.
3164public:
3165  Expr *getUnderlyingExpr() const { return E; }
3166  QualType getUnderlyingType() const { return UnderlyingType; }
3167
3168  /// \brief Remove a single level of sugar.
3169  QualType desugar() const;
3170
3171  /// \brief Returns whether this type directly provides sugar.
3172  bool isSugared() const;
3173
3174  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3175};
3176
3177/// \brief Internal representation of canonical, dependent
3178/// decltype(expr) types.
3179///
3180/// This class is used internally by the ASTContext to manage
3181/// canonical, dependent types, only. Clients will only see instances
3182/// of this class via DecltypeType nodes.
3183class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3184  const ASTContext &Context;
3185
3186public:
3187  DependentDecltypeType(const ASTContext &Context, Expr *E);
3188
3189  void Profile(llvm::FoldingSetNodeID &ID) {
3190    Profile(ID, Context, getUnderlyingExpr());
3191  }
3192
3193  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3194                      Expr *E);
3195};
3196
3197/// \brief A unary type transform, which is a type constructed from another
3198class UnaryTransformType : public Type {
3199public:
3200  enum UTTKind {
3201    EnumUnderlyingType
3202  };
3203
3204private:
3205  /// The untransformed type.
3206  QualType BaseType;
3207  /// The transformed type if not dependent, otherwise the same as BaseType.
3208  QualType UnderlyingType;
3209
3210  UTTKind UKind;
3211protected:
3212  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3213                     QualType CanonicalTy);
3214  friend class ASTContext;
3215public:
3216  bool isSugared() const { return !isDependentType(); }
3217  QualType desugar() const { return UnderlyingType; }
3218
3219  QualType getUnderlyingType() const { return UnderlyingType; }
3220  QualType getBaseType() const { return BaseType; }
3221
3222  UTTKind getUTTKind() const { return UKind; }
3223
3224  static bool classof(const Type *T) {
3225    return T->getTypeClass() == UnaryTransform;
3226  }
3227};
3228
3229class TagType : public Type {
3230  /// Stores the TagDecl associated with this type. The decl may point to any
3231  /// TagDecl that declares the entity.
3232  TagDecl * decl;
3233
3234  friend class ASTReader;
3235
3236protected:
3237  TagType(TypeClass TC, const TagDecl *D, QualType can);
3238
3239public:
3240  TagDecl *getDecl() const;
3241
3242  /// @brief Determines whether this type is in the process of being
3243  /// defined.
3244  bool isBeingDefined() const;
3245
3246  static bool classof(const Type *T) {
3247    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3248  }
3249};
3250
3251/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
3252/// to detect TagType objects of structs/unions/classes.
3253class RecordType : public TagType {
3254protected:
3255  explicit RecordType(const RecordDecl *D)
3256    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3257  explicit RecordType(TypeClass TC, RecordDecl *D)
3258    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3259  friend class ASTContext;   // ASTContext creates these.
3260public:
3261
3262  RecordDecl *getDecl() const {
3263    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3264  }
3265
3266  // FIXME: This predicate is a helper to QualType/Type. It needs to
3267  // recursively check all fields for const-ness. If any field is declared
3268  // const, it needs to return false.
3269  bool hasConstFields() const { return false; }
3270
3271  bool isSugared() const { return false; }
3272  QualType desugar() const { return QualType(this, 0); }
3273
3274  static bool classof(const Type *T) { return T->getTypeClass() == Record; }
3275};
3276
3277/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
3278/// to detect TagType objects of enums.
3279class EnumType : public TagType {
3280  explicit EnumType(const EnumDecl *D)
3281    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3282  friend class ASTContext;   // ASTContext creates these.
3283public:
3284
3285  EnumDecl *getDecl() const {
3286    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3287  }
3288
3289  bool isSugared() const { return false; }
3290  QualType desugar() const { return QualType(this, 0); }
3291
3292  static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
3293};
3294
3295/// AttributedType - An attributed type is a type to which a type
3296/// attribute has been applied.  The "modified type" is the
3297/// fully-sugared type to which the attributed type was applied;
3298/// generally it is not canonically equivalent to the attributed type.
3299/// The "equivalent type" is the minimally-desugared type which the
3300/// type is canonically equivalent to.
3301///
3302/// For example, in the following attributed type:
3303///     int32_t __attribute__((vector_size(16)))
3304///   - the modified type is the TypedefType for int32_t
3305///   - the equivalent type is VectorType(16, int32_t)
3306///   - the canonical type is VectorType(16, int)
3307class AttributedType : public Type, public llvm::FoldingSetNode {
3308public:
3309  // It is really silly to have yet another attribute-kind enum, but
3310  // clang::attr::Kind doesn't currently cover the pure type attrs.
3311  enum Kind {
3312    // Expression operand.
3313    attr_address_space,
3314    attr_regparm,
3315    attr_vector_size,
3316    attr_neon_vector_type,
3317    attr_neon_polyvector_type,
3318
3319    FirstExprOperandKind = attr_address_space,
3320    LastExprOperandKind = attr_neon_polyvector_type,
3321
3322    // Enumerated operand (string or keyword).
3323    attr_objc_gc,
3324    attr_objc_ownership,
3325    attr_pcs,
3326
3327    FirstEnumOperandKind = attr_objc_gc,
3328    LastEnumOperandKind = attr_pcs,
3329
3330    // No operand.
3331    attr_noreturn,
3332    attr_cdecl,
3333    attr_fastcall,
3334    attr_stdcall,
3335    attr_thiscall,
3336    attr_pascal,
3337    attr_pnaclcall,
3338    attr_inteloclbicc,
3339    attr_ptr32,
3340    attr_ptr64,
3341    attr_sptr,
3342    attr_uptr
3343  };
3344
3345private:
3346  QualType ModifiedType;
3347  QualType EquivalentType;
3348
3349  friend class ASTContext; // creates these
3350
3351  AttributedType(QualType canon, Kind attrKind,
3352                 QualType modified, QualType equivalent)
3353    : Type(Attributed, canon, canon->isDependentType(),
3354           canon->isInstantiationDependentType(),
3355           canon->isVariablyModifiedType(),
3356           canon->containsUnexpandedParameterPack()),
3357      ModifiedType(modified), EquivalentType(equivalent) {
3358    AttributedTypeBits.AttrKind = attrKind;
3359  }
3360
3361public:
3362  Kind getAttrKind() const {
3363    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3364  }
3365
3366  QualType getModifiedType() const { return ModifiedType; }
3367  QualType getEquivalentType() const { return EquivalentType; }
3368
3369  bool isSugared() const { return true; }
3370  QualType desugar() const { return getEquivalentType(); }
3371
3372  bool isMSTypeSpec() const {
3373    switch (getAttrKind()) {
3374    default:  return false;
3375    case attr_ptr32:
3376    case attr_ptr64:
3377    case attr_sptr:
3378    case attr_uptr:
3379      return true;
3380    }
3381  }
3382
3383  void Profile(llvm::FoldingSetNodeID &ID) {
3384    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3385  }
3386
3387  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3388                      QualType modified, QualType equivalent) {
3389    ID.AddInteger(attrKind);
3390    ID.AddPointer(modified.getAsOpaquePtr());
3391    ID.AddPointer(equivalent.getAsOpaquePtr());
3392  }
3393
3394  static bool classof(const Type *T) {
3395    return T->getTypeClass() == Attributed;
3396  }
3397};
3398
3399class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3400  // Helper data collector for canonical types.
3401  struct CanonicalTTPTInfo {
3402    unsigned Depth : 15;
3403    unsigned ParameterPack : 1;
3404    unsigned Index : 16;
3405  };
3406
3407  union {
3408    // Info for the canonical type.
3409    CanonicalTTPTInfo CanTTPTInfo;
3410    // Info for the non-canonical type.
3411    TemplateTypeParmDecl *TTPDecl;
3412  };
3413
3414  /// Build a non-canonical type.
3415  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3416    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3417           /*InstantiationDependent=*/true,
3418           /*VariablyModified=*/false,
3419           Canon->containsUnexpandedParameterPack()),
3420      TTPDecl(TTPDecl) { }
3421
3422  /// Build the canonical type.
3423  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3424    : Type(TemplateTypeParm, QualType(this, 0),
3425           /*Dependent=*/true,
3426           /*InstantiationDependent=*/true,
3427           /*VariablyModified=*/false, PP) {
3428    CanTTPTInfo.Depth = D;
3429    CanTTPTInfo.Index = I;
3430    CanTTPTInfo.ParameterPack = PP;
3431  }
3432
3433  friend class ASTContext;  // ASTContext creates these
3434
3435  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3436    QualType Can = getCanonicalTypeInternal();
3437    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3438  }
3439
3440public:
3441  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3442  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3443  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3444
3445  TemplateTypeParmDecl *getDecl() const {
3446    return isCanonicalUnqualified() ? 0 : TTPDecl;
3447  }
3448
3449  IdentifierInfo *getIdentifier() const;
3450
3451  bool isSugared() const { return false; }
3452  QualType desugar() const { return QualType(this, 0); }
3453
3454  void Profile(llvm::FoldingSetNodeID &ID) {
3455    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3456  }
3457
3458  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3459                      unsigned Index, bool ParameterPack,
3460                      TemplateTypeParmDecl *TTPDecl) {
3461    ID.AddInteger(Depth);
3462    ID.AddInteger(Index);
3463    ID.AddBoolean(ParameterPack);
3464    ID.AddPointer(TTPDecl);
3465  }
3466
3467  static bool classof(const Type *T) {
3468    return T->getTypeClass() == TemplateTypeParm;
3469  }
3470};
3471
3472/// \brief Represents the result of substituting a type for a template
3473/// type parameter.
3474///
3475/// Within an instantiated template, all template type parameters have
3476/// been replaced with these.  They are used solely to record that a
3477/// type was originally written as a template type parameter;
3478/// therefore they are never canonical.
3479class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3480  // The original type parameter.
3481  const TemplateTypeParmType *Replaced;
3482
3483  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3484    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3485           Canon->isInstantiationDependentType(),
3486           Canon->isVariablyModifiedType(),
3487           Canon->containsUnexpandedParameterPack()),
3488      Replaced(Param) { }
3489
3490  friend class ASTContext;
3491
3492public:
3493  /// Gets the template parameter that was substituted for.
3494  const TemplateTypeParmType *getReplacedParameter() const {
3495    return Replaced;
3496  }
3497
3498  /// Gets the type that was substituted for the template
3499  /// parameter.
3500  QualType getReplacementType() const {
3501    return getCanonicalTypeInternal();
3502  }
3503
3504  bool isSugared() const { return true; }
3505  QualType desugar() const { return getReplacementType(); }
3506
3507  void Profile(llvm::FoldingSetNodeID &ID) {
3508    Profile(ID, getReplacedParameter(), getReplacementType());
3509  }
3510  static void Profile(llvm::FoldingSetNodeID &ID,
3511                      const TemplateTypeParmType *Replaced,
3512                      QualType Replacement) {
3513    ID.AddPointer(Replaced);
3514    ID.AddPointer(Replacement.getAsOpaquePtr());
3515  }
3516
3517  static bool classof(const Type *T) {
3518    return T->getTypeClass() == SubstTemplateTypeParm;
3519  }
3520};
3521
3522/// \brief Represents the result of substituting a set of types for a template
3523/// type parameter pack.
3524///
3525/// When a pack expansion in the source code contains multiple parameter packs
3526/// and those parameter packs correspond to different levels of template
3527/// parameter lists, this type node is used to represent a template type
3528/// parameter pack from an outer level, which has already had its argument pack
3529/// substituted but that still lives within a pack expansion that itself
3530/// could not be instantiated. When actually performing a substitution into
3531/// that pack expansion (e.g., when all template parameters have corresponding
3532/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3533/// at the current pack substitution index.
3534class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3535  /// \brief The original type parameter.
3536  const TemplateTypeParmType *Replaced;
3537
3538  /// \brief A pointer to the set of template arguments that this
3539  /// parameter pack is instantiated with.
3540  const TemplateArgument *Arguments;
3541
3542  /// \brief The number of template arguments in \c Arguments.
3543  unsigned NumArguments;
3544
3545  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3546                                QualType Canon,
3547                                const TemplateArgument &ArgPack);
3548
3549  friend class ASTContext;
3550
3551public:
3552  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
3553
3554  /// Gets the template parameter that was substituted for.
3555  const TemplateTypeParmType *getReplacedParameter() const {
3556    return Replaced;
3557  }
3558
3559  bool isSugared() const { return false; }
3560  QualType desugar() const { return QualType(this, 0); }
3561
3562  TemplateArgument getArgumentPack() const;
3563
3564  void Profile(llvm::FoldingSetNodeID &ID);
3565  static void Profile(llvm::FoldingSetNodeID &ID,
3566                      const TemplateTypeParmType *Replaced,
3567                      const TemplateArgument &ArgPack);
3568
3569  static bool classof(const Type *T) {
3570    return T->getTypeClass() == SubstTemplateTypeParmPack;
3571  }
3572};
3573
3574/// \brief Represents a C++11 auto or C++1y decltype(auto) type.
3575///
3576/// These types are usually a placeholder for a deduced type. However, before
3577/// the initializer is attached, or if the initializer is type-dependent, there
3578/// is no deduced type and an auto type is canonical. In the latter case, it is
3579/// also a dependent type.
3580class AutoType : public Type, public llvm::FoldingSetNode {
3581  AutoType(QualType DeducedType, bool IsDecltypeAuto, bool IsDependent)
3582    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3583           /*Dependent=*/IsDependent, /*InstantiationDependent=*/IsDependent,
3584           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3585    assert((DeducedType.isNull() || !IsDependent) &&
3586           "auto deduced to dependent type");
3587    AutoTypeBits.IsDecltypeAuto = IsDecltypeAuto;
3588  }
3589
3590  friend class ASTContext;  // ASTContext creates these
3591
3592public:
3593  bool isDecltypeAuto() const { return AutoTypeBits.IsDecltypeAuto; }
3594
3595  bool isSugared() const { return !isCanonicalUnqualified(); }
3596  QualType desugar() const { return getCanonicalTypeInternal(); }
3597
3598  /// \brief Get the type deduced for this auto type, or null if it's either
3599  /// not been deduced or was deduced to a dependent type.
3600  QualType getDeducedType() const {
3601    return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
3602  }
3603  bool isDeduced() const {
3604    return !isCanonicalUnqualified() || isDependentType();
3605  }
3606
3607  void Profile(llvm::FoldingSetNodeID &ID) {
3608    Profile(ID, getDeducedType(), isDecltypeAuto(), isDependentType());
3609  }
3610
3611  static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
3612                      bool IsDecltypeAuto, bool IsDependent) {
3613    ID.AddPointer(Deduced.getAsOpaquePtr());
3614    ID.AddBoolean(IsDecltypeAuto);
3615    ID.AddBoolean(IsDependent);
3616  }
3617
3618  static bool classof(const Type *T) {
3619    return T->getTypeClass() == Auto;
3620  }
3621};
3622
3623/// \brief Represents a type template specialization; the template
3624/// must be a class template, a type alias template, or a template
3625/// template parameter.  A template which cannot be resolved to one of
3626/// these, e.g. because it is written with a dependent scope
3627/// specifier, is instead represented as a
3628/// @c DependentTemplateSpecializationType.
3629///
3630/// A non-dependent template specialization type is always "sugar",
3631/// typically for a @c RecordType.  For example, a class template
3632/// specialization type of @c vector<int> will refer to a tag type for
3633/// the instantiation @c std::vector<int, std::allocator<int>>
3634///
3635/// Template specializations are dependent if either the template or
3636/// any of the template arguments are dependent, in which case the
3637/// type may also be canonical.
3638///
3639/// Instances of this type are allocated with a trailing array of
3640/// TemplateArguments, followed by a QualType representing the
3641/// non-canonical aliased type when the template is a type alias
3642/// template.
3643class TemplateSpecializationType
3644  : public Type, public llvm::FoldingSetNode {
3645  /// \brief The name of the template being specialized.  This is
3646  /// either a TemplateName::Template (in which case it is a
3647  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
3648  /// TypeAliasTemplateDecl*), a
3649  /// TemplateName::SubstTemplateTemplateParmPack, or a
3650  /// TemplateName::SubstTemplateTemplateParm (in which case the
3651  /// replacement must, recursively, be one of these).
3652  TemplateName Template;
3653
3654  /// \brief - The number of template arguments named in this class
3655  /// template specialization.
3656  unsigned NumArgs : 31;
3657
3658  /// \brief Whether this template specialization type is a substituted
3659  /// type alias.
3660  bool TypeAlias : 1;
3661
3662  TemplateSpecializationType(TemplateName T,
3663                             const TemplateArgument *Args,
3664                             unsigned NumArgs, QualType Canon,
3665                             QualType Aliased);
3666
3667  friend class ASTContext;  // ASTContext creates these
3668
3669public:
3670  /// \brief Determine whether any of the given template arguments are
3671  /// dependent.
3672  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3673                                            unsigned NumArgs,
3674                                            bool &InstantiationDependent);
3675
3676  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3677                                            unsigned NumArgs,
3678                                            bool &InstantiationDependent);
3679
3680  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
3681                                            bool &InstantiationDependent);
3682
3683  /// \brief Print a template argument list, including the '<' and '>'
3684  /// enclosing the template arguments.
3685  static void PrintTemplateArgumentList(raw_ostream &OS,
3686                                        const TemplateArgument *Args,
3687                                        unsigned NumArgs,
3688                                        const PrintingPolicy &Policy,
3689                                        bool SkipBrackets = false);
3690
3691  static void PrintTemplateArgumentList(raw_ostream &OS,
3692                                        const TemplateArgumentLoc *Args,
3693                                        unsigned NumArgs,
3694                                        const PrintingPolicy &Policy);
3695
3696  static void PrintTemplateArgumentList(raw_ostream &OS,
3697                                        const TemplateArgumentListInfo &,
3698                                        const PrintingPolicy &Policy);
3699
3700  /// True if this template specialization type matches a current
3701  /// instantiation in the context in which it is found.
3702  bool isCurrentInstantiation() const {
3703    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3704  }
3705
3706  /// \brief Determine if this template specialization type is for a type alias
3707  /// template that has been substituted.
3708  ///
3709  /// Nearly every template specialization type whose template is an alias
3710  /// template will be substituted. However, this is not the case when
3711  /// the specialization contains a pack expansion but the template alias
3712  /// does not have a corresponding parameter pack, e.g.,
3713  ///
3714  /// \code
3715  /// template<typename T, typename U, typename V> struct S;
3716  /// template<typename T, typename U> using A = S<T, int, U>;
3717  /// template<typename... Ts> struct X {
3718  ///   typedef A<Ts...> type; // not a type alias
3719  /// };
3720  /// \endcode
3721  bool isTypeAlias() const { return TypeAlias; }
3722
3723  /// Get the aliased type, if this is a specialization of a type alias
3724  /// template.
3725  QualType getAliasedType() const {
3726    assert(isTypeAlias() && "not a type alias template specialization");
3727    return *reinterpret_cast<const QualType*>(end());
3728  }
3729
3730  typedef const TemplateArgument * iterator;
3731
3732  iterator begin() const { return getArgs(); }
3733  iterator end() const; // defined inline in TemplateBase.h
3734
3735  /// \brief Retrieve the name of the template that we are specializing.
3736  TemplateName getTemplateName() const { return Template; }
3737
3738  /// \brief Retrieve the template arguments.
3739  const TemplateArgument *getArgs() const {
3740    return reinterpret_cast<const TemplateArgument *>(this + 1);
3741  }
3742
3743  /// \brief Retrieve the number of template arguments.
3744  unsigned getNumArgs() const { return NumArgs; }
3745
3746  /// \brief Retrieve a specific template argument as a type.
3747  /// \pre @c isArgType(Arg)
3748  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3749
3750  bool isSugared() const {
3751    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
3752  }
3753  QualType desugar() const { return getCanonicalTypeInternal(); }
3754
3755  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3756    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3757    if (isTypeAlias())
3758      getAliasedType().Profile(ID);
3759  }
3760
3761  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3762                      const TemplateArgument *Args,
3763                      unsigned NumArgs,
3764                      const ASTContext &Context);
3765
3766  static bool classof(const Type *T) {
3767    return T->getTypeClass() == TemplateSpecialization;
3768  }
3769};
3770
3771/// \brief The injected class name of a C++ class template or class
3772/// template partial specialization.  Used to record that a type was
3773/// spelled with a bare identifier rather than as a template-id; the
3774/// equivalent for non-templated classes is just RecordType.
3775///
3776/// Injected class name types are always dependent.  Template
3777/// instantiation turns these into RecordTypes.
3778///
3779/// Injected class name types are always canonical.  This works
3780/// because it is impossible to compare an injected class name type
3781/// with the corresponding non-injected template type, for the same
3782/// reason that it is impossible to directly compare template
3783/// parameters from different dependent contexts: injected class name
3784/// types can only occur within the scope of a particular templated
3785/// declaration, and within that scope every template specialization
3786/// will canonicalize to the injected class name (when appropriate
3787/// according to the rules of the language).
3788class InjectedClassNameType : public Type {
3789  CXXRecordDecl *Decl;
3790
3791  /// The template specialization which this type represents.
3792  /// For example, in
3793  ///   template <class T> class A { ... };
3794  /// this is A<T>, whereas in
3795  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3796  /// this is A<B<X,Y> >.
3797  ///
3798  /// It is always unqualified, always a template specialization type,
3799  /// and always dependent.
3800  QualType InjectedType;
3801
3802  friend class ASTContext; // ASTContext creates these.
3803  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3804                          // currently suitable for AST reading, too much
3805                          // interdependencies.
3806  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3807    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3808           /*InstantiationDependent=*/true,
3809           /*VariablyModified=*/false,
3810           /*ContainsUnexpandedParameterPack=*/false),
3811      Decl(D), InjectedType(TST) {
3812    assert(isa<TemplateSpecializationType>(TST));
3813    assert(!TST.hasQualifiers());
3814    assert(TST->isDependentType());
3815  }
3816
3817public:
3818  QualType getInjectedSpecializationType() const { return InjectedType; }
3819  const TemplateSpecializationType *getInjectedTST() const {
3820    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3821  }
3822
3823  CXXRecordDecl *getDecl() const;
3824
3825  bool isSugared() const { return false; }
3826  QualType desugar() const { return QualType(this, 0); }
3827
3828  static bool classof(const Type *T) {
3829    return T->getTypeClass() == InjectedClassName;
3830  }
3831};
3832
3833/// \brief The kind of a tag type.
3834enum TagTypeKind {
3835  /// \brief The "struct" keyword.
3836  TTK_Struct,
3837  /// \brief The "__interface" keyword.
3838  TTK_Interface,
3839  /// \brief The "union" keyword.
3840  TTK_Union,
3841  /// \brief The "class" keyword.
3842  TTK_Class,
3843  /// \brief The "enum" keyword.
3844  TTK_Enum
3845};
3846
3847/// \brief The elaboration keyword that precedes a qualified type name or
3848/// introduces an elaborated-type-specifier.
3849enum ElaboratedTypeKeyword {
3850  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3851  ETK_Struct,
3852  /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
3853  ETK_Interface,
3854  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3855  ETK_Union,
3856  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3857  ETK_Class,
3858  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3859  ETK_Enum,
3860  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3861  /// \c typename T::type.
3862  ETK_Typename,
3863  /// \brief No keyword precedes the qualified type name.
3864  ETK_None
3865};
3866
3867/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3868/// The keyword in stored in the free bits of the base class.
3869/// Also provides a few static helpers for converting and printing
3870/// elaborated type keyword and tag type kind enumerations.
3871class TypeWithKeyword : public Type {
3872protected:
3873  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3874                  QualType Canonical, bool Dependent,
3875                  bool InstantiationDependent, bool VariablyModified,
3876                  bool ContainsUnexpandedParameterPack)
3877  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3878         ContainsUnexpandedParameterPack) {
3879    TypeWithKeywordBits.Keyword = Keyword;
3880  }
3881
3882public:
3883  ElaboratedTypeKeyword getKeyword() const {
3884    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3885  }
3886
3887  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3888  /// into an elaborated type keyword.
3889  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3890
3891  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3892  /// into a tag type kind.  It is an error to provide a type specifier
3893  /// which *isn't* a tag kind here.
3894  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3895
3896  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3897  /// elaborated type keyword.
3898  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3899
3900  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3901  // a TagTypeKind. It is an error to provide an elaborated type keyword
3902  /// which *isn't* a tag kind here.
3903  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3904
3905  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3906
3907  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3908
3909  static const char *getTagTypeKindName(TagTypeKind Kind) {
3910    return getKeywordName(getKeywordForTagTypeKind(Kind));
3911  }
3912
3913  class CannotCastToThisType {};
3914  static CannotCastToThisType classof(const Type *);
3915};
3916
3917/// \brief Represents a type that was referred to using an elaborated type
3918/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3919/// or both.
3920///
3921/// This type is used to keep track of a type name as written in the
3922/// source code, including tag keywords and any nested-name-specifiers.
3923/// The type itself is always "sugar", used to express what was written
3924/// in the source code but containing no additional semantic information.
3925class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3926
3927  /// \brief The nested name specifier containing the qualifier.
3928  NestedNameSpecifier *NNS;
3929
3930  /// \brief The type that this qualified name refers to.
3931  QualType NamedType;
3932
3933  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3934                 QualType NamedType, QualType CanonType)
3935    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3936                      NamedType->isDependentType(),
3937                      NamedType->isInstantiationDependentType(),
3938                      NamedType->isVariablyModifiedType(),
3939                      NamedType->containsUnexpandedParameterPack()),
3940      NNS(NNS), NamedType(NamedType) {
3941    assert(!(Keyword == ETK_None && NNS == 0) &&
3942           "ElaboratedType cannot have elaborated type keyword "
3943           "and name qualifier both null.");
3944  }
3945
3946  friend class ASTContext;  // ASTContext creates these
3947
3948public:
3949  ~ElaboratedType();
3950
3951  /// \brief Retrieve the qualification on this type.
3952  NestedNameSpecifier *getQualifier() const { return NNS; }
3953
3954  /// \brief Retrieve the type named by the qualified-id.
3955  QualType getNamedType() const { return NamedType; }
3956
3957  /// \brief Remove a single level of sugar.
3958  QualType desugar() const { return getNamedType(); }
3959
3960  /// \brief Returns whether this type directly provides sugar.
3961  bool isSugared() const { return true; }
3962
3963  void Profile(llvm::FoldingSetNodeID &ID) {
3964    Profile(ID, getKeyword(), NNS, NamedType);
3965  }
3966
3967  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3968                      NestedNameSpecifier *NNS, QualType NamedType) {
3969    ID.AddInteger(Keyword);
3970    ID.AddPointer(NNS);
3971    NamedType.Profile(ID);
3972  }
3973
3974  static bool classof(const Type *T) {
3975    return T->getTypeClass() == Elaborated;
3976  }
3977};
3978
3979/// \brief Represents a qualified type name for which the type name is
3980/// dependent.
3981///
3982/// DependentNameType represents a class of dependent types that involve a
3983/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3984/// name of a type. The DependentNameType may start with a "typename" (for a
3985/// typename-specifier), "class", "struct", "union", or "enum" (for a
3986/// dependent elaborated-type-specifier), or nothing (in contexts where we
3987/// know that we must be referring to a type, e.g., in a base class specifier).
3988class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3989
3990  /// \brief The nested name specifier containing the qualifier.
3991  NestedNameSpecifier *NNS;
3992
3993  /// \brief The type that this typename specifier refers to.
3994  const IdentifierInfo *Name;
3995
3996  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3997                    const IdentifierInfo *Name, QualType CanonType)
3998    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3999                      /*InstantiationDependent=*/true,
4000                      /*VariablyModified=*/false,
4001                      NNS->containsUnexpandedParameterPack()),
4002      NNS(NNS), Name(Name) {
4003    assert(NNS->isDependent() &&
4004           "DependentNameType requires a dependent nested-name-specifier");
4005  }
4006
4007  friend class ASTContext;  // ASTContext creates these
4008
4009public:
4010  /// \brief Retrieve the qualification on this type.
4011  NestedNameSpecifier *getQualifier() const { return NNS; }
4012
4013  /// \brief Retrieve the type named by the typename specifier as an
4014  /// identifier.
4015  ///
4016  /// This routine will return a non-NULL identifier pointer when the
4017  /// form of the original typename was terminated by an identifier,
4018  /// e.g., "typename T::type".
4019  const IdentifierInfo *getIdentifier() const {
4020    return Name;
4021  }
4022
4023  bool isSugared() const { return false; }
4024  QualType desugar() const { return QualType(this, 0); }
4025
4026  void Profile(llvm::FoldingSetNodeID &ID) {
4027    Profile(ID, getKeyword(), NNS, Name);
4028  }
4029
4030  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
4031                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
4032    ID.AddInteger(Keyword);
4033    ID.AddPointer(NNS);
4034    ID.AddPointer(Name);
4035  }
4036
4037  static bool classof(const Type *T) {
4038    return T->getTypeClass() == DependentName;
4039  }
4040};
4041
4042/// DependentTemplateSpecializationType - Represents a template
4043/// specialization type whose template cannot be resolved, e.g.
4044///   A<T>::template B<T>
4045class DependentTemplateSpecializationType :
4046  public TypeWithKeyword, public llvm::FoldingSetNode {
4047
4048  /// \brief The nested name specifier containing the qualifier.
4049  NestedNameSpecifier *NNS;
4050
4051  /// \brief The identifier of the template.
4052  const IdentifierInfo *Name;
4053
4054  /// \brief - The number of template arguments named in this class
4055  /// template specialization.
4056  unsigned NumArgs;
4057
4058  const TemplateArgument *getArgBuffer() const {
4059    return reinterpret_cast<const TemplateArgument*>(this+1);
4060  }
4061  TemplateArgument *getArgBuffer() {
4062    return reinterpret_cast<TemplateArgument*>(this+1);
4063  }
4064
4065  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
4066                                      NestedNameSpecifier *NNS,
4067                                      const IdentifierInfo *Name,
4068                                      unsigned NumArgs,
4069                                      const TemplateArgument *Args,
4070                                      QualType Canon);
4071
4072  friend class ASTContext;  // ASTContext creates these
4073
4074public:
4075  NestedNameSpecifier *getQualifier() const { return NNS; }
4076  const IdentifierInfo *getIdentifier() const { return Name; }
4077
4078  /// \brief Retrieve the template arguments.
4079  const TemplateArgument *getArgs() const {
4080    return getArgBuffer();
4081  }
4082
4083  /// \brief Retrieve the number of template arguments.
4084  unsigned getNumArgs() const { return NumArgs; }
4085
4086  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4087
4088  typedef const TemplateArgument * iterator;
4089  iterator begin() const { return getArgs(); }
4090  iterator end() const; // inline in TemplateBase.h
4091
4092  bool isSugared() const { return false; }
4093  QualType desugar() const { return QualType(this, 0); }
4094
4095  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
4096    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
4097  }
4098
4099  static void Profile(llvm::FoldingSetNodeID &ID,
4100                      const ASTContext &Context,
4101                      ElaboratedTypeKeyword Keyword,
4102                      NestedNameSpecifier *Qualifier,
4103                      const IdentifierInfo *Name,
4104                      unsigned NumArgs,
4105                      const TemplateArgument *Args);
4106
4107  static bool classof(const Type *T) {
4108    return T->getTypeClass() == DependentTemplateSpecialization;
4109  }
4110};
4111
4112/// \brief Represents a pack expansion of types.
4113///
4114/// Pack expansions are part of C++0x variadic templates. A pack
4115/// expansion contains a pattern, which itself contains one or more
4116/// "unexpanded" parameter packs. When instantiated, a pack expansion
4117/// produces a series of types, each instantiated from the pattern of
4118/// the expansion, where the Ith instantiation of the pattern uses the
4119/// Ith arguments bound to each of the unexpanded parameter packs. The
4120/// pack expansion is considered to "expand" these unexpanded
4121/// parameter packs.
4122///
4123/// \code
4124/// template<typename ...Types> struct tuple;
4125///
4126/// template<typename ...Types>
4127/// struct tuple_of_references {
4128///   typedef tuple<Types&...> type;
4129/// };
4130/// \endcode
4131///
4132/// Here, the pack expansion \c Types&... is represented via a
4133/// PackExpansionType whose pattern is Types&.
4134class PackExpansionType : public Type, public llvm::FoldingSetNode {
4135  /// \brief The pattern of the pack expansion.
4136  QualType Pattern;
4137
4138  /// \brief The number of expansions that this pack expansion will
4139  /// generate when substituted (+1), or indicates that
4140  ///
4141  /// This field will only have a non-zero value when some of the parameter
4142  /// packs that occur within the pattern have been substituted but others have
4143  /// not.
4144  unsigned NumExpansions;
4145
4146  PackExpansionType(QualType Pattern, QualType Canon,
4147                    Optional<unsigned> NumExpansions)
4148    : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
4149           /*InstantiationDependent=*/true,
4150           /*VariableModified=*/Pattern->isVariablyModifiedType(),
4151           /*ContainsUnexpandedParameterPack=*/false),
4152      Pattern(Pattern),
4153      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
4154
4155  friend class ASTContext;  // ASTContext creates these
4156
4157public:
4158  /// \brief Retrieve the pattern of this pack expansion, which is the
4159  /// type that will be repeatedly instantiated when instantiating the
4160  /// pack expansion itself.
4161  QualType getPattern() const { return Pattern; }
4162
4163  /// \brief Retrieve the number of expansions that this pack expansion will
4164  /// generate, if known.
4165  Optional<unsigned> getNumExpansions() const {
4166    if (NumExpansions)
4167      return NumExpansions - 1;
4168
4169    return None;
4170  }
4171
4172  bool isSugared() const { return false; }
4173  QualType desugar() const { return QualType(this, 0); }
4174
4175  void Profile(llvm::FoldingSetNodeID &ID) {
4176    Profile(ID, getPattern(), getNumExpansions());
4177  }
4178
4179  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
4180                      Optional<unsigned> NumExpansions) {
4181    ID.AddPointer(Pattern.getAsOpaquePtr());
4182    ID.AddBoolean(NumExpansions.hasValue());
4183    if (NumExpansions)
4184      ID.AddInteger(*NumExpansions);
4185  }
4186
4187  static bool classof(const Type *T) {
4188    return T->getTypeClass() == PackExpansion;
4189  }
4190};
4191
4192/// ObjCObjectType - Represents a class type in Objective C.
4193/// Every Objective C type is a combination of a base type and a
4194/// list of protocols.
4195///
4196/// Given the following declarations:
4197/// \code
4198///   \@class C;
4199///   \@protocol P;
4200/// \endcode
4201///
4202/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4203/// with base C and no protocols.
4204///
4205/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
4206///
4207/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
4208/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4209/// and no protocols.
4210///
4211/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
4212/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4213/// this should get its own sugar class to better represent the source.
4214class ObjCObjectType : public Type {
4215  // ObjCObjectType.NumProtocols - the number of protocols stored
4216  // after the ObjCObjectPointerType node.
4217  //
4218  // These protocols are those written directly on the type.  If
4219  // protocol qualifiers ever become additive, the iterators will need
4220  // to get kindof complicated.
4221  //
4222  // In the canonical object type, these are sorted alphabetically
4223  // and uniqued.
4224
4225  /// Either a BuiltinType or an InterfaceType or sugar for either.
4226  QualType BaseType;
4227
4228  ObjCProtocolDecl * const *getProtocolStorage() const {
4229    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4230  }
4231
4232  ObjCProtocolDecl **getProtocolStorage();
4233
4234protected:
4235  ObjCObjectType(QualType Canonical, QualType Base,
4236                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
4237
4238  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4239  ObjCObjectType(enum Nonce_ObjCInterface)
4240        : Type(ObjCInterface, QualType(), false, false, false, false),
4241      BaseType(QualType(this_(), 0)) {
4242    ObjCObjectTypeBits.NumProtocols = 0;
4243  }
4244
4245public:
4246  /// getBaseType - Gets the base type of this object type.  This is
4247  /// always (possibly sugar for) one of:
4248  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4249  ///    user, which is a typedef for an ObjCPointerType)
4250  ///  - the 'Class' builtin type (same caveat)
4251  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4252  QualType getBaseType() const { return BaseType; }
4253
4254  bool isObjCId() const {
4255    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4256  }
4257  bool isObjCClass() const {
4258    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4259  }
4260  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4261  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4262  bool isObjCUnqualifiedIdOrClass() const {
4263    if (!qual_empty()) return false;
4264    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4265      return T->getKind() == BuiltinType::ObjCId ||
4266             T->getKind() == BuiltinType::ObjCClass;
4267    return false;
4268  }
4269  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4270  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4271
4272  /// Gets the interface declaration for this object type, if the base type
4273  /// really is an interface.
4274  ObjCInterfaceDecl *getInterface() const;
4275
4276  typedef ObjCProtocolDecl * const *qual_iterator;
4277
4278  qual_iterator qual_begin() const { return getProtocolStorage(); }
4279  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4280
4281  bool qual_empty() const { return getNumProtocols() == 0; }
4282
4283  /// getNumProtocols - Return the number of qualifying protocols in this
4284  /// interface type, or 0 if there are none.
4285  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4286
4287  /// \brief Fetch a protocol by index.
4288  ObjCProtocolDecl *getProtocol(unsigned I) const {
4289    assert(I < getNumProtocols() && "Out-of-range protocol access");
4290    return qual_begin()[I];
4291  }
4292
4293  bool isSugared() const { return false; }
4294  QualType desugar() const { return QualType(this, 0); }
4295
4296  static bool classof(const Type *T) {
4297    return T->getTypeClass() == ObjCObject ||
4298           T->getTypeClass() == ObjCInterface;
4299  }
4300};
4301
4302/// ObjCObjectTypeImpl - A class providing a concrete implementation
4303/// of ObjCObjectType, so as to not increase the footprint of
4304/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4305/// system should not reference this type.
4306class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4307  friend class ASTContext;
4308
4309  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4310  // will need to be modified.
4311
4312  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4313                     ObjCProtocolDecl * const *Protocols,
4314                     unsigned NumProtocols)
4315    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
4316
4317public:
4318  void Profile(llvm::FoldingSetNodeID &ID);
4319  static void Profile(llvm::FoldingSetNodeID &ID,
4320                      QualType Base,
4321                      ObjCProtocolDecl *const *protocols,
4322                      unsigned NumProtocols);
4323};
4324
4325inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4326  return reinterpret_cast<ObjCProtocolDecl**>(
4327            static_cast<ObjCObjectTypeImpl*>(this) + 1);
4328}
4329
4330/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
4331/// object oriented design.  They basically correspond to C++ classes.  There
4332/// are two kinds of interface types, normal interfaces like "NSString" and
4333/// qualified interfaces, which are qualified with a protocol list like
4334/// "NSString<NSCopyable, NSAmazing>".
4335///
4336/// ObjCInterfaceType guarantees the following properties when considered
4337/// as a subtype of its superclass, ObjCObjectType:
4338///   - There are no protocol qualifiers.  To reinforce this, code which
4339///     tries to invoke the protocol methods via an ObjCInterfaceType will
4340///     fail to compile.
4341///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4342///     T->getBaseType() == QualType(T, 0).
4343class ObjCInterfaceType : public ObjCObjectType {
4344  mutable ObjCInterfaceDecl *Decl;
4345
4346  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4347    : ObjCObjectType(Nonce_ObjCInterface),
4348      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4349  friend class ASTContext;  // ASTContext creates these.
4350  friend class ASTReader;
4351  friend class ObjCInterfaceDecl;
4352
4353public:
4354  /// getDecl - Get the declaration of this interface.
4355  ObjCInterfaceDecl *getDecl() const { return Decl; }
4356
4357  bool isSugared() const { return false; }
4358  QualType desugar() const { return QualType(this, 0); }
4359
4360  static bool classof(const Type *T) {
4361    return T->getTypeClass() == ObjCInterface;
4362  }
4363
4364  // Nonsense to "hide" certain members of ObjCObjectType within this
4365  // class.  People asking for protocols on an ObjCInterfaceType are
4366  // not going to get what they want: ObjCInterfaceTypes are
4367  // guaranteed to have no protocols.
4368  enum {
4369    qual_iterator,
4370    qual_begin,
4371    qual_end,
4372    getNumProtocols,
4373    getProtocol
4374  };
4375};
4376
4377inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4378  if (const ObjCInterfaceType *T =
4379        getBaseType()->getAs<ObjCInterfaceType>())
4380    return T->getDecl();
4381  return 0;
4382}
4383
4384/// ObjCObjectPointerType - Used to represent a pointer to an
4385/// Objective C object.  These are constructed from pointer
4386/// declarators when the pointee type is an ObjCObjectType (or sugar
4387/// for one).  In addition, the 'id' and 'Class' types are typedefs
4388/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
4389/// are translated into these.
4390///
4391/// Pointers to pointers to Objective C objects are still PointerTypes;
4392/// only the first level of pointer gets it own type implementation.
4393class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4394  QualType PointeeType;
4395
4396  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4397    : Type(ObjCObjectPointer, Canonical, false, false, false, false),
4398      PointeeType(Pointee) {}
4399  friend class ASTContext;  // ASTContext creates these.
4400
4401public:
4402  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
4403  /// The result will always be an ObjCObjectType or sugar thereof.
4404  QualType getPointeeType() const { return PointeeType; }
4405
4406  /// getObjCObjectType - Gets the type pointed to by this ObjC
4407  /// pointer.  This method always returns non-null.
4408  ///
4409  /// This method is equivalent to getPointeeType() except that
4410  /// it discards any typedefs (or other sugar) between this
4411  /// type and the "outermost" object type.  So for:
4412  /// \code
4413  ///   \@class A; \@protocol P; \@protocol Q;
4414  ///   typedef A<P> AP;
4415  ///   typedef A A1;
4416  ///   typedef A1<P> A1P;
4417  ///   typedef A1P<Q> A1PQ;
4418  /// \endcode
4419  /// For 'A*', getObjectType() will return 'A'.
4420  /// For 'A<P>*', getObjectType() will return 'A<P>'.
4421  /// For 'AP*', getObjectType() will return 'A<P>'.
4422  /// For 'A1*', getObjectType() will return 'A'.
4423  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
4424  /// For 'A1P*', getObjectType() will return 'A1<P>'.
4425  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
4426  ///   adding protocols to a protocol-qualified base discards the
4427  ///   old qualifiers (for now).  But if it didn't, getObjectType()
4428  ///   would return 'A1P<Q>' (and we'd have to make iterating over
4429  ///   qualifiers more complicated).
4430  const ObjCObjectType *getObjectType() const {
4431    return PointeeType->castAs<ObjCObjectType>();
4432  }
4433
4434  /// getInterfaceType - If this pointer points to an Objective C
4435  /// \@interface type, gets the type for that interface.  Any protocol
4436  /// qualifiers on the interface are ignored.
4437  ///
4438  /// \return null if the base type for this pointer is 'id' or 'Class'
4439  const ObjCInterfaceType *getInterfaceType() const {
4440    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
4441  }
4442
4443  /// getInterfaceDecl - If this pointer points to an Objective \@interface
4444  /// type, gets the declaration for that interface.
4445  ///
4446  /// \return null if the base type for this pointer is 'id' or 'Class'
4447  ObjCInterfaceDecl *getInterfaceDecl() const {
4448    return getObjectType()->getInterface();
4449  }
4450
4451  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
4452  /// its object type is the primitive 'id' type with no protocols.
4453  bool isObjCIdType() const {
4454    return getObjectType()->isObjCUnqualifiedId();
4455  }
4456
4457  /// isObjCClassType - True if this is equivalent to the 'Class' type,
4458  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
4459  bool isObjCClassType() const {
4460    return getObjectType()->isObjCUnqualifiedClass();
4461  }
4462
4463  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
4464  /// non-empty set of protocols.
4465  bool isObjCQualifiedIdType() const {
4466    return getObjectType()->isObjCQualifiedId();
4467  }
4468
4469  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
4470  /// some non-empty set of protocols.
4471  bool isObjCQualifiedClassType() const {
4472    return getObjectType()->isObjCQualifiedClass();
4473  }
4474
4475  /// An iterator over the qualifiers on the object type.  Provided
4476  /// for convenience.  This will always iterate over the full set of
4477  /// protocols on a type, not just those provided directly.
4478  typedef ObjCObjectType::qual_iterator qual_iterator;
4479
4480  qual_iterator qual_begin() const {
4481    return getObjectType()->qual_begin();
4482  }
4483  qual_iterator qual_end() const {
4484    return getObjectType()->qual_end();
4485  }
4486  bool qual_empty() const { return getObjectType()->qual_empty(); }
4487
4488  /// getNumProtocols - Return the number of qualifying protocols on
4489  /// the object type.
4490  unsigned getNumProtocols() const {
4491    return getObjectType()->getNumProtocols();
4492  }
4493
4494  /// \brief Retrieve a qualifying protocol by index on the object
4495  /// type.
4496  ObjCProtocolDecl *getProtocol(unsigned I) const {
4497    return getObjectType()->getProtocol(I);
4498  }
4499
4500  bool isSugared() const { return false; }
4501  QualType desugar() const { return QualType(this, 0); }
4502
4503  void Profile(llvm::FoldingSetNodeID &ID) {
4504    Profile(ID, getPointeeType());
4505  }
4506  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4507    ID.AddPointer(T.getAsOpaquePtr());
4508  }
4509  static bool classof(const Type *T) {
4510    return T->getTypeClass() == ObjCObjectPointer;
4511  }
4512};
4513
4514class AtomicType : public Type, public llvm::FoldingSetNode {
4515  QualType ValueType;
4516
4517  AtomicType(QualType ValTy, QualType Canonical)
4518    : Type(Atomic, Canonical, ValTy->isDependentType(),
4519           ValTy->isInstantiationDependentType(),
4520           ValTy->isVariablyModifiedType(),
4521           ValTy->containsUnexpandedParameterPack()),
4522      ValueType(ValTy) {}
4523  friend class ASTContext;  // ASTContext creates these.
4524
4525  public:
4526  /// getValueType - Gets the type contained by this atomic type, i.e.
4527  /// the type returned by performing an atomic load of this atomic type.
4528  QualType getValueType() const { return ValueType; }
4529
4530  bool isSugared() const { return false; }
4531  QualType desugar() const { return QualType(this, 0); }
4532
4533  void Profile(llvm::FoldingSetNodeID &ID) {
4534    Profile(ID, getValueType());
4535  }
4536  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4537    ID.AddPointer(T.getAsOpaquePtr());
4538  }
4539  static bool classof(const Type *T) {
4540    return T->getTypeClass() == Atomic;
4541  }
4542};
4543
4544/// A qualifier set is used to build a set of qualifiers.
4545class QualifierCollector : public Qualifiers {
4546public:
4547  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4548
4549  /// Collect any qualifiers on the given type and return an
4550  /// unqualified type.  The qualifiers are assumed to be consistent
4551  /// with those already in the type.
4552  const Type *strip(QualType type) {
4553    addFastQualifiers(type.getLocalFastQualifiers());
4554    if (!type.hasLocalNonFastQualifiers())
4555      return type.getTypePtrUnsafe();
4556
4557    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4558    addConsistentQualifiers(extQuals->getQualifiers());
4559    return extQuals->getBaseType();
4560  }
4561
4562  /// Apply the collected qualifiers to the given type.
4563  QualType apply(const ASTContext &Context, QualType QT) const;
4564
4565  /// Apply the collected qualifiers to the given type.
4566  QualType apply(const ASTContext &Context, const Type* T) const;
4567};
4568
4569
4570// Inline function definitions.
4571
4572inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
4573  SplitQualType desugar =
4574    Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
4575  desugar.Quals.addConsistentQualifiers(Quals);
4576  return desugar;
4577}
4578
4579inline const Type *QualType::getTypePtr() const {
4580  return getCommonPtr()->BaseType;
4581}
4582
4583inline const Type *QualType::getTypePtrOrNull() const {
4584  return (isNull() ? 0 : getCommonPtr()->BaseType);
4585}
4586
4587inline SplitQualType QualType::split() const {
4588  if (!hasLocalNonFastQualifiers())
4589    return SplitQualType(getTypePtrUnsafe(),
4590                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4591
4592  const ExtQuals *eq = getExtQualsUnsafe();
4593  Qualifiers qs = eq->getQualifiers();
4594  qs.addFastQualifiers(getLocalFastQualifiers());
4595  return SplitQualType(eq->getBaseType(), qs);
4596}
4597
4598inline Qualifiers QualType::getLocalQualifiers() const {
4599  Qualifiers Quals;
4600  if (hasLocalNonFastQualifiers())
4601    Quals = getExtQualsUnsafe()->getQualifiers();
4602  Quals.addFastQualifiers(getLocalFastQualifiers());
4603  return Quals;
4604}
4605
4606inline Qualifiers QualType::getQualifiers() const {
4607  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4608  quals.addFastQualifiers(getLocalFastQualifiers());
4609  return quals;
4610}
4611
4612inline unsigned QualType::getCVRQualifiers() const {
4613  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4614  cvr |= getLocalCVRQualifiers();
4615  return cvr;
4616}
4617
4618inline QualType QualType::getCanonicalType() const {
4619  QualType canon = getCommonPtr()->CanonicalType;
4620  return canon.withFastQualifiers(getLocalFastQualifiers());
4621}
4622
4623inline bool QualType::isCanonical() const {
4624  return getTypePtr()->isCanonicalUnqualified();
4625}
4626
4627inline bool QualType::isCanonicalAsParam() const {
4628  if (!isCanonical()) return false;
4629  if (hasLocalQualifiers()) return false;
4630
4631  const Type *T = getTypePtr();
4632  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4633    return false;
4634
4635  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4636}
4637
4638inline bool QualType::isConstQualified() const {
4639  return isLocalConstQualified() ||
4640         getCommonPtr()->CanonicalType.isLocalConstQualified();
4641}
4642
4643inline bool QualType::isRestrictQualified() const {
4644  return isLocalRestrictQualified() ||
4645         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4646}
4647
4648
4649inline bool QualType::isVolatileQualified() const {
4650  return isLocalVolatileQualified() ||
4651         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4652}
4653
4654inline bool QualType::hasQualifiers() const {
4655  return hasLocalQualifiers() ||
4656         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4657}
4658
4659inline QualType QualType::getUnqualifiedType() const {
4660  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4661    return QualType(getTypePtr(), 0);
4662
4663  return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
4664}
4665
4666inline SplitQualType QualType::getSplitUnqualifiedType() const {
4667  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4668    return split();
4669
4670  return getSplitUnqualifiedTypeImpl(*this);
4671}
4672
4673inline void QualType::removeLocalConst() {
4674  removeLocalFastQualifiers(Qualifiers::Const);
4675}
4676
4677inline void QualType::removeLocalRestrict() {
4678  removeLocalFastQualifiers(Qualifiers::Restrict);
4679}
4680
4681inline void QualType::removeLocalVolatile() {
4682  removeLocalFastQualifiers(Qualifiers::Volatile);
4683}
4684
4685inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4686  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4687  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4688
4689  // Fast path: we don't need to touch the slow qualifiers.
4690  removeLocalFastQualifiers(Mask);
4691}
4692
4693/// getAddressSpace - Return the address space of this type.
4694inline unsigned QualType::getAddressSpace() const {
4695  return getQualifiers().getAddressSpace();
4696}
4697
4698/// getObjCGCAttr - Return the gc attribute of this type.
4699inline Qualifiers::GC QualType::getObjCGCAttr() const {
4700  return getQualifiers().getObjCGCAttr();
4701}
4702
4703inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4704  if (const PointerType *PT = t.getAs<PointerType>()) {
4705    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4706      return FT->getExtInfo();
4707  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4708    return FT->getExtInfo();
4709
4710  return FunctionType::ExtInfo();
4711}
4712
4713inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4714  return getFunctionExtInfo(*t);
4715}
4716
4717/// isMoreQualifiedThan - Determine whether this type is more
4718/// qualified than the Other type. For example, "const volatile int"
4719/// is more qualified than "const int", "volatile int", and
4720/// "int". However, it is not more qualified than "const volatile
4721/// int".
4722inline bool QualType::isMoreQualifiedThan(QualType other) const {
4723  Qualifiers myQuals = getQualifiers();
4724  Qualifiers otherQuals = other.getQualifiers();
4725  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4726}
4727
4728/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4729/// as qualified as the Other type. For example, "const volatile
4730/// int" is at least as qualified as "const int", "volatile int",
4731/// "int", and "const volatile int".
4732inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4733  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4734}
4735
4736/// getNonReferenceType - If Type is a reference type (e.g., const
4737/// int&), returns the type that the reference refers to ("const
4738/// int"). Otherwise, returns the type itself. This routine is used
4739/// throughout Sema to implement C++ 5p6:
4740///
4741///   If an expression initially has the type "reference to T" (8.3.2,
4742///   8.5.3), the type is adjusted to "T" prior to any further
4743///   analysis, the expression designates the object or function
4744///   denoted by the reference, and the expression is an lvalue.
4745inline QualType QualType::getNonReferenceType() const {
4746  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4747    return RefType->getPointeeType();
4748  else
4749    return *this;
4750}
4751
4752inline bool QualType::isCForbiddenLValueType() const {
4753  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
4754          getTypePtr()->isFunctionType());
4755}
4756
4757/// \brief Tests whether the type is categorized as a fundamental type.
4758///
4759/// \returns True for types specified in C++0x [basic.fundamental].
4760inline bool Type::isFundamentalType() const {
4761  return isVoidType() ||
4762         // FIXME: It's really annoying that we don't have an
4763         // 'isArithmeticType()' which agrees with the standard definition.
4764         (isArithmeticType() && !isEnumeralType());
4765}
4766
4767/// \brief Tests whether the type is categorized as a compound type.
4768///
4769/// \returns True for types specified in C++0x [basic.compound].
4770inline bool Type::isCompoundType() const {
4771  // C++0x [basic.compound]p1:
4772  //   Compound types can be constructed in the following ways:
4773  //    -- arrays of objects of a given type [...];
4774  return isArrayType() ||
4775  //    -- functions, which have parameters of given types [...];
4776         isFunctionType() ||
4777  //    -- pointers to void or objects or functions [...];
4778         isPointerType() ||
4779  //    -- references to objects or functions of a given type. [...]
4780         isReferenceType() ||
4781  //    -- classes containing a sequence of objects of various types, [...];
4782         isRecordType() ||
4783  //    -- unions, which are classes capable of containing objects of different
4784  //               types at different times;
4785         isUnionType() ||
4786  //    -- enumerations, which comprise a set of named constant values. [...];
4787         isEnumeralType() ||
4788  //    -- pointers to non-static class members, [...].
4789         isMemberPointerType();
4790}
4791
4792inline bool Type::isFunctionType() const {
4793  return isa<FunctionType>(CanonicalType);
4794}
4795inline bool Type::isPointerType() const {
4796  return isa<PointerType>(CanonicalType);
4797}
4798inline bool Type::isAnyPointerType() const {
4799  return isPointerType() || isObjCObjectPointerType();
4800}
4801inline bool Type::isBlockPointerType() const {
4802  return isa<BlockPointerType>(CanonicalType);
4803}
4804inline bool Type::isReferenceType() const {
4805  return isa<ReferenceType>(CanonicalType);
4806}
4807inline bool Type::isLValueReferenceType() const {
4808  return isa<LValueReferenceType>(CanonicalType);
4809}
4810inline bool Type::isRValueReferenceType() const {
4811  return isa<RValueReferenceType>(CanonicalType);
4812}
4813inline bool Type::isFunctionPointerType() const {
4814  if (const PointerType *T = getAs<PointerType>())
4815    return T->getPointeeType()->isFunctionType();
4816  else
4817    return false;
4818}
4819inline bool Type::isMemberPointerType() const {
4820  return isa<MemberPointerType>(CanonicalType);
4821}
4822inline bool Type::isMemberFunctionPointerType() const {
4823  if (const MemberPointerType* T = getAs<MemberPointerType>())
4824    return T->isMemberFunctionPointer();
4825  else
4826    return false;
4827}
4828inline bool Type::isMemberDataPointerType() const {
4829  if (const MemberPointerType* T = getAs<MemberPointerType>())
4830    return T->isMemberDataPointer();
4831  else
4832    return false;
4833}
4834inline bool Type::isArrayType() const {
4835  return isa<ArrayType>(CanonicalType);
4836}
4837inline bool Type::isConstantArrayType() const {
4838  return isa<ConstantArrayType>(CanonicalType);
4839}
4840inline bool Type::isIncompleteArrayType() const {
4841  return isa<IncompleteArrayType>(CanonicalType);
4842}
4843inline bool Type::isVariableArrayType() const {
4844  return isa<VariableArrayType>(CanonicalType);
4845}
4846inline bool Type::isDependentSizedArrayType() const {
4847  return isa<DependentSizedArrayType>(CanonicalType);
4848}
4849inline bool Type::isBuiltinType() const {
4850  return isa<BuiltinType>(CanonicalType);
4851}
4852inline bool Type::isRecordType() const {
4853  return isa<RecordType>(CanonicalType);
4854}
4855inline bool Type::isEnumeralType() const {
4856  return isa<EnumType>(CanonicalType);
4857}
4858inline bool Type::isAnyComplexType() const {
4859  return isa<ComplexType>(CanonicalType);
4860}
4861inline bool Type::isVectorType() const {
4862  return isa<VectorType>(CanonicalType);
4863}
4864inline bool Type::isExtVectorType() const {
4865  return isa<ExtVectorType>(CanonicalType);
4866}
4867inline bool Type::isObjCObjectPointerType() const {
4868  return isa<ObjCObjectPointerType>(CanonicalType);
4869}
4870inline bool Type::isObjCObjectType() const {
4871  return isa<ObjCObjectType>(CanonicalType);
4872}
4873inline bool Type::isObjCObjectOrInterfaceType() const {
4874  return isa<ObjCInterfaceType>(CanonicalType) ||
4875    isa<ObjCObjectType>(CanonicalType);
4876}
4877inline bool Type::isAtomicType() const {
4878  return isa<AtomicType>(CanonicalType);
4879}
4880
4881inline bool Type::isObjCQualifiedIdType() const {
4882  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4883    return OPT->isObjCQualifiedIdType();
4884  return false;
4885}
4886inline bool Type::isObjCQualifiedClassType() const {
4887  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4888    return OPT->isObjCQualifiedClassType();
4889  return false;
4890}
4891inline bool Type::isObjCIdType() const {
4892  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4893    return OPT->isObjCIdType();
4894  return false;
4895}
4896inline bool Type::isObjCClassType() const {
4897  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4898    return OPT->isObjCClassType();
4899  return false;
4900}
4901inline bool Type::isObjCSelType() const {
4902  if (const PointerType *OPT = getAs<PointerType>())
4903    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4904  return false;
4905}
4906inline bool Type::isObjCBuiltinType() const {
4907  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4908}
4909
4910inline bool Type::isImage1dT() const {
4911  return isSpecificBuiltinType(BuiltinType::OCLImage1d);
4912}
4913
4914inline bool Type::isImage1dArrayT() const {
4915  return isSpecificBuiltinType(BuiltinType::OCLImage1dArray);
4916}
4917
4918inline bool Type::isImage1dBufferT() const {
4919  return isSpecificBuiltinType(BuiltinType::OCLImage1dBuffer);
4920}
4921
4922inline bool Type::isImage2dT() const {
4923  return isSpecificBuiltinType(BuiltinType::OCLImage2d);
4924}
4925
4926inline bool Type::isImage2dArrayT() const {
4927  return isSpecificBuiltinType(BuiltinType::OCLImage2dArray);
4928}
4929
4930inline bool Type::isImage3dT() const {
4931  return isSpecificBuiltinType(BuiltinType::OCLImage3d);
4932}
4933
4934inline bool Type::isSamplerT() const {
4935  return isSpecificBuiltinType(BuiltinType::OCLSampler);
4936}
4937
4938inline bool Type::isEventT() const {
4939  return isSpecificBuiltinType(BuiltinType::OCLEvent);
4940}
4941
4942inline bool Type::isImageType() const {
4943  return isImage3dT() ||
4944         isImage2dT() || isImage2dArrayT() ||
4945         isImage1dT() || isImage1dArrayT() || isImage1dBufferT();
4946}
4947
4948inline bool Type::isOpenCLSpecificType() const {
4949  return isSamplerT() || isEventT() || isImageType();
4950}
4951
4952inline bool Type::isTemplateTypeParmType() const {
4953  return isa<TemplateTypeParmType>(CanonicalType);
4954}
4955
4956inline bool Type::isSpecificBuiltinType(unsigned K) const {
4957  if (const BuiltinType *BT = getAs<BuiltinType>())
4958    if (BT->getKind() == (BuiltinType::Kind) K)
4959      return true;
4960  return false;
4961}
4962
4963inline bool Type::isPlaceholderType() const {
4964  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4965    return BT->isPlaceholderType();
4966  return false;
4967}
4968
4969inline const BuiltinType *Type::getAsPlaceholderType() const {
4970  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4971    if (BT->isPlaceholderType())
4972      return BT;
4973  return 0;
4974}
4975
4976inline bool Type::isSpecificPlaceholderType(unsigned K) const {
4977  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
4978  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4979    return (BT->getKind() == (BuiltinType::Kind) K);
4980  return false;
4981}
4982
4983inline bool Type::isNonOverloadPlaceholderType() const {
4984  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4985    return BT->isNonOverloadPlaceholderType();
4986  return false;
4987}
4988
4989inline bool Type::isVoidType() const {
4990  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4991    return BT->getKind() == BuiltinType::Void;
4992  return false;
4993}
4994
4995inline bool Type::isHalfType() const {
4996  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4997    return BT->getKind() == BuiltinType::Half;
4998  // FIXME: Should we allow complex __fp16? Probably not.
4999  return false;
5000}
5001
5002inline bool Type::isNullPtrType() const {
5003  if (const BuiltinType *BT = getAs<BuiltinType>())
5004    return BT->getKind() == BuiltinType::NullPtr;
5005  return false;
5006}
5007
5008extern bool IsEnumDeclComplete(EnumDecl *);
5009extern bool IsEnumDeclScoped(EnumDecl *);
5010
5011inline bool Type::isIntegerType() const {
5012  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5013    return BT->getKind() >= BuiltinType::Bool &&
5014           BT->getKind() <= BuiltinType::Int128;
5015  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
5016    // Incomplete enum types are not treated as integer types.
5017    // FIXME: In C++, enum types are never integer types.
5018    return IsEnumDeclComplete(ET->getDecl()) &&
5019      !IsEnumDeclScoped(ET->getDecl());
5020  }
5021  return false;
5022}
5023
5024inline bool Type::isScalarType() const {
5025  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5026    return BT->getKind() > BuiltinType::Void &&
5027           BT->getKind() <= BuiltinType::NullPtr;
5028  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5029    // Enums are scalar types, but only if they are defined.  Incomplete enums
5030    // are not treated as scalar types.
5031    return IsEnumDeclComplete(ET->getDecl());
5032  return isa<PointerType>(CanonicalType) ||
5033         isa<BlockPointerType>(CanonicalType) ||
5034         isa<MemberPointerType>(CanonicalType) ||
5035         isa<ComplexType>(CanonicalType) ||
5036         isa<ObjCObjectPointerType>(CanonicalType);
5037}
5038
5039inline bool Type::isIntegralOrEnumerationType() const {
5040  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5041    return BT->getKind() >= BuiltinType::Bool &&
5042           BT->getKind() <= BuiltinType::Int128;
5043
5044  // Check for a complete enum type; incomplete enum types are not properly an
5045  // enumeration type in the sense required here.
5046  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5047    return IsEnumDeclComplete(ET->getDecl());
5048
5049  return false;
5050}
5051
5052inline bool Type::isBooleanType() const {
5053  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5054    return BT->getKind() == BuiltinType::Bool;
5055  return false;
5056}
5057
5058inline bool Type::isUndeducedType() const {
5059  const AutoType *AT = getContainedAutoType();
5060  return AT && !AT->isDeduced();
5061}
5062
5063/// \brief Determines whether this is a type for which one can define
5064/// an overloaded operator.
5065inline bool Type::isOverloadableType() const {
5066  return isDependentType() || isRecordType() || isEnumeralType();
5067}
5068
5069/// \brief Determines whether this type can decay to a pointer type.
5070inline bool Type::canDecayToPointerType() const {
5071  return isFunctionType() || isArrayType();
5072}
5073
5074inline bool Type::hasPointerRepresentation() const {
5075  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
5076          isObjCObjectPointerType() || isNullPtrType());
5077}
5078
5079inline bool Type::hasObjCPointerRepresentation() const {
5080  return isObjCObjectPointerType();
5081}
5082
5083inline const Type *Type::getBaseElementTypeUnsafe() const {
5084  const Type *type = this;
5085  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
5086    type = arrayType->getElementType().getTypePtr();
5087  return type;
5088}
5089
5090/// Insertion operator for diagnostics.  This allows sending QualType's into a
5091/// diagnostic with <<.
5092inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
5093                                           QualType T) {
5094  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5095                  DiagnosticsEngine::ak_qualtype);
5096  return DB;
5097}
5098
5099/// Insertion operator for partial diagnostics.  This allows sending QualType's
5100/// into a diagnostic with <<.
5101inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
5102                                           QualType T) {
5103  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5104                  DiagnosticsEngine::ak_qualtype);
5105  return PD;
5106}
5107
5108// Helper class template that is used by Type::getAs to ensure that one does
5109// not try to look through a qualified type to get to an array type.
5110template<typename T,
5111         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
5112                             llvm::is_base_of<ArrayType, T>::value)>
5113struct ArrayType_cannot_be_used_with_getAs { };
5114
5115template<typename T>
5116struct ArrayType_cannot_be_used_with_getAs<T, true>;
5117
5118// Member-template getAs<specific type>'.
5119template <typename T> const T *Type::getAs() const {
5120  ArrayType_cannot_be_used_with_getAs<T> at;
5121  (void)at;
5122
5123  // If this is directly a T type, return it.
5124  if (const T *Ty = dyn_cast<T>(this))
5125    return Ty;
5126
5127  // If the canonical form of this type isn't the right kind, reject it.
5128  if (!isa<T>(CanonicalType))
5129    return 0;
5130
5131  // If this is a typedef for the type, strip the typedef off without
5132  // losing all typedef information.
5133  return cast<T>(getUnqualifiedDesugaredType());
5134}
5135
5136inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
5137  // If this is directly an array type, return it.
5138  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
5139    return arr;
5140
5141  // If the canonical form of this type isn't the right kind, reject it.
5142  if (!isa<ArrayType>(CanonicalType))
5143    return 0;
5144
5145  // If this is a typedef for the type, strip the typedef off without
5146  // losing all typedef information.
5147  return cast<ArrayType>(getUnqualifiedDesugaredType());
5148}
5149
5150template <typename T> const T *Type::castAs() const {
5151  ArrayType_cannot_be_used_with_getAs<T> at;
5152  (void) at;
5153
5154  assert(isa<T>(CanonicalType));
5155  if (const T *ty = dyn_cast<T>(this)) return ty;
5156  return cast<T>(getUnqualifiedDesugaredType());
5157}
5158
5159inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
5160  assert(isa<ArrayType>(CanonicalType));
5161  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
5162  return cast<ArrayType>(getUnqualifiedDesugaredType());
5163}
5164
5165}  // end namespace clang
5166
5167#endif
5168